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Abstract

This thesis investigates the applicability of machine learning methods to forecasting price

movements in high frequency foreign exchange markets. We start by reviewing linear methods

and then gradually increase the complexity of models considered throughout the thesis, ending

with a long-short term memory neural network. We show that while machine learning methods

can approximate a rich space of functions, they come with a cost of decreased interpretability

and high computation time. In the last part of the thesis, all models are tested with a short

prediction horizon of 2 ticks and a longer one of 50 ticks. We show that machine learning

methods are capable of predicting the short horizon significantly better than the linear models

but tend to struggle when the prediction horizon is longer and data more noisy.
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1 Introduction

Picking up patterns in financial time series is difficult but if you are good at it, the reward is huge.

This is why researchers are dragged to the task and new models are constantly being developed.

In recent years, many of these new models have fallen within the category of machine learning

models where an iterative algorithm is used to ’learn’ complex patterns without being explicitly

programmed. These models come with a high number of parameters and mathematical proofs of

their capabilities are often limited. This means low interpretability and high computation time. As

this is not desirable properties to have, the machine learning models will have to make significantly

better predictions than the linear ones to be any relevant. The goal of this thesis is to investigate

whether this is achievable by considering FX mid price movements in a high frequency setting.

Models being tested will span from linear regression with 15 parameters to a neural network model

with more than 5,000 parameters.

Machine learning is not a new development, and the methods which have become popular in

recent years are in many cases just modifications of models invented more than 15 years ago where

computational facilities for utilizing their full potential did not exist. This is also true for the mo-

dels we will be testing in this thesis. In our description of models in Sections 3, we will start with

the most simple models and then gradually increase the complexity. This means that we will start

out by reviewing OLS and its extensions ridge (Hoerl & Kennard, 1970), lasso (Tibshirani, 1996)

and elastic net (Zou & Hastie, 2005) where L1 and L2 penalties are used to regularise the linear

regression. We will consider these for both predictive modelling and feature selection, as especially

lasso can give a quick estimate of feature importance with least angle regression (Efron et al., 2004).

As an alternative to performing OLS directly on our input variables, we also consider the multi-

variate adaptive regression spline (MARS) model (Friedman, 1991) which transforms the inputs by

products of hinge functions prior to performing linear regression. This results in a partition of the

input space, where each region is fitted with a local polynomial capable of capturing non-linearities

and low-level variable interactions.

Next, we will consider regression trees which also partitions the input space into disjoint regions

but in this case, only fits a constant instead of a polynomial in each region. The regression trees can

model high-level variable interaction and will be used as a basis model in the ensembles random

forest (Breiman, 2001a) and stochastic gradient boosted trees (Friedman, 2002). These models

were some of the first to use randomness in their learning algorithms which enables them to utilise

the regression tree’s ability to model high-level interactions while keeping prediction variance at a

reasonable level.
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Injecting randomness into the learning algorithm of machine learning methods quickly became

the standard, following the success of random forest and stochastic gradient descent methods.

Also, in our final model, the long-short term memory neural network (LSTM) model invented by

Hochreiter & Schmidhuber (1997), we will use randomness through dropouts (Srivastava et al.,

2014) to regularise the network. This model is a special type of recurrent neural network, meaning

that it has a built-in sense of time which all the other models considered do not. LSTM based

models have in recent years showed state of the art performance in modelling complex non-financial

time series, e.g. in Graves et al. (2013). Motivated by these promising results, we will investigate

if it is also applicable to financial data.
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2 A Description of the Data

The dataset consists of bid and ask quotes for the four currency pairs EUR/USD, GBP/USD,

EUR/CHF and EUR/SWE. Data is collected from three different exchanges which will be referred

to as exchange A, B and C, as the data is confidential. All exchanges provide quotes of each

currency pair with 20 ms to a few minutes between observations depending on exchange, currency

pair, weekday and time of the day. Exchange A has 5-30.000 observations per day while B and C

have around 8 times as many. We will be using data from all trading days throughout 2017, result-

ing in a large dataset. This means that we will have plenty of data to train and test our models

on, but also that inconsistencies in the data can be hard to detect. Hence, a deeper understanding

of the data is required before any modelling can take place. Additionally, the size of the dataset

implies that computation time for any model used will be considered.

The aim of this thesis is to make predictions of mid price movements on one exchange (A) by

using data from other exchanges (B and C). This means that our target for any model is the mid

price increment for a given currency pair on exchange A. All predictions will be made in terms of

ticks ahead in the future and not time, i.e. a 2 tick prediction can be 40 ms or a couple of minutes.

The impact this has on the results will be discussed in Section 4.

2.1 Handling a Large Dataset

Because we are predicting on exchange A, we choose to synchronise the data from exchange B and

C to A. Even though B and C have a lot more observations than A, it is rarely the case that the

observations share timestamps, as they are measured in ms. Luckily, it is almost always the case

that B and C have observations less than 50 ms prior to the ones of A. Hence, we can construct a

new dataset with only timestamps from A containing synchronised observations from all exchanges

without making large modifications of the data. In the case that no observations from either B

or C are observed between two consecutive observations from A, the values from A will also be

filled in as a replacement for B or C respectively. This is to avoid using ”too old” values in our

models without having to construct models that handle missing values or run multiple models

simultaneously for different cases of missing values from B and C. Since B and C updates are much

more frequent, it is rarely needed to fill in values from A to B or C (less than 0,1% of observations).

It is though important to treat the case of missing updates and not just do a forward fill, as it

does happen that exchange B or C shuts off for a couple of minutes. By forward filling in these

cases our models would detect a large discrepancy between exchange prices which could result in

poor results, as these discrepancies will prove to be the main drivers of our models in Section 4.
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2.2 Illiquid Markets

Before we start creating models there is an important factor which we have to consider: Liquidity

of markets. We say that a market is illiquid if one cannot execute trades of a reasonable size

without moving the market significantly. In this situation, one will frequently observe that the

mid price suddenly moves a lot, but shortly afterwards returns to its previous value. By taking

a closer look, it will usually become evident that the move in mid price was caused by a move in

only the bid price or only the ask price, i.e. it was due to just one trade that took out a significant

part of one side of the order book. This situation is depicted in Figure 1 below where we in Figure

1a observe sizeable moves in the mid price but in Figure 1b we see that these are mainly caused

by high fluctuations in the ask price.

These large movements in mid price can be seen as unreal movements, and in periods of time

(a) Mid price (b) Bid and ask prices

Figure 1: Friday evening prices

where we observe a high amount of these, we will avoid making predictions. Since the sizes of

these movements are relatively large compared to what is observed during more liquid trading

hours, the movements would play a significant role in training and evaluation of prediction mod-

els. Generally, financial markets are difficult to predict but most models will have an easy time

detecting the pattern that mid price goes down if it just went up a lot and vice versa. Because

the movements are so predictable, most models will actually seem to make a worse fit to the data

once illiquid trading hours are removed from the data.

As the dataset only contains bid and ask quotes and not quantities in the order book, we will

be taking a qualitative approach based on price behaviour to determine when the liquidity is suf-

ficient for making predictions. All results will be accompanied with a note on exactly what data

was used for the models to ensure reproducibility of the results.
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3 Models

In this section, we provide a description of models used to forecast mid price movements. Assuming

that our models take p variables as input, our input space is a subset of Rp and the space in which

our target variable (increment 2-50 ticks ahead) is a subset of R. In this setting, an observation

(xt, yt) in our data is a realisation of a stochastic vector (Xt, Yt) taking values in Rp+1. When

constructing a predictive model, we seek to find a function fL which minimises the expected

prediction error/generalisation error

EPEt[fL] = E[L
(
Yt, fL(Xt)

)
|Xt = xt], (3.1)

where L is a loss function and L is a set of realised values (x1, y1), . . . , (xN , yN ) of stochastic

vectors (X1, Y1), . . . , (XN , YN ) which we call our learning set. The learning set will usually be a

subset of the whole dataset we have available and is used to construct the prediction function fL.

One of the main difficulties of predictive modelling is figuring out how to utilise our data in

the best possible way. If we choose to use all of our dataset to construct our models (put all of it

into the learning set), we would not have any additional data for testing them. Hence, we would

have to also use the learning set (or at least a part of it) for evaluating the models. As we increase

the number of parameters in a model, it will be able to fit the learning set better. For instance,

if we have T observations, we can construct a polynomial of order T which would fit the learning

set perfectly, i.e.

fL(xt) = yt, t = 1, . . . , T.

When evaluating the model on L it would seem like we have produced a very good model, but if we

tested it on unseen data, it would very likely perform poorly. This phenomena is called overfitting

and happens because we do not take into account that minimizing (3.1) means to at a given point

of time, t, minimise over all possible outcomes of (Xt, Yt) and not just the values observed in the

learning set or the remainder of the dataset. In other words, we want our model to generalise to

unseen data.

To avoid drawing false conclusions, we will set aside a part of the dataset for testing our models

which we will denote by T . To make a fair comparison between models, this set cannot be used

to construct or adjust models in any way. When dealing with time series, we must choose L and

T such that they consist of consecutive observations and observations from L must be observed

prior the ones of T . If we did not separate the data in this way, we would be using the future to

predict the past which would yield an unrealistic test result.
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While the rules on how we are allowed to test our models are fairly strict, we are free to use

the learning set in any way we find suitable. To avoid overfitting, we will try to choose models

which are likely to lead to good predictions on unseen data (out of sample), i.e. minimise (3.1). The

typical approach is to first choose a model type with a specific learning algorithm A which given

complexity parameters θc and a learning set produces a prediction model. The parameters, we can

choose in θc, depends on the model type, and we will provide a description of what parameters are

available for each model discussed in this section. Assuming that the algorithm is deterministic,

this means that we can see a model as an output of the function

A(θc,L) = fL. (3.2)

To avoid too many subscripts, we will only use the subscript L and not θc for fL which should not

give rise to much confusion. If we consider a specific model type, (3.2) means that choosing the

prediction function fL in (3.1) is reduced to finding an optimal value of θc. A data efficient way of

doing this is cross-validation. In this technique, a model is fitted on part of the learning set and

tested on another part disjoint from the first one. The parts we train and test on are then rotated

or shifted and we evaluate the loss on the testing set at each iteration. Taking the average of test

errors gives us a cross-validation score. We may repeat this procedure for multiple values of θc and

then select the one that yields the minimum cross-validation score. As we are dealing with time

series data, the training set in each iteration should consist of observations occurring prior to the

corresponding test set.

