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Abstract

In this thesis I study optimal execution models under different scenarios, using Stochastic

Control as the main mathematical tool. Many features of electronic markets are also discussed, such

as volume, volatility, and liquidity. Regarding the execution problems, I first solve a model with

terminal and running penalty, I then move to a more realistic setup, with stochastic volatility and

liquidity, which is solved and calibrated with real data, I also study a double liquidation problem,

this involves modelling a joint liquidation in the equity market and in the foreign exchange market.

Finally, I solve the double liquidation problem assuming ambiguity aversion in the mid-price drift.

Keywords: High Frequency Trading, Round-Trip Cost, Stochastic Control, Optimal Execution

Models, Double Liquidation Problem, Ambiguity Aversion.
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1 Introduction

The world of finance and how to trade a security have changed dramatically in the last ten years,

new developments such as machine learning and on-line platforms have revolutionised the way

in which banks and brokerage houses execute orders. A leading example is algorithmic trading,

this new trading technique allows machines to trade any financial security establishing pre-defined

rules, optimising profits, minimising price impact, or reading an alpha-signal.

Almgren and Chriss [2] introduced the design of optimal execution problems, in recent years

this approach has been developed in a more general setup. In this thesis I study various models

for the optimal execution problem, using stochastic control as the primary mathematical tool.

In chapter 2, I discuss how the electronic market works, market participants and some financial

variables such as volume, volatility, and liquidity.

In chapter 3 and 4, I develop the theory behind of stochastic control using as motivation the

optimisation portfolio problem introduced by Merton (1971) in his work [20]. I also analyse the

execution models in the basic setup, with a particular emphasis in inventory penalties that can be

considered in the optimisation model.

All models presented previously assume that volatility and liquidity are fixed during the execu-

tion process. In chapter 5, I discuss the liquidation problem with stochastic volatility and liquidity,

this problem was introduced by Almgren in his work [1]. I also calibrate this model using data

from Starbucks stock.

In chapter 6, I explain and solve double liquidation problem which involves an execution process

in the equity market and simultaneously another execution process in the foreign exchange market.

My contribution for this model is to introduce a closed-form solution; As far as I know, this problem

had not been solved in closed-form before.

Finally, in chapter 7 I extend the double liquidation problem, making it robust to misspecifi-

cation. This technique is the so called ambiguity aversion, and for this specific model, I am able

to find a closed-form solution.
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2 Electronic Markets

Electronic markets are defined by the U.S Security and Exchange Commission (SEC) as “profes-

sional traders acting in a proprietary capacity that generate a large number of trades on a daily

basis”; these markets have some characteristics such as:

1. Use programs to execute orders in high speed.

2. Submission of numerous orders which can be cancelled after submission.

3. The market participants seek to close their positions at the end of the day.

These markets have grown dramatically in the last ten years1, due to this fact the market

micro-structure has also changed, for instance, it can be observed a higher trading volume, the

bid-ask spread for large-cap stocks have been tightened, and an increment in the large-cap stocks’

volatility at the end of the trading day.

2.1 Assets traded in electronic markets

According to Cartea et al. [10], shares are the most common asset traded in electronic markets,

also known as equity, shares are issued by companies to raise money through an Initial Public

Offer (IPO) and are listed and traded in an exchange (for example, the New York Stock Exchange

(NYSE), the Nasdaq, the London Stock Exchange (LSE) and the Tokyo Stock Exchange (TSE)).

The investor receives one proportion of the corporation’s profits as dividend and has the right to

intervene in the corporate decisions, if and only if these shares are ordinary, which are the most

common in the market2.

In electronic markets also are traded financial contracts such as commodities, currencies, real

state contracts, and derivatives. Usually, these assets are found in the form of mutual funds or

exchange-traded funds (ETFs). A mutual fund is an investment vehicle that tracks an index, and

collects money from different investors. On the other hand, when an investor buys an ETF, she

delegates also her money to a portfolio manager. However, the main differences between a mutual

fund and an ETF are that an exchange-traded fund generates the same return as a specific index

(e.g., S&P500) and if the investor wants to close her participation in the fund, the issuer could

give to the investor a basket of securities which has had the same performance as the ETF.

2.2 Market participants in an electronic market

The understanding of an electronic market is based on analysing its participants. Every market

participant should has as a central purpose to generate profits, but the way that they produce

1It is estimated that electronic markets exceeded 50% of total volume in U.S equity.
2There exists another kind of shares called preferred stock. In this case, the holder cannot be part of company’s

decisions and receives a pre-arrange income, but is considered as equity from the legal point of view.
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them is different. The main market participants are the following:

• Corporate issuer: As I mention previously, they are corporations which raise money via IPO.

The reason for this transaction depends entirely on the origin or necessities of the corporation.

Another feature of this market participants is that they can increase or reduce the supply of

their shares using a secondary share offering (SSO), shares buybacks or converted bonds.

• Financial management companies: They are responsible for creating funds such as mutual

funds or ETFs. These market participants can be divided into:

– long-term investors: based on “the fundamental value”.

– short-term investors: the leading example is an ETF which seeks to replicate an index.

• Fundamental traders: These kinds of traders work using sources of information to make

a market decision. That is to say, if news are released then they try to understand the

implications in the stock’s dynamics due to these news. They use sources of information

such as economic reports, political factors, and rumours, among others.

• Technical traders: The primary source of information for technical traders are stock charts

and trading information, they use tools such as momentum, stock patterns, support and

resistance price points, or moving average. Technical traders assume that viewing the price

history can predict the next price movement.

• High-frequency Traders: These traders seek to execute big orders prioritising the speed in

their trades. For example:

– Arbitrageurs: They use some technical indicators or price inefficiencies to execute their

algorithms.

– Execution trading: It is an algorithm programmed to execute an order within a limited

time horizon, and maximising profits. This algorithm splits the order into smaller pieces

minimising a possible market impact.

• Market maker (liquidity provider): It is a participant willing to buy and sell assets most of

the time, the most common is a brokerage house. Their main roll is to create a smooth flow

of transactions, making profits on the bid-ask spread.

2.3 Trading in electronic markets

In electronic markets there are mainly two kind of orders: markets orders (MOs) and limit orders

(LOs), the main difference between them is the urgency of execution on each one.
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• Market order: is considered the most aggressive order, since is used when an investor wants

to execute immediately her order (buy or sell) at the best price available. The investor

prioritises a full execution of her order over the price that she is going to receive for her

transaction.

• Limit order: is used when a trader seeks to execute an order with a specific price, and up to

specific quantities of shares. This order ensures control over the price, but could be or could

not be executed; also a limit order does not execute immediately, the trader has to wait until

her order is matched with a new order, or is cancelled.

Another important concept is the limit order book (LOB) which displays the current liquidity

available in the market at time t. To match market orders with limit orders is employed “the

matching algorithm”, and has two main cases to consider:

• If a market order arrives at time t will be matched with a sell limit order, but

– If the quantity demanded is less than what is offered at the best price available, the

matching algorithm selects the earliest order, and match them until the market order

is complete (price-time priority).

– If the market order demands more quantity than what is offered at the best price

available, then is matched all available quantity at the best price, and also is matched

the market order with the second best price, then with the third best price and so on

until the market order is complete, this procedure is known as “walking the book”.
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Figure 1 shows a limit order book and the cumulative volume for Starbucks Corporation stock

(SBUX), on Feb 28, 2018 at 15:52:03. This stock is traded on Nasdaq stock market3.
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Figure 1: Limit order book and demand-supply of SBUX.

Different statistics can be extracted using a limit order book, for instance, the mid-price at

time t is defined as

Mid pricet =
1

2

(
P

best(ask)
t + P

best(ask)
t

)
, (2.1)

where P
best(bid)
t is the best bid price, and P

best(ask)
t is the best ask price in the limit order book

at time t, is also known as “fair price” since this price does not include trading costs.

However, the mid-price does not consider the imbalance in the limit order book, that is to say,

it is not taking into account the volume displays in both sides of the limit order book (bid side

and ask side).

Bearing this in mind, we define the micro-price at time t as

Micro Pricet =

n∑
i=1

[(
V b,it

V a,it + V b,it

)
P b,it +

(
V a,it

V a,it + V b,it

)
P a,it

]
, (2.2)

where V
b(a),i
t is the volume in the level4 i in the bid(ask) side and P

b(a),i
t is the price displayed at

level i in the bid(ask) side.

The micro-price can be also used as a measure of trend. For instance, if there were more

buyers than sellers, the micro-price is pushed upwards meaning that is probably that the mid-price

increases. Figure 2 shows the mid-price and the micro-price for SBUX, on Feb 28, 2018.

3 American stock market, the second-largest exchange in the world.
4the first level in the limit order book is the best bid, the second level is the second-best bid and so on, analogously

for the ask side.
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Figure 2: Micro-price and Mid-price of SBUX.

2.4 Intraday market patterns

Among the vast majority of assets, it is possible to observe some qualitative patterns in trading

hours (intraday trading). These kind of structure are due to aspects such as re-balancing of

portfolios, or closing positions. In this section, I discuss different market patterns for the following

metrics:

• Volume.

• Volatility.

• Liquidity: bid-ask spread and round trip cost.

• Price impact.

To implement these qualitative patterns, I use SBUX data for 28th February 2018; it is essential

to indicate that SBUX is the fourteenth most traded5 stock in the Nasdaq. The data is provided

by LOBSTER6 in two files: “message.csv” and “order book file.csv”.

Message file

Time (sec) Event Type Order ID Size Price Direction

... ... ... ... ... ...

34713.685155243 1 206833312 100 118600 -1

34714.133632201 3 206833312 100 118600 -1

... ... ... ... ... ...

Time: Measured in seconds after midnight.

Event Type:

5I compute the daily trading volume during the last year.
6An on-line provider of limit order book data, is possible to have access to all Nasdaq traded stocks.
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1 Submission of a new limit order.

2 Cancellation (partial deletion of a limit order).

3 Deletion (total deletion of a limit order).

4 Execution of a visible limit order.

5 Execution of a hidden limit order.

6 Indicates a cross trade, e.g. auction trade.

7 Trading halt indicator.

Order ID: A reference number.

Size: Quantity of shares.

Price: Dollar price multiplied by 10000.

Direction:

-1 Sell limit order

1 Buy limit order

Order book file

AskPrice 1 AskSize 1 BidPrice 1 BidSize 1 ...

... ... ... ... ...

1186600 9484 118500 8800 ...

1186600 9384 118500 8800 ...

... ... ... ... ...

where ask (bid) price i corresponds the ask (bid) price in the level i, ask (bid) size i corresponds

the ask (bid) size in the level i. During this work, I use twenty levels in each limit order book.

2.4.1 Trading volume patterns

Previous research have found an U-shape for intraday trading volume; these analysis indicate that

the reasons for this shape is that at the beginning of the trading day can observed an increase in

the volume for the incorporation of overnight information in trades, while at the end of the trading

day some desks seek to close their open positions in assets, and also some traders re-balance their

financial portfolios. Figure 3 shows a U-shape with a noticeable skewness at the end of the trading

day.
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Figure 3: Intraday volume of SBUX.

I notice that the traded volume at the end of the day is considerably bigger than the rest of

the trades, figure 4 shows that the last mass points of the distribution belong to the end of the

trading day.

Figure 4: Histogram for traded volume of SBUX.

2.4.2 Intraday volatility pattern

Volatility measures price fluctuations, is considered as a measure of price-quality, and can be

measured in different ways in the financial markets.In this thesis I employ realised volatility, which

is calculated using the following equation:
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σt =

√√√√1

τ

τ∑
j=1

r2
j ,

where r is the realised micro-price’s return, τ is the number of different limit order books between

the minute t and t + 1. Returns are calculated using the micro-price, given that this measure is

considered a good proxy of the limit order book’s behaviour.

Figure 5 shows an J-shape in intraday volatility; this outline is standard among the vast majority

of assets. This shape is given by the same features as trading volume pattern.
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Figure 5: Intraday volatility of SBUX.

2.4.3 Liquidity: bid-ask spread and round trip cost

There are many definitions of liquidity in financial markets. A simple one is: “an asset is liquid

if is easy to buy and sell it”. Different theories mention that liquidity is incorporated into the

market price as liquidity risk, for this reason, traders are concern about this metric; there are also

a negative relationship between liquidity and market impact. Bearing this in mind, it is crucial to

know how to measure liquidity for any asset.

