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1 Introduction

There are thousands of stocks in the worldwide equity market including dozens of industries varying

from Banking to Software. In fact, Bloomberg designed a Bloomberg Industry Classification System

(BICS) [1] to categorise stocks into different industries based on their general business activities.

BICS contains 10 sectors which is the first level of the classification and each sector is further

partitioned into industries while industries can be further divided into sub-industries. Therefore,

BICS is a three-level hierarchical system of stocks: sector, industry and sub-industry where names

are detailed in Table 12 attached in Appendix. Every stock is given a code, it is named as BICS

code to identify its position. For example, Microsoft Corporation’s code is ’181211’. The first two

digits ’18’ represents Technology sector which Microsoft belongs to, the third and fourth digits

’12’ represents Semiconductor industry where Microsoft belongs to, and ’11’ represents the sub-

industry.

BICS codes are widely used when investing in stocks since plenty of valuable information is

contained in BICS code. For instance, one can expect stocks in the same industries are highly

correlated and thus it is appropriate to assume their stock prices will have similar movement [2],

because firms in the same sector or industry have similar business activities or products so the

fluctuation of their stock prices will be influencing each other. If stocks in a sector move together as

one supposed, one can say that this sector has a good clustering property. However, an interesting

phenomenon occurred during the research of BICS code. That is even though MDU1 is in the

Construction Materials industry, this stock has a close relationship with three stocks: NJR2, IDA3

and SR4, which are in Utilities sector. Figure 1 presents annualised cumulative sums of daily

returns of the four stocks during the timespan ranging from

One can see from Figure 1 the four stocks somehow have similar momentum, which means their

stock prices move up or down very similarly. There are two reasons why MDU has a similar price

fluctuation as the other three. The first one is influence of expected market return [3]. The second

one is that all of their business is related to natural gas. Therefore, if someone assumes stocks in

Construction Materials industry are moving together and trade them based on this assumption,

he/she will lose profit since MDU is not consistent with other in Construction Materials industry

in term of the stock price fluctuation. This example suggests that some stocks are divided into

“wrong” sectors, and this may be because the way of the classification standard has been defined.

For a trading purpose, the stock market is supposed to be split into groups where stocks have

a close relationship within the same group while stocks in different groups are more independent.

To analyse this and reconstruct the stock model, one applies clustering algorithms. As a machine

1MDU is the ticker of MDU Resources Group Incorporation
2NJR is the ticker of New Jersey Resources Corporation
3IDA is the ticker of IDACORP Incorporation
4SR is the ticker of Spire Incorporation
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Figure 1: First discovery of BICS code with 4 time series of stock prices.

learning technique, the clustering algorithm can classify data points into groups under some con-

straints. Data points which are divided into the same groups should have some similar properties

while data points in different groups have very different features [4].

Among stock markets in the worldwide, the US stock market has the greatest capitalisation

and largest number of stocks. It is the most influential one too, hence this project will focus

on the US stock market where many investors are very keen to understand its structure. In the

following, distance functions including Pearson’s Correlation, Spearman’s Rank Correlation and

Cosine measure will be stated in Section 2.1, then three clustering methods containing K-means

clustering, Hierarchical Clustering and Planar Maximally Filtered Graph are introduced in the

remaining of Section 2. After these, applications of three clustering methods to US stock market

will be presented in Section 3.
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2 Preliminaries

In this section, the concept of distances will be discussed and it will become the foundation of

the model building. Then it will present 3 different models for modelling the stock universe and

classify stocks into clusters.

2.1 Distance Introduction

Assume X = {x1, x2, ..., xn} is a non-empty set, and let distance d : X × X → R be a function

where for all x, y, z ∈ X, the following four principles are: satisfied

(p1) d(x, y) ≥ 0 non-negativity,

(p2) d(x, y) = d(y, x) symmetry,

(p3) d(x, y) = 0 iff x = y identity,

(p4) d(x, y) ≤ d(x, z) + d(y, z) triangle inequality.

The function d can be also referred as metric on X, and we denote the pair (X, d) as a metric

space [5].

