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Abstract

An option gives the buyer the right, but not the obligation, to buy or sell the underlying at the strike
price on or before the expiry date. Determining the value of an option has been a long-lasting prob-
lem. European options which can only be exercised on the expiry date can fortunately be solved by
the celebrated Black-Scholes model. American options which can be exercised anytime before the
expiry, however, have no closed-form solution. Numerical methods such as solving the partial dif-
ferential equations (PDEs), tree-based method, Monte Carlo simulation and finite difference method
have been developed in an attempt to price American options.

With rising popularity of machine learning, recent work has shown that neural networks can be
used to price options. Among the methods using neural networks, there is supervised learning where
the options prices are used as labels to train the neural network to interpolate the relationship be-
tween the inputs such as underlying, strike, and volatility and the prices. The success in applying
neural networks to solve the PDEs such as Laplace equation has inspired the use of neural networks
as Black-Scholes PDE or American option PDE solvers.

This work aims to evaluate and compare supervised and unsupervised learning methods in pric-
ing options assessed from the aspects of accuracy, robustness and efficiency. The work is carried out
with an emphasis on practical usage. We show that a trained supervised neural network produces
prices close to the analytical and numerical prices with the exception of at-the-money region. It gen-
erates reasonably accurate prices for in-sample prediction but starts to have undesirable errors for
out-of-sample prediction. Unsupervised neural network suffers from dimensionality problem where
an increase in domain dimension lengthens the training time and increases the errors. In general, a
supervised neural network generally outperforms an unsupervised neural network in our work, al-
though both methods have room for improvement when used in practice.
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Introduction

An option is a type of derivative, which in finance, refers to a contract that derives its value from the
performance of an underlying. An underlying can be an index, asset or interest rate. An option gives
the buyer the right, but not the obligation, to buy or sell the underlying at a specified strike price
on or before the expiry date, depending on the exercise style of the option. Traders and investors
enter option markets with different goals in mind. While some enter the markets with an opinion
on which direction the prices will move, others make use of options to protect their positions against
unfavourable price movements, or act as intermediaries where they buy and sell atrequest from other
market participants, hoping to profit from the differences between the bid and ask prices. The most
common type of an option is a European vanilla option, which gives the buyer the right, but not the
obligation, to buy (a Call option) or sell (a Put option) the underlying at a specified strike price K at
maturity T. The payoff of a European option at maturity is (St — K)* for a Call option and (K - St)*
for a Put option, where S is the underlying price at maturity.

Determining the value of an option has been a long-standing problem in the field of mathemat-
ical finance. Black and Scholes (2] deduced a closed-form formula for pricing a European option
on an underlying whose price follows a log-normal diffusion process, making the valuation of Euro-
pean options straightforward. On the other hand, early exercise options such as American options are
hard to value. As an American option can be exercised at any time during the lifetime of the option,
American option pricing problem is concerned with a moving boundary that is related to the optimal
stopping time. The theory of optimal stopping is related to the problem of choosing a time to adopt
an action based on sequentially observed random variables so as to maximize an expected payoff or
to minimize an expected cost.

Since the only scenario when a closed-form solution to pricing an American option exists is when
the underlying has no dividend, a wide range of numerical and analytical methods have been devel-
oped for the valuation of American options. Early attempts made to price American options, which
remain popular until today, include solving partial differential equations (PDEs). For instance, Bren-
nan and Schwartz [3] developed the finite difference method (FDM) to evaluate American put options.
Zvan et al. transformed the Black-Scholes PDE into one with a non-linear penalty term and solved
the equations under the finite element method (FEM) [4]. Recently, Ballestra [5] developed a novel
algorithm under the finite difference scheme enhanced by repeated Richardson extrapolation and
showed that it performs remarkably better than the traditional FDM. These PDE methods, however,
are only suitable for low-dimensional problems — at most four dimensions [6].

Apart from these PDE methods, binomial tree method proposed by Cox et al. [7], which was then
extended to trinomial tree method by Boyle [8], is easy to implement and fast to compute. Various
literature has proven the convergence of binomial tree method for the valuation of American options
[9]. Moreover, common simulation-based approaches include Monte Carlo simulation and the Least-
Squares Monte Carlo (LSM) method proposed by Longstaff and Schwartz [10]. LSM has been shown
to exhibit better results [11] than the normal Monte Carlo simulation and its consistency and conver-
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gence has been investigated by Clement et al. [12]. These simulation-based approaches depend on
the discretisation of the corresponding stochastic differential equations (SDEs) and the approximation
of conditional expectations [6].

On the other hand, artificial neural network (ANN) based methods do not require discretisation
of the partial or stochastic differential equation. Ever since Hutchinson et al. [13] who proposed the
learning network to price the S&P 500 futures options under the Black-Scholes framework, there has
been considerable interest in the use of ANNs for option pricing and hedging. This is due to their ad-
vantage in computation time when the models are trained upfront compared to standard functional
approximators, as well as their ability to approximate solutions to very complex functions as stated by
universal approximation theorem [14]. While most literature on ANNs focuses on European options,
such as the paper by Liu et al. [15] which proposed an ANN approach to price European options
under the Black-Scholes framework and the Heston model as well as to compute implied volatilities
using Brent'’s root-finding method, there have been some attempts to extend the ANN approach to
pricing more complex options such as American options.

Research using supervised machine learning techniques to price American options includes the
one by Jang and Lee [16], who showed that generative Bayesian neural network models incorporating
priors produce a better calibration and prediction performance for pricing American put options on
S&P 100 index than classical American option models. As opposed to Jang and Lee [16] who looked
at American put options on S&P 100 index, Gaspar et al. [17] investigated pricing the American put
options on individual stocks using two different neural networks, with the input variables collected
from Bloomberg. Compared to the NN model with input variables of stock price, strike price, implied
volatility and maturity, the model with more input variables (such as dividend yield and interest rate)
outperforms both the former model and LSM. Without depending on the observed market option
prices to apply ANN to fit a model-free function like Gaspar et al. [17] did, Karatas et al. [18] employed
model-based pricing by generating artificial sample paths of the price processes for American options
using the Ju-Zhong (JZ) approximation under the geometric Brownian motion (GBM) framework and
showed that recurrent neural network has more promising training time than feedforward neural
network. Moreover, Liu et al. [19] also employed model-based pricing — they extended their work
on European options [15] to not only approximate the American-style Black-Scholes prices, but also
use the Differential Evolution (DE) optimisation algorithm to estimate implied volatility and implied
dividend (when they are unknown) using the Calibration Neural Network (CaNN).

In terms of unsupervised learning techniques, several papers have attempted to solve the PDEs
using ANNSs rather than using the numerical techniques, alleviating the curse of dimensionality. Han
et al. [20] reformulated PDEs as backward stochastic differential equations (BDSE) and approximated
the gradients of the solution with deep neural networks, inspiring the field of deep BDSE. Following
Han et al's work, Chen and Wan [21] implemented neural networks on American option problems
with the least squares residual of the BDSE as the loss function. Their neural network performs better
than LSM when the dimension is more than 20. In contrast to employing deep BDSE approach, Sal-
vador et al. [22] reformulated the Black-Scholes American option pricing problem as a linear com-
plementarity problem and made an ANN learn solutions which satisfy constraints imposed by the
PDE and the boundary conditions by minimising a loss function. Compared to the prices computed
by the finite element method, the solutions obtained by the ANN have errors of order of magnitude
of minus three, and therefore are reasonably accurate.

Previous work in the field mainly explores the feasibility of pricing European and American op-
tions using artificial neural networks, and compare the results against those produced by traditional
numerical methods. The comparison between supervised and unsupervised learning in terms of
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speed, accuracy, and robustness in extreme market conditions is however not explored. Supervised
and unsupervised learning methods each has its own advantages — supervised learning is simpler to
implement while unsupervised learning does not require a large amount of training data which is dif-
ficult to acquire in some circumstances. The main goal of this project is to compare pricing options
using both methods. For supervised learning, the prices are generated using the numerical methods
and used to train the neural networks to map the inputs to the prices. For unsupervised learning, we
base our work on van der Meer et al.’s [23] and Salvador et al’s 6] papers, where we solve the corre-
sponding partial differential equations by minimising suitable loss functions using ANNs. The ANNs
will then approximate solutions that converge to the solutions of the PDE problems.

The thesis is structured as follows. In the first three chapters a theoretical background to the key
concepts is provided. Chapter 1 introduces the general PDEs and the renowned Black-Scholes PDE
which is used to price European options. Chapter 2 presents the methods to price American options,
including the PDE for American options, the tree-based method and Least-Squares Monte Carlo. In
Chapter 3, one can find an overview of the artificial neural networks, including the concept of a fully-
connected feedforward neural network, the universal approximation theorem that states that neural
network with a single hidden layer can approximate a rich class of functions on compact subsets, and
the training of neural networks. Chapter 4 details the methodology and implementation of both su-
pervised and unsupervised learning, including how unsupervised neural network can be used as PDE
solvers, practical concerns and changes to ensure numerical tractability, connecting Black-Scholes
and American PDEs in Chapter 1 and 2 with the loss functions. Practical implementation details of
the critical components of the code are also discussed. Chapter 5 presents the results of European and
American options pricing using both supervised and unsupervised learning. We evaluate and discuss
supervised and unsupervised techniques individually before going on to compare them. Finally, in
Chapter 6 we conclude this thesis by giving a brief summary and an insight into possible future re-
search directions. The code of this thesis is available on GitHub: https://github.com/violapu/OPNN.
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Chapter 1

Pricing European Options

This thesis begins with pricing European options. Before presenting pricing European options with
Black-Scholes partial differential equations (PDEs) in Section 1.2, we give a brief introduction of gen-
eral PDEs in Section 1.1.

Partial differential equations (PDEs), which describe the relations between the various partial
derivatives of a multi-variable function, are usually used to describe natural phenomena and model
multi-dimensional dynamical systems. In the area of finance, solving PDEs is important for problems
of derivatives pricing, optimal execution and many more.

1.1 General Partial Differential Equations

Consider a general n-dimensional PDE for the function u(x) = u(x, ..., x;;) on the finite domain Q c
R", the k-th order PDE can be expressed as

Nj(z, u(x@); Du(x), ..., D" 'u@), D¥u(x))=0 xeQcR”

where D¥ is the collection of all the partial derivatives of order k. As these partial derivatives argu-
ments can usually be inferred from u, we can omit them and write

Ni(z, u)=0 in Q (1.1.1)

In certain scenarios, we require the unknown function u to be equal to some known function on
the boundary of its domain Q. Similarly to above, the boundary conditions can be represented as

Ng(x, u) =0 on dQ) (1.1.2)

In many cases, it is crucial that a unique solution exists for each choice of data, and the solution
depends continuously on the data including the right hand side and the differential operators on the
interior and boundary, Ny and Ng respectively. This is a property known as well-posedness [24]. To
be more specific, one example would be that the solution should only change marginally when the
boundary conditions change slightly. To ensure the PDE is well-posed, Equations (1.1.1) and (1.1.2)
can be rewritten as (23]

{}}T;(::c, u)=F(x) in Q (1.1.3)
Ng(x, u) = G(x) on 90

where F and G are source functions. These source functions and operators define constraints on u
that must be satisfied to solve the PDE. The well-posedness of such PDE is defined as follows [25]:
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Definition 1.1.1. The PDE given in Equation (1.1.3) exhibits well-posedness if for all F and G, there
exists a unique solution, and if for every two sets of data, Fy, G; and F,, G», the solutions u; and uy
satisfy

ltn — |l = K(|Fy = B |l + |Gy — Gz )

for some fixed constant K € R, which is known as the Lipschitz constant.

1.2 The Black-Scholes PDE for European Options

One of the most renowned results in the field of mathematical finance is the Black-Scholes Equation
and the associated Black-Scholes PDE discussed in the seminal work of Black and Scholes [2] in 1973.
We present here a simple variant of this equation relevant for pricing a European option on underly-
ing that yields continous dividends.

A European option gives the holder the right to buy or sell an underlying asset such as a stock,
bond or commodity at the strike price on the expiry date. Before we present the Black-Scholes equa-
tion for the valuation of a plain vanilla European option, we first look at the Feynman-Kac formula.
The Feynman-Kac formula [26] states the expectation of stochastic process driven by Brownian mo-
tion B = (B;) ;=g can be obtained as a solution of an associated PDE.

Theorem 1.2.1 (Feynman-Kac). Suppose V = V(t, x) is the solution to the PDE
1 . ;
8,V +b(t,x)0,V+ Eal(r, NEV=r(t,x)V, t<T;

VI(T,x)=glx), t=T.

Then subject to some suitable regularity conditions on V,r, b and o, we have

T

V(t,x)=E g(Xr}BXIJ(f r(u, X")du|F;
r

(1.2.1)

where X = (Xs)se(r,1) 1S the solution to the stochastic differential equation (SDE)
dX; = b(s, X;)ds+0o(s,X;)dB;, X;=x

In the Black-Scholes model, under the risk neutral measure (J, the underlying asset is assumed
to pay a continuous yield of g, i.e. the dividend paid over the interval (¢, ¢t + §¢] equals gS;6t. The
dynamics of the underlying asset can be shown to follow the SDE

de =(r- q}S;df + JSdef
where B; is a Brownian motion. The time-¢ fair value of an option with payoff g(Sr) at maturity T is
V(1,8):=ES% [g(Sr)exp (~r(T - )]

By Theorem 1.2.1, V(t,S) can then be characterised by the solution to the PDE, which is known as the
Black-Scholes PDE
0,V +(r—q)SosV + }stza%v -rV=0, t<T;
2 ‘ (1.2.2)
Vi(t, 8 =g(9), t=T.
In order to solve the PDE, appropriate boundary conditions should be imposed [27]. For a Euro-
pean option, the underlying lives on the domain [0, co). In this case, Smin = 0, and Smax needs to be
chosen to impose the boundary conditions V(t,0) and V(f, Spax)-
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 For Call options with the terminal condition V (T, S) = (S—-K)*:

(1) Atzero stock price, a Call option becomes worthless. Therefore, V(t, 0) = 0.