Market participants and researches have not struck an agreement what it is the “best” or

“correct” way to estimate the liquidity for any asset. The most popular among practitioners is

bid-ask spread. However, this section is focused on round trip cost.

Bid-ask spread: is considered as a proxy of liquidity in the very short term since is computed

as the distance between the best bid and the best ask

bid-ask spreadt =
(
P best ask
t − P best bid

t

)
, (2.3)
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where P
best bid(ask)
t is the best bid(ask) price in the limit order book, and represents the potential

cost of buying and selling the security immediately.

The simplicity of this measure is the main advantage; However, bid-ask spread does not con-

sider the possible imbalance in the limit order book, also this metric has become useless in some

exchanges due to the imposition of new regulations, for example in the United States, the minimum

tick size7 is one cent for stock prices at one dollar or more, inducing that the bid-ask spread will

be equal or close to one cent for liquid stocks.

Figure 6 shows the classic U-shape, and is attributed to different reasons such as a positive

relationship with trading volume, also because some traders adjust their bid and ask quotes to

restore inventory imbalance.
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Figure 6: Bid-ask spread for SBUX.

Round trip cost: is considered as a general way to measure liquidity, since involves volume

and liquidity, i.e., market depth. A stock market is deep when both sides of the limit order book

have enough volume such that the market impact for a market order is negligible. It is important

to indicate that high volume does not imply that the market is deep, since the price and volume

posted in each level of the limit order book are considered as part of being a market depth.

Round trip cost represents a net loss of buying and immediately selling a given number of

shares (“walking the book”), this metric induces a curve where x-axis represents quantity and in

y-axis represents cost (see figure 7).

7it is the minimum difference between one price and the next one.
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Figure 7: Limit order book and Round trip cost of SBUX.

To compare the level of market depth among different limit order books, I compute the round

trip cost associated with 99-percentile volume in buying orders (see figure 8). The idea behind of

choosing 99-percentile is to emphasise the concept of market depth.
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Figure 8: Round trip cost 99-percentile trading volume for SBUX.

Figure 9 shows different round trip cost curves by minute, the trading day is divided in quarters;

a red curve indicates that the round trip cost curve is associated to the beginning of the quarter,

and the colour converges into yellow when the limit order book is associated to close of the quarter.

Between 11:30 a.m. and 15:00 p.m. the liquidity is stable, since we cannot differentiate between

red curves and yellow curves.



2.4 Intraday market patterns 19

Figure 9: Round-Trip cost curve pattern for SBUX.

2.4.4 Market impact pattern

One important variable that high-frequency traders should have in mind when want to execute a

large order is the potential adverse price impact. That is to say, a market order has zero price

impact when is executed at best price available i.e., without walking the limit order book.

In the literature is consider two different market impacts: permanent and temporary. Both

concepts are related to the price formation process, that is to say, every asset has a “fair price”, so

• If the investor’s view of the fair price moves in accordance with the new quoted price (from

the mathematical point of view, this price impact changes the stochastic process’ drift), then

is a permanent price impact.

• If the impacted price is far from the investor’s view of the fair price, then is a temporary

price impact.

The temporary price impact is a concept which has a strong relationship with liquidity in the limit

order book. For this reason, we can observe a J-shape in the temporary market impact (see figure

10).
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Figure 10: Temporary market impact for SBUX.

To estimate this metric is common to assume that temporary market impact is linear, then is

taken a snapshot of the limit order book and perform the following linear regression:

Sexec,bid
t (Qi) = St − kbidQi + εexec,bid

t (Qi), Sexec,ask
t (Qi) = St + kaskQi + εexec,ask

t (Qi) ,

where St is the mid-price at time t, Qi is the volume at level i and S
exec,bid(ask)
t (Qi) is the liquidation

price at level i in the bid(ask) side. The slope k is the theoretical temporary market impact. In

this thesis, I estimate the temporary price impact through the slope of a lineal regression model

which is calibrated using the short part of round-trip cost curve. Since the average traded volume

in SBUX during 28th of February was 173 shares per trade, I consider the short term as the cost

to trade one share to trade 173 shares.

2.5 Relationship between volatility and round trip cost.

The relationship between liquidity and volatility has been studied using different ways of computing

the liquidity. For instance, in past studies such as [4] , indicates that if the traded volume is

considered as a measure of liquidity, there exists a positive correlation between traded volume and

volatility, while research such as [19], [21],[27] show that if it is considered the bid-ask spread as a

measure of liquidity, this correlation is negative. However, in this thesis I analyse the correlation

between volatility and liquidity, using round trip cost.
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Figure 11 shows a positive correlation between volatility and round-trip cost, i.e., an increment

in the volatility index means an increase in the round-trip cost. Concerning liquidity metric as

round-trip cost, an increment in the volatility index implies a decrease in the market conditions

(liquidity).

Figure 11: Volatility and Round trip cost of SBUX as of 28 Feb 2018 .
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3 Stochastic Control

This sub-field of control theory studies dynamic systems subject to random perturbations, and

has been applied in topics such as economics, management, and finance. Over recent years, the

research over control theory has been developed, mainly by problems emerging from mathematical

finance. In this section I discuss the theory behind stochastic control, using as motivation the

portfolio optimisation problem, which was proposed by Merton (1971) in his work [20]. I use as

main references for this section the following works: Cass [12], Cartea et al. [10], Björk [5], Merton

[20],and Pham [23].

3.1 Portfolio optimisation problem

Consider an agent at time t who wishes to maximise her expected utility by allocating her wealth

in a risk-free bank account or a risky asset. Let us define the following processes:

• B = (Bt)0≤t≤T is the risk-free bank account and satisfies

dBt = rBtdt .

• W = (Wt)0≤t≤T is a Brownian Motion.

• S = (St)0≤t≤T is the discounted risky price process and satisfies the following stochastic

differential equation:

dSt = (µ− r)Stdt+ σStdWt , S0 = s.

• π = (πt)0≤t≤T is a self-financing strategy, which indicates the amount of money allocated in

the risky asset at time t.

• Xπ = (Xπ
t )0≤t≤T is the agent’s discounted wealth given the strategy π, and satisfies the

following stochastic differential equation:

dXπ
t = (πt(µ− r) + rXπ

t )dt+ πtσdWt , X
π
0 = x.

therefore the maximisation problem is formulated as follows:

Hπ,t(s, x) = sup
π∈A0,T

Es,x [U(Xπ
T )] , (3.1)

where U(x) is the agent’s utility function, At,T is the set of all admissible strategies, corresponding

to all F−predictable self-financing strategies such that
∫ T
t
π2
sds <∞, and Es,x[.] is the conditional

expectation given St = s and Xt = x.

This problem was introduced by Merton in 1971, and is a classical example of how to apply

stochastic control. In the next subsections I prove and derive some mathematical results to solve

problems such as (3.1).
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3.2 Dynamic programming principle

We work with a filtered probability space (Ω,F ,F = (Ft)t≥0,P), which satisfies the usual condi-

tions8, and with a controlled model X = (Xt)t≥0 which is defined in Rn and given by

dXs = b(Xs, vs)ds+ σ(Xs, vs)dWs , (3.2)

where W = (Wt)t≥0 is a d-dimensional Brownian motion, and v = (vt)t≥0 is the control process,

which satisfies the condition of being progressively measurable with respect to F, and being defined

in A, subset of Rn.

The drift and dispersion processes of (3.2) are measurable functions such that

b : Rn ×A 7−→ Rn ,

σ : Rn ×A 7−→ Rn×d ,

and satisfy the Lipschitz condition in the set A. We introduce also the notation of the set of

stopping times valued in the interval [t, T ] as τt,T . Moreover, we define A the set of control process

v which holds

E

[∫ T

0

(|b(0, vt)|2 + |σ(0, vt)|2)dt

]
<∞ .

Let f and g be measurable functions such that

f : [0, T ]× Rn ×A 7−→ Rn ,

g : Rn 7−→ R ,

and we assume that g is lower-bounded or that g satisfies a quadratic growth condition, i.e. |g(x)| ≤

C(1 + |x|2), for all x in Rn, and for some constant C independent of x.

Consider for all (t, x) in [0, T ]× Rn a non-empty subset of controls v in A, A(t, x) such that

E

[∫ T

t

|f(s,Xs, vs)|ds

]
<∞ ,

therefore the gain function is given by

Hv(t, x) = E

[∫ T

t

f(s,Xs, vs)ds+ g(XT )

]
,

for all (t, x) in [0, T ] × Rn and v in A(t, x). The goal is to maximise the gain function over the

control process, that is to say

H(t, x) = sup
v∈A(t,x)

Hv(t, x) . (3.3)

We say that v∗ is an optimal control if H(t, x) = Hv∗(t, x), and if the control has the form

vs = a(s,Xs) for some measurable function a : [0, T ]×Rn 7−→ A, then is called Markovian control.

8This means that F is P-complete, the filtrations are right-continuous, and F0 contains all P-null subset of F .
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Theorem 3.1 (Dynamic programming principle). Let us consider (t, x) in [0, T ] × Rn under the

assumptions above mentioned, then the following equation holds

H(t, x) = sup
v∈A(t,x)

sup
θ∈τt,T

E

[∫ θ

t

f(s,Xt,x
s , vs)ds+H(θ,Xt,x

θ )

]

= sup
v∈A(t,x)

inf
θ∈τt,T

E

[∫ θ

t

f(s,Xt,x
s , vs)ds+H(θ,Xt,x

θ )

]
.

Proof. First, by the Markovian property of X, we can assume that

Xt,x
s = X

θ,Xt,xθ
s , θ ≤ s ,

where Xt,x
s denotes the process X at time s given Xt = x with t ≤ s, and θ is a stopping time

defined in [t, T ]. By the law of iterated conditional expectation and for any arbitrary control v, we

obtain

Hv(t, x) = E

[∫ θ

t

f(s,Xt,x
s , vs)ds+Hv(θ,Xt,x

θ )

]
,

by construction Hv(t, x) ≤ H(t, x), this implies that

Hv(t, x) ≤ inf
θ∈τt,T

E

[∫ θ

t

f(s,Xt,x
s , vs)ds+H(θ,Xt,x

θ )

]

≤ sup
v∈A(t,x)

inf
θ∈τt,T

E

[∫ θ

t

f(s,Xt,x
s , vs)ds+H(θ,Xt,x

θ )

]
,

taking supremum over all control v in the left-hand-side, we then get

H(t, x) ≤ sup
v∈A(t,x)

inf
θ∈τt,T

E

[∫ θ

t

f(s,Xt,x
s , vs)ds+H(θ,Xt,x

θ )

]
. (3.4)

Second, we fix an arbitrary control v in A(t, x) and a stopping time θ in τt,T . By definition

(3.3) and for any ε > 0 and ω in Ω, there exist a control vε,ω in A(θ(ω), Xt,x
θ(ω)(ω)) such that

H(θ(ω), Xt,x
θ(ω)(ω))− ε ≤ Hvε,ω (θ(ω), Xt,x

θ(ω)(ω)) . (3.5)

Now, consider the control process

v̂0(ω) =

 vs(ω) s in [0, θ(ω)]

vε,ωs s in (θ(ω), T ]
,

using (3.5) and the law of iterated conditional expectation

H(t, x) > H v̂(t, x) = E

[∫ θ

t

f(s,Xt,x
s , vs)ds+Hvε,ω (θ,Xt,x

θ )

]

> E

[∫ θ

t

f(s,Xt,x
s , vs)ds+H(θ,Xt,x

θ )

]
− ε ,

due to the arbitrariness of v, θ and ε > 0, we conclude that

H(t, x) > sup
v∈A(t,x)

sup
θ∈τt,T

E

[∫ θ

t

f(s,Xt,x
s , vs)ds+H(θ,Xt,x

θ )

]
. (3.6)

By (3.4) and (3.6) we get the equations.
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3.3 Hamilton-Jacobi-Bellman equation

It describes the local behaviour of (3.3) when the stopping time θ tends to t, is also known as

dynamic programming equation or infinitesimal version of the dynamic programming principle,

and its formal derivation is the following:

Consider θ = t+ h, and a constant control v = a then by 3.1

H(t, x) > E

[∫ t+h

t

f(s,Xt,x
s , a)ds+H(t+ h,Xt,x

t+h)

]
, (3.7)

by assuming that H is smooth enough such that we can apply Itô formula in the time interval

[t, t+ h], thus

H(t+ h,Xt,x
t+h) = H(t, x) +

∫ t+h

t

(
∂H

∂d
+ LaH

)
(s,Xt,x

s )ds+ (local)martingale ,

where LaH is the infinitesimal operator associated to (3.2), defined by

LaH = b(x, a)DxH +
1

2
tr(σ(x, a)σT (x, a)DxxH) , (3.8)

then substituting (3.8) in (3.7), we obtain

0 > E

[∫ t+h

t

(
∂H

∂t
+ LaH

)
(s,Xt,x

s ) + f(s,Xt,x
s , a)ds

]
, (3.9)

divided (3.9) by h and consider the case when h goes to 0, we get

0 >
∂H

∂t
(t, x) + LaH(t, x) + f(t, x, a) ,

since the last inequality is valid for any a in A, then

−∂H
∂t

(t, x)− sup
a∈A

[LaH(t, x) + f(t, x, a)] > 0 . (3.10)

On the other hand, suppose that v∗ is an optimal control, and by similar arguments we can

conclude that

0 = −∂H
∂t

(t, x)− Lv
∗
H(t, x)− f(t, x, v∗) ,

and

−∂H
∂t

(t, x)− sup
a∈A

[LaH(t, x) + f(t, x, a)] = 0 , for all (t, x) in (0, T ]× Rn . (3.11)

(3.11) is called dynamic programming equation or Hamilton-Jacobi-Bellman equation with

terminal condition given by

H(T, x) = g(x) , for all x in Rn ,

which results from (3.3).
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3.4 Verification theorem

This theorem indicates that given a smooth solution to the Hamilton-Jacobi-Bellman equation,

this candidate coincides to the solution of (3.3).