2.1.1 Pearson Correlation Distance

Correlation, a very well-known measure in Statistics, was developed by Karl Pearson in [6] from

a related idea introduced by Francis Galton [7]. Here, the correlation is been used as a distance

function to describe the similarity of two elements xi and xj in the set X. The correlation between

xi and xj is defined as:

ρij =
E[(xi − µxi

)(xj − µxj
)]

σxi
σxj

, (2.1)

where µxi is the mean of xi and σxi is the standard deviation of xi, similarly with xj . Especially,

the estimating formula can be expressed as:

ρ̂ij =
(xi − x̄i)T (xj − x̄j)
‖xi − x̄i‖ · ‖xj − x̄j‖

. (2.2)

The value of correlation is in the interval [−1, 1], and it is closer to 1 if xi and xj are highly

correlated, which suggests that the distance between xi and xj is small. By the meaning of

distance, the further apart the two vectors are, the more different they are, but correlation is a

measure of how similar two quantities are which negative value is undesirable.

To satisfy four principles of metric definition, the correlation distance on set X, is given as:

dij =
√

2 ∗ (1− ρ̂ij). (2.3)
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It is easy to check that value of correlation distance is in the interval [0, 2] ∈ R+. dij = 0 when xi

and xj are positively and linearly correlated, dij = 2 when xi and xj are negatively and linearly

correlated. This distance function is well defined as a distance by the definition of distance in 2.1.

Clearly the formula (2.3) satisfies non-negativity, symmetry and identity. Let’s prove the triangle

inequality as it is not as straightforward as the previous 3 conditions.

Proof. Assume X, Y and Z are three variables, ρXY , ρXZ and ρY Z are pairwise correlations

between them. What we need to prove is

√
2 ∗ (1− ρXY ) +

√
2 ∗ (1− ρXZ) >

√
2 ∗ (1− ρY Z).

Take square on both sides, we get:

√
2 ∗ (1− ρXY ) ∗

√
2 ∗ (1− ρXZ) > 2 ∗ (1− ρY Z)− 2 ∗ (1− ρXY )− 2 ∗ (1− ρXZ).

Take square again on both sides, and cancel the same terms on both sides:

4(1− ρXY )(1− ρY Z) ≥ (ρXY + ρXZ − ρY Z − 1)2.

Open the brackets, and cancel the same terms, we get:

(1− ρXY )2 + (1− ρXZ)2 + (1− ρY Z)2 ≥ (ρY Z − ρXY )2 + (ρXY − ρXZ)2 + (ρXZ − ρY Z)2.

Looking at the first term on both sides, clearly that 1 − ρXY is greater than ρY Z − ρXY since

correlation is between -1 and 1 by definition, hence former square is still greater than the latter,

the same as the remaining two terms. Therefore, the left hand side is greater than or equal to the

right hand side, which implies that triangle inequality holds for this Person’s Correlation Distance

function.

Indeed, this proof also holds for the following two distance functions, where the value of Spear-

man’s Rank Correlation and the value of Cosine are also in the interval [-1,1].

2.1.2 Spearman’s rank correlation

Spearman’s rank correlation coefficient, named by Charles Spearman, is a non-parametric rank

statistic, that is either distribution free or has a distribution with unspecified parameters, and it is

proposed as a measure of the strength of the association between two variables [26]. As a measure

of a monotonic relationship, Spearman’s correlation is used when the distribution of data makes

Pearson’s correlation coefficient undesirable or misleading, since Pearson’s correlation is parametric.

The advantage of Spearman’s correlation is that when we analyse a complex system, which has a

unknown distribution or the variables are not linearly correlated, Spearman’s correlation gives a

good description of the relationships through a monotonic function.
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Assume X and Y are two random variables, x1, x2, ...xn and y1, y2, ...yn are their respective

samples of size n. Denote rank(X) = a1, a2, ..., an and rank(Y ) = b1, b2, ..., bn as the rank of

samples, where ai and bi are corresponding xi and yi’s rank, hence rank(X) and rank(Y ) are two

particular sequences of integer 1 to n. The covariance of rank(X) and rank(Y ) is defined as:

cov(rank(X), rank(Y )) = E[(rank(X)− E[rank(X)])(rank(Y )− E[rank(Y )])].