(2) For very large initial stock price, a Call option has a high probability of ending up in the
money and being exercised so that the option holder receives the stock and pays the strike
price K at maturity T. Therefore, V(f, Smax) = Smax — Ke™"I=9.

* For Put options with the terminal condition V(T, S) = (K- 8)":

(1) When the stock price is zero, a Put option behaves like a fixed cash payment of K. Hence
the fair value of the option is V(t, 0) = Ke "7~

(2) Forwvery large initial stock price, a Put option is very likely to end up above the strike price
K and expire worthless. Thus, V (f, Spax) = 0.

With boundary conditions imposed, the analytical solution to Equation (1.2.2) is:

Vean(t,8) = Se” M= 0N (dy) — Ke " T~ ON (dy)
Vour(t,8) = Ke " T ON (=dy) - Se” 1" N (=dy) (1.2.3)

where A is the cumulative distribution function (CDF) of the standard normal distribution A(0, 1)
and

d log(S/K) +(r—g+a?/2)(T—1)
].=

ovT—t
log(S/K)+(r—g—-a?/2)(T—t
d2=0g( )+ ;} o /2)( }=d1—cr T—1
ovT—t
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Chapter 2

Pricing American Options

This Chapter presents the methods to price American options. Following Chapter 1, the PDE for
American options is introduced in Section 2.1. Apart from solving the PDE, popular numerical meth-
ods used to price American options including the tree-based method and Least-Squares Monte Carlo
are presented in Section 2.2 and 2.3. These two methods are used to generate prices which are used as
labels for training under supervised learning, and also used to compute errors against the predicted
prices by neural networks under both supervised and unsupervised learning.

2.1 The PDE for American Options

In contrast to European options, American options allow the option holder to exercise the option
prior to the maturity date and receive the payoff immediately based on the prevailing value of the
underlying. This can be described as an optimal stopping problem.

Definition 2.1.1 (Stopping Time). Let (Q, F, {F,}5.,, ) be a filtered probability space. A stopping
time is a random variable 7: {2 — {0, 1, 2...} U {oo} such that for all n = 0 we have:

w:t(w)}={r=nle F, (2.1.1)
Remark. The condition 2.1.1 is equivalent in discrete time to {1 = n} € F,, for every n.

Let T[t, T] be the set of admissible stopping times in [¢, T] during which the option holder can
choose to exercise. The price of an American option at time ¢ with the underlying price S; = S is

V(t,S)= sup Eg[gSne " 7|s,] (2.1.2)
e T[t,T]

where () is the risk neutral measure. Taking 7 = ¢ in Equation (2.1.2), which means one can immedi-
ately exercise the option and obtain payoff g(S). We therefore have

Vit ) = g(8)
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One may continue holding onto the option to time ¢ + &t with §¢ being a very small number. Then

e}ﬁfv(f, S) = e}ﬁi‘ sup E{p [g(sr}e_r”_ﬂlsi‘]
]

eT[t, T
= sup Eg [E{p [g(Sr}e"'”‘f“S”|Sf+5f] |Sr]
TeT[t,T)
= sup ]E.Q [E(p [gfsr}e_r”_f—‘m |Sr+§ r] |Sf]
TeT [t+61,T)
=Eg sup Eg [gfsr}e_r”_f—&ﬂ |Sr+§ r] S
TeT [t4+61, T)
=Eqg [V(t+0t, Spisp))

where S,. 5, is the underlying asset price at time ¢+ §¢. We have therefore shown that
eV (t, )= Eg [V(t+61,S,.5,)] (2.1.3)

We assume that V' is continuously differentiable with respect to t and twice continuously differ-
entiable with respect to S. By [t6's lemma, we have

t+8t
V(t+6t, Seear) = VU1, 3)+f [afvm,s"}du +0sV (14, Sy) (rSydu+08,dB,)
r
1 .. o
+£6§V(u,3u}028ﬁdu

Taking expectation on both sides, we obtain

t+81

Eg [V(£+6t, Spi5)] = V(t, S)+Eq U 8.V (u, Sy)du +0sV(u, Su)rSudu
r
+ %ﬁéV(u,Su}azSﬁdu (2.1.4)

By substituting e’%! = 1+ r&1+©(8t2) and Equation (2.1.4) into Equation (2.1.3), and dividng both
sides by §t, we obtain

0(51«2} 1 t+dt 1., o2
rVi(t, 8 + T ZE\'I] af a;V{H;Su}dH +63V{L¢,Su}r3“du + EBSV(L:,SH}J S“du
t
Since (1) is a high order term of 6 ¢, by letting 6t — 0, we have
1. o
rV(t,S) =0, V(t, S)+dsV(t, SrS+ Eaﬁvu, S)o*s?
1. 5
a:V(t, S)+8sV(t,S)rS+ Eag V(t,S)o*S*—rV(t,8) =0
Therefore, we have shown that

min (-8, V(t, S)— sV (t, S)rS— %a:ﬁwr, S)a*S*+rV(t,S), V(t,S)—g(S)|=0 (2.1.5)

The first term in Equation (2.1.5) is equal to zero when V(t, S) > g(S), known as the continuation
region, i.e. when the payoff from keeping the option is higher than that from the immediate exercise.
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The second term is equal to zero when V(t, S) = g(S), known as the exercise boundary, where the
option will be exercised. Since a decision has to be made at time ¢, one of the two decisions must be
optimal and therefore one of the inequalities must be an equality. We have therefore shown that the
inequality in Equation (2.1.5) is actually an equality, and hence the PDE for an American option is

{min[—afvtr, S)=dsV(t,rS—382V(t, oS+ rV(t, S), V(t, S)-g(9) =0, telo, T};
(2.1.6)

V(I;S} = g(S}; t= T

2.2 Tree-based Method

In the Black-Scholes model, the risk-free asset with interest rate r and the risky stock with the price
process (S;) ;=0 follow the geometric Brownian motion

ds
& dr+odB, 2.2.1)
S;
which gives
a2
St =Spexp r—? t+oB; (2.2.2)

where B = (B;) ;=¢ is a Brownian motion under the risk neutral measure (J. The time-zero fair price of
a European option with maturity T and payoff function g(Sy), where g(s) = (s — K)* for Call options
and g(s) = (K — s5)* for Put options, is

e "TEg [g(S1)] (2.2.3)

The motivation of the tree-based method is to approximate the continuous price process by a sim-
ple discrete process to aid the computation of the time-zero fair price as shown in Equation (2.2.3).
The basic idea is to construct a tree which models the various paths that the stock price can follow
during the lifetime of an option. The binomial pricing model on a single underlying asset was ini-
tially proposed by Cox, Ross and Rubinstein [7]. Since then, it has been often used to price American
options which can be exercised at any time prior to expiry.

To price an American option with the binomial tree method, we divide the period [0, T] by N sub-
intervals with length Af := T/N and grid points t,, = nAt, n=0,1,..,N. An N-period recombined
tree is built from simple one-period binomial trees, where the stock price S can go up to uS with
probability p, or go down to 4 S with probability 1 — p. From Equations (2.2.1) and (2.2.2), we have

Sr+m

S, = exp

o2 2\,
(r— ?] t+0(Bisar—By)| ~ log—normal((:’— ?]AI‘,J At]

The first and second moments of the stochastic return over the interval [t, t + At] are

2
(SHQI‘]

Sy
By matching the above two moments with the first two moments of the binary random variable, we
obtain

S o ta?
Eg fs;;“ — pler+a’)a

o

]:e"m and Eg

pu+(1-p)d=e™™t
pu? + (1 - p)d? = e2r+a?)at
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After imposing the condition ud = 1 to ensure the tree recombines, and performing Taylor expansion
of u in powers of At, we obtain the parameters of the binomial tree specified under the Cox-Ross-
Rubinstein (CRR) model

AL
e~ —d
u—d
where —g < rv At < ¢ is required to ensure p is a well-defined probability.
Due to the early exercise feature of the American options, a stopping time 7 is required to describe
the exercise timing strategy. The time-n fair price of an American option with maturity T and strike

Kis

V= sup E(Il e—i'{r—n]mgtsr}|}-”l
TE [, N]
_ | g(8Sw) forn=N
~ | max{g(Sy),e "M Eqg [V*F,]} forn=0,1,.,N-1

At time 1y, there are n + 1 nodes representing asset price S}, where S}! = Sou" *dkfor k=0,1,...n
and n=0, 1, ..., N. We further define g;! := g(S}). Then, forn=0,1, ..., N1, the time-n fair price of
an American option becomes

V};! — max{g;;’ e_mf(pV;Hl +(1- P}V;;i:ll}}

The intuition is that at any time point n, there are two possibilities. If exercising the option is optimal
right now, the option holder exercises the option and receives an immediate payoff of g, which is
also called the intrinsic value of an option at time n. On the other hand, if exercising the option is not
optimal at this instant, the option holder keeps the option and the value of this position as of time n
can be computed by risk neutral pricing
17;;! — e—mi‘ [PV;?:II +(1- p}V;;Hl]

where LT is also known as the continuation value of the option at time n. The option is therefore
exercised if and only if the intrinsic value is larger than the continuation value.

The algorithm to compute the time-zero value of an American option with the binomial tree
method is as follows. Firstly, the option value at terminal time N is given by its intrinsic value V;;V = g}?"
for k=0,1,..,N. Forn=N-1, N-2,..,0, we compute V! for each k =0, 1, ..., n. By backward in-
duction, we can then obtain the time-zero option value V{? More details and proof can be found in
[28]. Jiang and Dai proved the convergence of the binomial tree method for American options [9].

The advantages of the binomial tree method are its ease of implementation, fast computation for
low-dimensional problems, and its flexibility to extend to options with embedded decision features.
However, as the number of the underlying assets increases, the curse of dimensionality kicks in and
the implementation becomes computationally expensive.

2.3 Least-Squares Monte Carlo Simulation

Although using Monte Carlo simulation to price American options is difficult due to their early exer-
cise feature, there are several advantages [10]. The key advantage is that computational time increases
linearly when the value of the option depends on multiple factors. Moreover, Monte Carlo simulation
allows general stochastic processes such as jump diffusion. In practice, simulation is applicable to
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parallel computing, thereby allowing a potential increase in the computational speed. There are sev-
eral Monte Carlo simulation methods that can be used price American options, and here we give an
overview of the Least-Squares Monte Carlo (LSM) proposed by Longstaff and Schwartz. More details
regarding the numerical examples illustrating the simulation method, the theoretical framework, and
the algorithm can be found in [10].

On the expiry date, the optimal strategy is to exercise an option if it is in the money and allow it
to expire worthless if it is out of the money. Prior to the expiry date, as mentioned under Section 2.2,
the holder of an American option compares the payoff from immediate exercise called the intrinsic
value against the expected payoff if keeping the option called the continuation value, and exercise if
and only if the intrinsic value is higher. Similarly to the binomial tree method, the optimal exercise
strategy is determined by the conditional expectation of the payoff from keeping the option. The key
to the LSM method is the application of the least squares to estimate this conditional expected payoft.

We assume a probability space (€, F, PP) and a finite time horizon [0, T]. The state space Q is
the set of all possible outcomes between time 0 and T with w representing a sample path, F is the
sigma field of distinguishable events at time T, and P’ is a probability measure which under no-
arbitrage condition admits the existence of an equivalent martingale measure (). To implement LSM,
we assume that the American options can only be exercised at N discrete times, and can be used
to approximate continuously exercisable American options by making N sufficiently large. We di-
vide the period from the valuation date to the expiry date [0, T] into N sub-intervals with grid points
t, = nAt,n=0,1, .., N. At time t,, the cash flow from immediate exercise equals to the intrinsic
value and is known to the option holder. However, the cash flow from holding on to the option, is
not known but can be calculated from taking the expectation of the rest of the discounted cash flows
Cl(w, s; ty, T) with respect to the risk neutral measure Q. C(w, s; t,,, T) refers to the path of cash flows
generated by the option conditional on the holder of the option adopting the optimal stopping strat-
egyforalls, t < s< T, as well as that the options are not exercised on or before time ¢. Then, at time
t,, the continuation value is

Flw; ty) =Hi@

N t
Z exp(—f ! rlw, s}ds]C(m, t; fmT}|.7-}”] (2.3.1)
[#

Jj=n+1 n

The least squares approach can be used to approximate the conditional expectationat ty_;, ty-2, -.., f1-
For instance, at fy_;, F(w; tiy-1) in Equation 2.3.1 can be represented by a linear combination of a
countable set of ;, | -measurable basis functions. Possible choices of basis functions include Legen-
dre, Chebyshev, and Jacobi. Longstaff and Schwartz [10] chose a set of weighted Laguerre polynomials
as the basis functions:

o0

Flw; ty-1) =) a;L;i(X)

j=0

where the a; coefficients are constants. The LSM algorithm [10] is as follows:

* Generate a number of random paths that the underlying may follow, and for each path, the
asset price S, at t,, n=0, 1, ..., N are known.