Theorem 3.2 (Verification theorem). Let w be a function in C1,2([0, T ]×Rn) ∩ C0(([0, T ]×Rn),

and satisfies a quadratic growth condition, i.e. there exist a constant C independent of x such that

|w(t, x)| ≤ C(1 + |x|2) , for all (t, x) in (0, T ]× Rn .

i) Suppose that

−∂w
∂t

(t, x)− sup
a∈A

[Law(t, x) + f(t, x, a)] ≥ 0 , for all (t, x) in (0, T ]× Rn ,

and w(T, x) ≥ g(x) , for x in Rn ,

then w ≥ H on [0, T ]× Rn.

ii) Suppose that w(T ) = g and that exists a measurable function v̂(t, x) valued in A such that

−∂w
∂t

(t, x)− sup
v̂∈A

[
Lv̂w(t, x) + f(t, x, v̂)

]
= 0 ,

If the stochastic differential equation

dXs = b(Xs, v̂(s,Xs))ds+ σ(Xs, v̂(s,Xs))dWs ,

has unique solution (X̂t,x
s ), and the process v̂(t, X̂t,x

s ) is in A(t, x). We can conclude that

w = H , on [0, T ]× Rn ,

and v̂ is an optimal Markovian control.

Proof. i) Since w in C1,2([0, T ] × Rn), for all controls v in A(t, x), and τ a stopping time, we

can use Itô formula from t to s ∧ τ , thus

w(s ∧ τ,Xt,x
s∧τ ) = w(t, x)+

∫ s∧τ

t

(
∂w

∂t
(r,Xt,x

r ) + Lurw(r,Xt,x
r )

)
dr+∫ s∧τ

t

Dxw(r,Xt,x
r )Tσ(Xt,x

r , r)dWr.

we choose τ = τn = inf{s ≥ t :
∫ s
t
|Dxw(r,Xt,x

r )Tσ(Xt,x
r , r)|2dr ≥ n}, then τn goes to infinity

when n tends to infinity. Then the stopped process(∫ s∧τ

t

Dxw(r,Xt,x
r )Tσ(Xt,x

r , r)dWr

)
t≤s≤T

,

is a martingale (See Cass [12]). Now by taking expectation, we get

E[w(s ∧ τ,Xt,x
s∧τ )] = w(t, x) + E

[∫ s∧τ

t

(
∂w

∂t
(r,Xt,x

r ) + Lurw(r,Xt,x
r )

)
dr

]
,
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using the assumptions of w, we obtain

E[w(s ∧ τ,Xt,x
s∧τ )] ≤ w(t, x) + E

[∫ s∧τ

t

f(Xt,x
r , ur)dr

]
for all v in A(t, x) ,

therefore ∣∣∣ ∫ s∧τ

t

f(Xt,x
r , ur)dr

∣∣∣ ≤ ∫ T

t

|f(Xt,x
r , ur)|dr ,

since w satisfies a quadratic growth, and using dominated convergence theorem when n goes

to infinity, we obtain

E[g(Xt,x
T )] ≤ w(t, x) + E

[∫ T

t

f(Xt,x
r , ur)dr

]
for all v in A(t, x) .

We conclude that w(t, x) ≤ H(t, x) for all (t, x) in [0, T ]×Rn, since v is an arbitrary control

in A(t, x).

ii) Using Itô formula in w(r, X̂t,x
r ) between t in [0, T ) and s in [t, T ), we then get

E[w(s, X̂t,x
s )] = w(t, x) + E

[∫ s

t

(
∂w

∂t
(r, X̂t,x

r ) + Lv̂(r,X̂t,xr )w(r, X̂t,x
r )

)
dr

]
.

Now, by definition of the control v̂(t, x), we obtain

−∂w
∂t

(t, x)− sup
v̂∈A

[
Lv̂w(t, x) + f(t, x, v̂)

]
= 0 ,

and so

E[w(s, X̂t,x
s )] = w(t, x) + E

[∫ s

t

f(X̂t,x
r , v̂(r, X̂t,x

r ))dr

]
,

if s tends to t, so

w(t, x) = E

[∫ T

t

f(X̂t,x
r , v̂(r, X̂t,x

r ))dr + g(X̂t,x
T )

]
= H v̂(t, x) ,

that is to say, H v̂(t, x) ≥ H(t, x), and finally w = H with v̂ as an optimal Markovian control

The two previous theorems suggest the following strategy to solve a stochastic control problem.

Let us consider a non-linear Hamilton-Jacobi-Bellman equation

−∂w
∂t

(t, x)− sup
a∈A

[Law(t, x) + f(t, x, a)] = 0 , for all (t, x) in (0, T ]× Rn ,

with terminal condition w(T, x) = g(x).

i) Let us fix (t, x) in (0, T ]×Rn, and solve sup
a∈A

[Law(t, x) + f(t, x, a)] as a maximisation problem

in a.

ii) Denote a∗(t, x) the value that reaches this maximum.

iii) If this non-linear Partial Differential Equation with terminal condition admits a smooth

solution w, then w is the solution of the stochastic control problem (3.3), and a∗(t, x) is the

optimal Markovian control.
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3.5 Portfolio optimisation solution

In this subsection, I incorporate the stochastic control theory discussed before to solve (3.1), then

using (3.11), we get

0 =

(
∂t + rx∂x +

1

2
σ2s2∂ss

)
H + sup

π

[
π((µ− r)∂x + σ∂xs)H +

1

2
σ2π2∂xxH

]
, (3.12)

with terminal condition H(T, x, s) = U(x). As long as ∂xxH(t, x, s) < 0 the maximum exists and

is attained at

π∗ = − (µ− r)∂xH + σ∂xsH

σ2∂xxH
, (3.13)

therefore (3.12) in feedback form is

0 =

(
∂t + rx∂x +

1

2
σ2s2∂ss

)
H − ((µ− r)∂xH + σ∂xsH)2

2σ2∂xxH
, (3.14)

taking in consideration that the terminal condition (H(T, x, s) = U(x)), is independent of s, we

propose the following ansatz H(t, x, s) = h(t, x), then substituting it in (3.14), we obtain

0 = (∂t + rx∂x)h(t, x)− λ

2σ

(∂xh(t, x))2

∂xxh(t, x)
,

where λ = µ−r
σ , so π∗ is also reduced in

π∗ = −λ
σ

(
∂xh

∂xxh

)
,

that is to say, the form of π∗ depends totally on the form of U(x).
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4 Optimal Executions in the Basic Model

During the last years, the interest to extend the understanding of the optimal execution models

among practitioners and academics have increased considerably. The goal of trade scheduling is to

buy or to sell a massive number of securities before a fixed time horizon, and maximising profits.

In this chapter, I explain the theory of these models. The main references are Almgren et al. [2],

Cartea et al. [7], and Graziano [14].

4.1 Basic model

Markets participants as pension funds, hedge funds, mutual funds or sovereign funds delegate their

trades to a house of brokerage. These brokers find to slice the big order9 into small ones or child

orders; taking into consideration the possible price impact and the risk associated with asset’s

fluctuation (volatility). Therefore, the agent or broker should formulate a model to help her to

decide how to split this order over the time.

To measure the performance during the execution process, are consider different benchmarks.

The most common is implementation shortfall, which is defined as the difference between the

execution price and the pre-trade price.

These models are front-loaded, that is to say they execute as much as possible early, and this

is because the agent seeks to reduce the risk against the benchmark price (pre-trade price).

In the industry and the literature, there are others benchmarks, which involve averaging the

market price during the trading interval, the most popular ones are:

• TWAP: Time-weighted average price.

• VWAP: Volume-weighted average price.

I analyse different versions of the execution model, the difference between them are the as-

sumptions which are used.

4.1.1 Liquidation problem assuming only temporary impact

In this problem, the agent seeks to liquidate an order before T using market orders and cannot

arrive at time T with a positive inventory, she starts her trading operation with M shares. The

formulation problem is given by

• v = (vt)0≤t≤T is the trading rate at which the agent liquidates her stock.

• Qv = (Qvt )0≤t≤T is the agent’s inventory, with Qv0 = M and QvT = 0.

• Sv = (Svt )0≤t≤T is the mid-price process.

9when is higher in volume than the average traded volume or the average best bid/ask volume.
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• Ŝv = (Ŝvt )0≤t≤T is the execution price process.

• Xv = (Xv
t )0≤t≤T is the agent’s cash process.

Remark 4.1. All processes are affected by the trading rate v, and satisfy the following equations:

• dQvt = −vtdt.

• dSvt = σdW s
t ,where W s = (W s

t )0≤t≤T is a Brownian motion. We assume that the permanent

price impact is zero.

• Ŝvt = St − f(vt), where f : R+ 7−→ R+ such that f(vt) = kvt. In this model, I consider that

temporary price impact is approximated by a linear model with slope k.

• dXv
t = Ŝvt vtdt, with Xv

0 = 0.

the agent wishes to maximise her the expected revenue, i.e.

H(t, s, q) = sup
v∈A

Et,s,q

[∫ T

t

Xv
udu

]
= sup
v∈A

Et,s,q

[∫ T

t

(Su − kvu)vudu

]
, (4.1)

where Es,x[.] is the conditional expectation given St = S,Qt = q, A is the set of admissible

strategies, then using (3.11) in (4.1), we obtain

∂tH +
1

2
σ2∂ssH + sup

v
{(S − kv)v − v∂qH} = 0 . (4.2)

In this problem is not allowed to left inventory at time T, for this reason, I impose the following

two terminal and initial condition: If t goes to T and q is not negative then H(t, s, q) converges to

−∞, and if t converges to T and q is zero then H(t, s, 0) goes to zero.

By the first order condition applied to (4.2) then the maximum is attained at

v∗ =
1

2k
(S − ∂qH) ,

(4.2) in the feedback form is:

∂tH +
1

2
σ2∂ssH +

1

4
(S − ∂qH)2 = 0 , (4.3)

we propose the following ansatz H(t, s, q) = qS + h(t, q), then (4.3) is reduced in

∂th+
1

4k
(∂qh)2 = 0 , (4.4)

if h(t, q) = q2h2(t) then (4.4) becomes into ∂th2 + 1
kh

2
2 = 0, therefore

h2(t) =

(
1

h2(T )
− 1

k
(T − t)

)−1

,

to ensure that the terminal inventory is zero, we impose that if t goes to T , then h2(t) converges

to −∞.
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On the other hand, the trading rate is also reduced to v∗t = − 1
kh2(t)Qv

∗

t , and the inventory

profile is given by: ∫ t

0

dQv
∗

t

QV
∗

t

=

∫ t

0

h2(s)

k
ds then Qv

∗

t =
(T − t)− k

h2(T )

T − k
h2(T )

M ,

To satisfy the condition Qv
∗

T = 0 and ensure that the term h(t, q) is negative , I establish that if t

goes to T , then h2(t) tends to −∞. We conclude that

Qv
∗

t =

(
1− t

T

)
M and v∗t =

M

T
, (4.5)

that is to say, the shares must be liquidated at a constant rate, it is important to indicate that

this strategy is the same as the time-weighted average price (TWAP).

