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Abstract

This thesis aims at studying the correlation structure of First-to-default baskets. We
start by reviewing some theoretical results about copulas, which we will use in the
models we will examine. After explaining general results about First-to-default bas-
kets, we will present the Gaussian Latent Variable Model and an alternative model,
the Student-t Copula Model. We will highlight the main differences between these
two models and analyze the First-to-default baskets sensitivity to correlation under
the assumptions of each of these models theoretically in a first time, and numerically
in a second time.
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1 INTRODUCTION

1 Introduction

Credit derivatives have started to take an important place in the derivatives market
in the late 1990s. The amount of the outstanding transactions was equal to $40 bil-
lion in 1996, and by the crisis of 2007, this total notional principal was $50 trillion
[2], and has declined after the crisis down to $10 trillion in 2018. Credit derivatives
have been the fastest growing derivatives of the last two decades and important de-
velopments have been made in this field in terms of mathematical modeling, espe-
cially since the market has become more and more affected by new regulations and
external events recently, such as the Greek debt crisis in 2015, the Great Britain’s
withdrawal of the European Union or even more recently, the COVID-19 pandemic.
Such events have a huge impact on the industry and expose the companies to huge
losses. Hence financial companies and investment banks in particular have to pay a
particular attention to these situations and reinforce their risk management. A credit
derivative is a contract which payoff depends on one or multiple credit events. A
credit event usually refers to a default from an obligator, which means that the obli-
gator is not able to honour the terms of a contract he is into, in particular when he
cannot provide payments that he agreed to supply to a counterparty. When such an
event occur, a certain amount is paid by one of the counterparties as a protection
against the event. As these contracts depend on the creditworthiness of the entities
involved, there exist credit ratings, which consist of a measure of the creditworthi-
ness of a borrower. Those assessments are usually given by rating agencies, the most
popular ones being Moody’s, S&P, and Fitch, who assign a mark to corporate bonds.
For SP and Fitch, the ratings, in the decreasing order are AAA, AA, A, BBB, BB, B,
CCC, CC and C. For a more accurate measure, these ratings are usually divided into
sub-ratings.
We can distinguish two categories of credit derivatives : single-name credit deriva-
tives and multi-name credit derivatives. This first category refers to derivatives based
on the credit risk of a single entity, while the second one refers to derivatives based
on the credit risk of several entities at once. In this thesis, we will mainly focus
on multi-name credit derivatives, and more specifically on First-to-default baskets,
which consist of a contract involving two counterparties, a protection buyer and a
protection seller. The buyer pays periodic fees to the seller of the protection, who,
in case of a credit event, pays a certain amount to the buyer. A First-to-default bas-
ket contains multiple names (typically between 5 and 10 names of issuers) and the
credit events which triggers the payment from the protection buyer is the first de-
fault from one of the issuers in the basket. We will give more details and provide a
more formal definition of these type of instruments in the further sections.
The dependence structure between the default times of the names contained in a
First-to-default basket has a key role and the credit derivatives market has seen
the emergence of a liquid market in credit default correlation. A very popular way
of modeling the default times is the Gaussian copula model, which makes the as-
sumption that the time defaults of a basket are linked via a gaussian copula, which
dramatically eases the computations but which has also been very controversial, to
such a point that the Gauss Copula function, also known as Li’s formula, has been
qualified as ”The formula that killed Wall Street” by journalist Felix Salmon in 2009.
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1 INTRODUCTION

However, quantitative analysts have a more nuanced view on this last point and
this model (amongst others) is still used today. In this paper, we will analyze this
model and evaluate the impact of the dependence structure between the defaults
(or default correlation, as the correlation parameter is enough to describe the whole
joint distribution of the default times in the case of a Gaussian copula) over the
characteristics of a First-to-default basket. We will also compare this model with the
Student-t copula model, which is another popular way of modeling the default times
in a baskets and try to highlight the key characteristics of the two.
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2 PRELIMINARIES

2 Preliminaries

2.1 Copulas

2.1.1 Definition and first properties

Copulas are used to build a multivariate distribution by choosing separately the
marginal distributions and the dependence structure. More formally, a n-dimensional
copula is a joint cumulative distribution function on [0,1]n with uniform marginal
distributions.

We say that a function C : [0,1]n→ [0,1] is a copula if and only if :
1. ∀i = 1, . . . ,n, C(u1, . . . ,un) is an increasing function of ui
2. ∀i = 1, . . . ,n, ,C(1, ...,ui , ...,1) = ui and ui ∈ [0,1]
3. ∀(a1, . . . , ad), (b1, . . . , bd) such that ∀i = 1, . . . ,d, ai ≤ bi ,

2∑
i1=1

· · ·
2∑
id=1

(−1)Σ
4
k−1ikC

(
u1i1 , . . . ,udid

)
≥ 0 (1)

with uj1 = aj and uj2 = bj ∀j = 1, . . . ,d.

The following theorem, known as Sklar’s theorem, is a very important one as it
enables to build a multivariate distribution by selecting any marginal cumulative
distribution functions and a dependence structure to link them with a copula.

Theorem 1 (Sklar) Let X1, . . . ,Xn be random variables with a joint distribution F and
marginals F1, . . . ,Fn. Then, there exist a copula C : [0,1]n → [0,1] such that for all
(x1, . . . ,xn) ∈R

n
,

F(x1, . . . ,xn) = C(F1(x1), . . . ,Fn(xn) (2)

Moreover, if the marginals F1, . . . ,Fn are continuous, the copula is uniquely defined.
Otherwise, the copula is uniquely defined on F1(R)× . . .×Fn(R).

Copulas have other key properties commonly used which we list below :

Proposition 1 (Invariance to strictly increasing transformations) Let (X1, . . . ,Xn) be
a vector of random variables with continuous marginal cdfs with copula C. Let
{Ti}i=1,...,n be a family of strictly increasing functions, then the copula of (T1(X1, . . . ,Tn(Xn))
is also C.

Proposition 2 (Fréchet-Hoeffding bounds) For any copula C, the following inequal-
ities hold

max

 n∑
i=1

ui +1−n,0

 ≤ C (u1, . . . ,un) ≤min {u1, . . . ,un} (3)

for any (u1, . . . ,ud) ∈ [0,1]n.
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2 PRELIMINARIES 2.1 Copulas

We can classify the copulas into three possible categories : fundamental copulas,
implicit copulas and explicit copulas.

2.1.2 Fundamental copulas

There exist three fundamental copulas, each corresponding to a specific dependence
structure. The first one is the independence copula which is the dependence struc-
ture of any mutually independent continuous random variables. It is given by

C (u1, . . . ,un) =
n∏
i=1

ui (4)

The independence copula is the distribution function of mutually independent uni-
form random variables (U1, . . . ,Un).
The second fundamental copula is the comonotonicity copula given by

C (u1, . . . ,un) =min(u1, . . . ,un) (5)

This copula corresponds to a perfect positive dependence structure and it is the joint
cumulative distribution function of (U,. . . ,U ) with U ∼Unif (0,1).
Finally, the third fundamental copula only makes sense in two dimensions and is
called the countermonotonicity copula given by

C (u1,u2) =max(u1 +u2 − 1,0)(6)

This copula corresponds to a perfect negative dependence structure and it is the joint
cumulative distribution function of (U,1−U ) with U ∼Unif (0,1).
We will show in the following sections that the fundamental copulas can be build
using implicit or explicit copulas in limit cases scenarios of their parameters.

2.1.3 Implicit copulas

The implicit copulas do not have simple expressions as they are build with known
multivariate distribution functions via Sklar’s theorem. Hence, they have to be sim-
ulated. The two copulas we will work with through this project are the Gaussian
copula and the Student-t copula, which are both implicit copulas.