* Divide the period [0, T] into N sub-intervalswhere 0 <y = fp <---=ty=T.

* Attime ty_1, the continuation value F(w; ty-1) can be approximated using the first K Laguerre
basis functions, which is denoted as Fi (w; ty—1). After finding the paths where the options are
in the money at -1, we then regress the discounted values of C(w, s; tn-1, T') onto those basis
functions and obtain the fitted value of this regression as ?K(w; tn-1).
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By comparing the intrinsic value from immediate exercise with Fr(w; ty—1), we can decide to
early exercise if the intrinsic value is higher. This is repeated for all in-the-money paths.

Go backwards to time fy_» and repeat this process until a decision on whether to exercise is
made for each time step along all the paths.

Starting from time zero, we move along each path until encountering the first stopping time
and discount the cash flow from the stopping time back to time zero.

Average over all paths w to obtain the American option value.
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Chapter 3

Artificial Neural Networks

The chapter begins with an overview of artificial neural networks as well as machine learning algo-
rithms including both supervised and unsupervised learning in Section 3.1. This is followed by a
formal definition of the components of the neural networks in Section 3.2. Universal approximation
theorem, which states that a neural network with a single hidden layer, can approximate any function,
is discussed in Section 3.3. Continuity and differentiability properties of some activation functions
are also proved in this Section. Implementation of the neural networks including choosing suitable
activation functions to impose non-linearity, and minimising distance measures with optimisation
algorithms is detailed in Section 3.4-3.6.

3.1 Overview

Artificial neural networks (ANNs) are mathematical computing systems that are structured in a way
that is similar to animal brains. According to Haykin [29], a non-mathematical formulation of neural
networks is as follows:

A neural network is a massively parallel distributed processor that has a natural propen-
sity for storing experiential knowledge and making it available for use. It resembles the
brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Interneuron connection strengths known as synaptic weights are used to store the
knowledge.

The aim of a neural network is to approximate some function f by defining a mapping y = f(x;8)
and learning the value of the parameters @ that best approximate the function. In order to learn
the mapping between the inputs and outputs, the synaptic weights and neural network architecture
including the number of perceptrons per layer, the number of layers and the directing of synaptic
connections, are important.

Different types of neural networks can be distinguished by varying those parameters. One exam-
ple would be feedforward neural networks (FNNs) where each unit in a layer is connected to all the
other units in the next layer and there are no feedback connections in which outputs of the model are
fed back into the neural network [30]. The information flows through the function being evaluated
from x, through the computations that are used to define f, before reaching the output y [31]. This is
in contrast to recurrent neural networks, where the output of the network is fed back to the network.
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Due to their universal approximation capability, FNNs have been useful in many applications, such
as face and speech recognition, time series prediction, and simulation modeling. With the numerous
applications of FNNs being successful, we aim to apply FNNs for pricing options in both supervised
and unsupervised manners.

Supervised and unsupervised learning are the two main categories of machine learning algo-
rithms, which are algorithms that can learn from data. A computer program is said to learn from
experience E with respect to some tasks T and performance measure P, if its performance at tasks
in T measured by P improves with experience E [32]. Examples of tasks T include classification and
regression, and measures P can be accuracy or error rate. Supervised learning algorithms experience
inputs containing features, with a label being associated with each example. The data is usually split
into training, validation and test data sets. The training data is represented as

{@e, y1)s o0 (@, Y}

where x; represents an input vector and y; represents the corresponding label. Given the inputs
x;, the outputs f(x;) should be as close as possible to y;. To quantify the closeness, we define loss
functions, which are then minimised with optimisation algorithms during training. An example of a
loss function is Mean Squared Error (MSE):

n

1 .
MSE = — D (flag) - yi)®
i

which measures the average squared difference between the outputs and the labels. During training,
a problem called overfitting, that is, producing a function that performs well with the training data
but poorly with the unseen data, can happen. This is manifested as training loss plunging below
validation loss during training. To prevent overfitting, a dropout layer can be introduced where each
input gets randomly replaced by zero value during training with probability p € [0,1], so that the
neural network is forced to learn the most robust features. Apart from using a dropout layer, the
number of iterations called epochs can be reduced or the number of samples can be increased to
prevent overfitting. Once the model is trained, the model can be evaluated on unseen data called the
test data, so as to see how our model generalises.

On the other hand, unsupervised learning algorithms are those that experience only features but
not labels. Without the labels, the optimality of the algorithm cannot be measured directly through
the closeness of its outputs from the labels, but through some otherkinds of measures such as profit-
and-loss (PnL) if the aim is to maximise PnL or self-defined loss functions.

3.2 Architecture

The concept of a neural network can be formalised as follows [1]:

Definition 3.2.1. Let I, O, r € N. A function f:R! — R is a feedforward neural network with r — 1 €

{0,1, ...} hidden layers, where there are d; € N units in the i/ hidden layer for any i = 1, ..., r —1, and
activation functions o; : R4 — R% i =1, .., r, where d, := O, if

f:o'j.oL}.o---oo'loLl (3.2.1)
where L; : R4 — R% foranyi =1, .., r, is an affine function

Lix)=Wiz+b reR%
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parametrised by weight matrix Wi = [m?,kljel.....d;.k:l _____ di, € R4i*di-1 and bias vector b! = (bf, - b;}_} €

R4 with dy := I. We denote the class of such functions f by
-"\‘r}'({;dl;---;d}'—].)O;o-].;---;o-}'}

An example of deep neural network can be seen in Figure 3.1. As can be seen from the definition,
FNNs are typically represented by composing alternatingly affine and simple non-linear functions,
giving rise to non-linearity, hence the reason why they are called networks. The overall length of the
chain structure, including the input layer, the hidden layers and the output layer, gives the depth of
the model. The dimensionality of the hidden layers determines the width of the neural networks. The
neural network architecture is determined by the weights W?, ..., W' and biases b, ..., b", as well as
the activation functions oy, ..., ;.

Figure 3.1: Graphical representation of a neural networkwith r=3,I=dy=2,d, =5, d2 =4 and O=d3 =3.

3.3 Universal Approximation Theorem

The use of neural networks to approximate very complex functions is motivated by their universal
approximation property, which states that a continuous function defined on a bounded domain can
be approximated by a suitable neural network [33].
In order to measure the precision of approximation by a neural network, two norms are defined
as follows. Let K c R be compact, and LP (K, R) denotes the class of measurable functions f: K — R
such that || f|| .»(x) < co. For any measurable f : RI — R, the sup norm is defined as:
"f"sup.l( = sup| f(x)|

xekK

and for any p = 1, the L? norm is defined as:

1

Ifller i = (ﬁ(|f($}|pd$r
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A slight reformulation of the generalised results on universal approximation theorem by Leshno et al.
[34] can be found in Theorem 2.22 in [1]:

Theorem 3.3.1 (Universal Approximation Theorem). Letg : R — R be a measurable function such that

(a) g isnota polynomial function.
(b) g is bounded on any finite interval.

(c) the closure of the set of all discontinuity points of g in R has zero Lebesgue measure.
Moreover, let K < R! be compact and € > 0.

(i) Foranyu € C(K,R), thereexistd € N and f e N>(1, d, 1; g, Id) such that
[l — f"sup K<E&
(ii) Letp=1. Foranyve LP(K,R), thereexistd € N and he N,(I, d', 1; g, Id) such that

lv=hllprx <€

According to universal approximation theorem, a neural network is able to represent any function
thatwe are trying to approximate. However, itis not guaranteed that the function can be learnt due to
two reasons [31]. Firstly, the algorithm may not find the parameters that correctly learn the function.
Secondly, wrong functions might be learnt instead because of problems such as overfitting.

Theorem 3.3.1 holds for neural networks with a single hidden layer, which can be extended to
deeper neural networks with bounded width but unbounded depth, with general activation functions
[35]. In practice, using a single hidden layer may result in an infeasibly large layer and subsequently
generalization error. Using more hidden layers can reduce the number of perceptrons in each layer
significantly and may lead to better generalization.

When using neural networks to solve PDEs, which is what we aim to achieve with unsupervised
learning in our thesis, it is important that the neural networks can approximate both the functions
and their derivatives well. This has been shown to be the case when the activation functions enjoy
continuity and differentiability properties [1]:

Proposition 3.3.2 (Continuity and Differentiability).
(i) Ifo; e CRY, RY) foranyi =1, ..., 1, then
-"\‘r}(fy dl; ey d;-_]_, O; TLseens G';-} = C(RI; RO}

(i) Ife; € C™ (R, R%) for some m; € NU {oo} for anyi =1, ..., 1, then

N, dy, ..., dr_y, O; 01, ..., ) € CRIIMLmrd (T R O)

Proof. (i) As the affine functions Ly, ..., L, in Equation (3.2.1) are continuous, f € N, (I, d, ...,
dy_1, 0; oy, ..., o) is a composition of continuous functions. Therefore, f is continuous.

(ii) Suppose we are trying to compose partial derivatives that are of order m, where m < min{m, ...,
m,}, of a function f € N,(I,dy, ..., d;_1, O; o1, ..., ;). According to the chain rule, the deriva-
tive exists and can be shown to be a combination and composition of the partial derivatives of
Ly, ..., L, and oy, ..., o, up to order m. By construction and by assumption, all those partial
derivatives are continuous. Hence, the partial derivative of f is continuous as well.

A
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3.4 Activation Function

As described in Section 3.2, neural networks are constructed by affine and non-linear functions,
where the non-linearity is given by the activation functions so that the neural networks can learn
complex data. During training, the back-propagation algorithm is often employed to calculate the
gradient, so as to find the minimum of the loss function. This requires the continuity and the dif-
ferentiability of the neural network, which is in turn controlled by the activation functions as shown
in Proposition 3.3.2. Therefore, it is desirable for activation functions to be continuous and differ-
entiable. Some common activation functions can be found in Table 3.1, which are often chosen de-
pending on the usage.

Activation Plot Definition Derivative Range
Identity (Id) % glx)=x gx)=1 R
Heaviside 0 x<0 p
- gx)=0,x#0 {0, 1}
(H) 80 { 1 x20
/"_
Sigmoid (o) — g(x) = — g'(x) = g0 -g(x) ©0,1)
1+e*
Hyperbolic f -
Tangent 7—" glx) = e-¢e” g'(x)=1-g(x)? -1,1
(tanh) efte”
/. ] !
ArcTan — g(x)=tan Y "(x) = _ (-1.5, 1.5)
7 §W=12
Rectified
linear unit R g(x) = max{x, 0} g'(x) = { 0 x<0 [0, 00)
(ReLU)) 1 x>0
Softplus - g(x)=log(l+e") g'(x) = _ b (0, c0)
1+e™*

Table 3.1: Common activation functions, and their definitions, derivatives and output domains. Adapted from

[1].

The identity (Id) activation function takes the inputs multiplied by the weights for each neuron,
and produces an output proportional to the inputs. It therefore can onlybe used in the outputlayer in
cases such as regression problems instead of simultaneously in all the layers, otherwise non-linearity
is not imposed. Moreover, since the derivative of identity is a constant, back-propagation algorithm
cannot be used to learn the weights. Similarly for heaviside (H) activation function, with its derivative
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being zero or undefined, it cannot be used in back-propagation algorithms.

On the other hand, sigmoid (o), hyperbolic tangent (tanh), and arctan activation functions are
differentiable and therefore popular in deep neural networks. With its outputs being bounded to (0,
1), sigmoid is also often used in classification problems to represent the probabilities of belonging to
a class. However, all three activation functions suffer from vanishing gradient problem [36], where the
gradient is vanishingly small as it gets back-propagated back, preventing the update of the weights.

The rectified linear unit (ReLU) activation function [37] is computationally efficient as it allows for
fast convergence. However, one of its limitations is that it does not allow any negative values to pass
through. Therefore, ReLU units become inactive and output a constant for any input on the negative
real line, a problem known as the dead ReLU problem [38]. This leads to its continuous differentiable
counterpart — softplus activation function.

3.5 Loss Function

As shown in Section 3.3, theoretically, neural networks are able to approximate any reasonable func-
tions. To approximate the function in an optimal way with the neural network f : R — RO, f ¢
Ny, dy, ..., dy—1, 0), loss functions £ : R? x R? — R are defined, with one example being the Mean
Squared Error as can be found in Section 3.1.

More generally, if the input € R/ and the label y € R are a realisation of a joint random vector
(X,Y), optimal f can be achieved by minimising the risk

E[{(f(X), Y)]

Without knowing the distribution of (X, Y'), which is often the case in real life, we can minimise
the empirical risk

1N o
L(f)=—) (fx",y" (3.5.1)
N i3
We also define the minibatch risk as follows
1 .
Lp0):=— ) l(folx"),y") (3.5.2)
#B [

where minibatch B < {1, 2, ..., N} is any subset of samples.