4.1.2 Optimal acquisition with terminal penalty and only temporary impact

In this problem the agent seeks to acquire M shares before T using market orders, starting with

zero inventory (Qv0 = 0). However, the agent is allowed to arrive at time T with an inventory less

than the acquisition target, i.e. QvT < M , and in this case she must execute a buy market order

for the remaining amount and will receive a penalty. The problem formulation is

• v = (vt)0≤t≤T is the trading rate at which the agent acquires the stock S.

• Qv = (Qvt )0≤t≤T is the agent’s inventory, with Qv0 = 0 and QvT = M .

• Sv = (Svt )0≤t≤T is the mid price process.

• Ŝv = (Ŝvt )0≤t≤T is the execution price process.

• Xv = (Xv
t )0≤t≤T is the agent’s cash process.

Remark 4.2. All processes are affected by the trading rate v, and satisfy the following equations:

• dQvt = vtdt.

• dSvt = σdW s
t ,where (W s

t )0≤t≤T is a Brownian motion.

• Ŝvt = St + f(vt), where f : R+ 7−→ R+ such that f(vt) = kvt.

• dXv
t = Ŝvt vtdt, with Xv

0 = 0.

Then the expected cost is given by

ECv = Et,s,q

[∫ T

t

Ŝvvudu+ (M −QvT )ST + α(M −QvT )2

]
, (4.6)

where the first term is the cost associated to acquire the stock S during the execution process,

the second term is the cost for the last market order execution at mid-price, while the last term
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is the terminal penalty with α as a penalty factor, and Es,x[.] is the conditional expectation given

St = S, Qt = q.

Let us define Y = (Yt)0≤t≤T such that Y vt = M −Qvt then dY vt = −vtdt. then the agent wishes

to minimise her cost, i.e.

H(t, s, q) = inf
v∈A

Et,s,q

[∫ T

t

Ŝvuvudu+ Y vT ST + α(Y vT )2

]
, (4.7)

then using 3.11 in (4.7)

0 = ∂tH +
1

2
σ2∂ssH + inf

v
{(S + kv)v − v∂yH} , (4.8)

with terminal condition H(T, s, y) = ys+αy2. By the first order condition the minimum is attained

at

v∗ =
1

2K
(∂yH − S) ,

then the feedback form of (4.8) is:

∂tH +
1

2
σ2∂ssH −

1

4k
(∂yH − S)2 = 0 , (4.9)

Assuming that the solution of (4.9) has the form of H(t, s, y) = ys+h0(t)+h1(t)y+h2(t)y2, where

hi(t) are deterministic functions, we can assume that the terminal conditions hold h2(T ) = α and

h1(T ) = h0(T ) = 0; we get

{∂th2 −
1

k
h2

2}y2 + {∂th1 −
1

2k
h2h1}y + {∂th0 −

1

4k
h2

1} = 0 , (4.10)

(4.10) should be valid for any y, thus each equation in the bracket should be zero, therefore

h1(T ) = 0 and h2(T ) = 0 implies that h1(t) = 0 and h2(t) = 0. We obtain

H(t, S, y) = ys+ h2(t)y2 ,

since h2(T ) = α then h2(t) =
(

1
k (T − t) + 1

α

)−1
.

Remark 4.3. If α tends to ∞ the acquisition problem converges to TWAP, then the agent avoids

to arrive at time T with an inventory less than the objective acquisition volume. If α tends to 0

the optimal strategy is to purchase all shares at the end of execution problem.

Using dY v
∗

t = −((T − t) + k
α )−1Y v

∗

t dt thus

Qv∗t =
t

T + k
α

M and v∗t =
M

T + k
α

.

4.1.3 Optimal liquidation with permanent impact

In this problem, the agent uses only market orders to liquidate M shares, and we assume that the

temporary and the permanent impact are different to zero. Also, the agent could arrive at time
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T with a positive inventory, in this scenario should execute a market order to sell the remaining

shares. Finally, I consider a new penalty named running inventory penalty, given by φ
∫ T
t

(Qvu)2du.

This penalty incorporates the urgency for executing trades, i.e., a higher value of φ implies a

quicker liquidation process. The problem formulation is given by

• v = (vt)0≤t≤T is the trading rate at which the agent liquidates her stock.

• Qv = (Qvt )0≤t≤T is the agent’s inventory, with Qv0 = M .

• Sv = (Svt )0≤t≤T is the mid price process.

• Ŝv = (Ŝvt )0≤t≤T is the execution price process.

• Xv = (Xv
t )0≤t≤T is the agent’s cash process.

Remark 4.4. All processes are affected by the trading rate v, and satisfy the following equations:

• dQvt = −vtdt.

• dSvt = −g(vt)dt + σdW s
t ,where W s = (W s

t )0≤t≤T is a Brownian motion. We assume that

permanent price impact is given by g : R+ 7−→ R+ such that g(vt) = bvt.

• Ŝvt = St − f(vt), where f : R+ 7−→ R+ such that f(vt) = kvt. In this model, we assume that

the temporary price impact is approximated by a linear model.

• dXv
t = Ŝvt vtdt, with Xv

0 = 0.

the agent wishes to maximise her the expected revenue, i.e.

H(t, x, s, q) = sup
v∈A

Et,x,s,q

[
Xv
T +QvT (SvT − αQvT )− φ

∫ T

t

(Qvu)2du

]
, (4.11)

where the first term is the terminal wealth, the second term corresponds to the terminal execution,

and the last term is the inventory penalty, and Et,x,s,q[.] is the conditional expectation given

Xt = x,St = S,Qt = q, A is the set of admissible strategies.

Using 3.11 in (4.7), we get

0 = ∂tH +
1

2
σ2∂ssH − φq2 + sup

v∈A
{v(s− kv)∂xH − bv∂sH − v∂qH} , (4.12)

with terminal condition H(T, x, s, q) = x+ sq − αq2.

By the first order criteria the maximum is attained at

v∗ =
1

2k

s∂xH − b∂sH − ∂qH
∂xH

, (4.13)

(4.12) in the feedback form is

0 = ∂tH +
1

2
σ2∂ssH − φq2 +

1

4k

(s∂xH − b∂sH − ∂qH)2

∂xH
. (4.14)
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Exploring the terminal condition, we propose the following ansatz:

H(t, x, s, q) = x+ sq + h(t, s, q) ,

with terminal condition h(T, s, q) = −αq2 then (4.14) is reduced to

0 = ∂th+
1

2
σ2∂ssh− φq2 +

1

4k
(bq + b∂sh+ ∂qh)2 , (4.15)

we observe that (4.15) is a new PDE, independent of (4.14), does not depend on s, and also the

terminal condition of h does not depend on s, taking in consideration these facts we conclude that

∂sh(t, s, q) = 0 and h(t, s, q) = h(t, q), then (4.15) simplifies into

0 = ∂th(t, q)− φq2 +
1

4k
(bq + ∂qh(t, q))2 , (4.16)

also, (4.13) is reduced in

v∗ =
−1

2k
(∂qh(t, q) + bq) ,

Analysing the last equation , I assume that the solution admits a separation of variables , i.e.

h(t, q) = g(t)q2 then (4.16) is reduces to

0 = ∂tg − φ+
1

k
(g +

1

2
b)2 (4.17)

with terminal condition g(T ) = −α. (4.17) is a ordinary differential equation, specifically a Riccati

type. To solve it, consider g(t) = − 1
2b+ g1(t) then (4.17) is given by

∂tg1

kφ− g2
1

=
1

k
, (4.18)

with terminal condition g1(T ) = 1
2b− α, thus the solution of (4.18) is

g1(t) =
√
kφ

1 + ζe2δ

1− ζe2δ
,

where δ =
√

φ
k and ζ = α−0.5b+

√
kφ

α−0.5b−
√
kφ

. Then the optimal trading rate is given by

v∗t = δ
ζeδ(T−t) + e−δ(T−t)

ζeδ(T−t) − e−δ(T−t)
Qv

∗

t ,

Notice that the optimal trading rate is proportional in a non-linear way to the inventory level;

therefore

Qv
∗

t =
ζeδ(T−t) + e−δ(T−t)

ζeδ(T ) − e−δ(T )
M and v∗ = δ

ζeδ(T−t) + e−δ(T−t)

ζeδ(T ) − e−δ(T )
M .
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5 Optimal Execution Strategy with Stochastic Volatility and

Liquidity

All the models which I explore in the last chapter consider that volatility and liquidity are deter-

ministic functions, and fixed during the execution time. Among large-capitalisation shares, these

assumptions are a good approximation. For instance, the bid-ask spread (a measure of liquidity)

has been converged to the ticket size and the volatility for these stocks have decreased.

To extend these models, Almgren in his work [1] proposed an execution model which considers

these metrics as a stochastic processes. The main advantage of this model is that the agent could

use it, in any stock. In this chapter, I discuss this model and calibrated it using a medium-

capitalisation stock such as SBUX.

5.1 Model

Considering an acquisition problem where the agent seeks to buy M shares before time T , the

formulation is the following:

• v = (vt)0≤t≤T is the trading rate at which the agent acquires the stock.

• Qv = (Qvt )0≤t≤T is the number of shares remaining to purchase, with Qv0 = M and QvT = 0.

• Sv = (Svt )0≤t≤T is the mid price process.

• Ŝv = (Ŝvt )0≤t≤T is the execution price process.

Remark 5.1. All processes are affected by the trading rate v, and satisfy the following equations:

• dQvt = −vtdt .

• dSvt = σtdW
s
t ,where W s = (W s

t )0≤t≤T is a Brownian motion. I assume that the permanent

price impact is zero.

• Ŝv = St + ηtvt. In this model, I assume that the temporary price impact is given by the

stochastic process η.

• ζ = (ζt)0≤t≤T is the market state process and satisfies

dζt = a(ζt)dt+ b(ζt)dW
ζ
t , (5.1)

where W ζ = (W ζ
t )0≤t≤T is a Brownian Motion such that d〈W ζ ,W s〉t = 0, where d〈.〉t is

defined as instantaneous quadratic variation.

• σ = (σt)0≤t≤T is the volatility process such that σt = σe
−ζt
2 .
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• η = (ηt)0≤t≤T is the temporary price impact process such that ηt = ηeζt .

The cost of trading using implementation shortfall as benchmark is given by

C =

∫ T

0

Ŝtvtdt−MS0

=

∫ T

0

Stvtdt+

∫ T

0

ηtv
2
t dt−MS0 ,

then applying integration by parts in the first term and using vt = −dQv

dt , we get

C =

∫ T

0

σtvtdW
s
t +

∫ T

0

ηtv
2
t dt ,

The agent wishes to minimise her trading cost then

min
v∈A
{E[C] + λV ar[C]} , (5.2)

Remark 5.2. (5.2) considers also the variability of trading cost.

Using Itô’s Isometry, we obtain, so

E[C] = E

[∫ T

t

ηsv
2
sds

]
, and V ar[C] = E

[∫ T

t

σ2
sQ

2
sds

]
+ {terms arising for ηs, σs, vs} ,

assuming that the second term is negligible, and substituting in (5.2), we get

H(t, q, η, σ) = H(t, q, η, ζ) = min
v∈A

Et,q,η,σ

[∫ T

t

(ηsv
2
s + λσ2

s(Qvs)
2)ds

]
, (5.3)

Et,q,η,σ[.] is the conditional expectation given ηt = η, Qt = q, σt = σ, A is the set of admissible

strategies, then using 3.11 in (5.3):

0 = Ht + min
v

[
−vHq + aHζ +

1

2
b2Hζζ + ηv2 + λσ2q2

]
, (5.4)

thus the minimum is attained at

v∗ =
Hq

2η
, (5.5)

therefore (5.4) in feedback form is

−Ht = aHζ +
1

2
Hζζb

2 + λσ2q2 − (Hq)
2

4η
, (5.6)

Now, we assume that (5.1) follows a Ornstein-Uhlenbeck process with coefficients

a(ζ) =
−ζ
δ
, b(ζ) =

β√
δ
.