Throughout this thesis, the goal of all models will be to maximise

R2 := 1−
∑T
t=N+1(yt − ŷt)2∑T
t=N+1(yt − ȳ)2

,

where ŷt is the prediction of yt and

ȳ =
1

T −N

T∑
t=N+1

yt.

This is clearly equivalent to choosing L(yt, ŷt) = 1
2 (yt − ŷt)2 in (3.1) which is known as the mean

squared error loss function (MSE).

Assume that there exist a function fB such that

Yt = fB(Xt) + εt, t = 1, 2, . . . ,

where (εt)t∈N is a stochastic process independent of (Xt)t∈N with constant mean 0 and variance

σ2
t . Then fB is the best possible prediction, i.e. it achieves the lowest possible MSE. This function
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is often called the Bayes prediction function which explains the subscript B. In this setting, we

can decompose (3.1) in the following way:

EPEt[fL] = E[
(
Yt − fL(Xt)

)2|Xt = xt]

= E[
(
fB(Xt) + εt − fL(Xt)

)2|Xt = xt]

= E[
(
fB(xt)− fL(xt)

)2
] + σ2

t ,

using that cross terms with εt are 0, as εt is independent of Xt and has mean 0. This expression

may seem deterministic at time t, but it still contains randomness, since fL is based on just one

realisation of the path of Xt up to time N and we do not know the distribution of the process.

Hence, we can further decompose by taking expectation over possible paths up to time N :

EPEt[fL] =E[
(
fB(xt)− E[fL(xt)] + E[fL(xt)]− fL(xt)

)2
] + σ2

t

=E[
(
fB(xt)− E[fL(xt)]

)2
] + E[

(
E[fL(xt)]− fL(xt)

)2
]

+ 2E[
(
fB(xt)− E[fL(xt)]

)(
E[fL(xt)]− fL(xt)

)
] + σ2

t

=
(
fB(xt)− E[fL(xt)]

)2
+ E[

(
E[fL(xt)]− fL(xt)

)2
]

+ 2
(
fB(xt)− E[fL(xt)]

)
E[E[fL(xt)]− fL(xt)] + σ2

t

=
(
fB(xt)− E[fL(xt)]

)2
+ E[

(
E[fL(xt)]− fL(xt)

)2
] + σ2

t

=bias[fL(xt)]
2 + Var[fL(xt)] + σ2

t . (3.3)

The above is decomposition is called the bias-variance decomposition. When constructing a model,

it is usually the case that increasing complexity will decrease bias but increase variance. Hence,

optimal model complexity can be seen as the optimal trade-off between bias and variance.

The problem when considering real data is that bias, variance and σ2
t are not directly observ-

able. We just observe an error term, but we do not know what caused it. Also, we cannot say

for sure, if the error could be made smaller with another prediction function or we are close to

the optimal prediction function, as we do not know fB. Our approach in this thesis is to choose a

model type/learning algorithm and then select complexity parameters θc through cross-validation

as described above. Learning algorithms differ in the way they construct prediction functions, but

they all seek to minimise an objective function of the form

obj(fL) = L(fL) + Ω(fL), (3.4)

where

L(fL) =

N∑
t=1

L(xt, yt)
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and Ω is a term which penalises the complexity of models. The idea of Ω is to avoid overly complex

models with too high variance on predictions. Some times, we will also write (3.4) as

obj(θL) = L(θL) + Ω(θL), (3.5)

where θL contains the model parameters chosen by the learning algorithm (e.g. coefficients in a

linear regression). As it was the case for fL, the optimal values of θL clearly depend on θc, but we

will not use subscripts to denote this dependence.

As mentioned above, we will focus on the MSE loss function throughout this thesis. Because

it squares the error terms, it will put great emphasis on extreme values. In some cases, this may

result in the learning function fL putting too much emphasis on rare events that are unlikely to

generalise to unseen data. When this is true, it can be useful to choose L in (3.5) to be different

from the L in (3.1). For instance, we may choose L in training to be the Huber loss function which

has linear tails and hence put relatively less emphasis on large errors:

Hδ(yt, ŷt) =


1
2 (yt − ŷt)2, |yt − ŷt| ≤ δ

δ|yt − ŷt| − 1
2δ

2, |yt − ŷt| > δ.

In this loss function, δ determines the threshold for when the loss function becomes linear instead

of quadratic. The Huber loss function is pictured in Figure 2 below for δ = 1 and δ = 3. The loss

function

L(yt, ŷt) = log(cosh(yt − ŷt))

is also shown in the plot, as we will use it as an approximation of the Huber loss function with δ = 1

when considering neural networks in Section 3.7. It is clear from the plot that this approximation

is fairly good. As we will only rarely change loss function, we will assume that the loss functions

in (3.1) and (3.5) are the same unless otherwise stated.

In the following sections, we will start by briefly summarising linear methods and then move

on to examine more complex machine learning techniques in greater detail. We will denote the

set of input variables which we run the learning algorithm on by X and the corresponding target

variables by Y . (X,Y ) is a subset of L consisting of N ≤ T samples, but we will not put much

emphasis on whether it is the full learning set or just a part of it (e.g. during a cross-validation),

as this should be clear from the context.

All models are made in Python and the libraries used will be mentioned.
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Figure 2: Comparison of loss functions

3.1 Ordinary Least Squares

Ordinary least squares (OLS) is a simple form of regression with no complexity parameters to

tune before fitting but it is still fundamental for regression analysis. Its objective function has no

regularisation term and hence only seeks to minimise its loss function:

obj(θL) = L(θL) =
∥∥XθL − Y ∥∥22, (3.6)

where
∥∥ · ∥∥2

2
is the squared L2-norm. One of the main reasons why OLS is widely popular is the

high interpretability of parameters. A positive (negative) coefficient for a variable means that the

target variable correlates positively (negatively) with the variable. Another advantage of OLS is

its low computation time. As it has no complexity parameters to tune by cross-validation, one

can fit the model to the data right away which itself is fast. On the negative side, OLS does

not take non-linear dependencies or interactions between variables into account. This problem can

partly be mitigated by constructing new features through transformations of existing ones and then

perform OLS on these. MARS, which is described in Section 3.3, is an example of this. Another

disadvantage of OLS is that the variance of its predictions is very high when columns in our data

are collinear. This happens because entries of (XTX)−1 becomes very large and the solution of

OLS is given by

θ̂L = (XTX)−1XTY,

meaning that a small change in the data could result in a large change in predictions. To deal with

this problem we add a regularisation term to the objective function. The effect of this is explained
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in Section 3.2.

Predictions are made with Python’s OLS implementation

sklearn.linear_models.LinearRegression.

3.2 Shrinkage Methods

In this section, we discuss shrinkage methods for linear regression which by penalising the size of

regression coefficients treats collinearity of columns and prevents overfitting. One way to perform

regularisation is ridge regression (Hoerl & Kennard, 1970) which adds a regularisation term

Ω(θL) = λ
∥∥θL∥∥22

to the objective function (3.6) of OLS. Increasing λ will increase the bias of our predictions but

decrease the variance. Selecting λ is a matter of selecting the right bias/variance trade-off which

can be done by cross-validation. The modified objective function is still differentiable, and hence

we can differentiate to get

θ̂L = (XTX + λIp)
−1XTY,

where p is the number of variables used for the model and Ip is the p-dimensional identity matrix.

As λ increases, coefficients will shrink towards 0 in a relatively smooth manner, but they rarely

become exactly 0, i.e. ridge regression does not perform any feature selection.

If we want our model to perform feature selection, we should instead consider lasso regression

(Tibshirani, 1996) where the regularisation term added to (3.6) is given by

Ω(θ) = α
∥∥θL∥∥1

The objective function is no longer differentiable, but fast algorithms for solving the regression

problems exist (Hastie, 2008, chap. 3.4.4). It is even possible to produce the whole lasso path at

once with least angle regression (Efron et al., 2004), i.e. calculate the coefficients for a range of αs

in one go. This makes cross-validation computationally cheap and can be a reason to choose lasso

over ridge regression when considering large datasets. In Python, this fast lasso cross-validation

can be done with sklearn.linear_models.LassoCV.

One disadvantage of lasso is that the regularisation is often not as smooth as it is the case for

ridge regression, meaning that small changes in α can yield large differences in coefficients. This

is clearly not desirable in terms of interpretability and stability of the model. We would like that

if a variable is assigned a large coefficient (in absolute value) it should mean that it is important
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for the regression, and that should not change due to small changes of input.

Finally, the last regularisation method we will consider is a combination of ridge and lasso called

elastic net (Zou & Hastie, 2005). It combines the regularisation terms from ridge and lasso to make

a regularisation that can be both relatively smooth and include feature selection. Its regularisation

term is given by

Ω(θL) = α
∥∥θL∥∥1 + λ

∥∥θL∥∥22.
For one value of λ, the path of multiple αs can be computed cheaply with

sklearn.linear_model.ElasticNetCV. This means that using elastic net is not much more ex-

pensive than ridge.

Besides being useful to prevent overfitting, shrinkage methods are also useful for data exploration

ahead of performing other regression techniques. As we increase the penalty parameters, it be-

comes expensive for the models’ objective functions to assign large coefficients (in absolute value)

to variables that are not particularly important for the regression. Hence, the shrinkage methods

will only assign sizeable coefficients to variables which they consider to be important. Especially

lasso is good for data exploration, as it can produce the whole path of coefficients for multiple

values of α quickly and is capable of performing feature selection. In Figure 3 below, the Lasso

path for EUR/USD 2 ticks predictions is shown. We see that some variables get zeroed very

quickly, indicating that they are non-important for the regression, while particularly the variable

MidA −MidB retains a high value even for high values of α. One shortfall of data exploration with

linear shrinkage methods is that they will assign no importance to non-directional variables. For

instance, variables describing spreads or volatilities are likely to be zeroed quickly even though

they may carry important information about future price movements. We will see how to use

another feature importance measure in Section 3.5 which is capable of assigning importance to

non-directional variables.

Before applying any of the shrinkage methods above, data should be standardised, as the scale

of variables otherwise will play an important role in determining the regression coefficients. Ad-

ditionally, it is desirable that a shift of the target variable will not affect any coefficients other

than the intercept, i.e. we do not wish to penalise the intercept coefficient. By standardisation,

the intercept becomes 0 and this problem is avoided.
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Figure 3: Lasso path for EUR/USD 2 ticks predictions

3.3 MARS

An alternative to performing OLS directly is to apply a set of basis functions to our data before

performing regression. This means that we will model our data with a function of the form

f(Xt) = β0 +

M∑
m=1

βmgm(Xt).