The Gaussian copula is the most frequently used copula, particularly in the con-
text of modelling default times, as we will detail further in this thesis.
Let (X1, . . . ,Xn) a vector of Gaussian random variables with means ν = (ν1, . . . ,νn) and
variances σ2 = (σ2

1 , . . . ,σ
2
n ), with correlation matrix Σ = (ρi,j)i=1,...,n;j=1,...,n. Define

Ui := Φ(
Xi −µi
σi

) for i = 1, . . . ,n (7)

Φ being the cumulative distribution function of a univariate standard normal distri-
bution.
Then, the distribution function CGC

Σ
(u1, . . . ,un) of the {Ui}i=1,...,n is the Gaussian cop-

ula associated to the correlation matrix Σ.
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2.1 Copulas 2 PRELIMINARIES

If Φn,Σ denotes the n-dimensional normal distribution, we have

CGa
Σ

(u1, . . . ,un) = Φn,Σ(Φ
−1(u1), . . . ,Φ

−1(un)) (8)

There is no closed form for this copula, but we can write it as

CGa
Σ

(u1, . . . ,un) =
∫ Φ−1(u1)

−∞
· · ·

∫ Φ−1(un)

−∞

1√
(2π)ndet(Σ)

exp

−12(x −µ)T
−1∑

(x −µ)

dx1 . . .dxn
(9)

We can note that the Gaussian copula does not capture tail dependence, and that for
any permutation σ ,

CGa
Σ

(uσ (1), . . . ,uσ (n)) = C(u1, . . . ,un) (10)

Another important and frequently used implicit copula is the Student-t copula, which
has the advantage of taking into account tail dependence in the dependence struc-
ture.
Let (X1, . . . ,Xn) a vector of standard normal random variables with correlation matrix
Σ, µ = (µ1, . . . ,µn) and ξν ∼ χ2

ν independent from the {Xi}i=1,...,n. Define

Ui := tν

(
µi +

√
ν
√
ξν
Xi

)
(11)

with tν denoting the cumulative distribution function of the univariate Student-t dis-
tribution with ν degrees of freedom.
Then, the distribution function Cν,Σ(u1, . . . ,un) of the {Ui}i=1,...,n is the Student-t cop-
ula with ν degrees of freedom associated to the correlation matrix Σ.
If tnν,Σ denotes the n-dimensional Student-t distribution, we have

Ctν,Σ(u1, . . . ,un) = t
n
ν,Σ(t

−1
ν (u1), . . . , t

−1
ν (un)) (12)

We can write the Student-t copula as

Cν,Σ (u1, . . . ,un) =
∫ t−1ν (u1)

−∞
· · ·

∫ t−1ν (un)

−∞

Γ
(
ν+n
2

)
Γ
(
ν
2

)√
(πν)ndet(Σ)

1+ 1
ν
(x −µ)T

−1∑
(x −µ)


− ν+n2

dx1 . . .dxn

(13)
We will discuss how to simulate these copulas in the context of basket time-to-default
modelling in further sections.

2.1.4 Explicit copulas

The explicit copulas have a closed-form expressions for the joint distribution func-
tion which satisfy the initial criteria mentioned in the beginning of our section. An
important class of explicit copulas is the Archimedean copulas and we will briefly
describe three copulas derived from this class.
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2 PRELIMINARIES 2.1 Copulas

The Archimedean copulas can be constructed the following way

C (u1,u2, . . . ,un) = ψ
−1 (ψ (u1) +ψ (u2) + . . .+ψ (un)) (14)

The function ψ : [0,1]→ [0,∞) is called the generator of the copula and the follow-
ing properties hold :
1. ψ is convex
2. ψ is decreasing
3. ψ(1) = 0. If, moreover, ψ(0) =∞, then ψ is called a strict generator and the copula
is called a strict copula.

The Clayton copulas are built by choosing ψ(t) = t−θ−1
θ with θ ∈ [−1,∞)\{0} Then, the

2-dimensional Clayton copula reads

CClθ (u1,u2) = max
(
u−θ1 +u−θ2 − 1 ,0

)−1/θ
(15)

In particular, if θ > 0, ψ is a strict generator and we have

CClθ (u1,u2) =
(
u−θ1 +u−θ2 − 1

)−1/θ
(16)

The Gumbel copula use the function ψ = (−ln(t))θ as its generator. The two-dimensional
Gumbel copula reads

CGu
θ (u1,u2) = exp

(
−
(
(− logu1)θ + (− logu2)θ

)1/θ)
(17)

with θ ∈ [1,∞).

The last explicit copula we present in this section is the Frank copula, which strict
generator is ψ(t) = − e−θt−1

e−θ−1 . The two-dimensional Frank copula reads

Cθ(u1,u2) = −
1
θ
ln

1+
(
e−θu1 − 1

)(
e−θu2 − 1

)
e−θ − 1

 (18)

with θ ∈R\{0}.

2.1.5 Kendall’s tau

The Kendall’s tau is a measure of dependence between two random variables X and
Y . Denote (X ′,Y ′) an independent copies of the vector (X,Y ). The pair of vectors
(X,Y ) and (X ′,Y ′) are said to be concordant if

(X −X ′)(Y −Y ′) > 0 (19)

and discordant if
(X −X ′)(Y −Y ′) < 0 (20)

11



2.1 Copulas 2 PRELIMINARIES

In order to measure the dependency between X and Y , Kendall’s tau evaluates the
difference between their probabilities of concordance and discordance.
Let X and Y two random variables and (X ′,Y ′) an independent copy of (X,Y ). Their
Kendall’s tau is given by

τ(X,Y ) = P

{
(X −X ′) (Y −Y ′) > 0

}
−P

{
(X −X ′) (Y −Y ′) < 0

}
(21)

If (X,Y ) is a vector of continuous random variables with copula C, their Kendall’s
tau can also be written

τ(X,Y ) = 4
"

[0,1]2
C(u,v)dC(u,v)− 1 (22)

Kendall’s tau also has interesting properties.
The first one is its invariance to strictly increasing transformations of X and Y .
Moreover, there exists a link between its value and the dependence parameters of
the corresponding copula. For instance, in the case of a Student-t or a Gaussian
copula with correlation matrix Σ = (ρij)i=1,...,n;j=1,...,n, we have the relation

τ(Xi ,Xj) =
2
π
arcsin(ρij) (23)

In particular, this property allows us to estimate the correlation coefficients from an
estimator of the Kendall’s tau.

2.1.6 Tail dependence

Consider again a vector of two random variables (X,Y ). The tail dependence be-
tween X and Y is a measure of the likelihood of extreme movements in both X and
Y . Large positive joint movements is qualified as an upper tail dependence and large
negative joint movements is qualified as a lower tail dependence.
In order to measure their upper tail dependence between X and Y , we evaluate
the probability that Y is in the upper tail of its cumulative distribution function FY
knowing that X is in the upper tail of its cumulative distribution function FX . Anal-
ogously, we measure their lower tail dependence by evaluating the probability that
Y is in the lower tail of FY knowing that X is in the lower tail of FX . More formally,
the coefficient of upper tail dependence reads

λU (X,Y ) = lim
q→1−

P

[
Y > F−1Y (q) | X > F−1X (q)

]
(24)

and the coefficient of lower tail dependence reads

λL (X1,X2) = lim
q→0+

P

[
Y ≤ F−1Y (q) | X ≤ F−1X (q)

]
(25)

X and Y are said to be upper tail dependent with parameter λU if λU > 0 and
asymptotically independent if λU = 0, and lower tail dependent with parameter λL
if λL > 0.

12



2 PRELIMINARIES 2.2 Linear Regression Methods

λU and λL can also be expressed using the copula C of (X,Y ). We have

λU = lim
q→1−

1− 2q+C(q,q)
1− q

(26)

and

λL = lim
q→0+

C(q,q)
q

(27)

2.1.7 Summary of the characteristics of the main copulas

In this section, we will list the main characteristics of the copulas we have seen in
the previous sections by highlighting particularly their tail dependence and how to
vary their parameters so that we obtain a fundamental copula.

Copula Independence Comonotonicity Countermonotonicity
Gaussian ρ = 0 ρ→ 1 ρ→−1
Student-t ν→∞ and ρ→ 0 ν→∞ and ρ→ 1 ν→∞ and ρ→−1
Clayton θ→ 0 θ→∞ θ = −1
Gumbel θ = 1 θ→∞ No negative dependence
Frank θ→ 0 θ→∞ θ→−∞

Copula Upper tail dependence Lower tail dependence
Gaussian No No

Student-t Yes and λU = tν+1
(
−
√

(ν+1)(1−ρ)
1+ρ

)
> 0 Yes and λL = λU

Clayton No Yes if θ > 0 and λU = 2−1/θ > 0
Gumbel Yes and λU = 2− 21/θ > 0 No
Frank No No

2.2 Linear Regression Methods

Linear regression analysis is a supervised learning method which objective is to es-
tablish a relationship between a variable y ∈ R which we want to predict from an

input x =
(
x1, . . . ,xp

)T
∈Rp. Linear regressions assume a linear relationship between

y and x, e.g. y is modeled as θ0+θ1x1+ ...+θpxp, with
(
θ1, . . . ,θp

)
the parameters of

the prediction function.
Let us consider a general linear regression problem in which we observe n > 1 pairs
(xi , yi), with yi ∈ R and xi =

(
xi,0,xi,1, . . . ,xi,p

)
∈ R

p. These pairs (xi , yi) form our
”training set”.