Specifically, the estimating formula of covariance is computed by samples:

ˆcov(rank(X), rank(Y )) =
1

n

n∑
i=1

(ai − ā)(bi − b̄),

where ā and b̄ are means of rank(X) and rank(Y ) respectively. According to the proof included

in Appendix A, the estimated covariance can be also expressed as:

ˆcov(rank(X), rank(Y )) =
1

2n2

n∑
i=1

n∑
j=1

(ai − aj)(bi − bj), (2.4)

The definition of Spearman’s rank correlation is given by:

ρs =
cov(rank(X), rank(Y ))

σrank(X) · σrank(Y )
, (2.5)

where σrank(X) and σrank(X) are standard deviations of rank(X) and rank(Y ) respectively [27].

Since both rank(X) and rank(Y ) are 1 to n integer sequence, whatever the order is, the standard

deviation is fixed, that is n2−1
12 . Indeed, we can use the formula introduced above considering

variance as a special case of covariance.

σ̂2
rank(X) =

1

2n2

n∑
i=1

n∑
j=1

(ai − aj)2

=
1

2n2

n∑
i=1

n∑
j=1

(a2i + a2j − 2aiaj)

=
1

2n2

(
2n

n∑
i=1

a2i

)
− 1

2n2

2

n∑
i=1

n∑
j=1

aiaj


Since for the sequence (1, ..., n), the sum of square of elements and sum of elements can be deter-

mined, we have:

σ̂2
rank(X) =

1

2n2

(
2n · n(n+ 1)(2n+ 1)

6

)
− 1

2n2

2

(
n∑

i=1

ai

)2


=
(n+ 1)(2n+ 1)

6
− 1

2n2

(
2 · n

2(n+ 1)2

4

)
=
n2 − 1

12
.
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This result is also the denominator of Spearman’s Rank correlation. Then, to compute correlation,

let’s begin by considering
∑n

i=1

∑n
j=1(ai − aj)(bi − bj):

n∑
i=1

n∑
j=1

(ai − aj)(bi − bj) =

n∑
i=1

n∑
j=1

aibi +

n∑
i=1

n∑
j=1

ajbj −
n∑

i=1

n∑
j=1

aibj −
n∑

i=1

n∑
j=1

ajbi

= 2n

n∑
i=1

aibi − 2

n∑
i=1

ai

n∑
j=1

bj

= 2n

n∑
i=1

aibi −
1

2
n2(n+ 1)2.

Denote di = ai − bi, and consider
∑n

i=1 d
2
i = 2

∑n
i=1 a

2
i − 2

∑n
i=1 aibi, substitute this into above

equation, so that we have:

n∑
i=1

n∑
j=1

(ai − aj)(bi − bj) = 2n

n∑
i=1

a2i − n
n∑

i=1

d2i −
1

2
n2(n+ 1)2

=
1

6
n2(n2 − 1)− n

n∑
i=1

d2i

Hence, if we substitute the results above into Spearman’s correlation definition, we obtain a formula

which can be seen more frequently in the literature as Spearman rank correlation:

ρ̂s = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
. (2.6)

From this definition, it is easy to see that the value of this correlation is between [−1, 1], and it

equals 1 when two sample sequences have the same order, that is ai = bi for i from 1 to n, while

it equals -1 when two sample sequences have the opposite order, that is ai = bn+1−i for i from 1

to n. The following is an example of Spearman’s rank correlation:

Table 1: An example of Spearman’s rank correlation

Math Rank 1 Physics Rank 2 Difference d2i

100 1 83 4 -3 9

96 2 79 5 -3 9

92 3 97 1 2 4

85 4 85 3 1 1

79 5 53 10 -5 25

77 6 75 6 0 0

73 7 71 7 0 0

67 8 91 2 6 36

61 9 68 8 1 1

53 10 61 9 1 1



2.2 K-means Clustering 11

The Table 1 shows 10 students’ math and physics grades. Rank 1 is the rank of math while rank

2 is physics. Difference, represented as di, is the difference of everyone’s rank difference. Hence,

the Spearman’ rank correlation is 0.4788, while Pearson’s correlation is 0.4892.