Multivariate adaptive regression splines (MARS) introduced by Friedman (1991) is a structured

approach to selecting these basis functions. Consider the set

B = {(xj − u)+, (u− xj)
+ | j = 1, . . . , p, u = x1,j , . . . , xN,j}

consisting of 2np different hinge functions. Here p is the number of variables in our data, xj is the

j’th row of our feature matrix X and xt,j is the (t, j)th entry of X. In MARS, any basis function

gm will be a function from B or a product of functions from B. If we do not consider products

of functions from B, we will be making piecewise linear regression (piecewise polynomial of order

1). If we restrict our basis functions to be a product of maximum two elements from B we get a

piecewise polynomial of order 2 etc.

Even though we have restricted our basis functions to be of a specific class, the space of basis

functions is still way too large for attempting all possible combinations. Denoting the set of se-

lected basis functions M, the MARS algorithm is a greedy algorithm which selects functions for

M as described below.

Algorithm 3.1.
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1. At first M only consists of the constant 1, i.e. an intercept term

2. For each pair of hinge functions,
(
(Xj −u)+, (u−Xj)

+
)
, from B, we calculate the maximum

reduction in MSE that can be attained by multiplying these hinge functions with a function

from M and adding these new terms to M.

3. The pair which causes the largest reduction in MSE is added to M

4. 2 and 3 are repeated until a chosen maximum number of terms in M has been reached or the

improvement of adding more terms is less than some threshold

5. Another greedy algorithm removes one term fromM at a time depending on which one would

cause the smallest decrease in MSE by being removed. For each iteration the generalised

cross-validation score

GCV (λ) =

∑N
t=1(f(xt)− yt)2

(1−M(λ)/N)2

is calculated, where M(λ) = |M|+ λ(|M| − 1)

6. The iteration in 5 with the lowest GCV score is selected as the final model

Note that GCV penalises the complexity of the model, since M(λ) increases with the number of

hinge functions in M. Hence, step 5 and 6 are similar to adding a regularisation term Ω to (3.6).

Suitable λ can be chosen by cross-validation.

MARS is an additive model which is able to model low-level interactions between variables. This

could prove to be useful as it enables us to incorporate non-directional variables in our model.

An example of such a variable is the spread at a given exchange; it is unlikely that the size of

the spread alone can give any information of which direction the market will move, but maybe it

could be indicative of what the size of future movements is going to be. Because the polynomials

constructed by MARS are local, we are also able to capture interactions that are only relevant for

certain values of the variables.

Regarding understanding of MARS, the most difficult part lies in step 2 of the Algorithm 3.1.

The naive approach to implementing MARS would be to try adding each possible pair of hinge

functions to M and perform OLS at each iteration. Clearly, this would be very expensive compu-

tationally, as we have Np different pairs of hinge functions. Instead, we will rely on the similarities

between each fit to construct a search function which is much cheaper. The following derivation is

adopted from Zhang (1994).

Assume that we have K basis functions in M . Applying these to our feature matrix, will give
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vectors b0, . . . ,bK−1, where b0 is just a vector of ones. For convenience, we will in the following

use typical vector notation

1 = (1, . . . , 1)T ,

(xj − um1) = ((x1,j − um)+, . . . , (xN,j − um)+)

etc. The basis functions that we are adding to M will be of the form

bm ◦ (xj − u1)+, bm ◦ (u1− xj)
+,

where ◦ is the entry-wise/Hadamard product. We note that the second term can be written as

bm ◦ (xj − u1)+ − bm ◦ xj + ubm.

As bm is already in the basis, this means that adding the two hinge functions to M is the same

as adding bm ◦ (xj − u1)+ and bm ◦ xj , i.e. it results in the same span of vectors. If bm ◦ xj is

already in the basis, then we only add the hinge function. Given that this is not the case, we will

define

Z := (b0, . . . ,bK−1,bm ◦ xj),

which is the basis matrix containing the first K basis vectors and bm ◦ xj . If bm ◦ xj is already in

the basis, this term is left out of Z. Additionally, we will define

bK+1(u) := bm ◦ (xj − u1)+.

Performing OLS with Z as matrix of input variables and a vector Y as target yields the residuals

r = (I − P )Y,

where P = Z(ZTZ)−ZT is the orthogonal projection onto the columns of Z. When adding bK+1(u)

to the matrix, the least squares optimisation problem becomes

min
β,u

∥∥r− β(I − P )bK+1(u)
∥∥2
2

= min
β,u

(
r− β(I − P )bK+1(u)

)T (
r− β(I − P )bK+1(u)

)
= min

β,u

∥∥r∥∥2
2
− 2βrT (I − P )bK+1(u) + β2bTK+1(u)(I − P )bK+1(u) (3.7)

Noting that (3.7) is convex in β, we can differentiate it w.r.t to β, set it to 0 and obtain

β =
rT (I − P )bK+1(u)

bTK+1(u)(I − P )bK+1(u)

for any given u. Inserting this into (3.7) gives us a new optimisation problem in just one variable:

min
u

∥∥r∥∥2
2
−

(
rT (I − P )bK+1(u)

)2
bTK+1(u)(I − P )bK+1(u)

. (3.8)
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The first term of (3.8) does clearly not depend on u. Hence, it is enough to optimise the second term

which we will denote h(u). As h(u) is a non-differentiable transformation, we will have to iterate

through all possible values of u. Without loss of generality, we may assume that x1,j , . . . , xNj are

sorted in increasing order for j ∈ {1, . . . , p}. For u = xt,j , we then have that

bK+1(u) = (bm ◦ xj)(−t) − tbm(−t), (3.9)

where v(−t) = (0, . . . , 0, vt+1, . . . , vN ).

As P is a symmetric matrix with rank K + 1 (number of independent columns in Z), we can

write it as P̃ P̃T , where P̃ is a N × (K + 1) matrix with full rank. By using this decomposition,

we can insert (3.9) in h(u) to get

h(u) =
(c1,t − uc2,t)2

c3,t − 2uc4,t + u2c5,t
,

where

c1,t = rT (I − P̃ P̃T )(bm ◦ xj)(−t),

c2,t = rT (I − P̃ P̃T )bm(−t),

c3,t =
∥∥(bm ◦ xj)(−t)

∥∥2
2
−
∥∥P̃T (bm ◦ xj)(−t)

∥∥2
2
,

c4,t = bTm(−t)(bm ◦ xj)(−t) − (bm ◦ xj)T(−t)P̃ P̃
Tbm(−t),

c5,t =
∥∥bm(−t)

∥∥2
2
−
∥∥P̃Tbm(−t)

∥∥2
2
.

It is clear, that once all the c’s have been calculated, it is easy to calculate h(u) which is what

we need to compare all the splits. The important takeaway from all the above calculations is that

going from cl,t to cl,t+1 is a fixed number of steps independent of t for l = 1, . . . , 5. For instance,

if we denote bm=(b1,m, . . . , bN,m), updating c1,t to c1,t+1 is done by the calculation

c1,t+1 = c1,t −
(
rT (I − P )

)
t+1

bt+1,mxt+1,m,

where
(
rT (I − P )

)
is a vector that can be precomputed and used for all iterations, as it does not

depend on t. Updating c2,t is done similarly. This means that updating these two c’s does not

depend on N or K. The cost of updating the last 3 c’s does also not depend on N , but it scales

linearly with K. To update these, we need to create two temporary (K + 1)-sized vectors

w1,t = P̃T (bm ◦ xj)(−t),

w2,t = P̃Tbm(−t),

which can be updated by calculating

w1,t+1 = w1,t − bt,mxt,jp̃t,
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w2,t+1 = w2,t − bt,mp̃t,

where p̃t is the t’th row of P̃ . After calculating these, we can update the last 3 c’s in a fixed

number of steps similar to the first two.

All these recursive calculations are important when considering what sort of problems the MARS

algorithm is appropriate for. The above shows that with K terms in the basis, the cost of calcu-

lating MSE reduction for splitting at each possible point for a given variable paired with a given

basis term is of the order KN . To select a pair of hinge functions for the basis, we will have to

perform at most Kp of these searches, meaning that adding a pair of hinge functions to the basis

has cost of order NpK2.

Adding terms to a linear regression will always increase the in sample R2 but since the algo-

rithm has to terminate at some point, we will often restrict the algorithm to end up with a fixed

number of terms K∗ in the forward pass which requires at lest K∗−1
2 iterations. This means that

running the MARS algorithm with K∗ maximum terms has a cost of the order NpK∗3. In order to

keep computation time in a feasible region, we must hence restrict the model to only look at a low

number of terms and unimportant features should be removed before initializing the algorithm.

On the other hand, linearity in N means that the algorithm is useful for large datasets like the

one we are considering.

3.4 Regression Trees

The MARS algorithm was a way of splitting the features space into subsets and then create an

additive model with low-level interactions. If we would like to keep the subset split but allow for

high-level interactions between variables, regression trees are worth considering. Like the MARS

algorithm, a regression tree splits the feature space into regions r1, . . . , rM . The response variable

is then modelled by a function of the form

f(Xt) =

M∑
m=1

cm1rm(Xt).

Due to this simple form of f , we can without loss of generality assume that r1, . . . , rM are disjoint

sets. This means that if our loss function is MSE and we apply no regularisation, then, according

to (3.1), we have that

cm = min
c
E[(Yt − c)2|Xt ∈ rm] = E[Yt|Xt ∈ rm].

As we generally do not know the distribution of Yt|Xt, we will use the empirical estimate

ĉm = min
c

1

|rm|

N∑
t=1

(yt − c)21rm(xt) =
1

|rm|

N∑
t=1

yt1rm(xt),
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where |rm| is number of observations in region rm. For a large dataset with multiple features, it is

computationally infeasible to find the optimal regions rm (Louppe, 2014, page 30). We will instead

use a greedy algorithm which makes recursive binary splits of our feature space. We denote the

disjoint subset decomposition of our feature space by R and will perform splits of sets r in R of

the form

r1(j, s){x ∈ r|xj ≤ s}, r2(j, s) = {x ∈ r|xj > s}, j = 1, . . . , p, s ∈ R,

where xj is the j’th coordinate of the p-dimensional observation x. In order to avoid overfitting

and save computation time, we will stop splitting a region r if one of the following stopping criteria

is met:

a) |r| is less than two times a minimum number of elements in terminal regions (leaves).

b) The number of splits made to each region r has reached some threshold (maximum tree depth

has been achieved).

c) The decrease in MSE achieved by the optimal split is below some threshold (leaf impurity

decrease is too low).