Some common one-dimensional loss functions can be found in Table 3.2. Squared loss is the
squared difference between the actual and predicted value, which is penalised more heavily if the
difference is big. Due to the quadratic growth, squared loss usually amplifies the predicted values
that are far away from the actual values, causing the outliers to be given more weight during training
and therefore impact the training result disproportionately. Absolute loss can be used to address this
shortcoming. However, the gradient of the absolute loss function is constant, meaning that the gra-
dient remains big even when the loss is low, which is not good for gradient-based training. Therefore,
L, loss is relatively robust to outliers but maybe harder to find the solution, while L; loss is sensitive
to outliers but is more stable. Huber loss [39], on the other hand, combines the squared loss and ab-
solute loss and has both of their desirable properties. It is absolute loss which becomes quadraticin a
d-neighbourhood for § > 0. Choosing a suitable § is important as it determines what we consider as
outliers. Log-cosh lossis a smooth L, loss that is twice differentiable as compared to Huber loss which
is only differentiable to the first order. As some algorithms use Newton’s method to minimise the loss
function, it is favourable to have a loss function that is twice differentiable.
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Example loss functions for binary classification are also presented in Table 3.2. Other loss func-
tions that are suitable for multi-dimensional classification problems include categorical cross-entropy
and Kullback-Leibler divergence loss. Since our project involves regression, only loss functions that
are suitable for regression problems are focused in this Section.

Loss Plot Definition Use
(4, y)
Squared loss j i iy =-n4 yeR Regression
7 ¥
i, y)
zl‘;};;ss.olute i i pn=1y—-vy, 1yeR Regression
¥ ¥
(i, v)
1 : -
Huber loss 0, y) = { 2 U’A— 2, 1 |{’— yi<é Regression
8(y=yl=30), |y-yl>6
y=86 y y+d v
£5,y)
Log-cosh . . . .
loss (7, v) =log(cosh(y—y)) j,yelR Regression
7 ¥
(i1 w)
Bin N N PO .
crosa:—y (1, y)=-ylogy—(1-yllogl—-J, ye Binary
entropy 0,1),ye{0,1} classification
y=10 y=1 !
(i, v)
- £(y,y) =max(0,1-yy), ye(0,1),y€ Binary
Hinge loss {0, 1} classification
¥

Table 3.2: Common loss functions that are used in regression and binary classification problems. j represents
the predicted value and y represents the actual value. Adapted from [1].
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3.6 Optimisation

In this section, we present some of the popular optimisation methods used in training neural net-
works.

3.6.1 Stochastic Gradient Descent

To understand stochastic gradient descent (SGD), we first look at gradient descent which is a first-
order gradient-based optimisation method that updates the variables in the direction of the steepest
descent. More details can be found in [1].

To minimise a generic differentiable function F: R¢ — R, the usual approach is to let VF(x) = 0
and sometimes there is at least one solution that is a minimiser. However, VF may be zero or just dif-
ficult to solve in real life, usually rendering the common method infeasible. The differential equation

dx(t)

with initial condition (0) € R? can approximate a minimiser if it exists. With step size 1> 0, Equation
(3.6.1) can be approximated by Euler's method as
x(t+n)—x(1)
n

= =VF(x(1)

x(t+n) =x(t) -VF(x(1))

which motivates the gradient descent
Tpew = Told — TV F (To1a)

given some initial condition xy; the step size 1 is a hyperparameter called the learning rate. Minimis-
ing the empirical risk as defined in Equation (3.5.1) with gradient descent method can be computa-
tionally expensive. Therefore, SGD which uses the subsets of the training data to successively com-
pute the gradient updates is favoured in the training of neural networks. In SGD, the training data
is uniformly sampled into minibatches By, ..., By < {1, ..., N} such that #B; = N/kforanyi=1, .., k,
where N/k is the minibatch size. With a batch size N/k, an iteration of SGD when minimising the
minibatch risk as defined in Equation (3.5.2) is given by

9; = 9;_1 - F]ngfgi (91‘—1}, i= 1,..., k

SGD faces several challenges. One challange lies in choosing a suitable learning rate. If the learn-
ing rate 7 is too big, SGD may overshoot. On the other hand, if it is too low, the convergence may be
very slow. Another challenge is to avoid being trapped in the suboptimal local minima and saddle
points. This is because the slopes of the saddle points in orthogonal directions are all zero, which
is hard for SGD to escape [40]. Nevertheless, SGD has been proven to be an efficient and effective
method that is key to the success of many machine learning applications, such as recent advances in
deep learning for speech recognition [41].
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3.6.2 Adam

To address the shortcomings of SGD mentioned in the previous section, several stochastic optimi-
sation methods were proposed. One of them called Adam combines the advantages of two popular
methods: the capacity of AdaGrad [42] to deal with sparse gradients and the ability of RMSProp [43]
to work with non-stationary objective functions.

We let f(6) be a noisy objective function and we want to minimise the expected value of this ob-
jective function E[ f ()] with respect to parameters f. Let g; = Vg f;(6) denote the gradient, m; denote
the exponential moving averages of the gradients, and v; denote the exponential moving averages of
the variances of these gradients. The Adam algorithm updates m; and reduces the learning rate based
on v, with the hyperparameters 1, f € [0,1) controlling the exponential decay rates of these moving
averages. The algorithm [44] is as follows:

8:=Vofi@1)
me= P1-me-1+(1-P1)- g
vi=Po-vio1+ (l—ﬁz}'g?
;= mﬂ"(l—ﬁf}
U= Uﬂ"(l—ﬁ;}

-

mg
Vii+e

where g? denotes the element-wise square g; © g;, 7 denotes the learning rate, £ ensures numerical
stability and /i, and 7; denote the bias-corrected estimates. All operations on vectors are element-
wise.

Requiring little memory, Adam has proven to work well in practice and has been the most popular
optimisation algorithm at the moment.

O;=0;1-1n-

3.6.3 L-BFGS

Another popular optimisation algorithm is the Broyden-Fletcher—Goldfarb—-Shanno (BFGS) method,
a type of quasi-Newton method that produces a positive-definite matrix By for each iteration. The
conventional BFGD method is presented as follows [45]. Firstly, given some approximation of the
parameter 8y, BFGS finds the search direction by computing

pi=-B;'VL(Ok) (3.6.2)

Then the line-search algorithm tries a step size ;. = 1, if it does not satisfy the sufficient decrease
and the curvature conditions such as the Wolfe conditions [46], it recursively reduces 1 until some
stopping criteria. After choosing a step size 1, which satisfies the Wolfe conditions, we compute

Ors1 =0 +nppr = Oy + 5
Y =VLOk) - VLO)
yry; BisisiB]

Bk+l =Bk+
T T
Y, Sk skBksk

where the last step is the BFGS update.

30




The problem is that solving Equation (3.6.2) can be computationally costly when By becomes
high-rank. In view of this, a version of BFGS called the limited-memory BEGS (L-BFGS) method was
proposed. Instead of storing the full matrix By, the algorithm stores the vectors sy and y; computed
during the iterations and uses them to represent the matrix. Compared to the memory requirement
by BFGS which is quadratic with respect to the number of parameters, these low-rank updates to
Hessian approximations enable the memory to increase linearly with respect to the number of pa-
rameters, which is beneficial considering the large number of the parameters usually involved in the
neural networks.

As shown in [45], the L-BFGS method has modest memory requirements, more robust conver-
gence compared to SGD, and can be efficiently scaled to larger supervised, unsupervised or rein-
forcement learning applications.
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Chapter 4

Methodology and Implementation

In this Chapter, we provide the methodology and the implementation of both supervised and unsu-
pervised learning, including how they are used to price options, the key individual and shared com-
ponents and design considerations.

We begin with an overview of the project structure and how the main components relate to each
otherin Section 4.1, followed by the shared components between supervised and unsupervised learn-
ing in Section 4.2. In Section 4.3, a detailed description of how supervised learning is used to price
options is provided. Finally, Section 4.4 presents solving linear and nonlinear time-dependent PDEs
using unsupervised learning based on van der Meer et al.’s paper (23] where neural networks are used
to solve the Laplace equation, Poisson equation, and convection-dominated convection-diffusion
equation as well as Salvador et al’s paper [6] where similar methodology is used to price European
and American options. Methods to ensure numerical tractability and key parts of the code are also
presented.

4.1 Overview

As can be seen in Figure 4.1, the project is mainly split into supervised and unsupervised learning
due to different requirements as well as for better clarity. For instance, the ease of obtaining the
inputs to the neural networks differs: in supervised learning, the input consists of a pandas [47]
DataFrame containing the strikes, spots, volatilities, risk-free interest rates, dividend yields, and the
number of days to maturity, while in unsupervised learning, uniform collocation points sampled from
both interior and boundary of the domains are used as inputs. The feedforward neural network in
supervised learning is built using keras, a front-end that uses a lower-level deep learning library
called tensorflow (48], while that in unsupervised learning is built using tensorflow variables
and placeholders, which is more involved and allows for more customised neural networks.

The trained supervised and unsupervised neural networks are then used to predict option prices
given the same inputs, and the grapher is used to plot the options prices against input parameters
such as strikes or spots for both trained neural networks. L, errors and max errors of supervised and
unsupervised learning are compared.

Furthermore, there is a selection of shared components used for both supervised and unsuper-
vised learning, including the data generation and the pricer, due to the repeated need to generate data
and option prices for training and evaluation.

32




/% Supervised ﬁ /—L' nsupervise dﬂ

Data Generation — ]

pandas PDE Loss :

DataFrame Function !
tensor

numpy
array

Neural Network €

Neural Network

1
1
1
1
1
1
1
1
1
'
Pricer i tensorflowt
1
1
1
1
1
1
1
1
1
1
1

o NG /

Trained Trained

network network

Evaluation

Data
Generation

Grapher Error calculator

Pricer

Figure 4.1: Project structure. The project is split into supervised and unsupervised learning, with some shared
components linking them together.

4.2 Shared Components

The shared components include the data generation and the pricer. The Dat aGenerator produces
a pandas DataFrame from a series of column generators using a pipeline design pattern. Examples
of column generators include:

* UniformGenerator: used to generate acolumn of uniformly distributed floating point num-
bers within a range. It is used to generate strikes, spots, volatilities, risk-free interest rates, and
dividend yields.

* RandIntGenerator: used to generate a column of random integers from a discrete uniform
distribution within a range. It is used to generate the number of days to maturity.
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* ConstantGenerator: used to generate a column of constant value. [t is used to generate
constant strikes, spots, volatilities, risk-free interest rates, dividend yields, and number of days
to maturity.

* LinspaceGenerator: used to generate a column of evenly spaced numbers over a specified
range. It is used to generate evenly spaced strikes, spots, volatilities, risk-free interest rates,
dividend yields, and number of days to maturity.

The DataFrame generated from Uni formGenerator and RandIntGenerator is fed into a
pricer, which outputs a column of option prices to be used as labels in supervised training.

Apart from being used in supervised learning, the generator also generates DataFrames with one
column containing evenly spaced numbers such as spots, and the rest of the columns consisting of
constant values. The DataFrames are then fed into a trained neural network to predict option prices
and a graph of option prices against spots can be plotted to visualise how well the trained neural
network’s prediction performs. This is used in both supervised and unsupervised learning.

The pricers use QuantLib [49] pricing engines such as BinomialVanillaEngine which
uses binomial tree method; MCAmericanEngine, asubclassof MCLongstaffSchwartzEngine
which uses LSM to price American options; and MCEuropeanEngine which uses Monte Carlo sim-
ulation to price European options.

4.3 Supervised Learning

In this Section, the methodology for pricing European and American options by means of supervised
learning is introduced.

4.3.1 Parameters Selection and Labels Generation

To generate a large size of data set, which is needed to implement the supervised learning, we first
need to uniformly and randomly select parameters from some chosen ranges of values. The parame-
ters include: initial stock price Sy, strike price K, volatility o, maturity 7, risk-free interest rate r, divi-
dend yield g, whose ranges can be found in Table 4.1. Note that the maturity isin days as QuantLib
pricing engines use specific calculation dates and maturity dates to calculate the time to maturity.
The maturity dates are obtained by adding the randomly sampled days to the calculation dates be-
fore being supplied to the pricing engines.

Parameter Range
Initial stock price (S¢) [0.01, 200]
strike price (K) [0.01, 200]
volatility (o) [0.05,0.5]
maturity (T) [1,1095]
risk-free rate (r) [-0.02,0.08]
dividend yield (gq) [0, 0.08]

Table 4.1: The ranges of parameters used to simulate 100,000 option prices for training the neural network.
Time to maturity T is in days.

100,000 samples of these parameters are then uniformly sampled from the given ranges, where
one sample consists of a set of parameters listed in Table 4.1. These samples are then fed into the

34




binomial tree and Least-Squares Monte Carlo pricers to generate two sets of 100,000 option prices as
labels. To generate these 100,000 samples, the number of steps for the binomial tree method is set to
be 1000 steps to ensure the prices are smooth, and the Least-Squares Monte Carlo method is set to
have 10,000 paths and 20 steps.

4.3.2 Data Pre-processing

The values of initial stock price, strike price and maturity range up to two orders of magnitude, while
the other values stay within zero and one. The initial stock price, strike price and maturity will af-
fect the results more due to larger values. Since they are not necessarily more important, the data
needs to be normalised before training. For regression problems, data normalisation does not have
a big impact on the results of the training, but improves the numerical stability of the model and
may speed up the training process. To normalise our generated data apart from the prices, we use
sklearn.preprocessing.Min-MaxScaler where the estimator rescales each feature individ-
ually to arange of [0, 1] using the formula:

X — X.min(axis = 0)
X.max(axis = 0) — X.min(axis = 0)

Xstd =

Xocaled = Xstq * (Mmax —min) + min

Furthermore, in order to train and calibrate our neural network models, the data needs to be
divided into training, validation and test data sets. The training data is a set of examples used to train
the parameters such as the weights; the validation data is used to fine-tune and calibrate the model;
lastly, the unseen test data is a used to provide an unbiased evaluation of model fit to the training
data. We divide the data randomly in such a way so that the training, validation and test data consists
of 64%, 16%, and 20% of the data respectively. The random_state parameter is set to zero for
repetition of the results in future.