2.1.3 Cosine function

Cosine function cos(θ) is a measure of similarity for two vector variables in an inner product space,

it is a function of the angle θ of two variables. Intuitively speaking, for two n dimensional vectors,

the smaller the angle is, the higher similarity they have. In the extreme case, the angle is 0 if they

are exactly the same, and the angle is π (180◦) if they have the same magnitude with opposite

signs in every dimension. For the corresponding cosine value, cosine equals 1 when the angle is

0, cosine equals -1 when the angle is π and cosine equals 0 when the angle is π/2 (90◦) which

implies that two vectors are orthogonal. However, we would like to use distance to picture out the

relationship between variables.

The definition of cosine of two vectors X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn} ∈ Rn×1 is:

cos(θ̂) =

∑n
i=1 xiyi√∑n

i=1 x
2
i ∗
√∑n

i=1 y
2
i

, (2.7)

where θ is the angle of X and Y and the corresponding distance function is given as:

dXY =

√
2 ∗ (1− cos(θ̂)). (2.8)

It can be easily shown that the cosine distance function also satisfies the four principles of distance

(since its value is between -1 and 1, triangle inequality also holds), hence it is a well defined

distance.

2.2 K-means Clustering

K-means Clustering is a type of unsupervised learning of which the goal is to discover the underlying

structure of input data. While supervised learning is looking for the mapping function between

input data and the corresponding output data which is known, unsupervised learning is used to

draw out the hidden structure of input data. Hence, the result is unknown until the learning is

applied, and how to assess the result is an essential topic this report will be focusing on.

The name ‘K-means’ was firstly proposed by James MacQueen in 1967 [8], though the algorithm

was put forward by Stuart Lloyd in 1957 [9]. As the name indicates, K-means clustering is to

partition N ∈ N unassigned variables into k ∈ N assigned clusters according to a predefined

distance function. Based on this function, the algorithm will iterate until every unassigned variable

is assigned to a cluster.

Let S = {s1, s2, ...sn} be a set of variables as the input of K-means clustering, then we denote

dij as the distance between variable si and variable sj . Let c1, c2, ...ck be centroids of k clusters,
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which are initialised by randomly choosing from set S and then they are computed depend on the

type of variables. The mapping function f is defined as:

f = min

k∑
i=1

ni∑
j=1

dji, (2.9)

where k is the number of categories, ni is the number of variables belonging to ith cluster, and

total number of variables is n =
∑k

i=1 ni, dji is the distance measure between variable sj and its

corresponding centroid ci, let’s call it distance between sj and ci.

This mapping function will minimise the sum of distance summation between centroids and

variables within clusters. Based on this mapping function, the standard algorithm of K-means

Clustering can be described in four steps:

Step 1: Randomly choose k variables from set S as initial centroids of clusters.

Step 2: Compute pairwise distances between variables and centroids and label variables to

its nearest clusters.

Step 3: For every cluster, recompute its centroid and repeat step 2.

Step 4: Algorithm stops when centroids are not changed anymore.

Input unlabelled data set S and choose the type of distance function, the algorithm will output

labels of data points which represent their clusters. This algorithm keeps iterating until the value

of mapping function f increases by moving one variable arbitrarily from its original cluster to

another cluster [10]. It is worth mentioning that the way to compute centroids of clusters depends

on the type of variables. For instance, if variables are points in R × R surface, coordinates of a

centroid is defined as the mean of coordinates of points in this cluster. If the variables are stocks,

every variable is a series of daily return of stocks, a centroid is the mean of stock daily returns in

its cluster.