Note that using criteria c) is similar to adding a regularisation term

Ω(θL) = γ|R|, γ > 0

to the learning algorithm’s objective function which without any minimum leaf impurity decrease

only will seek to minimise the loss function at each split. When using criteria c), the learning

algorithm will only make a split if the split decreases MSE of the whole model by at least γ.

Algorithm 3.2 below outlines how a regression tree is constructed.

Algorithm 3.2.

1. R is initialised as the whole feature space

2. For every r in R where no stopping criteria have been met, we calculate

min
j,s

[
min
c1

N∑
t=1

1r1(j,s)(xt)L(yt, c1) + min
c2

N∑
i=1

1r2(j,s)(xt)L(yt, c2)

]

3. If stopping criteria c) is not met, then r is replaced by r1(j∗, s∗) and r2(j∗, s∗), where (j∗, s∗)

is the solution found in 2

4. Repeat 2 and 3 until all regions in R have met one of the stopping criteria
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After termination of the algorithm, we have partitioned the feature space Rp into |R| p-dimensional

rectangles which each have assigned a constant ĉm (the average of the target variables in the region

if the loss function is MSE). This means that our predictive model fL will be a multidimensional

step function. If we choose restrictive stopping criteria, it will result in a very simple model which

probably will suffer from a high bias. On the other hand, if we grow the tree with almost no

stopping criteria, we will end up with a model with high variance. In the extreme case with no

stopping criteria, all leaves will be of size 1. This means that fL will return the target value of the

observation from L ’closest’ to the new observation.

In Figure 4 the top of a decision tree graph made for EUR/CHF 2 ticks prediction with a minimum

leaf size of 25 is shown. Input and target variables have been standardised, as this makes the val-

ues easier to interpret, i.e. it shows how many standard deviations the split values and predictions

values are from the mean. Note that standardisation has no effect on the output of the regression

tree, as the ordering of values in each variable is preserved. As an example of the high variance

of a regression tree discussed above, we see that in the second layer, the tree makes a split where

it makes one node with over 100,000 observations and one with just 27. The node with just 27

observations is assigned a value less than -8 which is a very small value with the standardisation

in mind. It is unlikely that this prediction value will be optimal for unseen data. Even within the

node, there is a high variety of values, as the MSE is above 200.

One thing about the tree that may seem strange is that it starts with 1,264,376 samples. This

is the case, because the tree is actually taken from a random forest where a data subsampling

technique called bagging is applied to a learning set of size 2,000,000. The explanation of this

technique will be provided in Section 3.5, where we also will see how to use regression trees in a

way which avoids the high variance of estimates. In fact, a single regression tree is rarely used as

a prediction model, as it is better as a basis model for ensemble models where multiple regression

trees are combined into one predictive model. We will see examples of this in Section 3.5 and 3.6.

We will not dive too much into the computational complexity of constructing a regression tree, as

that would require us to consider many different cases depending on how the splits are made. A

comprehensive description of the computational cost of regression trees is given in (Louppe, 2014,

chap. 5). In this thesis, we will just note that the computational complexity of a regression tree

is very low compared to other machine learning methods due to its simple structure. Instead of

showing this analytically, we will see it empirically in Section 4. The low computational cost of

tree construction makes regression tree-based modelling one of the most attractive ways of creating

prediction models with high-level interactions.
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Figure 4: Regression tree made with EUR/CHF for 2 ticks predictions. X[j] <= s is the splitting

variable and splitting value, mse is the MSE in the node, samples is the number of observations in

the node and value is the prediction value ĉm.

3.5 Random Forest

Random forest attempts to mitigate the problem with high variance for deep trees explained in

the previous section by averaging over multiple regression trees. This means that our predictive

function will be of the form

f(Xt) =
1

M

M∑
m=1

gm(Xt), (3.10)

where each gm is a regression tree build with a learning algorithm which is very similar to Algorithm

3.2. The major difference between the learning algorithm used for trees in a random forest and

the one used for a regression tree is that the first one contains randomness. In fact, without this

randomness, the random forest would be exactly the same as a normal regression tree, as we would

have that g1 = g2 = · · · = gM . As all previous learning algorithms have been deterministic, we

will start by discussing what effect randomness in the learning algorithm has on the resulting

predictive model. After that, we will go more in-depth with which parts of the random forest

learning algorithm is random and how we can choose optimal randomness. We assume that the

randomness of the learning algorithm A is contained in a random seed stored in the complexity

parameter vector θc. We will denote the random seed for g1, . . . , gM by ξ1, . . . , ξM and assume
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that they all have the same distribution and are independent (iid), meaning that

gi(Xt) ∼ gj(Xt), i, j ∈ {1, . . . ,M}, t = 1, 2, . . .

As we will consider many sources of randomness in this section, we will use subscripts when taking

expectation and denoting predictive functions to indicate what we consider as stochastic. If we

denote the vector of random seeds by ξ, this means that we will write (3.10) as

fL,ξ(Xt) =
1

M

M∑
m=1

gL,ξm(Xt). (3.11)

Similarly, the bias-variance decomposition in (3.3) can now be written as

EPEt[fL,ξ] = EL,ξ[
(
Yt − fL,ξ(Xt)

)2|Xt = xt)]

= bias[fL,ξ(xt)]
2 + Var[fL,ξ(xt)] + σ2

t ,

where

bias[fL,ξ(xt]
2 =

(
fB(xt)− EL,ξ[fL,ξ(xt)]

)2
,

Var[fL,ξ(xt] = EL,ξ[
(
EL,ξ[fL,ξ(xt)]− fL,ξ(xt)

)2
].

If fL,ξ consists of just a single tree, there is no reason to believe that this model should be

better than just a normal regression tree with deterministic learning algorithm; by increasing

randomness, it is more likely that bias and variance would increase rather than decrease. However,

when considering a random forest with many trees, the result is different. In the following, we will

discuss how bias and variance changes as we increase the number of trees in a random forest. To

simplify the notation a bit, we will denote the mean and variance of a prediction of a single tree

in the forest at time t by

µL,ξm(xt) := EL,ξm [gL,ξm(xt)],

σ2
L,ξm(xt) := Var[gL,ξm(xt)].

Considering the squared bias term first, we see that for any M in N it holds that

EL,ξ[fL,ξ(xt)] = EL,ξ1,...,ξM
[ 1

M

M∑
m=1

gL,ξm(xt)
]

=
1

M

M∑
m=1

EL,ξm [gL,ξm(xt)]

=
1

M

M∑
m=1

EL,ξ1 [gL,ξ1(xt)]

= µL,ξ1(xt),
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where we use that ξ1, . . . , ξM are iid. Since this is the only part of the bias term which depends

on the selected prediction model, it follows that

bias[fL,ξ(xt)]
2 =

(
fB(xt)− µL,ξ1(xt)

)2
= bias[gL,ξ1(xt)]

2,

meaning that the squared bias term is constant for all M in N. As the squared bias term is likely

to be larger than the one coming from the non-randomised regression tree and the noise term σ2
t

is the same for all prediction models, random forest needs to achieve a low prediction variance to

be useful.

Before calculating the prediction variance, we will consider the correlation between predictions

made by two randomised models with different random seed. Due to the iid assumption of the

random seeds, it is sufficient to calculate the correlation between two random models with seeds

ξi and ξj for i 6= j. By definition, we have that

ρ
(
gL,ξi(xt), gL,ξj (xt)

)
=
EL,ξi,ξj [(gL,ξi(xt)− µL,ξi(xt)

)
(gL,ξj (xt)− µL,ξj (xt)

)
]

σL,ξi(xt)σL,ξj (xt)

=
EL,ξi,ξj [gL,ξi(xt)gL,ξj (xt)− gL,ξi(xt)µL,ξj (xt)]

σ2
L,ξ1(xt)

+
EL,ξi,ξj [µL,ξi(xt)µL,ξj (xt)− gL,ξj (xt)µL,ξi(xt)]

σ2
L,ξ1(xt)

=
EL,ξi,ξj [gL,ξi(xt)gL,ξj (xt)− µ2

L,ξ1(xt)]

σ2
L,ξ1(xt)

,

which we for notational convenience will denote by ρL,ξi,ξj (xt).

The correlation measures how random the learning algorithms of the trees are. If ρL,ξi,ξj (xt) = 1,

there is no randomness, whereas ρL,ξi,ξj (xt) = 0 means perfectly random models. The following

calculation shows the impact this correlation has on the variance of predictions made by a random

forest model:

Var[fL,ξ(xt)] =EL,ξ[fL,ξ(xt)
2]− EL,ξ[fL,ξ(xt)]2

=EL,ξ1,...,ξM
[( 1

M

M∑
m=1

gL,ξm(xt)
)2]− EL,ξ1,...,ξM [ 1

M

M∑
m=1

gL,ξm(xt)
]2

=
1

M2

(
EL,ξ1,...,ξM

[( M∑
m=1

gL,ξm(xt)
)2]− EL,ξ1,...,ξM [ M∑

m=1

gL,ξm(xt)
]2)

=
1

M2

(
EL,ξ1,...,ξM

[ ∑
i,j=1,...,M

gL,ξi(xt)gL,ξj (xt)
]
−
(
MµL,ξ1(xt)

)2)

=
1

M2

( ∑
i,j=1,...,M

EL,ξi,ξj
[
gL,ξi(xt)gL,ξj (xt)

]
−M2µ2

L,ξ1(xt)

)

=
1

M2

(
MEL,ξ1

[
gL,ξ1(xt)

2
]

+ (M2 −M)EL,ξ1,ξ2
[
gL,ξ1(xt)gL,ξ2(xt)

]
−M2µ2

L,ξ1(xt)

)
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=
1

M2

(
M
(
σ2
L,ξ1(xt) + µ2

L,ξ1(xt)
)

+ (M2 −M)
(
ρL,ξ1,ξ2(xt)σ

2
L,ξ1(xt) + µ2

L,ξ1(xt)
)
−M2µ2

L,ξ1(xt)

)
=
σ2
L,ξ1(xt)

M
+ ρL,ξ1,ξ2(xt)σ

2
L,ξ1(xt)− ρL,ξ1,ξ2(xt)

σ2
L,ξ1(xt)

M

=ρL,ξ1,ξ2(xt)σ
2
L,ξ1(xt) +

1− ρL,ξ1,ξ2(xt)

M
σ2
L,ξ1(xt). (3.12)

The second term of (3.12) can clearly be shrunk close to 0 by increasing the number of trees in

the forest, while the first term only can be shrunk by increasing the randomness of the trees. It

is though worth noting that the variance of a single tree σ2
L,ξ1(xt) may increase as we increase the

amount of randomness. In addition, the bias will also typically increase, as we increase randomness

of the model. When considering real data, we cannot tell what σ2
L,ξ1(xt), ρL,ξ1,ξ2(xt) and bias[fL,ξ]

are, but by having complexity parameters controlling the amount of randomness in the model, we

can approximate optimal randomness through cross-validation.

Now that we have shown why it may be desirable to build a model with a randomised learning

algorithm, we will have a look at how randomness is applied in a random forest through bootstrap

aggregation (bagging) and randomised feature selection.

Bagging is a data subsampling technique proposed by Breiman (1996) in which datasets of the

same size as L are drawn from L with replacement. At each draw, all samples have the same

probability of being drawn, meaning that the probability of a sample being in the new data set B

is

P(xt ∈ B) = 1− P(xt /∈ B) = 1−
(
1− 1

N

)N ≈ 1− e−1 ≈ 0.632,

using that
(
1 − z

N

)N → e−z for N → ∞. Each of these new sets are said to be a bootstrapped

dataset. Using bagging, is to construct a new bootstrapped set for each tree in the random forest,

meaning that each tree will be trained on different subsets of L. As each of these bootstrapped

subsets only contain approximately 63% of the data, bagging is likely to have a decorrelating effect

on the trees. The use of bagging explains the seemingly random number of samples used to con-

struct the regression tree pictured in Figure 4, as 1,264,376
0,632 ≈ 2, 000, 000 which is the actual number

of samples in the learning set used to construct the tree.

Not only is bagging useful for reducing prediction variance, it also allows us to estimate the

generalisation error (3.1) in a way which is much faster than cross-validation. As each tree only

uses 63% of the learning set, there is 37% of the learning set which can be considered as unseen
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data for each tree. If we denote the bootstrap datasets used for each tree by B1, . . . ,BM and define

M(−t) := {m ∈ {1, . . . ,M} | (xt, yt) /∈ Bm, m = 1, . . . ,M},

we can define an error measure by

LOOB(fL,ξ) =
1

N

N∑
t=1

L
( 1

|M(−t)|
∑

m∈M(−t)

gBm,ξm(xt), yi
)
, (3.13)

which is called the out of bag estimate. By estimating generalisation error with this measure, we

only have to perform one fit of the model as opposed to cross-validation where 3-10 fits usually are

made. Wolpert & Macready (1999) show that in many cases this estimate is at least as good at

estimating generalisation error as cross-validation. The only shortfall of this technique is that fit-

ting and testing data are not divided into consecutive blocks as it was the case in cross-validation.

This may result in a too optimistic estimate of the generalisation error, as we will be using the

future to predict the past.

The second source of randomness, randomised feature selection, is first introduced by Wilder

et al. (1997) and then later used in combination with bagging by Breiman (2001a) to form what

we will refer to as the random forest model. Constructing a tree with randomised feature selection

is almost the same procedure as outlined in 3.2 but with the key difference that only a random

subset of the p variables are considered for splitting in step 2. This forces the trees to rely on

multiple variables and decorrelates the trees in the forest further. Additionally, by only consid-

ering a subset of the variables at each split, the computation time can be reduced significantly.

If we choose to consider a low number of variables at each split, we will increase the decorrela-

tion of the trees which according to (3.12) is likely to decrease the prediction variance. A high

amount of randomness does though come with a cost; the bias of the random forest will increase.

Finding the right trade-off between bias and variance, by selecting the number of variables we con-

sider at each split, will prove to be key for the performance of the random forest model in Section 4.

Similar to the shrinkage methods discussed in Section 3.2, the random forest model can be used

for feature selection. One way of doing this is a method introduced by Breiman (2001b) in which

we consider the decrease in loss during tree construction caused by each variable. We call the loss

in a single node impurity and will denote it by i(n). Similarly, we will define i(nl) and i(nr) as the

impurity in the left and right node respectively made by the split of node n. With this notation in

place, we can define the impurity decrease of optimally splitting node n (given the random subset

of variables available in the node) by

∆i(n) = i(n)− pnli(nl)− pnr i(nr), (3.14)
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where pnl and pnr are the proportion of samples from node n going into the left and right node

respectively. we can then use this measure to define the mean decrease impurity measure (MDI)

of variable Xj by

MDI(Xj) =
1

M

M∑
m=1

∑
n∈gBm,ξm

1{jn=j}pn∆i(n), (3.15)

where pn is the proportion of samples from L reaching node n and 1{jn=j} is an indicator function

taking the value 1 when the split in node n is performed on variable Xj and 0 otherwise. A high

MDI will indicate that a variable is important, as it decreases the loss significantly when being split

on. Unlike feature selection with shrinkage methods, MDI is capable of measuring the importance

of non-directional variables. This is the case, as splits in nodes are made conditional on previous

splits. The tree will usually split on directional variables first and then use the non-directional

ones to ’validate’ the directional signal. One should though not perform feature selection solely

based on MDI, since selecting the top-ranked variables will not necessarily yield a great fit. If we,

for instance, have a variable Xj which is important for the regression and put two copies of it into

the random forest model, it will assign a high MDI value to both of them, which is clearly not

ideal. It is though generally true that if the MDI value of a variable is close to 0, it is unlikely to

be important for the prediction task.

As mentioned in Section 3.4, constructing a regression tree can be done quickly and even faster

when we only consider a subset of variables at each split. Since random forest is based on in-

dependent regression trees which easily can be parallelised, constructing a random forest is a

computationally cheap way to create a prediction model with high-level interactions. In this the-

sis, we will be using the Python implementation sklearn.ensemble.RandomForestRegressor to

construct random forest models.

If a prediction model has a high computational cost, it is usually because it tries to model many

variable interactions similarly to the random forest but in a more expensive way. Given that we

through cross-validation (or OOB scoring) of a random forest’s complexity parameters find that a

very complex model is optimal (non-restrictive stopping criteria), it is likely that high complexity

in these more expensive models is optimal as well. Because of this and random forest’s low com-

putational cost, it can be useful to run a random forest model prior to more expensive prediction

models to get an idea of optimal model complexity.
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3.6 Stochastic Gradient Boosted Trees

Another way of constructing a tree-based ensemble is stochastic gradient boosting. The term

’boosting’ refers to an iterative procedure in which an additive model

f(Xt) =

M∑
m=1

gm(Xt)

is constructed by adding one term to the sum at a time. In each iteration of the learning algorithm,

a new predictive function

fk(Xt) := fk−1(Xt) + gk(Xt) (3.16)

is constructed, where the specifications of gk depends on the residuals L
(
y1, f

k−1(x1)
)
, . . . , L

(
yN , f

k−1(xN )
)

obtained from the previous iteration.

When we consider gradient boosting, gk is a function fitted on the gradient of the residuals,

i.e. it will be fitted on the pseudo residuals defined by

dt =
∂L
(
yt, f

k−1(xt)
)

∂fk−1(x1)

This technique was invented by Friedman (2001) and was quickly extended by Friedman (2002)

to stochastic gradient descent where the learning algorithm is randomised by subsampling the

learning set used for each tree. In this thesis, we will use a slight modification of Friedman’s

original algorithm which differs in the following ways:

a) Randomised feature selection is applied.

b) The objective function will include a regularisation term

Ω(fL) =

M∑
m=1

Ω(gL,m),

where

Ω(gL,m) = γ|Rm|+
λ

2

|Rm|∑
i=1

ω2
m,i.

c) We will be making a second order approximation of the loss terms instead of only considering

the gradient.

In the above, |Rm| is the number of leaves in tree gL,m and ωm,1, . . . , ωm,|Rm| are the values of the

leaves in the tree. The idea of modification a) is the same as in random forest and modification b) is

a combination of stopping criteria c) used in Algorithm 3.2 and a L2-penalty known from ridge re-

gression. This version of stochastic gradient boosting is often referred to as extreme gradient boost-

ing, or just XGB. It can be performed in Python with the implementation xgboost.XGBRegressor.
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The construction of each tree in this boosted ensemble follows Algorithm 3.2 but with some modi-

fications made to step 2. Similar to random forest, we apply randomness to the learning algorithm

through data subsampling and randomised feature selection. The subsampling here is though not

bagging, as we will just draw samples from L without replacement until a desired sample size has

been reached. While randomness in the learning algorithm was a necessity for the random forest to

be any different from a single regression tree, the iterative procedure of the boosted tree learning

algorithm uses the randomness as a source of regularisation together with adjustments of the other

complexity parameters tree depths, minimum leaf sizes, number of trees and parameters λ and

γ. To give an intuition about how these parameters impact the learning algorithm, we will in the

following derive how trees are constructed for the XGB learning algorithm. We will derive the

construction of these trees for a general twice differentiable loss function and afterwards discuss

the specific case of MSE loss that we are focusing on in this thesis.

Assume we use M trees in our boosted model. Then after iteration k, we have a prediction

function of the form given in (3.16) which makes predictions

ŷkt = fL,k(xt) =

k∑
m=1

gL,m(xt) = ŷk−1t + gL,k(Xt).

Assuming that

fL,0(x) := 0,

this recursive structure implies that we only need to derive how gL,k is constructed in each iteration.

In iteration k, the objective function is

obj(fL,k) =

N∑
t=1

L(yt, ŷ
k
t ) +

k∑
m=1

Ω(gL,m)

=

N∑
t=1

L(yt, ŷ
k−1
t + gL,k) +

k∑
m=1

Ω(gL,m). (3.17)

Denoting the time t first and second order derivatives of L(yt, ŷ
k−1
t ) w.r.t. ŷk−1t by

dt,1 =
∂L(yt, ŷ

k−1
t )

∂ŷk−1t

,

dt,2 =
∂2L(yt, ŷ

k−1
t )

∂(ŷk−1t )2
,

we can make a second order Taylor approximation of the loss term in (3.17) to get

obj(fL,k) ≈
N∑
t=1

(
L(yt, ŷ

k−1
t ) + dt,1gL,m(xt) +

1

2
dt,2gL,m(xt)

2
)

+

k∑
m=1

Ω(gL,m).
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Since L(yt, ŷ
k−1
t ) and Ω(gL,1), . . . ,Ω(gL,k−1) are independent of gL,k, they can be removed from

the object function. We are then left with the objective function for tree k:

obj(gL,k) =

N∑
t=1

dt,1gL,m(xt) +
1

2
dt,2gL,m(xt)

2
)

+ Ω(gL,k)

=

N∑
t=1

dt,1gL,m(xt) +
1

2
dt,2gL,m(xt)

2
)

+ γ|Rk|+
λ

2

|Rk|∑
i=1

ω2
k,i. (3.18)

Since gL,k is a regression tree, it only takes finitely many values ωk,1, . . . , ωk,|Rk|, and we can group

the observations by these:

Ni := {t | gL,k(xt) = ωk,i}.