We propose the following ansatz for (5.6)

H(t, q, ζ) =
ηq2

δ
h

(
T − t
δ

, ζ

)
, (5.7)
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then substituting in (5.6)

ht + ζhζ = e−ζ
[
λσ2δ2

η
− h2

]
+

1

2
β2hζζ . (5.8)

Defining κ =
√

λσ2

η and K = κδ, (5.8) is reduced to

ht + ζhζ = e−ζ
[
K − h2

]
+

1

2
β2hζζ . (5.9)

5.2 Analysis of Partial Differential Equation

In general, to solve a partial differential equation, is necessary to understand its behaviour in some

asymptotic cases and determine its final and initial conditions. In this subsection, I analyse (5.9)

and also compute its initial condition.

We know that, ηt = (ηt)0≤t≤T is a stochastic process such that ηt = ηeζt where dζt = a(ζ)dt+

b(ζ)dW ζ
t ; then applying Itô’s formula, the process ηt satisfies

dηt = ηt

[
(a(ζ)dt+

1

2
b2(ζ))dt+ b(ζ)dW ζ

t

]
,

then if t ≤ s, thus the expectation of ηs can be approximated by

E[ηs] ≈ ηs
[
1 +

(
a+

1

2
b2
)

(s− t)
]
,

that is to say, on average the value of ηs with s in [t, T ] is given by

η ≈ ηs
[
1 +

1

2

(
a+

1

2
b2
)

(T − t)
]
. (5.10)

Note that in the constant coefficient case (see Graziano [14]) the cost is:

C(t, q, η, σ) = ηkq2 coth(k(T − t)) , (5.11)

now, if k(T − t) << 1 and using Taylor’s expansion in (5.11), we get

C(t, q, η, σ) ≈ ηq2

T − t
+
λσ2q2

3
(T − t) +O((T − t)3) , (5.12)

by (5.10), (5.12) becomes into

C(t, q, η, σ) ≈ ηe−ζq2

T − t
+

1

2

(
a+

1

2
b2
)
ηeζq2 +O(T − t) as T − t→ 0 , (5.13)

therefore h(t, ζ) satisfies the following relation

h(τ, ζ) ≈ eζ

τ
− 1

2

(
ζ − 1

2
β2

)
+O(τ) as τ → 0 , (5.14)

where ζ is fixed and τ = T−t
δ . (5.14) is the initial condition for the partial differential equation

(5.9).
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5.3 Extended model

In the last model, the main assumption in the processes η = (ηt)0≤t≤T and σ = (σt)0≤t≤T is that

both processes are driven by only one stochastic differential equations. Almgren in [1] proposed an

extended model which considers two independent stochastic differential equation for the process

η = (ηt)0≤t≤T and σ = (σt)0≤t≤T . The formulation problem is the following:

• v = (vt)0≤t≤T is the trading rate at which the agent acquires the stock S.

• Qv = (Qvt )0≤t≤T is the number of shares remaining to purchase, with Qv0 = M and QvT = 0.

• Sv = (Svt )0≤t≤T is the mid price process.

• Ŝv = (Ŝvt )0≤t≤T is the execution price process.

• σt = (σt)0≤t≤T is the volatility process.

• ηt = (ηt)0≤t≤T is the temporary price impact process.

Remark 5.3. All processes are affected by the trading rate v, these processes satisfy the following

equations:

• dQvt = −vtdt .

• dSvt = σtdW
s
t ,where (W s

t )0≤t≤T is a Brownian motion.

• Ŝv = St + ηtvt.

• σt = σ exp (ζt), where dζt = a(ζ)dt + b(ζ)dW ζ
t such that W ζ = (W ζ

t )0≤t≤T is a Brownian

motion.

• ηt = η exp (ψt), where dψt = a(ψ)dt+ b(ψ)dWψ
t such that Wψ = (Wψ

t )0≤t≤T is a Brownian

motion.

The correlation structure is given by

d〈W s,Wψ〉t = d〈W s,W ζ〉t = 0 and d〈Wψ,W ζ〉t = ρdt .

The agent wishes

H(t, q, η, σ) = min
v∈A

Eq,η,σ

[∫ T

t

(ηsv
2
s + λσ2

s(Qvs)
2)ds

]
,

then applying 3.11:

0 = Ht + min
v

[
−vHq + aζHζ +

1

2
b2ζHζζ + aψHψ +

1

2
b2ψHζζ + ρbψbζHψζ + ηv2 + λσ2q2

]
, (5.15)
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then the minimum is attained at

v∗ =
Hq

2η
,

(5.15) has a feedback form given by

−Ht = aζHζ +
1

2
Hζζb

2
ζ + aψHψ +

1

2
Hψψb

2
ψ + λσ2q2 − (Hq)

2

4η
+ ρbψbζHψζ . (5.16)

Defining

a(ζ) =
−ζ
δL
, a(ψ) =

−ψ
δV

, b(ζ) =
βL√
δL
, b(ψ) =

βV√
δV

,

and proposing the following ansatz for (5.16)

H(t, q, ζ, ψ) =
ηq2

δL
h

(
T − t
δL

, ζ, ψ

)
,

then (5.16) is reduced into

ht + ψhψ + Γζhζ = K2e2ζ − eψh2 +
1

2
β2
Lhζζ + ρ

√
ΓβLβV hζψ +

1

2
Γ2β2

Lhψψ , (5.17)

where Γ = δL
δV

and K = κδL. It is important to indicate that if δL = δV , d〈Wψ,W ζ〉t = 1, βL = β

and βL + 2βV = 0 then (5.17) becomes into (5.9) in the plane ψ + 2ζ = 0.

5.4 Calibration of Partial Differential Equation using Starbucks Stock

In this section, I proposed a way to estimate the parameters η, σ, ζ, δ and β for the Partial Dif-

ferential Equation (5.9) using the SBUX data. (λ is parameter determined by the agent, in this

section I assume that is equal to one.)

Firstly, the parameters η and σ determine the magnitude of volatility (σ = (σt)0≤t≤T ) and

liquidity (η = (ηt)0≤t≤T ) processes, while the stochastic process ζ = (ζt)0≤t≤T works as a link

between both process σ and η, and satisfies the following stochastic differential equation

dζt =
ζ

δ
dt+

β√
δ

dW ζ
t ,

where

• β is the dispersion coefficient for the process ζ = (ζt)0≤t≤T .

• ζ is is the mean coefficient for the process ζ = (ζt)0≤t≤T .

• δ is the relaxation time coefficient.

In section 1, I compute the intraday volatility using the micro-price and also compute the

liquidity coefficient using round trip cost; in this section I use these data to estimate the parameters

above mentioned.

I normalise both processes σ and η, and compute an average between these normalised processes,

in order to generate a “market state” index. This new index captures the behaviour of liquidity and

volatility. ζ and β are the mean and the standard deviation of this market state index, respectively.
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To estimate the relaxation time coefficient (δ), Bartolozzi et al. in their work [3] propose the

following stopping time:

τ(tk) = inf{T > 0|Σ̂(tk + T ) ∗ Σ̂(tk) ≤ 0} ,

as a proxy of relaxation time, where Σ̂(t) is a normalised volume imbalance given by

Σ̂(t) =

∑Nb
i=1 V

b
i (t)−

∑Na
i=1 V

a
i (t)∑Nb

i=1 V
b
i (t) +

∑Na
i=1 V

a
i (t)

,

where V a,bi (t) is the volume posted in the level i in the ask(a) and bid(b) side at time t.

Therefore, the relaxation time is computed as

δ =
1

T

T∑
i=0

τ(ti) ,

where t0 and tT correspond the beginning and the end of the trading day, respectively.

Secondly, to estimate η and σ, I use the relationship between these parameters and the processes

σ and η which is given by

η = ηeζt , σ = σe−
ζt
2 ,

and ησ2 = ησ2.

The results of these estimations are shown in the following table

δ ζ β η σ2 λ κ

3.25e−4 -3.2171 0.8795 0.1275 0.01813 1 1.05e−4

Table 1: Parameters of stochastic volatility and liquidity model, using SBUX data. The time scale

is normalised by 1.

Therefore the partial differential equation (5.9), is fully determined by these parameters. To

determine a solution for this parametric partial differential equation, is necessary to implement a

numerical method, in appendix A I discuss some alternatives which can be used.
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6 Double Liquidation Problem

The models which I discuss in the previous sections do not consider the currency denomination,

that is to say, the stochastic cash-flows could be denominated in dollars or pounds. However,

these cash-flows, when they are denominated in foreign currency, should be exchanged into local

currency. For instance, if the agent is located in the United Kingdom and she liquidates an order

of Apple stock, she is going to receive dollars, then the agent would execute another order to

exchange her dollars into pounds.

Taking in consideration this problem, Cartea, Jaimungal, and Sánchez in their work [25] anal-

ysed this problem in the following setup: the agent is executing an order to liquidate her stock,

and at the same time she exchanges her dollars into local currency. That is to say, in this setup is

defined two controls, one control which refers to stock liquidation and a second one which comes

to foreign currency liquidation. This formulation problem does not have a closed-form solution.

In this work, I propose a variation in the formulation problem. I assume that the stock is liqui-

dated using any trading schedule strategy ft which is known at time t 10, i.e., ft is Ft−measurable.

For instance, the stock could be liquidated using TWAP, i.e., ft = M
T . The agent at the same

time liquidates her cash flows denominated in foreign currency. This new assumption brings the

possibility to obtain a closed-form solution.

6.1 Problem formulation

The agent wants to liquidate M shares denominated in foreign currency, also wishes exchange

her cash flows into local currency, that is to say, the agent is posting market orders in the stock

market and at the same time is posting market orders in the foreign exchange market to exchange

her cash-flows. Moreover, I consider that the agent could arrive at time T with a positive stock’s

inventory, in this case the agent should send a last market order in the foreign exchange market

with a penalty α, I also consider a running-inventory penalty φ.

• v = (vt)0≤t≤T is the trading rate at which the agent liquidates her cash flows in the foreign

exchange market.

• f = (ft)0≤t≤T is the rate at which the agent liquidated her stock, and is defined before the

liquidation process.

• Sf = (Sft )0≤t≤T is the stock price process (in the foreign currency).

• Ŝf = (Ŝft )0≤t≤T is the stock execution price process (in the foreign currency).

• Qf = (Qft )0≤t≤T is the agent’s inventory in the stock, with Qf0 = M .

10this new assumption reduces the problem formulation into only one control
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• Ev = (Evt )0≤t≤T is the foreign exchange rate process.

• Êv = (Êvt )0≤t≤T is the execution foreign exchange rate process.

• P v = (P vt )0≤t≤T is the agent’s inventory in the foreign exchange rate, where v = (v, f), and

P v0 = 0.

• Xv = (Xv
t )0≤t≤T is the agent’s cash process (in the local currency).

Remark 6.1. The processes Sf , Ŝf and Qf depend on the trading rate f , which is defined previ-

ously.

Remark 6.2. The processes Xv, Ev and Êv depend on the trading rate v, while P v depends on

both trading rates v and f , and the processes satisfy the following equations:

• dSft = −aftdt + σsdW s
t where W s = (W s

t )0≤t≤T is a Brownian Motion. The assumption

in this stochastic differential equation is that the permanent price impact is given by af(t)

where a is a positive constant.

• Ŝft = Sft − bft. In this model, I assumed that the temporary price impact is given by bf(t)

where b is a positive.

• dQft = −ftdt.

• dEvt = Evt σ
edW e

t where W e = (W e
t )0≤t≤T is a Brownian Motion. I assume that the perma-

nent price impact is zero.

• Êvt = Evt − dvt. I consider that the temporary price impact follows a linear model with slope

positive constant d.

• dP v = −vtdt + ftŜtdt = −vtdt + ft(St − bft)dt where the first term is given by the foreign

currency liquidation, and the second term corresponds to stock liquidation.

• dXv
t = Êvt vtdt = (Et − dvt)vtdt.

The agent wishes to maximise her the expected revenue, i.e.