Indeed, the algorithm can be seen as two steps. Firstly, treat ci as fixed and minimise the value

of f with respect to sj . Secondly, hold sj fixed and minimise the value of f with respect to ci, and

keep iterating until the value of f converges to a constant and this algorithm always converges. It

always give a solution no matter what the input is, as every data point is assigned into a cluster

and if we move arbitrary one data point into another cluster, the value of f will increase.

Note that the result of K-means Clustering has non-convex property, to prove this, let’s rewrite

formula ( 2.9) as follow:

f(W,C) =

k∑
i=1

n∑
j=1

wijd(sj , ci), (2.10)
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subject to:

i=1∑
k

wij = 1, for j = 1, 2, . . . ,m

wij = 0 or 1 for j = 1, 2, . . . ,m and i = 1, 2, . . . , k,

where W = [wij ] is a k × m matrix of variables assignments. wij = 1 implies that variable sj

is assigned to cluster i while wij = 0 means not, hence the sum of every column of W is 1.

C = (c1, c2, . . . , ck) is a column vector of centroids. Then let’s consider the reduced function of f ,

F , with fixed centroids C:

F (W ) = min{f(W,C) : C fixed}. (2.11)

F (W ) is a non-convex function, since if we assume W1 and W2 are arbitrary two points satisfied

constraints and α is a parameter in [0,1], then for a certain C we have:

F (αW1 + (1− α)W2) = min{f(αW1 + (1− α)W2, C)}

= min{αf(W1, C) + (1− α)f(W2, C)}

≥ αmin{f(W1, C)}+ (1− α) min{f(W2, C)}

= αF (W1) + (1− α)F (W2).

This inequality holds because f(W,C) is not only positive but also linear with respect to W . In

fact, it can be proved that minimising f(W,C) is equivalent to minimising F (W ) [28] which

illustrates that minimising f is a non-convex problem. Figure 2 points out that convex only has

one minimum point while non-convex can have several minimum points where algorithm will stop.

Figure 2: Convex and non-convex

The last thing worth to pay attention with K-means Clustering is the stability of results. Result

of this optimisation problem is not only a local optimal solution but also not determined. It is

fair to say that every time algorithm were ran with the same data set, output is different. Non-

deterministic of results is due to the initialisation of centroids as they are randomly chosen from

data set. Since optimising function f is a non-convex problem, the problem can have many local
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optimal solutions. Algorithm will stop when a local optimal solution is found and different initial

value of centroid vector C may leads the algorithm stops at different local optimal solution.

2.3 Hierarchical Agglomerative Clustering

Hierarchical Clustering is a widely-used method when dealing with complex systems, for example,

when elements of a complex system can be divided into N clusters and these clusters can be further

divided into M sub-clusters (M > N), until a level when the number of clusters is required [18].

The data which contains 724 US stocks, it can be initially partitioned into 10 sectors, and then

can be partitioned into 48 industries, 166 sub-industrials and 724 stocks. Hence, the sample data

is a complex system with 4 levels. Based on this hierarchical property, Hierarchical Agglomerative

Clustering (HAC) will be applied. It is a method that merges the clusters into bigger cluster

and in the next section it will be following Zura Kakushadze’s idea to introduce Hierarchical

Agglomerative clustering [2].

Assume X is a data set of a complex system, which contains n elements {x1, x2, . . . , xn}, and

the target is to cluster elements into K clusters. The clustering algorithm is:

Step 1: Define distance between clusters, distance between elements and distance between

element and cluster.

Step 2: Compute distance between elements pair-wisely, find the pair which have the smallest

distance and merge them into a new cluster.

Step 3: Compute distance between clusters and distance between elements and clusters, then

merge the pair with the smallest distance. Keep merging until the number of clusters reduces

to K.

Note that there are three definitions of distance mentioned above, distance between clusters,

distance between elements and distance between element and cluster. If we consider elements as

singleton clusters, all the distance can be seen as distance between clusters. Theoretically, the result

of agglomerative clustering could not be determined if some different element or cluster pairs have

exactly same distance. However, in practice, this would not happen. Once the pairwise distances

are determined, the result of hierarchical clustering is fixed, compare to K-means clustering where

it depends on the randomly chosen initial points. An example will be given in in Figure 3 later to

illustrate this.