4.3.3 Training

After tuning the hyperparameters such as the number of hidden layers, the number of perceptrons
per layer, number of epochs and minibatch size, we use a fixed neural network hyperparameters: two
hidden layers where each one has 128 perceptrons, a minibatch size of 128 and an epoch of 800, for
both the European and American options. The activation function used in hidden layers is softplus
and that in output layer is also softplus to ensure the prices are positive.

During training, we minimise the MSE between the label prices and the prices produced by the
neural network using the Adam optimizer. Similar to unsupervised training, relative L, and max er-
rors are used as the metrics to evaluate the performance of the model. The relative L, and max error

are defined as:

NN = VAnatytical/Numerical ll Ly
L, error= il (4.3.1)

I U Analytical/ Numerical I L

max (VNN — Vanalytical/Numerical)
max error = Y (4.3.2)
max (y;\llalylicalf Numerical)

where Vanalytical/Numerical 18 the analytical Black-Scholes solution or numerical solution in the case of
American options, and vyy is the trained solution produced by the neural network.

To inspect whether there is any overfitting, the graphs of training and validation losses against
number of iterations are plotted. Overall, the training loss does not plunge below the validation loss,
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suggesting that overfitting does not occur and dropout layers are therefore not needed. The trained
neural network model is then saved using the pickle library for graphing and easy access in the
future.

4.4 Unsupervised Learning

PDEs are traditionally solved with approaches that iteratively update and improve a solution until
convergence. Decades of research have been going into exploring update rules which enable faster
convergence. With the advances in machine learning, there have been several attempts at applying
the neural networks as PDE solvers.

Among the different ways to learn the solution of a PDE using a neural network, we mainly base
our project on the work developed in (23] and [6]. Instead of enforcing the boundary and initial condi-
tions as hard constraints which must be satisfied, [23] and (6] treated them as soft constraints, which
have to be satisfied as much as possible, by embedding them into the loss functions. These loss
functions are then minimised during the training of neural networks. By only adjusting these loss
functions, different types of PDEs, initial and boundary conditions can be learnt, showing that this
method is versatile and adaptable.

Section 4.4.1 aims to explain why the above-mentioned method works by proving that solving a
PDEis the same as optimising several functionals at the same time. In Section 4.4.2 one can find some
practical considerations when training the algorithms. Finally, detailed explanation of the main code
for implementing unsupervised neural networks can be found in Section 4.4.4.

4.4.1 Neural Networks as PDE Solvers

Let the problem domain be Q c R4, 4Q represent the boundary on the domain Q and v(t, x) denote
the solution of the PDE. Following the introduction of general partial differential equations in Section
1.1, the general PDE problem can be written as [6]:

Ni(w(t,x)) =0, x€Q,t€(0, T)

Np(v(t,x)) =0, x€0Q, te(0, T)

No(v(t,x)) =0, xeQ, te{0, T}
where N(-) is a linear or nonlinear time-dependent differential operator, N'g(-) is a boundary opera-
tor, and A\y(-) is an initial or final time operator.

To obtain the true solution #(¢, x) of the PDE, we have to minimise a suitable loss function .%(v)

over the space of k-times differentiable functions, where k depends on the order of the derivatives in

the PDE. It is deemed desirable for .# to satisfy the following properties, and more details of those
properties can be found in [25].

Property 4.4.1. The solution of the PDE is the minimiser, i.e.

argmin.Z(v) = 1.
veCk

Property 4.4.2. Foranye >0, there exists ad > 0 such that
L) -L(D) <6
implies that

lv— 7] <e.
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Property 4.4.2 arises as it is not guaranteed that finite neural networks can express any function,
which means that the true minimum of .% might not be attained.

Property 4.4.3. ¥ (v) has a unique global minimum.

Property 4.4.4. Forevery e >0, there exists ad > 0 such that
lv-0)>6=ZLw)-Z(D)>¢

Property 4.4.3 and 4.4.4 are sufficient to ensure convergence. Firstly, as mentioned in Section 3.6,
gradient-based methods, which are used to minimise the loss function, suffer from the problem of
being trapped in the suboptimal local minima. To ensure that the methods do not get trapped, it
is required that the loss function only has one single global minimum. Secondly, the loss increases
for solutions that are far away from the true solution, which ensures that the optimiser does not go
towards infinity. These two properties ensure convergence as they allow the construction of bounded
regions that contain the path the optimiser needs to take to minimise the loss function.

With these properties being satisfied, assuming that A, A’ and \V; are scalar, their L” norms can
be the loss functions:

I

"J\"-B(U(f;xn"p = [f
an

1
) ) P
IV @)l = | | Vi) dxde|”

L
1]

J\;’B(y(r,x}}rdxdr

L
1]

J\!I,(v(r,x}}rdxdr

"J\"-{)(U(f»xn"p = [f
an

for some p = 1. To obtain the function that minimises those three norms at the same time, we omit
the p-th root and include a weighting A € (01) to obtain the total loss function:

ff.’(v}:;lf
0

When p = 2, the problem is reduced to least squares regression problem, which is the most stud-
ied and easiest the analyze. Hence, we will use p =2:

f(v}:lf
0

It has been shown in [25] that loss functions defined in Equation 4.4.1 and 4.4.2 satisfy all four
desired properties. Therefore, theoretically gradient-based methods used in neural networks should
be able to find approximations to the true solution.

i Py p
Na(v(r,xn| +Ng(v(f,x}}| dxds (4.4.1)

P
N;wu,xn| dxdi+1-1) | [

B 2
N (i, )| +

2
N}(v(r,x}}| ddeHl_M.Ln(

2
Nhtytt,x}}| ]dxdf (4.4.2)

4.4.2 Numerical Tractability

With the theoretical function space established in Section 4.4.1, we then look at the practical algo-
rithms which train the neural networks to approximate the solution of the PDE as detailed in [25]. We
start with the conversion from function space to weight space.
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Conversion to Weight Space

To use neural networks to approximate the solution, instead of optimising the loss function over the
space of k times differentiable functions, we instead have to optimise over the parameters of the
neural network 8 € RN. We achieve this by redefining the loss function as

Z0) =

2
(v(y,B}}l dadr+(1-0) | (

y,en|

NG (v y,B}}| ]dxdf (4.4.3)

The loss function after the redefinition, however, does not satisfy all the desired properties discussed
in Section 4.4.1 anymore. Nevertheless, empirical evidence suggests that the conversion to weight
space results in loss function satisfying the desired properties asymptotically.

Monte Carlo Integration

After converting to weight space, we can train the neural networks with optimisation algorithms,
which depend on their ability to compute the gradients of the loss function with respect to the weights.
As integrals are usually intractable, we have to convert the integrals to approximations using tech-
niques such as Monte Carlo integration. Monte Carlo integration has added advantage that its perfor-
mance remains high with increasing dimension, which is usually the case in neural networks. Using
Monte Carlo integration, integrals can be approximated as:

f dy =101+ Z Heyy)

where y; are sampled uniformly over Q. Applying this to the loss function defined in 4.4.3, we obtain
the following approximated loss function:

ny

ZL(0) = ,’LIIQII— Z

1i=1

2
NP, o)

1 g
Ni(v yi,B}}| (1- A}Ilﬁﬂll(gz
i=1

1 My
+ —
Mo =1

’ (vty?,enr] (4.4.4)

where the collocation points {yi [ , and {y

i ; }i , are uniformly distributed over the domain (2 and the
boundary 9€2 respectively, and {y! }""

, are uniformly distributed over T x (2.

Optimisation Algorithms

As for the optimisation algorithms, in Section 3.6, three training algorithms including SGD, Adam
and L-BFGS are introduced. We, however, focus on L-BFGS only in our project due to the following
reasons. As stated in Section 3.6.1, one challenge of SGD is choosing a suitable learning rate so that
the process converges within some reasonable time: too high a learning rate causes the gradients
to overshoot, while too low a learning rate leads to a large number of iterations before convergence.
To avoid searching for a suitable learning rate every time the neural network configuration such as
the number of perceptrons per layer or the number of layers changes, van der Meer [25] proposed
normalising the SGD so that the normalised step size is equal to the learning rate. However, after
solving the challenge of finding a suitable learning rate, it was found that normalised SGD is very
sensitive to the choice of hyperparameters including the number of iterations, the batch size and the
learning rate, rendering it impractical.
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Similar to normalised SGD, Adam has four hyperparameters including the batch size, the learning
rate, and two exponential decay parameters 8, and i, that control the moving averages of the first
and second moments of the gradients. The advantage of Adam over normalised SGD is that it is not
as sensitive to its hyperparameters. On the other hand, the only hyperparameter that needs to be
optimised for L-BFGS is the number of collocation points, which makes it practical.

As interpolating the relationship between the inputs and the prices in supervised learning is rel-
atively easier than solving PDEs with neural networks, we use the first-order optimisation algorithm
Adam for training supervised neural networks as stated in 4.3.3, and second-order optimisation al-
gorithm L-BFGS for solving PDEs with unsupervised neural networks. Similar to supervised learning,
we use softplus activation function for the hidden layers and the output layer.

4.4.3 Options Pricing Partial Differential Equations

After introducing how generic neural networks are used as PDE solvers, we can solve options pricing
PDEs with neural networks by linking what we have discussed so far, specifically by connecting the
PDEs presented in Chapter 1.2 and 2.1 and the loss functions defined in Equations (4.4.3) and (4.4.4).

Black-Scholes PDE

In Section 1.2, we present the Black-Scholes PDE in Equation (1.2.2) which is used to price European
options. We define operator £(-) to represent the Black-Scholes PDE prior to maturity and Equation
(1.2.2) can be written as

Lv)y=0v+(r- q}Sﬁqy+ stzaz —-rv=0, t<T;
(4.4.5)

v(t,S) = g(S), t=T.

where terminal condition is g(S) = (S— K)* for Call options and g(S) = (K- S)* for Put options. The
boundary conditions are:

t,0)=0 L0 =K —r(T-1)
{UCaII( ) {UPut( ) e (4.4.6)

vean(f, Smax) = Smax — Ke "I Vput(f, Smax) =0

The operator Aj(-) in the redefined loss function defined in Equation (4.4.3) corresponds to the
operator £(-) in Equation (4.4.5), and the operatorN'B (-) isequal to v(t, x)—B(t, x), where B(t, x) refers
to the boundary conditions stated in Equation (4.4.6). The terminal conditionis given by v(t, x)- g(x).
Hence, the loss function for Black-Scholes PDE to price European options is

f(ﬂ}:lf |£(y(r,x}}|2dxdt+(1—,l} (|y(r,x}— (t, x}| | (t,x)—g x}| ]dxdt
Q a0

After converting to weight space and approximating the integral terms with Monte Carlo integration,
we obtain the loss function for the neural network parameter vector 8:

2 1 Mo 2
Wy on| + - 3 [N o)

1 ny I 2 1 ¥ ;
2O~ MY [Lwpo] +a-bloal(-) |

My

v(y/,0)-B yi}| +—Z| v(y;,0)- y‘s’}r]

g

_Z| yi,ﬂ}}| 1—,1}(1 >

i=1 B =1

39




where we incorporate the constants ||| and [|0€ into A to form A.

In practice, we combine the boundary and terminal conditions as (S—Ke™ 7" ~9)* for Call options
and (Ke "T=9 — §)* for Put options. This is because when t = T at maturity, they reduce to the
terminal condition g(S); and when S = 0 or § = Sy, they reduce to the boundary conditions in
Equation (4.4.6). We let Spay = 4K.

American Options PDE

As for the PDEs for American options, we again write the one presented in Equation (2.1.6) with op-
erator L():

min(-£L(), v(t,8) - g(S)) =0, t€[0,T];
(4.4.7)

U(I;S}=g(8}; t=T.

where terminal condition is g(S) = (S— K)™* for Call options and g(S) = (K- 8)" for Put options. The
boundary conditions are:

t,0)=0 t,0)= K
{ veal( ) { Upy( ) (4.4.8)

vean(t, Smax) = Smax Vput(t, Smax) =0

Similarly, the operator Aj(-) is equal to £(-), and the operator N'g(-) is equal to v(t,x) — B(¢,x),
where B(t, x) refers to the boundary conditions stated in Equation (4.4.8). The terminal condition is
given by v(t, x) — g(x). Hence, the loss function is defined as

L) = )Lf |mm[ L(v(t,x), v(t,x)-g x}]| dxds+ (1- )L}f v(t,x) - t,x}|2
+|y(r,x}—g(x}|2]dxdr

After similar operations including conversion to weight space and Monte Carlo integration, we ob-
tain:

ny g

Z0) = ,JL— |mm[ Lvy!,0), viy!,0)-gl y}]| 1- ,1}[ BZy(yiB,g}_B(yiB}r
il‘iln 0 2
o L |vw? 0~

During practical implementation, we combine the boundary and terminal conditions as (S - K)*
for Call options and (K- S)* for Put options, with similar reasoning as for European options. We again
let Spax = 4K.

4.4.4 Implementation Details

This Section provides insight into how the unsupervised neural networks are used to solve the PDEs
presented in Section 4.4.3 by explaining the key parts of the code. A command line interface is used
to run the training and graphing of the models. This provides a simple but expressive interface that
allows for easy testing. The model is specified using a unique identifier string in the console, then a
model object is built from this using a factory object.
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Sampling Data

Figure 4.2 presents the unsupervised learning process. We start with how we obtain the data required
to train the neural networks. Collocation points are uniformly sampled in the domain of the interior
and boundary respectively.

For instance, take the example where we specify a domain of [0, 60] for underlying stock price S,
where Spay = 4K = 60, and a domain of [0, 1] for real time, where ;5 = maturity = 1. The interior
collocation points are uniformly sampled from each domain given the specified point count into two
separate arrays. The two arrays can then form coordinates for points in this two dimensional domain
by matching the sampled points pairwise.

Sample Interior Store weights

& Boundary Points

h 4

Neural Network

Compute loss

Overfitting No overfitting function

Check for
Overfitting

Train

Figure 4.2: Flowchart of unsupervised neural network deep learning process, which comprises the process of
sampling interior and boundary data, training the neural network by minimisng the loss function, and checking
for overfitting to increase the sampled points. The weights are then stored.

The boundary points are sampled in a way where one dimension is fixed and all the other dimen-
sions are varied. Using the same example, the procedure is as follows:

1. Fix the underlying stock dimension S. Fill the array representing dimension S with lower bound
of the domain which is 0, and sample uniformly in the real time domain [0, 1] to obtain a num-
ber such as 0.68 to put in the dimension ¢ array.

2. Fill the dimension § array with the upper bound of the domain which is 60, and again sample
uniformly in dimension ¢ to obtain a number such as 0.20 to put in the dimension ¢ array.

3. Fixthereal time dimension ¢. Fill the array representing dimension ¢ with lower bound of the
domain which is 0, and sample uniformly in the underlying stock domain [0, 60] to obtain a
number such as 42.

4. Fill the dimension f array with the upper bound of the domain which is 1, and sample uniformly
in dimension § to obtain a number such as 17.

This procedure repeats until the specified point count is reached. The number of points in each
domain is distributed according to the ratio of the size of the domains. A graphical representation of
this procedure using the above example can be found in Figure 4.3.
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Figure 4.3: Graphical representation of the steps in sampling points into dimension § and t array respectively,
which are then paired up to form the coordinates of the boundary points.

Constructing Neural Network

After sampling the interior and boundary points, we feed them into the neural network for training.
As neural networks are essentially graphs, a placeholder which is a variable that we assign data later
on isused to represent the inputs, outputs, source functions and boundary conditions. This allows us
to create the operations and build the computation graph without requiring the data at this stage.

The weights and biases are initialised. Weight initialisation has been widely researched and it
aims to preserve gradients as layers are added, so that there are no vanishing or exploding gradients,
which can potentially lead to extremely slow convergence if there is even one. The choice of the ini-
tialisation scheme depends on the activation function used. Van der Meer [25] and Salvador et al.
[6] used the hyperbolic tangent activation function and hence used the Glorot initialisation [50]. We,
however, decide to use softplus activation function to ensure that our prices do not go negative. The
Glorot initialisation scheme initialises the weights in such a way that the mean of the activation out-
put is near zero, and it does not work on ReLU-like activation functions since it scales down all values
lower than or equal to zero to zero, silencing the majority of the neurons and slowing the learning
process. Therefore, a different initialisation scheme suitable for ReLU-like activation functions called
He initialisation [51] is implemented. It has the following steps:

1. Create a tensor with the dimensions matching the weight matrix at a given layer, and initialize
the values from a random uniform distribution.

2. Scale all the values with v'2/ N where N is number of incoming nodes from the previous layer's
output, also known as the fan-in.

3. Initialise the bias vectors to zero.

With the weights and biases being initialised, the neural network graph is then built using the ini-
tialised weights and biases as well as the chosen activation function. We run all the models with 20,000
iterations with 4 hidden layers. The number of perceptrons per layer depends on the dimension of the
domains: 20 perceptrons per layer are used to train neural networks with a two-dimensional domain,
and 128 perceptrons per layer are used to train those with domains of three and more.

Computing Loss Function and Training

Class BlackScholesBase, which is a subclass of the class PDENeurallNetwork, has a func-
tion compute_loss_terms that returns interior and boundary losses as tensors. For instance,
tf.gradients is used to estimate the partial derivatives in the PDEs for the interior loss. The
boundary loss in the function compute_loss_terms is defined by taking the difference between
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the theoretical boundary conditions and the neural network predicted boundary conditions. The to-
tal loss function is then defined by adding the interior and the boundary loss.

The function boundary_condition defines the boundary conditions in Black-Scholes PDE
as stated in Equation (4.4.6). The sample_data in the PDENeurallletwork class then creates a
feed_dict from the sampled interior and boundary points as well as the boundary condition. This
feed_dict is supplied to the neural network during training, which minimises the loss function
using the L-BFGS optimiser, and the data is used in place of the placeholders.

Checking for Overfitting

After every iteration in training, the default_callback_wvalidate function in the
PDENeurallNetwork class is called. It checks for overfitting by comparing the interior (training)
loss versus the interior validation loss, and the boundary (training) loss versus the boundary valida-
tion loss. This is because training loss plunging below validation loss is usually a sign of overfitting.

If the interior (training) loss is smaller than one-fifth of interior validation loss, the number of
interior points is then doubled. Increasing the sampled data helps reducing the overfitting error as
training with more data makes it generalise better. Similarly for the boundary loss: if the boundary
(training) loss is smaller than one-fifth of boundary validation loss, the number of boundary points is
then doubled. The starting numbers of interior and boundary points can be specified.

The default_callback_validate function is called if we specify the TrainMode as De—
faultAdaptive. Alternatively, we can specify the TrainMode as Default which calls the de—
fault_callbackfunctionin thePDENeurallNetwork class which does not check for overfitting.
The numbers of interior and boundary points are specified beforehand and do not increase during
the training.

Computing L, and Max Error

Apart from plotting the graphs of option prices against variables such as underlying stock price or
strike price, metrics such as L, and max error defined in Section 4.3.3 are calculated to gauge the
accuracy of the solution generated by the neural networks.

Analytical solution of Black-Scholes PDE is used. Since American options do not have a closed-
form analytical solution, we generate a set of data that has the same domains for the input variables
such as the underlying stock price and real time, or the same values for the fixed variables such as
volatility and risk-free interest rate. Pricers are used to generate prices with the specified data, which
are then used as the numerical solution to calculate the errors.
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Chapter 5

Results and Discussion

This Chapter covers the main results and evaluation. In Section 5.1 one can find a brief summary
of the time taken by binomial tree method and LSM to generate the data required. Sections 5.2 and
5.3 cover the results of pricing European and American options using both supervised and unsuper-
vised neural networks. On top of the inherently different natures of supervised and unsupervised
learning which result in different optimal neural network architectures and hyperparameters, input
parameters with slightly different ranges are used for them. This is because in unsupervised learn-
ing, Smax = 4K is required to solve PDEs with boundary conditions, mandating different ranges of
parameters for underlying and strike that is not required in supervised learning.

Therefore, input parameters with slightly different ranges are used to train supervised and un-
supervised neural networks separately first. Individual analysis including the performance of the
trained neural networks, their robustness tested via in-sample and out-of-sample prediction, and
expressivity is then carried out on optimised trained supervised and unsupervised neural networks
respectively.

Finally, parameters over the same ranges are supplied for training supervised and unsupervised
networks for fair comparative analysis. All implementation is carried out on Put options.

5.1 Data Generation

The time taken to generate 100,000 samples with the ranges specified in Table 4.1 is presented in Table
5.1. All the generators rely on the Quant Lib library.

Generator Time Taken
BinomialAmerican 714
BinomialEuropean 124
MCAmerican 8168
MCEuropean 6549
AnalyticalBS 15

Table 5.1: Time taken (in seconds) to generate 100,000 samples with binomial tree (1000 steps), MC/LSM
(10,000 paths and 20 steps) and analytical Black-Scholes engines.




5.2 Supervised Learning

For supervised learning, performance and robustness of the trained neural networks are presented.
The Black-Scholes analytical solution and numerical solution are used as labels and treated as ground
truths for European and American options respectively.

5.2.1 Performance

The training data consists of 64,000 samples, validation data consists of 16,000 samples, and test data
consists of 20,000 samples. The data generated with the ranges specified in Table 4.1 are then feed
into the the neural network with hyperparameters in Section 4.3.3 for training.

European Options

The labels for European options are generated by AnalyticalBS generator. After training the neu-
ral network, we obtain a MSE of 5.67E-03, a relative L, error (Equation (4.3.1)) of 1.35E-03 and a
relative max error (Equation (4.3.2)) of 1.30E-03 for the training data, as well as a MSE of 5.93E-03, a
relative Lo error of 1.38E-03 and a relative max error of 1.32E-03 for the test data.

The trained neural network is used to predict prices on training and test data to produce 64,000
and 20,000 prices respectively. 1000 prices are randomly sampled from each of them to plot the graph
of predicted prices against the labels, as can be seen in Figure 5.1. The fact that the price pairs from
the training datalie on a straight line at 45 degrees suggests that the predicted prices are very close to
the labels we use to train the neural network. Moreover, as the prices pairs from the test data are also
situated on the straight line at 45 degrees, it indicates that our trained neural network generalises well
to unseen data.

The distribution of the differences, calculated by subtracting the predicted prices from the labels,
can also be found in Figure 5.1. As the training data is 3.2 times of the test data, to fairly compare
them, 20,000 prices are randomly sampled from the predicted prices from training data. Most of the
pricing errors from both the training and test data are within +40 cents.
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Figure 5.1: (a) Neural network predicted prices against Black-Scholes closed-form prices. (b) Histogram of
errors between neural network predicted prices and Black-Scholes closed-form prices.

To visualise the performance of the trained neural networks, the following parameters, S € [0.01, 60],
K =20,0 =0.25 r =0.04, g = 0.0, and T = 365 days are supplied to the trained neural network to
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generate predicted prices. These prices and the Black-Scholes prices are then plotted against the
underlying S as can be seen in Figure 5.2.

The prices of in-the-money (ITM) Put option are slightly below the intrinsic value (negative time
value) due to positive interest rate and zero dividend yield. Positive interest rate not only increases
the forward price and causes the Put option prices to fall, but also decreases the present value of the
Put as it becomes less attractive than saving money in the bank. As expected, the differences between
the predicted prices and Black-Scholes prices are highest near at-the-money (ATM) region. This is
because ATM options are most sensitive to time decay and changes in volatility, resulting in them
being the hardest region to price.

The differences between the predicted prices and the prices generated by Monte Carlo and bi-
nomial tree methods are also plotted. The small differences indicate that binomial tree and Monte
Carlo approximate Black-Scholes solution well, validating these methods to generate relatively accu-
rate American prices.
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Figure 5.2: Parameters S € [0.01,60], K = 20, o = 0.25, r = 0.04, g = 0.0, and T = 365 days are supplied. (a)
The predicted and the Black-Scholes prices against the underlying. (b) The absolute differences between the
predicted and the Black-Scholes prices. The absolute differences between the Black-Scholes and the prices
generated by binomial tree and Monte Carlo methods are also plotted.

Similarly, § = 20, K € (0.01,60], o = 0.25, r =0.04, g = 0.0, and T = 365 days are fed to the trained
neural network to generate predicted prices to be plotted against strike prices as shown in Figure 5.3.
The ATM region again has the highest error.

To inspect the relationship between option prices and volatility, S = K = 20, o € [0.05,0.5], r =
0.04, g = 0.0, and T = 365 days are fed to the trained neural network to generate predicted prices. For
ATM Put options, Se~97-0 = ke "0 Substituting Ke~ "7~ with Se~9T=? into Black-Scholes Put
formula as stated in Equation (1.2.3):

Vour(t, S) = Ke "T=ON(=dy) = Se 1 T-D N (—d)

where

log (S/K - 2120(T -t
dy = og( )+ (r—qg+0°/2)( }, dy=di—ovVT—1
ovT—t
we obtain:

Vpu(t, S) = Se~9(T=1 [’V(g T-:]—N[-g T—r”
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By Taylor expansion, for small 0T — t and g = 0.0 in our case, we obtain:
Vput (1, S) = 04Sav T -t (5.2.1)

Therefore, for ATM option in Figure 5.4, the analytical Black-Scholes prices increase linearly with
volatility. The difficulty in pricing the ATM options might be because that vega, which measures the
option's price sensitivity to changes in the volatility of the underlying, is highest for near ATM options.
This probably results in the errors observed as volatility varies.
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Figure 5.3: Parameters S = 20, K € [0.01,60], o = 0.25, r = 0.04, g = 0.0, and T = 365 days are supplied. (a) The
predicted and the Black-Scholes prices against the strike. (b) The absolute differences between the predicted

price and the Black-Scholes prices.
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Figure 5.4: Parameters S = K = 20, o € [0.05,0.5], r = 0.04, g = 0.0, and T = 365 days are supplied. (a) The
predicted and the Black-Scholes prices against the volatility. (b) The absolute differences between the predicted
and the Black-Scholes prices.

American Options

For American options, the labels are generated with BinomialAmerican and MCAmerican gen-
erators. The following results are obtained after training.
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BinomialAmerican MCAmerican

Training Data
MSE 0.01461 0.01055
Ly 0.00210 0.00176
Max 0.00194 0.00187
Test Data
MSE 0.01559 0.1147
Ly 0.00215 0.00184
Max 0.00201 0.00197

Table 5.2: MSE, relative L, and max error of the training and test sets for neural networks trained on data
generated by Binomialfmerican and MCAmerican.

As the results for neural networks trained on data generated by Binomial American and MCAm-
erican are quite similar, only graphs of networks trained on data generated by BinomialAmer-
ican are presented. Similar to European options, the graph of predicted prices against the labels
generated by BinomialAmerican is plotted in Figure 5.5. The straight line at 45 degrees that the
price pairs lie on shows that the training is satisfactory and the neural network generalises to unseen
test data well. The majority of the pricing errors from both the training and test data are within +0.8
as can be seen in the histogram.
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Figure 5.5: (a) Neural network predicted prices against binomial tree prices. (b) Histogram of errors between
neural network predicted prices and binomial tree prices.

To visualise the performance of the neural network, predicted prices generated with the same pa-
rameters used for European options are plotted against underlying, strike, and sigma. The differences
between the predicted prices and binomial tree prices are also plotted.

Note that American option value is never below the intrinsic value. This is because if it does,
people will buy the option and hedge the position with the underlying, and immediately exercise the
option, resulting in arbitrage profit. Therefore, the lower arbitrage bound of American option is the
intrinsic value. This is not possible in the case of European options as they can only be exercised
on the expiry date. The maximum absolute differences between the predicted prices and numerical
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solution are around 12%-20% more than those between predicted prices and Black-Scholes prices,

with the ATM region again having the highest error.
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Figure 5.6: The parameters r = 0.04, ¢ = 0.0, and T = 365 days are fixed. The following parameters are supplied:
(a-b) 5€[0,60], K =20, and o =0.25. (c-d) 5=20, K € [0,60], and o =0.25. (e-f) S= K =20 and o £ [0.05,0.5].
Graphs on the left are predicted and binomial tree prices against the underlying, strike and volatility, while
graphs on the right show their absolute differences.
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When plotted against volatility, due to our zero dividend yield and low interest rate, the American
option behaves rather similarly to European options at the money. Therefore, as volatility increases,
the binomial tree solution also increases linearly due to the relationship in Equation (5.2.1). The
neural network has similar pricing difficulty as volatility varies, resulting in similar errors which is
also seen in European options.

5.2.2 Robustness

The robustness of the neural network is tested two ways: in-sample interpolation and out-of-sample
extrapolation. In order to carry out these two tests, we narrow the ranges of the parameters to those
in Table 5.3.

Parameter Range
Initial stock price (Sp)  [60,100]
strike price (K) [60,100]
volatility (o) [0.10, 0.40]
maturity (T) [365,730]
risk-free rate (r) [0.0,0.04]
dividend yield (g) [0.02, 0.04]

Table 5.3: The narrowed ranges of parameters used to simulate 100,000 option prices to test robustness. Time
to maturity T is in days.

To find the minimum number of samples required for training to still obtain a decent trained
neural network, we generated 100, 500, 1000, 5000, 10,000, 20,000, 50,000 and 100,000 samples using
the parameters in Table 5.3.

European Options

The training data for European options, generated by Analvyt i calBS generator, is fed into the neu-
ral network for training. M SE, relative L, and max error for both the training and test sets are reported
in Table 5.4. As the sample size increases from 100 to 10,000, MSE for the training and test data de-
creases drastically by a percentage of 99.8%, relative L, error for the training and test data plummets
by a percentage of 96.6% and 95.1% respectively, and relative max error for the training and test data
also plunges by a percentage of 93.1% and 92.8% respectively, before starting to slowly level up. A
decent trained neural network can start to be obtained with approximately 10,000 samples.

Furthermore, to determine the performance of trained neural network at predicting, in-sample
parameters, S = 80, K € [60,100], o = 0.25, r = 0.02, g = 0.03, and T = 550 days, are fed into these eight
trained neural networks respectively to generate predicted prices. A range instead of a single value is
given to K so that a range of predicted prices can be generated. The maximum absolute difference
between the predicted and Black-Scholes prices is then reported. In this way, randomness coming
from a specific set of parameters is reduced. As can be seen in Table 5.4, the maximum absolute
difference generally decreases as sample sizes increases from 100 to 100,000 with the exception of
50,000 which might just be higher for the chosen set of parameters.

For out-of-sample extrapolation, parameters of more interest including S and o are set to be out
of sample, while parameters K € [60,100], r = 0.02, g = 0.03 and T = 550 days are fixed. K is setto
have a range instead of a single value for the same reason stated above. Three sets of parameters are
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supplied: (1) S = 40 and ¢ = 0.25, (2) S = 80 and o = 0.05, (3) S = 40 and o = 0.05. Having both §
and o out of sample has bigger impact than having one of them as expected. Moreover, the larger the
sample size, the better the ability to extrapolate, albeit not very well.

European Options

Size 100 500 1000 5000 10,000 20,000 50,000 100,000
Training Data
MSE 1.90529 1.09192 0.20605 0.00672 0.00289 3.82E-04 1.30E-04 3.12E-05
L2 0.10912 0.06900 0.03199 0.00555 0.00369 0.00130 7.66E-04 3.73E-04
Max 0.06078 0.03937 0.03090 0.00641 0.00419 0.00149 8.60E-04 1.54E-04
Test Data

MSE 1.89696 2.25707 0.15353 0.00659 0.00296 3.78E-04 1.37E-04 3.10E-05

Lo 0.07495 0.09484 0.02469 0.00567 0.00369 0.00130 7.83E-04 3.73E-04

Max 0.06047 0.04722 0.02653 0.00679 0.00433 0.00149 8.87E-04 1.53E-04
In-Sample Prediction

Max 1.72817 0.96682 0.88647 0.07202 0.06123 0.00973 0.01344  0.00643
Out-of-Sample Prediction

Max1l 14.18484 5.55869 5.52033 0.80936 1.06838 0.35788  0.24086  0.21350
Max2 4.58948  4.50357 1.85624 0.67389 0.63721 0.50430 0.27694 0.31145
Max3 2125890 13.47338 4.73384 3.92314 3.47274 2.24869 213002 2.11120

Table 5.4: MSE, relative L, and max error for both the training and test data sets for neural networks trained
using eight different sample sizes. Parameters K € [60,100], r = 0.02, g = 0.03, and T = 550 days are fixed
for all predictions. For in-sample prediction, parameters S = 80 and o = 0.25 are supplied; for out-of-sample
prediction, three sets of parameters including: (1) S =40 and o =0.25, (2) § =80 and ¢ =0.05, (3) S =40 and
o =0.05 are supplied. Maximum absolute errors between the predicted and Black-Scholes prices are recorded.
Note the difference in Max for training/test data and in-sample/out-of-sample prediction.

American Options

The training data with the narrowed range specified in Table 5.3 to test robustness for American op-
tions is generated by BinomialAmerican generator. MSE, relative L, and max error as the sample
size is increased from 100 to 100,000 are reported in Table 5.5.

The results are similar to European case. As the sample size increases from 100 to 10,000, MSE
for the training and test data decreases drastically by a percentage of 99.9%, relative L, error for the
training and test data plummets by a percentage of 96.9% and 95.7% respectively, and relative max
error for the training and test data also plunges by a percentage of 93.2% and 93.4% respectively,
before starting to slowly level up. With approximately more than 10,000 samples, a decent trained
neural network can start to be obtained.

Similar to the European case, for in-sample prediction, the maximum absolute difference gener-
ally decreases as sample sizes increases from 100 to 100,000. For out-of-sample prediction, the results
are again similar, with varying both § and o producing larger errors than varying either of them. Note
that when varying both S and o, the maximum absolute differences are two to ten times smaller for
American options when sample size is 20,000 and more. This suggests that increasing the number of
samples improves the ability to extrapolate more for American options than for European options.
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American Options

Size 100 500 1000 5000 10,000 20,000 50,000 100,000
Training Data
MSE 1.90170 1.44934 0.16396 0.03720 0.00261 9.85E-04 1.56E-04 447E-05
L2 0.10825  0.07866 0.02824 0.01292 0.00339 0.00205 8.14E-04 4.30E-04
Max 0.06363 0.03702 0.02891 0.01460 0.00434 0.00297 7.68E-04 3.94E-04
Test Data

MSE 2.00642 3.24441 0.13660 0.03522 0.00247 0.00103 1.66E-04 4.38E-05

Lo 0.07678 0.11046 0.02273 0.01293 0.00331 0.00207 8.35E-04 4.25E-04

Max 0.06366 0.04581 0.02684 0.01484 0.00418 0.00296 7.98E-04 3.96E-04
In-Sample Prediction

Max 1.72658 1.28727 0.72480 0.14604 0.05455 0.05198 0.00955 0.00864
Out-of-Sample Prediction

Max1 14.99500 8.22808 5.30161 2.67740 0.80573 0.30729 0.46919 0.28069
Max2 4.57698  4.48225 1.37062 0.93873 0.48714 0.28102 0.47818 0.38925
Max3 2237835 16.18176 5.99075 4.84882 5.27667 1.21286 0.74324 0.26194

Table 5.5: MSE, relative L, and max error for both the training and test data sets for neural networks trained
using eight different sample sizes. Parameters K € [60,100], r = 0.02, g = 0.03, and T = 550 days are fixed
for all predictions. For in-sample prediction, parameters S = 80 and o = 0.25 are supplied; for out-of-sample
prediction, three sets of parameters including: (1) S =40 and o =0.25, (2) § =80 and ¢ =0.05, (3) S =40 and
o =0.05 are supplied. Maximum absolute errors between the predicted and binomial tree prices are recorded.
Note the difference in Max for training/test data and in-sample/out-of-sample prediction.

Therefore, to obtain predicted prices that are approximated less than 1 cent off from the ground truth
prices, 20,000 and more samples are required for European options while 50,000 and more samples
are required for American options. Due to poor extrapolation with 100,000 samples still producing
around 25 to 40 cents error, larger ranges are preferred in training so as to handle extreme market
conditions such as exceptionally calm markets with low volatility, markets with skyrocketed volatility
such as in March 2020 due to COVID-19, or negative interest rates during deflationary periods.

5.3 Unsupervised Learning

There are no labels in unsupervised learning. Black-Scholes solution and numerical solution are
again used as ground truths to produce pricing errors.

5.3.1 Expressivity

For training the neural network, Salvador et al. (6] only specified the domain of Sy as [0, 60] (Smax =
4K) and ¢ as [0, 1] (tmax = T), while keeping the other parameters fixed: K =15, o = 0.25, r = 0.04,
g =0.0, T =1. This means that the trained neural network can only predict on data with varying S
and ¢ but with the rest of the parameters fixed, which is not practical in real life as retraining every
other parameter when required such as K is costly.

To solve this impracticality, we increase the dimension of domains to include the rest of the pa-
rameters. The increase of the dimension not only lengthens the training time drastically, but also




increases the errors. We therefore aim to find the maximum number of dimensions of the domain
that can be added, so that we still obtain a decent trained neural network. Parameters r, g, and T are
of less interest in this project and are therefore fixed with r = 0.04, g = 0.0, and T = 1. The ranges or
values of the parameters used in different models are specified in Table 5.6.

Parameter S t K a r q T
BSSt & AmericanSt [0, 80] [0,1] 20 0.25 0.04 0.0 1
BSStrikeSt &
Treent (0,400,  [0,1]  [0,100] 025 004 00 1
MAmericanStrikeSt
BSSi ast &
Lgma [0, 80] [0,1] 20 [0.05, 0.5] 0.04 0.0 1

AmericanSigmaSt

BSSrikeSigmaSt &

. . . [0,400] [0,1] [0,100] [0.05,0.5] 0.04 00 1
AmericanSrikeSigmaSt

Table 5.6: The ranges or values of the parameters used to train different models. Time to maturity T and real
time ¢ are in years.

Model ESSt and AmericansSt refer to the simplest case of varying S and ¢ only, and BESSig—
maSt and AmericanSigmaSt refer to the case of varying S, t and o. Similarly for other models. All
the examples are generated with A = 0.5 where the interior and boundary loss are given equal weights,
and ran with the neural network architecture specified in Section 4.4.4. After training each model for
20,000 iterations, the graphs for each model are presented, followed by a summary table containing
the interior loss, boundary loss, Ly error and max error for both European and American options.

European Options

To visualise the training results, we again plot the neural network predicted prices (approximated so-
lution) and analytical prices against different parameters. The differences between the approximated
and analytical solution are also plotted.

Model BESSt with two domain dimensions only allows for plotting against the underlying, while
models with three and more domain dimensions allow for plotting against more parameters.
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Model BSStrikeSt
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Figure5.7: Results of model BS5t, BSStrikesSt, and BSS5igmast trained with parameters specified in Table
5.6. Graphs on the left plot the predicted and analytical solutions against different parameters, while graphs on
the right show the differences between the predicted and analytical prices.

Similar to supervised learning, the region with highest error is the ATM region as can be seen
in Figure 5.7, although the error region extends further into ITM/OTM. When only varying S and
t as implemented in Salvador et al.’s paper [6], the maximum absolute difference is approximately
100 times smaller than also varying o, and approximately 50 times smaller than also varying K. The
particularly bad performance when o is high might be because of that the Smax = 4K is not wide
enough for large sigma. A non-rectangular domain where a larger Sy, 4, for a larger sigma can be used.
3D graphs are presented for better visualisation of the price surfaces.
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Figure 5.8: Three-dimensional plots produced from model BESSt, BSStrikesSt, and ESSigmaSt, respec-
tively. The orange line in the leftmost graph represents the boundary.
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American Options

For American options, payoff above the intrinsic value is again observed. The region with the highest
error is the ATM region similar to European case and American case in supervised learning.
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Model AmericanSigmaSt
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Figure 5.9: Model Americanst, AmericanStrikesSt, and AmericanSigmaSt trained with parameters
specified in Table 5.6. Graphs on the left plot the predicted and analytical solutions against different parame-
ters, while graphs on the right show the differences between the predicted and binomial tree prices.

Table 5.7 shows the interior training and validation loss, boundary training and validation loss,
relative L, and max error for both the European and American options.

For European options, the losses increase by afactor of 100 when the domain dimension increases
from two to three, and by a factor of 10 when the domain dimension increases from three to four. The
relative L, and max error also increase drastically when the domain dimension increases, although
less from dimension three to four. The increase in the error when only increasing domain dimension
from two to four suggests that pricing error will possibly be undesirably big when including more
domain dimensions. To price an option whose strike and maturity are fixed in practice, if we want to
obtain the desirable low error obtained in model BESSt, different combinations of parameters o, r,
and g have to supplied. The wide variety of combinations, coupled with the vast number of options
with different strikes and maturities, render the method not very practical in practice.

For American options, the losses and errors generally increases as domain dimension increases,
although the increase in them is not as drastic as compared to European options. This might be due
to a more complicated loss function in the case of American options and hence more difficulty in
learning. The relative L, errors of American options are bigger than those of European options, but
the relative maximum errors are similar and even smaller. Nevertheless, although the increase in the
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errors is smaller, the simplest model AmericanSt already produces prices that are 25 cents off at
ATM region as seen in Figure 5.9. This is not desirable, not to mention the maximum of 80 cents off
in model AmericanStrikeSt and 40 cents off in model AmericanSigmast.

Moreover, the training time for 20,000 iterations of BSSt is 340.27 seconds, for BSSigmasSt and
BSStrikeSt are3426.189 seconds and 4439.136 seconds respectively, and for ESStrikeSigmaSt
is 13304 seconds. The increasingly increase in the training time when one more dimension is added
means that testing and hyperparameter optimisation is costly. This also shows that method is im-
practical.

European and American Options

Int. Val. Bound. Bound. Relative Relative

Model Int Loss Loss Loss Val. Loss Ly Max
European Options

BSSt 5.89E-04  8.58E-04 0.00101 0.00310 0.00193 0.00901

BSStrikeSt 0.02282 0.03644 0.02107 0.04820 0.00575 0.01512

BSSigmaSt 0.02664 0.07550 0.04451 0.10397 0.04256 0.04718

BSStrikeSigmaSt 0.19782 0.35104 0.27883 0.97134 0.04938 0.03736
American Options

AmericanSt 0.00307 0.00749 0.00734 0.01560 0.03842 0.00300

AmericanStrikeSt 0.07894 0.15597 0.07317 0.01200 0.04419 0.01685

AmericanSigmaSt 0.03228 0.03712 0.08501 0.09000 0.07172 0.01742

AmericanStrikeSigmast  0.37095 1.25676 0.22071 0.45027 0.07755 0.03052

Table 5.7: Interior training loss (int. loss), interior validation loss (int. val. loss), boundary training loss (bound.
loss), boundary validation loss (bound. val. loss), relative Ly error and relative max error for all the European
and American models.

5.4 Comparison

To fairly compare the performance of the supervised and unsupervised learning, parameters with the
same range or values are supplied for training. The supervised and unsupervised neural networks
are then evaluated by comparing the training and testing metrics, robustness via in-sample and out-
of-sample prediction, as well as time taken to train and time taken for a trained neural network to
generate prices.

Parameter Range / Value
Initial stock price (Sp) [0,200]
strike price (K) [0, 50]
volatility (o) [0.10, 0.40]
maturity (7) 365
risk-free rate (r) 0.04
dividend yield (g) 0.02

Table 5.8: The ranges of parameters used to simulate option prices to compare supervised and unsupervised
neural networks. Time to maturity T is in days.




The parameters in Table 5.8 are used to generate data which is then fed into supervised and un-
supervised neural networks for both European and American options. For supervised learning, as
concluded in Section 5.2.2, 20,000 and 50,000 samples are needed to produce a decent neural net-
work for European and American options respectively. Therefore, 20,000 and 50,000 samples with the
ranges specified in Table 5.8 are generated for training supervised neural networks. AnalyticalBS
and BinomialAmerican generators are used to generate the prices as labels for European and
American options respectively. For unsupervised learning, model BSStrikeSigmaSt and Amer—
icanStrikeSigmaSt are used to train the domains specified in Table 5.8.

5.4.1 Performance

The metrics in Table 5.9 are obtained after training the supervised and unsupervised neural networks.
As can be seen in the Table, the supervised neural network has smaller relative L, and max errors for
both the European and American options.

Relative L, Error Relative Max Error
European Options

Supervised 0.00191 0.00107
Unsupervised 0.04041 0.00668
American Options
Supervised 0.00156 0.00011
Unsupervised 0.05791 0.01924

Table 5.9: Relative L, and max error for supervised and unsupervised neural network trained with the same
parameters in Table 5.8.

To visualise the performance of the neural networks, the following parameters are fed into the
trained neural networks to produce 1000 prices for graphing. The parameters r = 0.04, g = 0.02,
T = 365 days, are fixed. To plot against underlying, we let § € [0.01,50], K = 15 and ¢ = 0.25; to plot
against strike, we let § = 30, K € [0.01,50] and ¢ = 0.25; and to plot against volatility, we let S = K =30
and o € [0.10,0.40].

As can be seen in Figure 5.10 and 5.11, for both European and American options, the predicted
prices generated by supervised neural network generally correspond to the analytical solution. The
maximum absolute difference between the unsupervised prices and the analytical solution is approx-
imately 10 to 30 times of that between supervised prices and the analytical solution.

Compared to the performance of the supervised neural network in Section 5.2.1 which has maxi-
mum absolute error of around 30 cents around ATM region when plotted against the underlying and
strike, the maximum absolute error of the supervised neural network here when plotted against un-
derlying and strike is 10 times smaller. Moreover, when predicting the prices by varying the volatility,
the prices also correspond to the analytical solution quite well instead of having an error of 50 cents
in Section 5.2.1. The better performance of the supervised neural network than that in Section 5.2.1 is
expected as r, g and T are fixed at certain values instead of at given ranges, not to mention the ranges
of strike and volatility are also narrowed.

The unsupervised neural network has problems generating accurate prices in both the ATM and
the ITM regions, with errors appearing in similar regions for both European and American options.
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European Options
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Figure 5.10: Graphs on the left show supervised and unsupervised prices against the underlying, strike and
volatility, while graphs on the right plot the differences between the supervised and unsupervised prices against

different parameters.
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American Options
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Figure 5.11: Graphs on the left show supervised and unsupervised prices against the underlying, strike and
volatility, while graphs on the right plot the differences between the supervised and unsupervised prices against

different parameters.

5.4.2 Robustness

The robustness of the neural networks is tested via out-of-sample prediction. The parameters S €
[0.01,200], r = 0.04, g = 0.02, and T = 365 days are fixed. Different K and ¢ in Table 5.10 are com-




bined with the fixed parameters for the neural networks to predict on. The corresponding maximum
absolute errors for European and American options can also be found in Table 5.10.

Max (Supervised vs. Unsupervised)

K o EuropeanOptions American Options
60 0.25 0.07600vs. 1.89196 0.06255 vs. 1.77424
80 0.25 0.56016vs. 2.62745 2.39964 vs. 2.95207
30 0.05 0.19792vs. 0.40358 0.30349 vs. 0.81019
30 050 0.17195vs. 1.93838 0.08062 vs.1.99079
60 0.50 0.32255vs. 5.11988 3.23661 vs. 5.33638

Table 5.10: Maximum absolute error for supervised and unsupervised neural network for both European and
American options tested via out-of-sample parameters.

As can be seen in Table 5.10, as K goes more out of sample while o remains in sample, the extrap-
olating ability of both supervised and unsupervised neural networks becomes worse as expected.

When o goes out of sample to a lower volatility, the unsupervised neural network also generates
prices with errors that are approximately 2.5 to 5 times than when ¢ increases to an out-of-sample
higher volatility. This is also expected as can seen from the increasing errors as volatility increases in
Figure 5.10 and 5.11. The unsupervised neural network struggles the most in extrapolating in the o
dimension.

In general, the supervised neural network outperforms the unsupervised neural network at ex-
trapolating, although the maximum absolute errors are also undesirably big.

5.4.3 Efficiency

The training of the supervised and unsupervised neural networks in this Section is carried out on a
laptop with the following specifications. The laptop hardware specifications include a CPU of Dual-
Core Intel Core i5 @ 2.3 GHz, a GPU of Intel Iris Plus Graphics 640 1536 MB, and a RAM of 8GB.

The time taken for data generation (only applicable in cases of supervised learning), training the
neural networks and generating predicted prices using the trained neural networks can be found in

Table 5.11.
Efficiency

Model Supervised Unsupervised
European Options

Data Generation 32.804 N.A.
Training 1413.502 22150.834
Prediction 0.690 0.054
American Options
Data Generation 3492.415 N.A.
Training 4654.160 22211.546
Prediction 0.221 0.045

Table 5.11: Time taken (in seconds) for supervised and unsupervised learning processes. Note that 200,000
samples are generated for training for European options while 500,000 samples are generated for American
options.
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Note that data for European options is generated by Analyt icalBS and that for American op-
tions is generated by BinomialAmerican with 1000 steps. The time taken to generate the prices
is obtained by taking an average of the times taken to predict on those three sets of parameters in
Section 5.4.1.

As binomial tree method with 200 steps, and LSM with 200 steps and 300,000 paths can generate
reasonably accurate prices in practice, they are also used to predict on those three sets of parameters
in Section 5.4.1. The average prediction times are 0.572 seconds and approximately 5 hours 30 min-
utes respectively. This shows that the supervised and unsupervised network, when trained upfront,
are much faster at generating American prices than traditional numerical methods.

Moreover, although the training time for unsupervised neural network is much longer than the
combined data generation and training time for supervised neural network, the prediction time of
unsupervised neural network is approximately 5 and 12 times faster than that of supervised neural
network.
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Chapter 6

Conclusion and Further Work

Recent rising popularity of machine learning has seen extensive application of deep neural networks
in finance including options pricing. Supervised learning method, which requires a large amount
of training data, has been used to interpolate the relationship between inputs such as moneyness,
volatility, interest rate and dividend yield and the prices. Novel methods to solve partial differential
equations by minimising a loss function using unsupervised learning have also been applied to price
European and American options. In this thesis we have evaluated and compared those two methods
in pricing options from a practical perspective.

We have shown that supervised learning does not have problems training on data with ranges,
while unsupervised learning has both increasing training time and increasing errors when the do-
main dimension is increased. The supervised neural network outperforms unsupervised counterpart
with 10 to 30 times smaller errors. When tested on out-of-sample parameters, the predicted prices by
supervised neural network are much closer to analytical and numerical solution than those produced
by unsupervised neural network, although the maximum absolute errors by supervised neural net-
work still range from a few cents to a few dollars. This shows that both supervised and unsupervised
neural network might have problems during extreme market conditions such as in a calm market
with low volatility, markets with skyrocketed volatility or negative interest rate. This problem can be
alleviated by increasing the ranges of parameters to be trained on (for supervised learning), or the
ranges of the domains (for unsupervised learning). However, increasing the ranges also increases the
training time and decreases the accuracy for in-sample prediction, more significantly in the case of
unsupervised learning. Therefore, a trade-off has to be made between the ability of the neural net-
work to handle extreme market conditions and the training time / accuracy of in-sample prediction.

In terms of efficiency, when trained upfront, both supervised and unsupervised neural networks
generate American prices faster than traditional numerical methods such as binomial tree method
and LSM. Although unsupervised learning has a much longer training time than supervised learning
when data generation time is also taken into account, it predicts prices in a fraction of time taken for
supervised neural network.

In general, in pricing options, the supervised learning method outperforms unsupervised learn-
ing method in terms of ease of implementation, ability to generalise to higher dimensions in practice,
performance measured by relative L, and max errors, robustness tested via out-of-sample parame-
ters, and training time. Unsupervised learning has the advantages that training data is not required
and has a faster prediction time when trained upfront. Given that European options have Black-
Scholes solution and American methods have numerical methods that can handle extreme market
conditions, both methods have to be improved in many ways to be used in practice.




There are therefore many venues left for further work. Firstly, to improve the ability of the neural
networks dealing with extreme market conditions, instead of uniformly sampling the points, a cer-
tain distribution such as log-normal distribution can be used to sample the underlying. Secondly,
as the unsatisfactory performance of the unsupervised neural network when volatility is high might
be because that the upper bound of the underlying is not wide enough, we can increase the upper
bound of the underlying. We can also use a non-rectangular boundary where the upper bound ofthe
underlying increases as we increase the volatility. Thirdly, since increasing the boundary increases
the training time, a set-up with higher computational power would be more ideal. A set-up with
higher computational power can also be used to test out more complicated neural network architec-
tures or run for more iterations for better convergence. Fourthly, as can be noticed in Figure 5.11, the
unsupervised prices go above and below the binomial tree prices as convexity is not imposed. Since
option prices are convex functions of the strike prices, an extra term can be added to the loss function
to impose convexity.

Other follow-ups include using different models such as the Heston model, the rough Bergomi
model, or the local volatility model to compare supervised and unsupervised learning. Different op-
tions such as Asian or barrier options can also be implemented.
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