H(t, x, e, p) = sup
v∈A

Et,x,e,p

[
Xv
T + P vT (EvT − αP vT )− φ

∫ T

t

(P vu )2du

]
(6.1)

where the first term is the terminal wealth, the second term corresponds to the terminal execution

value with penalty coefficient α, and the last term is the running inventory penalty with coefficient

φ ; and Et,x,e,p[.] is the conditional expectation given that Xt = x, Pt = p,Et = e and A is the set

of all admissible strategies.
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then using 3.11 in (6.1), we get

0 = Ht + sup
v

[
v(e− dv)Hx +

1

2
σ2e2Hee + (−v + ft(s− bft))Hp

]
− φp2 , (6.2)

with terminal condition

H(T, p, e) = x+ p(e− αp) , (6.3)

then the maximum is attained at

v∗ =
eHx −Hp

2dHx
, (6.4)

then (6.2) in the feedback form is

0 = Ht − φp2 +
1

2
σ2e2Hee + ft[s− bft]Hp +

1

4dHx
(eHx −Hp)

2 , (6.5)

Exploring the terminal condition (6.3), I propose the ansatz H(t, p, e) = x + pe + h(t, p, e) with

terminal condition h(T, p, e) = −αp2, substituting it into (6.5)

0 = ht − φp2 +
1

2
σ2e2hee + f(t)[s− bf(t)](e+ hp) +

1

4d
(hp)

2 , (6.6)

We observe that (6.6) is a new PDE, independent of (6.5). I propose a new ansatz for (6.6)

h(t, p, e) = γ(t, e) + β(t, e)p+ Γ(t, e)p2 , (6.7)

such that γ(T, e) = β(T, e) = 0 and Γ(T, e) = −α. Using (6.6) and (6.7) and collecting terms

associated to p and p2

p2

[
Γt − φ+

1

2
σ2e2Γee +

1

d
Γ2

]
+ p

[
βt +

1

2
σ2e2βee + 2Γft(s− bft) +

βΓ

d

]
+[

γt +
1

2
σ2e2γee + ft(s− bft)(e+ β) +

1

4d
β2

]
= 0 ,

since this equation should be valid for each p, then each equation in the brackets must be zero

individually, i.e.

Γt − φ+
1

2
σ2e2Γee +

1

d
Γ2 = 0 ,with Γ(T, e) = −α ,

βt +
1

2
σ2e2βee + 2Γf(t)(s− bf(t)) +

βΓ

d
= 0 ,with β(T, e) = 0 ,

γt +
1

2
σ2e2γee + f(t)(s− bf(t))(e+ β) +

1

4d
β2 = 0 ,with γ(T, e) = 0 .

Remark 6.3. The first equation is a Riccati type ordinary differential equation.

Remark 6.4. γ(t, e) is not solved explicitly since does not appear in the optimal trading rate.

Therefore the solutions for the partial differential equations are

Γ(t, e) =
√
dφ tanh

√φ(t− T )− d tanh−1
(

α√
dφ

)
√
d

 , β(t, e) =

∫ T

t

2e
∫ y
t

Γ(x,e)dxfy(bfy−s)Γ(y, e)dy ,

(6.8)

That is to say, the optimal trading rate v for the double liquidation problem is fully determined

by (6.8).
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7 Robust Double Liquidation Problem

All execution models are determined by stochastic processes which are characterised by a certain

number of constants. However, misspecification in these parameters could generate that execution

processes are not close to reality, that is to say, misspecification affects the agents optimal trading

strategy directly. The idea of incorporating missecification on the optimisation problem is called

ambiguity aversion. Cartea, Donnelly, and Jaimungal in their work [8], proposed an execution

model taking in consideration the ambiguity aversion.

In this section, I discuss how Cartea, Donnelly, and Jaimungal in [8] incorporated the ambiguity

aversion in the liquidation problem in a more general framework. Due to the primary purpose of

this thesis, I do not explain all proofs and results. My contribution in this section is to take into

account ambiguity aversion in the double liquidation problem (discussed in the last section). To

the extent of my knowledge is the first time to employ ambiguity aversion into a double liquidation

problem.

7.1 General model

In [8] is proposed a model where the agent could execute market and limit orders to liquidate Q

shares before T , but could arrive at time T with a positive inventory, then she has to post a last

market order to complete her liquidation process.

Let us consider the filtered probability space (Ω,F,F = {Ft}0≤t≤T ,P), where F is the filtration

generated by the mid-price processes S = (St)0≤t≤T and the process P = (Pt)0≤t≤T , where

Pt =
∫ t

0

∫∞
0
yµ(dy,ds) and µ is a Poisson random measure, both µ and S = (St)0≤t≤T are defined

as:

• S = (St)0≤t≤T is the mid-price processes, and satisfies dSt = αdt + σdWt where α, σ are

positive constant and W = (Wt)0≤t≤T is P-Brownian motion.

• Let µ be a Poisson random measure with P-compensator v(dy,dt) = λF (dy)dt, such that

F (dy) = ke−kydy, then the number of market buy orders which have arrived up to time t is

given by Mt =
∫ t

0

∫∞
0
µ(dy,ds).

• The agent posts orders only in the sell side, let δt be the distance of limit order from the

mid-price. The agent’s limit order is only lifted by a market order that has an execution

price greater than St + δt, then number of executed orders is then Nt =
∫ t

0

∫∞
δs
µ(dy,ds).

• q = (qt)0≤t≤T is the agent’s inventory such that q0 = Q and qt = Q − Nt and satisfies

dqt = −dNt.

• X = (Xt)0≤t≤T is the agent’s wealth and satisfies dXt = (St + δt−)dNt.
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Then the agent wishes to maximise her wealth, that is to say

H(t, x, q, s) = sup
δs∈A

EP
t,x,q,s [Xτ∧T + qτ∧T (Sτ∧T − l(qτ∧T ))] , (7.1)

where τ is a stopping time such that τ = inf{t : qt = 0}, EP
t,x,q,s[.] is the conditional expectation

given Xt− = x, qt− = q, St− = s, and A is the set of all admissible strategies. The first term in

(7.1) is the agent’s terminal wealth and the second one refers to a terminal liquidation penalty.

The problem formulation (7.1) is given under the reference measure P, and the agent wants

to incorporate the fact that her model could be miss-specified, then it is defined a class of new

measures Q equivalent to P and is evaluated the performance of the trading strategy under this

new measure Q.

The agent would penalise a potential deviation of the measure Q with respect to the measure

P, that is to say the cost of rejecting the reference measure P in favour of the candidate measure

Q, therefore the optimisation problem (7.1) is changed to

H(t, x, q, s) = sup
δs∈A

inf
Q∈Q

EQ
t,x,q,s [Xτ∧T + qτ∧T (Sτ∧T − l(qτ∧T )) +Ht,T (Q|P)] , (7.2)

where Q is the class of all equivalent measures Q to P, and H is the relative entropy from t to T .

The link between the measure P and the measure Q is given by the Radon-Nikodym derivative

dQα,λ,k(η, q)

dP
=

dQα(η, q)

dP
dQα,λ,k(η, q)

dQα
,

where
dQα(η, q)

dP
= exp

[
−1

2

∫ T

0

(
α− ηt
σ

)2

dt−
∫ T

0

(
α− ηt
σ

)
dt

]
, (7.3)

dQα,λ,k(η, q)

dQα
= exp

[
−
∫ T

0

∫ ∞
0

(egt(y) − 1)v(dy,dt) +

∫ T

0

∫ ∞
0

gt(y)µ(dy,dt)

]
,

then the agent would penalise deviations in the reference model with respect to:

• Mid-price dynamic.

• Market order intensity.

• Market order maximal distribution.

Remark 7.1. In (7.2) We compute the infimum between all measures Q and the reference measure

P to consider the worst deviation between them.

Remark 7.2. The use of ambiguity aversion in the double liquidation problem, is with respect to

the mid-price dynamic.
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7.2 Double liquidation problem with ambiguity aversion.

In the last subsection I discuss the necessity to incorporate the fact that execution models could

be miss-specified; for this reason, the double liquidation problem is extended using ambiguity

aversion. The problem formulation is the same; the only change is that Ev = (Evt )0≤t≤T follows

an arithmetic Brownian motion instead of geometric Brownian motion, i.e.

dEt = −cdt+ σdWt ,

this change is made to generate a closed-form solution.

The agent wishes to maximise her wealth taking into account a possible misspecification in the

mid-price process’ drift c, then

H(t, x, p, e) = sup
v∈A

inf
Q∈Q

EQ
t,x,p,e [XT + P vT (ET − αP vT ) +Ht,T (Q|P)] , (7.4)

where EQ
t,x,q,s[.] is the conditional expectation given Xt = x, Pt = p,Et = e, A is the set of all

admissible strategies, and Q is the set of all measures Q equivalent to P, defined on the filtered

space (Ω,F,F = {Ft}0≤t≤T ) where F is the filtration generated by the foreign exchange rate

process E = (Et)0≤t≤T and the process S = (St)0≤t≤T .

Let us define H, the relative entropy between t and T , as

Ht,T (Q|P) =
1

ϕ
log

(
(dQ/dP)|T
(dQ/dP)|t

)
,

where ϕ is a constant and can be thought as “the ambiguity aversion parameter”; if ϕ tends to

zero, the agent is confident about the reference model (measure P). On the other hand, when ϕ

tends to infinity, the agent is ambiguous about the reference model. Now, as [8] suggests, I propose

the following Radon-Nikodym derivative:

dQ(η)

dP
= exp

[
−1

2

∫ T

0

(
c− ηt
σ

)2

dt−
∫ T

0

(
c− ηt
σ

)
dt

]
,

then using 3.11 in (7.4), we get

0 = ∂tH + sup
v∈A

inf
Q∈Q
{LQH − ∂tEQ

t,x,p,e [Ht,T (Q|P)]} ,

or

0 = Ht + sup
v

inf
η

[
v(e− dv)Hx + ηHe +

1

2
σ2Hee + [−v + ft(s− bft)]Hp +

1

2ϕ

(
c− η
σ

)2
]
, (7.5)

therefore the critical points are attained at

η∗ = c− σ2ϕHe and v∗ =
aHx −Hp

2dHx
, (7.6)

then (7.5) in the feedback form is

0 = Ht +
(eHx −Hp)

2

4dHx
+ cHe −

1

2
σ2ϕH2

e +
1

2
σ2ϕHee + ft(s− bft)Hp = 0 , (7.7)
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with terminal condition H(T, x, p, e;ϕ) = x+ p(e− αp).

Analysing the terminal condition, I propose the ansatz H(t, x, p, e;ϕ) = x + pe + h(t, p, e;ϕ)

such that h(T, p, e;ϕ) = −αp2, then (7.7) is reduced in

0 = ht +
(hp)

2

4d
+ c(p+ he)−

1

2
σ2ϕ(p+ he)

2 +
1

2
σ2hee + (e+ hp)f(t)(s− bf(t)) . (7.8)

Now, (7.8) is a new PDE independent of (7.7). I propose another ansatz for (7.8) given by

h(t, p, e;ϕ) = γ(t, e;ϕ) + β(t, e;ϕ)p+ Γ(t, e;ϕ)p2 ,

such that γ(T, e;ϕ) = β(T, e;ϕ) = 0 and Γ(T, e;ϕ) = −α. Substituting this ansatz in (7.8) and

collecting terms associated to p, p2, p3 and p4.

0 =p4

[
−1

2
σ2ϕβ2

e

]
+ p3

[
−1

2
σ2ϕ(2βe + βeΓe)

]
+

p2

[
βt +

β2

d
+ cβe −

1

2
σ2ϕ− σ2ϕΓe −

1

2
σ2ϕΓ2

e − σ2ϕβeγe +
1

2
σ2βee

]
+

p

[
Γt +

Γβ

d
+ c+ cΓe − σ2ϕγe − σ2Γee + 2βf(t)(s− bf(t))

]
+[

γt +
1

4d
Γ2 + cγe −

1

2
σ2ϕγ2

e +
1

2
σ2γee + (e+ Γ)f(t)(s− bf(t))

]
,

(7.9)

then as (7.9) should be valid for each p, and then the equations in the brackets must be zero. It

is sufficient to solve each partial differential equation in each bracket taking in consideration their

terminal conditions. The solutions for each partial differential equation are

β(t, e) = kσ
√
dφ tanh

(
k
√
φσ(t− T )√

d

)
with k = 0.707107 ,

Γ(t, e) = −αe
∫ T
t

β(y,e)
d dy +

∫ T

t

1

d

(
e
∫ T
t

β(y,e)
d dy

)
(−cd+ 2dσβ(x, e)f(x) + 2bdβ(x, e) + f2(x))dx ,

γ(t, e) =

∫ T

t

1

4d

(
−4deσf(y) + 4bdef2(y)− 4dσf(y)Γ(y, e) + 4bdf2(y)Γ(y, e)− Γ2(y, e)

)
dy .

Therefore the optimal trading rate with ambiguity aversion to the mid-price drift is fully determined

by the last equations.



Conclusion

The role of mathematics in finance has been crucial during recent years, papers such as Black

et al. [6] changed the way of trading in the financial markets, and also motivated that researchers

worked on new theories about asset pricing and replication theory. However, in the last years,

practitioners and scientists have been more focused on a state-of-the-art topic: high-frequency

trading.

High-frequency trading has emerged due to the necessity to trade quickly, optimising the po-

tential profits for a bank, a house brokerage, or any market participant. Recent research indicates

that in the equity market the participation of high-frequency traders has increased dramatically,

some statistics show that approximately fifty percent of the traded volume is executed using an

algorithms.

In this thesis I analyse the optimal way to execute an order under different scenarios, the vast

majority of these models could be applied into the financial markets; especially the execution

model using stochastic volatility and liquidity, and the double liquidation problem. Also, from the

theoretical point of view, I extend the double liquidation problem assuming ambiguity aversion, a

technique which involves topics such as change of measures and Itô calculus. As far as I concern,

the incorporation of ambiguity aversion in the double liquidation problem has not been solved

before and could be analysed in more detail in the future.

Finally, I would like to mention that all models which had been discussed in this thesis are a

parametrization of the market; a proper calibration and execution of these models do not depend

entirely on the quant’s skills.It is always necessary to understand what happened in the financial

market out of the quantitative point of view, if the agent could incorporate a qualitative and

economic knowledge into her execution, her models would be more accurate.

48
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A Numerical Solution of Partial Differential Equation

Many partial differential equations can be found in finance, as an example, the price of a put option

can be derived solving

∂V

∂t
+

1

2
σ2S2 ∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 . (A.1)

Feynman and Kac established this link between partial differential equations and stochastic

processes in the 1940s. However, to get an exact solution for any partial differential equation is

not an easy task, in the vast majority of cases is necessary to implement some numerical methods

to get a solution.

In this appendix, I discuss the main numerical methods to solve a partial differential equation

(PDE); In the topic of execution models, solve PDE is a common task, this is why is necessary to

bear in mind these methods.

A.1 Finite difference method

Finite difference is the main method to approximate the solution of a PDE, this method consists

in approximate derivatives through finite difference; let f : R −→ R be a function such that f in

C∞. Then by Taylor’s theorem, we get

f(x0 + h)− f(x0) =

n∑
i=1

1

i!
f (i)(x0)hi + En(x) , (A.2)

where En(x) is an error function.

To approximate the first derivative of f , let us consider (A.2) in this form

f(x0 + h)− f(x0) = f ′(x0)h+ E1(x)

therefore f ′(x0) = f(x0+h)−f(x0)
h + E1(x)

h , and assuming that E1(x)
h vanishes when h goes to 0.

We can conclude that

f ′(x0) ≈ f(x0 + h)− f(x0)

h
.

To generalise this idea, consider (A.1) as the partial differential equation associated to an

American put option with maturity T .

Consider the interval [0, T ] and define δt = T
N , then we get (N+1)−steps, i.e. {0, δt, 2δt, ..., T}.

Second, let us suppose the existence of Smax as the maximum value that the stock price can reach,

then defining the interval [0, Smax] and δS = Smax
M , we obtain (M+1)−steps, i.e. {0, δS, 2δS, ..., Smax}.

That is to say, we have generated a grid over the space [0, T ]× [0, Smax], where the stock price

is defined. In the literature, there are three common ways to approximate (A.1)

• The implicit method.



A.1 Finite difference method 50

• The explicit method.

• Crank-Nicholson method.

The implicit method: Let us define V nj := V (Sj , tn) then the derivative with respect to time

can be approximate by

∂V (Sj , tn)

∂t
≈
V n+1
j − V nj

δt
,

the first derivative with respect to the stock can be approximate by a central difference (n, j) across

the nodes (n, j − 1) to (n, j + 1), i.e.

∂V (Sj , tn)

∂S
≈
V nj+1 − V nj−1

2δS
,

then the second derivative with respect to the stock is

∂2V (Sj , tn)

∂S2
≈
V nj+1 − 2V nj + V nj−1

δS2
,

then (A.1) becomes

V n+1
j − V nj

δt
+ rjδS

V nj+1 − V nj−1

2δS
+

1

2
σ2j2δS2

V nj+1 − 2V nj + V nj−1

δS2
= rV nj .

The explicit method: In this method is assumed that the value of the first derivative with

respect to the stock in the node (n, j) is equivalent to its value in (n+ 1, j), we then get

∂V (Sj , tn)

∂S
≈
V n+1
j+1 − V

n+1
j−1

2δS
,

and
∂2V (Sj , tn)

∂S2
≈
V n+1
j+1 − 2V n+1

j + V n+1
j−1

δS2
,

then (A.1) becomes into

V n+1
j − V nj

δt
+ rjδS

V n+1
j+1 − V

n+1
j−1

2δS
+

1

2
σ2j2δS2

V n+1
j+1 − 2V n+1

j + V n+1
j−1

δS2
= rV nj .

The Crank-Nicholson method: Taking an average of the explicit and the implicit method,

then (A.1) is reduced into:

V n+1
j − V nj

δt
+

1

2
rjδS

(
V nj+1 − V nj−1

2δS
+
V n+1
j+1 − V

n+1
j−1

2δS

)
+

1

22
σ2j2δS2

(
V nj+1 − 2V nj + V nj−1

δS2
+
V n+1
j+1 − 2V n+1

j + V n+1
j−1

δS2

)
= rV nj .

Finally, boundary conditions play a crucial roll when is estimated a solution for a PDE. In the

example (A.1), boundary conditions are given by


V Nj = (k − jδS)+ ,∀ j ∈ [0,M ]

V nM = 0 ,∀ n ∈ [0, N ]

V n0 = k ,∀ n ∈ [0, N ]
.
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B Code

This section contains all Python and Wolfram Mathematica scripts, which are used during this

thesis.

B.1 Code for section 2

I use these libraries

1 import pandas as pd

2 %matp lo t l i b i n l i n e

3 import numpy as np

4 import matp lo t l i b . pyplot as p l t

5 p l t . s t y l e . use ( ’ seaborn−whi teg r id ’ )

6 import os

7 import random

8 import math

9 import datet ime

10 import time

11 import s c ipy

12 import matp lo t l i b as mpl

13 import seaborn as sns

14 from sk l e a rn . l i n e a r model import L inearRegre s s i on

15 from sk l e a rn import l i n e a r model , da ta s e t s

To build a limit order book, and the demand and supply graph.

1 ASK = np . z e r o s ( ( 2 0 , 2 ) )

2 BID = np . z e r o s ( ( 2 0 , 2 ) )

3 TIME=LOB[ ’Time ’ ]

4 H=math . trunc (TIME/ (60 ∗ 60) )

5 M=math . trunc ( (TIME/ (60 ∗ 60)−H) ∗ 60)

6 S=round (TIME−M∗60−H∗60∗ 60 ,2)

7 f o r i in range (0 ,20 ) :

8 ASK[ i ,0 ]=LOB[ i ∗ 4 ] #Pr i ce

9 ASK[ i ,1 ]=LOB[ i ∗4+1] #S i z e

10 BID [ i ,0 ]=LOB[ i ∗4+2] #Pr i ce

11 BID [ i ,1 ]=LOB[ i ∗4+3] #S i z e

12

13 BID=pd . DataFrame (BID , columns=[” p r i c e ” , ”volume” ] )

14 ASK=pd . DataFrame (ASK, columns=[” p r i c e ” , ”volume” ] )

15 #Micro−Pr i ce and mid−Pr i ce

16 MP=((BID [ ’ p r i c e ’ ] ∗BID [ ’ volume ’ ] ) . sum ( ) +(ASK[ ’ p r i c e ’ ] ∗ASK[ ’ volume ’ ] ) . sum ( ) ) / (BID [ ’

volume ’ ] . sum ( )+ASK[ ’ volume ’ ] . sum ( ) )

17 Mid=0.5∗ (BID [ ’ p r i c e ’ ] [ 0 ] +ASK[ ’ p r i c e ’ ] [ 0 ] )

18



B.1 Code for section 2 52

19 B=np . arange (0 ,20 , dtype=f l o a t )

20 A=np . arange (0 ,20 , dtype=f l o a t )

21 f o r i in range (0 ,20 ) :

22 auxB=0

23 auxA=0

24 j=0

25 whi le ( j<=i ) :

26 auxB=BID [ ”volume” ] [ j ]+auxB

27 auxA=ASK[ ”volume” ] [ j ]+auxA

28 j=j+1

29

30 B[ i ]=auxB

31 A[ i ]=auxA

To compute the round trip cost curve for any limit order book.

1 de f Rt curve ( j ) :

2

3 LOB=r e s u l t . l o c [ j , : ]

4

5 ASK = np . z e r o s ( ( 2 0 , 2 ) )

6 BID = np . z e r o s ( ( 2 0 , 2 ) )

7 f o r i in range (0 ,20 ) :

8 ASK[ i ,0 ]=LOB[ i ∗ 4 ] #Pr i ce

9 ASK[ i ,1 ]=LOB[ i ∗4+1] #S i z e

10 BID [ i ,0 ]=LOB[ i ∗4+2] #Pr i ce

11 BID [ i ,1 ]=LOB[ i ∗4+3] #S i z e

12

13 BID=pd . DataFrame (BID , columns=[” p r i c e ” , ”volume” ] )

14 ASK=pd . DataFrame (ASK, columns=[” p r i c e ” , ”volume” ] )

15

16 auxRT=i n t (min (BID [ ’ volume ’ ] . sum ( ) ,ASK[ ’ volume ’ ] . sum ( ) ) )

17 RT=np . arange (0 ,auxRT , dtype=f l o a t )

18

19 f o r i in range (0 ,auxRT) :

20

21 auxBid=np . z e r o s ( ( 2 0 , 1 ) )

22 auxAsk=np . z e r o s ( ( 2 0 , 1 ) )

23 auxVA=i+1

24 auxVB=i+1

25 auxlA=0

26 auxlB=0

27

28 whi le ( (auxVA>=0 and auxlA<=19)) :

29 auxAsk [ auxlA]=min (auxVA,ASK[ ’ volume ’ ] [ auxlA ] ) ∗ASK[ ’ p r i c e ’ ] [ auxlA ]
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30 auxVA=auxVA−ASK[ ’ volume ’ ] [ auxlA ]

31 auxlA=auxlA+1

32

33 whi le ( ( auxVB>=0 and auxlB<=19)) :

34 auxBid [ auxlB]=min (auxVB , BID [ ’ volume ’ ] [ auxlB ] ) ∗BID [ ’ p r i c e ’ ] [ auxlB ]

35 auxVB=auxVB−BID [ ’ volume ’ ] [ auxlB ]

36 auxlB=auxlB+1

37

38 RT[ i ]=(auxAsk . sum ( )−auxBid . sum ( ) ) / ( i +1)

39

40 r e turn (RT)

To compute the traded volume by minute.

1 Volume=MSG[MSG. Type>3]

2 Volume=Volume [ Volume . Type<6]

3 Volume [ ’Time ’ ] ∗=1/ (60 ∗ 60)

4 Volume [ ’ Pr i c e ’ ] ∗=1/ (10000)

5 Volume . index=range ( Volume . shape [ 0 ] )

6 auxV=math . c e i l ( round ( ( Volume [ ’Time ’ ] [ Volume . shape [0]−1]−Volume [ ’Time ’ ] [ 0 ] ) / (1 / 60) ) )

7 V=np . z e r o s ( ( auxV , 3 ) )

8

9 V[0 ,0 ]= volAc (0 ,1 / 60) [ 0 ]

10 V[0 ,1 ]= volAc (0 ,1 / 60) [ 1 ]

11 V[0 ,2 ]= volAc (0 ,1 / 60) [ 2 ]

12

13 f o r i in range (1 , auxV) :

14 aux=i n t (V[ i −1 ,1 ])

15 V[ i ,0 ]= volAc ( aux , 1 / 60) [ 0 ]

16 V[ i ,1 ]= volAc ( aux , 1 / 60) [ 1 ]

17 V[ i ,2 ]= volAc ( aux , 1 / 60) [ 2 ]

18

19 V=pd . DataFrame (V, columns=[”Time” , ” p o s i t i o n ” , ”volume” ] )

20

21 ban=0

22 j=0

23 whi le (V[ ”volume” ] [ j ] !=0) :

24 ban=j

25 j=j+1

26 ban=ban+1

To compute the round trip cost associated to 99-percentile traded volume, micro-price, mid-price
and bid-ask spread.

1 #Daily Roundtrip co s t ( us ing mean , max P95V) , micro−pr i ce , Bid−Ask
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2 AuxR=r e s u l t . shape [ 0 ]

3 RTD=np . z e ro s ( (AuxR, 2 ) )

4 MP=np . z e ro s ( (AuxR, 2 ) )

5 Mid=np . z e r o s ( (AuxR, 2 ) )

6 BA=np . z e r o s ( (AuxR, 2 ) )

7

8 f o r i in range (0 ,AuxR) :

9 LOB=r e s u l t . l o c [ i , : ]

10

11 ASK = np . z e r o s ( ( 2 0 , 2 ) )

12 BID = np . z e r o s ( ( 2 0 , 2 ) )

13 TIME=LOB[ ’Time ’ ] ∗1/ (60 ∗ 60)

14

15 f o r j in range (0 , 20 ) :

16 ASK[ j ,0 ]=LOB[ j ∗ 4 ] #Pr i ce

17 ASK[ j ,1 ]=LOB[ j ∗4+1] #S i z e

18 BID [ j ,0 ]=LOB[ j ∗4+2] #Pr i ce

19 BID [ j ,1 ]=LOB[ j ∗4+3] #S i z e

20

21 BID=pd . DataFrame (BID , columns=[” p r i c e ” , ”volume” ] )

22 ASK=pd . DataFrame (ASK, columns=[” p r i c e ” , ”volume” ] )

23

24 MP[ i ,0 ]=TIME

25 MP[ i , 1 ] = ( (BID [ ’ p r i c e ’ ] ∗BID [ ’ volume ’ ] ) . sum ( ) +(ASK[ ’ p r i c e ’ ] ∗ASK[ ’ volume ’ ] ) . sum ( ) )

/ (BID [ ’ volume ’ ] . sum ( )+ASK[ ’ volume ’ ] . sum ( ) )

26

27 Mid [ i ,0 ]=TIME

28 Mid [ i , 1 ]=0 . 5 ∗ (BID [ ’ p r i c e ’ ] [ 0 ] +ASK[ ’ p r i c e ’ ] [ 0 ] )

29

30 BA[ i ,0 ]=TIME

31 BA[ i , 1 ]=(ASK[ ’ p r i c e ’ ] [ 0 ] −BID [ ’ p r i c e ’ ] [ 0 ] )

32

33 auxBid=np . z e r o s ( ( 2 0 , 1 ) )

34 auxAsk=np . z e r o s ( ( 2 0 , 1 ) )

35 auxVA=P99V

36 auxVB=P99V

37 auxlA=0

38 auxlB=0

39

40 whi le ( (auxVA>=0 and auxlA<=19)) :

41 auxAsk [ auxlA]=min (auxVA,ASK[ ’ volume ’ ] [ auxlA ] ) ∗ASK[ ’ p r i c e ’ ] [ auxlA ]

42 auxVA=auxVA−ASK[ ’ volume ’ ] [ auxlA ]

43 auxlA=auxlA+1

44

45 whi le ( ( auxVB>=0 and auxlB<=19)) :

46 auxBid [ auxlB]=min (auxVB , BID [ ’ volume ’ ] [ auxlB ] ) ∗BID [ ’ p r i c e ’ ] [ auxlB ]
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47 auxVB=auxVB−BID [ ’ volume ’ ] [ auxlB ]

48 auxlB=auxlB+1

49

50 RTD[ i , 1 ]=( auxAsk . sum ( )−auxBid . sum ( ) ) / (P99V)

51

52 RTD[ i ,0 ]=TIME

To compute the volatility by minute.

1 #Vol by minute

2 Dlog=np . l og ( MicroPrice [ ” Micropr i ce ” ] )−np . l og ( MicroPrice [ ” Micropr i ce ” ] . s h i f t (1 ) )

3 Dlog=pd . DataFrame ( Dlog )

4 RendLog=pd . concat ( [ MicroPrice [ ”Time” ] , Dlog ] , a x i s =1, j o i n axes =[Dlog . index ] )

5 RendLog=RendLog . i l o c [ 1 : , ]

6 RendLog . index=range ( RendLog . shape [ 0 ] )

7

8 de f volMin ( s ta r tPo int , space ) :

9 auxI=s t a r t P o i n t

10 auxT=RendLog [ ”Time” ] [ auxI ]+ space

11

12 whi le ( RendLog [ ”Time” ] [ auxI]<=auxT and auxI<(RendLog . shape [0 ]−1) ) :

13 auxI=auxI+1

14

15 r e turn ( RendLog [ ”Time” ] [ auxI −1] , auxI , RendLog [ ” Micropr i ce ” ] [ s t a r t P o i n t : auxI ] . s td

( ) ∗math . s q r t (252) ∗ 100)

16 Vol=np . z e r o s ( ( i n t ( RendLog . shape [ 0 ] ) , 3 ) )

17

18 f o r i in range (0 , i n t ( RendLog . shape [ 0 ] ) ) :

19 Vol [ i ,0 ]= volMin ( i , 1 / 60) [ 0 ]

20 Vol [ i ,1 ]= volMin ( i , 1 / 60) [ 1 ]

21 Vol [ i ,2 ]= volMin ( i , 1 / 60) [ 2 ]

22

23 Vol=pd . DataFrame ( Vol , columns=[”Time” , ” p o s i t i o n ” , ”Vol” ] )

To compute the market impact by minute using the round trip cost.

1 RT Av=roudTrip . i l o c [ 1 : , ]

2 RT Av. index=range (RT Av . shape [ 0 ] )

3 de f RTMin( s ta r tPo int , space ) :

4 auxI=s t a r t P o i n t

5 auxT=RT Av[ ”Time” ] [ auxI ]+ space

6 cont=0

7 aux=0

8

9 whi le (RT Av [ ”Time” ] [ auxI]<=auxT and auxI<(RT Av . shape [0 ]−1) ) :
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10 auxI=auxI+1

11 cont=cont+1

12 aux=aux+RT Av[ ”99 P e r c e n t i l e ” ] [ auxI ]

13

14

15 r e turn (RT Av [ ”Time” ] [ auxI −1] , auxI , aux/ cont )

16 auxRT=math . c e i l ( round ( (RT Av [ ’Time ’ ] [RT Av . shape [0]−1]−RT Av[ ’Time ’ ] [ 0 ] ) / (1 / 60) ) )

17 RT A=np . z e r o s ( (auxRT , 3 ) )

18

19 RT A[0 ,0 ]=RTMin(0 ,1 / 60) [ 0 ]

20 RT A[0 ,1 ]=RTMin(0 ,1 / 60) [ 1 ]

21 RT A[0 ,2 ]=RTMin(0 ,1 / 60) [ 2 ]

22

23 f o r i in range (1 ,auxRT) :

24 aux=i n t (RT A[ i −1 ,1 ])

25 RT A[ i ,0 ]=RTMin( aux , 1 / 60) [ 0 ]

26 RT A[ i ,1 ]=RTMin( aux , 1 / 60) [ 1 ]

27 RT A[ i ,2 ]=RTMin( aux , 1 / 60) [ 2 ]

28

29 RT A=pd . DataFrame (RT A, columns=[”Time” , ” p o s i t i o n ” , ”RT” ] )

B.2 Code for section 5

To compute the relaxation time parameter (δ).

1 AuxR=r e s u l t . shape [ 0 ]

2 Vol=np . z e r o s ( (AuxR, 2 ) )

3

4 f o r i in range (0 ,AuxR) :

5 LOB=r e s u l t . l o c [ i , : ]

6

7 ASK = np . z e r o s ( ( 2 0 , 2 ) )

8 BID = np . z e r o s ( ( 2 0 , 2 ) )

9 TIME=LOB[ ’Time ’ ] ∗1/ (60 ∗ 60)

10

11 f o r j in range (0 , 20 ) :

12 ASK[ j ,0 ]=LOB[ j ∗ 4 ] #Pr i ce

13 ASK[ j ,1 ]=LOB[ j ∗4+1] #S i z e

14 BID [ j ,0 ]=LOB[ j ∗4+2] #Pr i ce

15 BID [ j ,1 ]=LOB[ j ∗4+3] #S i z e

16

17 BID=pd . DataFrame (BID , columns=[” p r i c e ” , ”volume” ] )

18 ASK=pd . DataFrame (ASK, columns=[” p r i c e ” , ”volume” ] )

19

20 Vol [ i , 0 ]=(TIME−9.5) / 6 .5
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21 Vol [ i , 1 ] = ( (BID [ ’ volume ’ ] ) . sum ( )−(ASK[ ’ volume ’ ] ) . sum ( ) ) / (BID [ ’ volume ’ ] . sum ( )+ASK

[ ’ volume ’ ] . sum ( ) )

22

23 Vol=pd . DataFrame ( Vol , columns=[” time ” , ”volume” ] )

24

25 S=Vol [ ”volume” ]

26 S [ S>=0]=1.0

27 S [ S<0]=−1.0

28 ind pos=np . where (np . r o l l (S , 1 ) !=S) [ 0 ]

29 A=np . array ( ind pos ) . t o l i s t ( )

30 T=Vol [ ” time ” ]

31 x = np . array (T[A] )

32 Tau=np . d i f f ( x )

33 Tau . mean ( )

To compute β and ζ. The inputs in this code are the volatility and market impact calculated
before.

1 Vola=pd . read csv ( ”Vol . csv ” )

2 l i q=pd . read csv ( ”MI . csv ” )

3 sigma2=(Vola [ ”Vol”]−Vola [ ”Vol” ] . mean ( ) ) /Vola [ ”Vol” ] . s td ( )

4 eta=( l i q [ ”MI”]− l i q [ ”MI” ] . mean ( ) ) / l i q [ ”MI” ] . s td ( )

5 avIndex=(eta+sigma2 ) ∗ 0 .5

6 pr in t ( avIndex . mean ( ) , avIndex . std ( ) )

To compute η and σ2. The inputs in this code are the volatility and market impact calculated
before.

1 eta Hat=( l i q [ ”MI” ] /np . exp ( avIndex ) ) . mean ( ) #eta hat

2 sigma2 Hat=( l i q [ ”MI” ] ∗Vola [ ”Vol” ] / eta Hat ) . mean ( ) #sigma hat

3 pr in t ( eta Hat , sigma2 Hat )

B.3 Code for section 6

To solve the partial differential equations

1 pde1 = D[ g [ t , s , e ] , t ] − f + (1 /d) ( g [ t , s , e ] ∗g [ t , s , e ] ) == 0

2 DSolve [{ pde1 , g [T, s , e ] == −a } , {g [ t , s , e ]} , { t } ]

3

4 pde2 = D[B[ t , s , e ] , t ] +

5 2∗g [ t , s , e ] ∗ f [ t ] ( s − b∗ f [ t ] ) + (1 /d) ∗g [ t , s , e ] ∗B[ t , s , e ] == 0

6 DSolve [{ pde2 , B[T, s , e ] == 0} , {B[ t , s , e ]} , { t } ]
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B.4 Code for section 7

To solve the partial differential equations

1 pde3 = D[B[ t , s , e ] , t ] + (1 /d) ∗B[ t , s , e ] ∗B[ t , s , e ] − 0 .5 ∗h∗ s ∗ s == 0

2 DSolve [{ pde3 , B[T, s , e ] == 0} , {B[ t , s , e ]} , { t } ]

3

4 pde4 = D[ g [ t , s , e ] , t ] + (1 /d) ∗g [ t , s , e ] ∗b [ t , s , e ] + c +

5 2∗b [ t , s , e ] ∗ f [ t ] ( s − b∗ f [ t ] ) == 0

6 DSolve [{ pde4 , g [T, s , e ] == −a } , {g [ t , s , e ]} , { t } ]

7

8 pde5 = D[ h [ t , s , e ] , t ] + (1 / (4 d) ) ∗g [ t , s , e ] ∗

9 g [ t , s , e ] + ( e + g [ t , s , e ] ) ∗ f [ t ] ∗ ( s − b∗ f [ t ] ) == 0

10 DSolve [{ pde5 , h [T, s , e ] == 0} , {h [ t , s , e ]} , { t } ]
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