2.3.1 Measure Introduction

Defining distance is the most important process in Hierarchical Clustering, different definitions

will lead to different results. In practice, one need to define the distance in a proper way. The

definition needs to be meaningful and well-presented for the characteristic of the data.
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The next sections will introduce some frequently-used distances or metrics such as: Single,

Complete and Hausdorff. They are defined as distance between clusters which corresponding to

Single linkage, Complete linkage and Hausdorff linkage.

2.3.2 Single Metric

For two non-empty subsets A and B which belong to a complex or large set ⊆ S, δ is a predefined

distance of elements, the Single distance is defined as:

dS(A,B) = inf
a∈A,b∈B

δ(a, b). (2.12)

Single distance is the minimum of the distances between all pairs of elements randomly chosen

from A and B , it is a sub-dominant ultra-metric distance [24], which means that even though the

function dS does not satisfy the triangle inequality it can be treated as a pseudo-distance function

hence can be applied. However, let’s call it Single distance for convenience.

Single Linkage Clustering, which is a method came up by Sneath and Sokal in 1973 [23], it

is based on Single distance associated with a metric between elements. The procedure of Single

Linkage is been used in many clustering methods, it can extract a Hierarchical Model which is

Minimum Spanning Tree (MST) for the metric matrix given by the predefined metric.

MST from Graph Theory, is a subgraph of a weighted graph that connects all the nodes together,

it does not contain any cycles and minimises the total distance within nodes [25, Chapter 5, page

66]. The algorithm of Single Linkage is:

Step 1: Consider N elements as N singular clusters. Construct a list of pairwise distance

between clusters and sort the list in ascending order.

Step 2: Start from the top of the list, merge the corresponding two clusters, then recompute

the list. Repeat until all the elements are connected, that is the number of left cluster is 1,

or the number of edges of the graph is N − 1 equivalently.

Step 3: Display result through a dendrogram(section 3.3).

We can decide how many clusters the set will be partitioned into at the beginning, since the

number of clusters reduces by one every time when two clusters merge together. Hence we can give

a threshold (the final number of clusters) to the algorithm first and stop the algorithm when this

threshold is reached. In particular, if we merge all elements together into one cluster, the result of

Single Linkage is a MST.

Theoretically, the MST we get from Single Linkage could not be deterministic. Figure 3 gives

an example, according to our Single Linkage algorithm, node D and E will be linked firstly, then B

and C is the next pair. The distance between cluster {B,C} and {D,E} is 0.3, so this two cluster

will be merged at third iteration. Finally, the distance between A and cluster {B,C,D,E} is 0.4.
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Figure 3: An example of non-unique MST

However there are two cases, that is linking A and C or A and D. Both cases give a MST, whereas

this two MST are different. In other word, the result is not unique. Fortunately, this situation

almost never happen in practice as distances between different pairs are never identical.

2.3.3 Complete Metric

Complete Linkage is very similar to Single Linkage. It is just another way to define the distance

between cluster, named Complete distance. For two non-empty subsets A and B ⊆ S, a complex

or large set, and δ is a predefined distance of elements, the complete distance dS is defined as:

dS(A,B) = sup
a∈A,b∈B

δ(a, b). (2.13)

Complete distance is the maximum of the distances between all pairs of elements random chosen

from A and B , similar to Single distance, Complete distance is also only a sub-dominant ultra-

metric distance [24] because it does not satisfy the identity principle. However, same as Single

distance, we call it Complete distance for convenience.

2.3.4 Hausdorff Metric

Hausdorff distance is named after F. Hausdorff [21] and developed by Nicolas Basalto [19], it is

introduced in Topology as a derivative definition of Hausdorff Space [20]. Given a metric space

(F , δ), where δ is the predefined metric, the distance between an element a ∈ F and a non-empty

subset B ⊆ F is described as:

d(a,B) = inf
b∈B

δ(a, b). (2.14)

Based on this, let’s define a function between a non-empty subset A ