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Abstract

We provide a novel algorithm which attempts to classify market regimes in US equities time
series. As far as possible, manual intervention is avoided, preferring a data-driven approach. The
path signature is utilised as a central tool; the application of which is justified. We discuss the
connection between market regimes and distributions of path signatures, and provide a metric
space structure on the latter which allows for a clustering to be formulated. The code both to
reproduce the results and to develop further the clustering algorithms presented is provided on
GitHub - mcindoe/regime-detection
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Introduction

Financial practicioners have been familiar with the notion of market regimes for decades. Bull
markets turn bear, and periods of calm may change abruptly to those of high turmoil. As the
saying goes, liquidity begets liquidity. The dramatic market shift of early 2020, brought about by
the COVID-19 pandemic, brings with it periods of high volatility and low liquidity, which are
conditions comparable to the global crisis of 2008. It is said that history does not repeat itself, but
it does thyme!. Over the last century there have been several market crashes where a sudden loss
of liquidity has been exaggerated by a compounding effect of investors selling off their positions,
often targeting the same investments as one another (reduced interest in equities may lead to an
increase in fixed income products for example). Explicit examples may be found in the 2015-2016
Chinese stock market crash, the Black Monday crash of 1987, or the Wall Street crash of 1929.

The ability of an investor to recognise the underlying economic and market conditions and, ide-
ally, to estimate the transition probabilities from one market regime to another is a problem which
has long sought attention. Kritzman et al. [1] utilised Markov-switching models to characterise
regime and dynamically allocate across a portfolio, demonstrating improved performance against
statically-assigned weights across a variety of asset classes. This work highlights the importance
of regime classification as a trading signal.

Jiltsov [2] demonstrates the use of Hidden Markov Models to classify market data into one
of four regimes. The feature set is derived from the S&P 500 index, the VIX index to capture
volatility, TED spread? to capture market opinion on credit risk of large banks, and several other
similar features. Jiltsov’s approach is partially data-driven, in that the number of regimes is
initially asserted, and the resulting classifications are analysed once fitted.

Typically, in similar literature to this paper, an attempt is made to define some regimes which
we expect to find in suitable time series data, and the discussion of how best to characterise the
data at hand into these categories is then provided. Nystrup et al. [3] proposed a setup with two
market states: the first is one of low variance and positive mean, while the second has negative
mean and an increased variance. An online classifier is presented which attempts to categorise
market conditions whilst incorporating a penalty term when switching from one classification to
another, resulting in a more continuous allocation of regimes across a time series. This algorithm
performs well on simulated data and is less prone to misspecification compared with the maximum
likelihood estimator.

In much the same way that the strongest chess algorithms used to be trained initially on
grandmaster over-the-board play, and have since been surpassed by the AlphaZero algorithm [4]
which learns exclusively from self-play, our opinion is that regime identification is sufficiently
complex that manual specification or direction is an inheritly limited approach. We would like
instead to discuss a framework which is, as much as possible, driven exclusively by the data. This
paper proposes such an algorithm, attempting to uncover regimes found in the time series of US
equities.

In this paper, we will make repeated use of the signature of a path, a tool originating in the
study of rough paths [5]. The signature, despite being studied in the literature for decades, has
received a lot of attention in recent years, proving itself to be the natural language in which to
encode time series data in a form suitable for machine learning tasks. Chapter 1 presents some of
the strong mathematical theory supporting the idea that the signature transform is a rich enough
object to meaningfully identify and classify market regime. Once the theory is in place, we provide
a literature review and highlight some recent developments which have utilised the path signature.

The paper revolves around considering market regimes as clusters of path signature distribu-

LQuote often credited to Mark Twain, although some uncertainty exists regarding this attribution
2TED spread is the difference between three-month LIBOR and three-month Treasury yield



tions. In Chapter 2 we recall a clustering algorithm presented by Azran and Ghahramani [6],
defined on an arbitrary metric space, and shall refer to the algorithm presented in their paper as
Azran-Ghahramani clustering. We look at several examples, building up from a synthetic settings
where the desired output is clearly understood (and hence the quality of classification may be
identified), and building intuition from which the quality of application to real market data can
be discussed.

Our examples also steadily build in abstraction. The first example presented is in the familiar
setting where points are elements of R?, and the metric space structure is provided by the Euclidean
distance. The second example is that of synthetic market data, with price processes simulated by
Geometric Brownian Motion. Here points in our space will be collections of path signatures (or
a distribution path signatures), and a distance function will be developed from the two-sample
kernel test methodology presented in Gretton et al. [7].

Chapter 3 is dedicated to the application of the clustering algorithm to market data. Here the
quality of the output is assessed both in terms of the regimes described by the algorithm, and also
by comparing the results to the output of previous examples.

Chapter 4 presents directions for further work. The application of path signatures as a faithful
representation of market structure (see Chapter 1) is a powerful approach which is now seeing a
surge of attention in the area of quantitative finance. We present some clear next steps for this
work as well as some different directions in which to take the framework presented in this paper.

The contribution of this paper to the existing literature is primarily the application of path
signatures and clustering algorithms to the problem of regime classification. Whilst the use of
signatures to characterise financial time series is not new, and neither is the application of the
maximum mean discrepancy statistic to signature spaces (as seen in [8] for example), the attempt
to use this framework in a clustering algorithm to detect market regimes is, to our knowledge, a
novel contribution.

We will also discuss areas in which the algorithm may be improved. Along with this writeup,
we provide a Python library to perform Azran-Ghahramani clustering, which is currently not
implemented. This library, and the code to reproduce examples presented in the paper, are provided
on GitHub at mcindoe/regime-detection®.

Shttps://github.com/mcindoe/regime-detection



Chapter 1

The Signature Transform

In this first chapter, we develop some knowledge of the path signature transform. This subject
boasts a broad mathematical theory dating back at least as far as Chen’s work in 1958 [5]. More
recently it has seen frequent application as a tool to study rough paths, particularly in the work
of Lyons (see [9], [10]), and in 2020 applications to both synthetic financial data generation and
quality evaluation demonstrated in [8]. In this chapter, we will first introduce the signature of a
path, and then discuss some of the applications it has seen in recent years. The method in which
the signature is introduced here is inspired by the work of [11], to which the reader is referred for
another entry-level introduction to to this topic.

The signature transform can be defined in a far more general setting than that considered in
this paper. Whilst we will only be investigating functions which are piecewise smooth, in fact
the results stated here can be shown to hold for the much larger class of continuous functions of
bounded variation. Since our application will require only the signature in this simpler setting, a
full treatment is beyond the present scope. By presenting only this simpler version, the definition
may be presented in the setting of Riemann integrals. We refer the interested reader to [12] for a
more general treatment.

Let us begin by recalling some prerequisite knowledge required to state the path signature
definition.

1.1 Integration Along a Path

A path in R is a continuous map X : [a,b] — R. We write X; := X (¢) € R. We typically think of
X as tracing a path from X, to X, as ‘time’ ¢ increases from ¢t = a to ¢t = b. If the map t — X is
differentiable, the integral of a function f : R — R along the curve X is defined by

b b b
/f(Xt)dXt 12/ F(X0) X, dt 12/ f(Xt)%dt

We adopt the notation X, for dX; /dt. We may provide a slightly more general definition. We say
amap X : [a,b] — R is piecewise differentiable curve if there exists a partition a = x; < 23 < ... <
x, = b of the interval [a, b] such that over each interval (x;, z;y1) the map ¢t — X, is differentiable.
We may define the integral of a function f: R — R over a curve X of this more general class as

Tn

b To
[ reaxo= [ Crexyaxior . [ g,
a x1 Tn—1
In this paper we will see applications mainly of this more general type. Typically our paths will
be piecwise linear curves which naturally arise out of interpolating market data points (discussed
in section 1.4).
Let us expand this concept to the multi-dimensional setting. A d-dimensional path is a contin-
uous map X : [a,b] — RY. We may denote

Xy =X(t)= (X},...,X]) eR?
where the X : [a,b] — R are themselves one-dimensional paths. We call the path X? the i*}

coordinate path. For a d-dimensional path X, and a function f : R — R, we may then define the
integral of f against any of the coordinate paths.



Example 1.1.1. Let X be the two-dimensional path X : [0,1] — R?, X; = (2t + 1,2t%), and let
f(x) = 3x—2. The second coordinate path, X2, is the map X2 : [0,1] — R, X? = 2t3. We compute
the integral of f over a portion of the second coordinate path:
3/4 3/4 X2 /3/4 923
1

f(t)dX? = ft) =L dt = 3t —2)(6t%) dt = ———
» (t) dX; " (t) 7 /2( )(6%) 512

The path signature is simply a collection of integrals and iterated integrals, of the above form, where
the function f(-) is taken to be 1. To motivate an iterated integral, let X be a one-dimensional
path, and note that if f(-) is a continuous function, then the function ¢ +— f(j f(Xs)ds is also a
continuous function [a,b] — R, that is, a one-dimensional path. In particular, we may therefore
define the integral of this path over the path X:

/ab/atf(Xs)dXstt - /ab (/atf(Xs)dXs) X,
=/ab (/:f(Xs)dXs> X, dt

This is known as an iterated integral, or specifically a 2-fold iterated integral. We may continue in
this fashion, repeating the process up to some level k:

Definition 1.1.1 (k-fold Iterated Integral). Let X : [a,b] — R? be a d-dimensional piecewise
differentiable curve. For any i € {1,...,d} we define

SXLe= [ axi=xi-xg
a<s<t

For any 4,j € {1,...,d} we may then define the 2-fold iterated integral

o . B B t s B B . .
S(X)i ;:/ dXi dX? ::/ / dX dX :/ S(X): . dX?
’ a<r<s<t a Ja a<s<t ’

For any k € N, and collection of indices i1, ...,ix € {1,...,d}, we define
S(X)iy™ ;:/ dXxj' - dX;* :/ S(X)ibytt dX
a<lt1<..<tp<t a<s<t

Notice that the limits of integration for the 2-fold iterated integral of definition 1.1.1 is over the
triangle
T:={(r,s):0<s<t,0<r<s}CR? (1.1.1)

The 3-fold iterated integral is over a tetrahedron. The generalisation of this shape to higher
dimensions is known as a simplez.

The indices appearing in the general k-fold expression can be any collection of length k£ drawn
from {1,...,d}, and in particular may have repeated elements. The set of such indices is the k-fold
cartesian product {1,...,d}* which in this context is often called the set of words on the alphabet

{1,....d.

Definition 1.1.2 (Words on an alphabet). For k,n € N, we define the set of words of length n on
a set of letters {l1,...,lx} as the set of ordered symbols x125 - - - 2, with each z; € {l3,...,l;}. In
this context, the set of letters is referred to as an alphabet. The set of words on an alphabet A is
the infinite collection of words of any length (including zero), and is denoted W(A). The empty
word is the word of length zero, denoted €, and is also considered to be an element of W(A).

Example 1.1.2. The set of words of length 3 on the alphabet A := {a,b} is the collection
{aaa, aab, aba, abb, baa, bab, bba, bbb}
The set of all words on the alphabet A is the collection

W(A) = {e, a,b,aa, ab, ba, bb, aaa, aabd, . . .}



In Definition 1.1.2, by an ordered symbol we mean that, for example, the element abc is considered
distinct from the element acb. We might also say that the symbols are non-commuting. If there is
an ordering < on a given alphabet A, it may be extended to an ordering on set of words W(A) in
the following way:

Definition 1.1.3 (Lexicographic Ordering Induced by <). Let A be a set with an ordering <.
The length of a word u = z122 ...z, € W(A) is denoted by |u| and is the number of letters, n, in
the word. The concatenation of two words u and v is denoted wwv, and is the word of length |u|+ |v|
formed by appending the letters of v to the end of u. The ordering < on A is extended inductively
to an ordering on W(A) by defining that € < u for any non-empty word u, and for letters a,b € A,
words u,v € W(A), we say au < bv if either a < b (in A), or a = b and u < v.

Definition 1.1.4 (The Path Signature). For a piecewise-differentiable curve X : [a,b] — RY, the
path signature S(X)qp is the infinite collection of iterated integrals S(X)!'; """ where i - - -y is
any word on the letters A := {1,...,d}. We take the natural ordering on the alphabet A, and the
order of statistics in the path signature is the lexicographic extension of this ordering onto the set
of words. The first element is taken to be 1, the reason for which is made clear in section 1.2:

S(X)ap = (1,S(X)} 4, ..., S(X)E,, S(X)2), S(X)LE, ..)
<n

The signature up to level n is denoted S(X);; and is the collection of all terms S(X)fll;)'” ™ such
that i1, -, ik is a word of length at most n.

Later in this chapter we will see that the path signature is an object rich enough to nearly describe
the path completely. The first Proposition, however, demonstrates that the starting point of the
path is not captured. Indeed, the signature is invariant to translations of the original path.

Proposition 1.1.5 (Translation Invariance of the Path Signature). Let X : [a,b] — R? be a d-
dimensional path, and consider a translation X : [a,b] — R%, where X; := X; + ¢ for some c € R.
Then for any k € N and any k-length word iy ---i,, € W({1,...,d}), we have

SR = S0

The signatures S(X) and S(X) are therefore identical.

Proof. Write ¢ = (c!,...,c¢%) and take i € {1,...d}. We have X} = X} + ¢, and hence dX}/dt =
dX}/dt. We therefore have,
bdxi bdxi

b
S(X)i, :/ dXj= [ Ztdi= | “Ztdt=SX),

which shows the result for any word of length one. Now suppose the result holds for any k-length
word. Let 41 - -igigy1 be a (k + 1)-length word; we have

b o lk+1 b Tk+1
SNl yenyig i =i i, dXF iy X sy
SE e = [ sy B de = [ SO0 b= SO0

So the terms of the signatures of each path agree for any given word in W({1,...,d}), and hence
for the entire signature. O

1.2 Log Signature

The logsignature, like the signature, is a collection of statistics which together fully describe a
path. The logsignature, as we will see, is a more concise representation of the information present
in a signature; it therefore has seen much attention in the machine learning literature. In order
to introduce the logsignature, we present a slight reformulation of the signature transform from
the previous section. We introduce the vector space! of non-commutative formal power series on
a basis of symbols B = {e1,...,eq}. We denote this set V or Vg if we wish to be explicit about
the basis.

I Definitions for the algebraic structures not explicitly defined in this paper may be found in the appendices



Formally, V is the set of elements of the form w = Zle Ajw;, where k € N, the A\; € R are scalars,
and w; are words from the set W(B) as in Definition 1.1.2. We may equivalently define V as
the collection of infinite sums ZwEW( B) Aww over all words, but where only finitely many of the
A are nonzero. At present, a term Aw is to be interpreted as a formal symbol, rather than a
multiplication. This is what is meant by a formal term in our formal power series. This scalar
multiplication is what we define next.

We give the set the structure of an R-vector space by defining, for any A\, u € R,w € W(B):

o A (pw) =\ pw
o \w+ pw = (A + p)w
and extending linearly to an addition and scalar multiplication on V. We have for example
2 (3ey + 4egeq + e1e) = 6eq + 8eaeq + 2e1e0

Recall that the elements ejes and ezeq are considered distinct words. This is the meaning of the
term non-commutative; note however that the addition operator which is implicit here is considered
commutative, in that 3e; + es = ey + 3e;.

By providing also a multiplication between elements, we equip the space with the structure of
an algebra. This operation is usually denoted ® : V x V — V. We define first, for words w and
v, the product w ® v := wv, where wwv is the concatenation product between words of Definition
1.1.3. We may then extend this linearly to a product on the set V. For example:

e 21 ® (362 + 56164) = 6ejeq + 10e1e1e4
o (3e1 + 5e2) ® (2e4 + erea) = Gejeyq + 3ererea + Hesey + Heaeren

The reformulation of the signature is as follows. For a d-dimensional path X, we identify the
signature S(X),,, with the non-commutative formal power series

S(X)ap =1+ S(X)jpe1 + ...+ S(X) pea+ S(X)perer + S(X) herea + ...

over the basis elements {e1, ..., eq}, and where the coefficient of the word e, e;, - - - €;, is the term
S(X)Zi})mei’“. The 1 appearing in the sum is the coefficient of the empty word e. The use of the

equals sign is a slight abuse of notation, but is justified in the sense that there is a one-to-one
correspondence between d-dimensional signatures and non-commutative formal power series over
the basis symbols {eq,...,eq}.

Definition 1.2.1 (Log Signature). On the space of V, we may define the logarithm of certain
power series as follows. If w € V is a power series where the coefficient of the empty word, e, is
some nonzero A\, then log x is defined to be the following formal power series:

n ®n
log z :=log(X\o) + Z % (1 i ) (1.2.1)

DY
n>1 0

where the power ®n is the n'" power with respect to the operation ®. The logsignature of a path
X, written log S(X)q,p, is defined as the power series obtained from taking this logarithm of the
signature power series (which we recall has e-coefficient equal to 1), and may be thought of either
as that power series or as the corresponding infinite vector describing the coefficients.

In addition to this form of definition for the logsignature, the representation of signatures as non-
commuting formal polynomials allows the statement of the following powerful theorem, known
as Chen’s identity. If we can write a path X as the concatenation of other path segments, and
we know the signature of the segements, then Chen’s identity provides a tool by which we may
calculate the signature of X, and is precisely the multiplication defined in this section. First, let
us define formally what is meant by the concatenation of paths:

Definition 1.2.2 (Path Concatenation). Let X : [a,b] — R Y : [b,c] — R? be two d-dimensional
paths. The concatenation of X and Y, denoted X *Y, is the d-dimensional path on [a, ¢] given by

Xt 1fa§t<b
X+ (Yi—Y) ifb<t<ec

(X*Y)t:{

10



Scaled Sine Curves

20— sinfx)

— 2sin{x)

15

10

0.5

Figure 1.1: Example 1.3.1 - Scaled Sine Curves

Theorem 1.2.3 (Chen’s Identity). Let X,Y be as in Definition 1.2.2. We have
S(X*xY)=8SX)®SY) (1.2.2)

The intention of this paper will be to use the path signature as an encoding of market time series.
The end of this chapter will be devoted to presenting some of the theoretical results which justify
encoding paths as their signature transform, and argue that essentially no information is lost in
the process. Before then, let us discuss some geometrical interpretations of this transformation to
aid in the intuition.

1.3 Geometric Interpretation of the Path Signature

We have already seen in Definition 1.1.1 a geometric interpretation for level-one terms of the
signature of a d-dimensional path X. We have

b
S(X)op= / dX} = X} — X& (1.3.1)
a

The level-one term S(X )Zab therefore is therefore the displacement in the i*! coordinate path X°

between time ¢t = a and t = b. Less trivially, we have that this i*" displacement in fact completely
determines the k-fold iterated integral over the " index.

Proposition 1.3.1. Let X : [a,b] — R? be a d-dimensional path. We have

k times

S(X)Z,)l;..ﬂ _ % (1.3.2)

foranyie{l,...,d} and any k € N.

Proof. Let i € {1,...,d}. The k =1 case is Equation 1.3.1, which is of the required form. Suppose
that the result holds for some k € N. For the k 4+ 1 case we have:

k+1 times
S ot / (Xi = X* dX} o [(Xi= X)) _ (X — X+
@b . k! at (k+1! |, (k+1)!

O

Let us draw attention at this point to an easy mistake to make. When one thinks of a path such
a price process, it is tempting to think of a one-dimensional path. Instead, typically what we are
thinking of is the two-dimensional process which is the time-augmentation; that is, the process
{z1,...,2,} is recorded instead as {(t1,21),.-., (tn,,)}. This is typically the path one imagines
when drawing the graph of the process. We stress that the previous result does not imply that the
signatures of such paths are trivial.

11



Example 1.3.1. We present an example of the computation of path signature. Consider the two-
dimensional path X : [0,27] — R, X; = (¢t,nsint), for n € R. We have seen that the level-1 terms
are the increases in each coordinate path. Since both coordinate paths begin at 0 when t = 0, we
have S(X)§, = r, and S(X)§, = nsinr. Equation 1.3.2 gives the terms S(X)é:i =1r2/2, and

S(X)g:i = (nsinr)?/2. We compute the remaining two terms for the signature up to level two:
S(X)(l):f = S(X)é,s dX? = / nscossds = n(rsinr 4+ cosr — 1)
0 0
S(X)(Q):i:/ S(X)gjstgz/ nsinsds = n(l — cosr)
0 0

The signature of X is therefore as follows:

2 G )2
S(X)o,r = (17 r,nsinr, %, n(rsinr 4+ cosr — 1),n(1 — cosr), %, . ) (1.3.3)
Let us consider the signature of the path X from Example 1.3.1, up to time ¢ = 37/2, and in
particular the effect which n has on the result. The plots for two such curves are demonstrated in
Figure 1.1. First, we have

3 972 3 n?
S(X)0,37r/2 = (1, ?7 —-n, ?, —-n <2 + 1) , N, ?, .. > (134)

The second and third entry are the displacements of the first and second coordinate paths respec-
tively. Clearly the first of these is independent of n and the second is proportional to n. Shaded

in Figure 1.3.1 is the (signed) area equal to the term S(X)gji7 as the integral of the displacement

of X? with respect to X'. Since one half-period of a sine curve has an integral equal to 2, the sine
curve, scaled by n, has an integral up to value 37/2 equal to n. In a similar fashion, the value of
S(X )éi is also proportional to n. The geometric interpretation of this intergral with respect to the
second coordinate is a little less familiar; similar integrals are presented in the upcoming result.

Another well-known result connects second-order signature terms to the product of first-order
terms. We provide an understanding of this result in the case where the curve changes direction
finitely often, by which we mean that the curve is the concatenation of paths which are piecewise
monotone in both coordinates.

Lemma 1.3.2. Let X : [a,b] — R? be a d-dimensional path. We have
S+ (X7, = S(X)awS(X), (13.5)
Proof. Observe that it suffices to prove the result for curves which have X = Xg = 0. Indeed, if

we have the result for this class of curves, and X is any d-dimensional curve, then if ¢ € R? is such
that X := X + ¢ has X} = X} = 0, then by Proposition 1.1.5 (translation invariance) we have:

S(X)7% + S(X)2, = S(X)% + S(X)2, = S(X)L ,S(X),, = S(X)h ,S(X)2,

)

Integrals for a Monotone Function

Xz

X1

Figure 1.2: Monotone Function - shaded is integral of X? dX® (green) and X! dX? (yellow)
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Rectangle Area Area via Integrals

/ /

X} X}

Figure 1.3: Inductive step for Lemma 1.3.2 - Two methods to count the product of the displace-
ments, depicted as the blue rectangle

So assume without losing generality that X{ = Xg = 0. Referring to Figure 1.2, we see that the
result is straightforward if the function is monotone. The term on the right-hand side is the area
of the bounding rectangle, and the term on the left is the sum of the shaded areas, which are the
integrals in both directions.

Next, suppose we can write X as the concatenation of two paths: X =Y xZ, where Y : [a,t] —
RY, Z : [t,b] — R both satisfy Equation 1.3.5 (for example both are monotone) - we refer to Figure
1.3. Dropping the subscript a, b for brevity of notation, we may write

{S(Y)iS(Y)J' = S(Y)" + S(Y)/ (1.3.6)

S(2)18(Z2) = S(Z)" + S(Z)

By Chen’s identity, we have S(X) = S(Y *Z) = S(Y)® S(Z). Recall the non-commutative formal
polynomial of S(Y), S(2):

S(Y)=1+8"Y)er +...+ S (V)eg+ S (YV)erer + SV (Y)erea + . ..

and similarly for S(Z). The coefficient of e; in the product S(Y) ® S(Z) is therefore seen to be
SYY)+SYZ), that is S(X)" = S(Y xZ)" = S(Y)"+5(Z)". Note that the geometric interpretation
here is simply that the displacement in the i*" coordinate path in the concatenation of Y and Z
is the sum of displacements in the paths Y and Z. We can also compute S(Y * Z)% in a similar
fashion, obtaining
S(Y*2Z) =8Y) +S(2)
S(Y x Z) = S(Y)'S(Z) + S(Y)" + S(Z)"

from which we have

(Y % Z)%9 4 S(Y % Z)3

(Y)IS(Z)7 4+ S(Y)I + S(Z2)7 + S(Y)S(Z) + S(Y)F" 4 S(Z)7
(Y)S(Z) + S(Y)'S(Y) +S(Y)S(Z2) + S(2)'S(Z)

S(Y) +S(2))(S(Y) +5(2))
(Y % Z2)'S(Y x Z)
(X)'S(x)/

S
S

S(X)H + S(X)I =8
= (

S
S

Inductively, this shows the desired result for any curve which is composed of semgents which are
piecewise-monotone in both coordinates. O

A geometric interpretation of this result may be seen in Figure 1.3. The integral S(X)!? for
example may be considered as the sum of the signed areas over each section where the curve
is monotone. The statement then reads that the signed area of the blue rectangle in the left
image may be constructed as follows: take the integral of X2 dX!, to contribute the positive green
and red sections, then the integral of X' dX? from zero until the maxima (with respect to the
X1 coordinate, the first black dotted line) contributes positive purple and yellow areas; the final
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Signed Area Integral dx}

x} X}

Figure 1.4: Comparison of the Levy area and usual integral

integral from the maxima to the end point (second black dotted line) contributes negative green
and negative yellow areas. The resulting sum of all these signed areas is equal to the area of the
blue rectangle.

Remark 1.3.3. Lemma 1.3.2 highlights that there is some redundancy in the vector representation
of the signature which we have so far discussed. If the terms S(X)¢, S(X)? and S(X)%/ are known,
then S(X)7% may be inferred without an explicit record in the vector. In the same way, we have
seen that the terms corresponding to words in one letter have the representation of Proposition
1.3.1; we note that only one of these terms is required for each letter in order to compute all such
terms.

The logsignature, as remarked before, is a more compact representation of the information
contained in the signature. Indeed, it can be shown that the logsignature is the most compact
representation. Let us recall the notion of a Lie bracket operation [-,-]. Specifically here we
refer to the Lie bracket induced by the product ®, which means that for =,y € V, we have
[,y] :=2®y —y@x. It can be demonstrated that for any path X : [a,b] — R, we can write

IOg S(X)a’b = Z Z Ailwuyik [eil, [eiz,..., [eik_l,eik] ]] (137)

k>1id,...ip€{l,...,d}

A vector representation would therefore only require entries corresponding to each of the basis
elements of the form which appear in Equation 1.3.7. This has considerably fewer terms (up to
a given level) than the full signature representation of Definition 1.1.4. A five-dimensional path
for example, up to the third level, has 155 terms in its signature and 55 in its logsignature; see
[13] for formulas on the sizes of signatures. This makes the logsignature particularly enticing from
a computation or machine learning point of view, not just for the reduction of required working
memory, but also because the convergence time of algorithms will benefit from the removal of
redundancy in the feature set.

We present another geometric interpretation of the second-order signature terms.

Proposition 1.3.4 (Geometric interpretation via the Levy Area). Let X : [a,b] — R? be a
two-dimensional path. The signed area, Ao, between the curve (X}, X?) and the straight line
connecting (X¢, X8) — (X}, X2), for some u € [a,b], has the following form:

1
Aou =3 S(X)g2 - S(X)ﬁﬂ (1.3.8)

This quantity is known as the Levy Area.

Proof. We refer to Figure 1.4 for an illustration. As before, we may assume without this loss of
generality that the starting point is (0,0) by applying a suitable translation to the curve X. Note
that this does not alter the Levy area. The terms on the right-hand side are also invariant under
this translation by Proposition 1.1.5.

We may compute the Levy area as follows. First, we find the area of the triangle bounded by
the following three lines:

14



) X2=0
i) X' =X}
iii) The straight line connecting the start point (0,0) to the end point (X}, X2).

The Levy area may be computed by first computing the integral of X? with respect to X} over
t € [0,u], and then subtracting the area of this triangle. Note that since X} = X& = 0, we have
S(X)§., = X4 and S(X), = X2. We compute:

“ 1 " 1
Aoy = [ XX - 5xIXE = [ 8005, 42 - SO08LS(0
0 0

1
= SOOR2 - 5SC08,SC0R

1
= SCOR2 - 5 [0 + S(O]
1
= 5 [se08z - 50z
O
1.4 Signature of Data Points
Suppose that, instead of a continuous path, we have observations {(t1,21),..., (tn,zn)} of values

x; at time ¢;. These points may, for example, be the closing prices for some stock S; for every
day in some observation window. In order to speak of the signature of a set of data points, we
must first choose some piecewise-differentiable path representation of the data and then refer to
the signature of that path.

There are several approaches which have been proposed for this purpose. We present the
piecewise linear interpolation as well as the rectilinear or axis interpolation which Levin et al.
have used ([14]) to define the signature of a data stream.

Definition 1.4.1 (Path Interpolations of Data Points). Let X = {(t1,21),..., (tn,Zn)} be a set
of observations of some process. The piecewise linear interpolation path generated by X is the
path which passes through the (#;,2¢,) and joins each pair (t;,xy,), (tiy1,2¢,,,), 4 € {1,...,n — 1}
with a linear segment. Formally, for each ¢ = 1,...,n — 1, define the line L; : R — R through

{(ti, ), (tig1, ip1)} by
t—t;
Lz(t) =x; + 7(1’i+1 - 1'1)
tiv1 —t;

then the linear interpolation generated by X is the map X : [t1,t,] — R given by
X(t) = 1(t S [tiati+1]) . Lz(t)

where 1(-) is the indicator function.

The rectilinear interpolation path generated by X is the path which is horizontal between sub-
sequent data points, and with a jump discontinuity at each {1,...,n}. The rectilinear interpolation
is the path X’ : [t1,t,] — R given by

n
X'(t):=> @i Ut € [tirtis1)) + wal(t = tn)
i=1
Figure 1.5 demonstrates piecewise-linear and rectilinear interpolation of the points

X ={(0,8),(2,5),(3,12),(6,14)}

In this paper, the piecewise linear interpolation is used to generate piecewise-differentiable paths.
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Piecewise Linear Interpolation Rectilinear Interpolation

14 14 L ]
12 12 & )
X(t) 10 X(t) 10
8 8 yr—-
6 6
—0
o 1 2 3 4 5 6 v} 1 2 3 4 5 6
t t

Figure 1.5: Linear and Rectilinear Interpolation

1.5 Motivation for the Path Signature

Having now presented the path signature definition and some geometrical interpretations, we now
present some of the strong theoretical results which support this tool’s recent surge in popularity.
This section is provided both to round off the theoretical portion of this paper with some of these
more technical results, a formal discussion of which is beyond present scope, and to discuss some
recent applications which have demonstrated the ability of this representation to tackle a wide
range of challenges.

The path signature has seen a significant increase in attention in recent years, despite being
studied in the literature for decades. It lends itself naturally as a tool to the machine learning
practitioner, with its ability to represent, with a series of numbers, the structure of an underlying
process such as a price process in a faithful manner. The sense in which this embedding is faithful,
by which we mean that different paths produce different signatures, is tricky to make precise. We
have seen already that the signature is invariant under translations, and therefore different paths
may produce the same signature. The signature is also invariant to time reparameterisations;
informally we might say that the signature depends only on the curve and the direction in which it
was drawn, rather than the speed in which it was drawn. Lyons et al. make this precise by defining
an equivalence relation on signatures known as a tree-like equivalence ([15]). It says that two paths
X and Y are equivalent if the path formed from travelling first along X, and then backwards along
Y, is indistinguishable in signature from the constant path. The main result is that the signature
of two paths coincide if and only if they are equivalent with respect to this restrictive equivalence
relation?.

The previous result may be read that only a very small amount of information is lost when
taking the signature transform of a path, in the sense that precision about the generating path
is traded for precision about the tree-like equivalence class of the generating path. A further
result provided by Lyons et al. ([15]) is that not much information is lost either in considering
the signature up to some given level compared to the entire signature. Specifically, the error
experienced when approximating the solution to a differential equation driven by a path X by a
level-k truncation of a path rather than the full signature decays factorially® with k. That is to
say, the first terms in the signature are the most descriptive.

These two results together suggest something very powerful about the use of the signature
transform in applied tasks where the structure of the underlying process is of central importance.
In a natural way, we have an encoding of the structure of the path into a series of numbers, naturally
included in a wide range of machine learning tasks, with very little loss of information that one
had working with the full path, even though one is (clearly) forced to truncate the signature at
some level.

2The interested reader may consult section 2.2.6 of [15] for a more complete explanation of this result
3This is Proposition 2.2 of [15]
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1.6 Recent Developments

With the huge increase in attention deep learning has received in the past decade, due in no
small way to the recent increases in computing power, GPU support, big data access and other
advances, it is natural to wish to include the signature as the feature set in a neural network.
Bonnier, et al. in their paper Deep Signature Transforms [16] have proposed a flexible methodology
for doing this, which extends beyond using the truncated signature as a feature set. Instead, the
authors propose a learnable, differentiable selection layer which is then incorporated into the neural
network architecture and applied to a variety of problems. The authors demonstrate state of the art
performance in a diverse range of tasks including non-supervised generative models for stochastic
processes, supervised learning with fractional Brownian motion, and a deep reinforcment learning
task. The algorithm is state of the art not just in performance, but in utilising approximately an
order of magnitude less memory than the best-competing models.

This work may now be implemented in the Python package Signatory, which is the work
of Kidger et al. [17]. The module provides a Python wrapper to a C++ implementation of
signature transformations on both the CPU and GPU, making the computation of signatures
for various applications very straightforward. The module boasts what is currently the fastest
implementation of signatures, even before GPU acceleration, and demonstrates improvements over
alternative implementations such as disignature ([18]). These improvements are due to recent
algorithmic advances in this space, and are detailed in the 2020 paper [17]. The applications we
will see in this paper utilise this module for signature computations.

The path signature has also seen recent implementation in the work of Biihler et al. in their
2020 paper [8]. The intended application is the generation of simulated market paths. As noted
by Assefa et al. ([19]), the problem of assesing the quality of synthetic data is a particularly
challenging one. Typically, only qualititative observations such as the presence of certain stylized
facts are used in place of some numerical value, for which a natural definition is hard to provide.
The contributions in [8] involve not only the application of path signatures to generation of time
series via variational autoencoders, but also to providing a performance evaluation metric based
on the path signature and maximum mean discrepancy statistic, which we will define in the next
chapter.
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Chapter 2

Data-Driven Clustering

Having spent the previous chapter developing the theory and motivation to use the signature as
our central tool in regime detection, we now work towards the data-driven clustering algorithm
which will be applied in the next chapter to our data set of US equities. This task is interpreted
in this paper as a clustering task on the space of distributions of signatures. We discuss first a
sufficiently general clustering algorithm.

The work of Azran and Ghahramani [6] will be central. In [6], a data-driven clustering algorithm
is presented over an arbitrary metric space. The role of this chapter is first to present this algorithm,
providing some intuition regarding its outputs, and then to discuss what metric space structure
is suitable in our present setting. Motivated by the previous chapter, we will be representing the
time series paths as their signature transforms. Note, however, that a natural distance between
signatures is not immediately clear.

The algorithm discussed is data-driven, in the sense that no underlying specification of the
clusters is assumed. In particular, no preset number of clusters is specified, no minimum or
maximum number of elements in each cluster and no specification of cluster shape. The task is to
learn this information directly from the data.

This chapter presents several examples of Azran-Ghahramani clustering. The examples are
introduced in a framework in which correct clusterings do exist (or perhaps multiple options are
available). We stress that this is only by construction so as to provide meaningful data on which
to examine the algorithm, and investigate its output. None of this information is passed to the
algorithm itself.

The first example is that of Gaussian Clouds, which will be clouds of points in two dimensions,
defined about a centre point with some random noise in each direction generated from independent
Normal distributions. We can control both the standard deviation of this random component and
the separation of the cluster centres in order to vary the difficulty of the task. This example
demonstrates the output of the Azran-Ghahramani algorithm in a setting with familiar notions of
points and distances.

The second example looks at the clustering of time series. We will construct synthetic market
paths, following a Geometric Brownian Motion, with specified mean and variance. This mean and
variance is our specification of a regime. The metric space structure here will be similar to the
final application of this paper to US equities. To introduce this distance, we turn to the mazimum
mean discrepancy, introduced in [7]. This example is similar in flavour to the final task of this
paper, but still in a setting where the correctness of the algorithm may be meaningfully discussed.

2.1 Preliminaries - Metric Spaces

Since this chapter relies heavily on the notion of a metric space, we briefly recall this here.

Definition 2.1.1 (Metric space). A metric space is a set X together with a binary operator
d: X x X — R such that for any z,y, 2 € X the following hold:

i) diz,y) =0 o=y

ii) d(z,y) = d(y,z) (symmetry)

iii) d(z,z) <d(z,y) +d(y,z) (triangle inequality)
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We may either write a metric space as (X, d), or simply X when the metric is implicit.

The classical example of a metric space is that of Eucliedean n-space. This is the metric space we
will be using in the Gaussian Clouds example.

Example 2.1.1 (Euclidean n-space). On the set of real numbers R we have a familiar notion of
distance between two points a and b, and denoted |a—b|. On R™, n € N, we have the following well-
known extension (typically referred to as the ‘Euclidean distance’): for two points x = (x1,...,Zy),
y=(y1,...,Yn) € R™, we define the distance between x and y, denoted |z — y||, by

n 1/2
|z —yll = [Z(Iz - yi)Q]

=1

R™ may then be equipped with a metric space structure by defining d(x,y) = ||z — y||, for which the
axioms of Definition 2.1.1 are readily verified.

Example 2.1.2 (Function Space). We provide a more abstract example. Let F be the set of all
continuous functions of the form f :[0,1] = R. We can equip this set with a metric space structure
by defining the following distance between two elements f and g:

/lf 2)| do

The first aziom of Definition 2.1.1 follows since this distance is zero exactly when the function
x = |f(x)—g(z)| is almost everywhere zero, which implies that almost everywhere in [0, 1] we have
f(z) = g(z). By continuity, we get f = g on [0,1]. The second aziom is immediate, and the third
follows from the observation that for any a,b € R we have |a+0b| < |a|+1b|. Indeed, for f,g,h € F,

we have
h) = / (@) — ()] do = / (@) — g(z) + g(x) — h(z)| de

</ 1 (\f(x) — (@) + o) - h<m>|) s

/ |f(x Idx+/ lg(x z)| dz

=d(f,g) +d(g,h)

The elements of a metric space are referred to as points; the functions f, g and h of Example 2.1.2
would be referred to as points of the metric space F.

2.2 Azran-Ghahramani Clustering

We now introduce the data-driven clustering algorithm first presented in [6]. We will refer to this
as Azran-Ghahramani clustering. We begin with a metric space of points S = {s1,...,s,} to be
clustered, and distance d(-, -) between points.

Conceptually, a good clustering of points involves grouping together similar points in some
sense. In this setting, the similarity is determined from the distance. We provide, in addition
to the distance function, a similarity function w, which is a map from distances to similarities
between points. The understanding is that as the distance between two points increase, their
similarity should decrease. We therefore assert that our choice of w should be limited to functions
that are monotonically decreasing. We also take w to be non-negative, so that the minimum
similarity is bounded below by zero.

The Azran-Ghahramani algorithm considers particles moving randomly between the points of
the space, with the transitional probabilities given in terms of the similarities discussed above.
Similar points are perceived as having strong connections or paths between them, and points far
apart have weak connections. We consider the motion of n particles, labelled z1,...,z,, which
each begin at the similarly labelled point in the metric space. That is, the particle z; begins at the
point s;. We allow these particles to move through the space for some ¢ steps, and will see how the
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Algorithm 1: K-Prototypes Algorithm

Input: Transition matrix € R»*™, number of clusters K, initial matrix Q € RF*™ of
prototypes

Initialisation: Q' := Q

Output: Partition Z of the indexes {1,...,n}

1. I,gnew) = {m ko= argmingcy g KL(Qm H Q;:ld))}

2. For k € {1,..., K}, define
(new) — 1 Q
k ‘Ilgnew)‘ Z m

mEI,(CnOW)

3. If convereged or stop condition has been met, return the partition Z. Otherwise set
QD) .= QeW) and return to set 1.

probability distribution of the particles’ final positions reveal underlying structure and clusters in
the space.

Suppose that we have a dataset which can be well-separated into clusters. By this, we mean
that there exists a partition of the dataset such that, in each collection, the pairwise similarities
between points of the same collection are high, and low between points from different collections.
In terms of the random walk, this translates to having a small probability of leaving a given
cluster once entered. For such a dataset, the underlying clustering may then be detected by stable
equilibria in the random walk.

The choice of similarity function w has a significant impact. Natural candidates may include,
for example, the inverse function w(z) = 1/z and the squared inverse function w’(z) = 1/22 (so
long as the similarity of a point with itself is defined separately). We can see that, in choosing
the latter, inferred similarity of two points drops off more quickly as distance increases. This will
affect the output by preferring smaller, tighter clusters of points. This concept will be explicitly
addressed in our second Gaussian Clouds example later in this chapter.

It remains to specify the probability of moving from some point s; in the space to a point
sj. Let us first clarify one aspect of the similarity between points. For distinct points s;, s;, the
similarity is given by the composition (w o d)(s;,s;). In [6], the suggestion is that the similarity of
a point with itself should be set manually to zero, to encourage the particles to explore the space.
Since we will soon be discussing the ratios of similarities, we instead opt to take the similarity to
be ‘small’. Since the absolute value of these similarities will vary between problems and choice of
similarity functions, the chosen size is the minimum similarity of all the nonzero distances in the
space. This corresponds to the similarity of the largest distance observed between any two points
in the space.

To define the probability of a particle moving from s; to s;, we consider the ratio of the similarity
(wod)(s;,s;) to the sum of all such similarities. Let w;; = (wod)(s;, s;) be the similarity of points
s; and s;; we take W to be the n x n matrix with (¢, j)-entry equal to w;;. The transition matrix
P is defined by scaling the entries of W such that each row sums to 1. The (i, j)-entry defines the
probability of moving from point ¢ to point j. We have

P=D'w (2.2.1)

where D is the n x n diagonal matrix of row sums, D;; = Z?:l wij, and Dy; = 0 for ¢ # j.

The intention is to find structure in the space by investigating the distributions of these particles
after some ¢ steps. Let x;(a) € R™ be the distribution of particle z; after a steps. After zero steps,
the particle is at its starting location of point s; with probability one, so that the probability
distribution of its location is given by the vector z;(0) = e; € R™ with a one in the i*® entry and
zeros elsewhere. For a > 1 we have:

z;(a) = Pxy(a—1)=...= P%;(0) = P%; (2.2.2)

The probability distribution of particle i after a steps is therefore given by the i*" row of the
matrix P?. If a good clustering exists, it may then be inferred from these rows. As previously
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discussed, the particles in a well-clustered space are expected to remain in their present cluster.
We expect therefore that, after a sufficient number of steps, the distribution of particles which
begin in these segregated clusters should be similar; in particular they will have high probability
of having remained in the cluster in which they began and a low probability of being elsewhere.
We therefore expect the corresponding rows of P! to be similar. The clustering of the points in
the metric space is in this way reduced to a clustering of rows of the matrix P?.

We have the following lemmas from [6] which help to make this precise:

Lemma 2.2.1 (Properties of P). Let W, P be as in Equation 2.2.1. If W is full rank, then so is
P. Further, let A\, k = 1,...,n be the ordered eigenvalues of P, such that A\, > g1 for each
k=1,...,n—1. Then every eigenvalue is real, \y =1, and |A\i| <1 for every k=1,...,n.

Lemma 2.2.2 (Structure of Pt). Let W, P, D be as in Equation 2.2.1, and let the eigenvalues Ay, be

as in Lemma 2.2.1, ordered so that A\, > Ak4+1 as before. Let v, k =1,...,n be the corresponding
eigenvectors, chosen to have unit norm*. Then, for anyt = 1,2,... we have
vgvE D
p! Mk 2.2.3
; Do (2.2.3)

T n
The set of matrices {Z],:T%v[;: }k_l are idempotent, orthogonal, and form a basis of the vector space

generated by { P, P%, P3,...}. That is, if As, A; are elements of this basis with i # j, then A;A; =0,
the zero matriz in R™ ™ (orthogonality), and A? = A; (idempotency).

The proofs of these lemmas may be found in [6]. Since the eigenvalues are, in absolute value,
bounded above by 1, we see in Equation 2.2.3 that eigenvalues closer to 1 correspond to more
stable basis elements, whereas small eigenvalues quickly shrink to zero and contribute negligibly
to the sum.

In the special case where there are K separated clusters, with no connections between points
in different clusters (i.e. zero similarity between such points), it can be shown that the first K
eigenvalues are all 1, and Ay < 1 for £ > K. From Equation 2.2.3, this implies

. Uk'U
lim Pt = § kD 2.24
t%l o0 Z’U]g ( )

Clustering the initial space into k clusters corresponds to dividing the basis elements up into k
elements which are deemed stable; the remaining n — k are deemed unstable. For a given number
of steps t, the quantity Ag(t) := AL — AL 41 captures the separation of the first k& eigenvalues from
the remaining eigenvalues by t steps. For a target number of clusters, k, the number ¢ of steps
which best reveals k clusters is the value of ¢ which maximises this quantity.

Definition 2.2.3. We say that ¢ is the number of steps which best reveals k clusters in the
underlying data if
tr = argmax Ag(t) := argmax(\, — A}, ;)
t t

In total, there are n eigenvalues, since the transition matrix P is assumed to be full rank. The
number of clusters could then be anything in {1,...,n}. We wish to be somewhat selective in the
values k € {1,...,n} for which we provide a k-clustering? however. We say a number of clusters
k' is better revealed by t steps than a number of clusters k if Ag/(t) > Ag(t). For each k, we
can find the number of steps ¢, which best reveals k clusters. If there is another value k' # k in
{1,...n} which is better revealed by the number of steps t, then a k-clustering of the data is not
considered.

The maximum over all k& € {1,...,n} of the quantity Ag(t) is the object from which one
identifies the suitability of a given number of steps ¢ in identifying clusters in the data. We refer
to this as the mazimal eigengap separation for t steps.

Definition 2.2.4.
A(t) := max Ayt
( ) ke{1,...,n} ( )
1Recall that (non-zero) scalar multiples of an eigenvector are also eigenvectors corresponding to the same eigen-
value. In choosing representative eigenvectors, we may therefore select them to have unit norm.
2By a k-clustering, we mean a partition of points {s1,...,8n} into k subsets
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Algorithm 2: Multiscale K-Prototypes Algorithm

Input: Metric space (S, d), similarity function w, maximal number of steps T'.
Output: Collection {(Zg,, A(tg,)),- -, (Zk,,, A(ts,, )}) of k;-partitions and eigengap
separations for k; clusters.

1. Compute P according to 2.2.1
2. Compute A(¢) for t € {1,...,T}. Find the set of local maxima T = {t1,...,tm}

3. For each t; € T, find the number of clusters k; best revealed by t; steps; record maximal
eigengap separation for t; steps

4. For each k;, compute the corresponding k;-partitioning Z,. Append the pair (Zy,, A(tx,;))
to the returned list.

5. Return the final collection {(Zy,, A(tk,)), - Tk, Altr,, )}

For each possible number of clusters k, we may compute the number of steps t; which best reveals
k clusters. This corresponds to a local maxima of the function Ag(¢). This number of steps ¢ is
of interest if, amongst all ¥’ € {1,...,n}, k is the number of clusters best revealed by t steps.
This (typically®) will correspond to a local maxima of the function A(t).

Our approach then is to compute local maxima 7T of A(t), for each t € T compute the number
of clusters k best revealed by ¢, and then to return a k-clustering of the space inferred from the rows
of Pt. In order to determine these k-clusterings, we make use of an algorithm which is similar to
k-means clustering, called the k-prototypes algorithm. In k-means clustering, a distance between
vectors is used to separate points into k clusters. Here we have distributions, and hence a slightly
different approach is suggested in [6], making use of the Kullback-Leibler divergence which we now
recall.

Definition 2.2.5 (Kullback-Leibler divergence). The Kullback-Leibler divergence, usually written
as KL-divergence, measures the difference between two probability distributions P and () defined
on some set X. When X is discrete, it is defined by

KLP Q)= 3 Ployios (55 )

Notice that P(z) = Q(z) exactly when P = @, although KL(P || Q) # KL(Q || P) in general. The
KL-divergence is directional; K L(P || Q) is interpreted as the expected value of the difference in
log P(x) and log Q(x), where the expectation is taken with respect to the measure P. In particular,
KL(- | -) is not a distance in the parlance of metric spaces. It does nonetheless give a notion of
disparity between two probability distributions, and hence is used in the k-prototypes algorithm
of [6] to compare the distribution of particles’ location after ¢ steps.

The word prototype here is borrowed from the paper of Azran and Ghahramani, and refers to
a vector in R™ representing a distribution in the same way P and @ do in the discussion above.
One must specify k prototypes of this form in the initialisation step, about which partitions are
formed, in a similar fashion to specifying centres of clusters in the k-means algorithm.

For a fixed prototypes matrix (), we may compute, for any m, the KL-divergence of the m*
row of the transition matrix to each of the different prototypes. By the closest prototype, we mean
the prototype which has minimal KL-divergence to the m™ row. If the m™ row is deemed closest
to the k*™® prototype, then index m is recorded in the k' bin of the partition Z.

In the second step, the k*" prototype is updated to the mean of the distributions corresponding
to all indexes in the k" bin of the current partition, and the algorithm is run again until con-
vergence. If the suggested partition does not change for a given iteration, then the algorithm has
converged. We may also set some upper limit on the number of iterations to guarantee termination
of the algorithm.

The selection of the initial matrix of prototypes has a significant impact on the success of the
algorithm. Similar to k-means clustering, if the initialisation is improper then the algorithm may,

h

30ne can imagine a situation in which t3 4+ 1 better reveals some other &’ number of clusters and hence the
maxima of Ag(t) is not a maxima of A(t)
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Figure 2.1: Gaussian Clouds Ex. 1. Unclustered points and maximal eigengap separation

for example, output a partition with some empty components. To avoid this, the authors suggest
a star-shaped initialisation of the prototypes. This algorithm is specified in Algorithm 3 of the
appendices. The full Azran-Ghahramani algorithm, referred to as the Multiscale K-Prototypes
Algorithm in [6], is presented in Algorithm 2.

2.3 Gaussian Clouds

We now turn to applications of the Azran-Ghahramani algorithm. We begin with a simple example
in which the points are elements of R?, and the notions of clusters and distance are straightforward.

Definition 2.3.1. For z,y € R, positive 0 € RT, and n € N we define a Gaussian Cloud of size
n, with centre (a,b) and standard deviation o, denoted X, (n), to be a collection of n elements

{ai,...,a,} where each a; = (z;,y;) € R? is distibuted according to the following two-dimensional

Normal distribution:
x; a a2 0
R

We will see two examples in this Gaussian Clouds setting. The first example will have a straight-
forward clustering; in the second example more than one clustering is sensible. For each example,
we choose k = 5 cluster centres in generating the points, and take 30 points per cluster. The
first example uses Gaussian noise with a low standard deviation, which results in easily separa-
ble clusters. The second example features a higher standard deviation, and as such the resulting
clusters are not so easy to define. To be clear, the metric space here is the set R? equipped with
the Euclidean distance of Example 2.1.1. For the first example, we choose the similarity function
w(z) = 1/23, which was found to produce suitable clusters.

The right-hand image of Figure 2.1 is the graph of the function A(t), the maximal eigengap
separation under ¢ steps. Note that as ¢ increases, the number of clusters which is best revealed
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Figure 2.2: Best clustering for four clusters (left), and for five clusters (right)
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Figure 2.3: Gaussian Clouds Ex. 2. Unclustered points and maximal eigengap separation

by t steps decreases. This is the result of the upper bound |A] < 1 for every eigenvalue A. As ¢
increases, the number of basis elements corresponding to eigenvalues which ‘survive’ ¢ steps (i.e.
the ' power has not become negligibly small) decreases. Since all the examples we consider are
fully connected, with no two points having zero similarity, eventually the trivial 1-clustering is
suggested. We choose to ignore this output throughout.

The non-trivial clustering with the highest eigengap separation is the 5-clustering which reflects
the problem’s design (right-hand plot of Figure 2.2). The other local maxima correspond to other
suggested clusterings of the data; depicted on the left of Figure 2.2 is the suggested 4-clustering.
We note that the 4-clustering suggested is somewhat reasonable. In general, we believe that
clusterings other than the suggested (highest-eigengap) clustering should also be investigated in
situations where the correct clustering is not clear.

2.3.1 Gaussian Clouds of High Standard Deviation

The time series of real market data, however represented, is not expected to be cleanly separable
into distinct clusters. For the second example, we consider a similar setting in which the noise has
a notably increased standard deviation. The corresponding points are presented in the left-hand
plot of Figure 2.4. We take the same metric space structure as before; we alter the similarity
function from the previous example, now taking the similarity suggested in [6], which is given by

w? (z) 1= exp (—%) (2.3.1)

As suggested in [6], we take a value of o smaller than 1% of the nonzero distances in the space.
The maximal eigengap plot is presented on the right of Figure 2.4. Here, instead of plotting the
maximum A(t), we plot the constituent Ay(t) curves for the values of k for which a k-clustering
is recommended by Algorithm 2.

Comparing this maximal eigengap separation plot to that of the previous example, we note first
that the number of steps required to reveal stable equilibria is around two orders of magnitude
higher. In particular, the number of steps before the degenerate 1-clustering is suggested is around
107 instead of 10° steps; the 5-clustering is suggested in the first example after 102 steps, here
around 10%® steps are required. The interpretation is that, in the second example, the connections
between points of distinct clusters (as measured by the similarity and probability of a particle
transitioning from one to the other) is significantly stronger than in the first case. In light of
Equation 2.2.3, this corresponds to basis elements with higher absolute eigenvalues, which survive
for a larger number of steps before contributing only neglibly to the sum.

In this example, the preferred clustering is the 6-clustering on the right of Figure 2.4, rather
than a 5-clustering as in the problem specification. Here, the point generated on the bottom-left of
the image, which is the point furthest from its nearest neighbour, is sufficiently far from the other
points as to warrent its own cluster.

2.3.2 Stability of the Output

Let us use this example to investigate the impact of the algorithm to the problem specificiation. In
particular, we are interested in quantifying how stable the output is to the following two changes:
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Figure 2.4: Best clustering for two clusters (left), and for six clusters (right)

i) Removal of the isolated point which is depicted as a singleton cluster in both of the clusterings
of Figure 2.4

ii) Altering the similarity function

We may answer the first question by executing the clustering algorithm against the same subset
of points with the outlier point removed. The corresponding maximal eigengap plot is presented
in Figure 2.5. Note that an almost identical plot is produced. Indeed, the clusterings suggested
are identical to the clusterings suggested in the unaltered example, now with the singleton cluster
removed. The number of steps required to identify each cluster is also similar. The 5-clustering is
best-revealed by 7142 steps when the outlier point is removed, compared to 6915 steps to reveal
the corresponding 6-clustering in the unaltered example.

The largest seven eigenvalues of the transition matrix resulting from the unaltered (original)
framework are presented in Table 2.1, along with the eigenvalues of the transition matrix once
the outlier point has been removed. We demonstrate numerically the eigengap separation after
6915 steps, which corresponds, by Equation 2.2.3, to raising each eigenvalue to the power 6915.
To compare the eigenvalues of the altered transition matrix, we raise the equivalent eigenvalues
to the same power rather than the adjusted number of steps best revealing the corresponding
cluster. Of particular interest is that, in the third column, the first six eigenvalues have a clear
separation from the remaining eigenvalues, whereas in the fourth coumn the corresponding gap is
after five eigenvalues. The result is that the clustering algorithm suggests a 5-clustering instead of
a 6-clustering.

For the second question, we present the impact of altering the similarity function in Figure
2.6. We consider setting the value of sigma at the 0.5 and 0.1%% percentiles in the similarity
function of Equation 2.3.1. The left eigengap plot of Figure 2.6 is the clustering suggested when
the 0.1-percentile value is chosen (resulting in o 2 0.417). The impact of the smaller o value is that
similarities between points are increased, resulting in recommendations involving a larger number
of clusters. We see that, overall, the number of steps required to reveal a given k-clustering is
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Figure 2.6: Gaussian Clouds Ex. 2. Impact of the Similarity Function - Varying Sigma

increased in the setting with larger similarities, corresponding to larger eigenvalues.

The only nontrivial clusterings of the left-hand plot of Figure 2.6 which remain after the change
of similarity function are the 5-clustering and the 4-clustering. Increasing o further removes the
4-clustering, and in the limit as ¢ increases the similarity between all points tends to zero, yielding
the trivial 1-clustering. In this way the clusterings with higher eigengap separation correspond to
equilibria in the random walks with higher stability.

We intend in this paper to discuss a data-driven approach to regime classificaiton as far as
possible; this example however highlights the importance of the similarity function as well as
the metric space structure on the set of points to be clustered. The understanding is that well-
clustered data will resist small changes to the similarity function and slight alterations to the
dataset, although this choice of structure on the space remains an important manual aspect to the
algorithm which much be acknowledged.

Original Point Removed Original Point Removed

Zero Steps Zero Steps 6915 Steps 6915 Steps
A1 1.00000000 1.00000000 1.00000000 1.00000000
A2 0.99999864 0.99999866 0.99065273 0.99077991
Az 0.99999751 0.99999758 0.98291351 0.98338968
Ag 0.99999282 0.99999245 0.95157578 0.94910946
A5 0.99999219 0.99997074 0.94743909 0.81679964
As  0.99996992 0.99960787 0.81217599 0.06639451
A7 0.99959761 0.99950583 0.06184723 0.03277786

Table 2.1: Largest eigenvalues for the transition matrix induced by the original set of points, and
the set of points with the outlier removed
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2.4 Synthetic Time Series

We now work towards the clustering of market time series data. In this example we work with
simulated price paths, each belonging to one of a predefined number of regimes. The simulations
used are realisations of a Geometric Brownian Motion process.

Definition 2.4.1 (Standard Brownian Motion). A continuous-time stochastic process W is called
a Standard Brownian Motion if the following hold:

i) Wo=0
ii) ¢ — W, is almost-surely continuous

iii) W; has independent increments: any increment Wy, — W, is independent of W for any past
value s <t

iv) The increments are normally distributed: Wi, — Wy v~ N(0, u)

Definition 2.4.2 (Geometric Brownian Motion). A continuous-time stochastic process S; is called
a Geometric Brownian Motion if there exists u, 0 € R with o > 0 such that S; satisfies the stochastic
differential equation

dSt = ,UJSt dt + O'St th (241)

where W; is a standard Brownian motion.

The solution to equation 2.4.1 is given by

2
Sy = Spexp ((u — 02) t+ OWt) (2.4.2)

the variables p, o of Equation 2.4.2 are called the drift and volatility respectively. The drift term
governs the long-term expected value of S;, whereas the volatility indicates how far away from this
expected value the value of S; is likely to be.

In this example, a regime corresponds to a choice of the parameters (i, o). We demonstrate the
clustering of Brownian paths by selecting five regimes according to the parameters in Table 2.2.
This example will serve as a simplified version of the main target of the paper. The next section
explains how points of a metric space are generated once this choice has been made.

7 o
Regime 1  0.001  0.008
Regime 2 0.001  0.003
Regime 3 -0.001 0.008
Regime 4 -0.001 0.003
Regime 5 0 0.008

Table 2.2: Parameters for Sample Brownian Paths of Figure 2.7

2.4.1 Regime Points and Point Elements

The understanding is that, over small time horizons, market data will have an approximately
constant regime. For each regime (u, o), we generate fixed-length paths representing the evolution
of a price process over some observation period. All paths generated will begin at the same starting
point and the observed displacements, volatilities and higher order terms which appear in the path
signature will be used to identify regime.

In the market data, for a given observation window (one week, for example), many paths
are available to suggest the underlying regime for that interval. There is a choice to be made
about how these paths are chosen. One could, for instance, take individual stock price paths and
generate a collection of signatures. Another choice would be to consider multiple stocks together
as a single multi-dimensional path, allowing the signatures to reflect cross-correlation terms, which
may provide insight into regimes also.
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Let us take, for example, a one-week observation window. A point in the metric space of our current
setting will be a representation of a given week’s regime. In this setting, the week’s regime may be
represented by a collection of path signatures or logsignatures. Due to the discussion of Section
1.2, we choose to represent the regime by the collection of logsignatures. In order to consider
Azran-Ghahramani clustering on this space, we therefore require a metric between collections of
logsignatures.

In real market data, due to data availability, the number of paths available varies from one week
to the next. The size of the logsignature collections representing the observation periods therefore
vary from one window to the next. We therefore require a metric capable of comparing collections
of different sizes.

Algorithm 3 outlines the construction of points in our space. A point, generated under a regime
with drift x4 and volatility o, is denoted by X'*?. The number of elements n in a given point X is
chosen at random from some predetermined subset of N. The subset is chosen to approximately
match the size of collections available when working with real data in the next chapter. The
signature level [ is constant between points and hence is not included in the notation.

Repeating Algorithm 3 k times we obtain the collection of points {X{"7,..., X"}, which are
the points of the space corresponding to the regime with parameters (i, o). Repeating this for
each regime in Table 2.2, we obtain the set of points in our space. In the next section, we discuss
the distance function which equips this set with the structure of a metric space.

Algorithm 3: Generation of a regime-point

Input: Maximum signature level [, path dimension d, regime drift u and volatility o.
Minimum and maximum number of elements Ny, and Nyax, path length m
Output: Single metric space point

1. Select number of elements n uniformly at random from the set { Nyin, - - -y Nmax }

2. For each i € {1,...,n}, simulate a sample one-dimensional geometric Brownian motion
path? s; = (sl,...,s™), of length m, with drift x and volatility o

3. For each i, time-augment the path to obtain a two-dimensional path

{1 1), (mys7)}

4. Linearly interpolate the points of step 3 to form a piecewise-differentiable function
51‘ : [1,m] — Rd

5. Let z; = S(él)lgin be the signature transform of the path (8;) up to level [

6. Return X, , := {z1,..., 25}

2.4.2 A Distance between Collections of Signatures

The approach will be to consider the points X = X*? and X = X", generated according
to Algorithm 3, as random samples from some distributions p and p of path signatures. The
distance between the two collections may then be understood as a distance between these two
distributions. Indeed, in this paper a market regime is seen as synonymous with a cluster in the
space of distributions of path signatures.

We seek then an estimate on the distance between the distributions p and p given the samples
X and X. A two-sample hypothesis test is a general framework employed to tackle these problems.
Given a collection X = {x1,...,x,} of independent samples from a population p and a collection
Y ={y1,...,ym} of samples from a population p, a two-sample hypothesis test is used to determine
whether there is sufficient evidence at some significance level to reject the null hypothesis that p = p.

The mazimum mean discrepancy test statistic is a two-sample hypothesis test statistic in-
troduced in [7] which provides us with a statistic by which we will quantify how different the
distributions generating our two collections are. In order to define the maximum mean discrep-
ancy statistic, we first recall the definition of a Reproducing Kernel Hilbert Space, the definition of
which is adapted from [20].
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Figure 2.7: Synthetic Paths Example - Generated Paths and Eigengaps Plot

Definition 2.4.3 (Reproducing Kernel Hilbert Space). Let X be a set, and let H be a Hilbert
space® of functions X — R. For each = € X, the evaluation functional is the function £, : H — R
defined by

Lo(f) = f(x) (2.4.3)

We say that H is a Reproducing Kernel Hilbert Space if, for every x € X, the functional £, is
continuous (with respect to the standard metric on R and the metric induced by the inner product
on H).

If H is a Reproducing Kernel Hilbert Space then, for each x € X, there exists a reproducing
kernel K, € H such that the evaluation functional £, can be computed by the inner product with
K,. That is, for any f € H:

Lo(f) = f(x) = (f, Kz) (2.4.4)

where the inner product is provided by the Hilbert space structure on H. The reproducing kernel
for H is the function k : X x X — R given by

k(z,y) = (Ku, Ky) (2.4.5)

From [21], the reproducing kernel hibert space H is said to be universal if k(x, ) is continuous for
all x and H is dense® in C'(X), the space of continuous functions X — R.

We have the following formulation of the maximum mean discrepancy statistic, due to [7]:

Definition 2.4.4 (Maximum Mean Discrepancy). Let F be a class of functions f : X — R, and
let p, g be distributions on X. The Mazimum Mean Discrepancy over p,q over F is defined to be

MMDIF, p.a] i= $up (Eavy [£(2)] — By [f0)]) (2.46)
€
If, instead of observing the distributions p and ¢, we have independent observations X = {x1,...,2z}
and Y = {y1,...,yn} from the distributions p, ¢ respectively, then an empirical estimate of the

maximum mean discrepancy statistic is given by

MMDIF, X, Y] := sup ( Zf ;) ;Zf@))

feF

Let ‘H be a universal reproducing kernel Hilbert space with associated kernel k. If we choose the
class of functions F to be the unit ball in H, then an empirical estimate for the maximum mean
discrepancy may be computed in terms of the kernel &(-, ) by

1/2

1 < 1 &
MMD[F, X, V] = | — Z (zi, ) — — Z B(wi, y) + — > k(yiy)) (2.4.7)
j=1 ij=1 i,j=1

5See the appendices for the definition of a Hilbert Space
6See the appendices for the definition of a dense subset
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Figure 2.8: Synthetic Paths Example - Best 2-Clusterings and 5-Clusterings

In [21], it is shown that in particular the reproducing kernel Hilbert space induced by the Gaussian
kernel

1
(o) = exp (gl - ol (2.4.8)

on compact subsets of R? is universal, for fixed o € R. It is this kernel and this space which we
will be utilising in this example. Note that the maximum mean discrepancy in particular is not a
distance function, since Equation 2.4.6 is dependent on the order of p and g. Nevertheless, in [7] it
is demonstrated that if the induced Hilbert space H is a universal reproducing kernel Hilbert space
then the maximum mean discrepancy statistic has the property that MMDI[F, p, q] = 0 if and only
if p = q. Furthermore, the empirical estimate provided in 2.4.7 is symmetric in its arguments; is it
this measure of disparity between the collections X and Y which we take as a distance function in
the Azran-Ghahramani algorithm. We demonstrate in the next section that this choice of metric
is sufficient to allow for the classification of regimes from Brownian paths.

2.4.3 Results

The parameters (i, o) chosen to represent regimes have been presented in Table 2.2. For each
regime, 10 samples were generated according to Algorithm 3. For each sample, a random number
of path innovations between 75 and 100 were generated, simulating the differing quantity of data
available when working with real market data. Each generated path was chosen to start at value 1,
and continue for 25 steps. A subset of the resulting paths (with 50 paths per regime) is presented
in the left-hand plot of Figure 2.7. For each point in the space, the logsignatures up to level 3 are
computed. The second-order terms in the signature vectors represent areas, as seen in Chapter 1,
and hence are much smaller in absolute value than the displacement terms, due to the small values
the paths take in this setting. Since the Gaussian kernel of Equation 2.4.8 considers the Euclidean
distance between points, we found it helpful to scale the signature terms so that, for each entry in
the vector, most” of the population has a value between 0 and 1. The distance function is taken as
the MMD estimate of Equation 2.4.7, and we take the similarity function of Equation 2.3.1 from
the previous Gaussian Clouds example. From this setup, we may proceed with a similar analysis
as in the Gaussian Clouds examples.

The maximal eigengap separation plot is presented as the right-hand plot of Figure 2.7. As in
the previous example, this metric space structure is deemed successful at clustering the underlying
paths in the sense that the nontrivial clustering with the highest eigengap separation is the 5-
clustering, which is presented on the right of Figure 2.8. For comparison, the suggested 2-clustering
is presented on the left. The clusters suggested by the algorithm also coincide with the problem
specification, as we discuss next.

From Figure 2.8, it is hard to determine the quality of the output of the algorithm. Let us
denote by Ri,...,Rs the point indices corresponding to the regimes of Table 2.2, with the same
numberings. We separate the regime R3 = R} URZ, and R5 = R URZ; these subsets are of sizes
|RL| =4, |R3| =6, |[R: =5, and |R2| = 5, and appear in the suggested 7-clustering in the output
of the Azran-Ghahramani clustering when run over this space.

"We scale each term in the signature vector by the 95" percentiles of the population values for this entry
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The resulting clusters are presented in Table 2.3. The 6-clustering output suggested contains an
empty partition, and is otherwise identical to the preferred 5-clustering suggested.

Partition

7 Clusters  Rq, Ra, RE, R2, Ry, RE, RE
6 Clusters @, Rl, RQ, Rg, R4, Rg,

5 Clusters R1,R2,R3, R4, R5

4 Clusters R1,Ra,R3 URs5, Ra

3 Clusters Rl @] Rg, Rg U R5, R4

2 Clusters Rl U RQ, Rg U R4 U R5

Table 2.3: Synthetic Data - Azran Ghahramani Algorithm Suggested Clusterings

This example has validated the concept of understanding market regimes as clusters in a space of
(truncated) signature vectors. We have used the maximum mean discrepancy statistic to represent
the distance between two such distributions, and have identified the desired clustering in the
synthetic time series data. In the final chapter, we attempt to apply the same algorithm to actual
market paths.
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Chapter 3

Regime Classification

In this chapter, we present the results of the Azran-Ghahramani clustering algorithm when applied
to real market data. The distance between collections of signature vectors is the same distance
identified in the Synthetic Data example. We work with one-minute data, and attempt to classify
the regime over one-day observation windows. The data used in this example was collected from
Yahoo! Finance. The data set spans a four-month time period beginning on April 27" 2020 and
concluding August 28" 2020. We refer to this period as the observation period.

For each day in the observation period, price paths were collected for as many tickers as
possible from the SP500 index. In order to compare signature terms, we apply a preprocessing
step of normalising each price path by the first component of the day. Price paths are therefore
recorded as relative prices with the opening price scaled to have a value of 1. The paths over which
signatures are computed are the time-augmented, two-dimensional paths encoding the price and
time at which the price was recorded. Logsignatures up to level 4 for each path were computed.
A subset! of the resulting price paths is presented as the left-hand plot of Figure 3.1.

The most suitable results were found when the signature of the absolute price path were consid-
ered. For a path, we define the absolute price path as the path X defined inductively by X := Xo
and for i > 1 we define X; := X, + |X; — X;—1|. That is, differences from one minute to the
next compound, and a measure of volatility may be captured in the displacement of this absolute
path over the day. We found that these terms gave a clearer indication of the volatility than the
signature terms, which reflect signed areas and result in less separable points. The distance be-
tween days in the dataset is then given by the distance between combination signatures, which are
signature-style vectors where the first two entries are the displacements in each axis, which come
from the signature vector, and the remaining entries are taken from the signature of the absolute
path.
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Figure 3.1: Market Data - Relative Price Paths and Resulting Eigengaps Plot

IThe figure is presented with only a subset of the paths for clarity. The full set of paths is too large to be
meaningfully displayed on one plot in this way.
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Figure 3.2: Market Data - Recommended 3-Clustering

3.1 Results

The maximal eigengap separation plot is presented on the right-hand side of Figure 3.1; the curve
corresponding to the 1-clustering is not displayed. We note first that, in contrast to the synthetic
examples, the eigengap separation corresponding to the recommended clusterings are much lower
that the successful clusterings of the previous sections. Indeed, we found that the distances between
points were much more evenly distributed than in the previous examples. Natural clusters are
therefore harder to identify. As we have seen in the second Gaussian Clouds example, this low
eigengap separation corresponds to less stable clusterings, which are sensitive to the choice of
similarity function for example. Indeed, for this example the similarity function is taken to be
the function w(z) := 1/2°, rather than the similarity functions which produced strong results in
the previous chapter. This choice of similarity function was found to produce the most convincing
results.

We demonstrate the suggested 3-clustering in Figure 3.2. Cluster 2 contains only a single day,
similar to the outlier point discussed in the second Gaussian Clouds example. We can discuss
several characteristics which have been identified as meaningful attributes by which to separate
the data. Comparing Cluster 1, the left-hand plot of Figure 3.2, with Cluster 3, the right-hand plot
of the same Figure, we see that neither collection displays significant drift overall across a one-day
period. The volatility of the constituent paths in Cluster 1 however appear to have notably lower
volatility than those of Cluster 3. Cluster 2 on the other hand, a singleton cluster, displays rather
different characteristics of paths experiencing sharp selloffs. Indeed many paths display a 5% loss
over a one-day interval. For this reason, the MMD distance from other points is deemed significant
enough to warrant a singleton cluster.

To make this precise, we compute the mean closing price and mean quadratic variation for
the full collection of paths which make up each cluster. Recall the following formulation of the

quadratic variation of a discrete path X = {x1,za,...,2,}:
n
QV(X):=> (i —zi1)° (3.1.1)
i=2

For each path in the cluster, we may compute the quadratic variation according to Equation 3.1.1.
A notion of volatility for each cluster is given by taking the mean of all such quadratic variations
across all constituent paths. We present this statistic, along with the cluster’s mean closing price, in
Table 3.1. We note that the quadratic variation of Cluster 3 is indeed around double the quadratic
variation of Cluster 1. Cluster 2 also exhibits high quadratic variation. The clusters identified in
the data would be characterised as zero mean, low variance; negative mean, high variance; zero
mean, high variance.

Average Closing Value Average Quadratic Variation

Cluster 1 1.0027 1.202¢~6
Cluster 2 0.9878 1.997e~6
Cluster 3 0.9995 2.246e=6

Table 3.1: Market Data - Means and Quadratic Variations of Recommended Clusters
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Chapter 4

Conclusion

In this paper, we have presented a data-driven algorithm to classify market regimes. We have seen
how market conditions may be thought of as probability distributions on path signatures, and that
market regimes may be thought of as clusters of such distributions. We have attempted to present
an algorithm which is as free from manual specification as possible. We discuss in this chapter
both the shortcomings of the current algorithm and possible directions for future work.

Firstly, the framework presented has only proposed a method in which market regimes may be
identified, but does not provide transition probabilities between the regimes. Indeed, the algorithm
is backwards-looking, and makes no attempt to predict market conditions. Future work could
include adapting the current algorithm to take recent market conditions into account, rather than
treating each sample as independent.

The regimes indicated in the final example are fairly straightforward, being identified mainly
by volatility. With higher-order signature terms, we found it difficult to generate meaningful
clusters. Firstly, we would like to investigate this market application further with a larger dataset.
In addition, however, we note that the clusters suggested are highly sensitive to the choice of
similarity function and metric put on the space. We have seen the motivation to use empirical
estimates of maximum mean discrepancy as a distance function between distributions of signatures,
and this seems quite a natural description. The choice of distance function then is reduced to a
choice of kernel. Whilst kernels associated with universal reproducing kernel hilbert spaces are
well-motivated by the theoretical results surrounding their MMD distance, discussed in Chapter 2,
we have a wide choice of such kernels to choose from (see [21]). It is not clear which choice of kernel
results in a distance function most faithfully encoding market regimes, or if such a question can
be answered in a definitive fashion. A choice of kernel which separates the data more convincingly
would allow for subtler signature terms to be incorporated into the regime specification and produce
stronger results.

The eigengap separations of the final example are much lower that in the successful clusterings
of the previous chapter. Our opinion is that this cluster instability is due to a more continuous
spread of distances between points, as discussed in Chapter 3. This example suggests that the
clustering algorithm discussed performs poorly when clearly-separable clusters are not available.
Whilst we have investigated this issue in the Gaussian Clouds example, potential further work could
include clustering the signature distributions using a fuzzy or soft clustering algorithm, in which
points may belong to multiple clusters at once. We expect higher stability in such an algorithm’s
output and more convincing descriptions of market regime.

It remains also to apply the algorithm to other markets. The algorithm presented here is
sufficiently general that we expect to find similar results. Nevertheless, this is another clear avenue
for future work.
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Appendix A

Supplementary Definitions and
Algorithms

A.1 Algebraic Structures

Definition A.1.1 (Vector Space). A wector space over a field F is a set V, equipped with an
addition 4+ : V x V' — V., and a scalar multiplication - : F' x V' — V such that, for all z,y,z € V
and \,p € F:

) 2+y=y+
i) (z+y)+z=a+y+2)
iii) There exists an element 0 € V such that 0 + = = (for any z € V)
F

iv) For every x € V there exist an element —x € V such that z + (—z) =0

V) A (u-a) = () -
Az =)+ (u-2)
@ty =(ha)+(A-y)

The element 1 € F', the multiplicative identity of F', satisfies 1 -z ==z

)
)
)
)
)
i)
vii) A
viii)

Definition A.1.2 (Inner Product Space). Let V' be a vector space over a field F'. An inner product
onVisamap ():V xV — F, written (z,y) — (z,y), which satisfies, for all z,y € V and X € F:

i)
ii)
iii)

iv)

The pair (V, (-,-)) of a vector space equipped with an inner product on V is called an inner product
space.

(x+y,2) = (,2) + (y,2)
(z,y) = (y, )
A-zy) = A-(2,y)
(

z,x) > 0and (z,2) =0 2 =0

Definition A.1.3 (Algebra over a field). Let V be a vector space over a field F. We say that
V is an algebra over F if, in addition to the vector space structure, there is a multiplication
X : V xV — V such that, for any z,y,z € V and A\, u € F we have

) (@+y)xz=(zx2)+(yx2)
i) zx(r4+y) =(E=xz)+ (2 xy)

i) (A-) x (1-y) = () - (& x )
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Definition A.1.4 (Complete Metric Space). Let (X, d) be a metric space’. Let (r,)%°; C X be
a sequence in X.

i) The sequence (z,)5%, in X converges to a point +* € X if, for all € > 0 there exists a number
N € N such that n > N = d(z,,z*) <e.

ii) The sequence (x,)5%; is Cauchy if, for all € > 0 there exists a number N’ € N such that
n,m > N = d(z,,T,) < €.

The metric space (X,d) is complete if these concepts coincide. That is, every Cauchy sequence
converges (the converse always holds).

Definition A.1.5 (Hilbert Space). Let (V,(:,-)) be an inner product space. The inner product
(+,-) induces a norm on V by |z| := (x,x). We can in turn define a metric space structure on V' by
defining that d(z,y) := |z — y|. The tuple (V,d) is then a metric space. If the metric space (V,d)
defined in this way is a complete metric space, then we say that the inner product space (V, (-, -,))
is a Hilbert space.

Definition A.1.6 (Dense Subset). Let (X, T) be a topological space. We say that a subset A C X
is dense in X if the closure A of A is the whole set X: A = X. In the context of the universal
reproducing kernel hilbert space of definition 2.4.3, density of a subset of a metric space refers to
density in the topology induced by the metric (the topology generated by all open balls around
points of the space). As in definition A.1.5, the metric space structure on a hilbert space is itself
induced from the norm (-, -).

A.2 Algorithms

Algorithm 4: Star-Shaped Prototypes Initialisation

Input: Transition matrix P, number of clusters k
Output: Matrix of prototypes Q

i) Set Q=131 P,

ii) For j =2,...,k, set Q; := Py,, where m = argmax, minj— . j_1 KL(Pa H Qj)

That is, after initialising the first row, each subsequent row is chosen from the transition matrix
P so as to maximise the minimum divergence to all previously-selected rows. One can think of
choosing the next row of P so as to maximise the distance to all other prototypes.

Algorithm 5: Generation of a one-dimensional Geometric Brownian Motion path

Input: Time steps T = {t1,...,t,}, drift g, volatility o
Output: Sequence {Wy, W1,..., W, } with W, € R, realisations of a Brownian Path with
required drift, volatility at time steps t € T

1) Set WO =0
For each i = 1,...,n, generate independent Z,, ~ N (u,o?)

)
ill) Set W1 = \/EZl, W2 = \/tg — t1Z2, ey \/tn - tn,lZn
iv) Return {Wy, Wh,..., Wy}

ii

1See Definition 2.1.1 for the definition of a metric space
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