13



2.2 Linear Regression Methods 2 PRELIMINARIES

We can also formulate the problem using matrix notations. Denote

X =


xT1
...
xTn

 =

x1,0 . . . x1,p
...

...
xn,0 . . . xn,p

 ∈Rn×(p+1), Y =


y1
...
yn

 ∈Rn (28)

We can rewrite this relationship as :

Y = Xθ + ε

• Y represents a vector of size n of observed values often called labels.

• X is a matrix of dimension n by p with n equal to the number of observations
and p equal to the number of features or explanatory variables.

• ε is the error term of the regression. It captures all the other features which
could explain Y and that are not modeled in X.

2.2.1 Ordinary Least-squares

First, we can think about the ordinary least square method which is a method used to
find the unknown parameters in a linear regression model and based on minimizing
the sum of the squares of the differences between the label and the prediction made
by the linear model.

L(θ) =
1
2
‖Y −Xθ‖22

θ̂ = argminθ∈Rp L(θ)

Assume the following hypothesis :

• No colinearity of the explanatory variables X which means that that there is
not an explanatory variable that can be expressed as a linear combination of
the other explanatory variables

• The errors ε are independent.

• The explanatory variables are exogenous which means that they are not corre-
lated with the error term ε

• The error term ε is homoscedastic, in other words the variance of the error
term is constant.

14



2 PRELIMINARIES 2.2 Linear Regression Methods

Under these assumptions, the Gauss Markov Theorem states that the Ordinary Least
Squares estimator is optimal in the class of linear unbiased estimators.
Hence this estimator has the lowest sampling variance within the class of linear
unbiased estimators. We can find an explicit expression for θ̂.

min
θ
L(θ) = min

θ

1
2
‖Y −Xθ‖22

∂L(θ)
∂θ

=
1
2
∂
∂θ

(Y −Xθ)T (Y −Xθ) = 0

X>Y =
(
X>X

)
θ

θ̂ =
(
X>X

)−1
X>Y

Note that the matrix formulation of the problem gives us an easy geometric interpre-
tation of the OLS estimator : Ŷ = Xθ̂ is the closest point to Y in the linear subspace
span(X) ⊂R

n.
We can also find the solution of the OLS problem geometrically. R

n being a Hilbert
space and span(X) a linear subspace of Rn (thus closed and convex), we can apply
the Hilbert projection theorem, which implies that Ŷ is unique and Y − Ŷ is orthog-
onal to span(X). In particular, the second point implies that XT (Y − Ŷ ) = 0 and
thus XTXθ̂ = XT Y . When XTX is invertible, we obtain the closed form formula
θ̂ = (XTX)−1XT Y .
If we are in the case where we have only one explanatory variable, the problem
simplifies to:

Argminθ0,θ1

n∑
i=1

(yi −θ1xi −θ0)2

And then by setting the gradient equal to 0 we find that :

θ̂1 =
∑
xi

∑
yi −n

∑
xiyi

(
∑
xi)

2 −n
∑
x2i

=
∑
(xi − x̄) (yi − ȳ)∑

(xi − x̄)2

θ̂0 =
∑
yi − θ̂1

∑
xi

n
= ȳ − θ̂1x̄

Then we have to assess the quality of the prediction. We will use the determination
coefficient R2 defined as :

R2 = 1−
∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ȳ)

2

The closer the determination coefficient is closed to 1, the better the prediction is.

The OLS has the advantage of having easily interpretable parameters and a low
computational time.

15



2.2 Linear Regression Methods 2 PRELIMINARIES

However, it also has some drawbacks such as the fact that a large number of ex-
planatory variables could lead to over-fitting.
This issue could be tackle with shrinkage method such as LASSO regression or RIDGE
regression where we add a regularization term to the loss function, which we decide
not to discuss here as these methods haven’t been used during the project.

16



3 DESCRIPTION OF THE DATA

3 Description of the data

This brief section aims at describing the instruments we will work with along this
thesis. We have already introduced the main principles of credit derivatives in the
Introduction and made the distinction between single-name credit derivatives and
multi-name credit derivatives, and we will describe our quantities of interest more
formally.
The most liquid credit derivatives are the credit default swaps (CDS), which is a basic
protection contract. The CDS contracts ensure protection against a default from an
entity. Assume that two companies A (which will be the protection buyer) and B
(which will be the protection seller) enter into a credit default swap with maturity T
agree that if a reference entity C defaults (i.e. there is a credit event). The premium
leg consists of a stream of periodic payments from the protection buyer A to the
protection seller B, which lasts until the maturity time T of the contract or until the
reference entity C defaults. We illustrate these cash flows in the figure below :

Figure 1: Credit Default Swap between a protection seller A and a protection buyer B
on the default of a reference entity C

The credit events which count as a default from C and trigger the payment from the
protection seller, as stated by the International Swaps and Derivatives Association
(ISDA), are the following :
. Bankruptcy of C
. Payment default from C
. Debt restructuring of C, i.e. a reorganization of its debts to reinforce them
. Obligation acceleration, i.e. when C has to pay a debt earlier as a result of a default
or another similar event
. Repudiation, i.e. if C rejects the validity of its contract and no longer respects it

3.1 Default baskets pricing

A default basket is very similar to a credit default swap. It is also a contract involving
a protection leg and a premium leg, but the difference is that the credit event which
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triggers the payment from the protection leg is the n-th default in a basket of N
issuers. Let’s index the issuers in the basket with i = 1, . . . ,N and note i(n) the index
of the n-th issuer to default. Then, assuming a contract with unit nominal $1, the
amount L paid by the protection seller to the protection buyer after the n-th default
is equal to (1−Ri(n)).

Let’s denote τ∗n the time of the n-th default, T the maturity time of the contract, D the
stochastic discount factor such that D(t1, t2) represents the discount factor between
dates t1 and t2 (depending on the interest rates) and assume a contract with unit
nominal. Then at time τ∗n the present value of the default leg is given by :

PVDef(t) =
{
D (t,τ∗n)

(
1−Ri(n)

)
if τ∗n ≤ T

0 if τ∗n > T
(29)

If we denote t0 as the beginning date of the contract, (t1, . . . , tp) the payment dates
for the premium leg, αi = ti −ti−1 and (S1, . . . ,Sp) the corresponding spread payments
values, the present value of the premium leg at time t is given by :

PVPrem(t) =
{ ∑m

i=1SiαiD (t, ti) + PVAccr (t) if tm ≤ τ∗n < tm+1∑p
i=1SiαiD (t, ti) if τ∗n ≥ tp

(30)

with PVAccr (t) corresponding to a compensation to the protection seller for the pro-
tection given from the last payment date tm before the default occur to τ∗n. We have

PVAccr(t) =
{
SmD(t,τ∗n)(τ

∗
n − tm) if tm ≤ τ∗n < tm+1

0 if τ∗n ≥ tp
(31)

In order to price a n-th to default basket at a time t, we compute the expectation
of the difference between the present values (at time t) of the premium leg and the
default leg. From the protection seller point of view, this leads to

VNTD(t) = E[PVPrem(t)−PVDef(t)]

We will see in the next section how this quantity can be computed numerically in
the case of a First-to-default basket.

3.2 Default dependency

The data we are going to use consist of basket containing several issuers and we
have to take into account their default dependency, that is the likelihood that two
or more issuers default approximately at the same time, which may occur for many
reasons, among which the geographical sector in which the issuers are located which
may cause them to be impacted the same way by external events or their sector of
activity, such that a default from one company can lead another one to default as
well. The aim of this section is to illustrate this relationship between the default
dependency of the issuers in the basket and the probability that a default occurs.
For clarity purposes, we will use the same approach as in [1], chapter 12, by taking
the example of a simple basket containing only two names A and B. Let’s denote

18



3 DESCRIPTION OF THE DATA 3.2 Default dependency

their corresponding default times respectively τA and τB. The probability of default
by time T of A and B are defined as

PA(T ) = E[1τA≤T ] (32)

and
PB(T ) = E[1τB≤T ] (33)

Both these individual default probabilities can be found in practice by extracting
them from market. Then, we can define their joint default probability, i.e. the
probability that both A and B default before time T , as

PAB(T ) = E[1τA≤T1τB≤T ] (34)

The First-to-default default probability at time T of the basket depends not only
on the probability of default of A and B but also on their joint default probability.
Indeed, in the case of a 2 names basket, the credit event triggering the payment from
the protection leg is the default of A, B or A and B, i.e.

PFTD(T ) = 1−E[1τA≥T1τB≥T ]
= 1−E[(1−1τA≤T )(1−1τB≤T )]
= PA(T ) + PB(T )− PAB(T )

(35)

And the probability of a second-to-default event is simply the probability that both
A and B default by time T , i.e.

PSTD(T ) = PAB(T ) (36)

We can think of three particular scenario which show how the first-to-default and
second-to-default probability can be affected by the joint default probability of A
and B, which we illustrate through the following diagrams :
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Figure 2: Minimum dependence, independence and maximum dependence scenarios
for the joint distribution of A and B. Figure taken from [1]

1. Minimum dependence scenario : PAB(T ) = max(PA(T ) + PB(T )− 1,0), which leads
to two cases : either PA(T ) + PB(T ) ≥ 1 in which case

PFTD(T ) = 1
PSTD(T ) = PA(T ) + PB(T )− 1

(37)

or PA(T ) + PB(T ) < 1, and

PFTD(T ) = PA(T ) + PB(T )
PSTD(T ) = 0

(38)

2. Independence : PAB(T ) = PA(T )PB(T ). Then,

PFTD(T ) = PA(T ) + PB(T )− PA(T )PB(T )
PSTD(T ) = PA(T )PB(T )
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3. Maximum dependence : PAB(T ) = min[PA(T ), PB(T )]. And we have

PFTD(T ) = max(PA(T ), PB(T ))
PSTD(T ) = min(PA(T ), PB(T ))

We note here that the First-to-default default probability decreases from PA(T )+PB(T )
to max(PA(T ), PB(T )) and that the Second-to-default probability increases from 0 to
min(PA(T ), PB(T )) as the dependency between A and B increases.
We define the FTD spread as the fixed spread which has to be paid by the protection
buyer to the protection seller in order to equalize the expectation of the present
value of the premium leg and the default leg. Its value depends on the number of
issuers, their individual spreads, the maturity of the First-to-default basket and the
default correlation between the issuers. We will see in section 5.1.2 that the First-
to-default spread’s behaviour is similar to the First-to-default default probabilities in
terms of boundaries it lies between the minimum of the individual issuers spread
and the sum of all the individual spreads, and also in terms of sensitivity to default
correlation.
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4 Models

4.1 The Gaussian Latent Variable Model

4.1.1 Standard model

The Gaussian Latent Variable Model is the most famous and the most frequently
used model when dealing with correlation products.

Let’s introduce the random variable A, which we call a ”latent variable”, associated
to a credit issuer. Here, this latent variable is associated to a time-to-default τ in so
far as we say that a default occurs by time T if the value A is less than a threshold
C(T ).
In particular, assuming a standard normal distribution for A we have

P r(τ < T ) = P r(A < C(T )) = Φ−1 (C(T )) (39)

Φ being the cumulative distribution function of the standard normal distribution.

Hence, the values of A entirely determine the values of τ, and we have A = C(τ).
Denote Q(T ) the issuer’s probability of survival past time T . The relation above
implies that

Q(T ) = 1−Φ(C(T )) (40)

and in particular,
Q(τ) = 1−Φ(A) (41)

Using this relation and the property that if X ∼ N (0,1), then Φ(X) ∼ U (0,1) (and
therefore 1 −Φ(X) ∼ U (0,1)), which we will use as it is more computationally ef-
ficient to draw from a uniform distribution than a gaussian distribution, we can
simulate the default time τ using a Monte Carlo approach the following way :

Algorithm 4.1

• For each simulation k = 1,2, ...,M, draw uk ∼U (0,1) independently

• For each k = 1, . . . ,M, solve τk =Q−1(uk)

• Average over all the simulations to return τ = 1
M

∑M
k=1 τ

k

4.1.2 The One-factor Copula Model

The previous model is convenient in the case of modelling a single-name credit
derivative, but in the context of our project, we will be working with baskets of is-
suers, which requires a model that takes into account the correlation factor between
the issuers.
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Let’s assume we are working with a basket of N issuers, and note Ai the latent
variable associated to the i-th issuer. In this model, we make the assumption of a
Gaussian copula between the default times {τi}i=1,...,N . In order to construct a Gaus-
sian copula between the {τi}i=1,...,N we can first notice that if pi(T ) is the default
probability of the issuer i by time T , then Ui := pi(τi) is a uniform random variable.
Thus, if C(u1, ...,un) is a multivariate uniform distribution and U1, ...,UN are multi-
variate uniform with distribution C the multivariate distribution for the default time
can be :

τ1 := p
−1
1 (U1) , . . . , τM := p−1N (UN )

In order to have a Gaussian dependence structure between the default times {τi}i=1,...,N ,
we assume that

[U1, . . . ,UN ] = [Φ (A1) , · · · ,Φ (AN )]

Hence we construct the {τi}i=1,...,N from the {Ai}i=1,...,N via

τi = p
−1
i (Φ(Ai))

which implies in particular that

{τi < T } = {Ai < Φ−1(pi(T ))}

Finally, we have

∀i, j,Pr
(
τi < ti , τj < tj

)
= Pr

(
Ai < Φ−1(pi(ti)),Aj < Φ−1(pi(tj));ρij

)
= Φ2,ρij

(
Φ−1 (pi(ti)) ,Φ

−1
(
pi(tj))

)
= C

(
pi (ti) ,pj

(
tj
)) (42)

with ρij = Corr(Ai ,Aj).
So the default copula is the Gaussian bi-variate cumulative distribution function

C
Def
ρi,j

(
ui ,uj

)
= Φ2

(
Φ−1 (ui) ,Φ

−1
(
uj

)
,ρij

)
(43)

Moreover, the survival copula reads

CSurvρi,j

(
ui ,uj

)
= Φ2

(
Φ−1 (1−ui) ,Φ−1

(
1−uj

)
,ρij

)
= Φ2

(
−Φ−1 (ui) ,−Φ−1

(
uj

)
,ρij

)
= Φ2

(
Φ−1 (ui) ,Φ

−1
(
uj

)
,ρij

)
by symmetry of the Gaussian distribution

= CDefρi,j

(
ui ,uj

)
(44)
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In the d-factor Gaussian Model, we assume that the correlation matrix Σ = (ρij)i=1,...,N ;j=1,...,N
has a ”factorial” structure, which means that the {Ai}i=1,...,N can be written as

• Ai =
∑d
k=1βikZk +

(√
1−

∑d
k=1β

2
ik

)
Yi

• Z = (Z1, ...,Zd) vector of independent N (0,1) random variables

• Y = (Y1, ...,Yn) vector of independent N (0,1) random variables independent
from Z

Under these assumptions, the default probability of the issuer i by time T condition-
ally on Z is given by

P r(τi < T | Z) = P r(Ai < Φ−1(pi(T ))

= P r

Yi < Φ−1(pi(T ))−
∑d
k=1βikZk√

1−
∑d
k=1β

2
ik

| Z


= Φ

Φ
−1(pi(T ))−

∑d
k=1βikZk√

1−
∑d
k=1β

2
ik


(45)

We can then easily derive the formula for the probability of default of the basket
past a time T as the random variables {Ai}i=1,...,N are independent conditionally on
Z = {Zk}k=1,...,d which enables us to write

P r(No default in the basket by time T |M) = P r(∀i, τi > T | Z)

=
N∏
i=1

(1− P r(Ai < Φ−1(pi(T )))

=
N∏
i=1

1−Φ
Φ
−1(pi(T ))−

∑d
k=1βikZk√

1−
∑d
k=1β

2
ik




(46)
Finally, in order to obtain the First-to-default survival probability of the basket, we
simply have to integrate over all the possible values of the vector Z. If we denote
{τ∗i }i=1,...,n the sorted vector of default times such that τ (∗)i is the i-th time-to-default,
we have :

P r(τ*
1 > T ) = E

 N∏
i=1

P r(τi > T | Z)


=

∫
R
d

N∏
i=1

1−Φ
Φ
−1(pi(T ))−

∑d
k=1βikZk√

1−
∑d
k=1β

2
ik


×

N∏
i=1

φ(Zk)dZk

(47)
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In the One-Factor Gaussian Model, we make the assumption that the correlation
matrix Σ has a 1 factor structure. In this case, Ai satisfies the relation

Ai = βiZ +
√
1− β2i Yi .

Z and Yi being standard normal random variables. Z is called a systematic factor
(or the system factor) and is common for every issuer in the basket, Yi is called
a idiosyncratic factor which depends on the issuer i and βi is the factor loading
associated to Ai .
In particular, we have corr

(
Ai ,Aj

)
=

√
βiβj . Assuming, furthermore, that the basket’s

correlation matrix is flat , e.g. βi = β for all i, these relations become

Ai = βZ +
√
1− β2Yi and corr

(
Ai ,Aj

)
= β2 = ρ for all i.

Under these hypothesis, we can derive the formula of the probability of survival of
the basket past a time T , conditionally on Z as a particular case of the d-factor Gaus-
sian Model with d = 1.

First, let’s find the probability of survival of the basket past T . Remembering that a
default occurs at time T if Ai ≤ Ci(T ) = Φ−1(pi(T )), we have

P r(No default in the basket by time T | Z) = P r(∀i, τi > T |M)

=
N∏
i=1

[1− P r(Ai < Φ−1(pi(T ) | Z)]

=
N∏
i=1

1−Φ Φ−1(pi(T ))− βZ√
1− β2


(48)

And we can get the first-to-default survival probability of our basket by integrating
over all the possible values of Z. As Z ∼N (0,1), we have

P r(τ*
1 > T ) =

∫
Z

N∏
i=1

1−Φ Φ−1(pi(T ))− βZ√
1− β2

φ(Z)dZ (49)

The One-Factor approach requires a simple numerical integration which speeds up
the computations a lot. However, there are limitations to this model as it doesn’t
capture the whole correlation structure of the issuers, in particular when there is a
high correlation between the issuers but a low correlation between the sectors.

4.1.3 Conditional Hazard Rates

A popular way of modelling default times is to use Default Intensity Models. In In-
tensity Models, every default time τi is assumed to follow an exponential law. Recall
that specifying the marginal distributions of the default times is enough to determine
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their joint distribution as we only have to choose a copula dependence structure to
link them.
A hazard rate (or intensity) is a strictly positive stochastic process λ : t→ λt. We de-
fine the corresponding hazard function (or cumulated intensity) as Λ : t→

∫ t
0
λsds.

The default time τ we want to model is then defined as τ = Λ−1(ξ) with ξ an
exponential random variable independent from λ. Note that Λ−1 is defined as
∀t ∈ R+, λ(t) > 0 so Λ is a strictly increasing function of t. In practice, the random
variable ξ can be built from a uniform random variable U ∼Unif [0,1] on which we
apply the inverse cumulative distribution function of an exponential distribution, i.e.
by taking ξ = − ln(1−U ). In particular, the probability of survival past a time t reads

Q(τ > T ) =Q(Λ−1(ξ) > t) =Q(ξ >Λ(t)) (50)

By the tower property, the independence of ξ and Λ and the fact that Q(ξ > t) = e−t

for any t ∈R we have

Q(ξ >Λ(t)) = E[Q(ξ >Λ(t)) |Λ(t)] = E[e−Λ(t)] = E[e−
∫ t
0 λsds] (51)

Let’s get back to our One-factor model. Recall that the default probability by time T
of the i-th issuer conditionally on Z reads

pi(T | Z) = 1−Qi(T | Z) = Φ

Ci(T )− βiZ√
1− β2i

 (52)

We assume a flat and deterministic conditional hazard rate for the default times
{τi}i=1,...,n. As we have seen above, this assumption implies

for any i = 1, . . . ,n, Qi(T | Z) = exp(−λi(T | Z)T ) (53)

And using (48) we have

λi(T | Z) = −
1
T
lnΦ

βiZ −Ci(T )√
1− β2i

 (54)

The value of λi(T | Z) is directly linked to the i-th issuer’s probability of default (from
(49)) as large values of λi(T | Z) means a high probability of default and low values a
low probability of default. It is therefore interesting to take a look at the distribution
of the conditional hazard rates implied by the One-factor Gaussian copula model
and its changes with respect to the factor loading βi . We plot the conditional hazard
rate distribution below :
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Figure 3: Conditional hazard rate distribution for β = 0.3, 0.2, 0.1 and a 1-year time
horizon

We observe that both the skewness and the variance of the density falls as β de-
creases and when β tends to zero, the conditional hazard rate becomes an uncondi-
tional hazard rate and the defaults are independent.

4.2 Student-t copula model

In the previous scenario, we assumed a Gaussian copula between the credits. How-
ever, another copula commonly used in this context is the Student-t copula which
has the advantage of taking into account tail dependence between the credits.
Let’s first present the Student-t distribution with more details. A random variable X
follows a Student-t distribution with ν ≥ 0 degrees of freedom if it can be written as

X =
√

ν
ξν
Z
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with Z ∼N (0,1) and ξν ∼ χ2
ν independent from Z.

The probability density function of the Student-t distribution is given by

fv(t) =
Γ ((v +1)/2)
√
πvΓ (v/2)

(
1+

t2

v

)−(v+1)/2
(55)

Γ denoting the Gamma function Γ : x 7→
∫ +∞
0

tx−1e−tdt. Let’s plot the Student-t prob-
ability density function for different values of ν :

Figure 4: Probability density function of a Student-t distribution for ν = 3,5,1000 and
Gaussian probability density function

The Student-t distribution has the following properties :

• E(X) is not defined if ν = 1 and is equal to 0 otherwise, which can be observed
in the figure above by symmetry about zero.

• Var(X) = ν
ν−2 for ν > 2

• As ν → ∞ the Student-t distribution converges to a standard normal distri-
bution, which we can see on the graph by observing the pdf of the Student-t
distribution with ν = 1000 which coincides with the Standard normal pdf.
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We can simulate the default times of the credits in our basket using the following
algorithms :

Algorithm 4.2.1 : Generating correlated gaussian variables
Assume Σ ∈Rnxn is the correlation matrix of our basket.

• Find the Cholesky decomposition of Σ, e.g. the lower diagonal matrix A such
that Σ = AAT

• Simulate z1, z2, ..., zn ∼ N (0,1) using for instance the Box-Muller method de-
scribed in the appendix of the section.

• Set x = Az with z = (z1, . . . , zn)
T . Thus, the xi are correlated gaussian variables.

Algorithm 4.2.2 : Simulating default times with Monte-Carlo

• Generate M vectors of correlated gaussian variables xk for k = 1,2, ...,M with

zk =
(
xk1, . . . ,x

k
n

)T
.

• Generate independently M random variables ξk ∼ χ2
ν for k = 1,2, ...,M from

uniform random numbers using the inverse cumulative distribution function
method (if U ∼ Unif [0,1] and F is a continuous CDF, then the random vari-
able X := F−1(U ) has the distribution F).

• For each k = 1, ...,M and for each i = 1, ...,n, generate the Student-t distributed
random variable yki =

√
ν
ξkν
xki .

• Map each correlated random variables yki to the uniform random variable uki =
tν(y

k
i ).

• Solve τki =Q
−1(uki ) for each k = 1, ...,M and for each i = 1, ...,n

• For each i = 1, ...,n, average over all the simulation to return τi = 1
M

∑M
k=1 τ

k
i

29



4.2 Student-t copula model 4 MODELS

Let’s use the same notations as in the previous section. The latent variable Ai asso-
ciated to the issuer i verifies in this model the relation :

• Ai =
(
βiZ +

√
1− β2i Yi

)√
v
ξv

• M ∼N (0,1)

• Yi ∼N (0,1) independent from Z

• ξν ∼ χ2
ν

As before, the i-th basket defaults before time T if Ai ≤ Ci(T ), with
Ci(T ) = t−1ν (1−Qi(T )), t−1ν being the inverse cumulative distribution function of the
Student-t distribution and Qi(T ) the probability of survival of issuer i past time T .
Thus, this condition reads(

βiZ +
√
1− β2i Yi

)√
v
ξv
≤ Ci(t) ⇔ Yi ≤

Ci(t)
√
ξv /v−βiZ√
1−β2i

Thus, the probability of default of the issuer i by time T conditionally on Z and ξν is
given by

pi (t | Z,ξv) = Φ

(
Ci(t)

√
ξv /v−βiZ√
1−β2i

)
.

By independence of the events {Ai ≤ Ci(T )} conditionally on M and ξν , we have

P r( No default in the basket by time T | Z,ξν) = P r(∀i, τi > T | Z,ξν

=
N∏
i=1

[1− pi (T | Z,ξv)]

=
N∏
i=1

1−Φ
Ci(T )

√
ξv/v − βiZ√
1− β2i




(56)

In order to get the first-to-default survival probability of the basket, we integrate over
all the possible values of Z and ξν . Using the fact that M and ξν are independent,
and thus their joint density function is equal to the product of their marginal density
function, we obtain that

P r
(
τ*
1 > T

)
=

∫
Z

∫
ξν

N∏
i=1

1−Φ
Ci(T )

√
ξv/v − βiZ√
1− β2i


φ(Z)fν(ξν)dZdξν (57)
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Under the assumption of a flat correlation matrix for the basket, e.g. if ∀i, ρi = ρ,
the first-to-default probability at time T reads

P r(τ*
1) > T =

∫
Z

∫
ξν

N∏
i=1

1− Φ Ci(T )√ξv/v − βZ√
1− β2

φ(Z)fν(ξν)dZdξν(58)

with β =
√
ρ.

Even though pricing First-to-defaults under the assumption of a Student-t Copula has
the advantage of taking into account tail dependence between the credits, the major
issue is the computational efficiency of this approach, which requires the inversion
of a Student-t cumulative distribution function as well as integrating over both the
values of a standard normal distributed variable and a chi-2 distributed variable,
instead of a simple integral in the One-Factor Gaussian Copula model. Hence, the
Student-t copula model is not recommended in the case of a basket containing an
important number of names.

4.3 Monte Carlo pricing of a First-to-default basket

Although the main purpose of this project is to study the correlation structure of
First-to-default baskets rather than pricing them, we will introduce in this section
a simple Monte Carlo approach to price an FTD from the simulation of the default
times {τi}i=1,...,n of the issuers, for which we will assume a One-Factor Gaussian cop-
ula dependence structure. The Monte Carlo pricing approach require a fast imple-
mentation, as it scales in time as O(M), M being the number of simulations, but its
convergence rate is only O(1/

√
M). In order to increase the accuracy of the Monte-

Carlo estimate, a classic procedure is to use variance reduction techniques, which
reduce the constant factor of the O(1/

√
(M)) (see [5]). Amongst these methods, we

find Importance sampling and Antithetic variables, discussed in the appendix, which
can be used easily in a one-dimensional approach.
First, we need to simulate default times {τi}i=1,...,n for which we have assumed a One-
Factor Gaussian copula. Using the same notations as in section 4.1, we proceed the
following way :

Algorithm 4.3.1 : Simulating default times in the One-Factor Gaussian copula
model

• Compute every thresholds Ci(T ) = Φ−1(pi(T ))

• Use Box-Muller algorithm to generateM standard normal random variables Zk

and MN standard normal random variables Y ki , for k = 1, . . . ,M, for i = 1, . . . ,N

• Compute Aki = βiZ
k +

√
1− β2i Y

k
i for k = 1, . . . ,M, for i = 1, . . . ,N

• Compute uki = 1−Φ(Aki ) for k = 1, . . . ,M, for i = 1, . . . ,N

• Compute τki =Q
−1
i (upi ) for k = 1, . . . ,M, for i = 1, . . . ,N
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The remaining steps of the Monte Carlo pricing of the First-to-default require to
compute the discounted payoff for each of the M sets of default times τk1 , . . . , τ

k
N

As we have seen in section 3.1, the First-to-default discounted payoff from the point
of view of the protection seller at time t reads

PVPrem(t)−PVDef(t) =

(
m∑
i=1

SiαiD (t, ti) + SmD(t,τ∗1)(τ
∗
1 − tm))1tm≤τ∗1<tm+1

−D (t,τ∗1)
(
1−Ri(1)

)
1τ∗1<T

(59)

using the same notations as in section 3.1.
We only have to average the discounted payoffs for each sets of default times to have
an estimate of the First-to-default price.

4.4 Section 4 Appendix

4.4.1 Box-Muller

An efficient way to sample from a given distribution is to use the inverse CDF method
when the inverse cumulative distribution function is known. However, there isn’t a
close form expression for the inverse cumulative distribution function of a normal
distribution. A fast way of sampling from a standard normal distribution is the
Box-Muller method, which provides a procedure for generating two independent
standard normal random variables from independent uniform random variables.
Before jumping to the formula, let’s describe a bit the motivation behind this method.
Recall that the probability density function of a standard normal distribution is given
by

f (x) =
1
√
2π
e−

x2
2 (60)

So if (X,Y ) is a pair of independent standard normal distributed random variables,
their joint density is given by

f (x,y) = f (x)f (y) =
1
2π
e−

x2+y2

2 (61)

The idea is to convert the cartesian coordinates x and y into polar coordinates with
radius r and angle θ, which can be done using the relations

r2 = x2 + y2

x = r cosθ
y = r sinθ

(62)

Therefore, we consider the vector of random variables (R,Θ) such that

X = RcosΘ
Y = RsinΘ

(63)
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with Θ ∈ [0,2π].
Θ being uniformly distributed in [0,2π] we can sample it from

Θ = 2πU1 (64)

with U1 ∼Unif [0,1].

Moreover, R2 is the sum of the squares of two independent standard normal vari-
ables, which is known to follow a χ2 distribution with 2 degrees of freedom. It can
be shown that the χ2

2 distribution is equivalent to an exponential distribution with
parameter λ = 1

2 . It is therefore possible to sample R2 using the inverse CDF method
for an exponential distribution, which gives

R2 = −
log(U2)
λ

= −2log(U2) (65)

with U2 ∼Unif [0,1].
Finally, the Muller-Box method can be described with the following steps :

Algorithm 4.4.1 : Box-Muller Method

• Draw independently U1,U2 ∼Unif [0,1]

• Compute Θ = 2πU1 and R =
√
−2log(U2)

• The random variables X and Y defined as

X = RcosΘ =
√
−2log(U2)cos(2πU1)

Y = RsinΘ =
√
−2log(U2)sin(2πU1)

(66)

are independent standard normal random variables.

33



4.4 Section 4 Appendix 4 MODELS

We plot below the results of a simulation using N = 10000 samples.

Figure 5: Box-Muller samples for X and Y with N = 10000 simulations

4.4.2 Importance sampling

The purpose of Importance sampling is to reduce the variance of a Monte-Carlo
Method by changing the probability measure used to sample its paths.
Let X a d-dimensional random vector with probability density function f PX with re-
spect to the probability measure P and assume we want to estimate

I(g) = E
P[g(X)] =

∫
g(x)f PX (x)dx (67)

with g :Rd →R.
Let X1, . . . ,Xn be independent random variables sampled from f PX . A classic Monte
Carlo estimator of I(g) is given by

Î
P
(g) =

1
n

n∑
i=1

g(Xi) (68)

Let Q be another probability measure equivalent to P and denote f QX the strictly
positive density function of X with respect to Q (it actually has to be strictly positive
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only on the support of f PX , i.e. on the set {x ∈Rd : f PX (x) , 0}). Then we have

I(g) = E
P[g(X)] =

∫
g(x)f PX (x)dx

=
∫
g(x)

f PX (x)

f QX (x)
f QX (x)dx

= E
Q

g(X) f PX (X)

f QX (X)


(69)

Now letX1, . . . ,Xn be independent random variables sampled from f QX . We can define
a new estimator of I(g) as

Î
Q
(g) =

1
n

n∑
i=1

g(Xi)
f PX (Xi)

f QX (Xi)
(70)

It follows from the linearity of E that both the estimators Î
P
(g) and Î

Q
(g) are unbi-

ased, i.e. E
P[Î

P
(g)] = I(g) and E

Q[Î
Q
(g)] = I(g). Hence, comparing the variance of

these two estimators is equivalent to comparing their second moments. Note that
we have

E
Q


g(X) f PX (X)

f QX (X)

2
 = ∫

g(x)
f PX (x)

f QX (x)
f PX (x)dx

= E
P

g(X)2 f PX (X)

f QX (X)


(71)

Depending on the choice of Q, this quantity can be set lower than E
P[g(X)2]. Note

that if g is a nonnegative function, then ∀x ∈ Rd , g(x)f PX (x) ≥ 0 and we can normal-
ize this product to make it a probability density. Suppose we choose Q such that
f QX is equal to this density, then ∃K ∈ R s.t. ∀x ∈ R

d , f QX (x) = Kg(x)f PX (x). Then

the variance of Î
Q
(g) is equal to 0 as ∀i = 1, . . . ,n,g(Xi)

f PX (Xi )

f QX (Xi )
= K and the {Xi}i=1,...,n

are independent. However, normalizing g(x)f PX (x) require to know the value of its
integral, which is precisely what we want to estimate. However, we can try to ap-
proximate a density proportional to g(x)f PX (x). Several methods exist to do so and
we will briefly discuss two popular procedures : the Likelihood approach and the
variance minimization method. Both these methods are said to be parametric im-
portance sampling, in the sense that that we want to obtain an approximation of the
optimal sampler among a parametric family of functions

Q = {qθ : θ ∈Θ} (72)

with Θ ⊂R
d and qθ is a density function in R

d . Denote q∗(x) = g(x)f PX (x)
I(g) .
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Approximation of the likelihood We define the likelihood function as

L(θ) =
∫

ln
(
qθ(x)
q∗(x)

)
q∗(x)dx (73)

which can be rewritten as

L(θ) = 1
I(g)

∫
ln( qθ(x)
|g(x)f PX (x)| )|g(x)f

P

X (x)|dx − ln( 1
I(g) )

Therefore, maximizing the likelihood function L is equivalent to maximizing
the integral

∫
ln( qθ(x)
|g(x)f PX (x)| )|g(x)f

P

X (x)|dx. This can be done using the following

algorithm :

Algorithm 4.4.2 : Likelihood importance sampling

• Sample independently 1 < m < n random variables X1, . . . ,Xm from the
density f PX and compute

θ̂m = argmaxθ∈Θ
1
m

m∑
i=1

ln

(
qθ(Xi)

|g(Xi)f PX (Xi)|

)
|g(Xi | (74)

• Let km = n−m. Sample Z1, . . . ,Zkm independently from the density qθ̂m and
compute

1
km

km∑
i=1

g(Zi)f
P

X (Zi)
qθ̂m(Zi)

(75)

Approximation of the variance Denote

θ∗ ∈ argminθ∈ΘEQ

(g(X)f PX (X)
qθ(X)

)2 = argminθ∈ΘEP

[
g(X)2

f PX (X)
qθ(X)

]
= argminθ∈Θ

∫
(g(x)f PX (x))2

qθ(x)
dx

(76)
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In practice, computing
∫ (g(x)f PX (x))2

qθ(x)
dx cannot be done as it involves the quantity

g(x)f PX (x). Therefore, our goal is to estimate θ∗ to return a ”nearly-optimal” es-
timator qθ∗. This can be done with the following procedure :

Algorithm 4.4.2

• Sample independently 1 < m < n random variables X1, . . . ,Xm from the
density f PX and compute

θ̂m = argminθ∈Θ
1
m

m∑
i=1

g(Xi)2f
P

X (Xi)
qθ(Xi)

(77)

• Let km = n−m. Sample Z1, . . . ,Zkm independently from the density qθ̂m and
compute

1
km

km∑
i=1

g(Zi)f
P

X (Zi)
qθ̂m(Zi)

(78)
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5 Calibration results

5.1 Model’s results

In this section, we present the numerical results that we have obtained using the
models previously described. To do so, we will work with a First-to-default basket
with 10 names. The main characteristics of the basket, such as the probability of
survival and the individual spreads are known by a time horizon of 10 years. For
clarity purpose, the market dates used for the figures in this section is a list of 10
elements corresponding to only one date per year. We assume that the correlation
for the basket is flat and equal to 0.42. The figure below shows the individual
probabilities of default from the issuers :

Figure 6: Individual probabilities of default from the issuers at each market date
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5.1.1 First-to-default probability

The first thing we will present are the plots of the First-to-default probabilities com-
puted in the Gaussian copula model and in the Student-t copula model. We will then
analyze the sensitivity to First-to-default probabilities with respect to the correlation
and see if we get the theoretical results we expect.
Let’s focus on the First-to-default probabilities computed under the assumption of a
One-Factor Gaussian copula for the basket. For the correlation value ρ = 0.42, the
FTD probability’s evolution with respect to time has the following behaviour :

Figure 7: First-to-default and individual probabilities with ρ = 0.42 in the 1-Factor Gaus-
sian Copula model

We can observe that the FTD probability is always higher than the maximum of the
individual probabilities, as one may have expected. In order to assess the consistency
of our implementation, recall what we have discussed in the section 3.2 for a bas-
ket containing 2 names. We have distinguished three different scenario concerning
the dependence structure of the defaults in the basket : the minimum dependence
scenario where ρ = −1, the independence scenario where ρ = 0 and the maximum
dependence scenario where ρ = 1. Here, we assume that the correlation value is al-
ways positive, which eliminates the minimum dependence scenario. We have shown
that the FTD probability tends to decrease when the dependence between the de-
faults (or in this case simply the correlation) increases, and in the 2 names basket
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case (A and B), the lower bound of the FTD probability is the maximum of the de-
fault probabilities between A and B (maximum dependence scenario) and its upper
bound is equal to P (A) + P (B) − P (A)P (B) = 1 − (1 − P (A))(1 − P (B)) (using the same
notations as in the section 3.2). Then, by setting successively ρ = 1 and ρ = 0, we can
expect that the FTD probability would be equal respectively to the maximum of all
the individual default probabilities and to 1−

∏10
i=1(1−pi) (pi being the probability of

default from the issuer i at a given market date). We obtained the following results
:

Figure 8: First-to-default probability in the maximum dependence scenario in the 1-
Factor Gaussian Copula model
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Figure 9: First-to-default probability in the independence scenario in the 1-Factor Gaus-
sian Copula model

In the two graphs above, the FTD probability curve coincides with its boundaries as
we were expecting.

Let’s now see the results for the FTD probability computations when assuming a
Student-t copula between the defaults. We are expecting the same behavior for
the independence and the maximum dependence scenarios, but there is another
parameter to vary in the Student-t copula model, which is the degrees of freedom.
We will first plot the results for a correlation value ρ = 0.42 for the typical value of
ν = 5 and also for ν = 1000. In this last case, we are expecting the FTD probabilities
to be the same as in the Gaussian copula, as the Student-t distribution’s limit when
ν→∞ is a standard normal distribution. The results are shown below :
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Figure 10: First-to-default and individual probabilities in the Student-t copula model
with ρ = 0.42 and ν = 5

Figure 11: First-to-default and individual probabilities in the Student-t copula model
with ρ = 0.42 and ν = 1000
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The second figure actually seem to coincide with the FTD probability in the One-
Factor Gaussian copula model. In order to assess the similarity between the two
graphs, we compute the mean absolute error (each time step corresponding to a
market date). The latter being equal to 0.00886, we can conclude that this consis-
tency check is valid.
Finally, let’s check if we have the expected results for the maximum dependence
and the independence scenarios. We do not have to check them in the case where
ν = 1000 as we have already shown that it was equivalent to a One-factor gaussian
copula model, so we are going to choose ν = 5 only.

Figure 12: First-to-default probability in the maximum dependence scenario in the
Student-t Copula model with ν = 5
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Figure 13: First-to-default probability in the independence scenario in the Student-t
Copula model with ν = 5

The behaviour is approximately what we were expecting, but the FTD probabilities
do not coincide with the limit cases scenarios as accurately as in the One-Factor
model. The slight errors between the curves may be due to the fact that the as-
sumption of a Student-t model requires to compute numerically a double integral
in order to return the FTD probability, which may cause additional approximations
comparing to the simple integral in the One-Factor model.

5.1.2 FTD Spreads

The second quantity of interest we will study is the FTD spread, which we have to
determine in order to price our First-to-default basket.
For clarity purposes, we show on the same figure the FTD spread computed under
the assumption of a One-Factor Gaussian copula model and under the assumption of
a Student-t copula model. We take the same correlation value ρ = 0.42 and we set
ν = 5. As the FTD default probabilities are higher in the Gaussian copula model, we
also expect higher spread values (the more likely a default happens, the more the
protection buyer has to pay the seller). We obtained the following result :
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Figure 14: First-to-default spreads in 1F-Gaussian copula and Student-t copula models
with ν = 5 and ρ = 0.42

The only different input for the calculation of the FTD spread in the two models
is the FTD default probabilities. As we have already shown the consistency of our
implementation for the FTD default probabilities computations, and in particular
that if we set = 1000 we had a mean absolute error of only 0.00886 compared to
the Gaussian copula model, it is already proven that the FTD spread curve in the
Student-t copula will coincide with the FTD spread curve in the Gaussian copula for
large values of ν.

We will now evaluate the impact of the correlation over the FTD spread values. To
do so, we make the assumption of a One Factor Gaussian copula model, and we will
show the FTD spread curve evolution when we vary the correlation value ρ of our
basket. As we have seen in section 3.2, the FTD default probability decreases when
the dependence between the issuers increases. As the FTD spread is an increasing
function of the FTD default probability, we also expect the FTD spread to be lower
when the correlation increases. We chose to plot on a same figure the FTD spread
curves for the values ρ = 1,0.8,0.6,0.42,0.2,0 :
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Figure 15: First-to-default spreads in the 1F-Gaussian copula model for ρ =
1,0.8,0.6,0.42,0.2,0

Those results are in line with our expectations. Moreover, we can see that the same
way the FTD default probability lies between the maximum of the individuals prob-
abilities and the sum of all the probabilities, the FTD spread lies between the maxi-
mum of the individual spreads and the sum of the individual spreads.

5.2 Implied correlation and historical correlation

In this section, we will first describe what the implied correlation is and in a second
time try to establish a link between the historical correlations and the implied corre-
lations. In order to understand what implied correlation is, we can first define it in
the context of Collaterized debt obligations (CDO’s) as the reader may be more fa-
miliar with this type of product, which is one of the most popular multi-name credit
derivative, and we’ll see how we can draw a parallel between the implied correlation
in CDO’s and the implied correlation in First-to-default baskets.
Assume we are given a portfolio of typically 125 issuers who can potentially default
and thus cause losses to the issuers exposed to them. These losses can be divided
into tranches, such that each tranche delimits a portion of the loss of the portfolio
between two values. These tranches are called the CDO tranches and the index can
be traded in terms of tranches. There are six standard tranches of the iTraxx Europe
covering losses lying in the ranges :
.0-3% (Equity tranche)
.3-6% (Mezzanine tranche)
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.6-9%

.9-12%

.12-22% (Senior tranche)

.22-100% (Super senior tranche)
Each CDO tranche involves a protection seller and a protection buyer in which the
protection seller agrees to pay to the buyer an amount equal to all the default losses
of the reference portfolio (minus the recoveries) when the loss lies between the two
percentage bounds of the tranche, and the protection buyer pays a periodic amount
to the seller corresponding to the tranche spread value.
The protection fees on each CDO tranche depend a lot on the dependency between
the defaults. In practice, this dependency is simply called ”correlation” because the
correlation parameter is enough to specify a multivariate Gaussian joint distribution
and the market assumes a Gaussian copula model for the defaults in the portfo-
lio. In our hypothetical portfolio, the input correlation matrix of the copula has
125 × 124

2 = 7750 entries corresponding to the pairwise correlations between every
issuer. However, the market assumes a single correlation value ρ for each tranche
so the 7750 initial parameters are simplified to a single one. In order to determine
the value of the correlation ρ corresponding to a standard tranche, we choose the
correlation value such that the price of the tranche in the Gaussian copula model is
the same as the price of the tranche given by the market. The parameter ρ is then
called implied correlation as it is the value of the correlation implied by the market.
Let’s get back to the First-to-default basket case and see why the implied correlation
is analogous to the CDO context.

A First-to-default situation actually corresponds to the Equity tranche for CDO’s. The
reason for that is that in the two situations, it is the first default which triggers the
payment from the protection buyer, and there is no protection anymore for the up-
coming defaults, the same way that the equity tranche covers the losses between 0
and 3%, so that a the protection seller has to pay the buyer after the first loss and
there is no protection anymore after this event. Of course, in mosts cases, the capital
tranche corresponding to a First-to-default is not the 0-3% tranche, because there is
typically 5 issuers in a First-to-default basket against 125 in our previous example
with CDO’s which are much more granular, so the first tranche’s bounds would be
between 0% and 20%, but the reasoning remains valid. The same analogy could be
established between the n-to-default baskets and the higher tranches, but we will
stick with First-to-default baskets in this section.
In this project, we used a service named Totem, which provides market derivatives
prices and in particular the First-to-default market spread values for some baskets of
issuers. In order to calibrate the correlation value of the basket, we proceed as de-
scribed above by choosing the correlation ρ which makes the spread value computed
in the Gaussian copula model being equal to the spread market value. However,
there are a large amount of issuers and lots of possibilities for the composition of
a First-to-default basket, and Totem cannot provide a market spread value for each
of these possibilities. Yet, we have access to all the historical pairwise correlations
between the issuers at any date and in order to solve this issue, we may wonder if a
link could be established between the average pairwise correlation of the issuers in
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a First-to-default basket and the implied correlation for this basket, and more pre-
cisely if there is a transformation that could be applied to these historical pairwise
correlations that would enable us to predict the implied correlation value.
To do so, we performed a linear regression using the OLS method described in the
Preliminaries section. Our vector of observations x contained the historical pairwise
correlation at a date Ti for a given quantile q of 43 First-to-default baskets and the
vector y of labels contained the Totem calibrated correlation for each basket. We
performed an OLS regression at several dates {Ti}i=1,...,p (1 month spread between
each date). It turned out that the values of y were better aligned when increasing
the quantile q but the regression didn’t perform well in any cases. For very close
values of historical correlations, the Totem implied correlation was very different
and there were a lot of outliers. We cannot show the graphs of the regressions for
confidentiality reasons, and it wouldn’t be relevant as we couldn’t come up with a
clear pattern. One of the reasons might be that historical correlations do not move
a lot from month to month whereas the implied correlation is driven by the market
and is more sensitive to external events (such as the current COVID-19 pandemic for
instance), which makes it difficult to establish a clear relationship between the two.
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6 Summary and conclusions

In this thesis, we studied the default dependency between the names within a First-
to-default basket by introducing different models and assumptions to describe their
dependence structure.

We first discussed several properties about First-to-default baskets in a general case
such as the general expression of the cash flows implied by a First-to-default con-
tract, or the way the joint distribution of the issuer defaults affects a First-to-default
basket characteristics.

Then, we moved on to a more specific framework by presenting different models,
which require to introduce the concept of copulas, which was a key point of this the-
sis, as we used them in all of our models. As there needs to be a correlation factor to
describe the defaults dependency of our First-to-default baskets, the copulas we use
to connect the default times need to have a correlation parameter. This is why we
focused on the Gaussian and the Student-t copulas. In both Gaussian and Student-t
copula models, we were aiming at showing the computations of several quantities of
interest, such as the default probability of an issuer in the basket, the First-to-default
survival (and default) probability of the basket, the First-to-default spread and how
to price them.

Most of our simulation algorithms were based on a Monte-Carlo approach. We in-
sisted on the necessity of having a fast implementation to run such algorithms as
a Monte-Carlo simulation convergence rate is O(1/

√
(M)) (M being the number of

simulation) while it scales in O(M) in time. In order to increase the accuracy of the
estimate, we presented in an appendix the concept of Importance sampling and two
algorithms to perform it.

We had already shown some results in the previous section (such as the conditional
hazard rate distribution) but they were mainly for illustration purposes. In section
5.1, we present numerical results obtained by implementing the models in order to
compare the Gaussian and the Student-t copula models, by showing the differences
between quantities discussed in the previous section : the First-to-default default
probabilities and the First-to-default spreads. In order to assess the consistency of
our implementation, we check if our results are in line with the theoretical expecta-
tions. More specifically, we would expect the FTD default probability to lie between
the two bounds mentioned in section 3.2, and to be equal to them in limit cases
scenarios. The FTD default probability should also be the same in the case of a
Gaussian copula and a Student-t copula with very high degrees of freedom as the
Student-t distribution tends to a standard normal distribution in this case. As for the
FTD spreads, we expect them to fall as correlation increases. We managed to have
satisfying results as these expectations were all satisfied.

In the very last section, we introduced the important concept of implied correla-
tion, and we tried to establish a link between the historical average pairwise corre-
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lation of the issuers and the implied correlation of the basket using linear regression
techniques. However, there were a lot of outliers and not many basket implied cor-
relation data to perform a satisfying regression.

As we have seen, the Gaussian copula has the disadvantage of not capturing the
whole correlation structure of the defaults, and in particular, the Gaussian copula
doesn’t exhibit tail dependence. Then, the Student-t copula seems to be a good al-
ternative as it also has a correlation parameter and has upper and lower tail depen-
dencies, so extreme scenarios are taken into account. However, for baskets contain-
ing a lot of names or CDO’s, it requires a very high computational time. A possible
alternative, not based on the use of any copula, has been discussed by Chapovsky,
Rennie and Tavares. In this approach, the dependence structure is described through
the default intensities of the issuers.
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