Now, we can write (3.18) as

obj(gL,k) =

|Rk|∑
i=1

(( ∑
t∈Ni

dt,1
)
ωk,i +

1

2

( ∑
t∈Ni

dt,2
)
ω2
k,i

)
+ γ|Rk|+

λ

2

|Rk|∑
i=1

ω2
k,i

=

|Rk|∑
i=1

(( ∑
t∈Ni

dt,1
)
ωk,i +

1

2

(( ∑
t∈Ni

dt,2
)

+ λ
)
ω2
k,i

)
+ γ|Rk|

=

|Rk|∑
i=1

(
Di,1ωk,i +

1

2
(Di,2 + λ)ω2

k,i

)
+ γ|Rk|, (3.19)

where

Di,l :=
∑
t∈Ni

dt,l, l = 1, 2.

As ωk,1, . . . , ωk,|Rk| are independent, we may optimise each term in the sum (3.19) separately. We

note that each term is convex in ωk,i, and we may hence differentiate to get

ω∗k,i = − Di,1

Di,2 + λ
. (3.20)

Inserting this into (3.19) gives the tree score

obj∗(gL,k) = −1

2

|Rk|∑
i=1

D2
i,1

Di,2 + λ
+ γ|Rk| (3.21)

which is the lowest possible value of the object function for a given tree structure (split of regions).

When we search for the best split of region ri in step 2 of Algorithm 3.2, we are looking for

the split which reduces the trees object function the most, i.e. we want to solve

maxj,s
1

2

(
Dl
i,1(j, s)2

Dl
i,2(j, s) + λ

+
Dr
i,1(j, s)2

Dr
i,2(j, s) + λ

−
D2
i,1

Di,2 + λ

)
− γ, (3.22)

where the superscripts l and r refer to the sums of derivatives in the left and right regions formed

by splitting variable Xj at value s. Note that the term we a minimising in (3.22) is exactly the
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object function evaluated with no split minus the object function evaluate after splitting variable

Xj at value s in the given leaf. Also, subtracting gamma is exactly the same as stopping criteria

c) in Algorithm 3.2.

We will now turn our attention to the case where the loss function is MSE as this is the loss

function we will be using in the empirical studies in Section 4. In this case, a lot of terms simplify

as we have that

Di,1 =
∑
t∈Ni

∂L(yt, ŷ
k−1
t )

∂ŷk−1t

=
∑
t∈Ni

(ŷk−1t − yt),

Di,2 =
∑
t∈Ni

∂2L(yt, ŷ
k−1
t )

∂(ŷk−1t )2
=
∑
t∈Ni

1 = |Ni|,

and the value in the leaves will be

ω∗k,i =

∑
t∈Ni(yt − ŷ

k−1
t )

|Ni|+ λ
.

This means that for λ = 0, the values in the leaves will be the mean of the residuals from the

previous iteration, i.e. we just fit a normal regression tree on these residuals. As we increase λ,

the leaf values will shrink towards 0, meaning that the tree will avoid making large predictions

(in absolute terms). This makes λ very useful for regularisation, as we will clearly decrease the

variance and increase the bias of our predictions when increasing λ.

When having constructed a tree gL,m, we will in fact only be adding a fraction, α, of it to the

current prediction function, i.e. the model will be of the form

fL(xt) =

M∑
m=1

αgL,m(xt),

where α is the parameter controlling how much of gL,m is added in iteration m of the learning

algorithm. We will refer to α as the learning rate of the model, since it controls how much the

model ’learns’ in each iteration. By choosing a low learning rate, trees constructed in consecutive

iterations will be fitted on almost the same pseudo residuals. As each of these trees is constructed

with randomness in their learning algorithm, this should decrease the variance of predictions in a

way similar to what we saw in the random forest model.

Besides choosing α, λ and γ, we will also have to choose minimum leaf sizes, maximum tree

depths, amount of data subsampling, number of features considered at each split and number of

trees. It is important to note that when we increase the number of trees, we will increase the

complexity of the model which will probably lead to a need for additional regularisation. This

makes cross-validation for optimal parameters of a boosted tree ensemble a more complicated task
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than it was the case for the random forest, as more trees were always better in the random forest

model.

An increased number of parameters to tune means increased computation time. On top of that,

each fit during cross-validation takes more time, as the construction of each tree depends on the

previous one. Hence, tree construction cannot be parallelised as it was the case for the random

forest.

3.7 LSTM Neural Network

Even though we are modelling time series, all the models we have considered so far have only

been able to model time structure through the features that we have created. For instance, if we

thought that market trends were important for our models, we would include moving averages of

past increments in our features. This way of modelling time series can be seen as a bit restric-

tive, as our models are only capable of using the subset of past information, we choose to feed

them. To treat this potential issue, we will in this section discuss a model called long-short term

memory neural network (LSTM) invented by Hochreiter & Schmidhuber (1997). The model is a

special type of recurrent neural networks (RNNs), where information about previous inputs and

outputs is used to find complicated patterns in the data. In recent years, the model has become

very popular within speech recognition, where it shows state of the art results (e.g. Graves et al.

(2013)) due to its ability to model complex time series structures with long-range dependencies.

Motivated by these promising results, we will in this section investigate whether the LSTM model

also can perform well when we consider financial data. We will start by giving an introduction to

recurrent neural networks and then discuss how the LSTM extends the RNN concept to form a

model capable of capturing long-range dependencies in time series. The figures provided in this

section are taken from Olah (2015).

A recurrent neural network produces an output, ht, which is recursively constructed as a function

of the output from time t − 1 and the time t input. This output will be a d-dimensional vector

which we may use as an input for another function which produces predictions. Hence, when

we say that we use a recurrent neural network, it means that we have an intermediate step in

our prediction model in which we make a specific recursive data transformation prior to making

predictions. RNNs can have much more complicated structures than it was the case in the MARS

algorithm, but the concept of transforming data prior to making predictions is the same. Figure

5 shows a general unfolded RNN. In each of the A-boxes, a transformation of the input, which

depends on the RNN type, happens.
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Figure 5: General RNN

If we consider a RNN in its simplest form, the transformation in the A-boxes is given by

ht = σh(Wxt + Uht−1 + b),

where we have used the following notation:

• ht is the time t output.

• σh is an entry-wise function (we will be using tanh) which we will refer to as the activation

function.

• xt is the time t input from L.

• W is a d× p matrix.

• U is a d× d matrix.

• b is a d× 1 vector which we will refer to as the bias vector.

With the notation in place, we see that ht is produced by taking matrix multiplicatives of inputs

xt and ht−1 and then making an entry wise transformation with the function σh. In addition to

the matrix transformations, we also add the bias-vector before using the activation function. The

name ’bias vector’ is chosen, because it shifts the transformation and not because it has anything

to do with bias of the final prediction model. This simple RNN is pictured in Figure 6, where

the A-blocks from Figure 5 are replaced by the simple RNN structure. As mentioned above, the

recurrent neural network is not a prediction model in itself. The hts are passed on to another

function such that we have a prediction function of the formf(xt) = g(ht),

ht = σh(Wxt + Uht−1 + b).

The function g may be a simple OLS model or it may be complex and contain more input trans-

formations where ht will be taken as input in the same way as xt was taken as input to construct

ht in the RNN. Each transformation we make before the final prediction step is called a layer in



3. Models 31

Figure 6: Simple RNN

neural network terms.

What makes neural networks special is that all these transformations are chosen in a data de-

pendent way, where all entries in W , U and b are parameters chosen during the fitting of the

model together with the parameters of the outer function g. This clearly makes the space of pos-

sible prediction functions very rich. In fact, the whole motivation of neural networks relies on

universal approximation theorems (e.g. Hornik (1991) and Schäfer & Zimmermann (2006)), where

it is shown that any continuous function can under mild assumptions be approximated by a neu-

ral network. This means that any other prediction function, we have considered so far, could be

replicated by a neural network (almost at least). So why would we ever consider any other models

than neural networks? The problem with the universal approximation theorems is that they do not

provide any algorithm which guarantees that we can find the optimal parameters for the network.

If we consider a prediction model with an RNN part, the RNN part alone will have p(d+ 1) + d2

parameters which we will need to choose optimally.

As the space of parameters is high-dimensional, we have to use an iterative procedure to esti-

mate the parameters. The typical approach, which we also will be using, is to use a method called

backpropagation through time (BPTT). It is a form of gradient descent where the prediction errors

are propagated backwards through the network and gradients are calculated iteratively by using

the chain rule. The method is carried out by first performing a forward pass where we iteratively

calculate 
at = Wxt + Uht−1 + b

ht = σ(at)

ŷt = g(ht)
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for t = 1, . . . , N , where h0 = 0. Next, we calculate the derivative of the loss function w.r.t.

each of the parameters in the network, i.e. calculate ∂L
∂wi,j

, ∂L
∂ui,l

and ∂L
∂bi

for i, l = 1, . . . , d and

j = 1, . . . , p. When we update one of these parameters, we adjust the value of the ats and thereby

the hts immediately. This is though far from the only adjustments happening when we update a

parameter. Because of the recursive structure, where ht+1 depends on ht, a change in ht affects

the value of ht+1, . . . ,hN . Using this, we get from the chain rule that

∂L

∂wi,j
=

N∑
t=1

t∑
k=1

∂L

∂ak,i
xt,j ,

∂L

∂ui,l
=

N∑
t=1

t∑
k=1

∂L

∂ak,i
ht,l,

∂L

∂bi
=

N∑
t=1

t∑
k=1

∂L

∂ak,i
,

where

∂L

∂ak,i
=
∂L

∂ŷt

∂ŷt
∂ht,i

∂ht,i
∂hk,i

∂hk,i
∂ak,i

.

The only term in the above which cannot be computed directly with the values from the forward

pass is the third term of ∂L
∂ak,i

, which me must compute iteratively:

∂ht,i
∂hk,i

=
∂ht,i
∂ht−1,i

∂ht−1,i
∂ht−2,i

· · · ∂hk+1,i

∂hk,i
. (3.23)

These terms a most efficiently calculated in reverse order, meaning that we calculate

∂ht,i
∂hk,i

, t = k + 1, . . . , N

for k = N − 1, . . . , 1. Each iteration only require us to calculate
∂ht,i
∂hk,i

and then multiply it on to

terms from the previous iteration.

After having computed the gradients, we update all parameters by subtracting a fraction of their

gradient. For instance, we update wi,j by

wi,j ← wi,j − α
∂L

∂wi,j
,

where α is the parameter controlling the step size of parameter updates. As in the previous section,

α is called the learning rate.

For large values of N , calculating all gradients to make a single parameter update is computa-

tionally expensive. To handle this problem, we can divide the learning set into disjoint subsets

L1, . . . ,Lq consisting of consecutive observations. Instead of just making 1 parameter update when

we iterate through the N observations, we make q updates by performing backpropagation on each
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of the subsets as described above. These subsets are in machine learning terms called batches, and

a run through all the N observations is called an epoch. After running multiple epochs, the RNN

should ideally converge (parameter updates become insignificantly small) and leave us with a good

prediction model. Unfortunately, this outcome does often not come easy. Firstly, with the high

number of parameters involved in an RNN architecture, there is a severe risk of overfitting. Sec-

ondly, we are optimizing a non-convex function in a high-dimensional space of parameters, meaning

that if the network converges, it is likely towards a local minimum. Regarding the second issue, the

randomness in the learning algorithm provided by data subsampling (splitting into batches) can

help getting out of local minima (Graves, 2011, p. 30). Choosing a learning rate which increases

with the size of the gradients can also help to mitigate this problem (Graves, 2011, p. 29). One

example of such a learning rate algorithm is ’adam’, developed by Kingma & Ba (2014), which

we will be using in this thesis, as it tends to show good results on all types of data. The issue of

overfitting, we will discuss at the end of this section.

Besides the two issues described above, which a present for all types of neural networks, the

simple RNN also has another shortfall; it struggles to capture long-range dependencies in time se-

ries. Because our activation function is tanh, which has a derivative bounded in the interval (0, 1],

(3.23) is likely to have an exponential decay as t − k increases. When this happens, the impact

which hk has on the value of ht decreases rapidly, and the RNN will therefore not be able to capture

long-range dependencies. If we try to fix this problem by using another activation function with

a gradient that can be larger than 1, we may instead end up with the gradient getting extremely

large as t−k increases. The problem of too small gradients is called the vanishing gradient problem

and the one with too large gradients is called the exploding gradient problem. A more in-depth

discussion of these issues can, for instance, be found in Hochreiter et al. (2001).

To overcome the issues of the vanishing gradient, we will use an extension of the simple RNN

called LSTM. It is a model proposed by Hochreiter & Schmidhuber (1997) in which memory

blocks are passed between prediction steps in parallel with ht. A visual representation of an LSTM

network can be seen in Figure 7 where the A-blocks clearly have become a bit more complex than

it was the case for the simple RNN. Pink nodes are entry-wise operations and the yellow ones are

neural networks, i.e. they involve applying an entry-wise function to a matrix multiplicative of the

inputs plus a bias vector. The yellow σ-nodes are neural networks with the activation function

being the sigmoid function

σ(x) =
1

1 + e−x
.

The outputs of these subnets are used for entry-wise multiplication with other flows in the A-blocks

to control how much of the flows is passed on in the network and how much is blocked. Because



3. Models 34

Figure 7: LSTM nerual network

of this role, they are called gates.

The most important part of the LSTM block is the flow in the top of the block which we will

call ct. At time t, ct−1 is taken as an input and an element-wise multiplication with the output

of the left-most gate (the forget gate) is performed. If all values of the forget gate’s output are

close to 1, we say that the gate is open, since this will mean that most of ct−1 is retained at

time t. The tanh layer is similar to the one we saw in the simple RNN. Here it is used to form

a ’memory candidate’, c̃t, which after multiplication with the middle gate’s (input gate’s) output

is added to the part of ct−1 which is retained to form the new memory ct. This new memory is

used for two things. Firstly, the time t output, ht, is made by transforming ct by an element-wise

tanh operation followed by multiplication with the output of the right-most gate (output gate).

Secondly, it is used as an input at time t+1. As long as the forget gate stays open through multiple

timesteps, the memory can be stored for a long period. This is exactly what allows the LSTM to

model long-range dependencies.

The above may seem a little complicated but the LSTM is nothing more than a recursive compu-
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tation given by 

ft = σ(Wfxt + Ufht−1 + bf )

it = σ(Wixt + Uiht−1 + bi)

c̃t = tanh(Wc̃xt + Uc̃ht−1 + bc̃)

ct = ft ◦ ct−1 + it ◦ c̃t

ot = σ(Woxt + Uoht−1 + bo)

ht = ot ◦ tanh(ct)

ŷt = g(ht),

where all W -matrices are d× p dimensional, U -matrices are d× d dimensional and b-vectors are of

size d. This makes up a total of 4
(
d(p+ 1) + d2

)
parameters which is 4 times as many as a simple

RNN with the same input and output dimensions.

Updating all these parameters is done by BPTT, as it was the case for the simple RNN. The

only difference is that we have a lot more recurrent terms, making the calculations longer. We will

not present these calculations here but they can for instance be found in Chen (2016).

We mentioned earlier that with the number of parameters in the simple RNN, it was prone to

overfitting. Now that we have multiplied the number of parameters by 4, this is definitely still an

issue which requires attention. To treat the problem, we will inject randomness into the learning

algorithm of LSTM with a technique called dropout. This technique is a recent invention by Sri-

vastava et al. (2014) in which connections in a neural network are dropped with a probability q.

It has shown to be a very effective way of treating overfitting, and it is also easy to implement.

To apply dropout to a layer, we just have to simulate a vector (same size as the layer input) of iid

Bernoulli variables with probability parameter 1− q and then perform element-wise multiplication

with the input. At test time, we will not apply any dropout but instead multiply all weights by

1− q such that all parameters have the same mean as in training. Gal & Ghahramani (2016) has

shown that dropouts can be seen as a way of averaging over multiple network architectures which

decreases prediction variance and thereby the amount of overfitting. Besides applying dropout,

we will also experiment with changing the loss function to a more robust one. We will do this by

considering the logcosh loss function shown in Figure 2.

In Figure 8, the in sample and out of sample R2 is shown as a function of epochs for an LSTM

with no regularisation and one with dropout and logcosh loss function. It is clear, that the LSTM

with no regularisation overfits very quickly, as the out of sample R2 starts decreasing after just 3

epochs, while the in sample R2 keeps decreasing. On the other hand, by applying regularisation,
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the in sample loss seems to converge and the in sample R2 only increases slowly after the first few

epochs. Most of the regularisation is gained from the dropout, and we will apply this technique in

all prediction tasks when producing results in Section 4. Appropriate loss function will be chosen

through cross-validation for each currency pair.

The plots in Figure 8 are made using an LSTM with output of size 25 (d = 25) which is passed

into another transformation given by

jt = (Wjht + bj)
+,

where Wj is a 10 × 25 matrix and bj is a vector of size 10. Finally, jt is passed into a standard

OLS regression. The transform of ht into jt is seen as another layer in the model which we choose

to include in this overfitting analysis, as we found through cross-validation that this extra layer

generally improved R2. The parameters involved in constructing jt are updated together with

the LSTM and OLS parameters through BPTT. All LSTM based models in this thesis were con-

structed with the Python library Keras.

One problem with neural network transformations is that they decrease interpretability of the

(a) In sample R2 (b) Out of sample R2

Figure 8: Training and testing R2 for LSTM with training size 1,000,000 and testing size 500,000

drawn from EUR/USD. 20% dropout is apllied to input variable, 50% to recurrent connections

and 20% between the two layers.

prediction model. Even though we usually just perform OLS in the final prediction step, the OLS

parameters do not have any clear interpretation, as they are assigned to a heavily transformed

version of the original input. This is especially true for LSTM based models where the time t input

for the final OLS step is constructed by using inputs from all the previous observations. Also, it

is difficult to find a logical explanation for parameters used for a specific transformation, as each
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transformation is only an intermediate step in the prediction model. This low interpretability is

why neural networks are generally classified as black box methods.

Not only are the recurrent LSTM transformation bad for model interpretability; they are also

computationally expensive, since predicting at each time step requires many calculations and these

are carried out in a recurrent fashion, meaning that they cannot be parellelised much.
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4 Emperical Results

Having discussed a lot of theoretical properties for different models, it is now time to evaluate the

performance of the models on the FX data. We will evaluate performance for 2 ticks and 50 ticks

prediction horizons for each of the four currency pairs EUR/USD, GBP/USD, EUR/CHF and

EUR/SWE. All models will be considered but results from the linear shrinkage methods are not

presented, as an insignificant amount of penalisation was found to be optimal in all cases, meaning

that they were making predictions no different from OLS. First, we will discuss how optimal model

structures change as we go from a short prediction horizon to a longer one. Afterwards, we take a

closer look at how the different models perform in each of the prediction tasks. We will be using

data from 2017 and split it into training and testing sets as shown in Table 1.

EUR/USD GBP/USD EUR/CHF EUR/SWE

Train size 6,000,000 3,000,000 2,000,000 800,000

Test size 2,500,000 1,300,000 1,100,000 350,000

Hours All All 7am-6pm 7am-6pm

Table 1: Training sizes, test sizes and prediction hours. No predictions are made on Saturdays,

Sundays, public holidays and Fridays after 8:30 pm.

4.1 Short and Long Prediction Horizons

In Table 2 and 3 below, we see the out of sample R2 for 2 and 50 ticks predictions for each of the

currency pairs. It is evident that the R2 numbers for 2 ticks predictions are much higher than the

ones for 50 ticks predictions. Also, the ranking of methods is much more clear when we consider

2 ticks predictions.

EUR/USD GBP/USD EUR/CHF EUR/SWE

OLS 6.72 4.43 7.59 7.87

XGB 7.93 5.15 8.92 12.38

RF 7.85 5.15 8.46 11.71

MARS 6.35 4.35 7.49 1.52

LSTM 8.63 5.19 10.42 12.24

Table 2: Percentage R2 for 2 ticks predictions
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EUR/USD GBP/USD EUR/CHF EUR/SWE

OLS 0.541 0.403 1.04 1.202

XGB 0.523 0.257 0.90 1.085

RF 0.542 0.289 1.09 1.576

MARS 0.503 0.113 0.97 1.243

LSTM 0.549 0.367 0.89 1.329

Table 3: Percentage R2 for 50 ticks predictions

If we believe that markets are close to being efficient, it is not a surprising result that predicting

a long horizon is more difficult than a short one, as we would expect that any mispricing would

be corrected quickly. This means that our information at a given point of time is mostly useful to

predict the very near future, e.g. 2 ticks ahead. Because we know much less about what will happen

in a more distant future, the size of predictions relative to realized values will decrease when we

increase the prediction horizon. This is illustrated in Figure 9 where the 2 ticks predictions are

clearly much closer to the real values than it is the case for the 50 ticks predictions.

Less predictability means a higher noise to signal ratio. Particularly for complex models, this

(a) 2 ticks predictions (b) 50 ticks predictions

Figure 9: One week of predictions and realised values for EUR/USD

showed to result in overfitting which forced us to choose restrictive complexity parameters. For

instance, in the random forest, we attained optimal complexity for the 50 ticks prediction task

with much smaller trees than it was the case for the 2 ticks prediction task. This is shown in

Figure 10 where we see that optimal minimum leaf size increases significantly with the prediction

horizon. While complexity had to be decreased when increasing the prediction horizon, the opti-

mal amount of randomness seemed to be constant. When increasing the prediction horizon for the

other machine learning methods, we also found increased complexity (on a similar scale to RF)

and constant randomness to be optimal. This supports the claim in Section 3.5 of random forest
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being useful for indicating optimal complexity and randomness in other machine learning models.

Not only optimal complexity changed when increasing the prediction horizon; the importance

(a) 2 ticks predictions (b) 50 ticks predictions

Figure 10: 5 fold crossvalidated R2 of random forest with maximum depth 15, using 1,000,000

samples of EUR/USD

of features did as well. As we saw in Figure 3, the most important directional signals for 2 ticks

predictions are the discrepancies between mid prices on the different exchanges. This importance

of exchange discrepancies we could further confirm by running a linear regression only using these

as input variables. By doing this for the 2 ticks predictions task, we achieved 65% (on average) of

the R2 obtained from using all variables, we found useful. In the case of 50 ticks predictions, this

number went up to 85%, indicating a very concentrated feature importance. This concentration

could also be observed in the random forest feature importance measure where the discrepancies

in mid prices accounted for 61% of the feature importances for 50 ticks predictions compared to

50% for the 2 ticks predictions (averaged across the 4 currency pairs). The importance of exchange

price discrepancy variables is shown in Figure 11, where we clearly see that it is much easier to

make predictions when there is a significant difference between the prices on exchange A and B.

4.2 A Closer Look at Model Performance

Until now, we have only considered the R2 numbers in Table 2 and 3 to measure the performance

of the individual methods. The quality of the models should though also be assessed by how they

achieved these results. We will start by discussing the 2 ticks predictions where R2 rankings were

quite consistent and afterwards have a closer look at the more mixed results from the 50 ticks

predictions.
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Figure 11: R2 grouped by size of discrepancy between mid prices on exchange A and B (absolute

value)

In the 2 ticks predictions task, the LSTM model had the highest R2 for 3 out of 4 currency

pairs, and it was only slightly lower than XGB for EUR/SWE. XGB seemed to consistently get in

second place, RF in third, OLS in fourth and MARS fifth spot. Because the performance of MARS

generally was quite poor, we will not spend much time discussing this model, as it was clearly not

the best one. To see how we ended up with this ranking, we will start by looking at two R2-gain

plots shown in Figure 12 and 13. To construct them, we calculate
SSt =

∑t
i=N+1(yi − ȳ)2

SSDt =
∑t
i=N+1(yi − ŷi)2

Rt = 1− SSDt
SSt

for t = N + 1, . . . , T . This gives us a plot arriving at the true R2 where the slope of it tells us how

much R2 we are gaining (or losing if negative slope) in a specific period.

The general pattern in the 2 ticks predictions task was that LSTM outperformed the other models

as it is shown for EUR/USD in Figure 13 where the slope of LSTM seems to be consistently larger

than it is the case for the other models. The only currency pair for which this was not the case

is EUR/SWE shown in Figure 12. Here, LSTM and XGB seem to perform very equally. This is

though also by far the smallest dataset, meaning that any results attained from it are less useful for

the evaluating models than it is the case for the other currency pairs. The R2-gain plots obtained

from GBP/USD and EUR/CHF were very similar to the one of EUR/USD and are hence not

included.
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Figure 12: R2-gain for EUR/SWE 2 ticks predictions

LSTM’s outperformance is further confirmed by looking at R2 grouped by different conditions.

If we, for instance, consider the daily R2, LSTM has the highest score at least 85% of the time for

all currency pairs but EUR/SWE where it is best 45% of the time. We also measured the models’

performance conditional on the size of spreads, volatility and exchange price discrepancies and in

all cases, LSTM looked very strong.

In the 50 ticks predictions task, the only clear conclusion we could make was that MARS and

XGB generally performed poorly. OLS, RF and LSTM tended to perform very similarly and only

differ in the case of large market movements. This is illustrated in Figure 14 where the slope of

the curves only seem to differ at the jumps. These jumps usually happen due to economic news

events and getting them right is very important for the final R2 score. It is worth noting that

large movements in the mid price play a more significant role in the 50 ticks prediction task, as

a large one-tick movement will result in a large value of 50 consecutive target variables. For 2

ticks predictions, a large increment is only reflected in 2 target variables and it is hence a relatively

smaller part of the data set which consists of extreme-valued target variables. For all models, there

seem to be a lot of randomness involved in getting the jumps right, and it is hence important to

have a large testing set to avoid making conclusions based on pure randomness.

A good example of the importance of getting the large movements right is EUR/SWE. If we

just consider the R2 numbers in Table 3, it looks like RF is performing much better than LSTM

but if we look at Figure 15 it is clear that it is just being outperformed on two economic events,

i.e. if we removed 100 observations out of the 350,000 in the dataset, we would probably not see

any particular difference between the two models. In fact, the LSTM model shows very good
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Figure 13: R2-gain for EUR/USD 2 ticks predictions

performance in most market conditions, as it generally outperforms RF besides the times where

the spread on venue A is very high which is shown in Figure 16. A high value of the venue A

spread can be seen as an indication of unusual market conditions, and hence it seems like LSTM

only loses out when such are present. Due to the testing set only containing two economic events,

it is impossible to tell whether the LSTM generally is incapable of predicting economic events for

EUR/SWE or it just got ’unlucky’.

When we consider the other two currency pairs EUR/CHF and GBP/USD, the conclusions are

similar to the ones of EUR/USD and EUR/SWE; the models mostly just differ on the economic

events, and there can be drawn no certain conclusions on which model is best. Only when consid-

ering EUR/SWE, do we see signs of machine learning methods outperforming the OLS model. As

the dataset for EUR/SWE is by far the smallest and results generally depend a lot on economic

events, we can though not draw any strong conclusions from this.

If we consider factors such as model interpretation and computation time (see Table 4), we would

though favour OLS, as factors are much better for OLS than for the machine learning methods.

We saw indications of LSTM performing well in some cases, but with the high computation time

(see Table 4) and low interpretation of predictions, it is not justifiable to recommend it over OLS.

It is likely that the combination of a high noise to signal ratio (causing overfitting) and a con-

centration in feature importances (making high-level interactions lees relevant) is what keeps the

machine learning models from consistently outperforming the linear regression, as it is the case

when we consider 2 ticks predictions.
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Figure 14: R2-gain for EUR/USD 50 ticks predictions

EUR/USD GBP/USD EUR/CHF EUR/SWE

OLS 0.2 0.1 0.1 0.05

XGB 50 28 23 12

RF 11 6 4 2

MARS 28 17 11 6

LSTM 876 512 315 145

Table 4: Computation time in minutes for 50 ticks predictions. Computations were carried out on

a 32 core, 300 GB RAM computer with no GPU.

4.3 Further Research

An interesting extension of this thesis would be to make short-term predictions with machine

learning models, e.g. LSTM, and then use these predictions as an input for a more simple model,

e.g. OLS. An accurate short-term prediction could prove to be a valuable input for a longer pre-

diction horizon, as it actually makes up a large part of the long term prediction. For instance,

substituting our 50 ticks predictions with the 2 ticks predictions yielded 60% of the 50 ticks pre-

diction task’s R2 on average. By only making short-term predictions with the machine learning

methods, overfitting would be much less of an issue and their capability of modelling high-level

interactions could be used. As machine learning methods showed to perform much better than

OLS for the short-range predictions, they must be picking up signals that the OLS does not. By

using these short-range predictions in the OLS model, we would convert these signals into a single

directional signal which could prove to be useful for the OLS model.
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Figure 15: R2-gain for EUR/SWE 50 ticks predictions

Figure 16: R2 grouped by size of spread on venue A
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Conclusion

Throughout Section 3, we saw the theoretical capabilities of the models increase, as we considered

more and more complex models. On the other hand, interpretation went in the opposite direction,

and in the final LSTM model, there was hardly any left. Also, computation time increased signifi-

cantly as shown in Table 4. In Section 4, we investigated whether the increase in model complexity

resulted in models capable of producing outstanding predictions or they are simply not suitable

for high frequency FX mid price predictions. We did this by considering both a short prediction

horizon (2 ticks) and a longer one (50 ticks).

In the case of 2 ticks predictions, there was a clear distinction between the performance of machine

learning models and the performance linear models. Based on R2 scores, predictions made with

random forest, XGB and LSTM were significantly better than the ones made with linear models.

Especially LSTM proved suitable for the task, as it consistently outperformed the other models

for all currency pairs but EUR/SWE where it was equally good to the XGB model.

For 50 ticks predictions, we could identify MARS and XGB as the worst performing models but

it was difficult to rank OLS, random forest and LSTM based on predictive performance. The

predictions made by these three models tended to be very similar during normal market conditions

but could differ significantly during economic news events where price movements are large. There

was though no clear pattern of which models were best at getting the predictions right during

these periods of time, meaning that we are unable to rank them by their R2 numbers. If we also

consider computation time and interpretability of models as factors as well, we will though argue

that choosing a linear model is the best option for this prediction task.

We believe that the difference in model performance in the two prediction tasks is mainly caused

by an increased noise to signal ratio and feature importance concentration in the 50 ticks predic-

tions task. When we combine a lot of noise in the data with a high amount model parameters,

we easily overfit the data and are forced to reduce model complexity significantly, meaning that

the model capabilities cannot be used in full. Additionally, the increased feature importance con-

centration means that the machine learning models’ capability of modelling high-level interactions

may become less relevant.
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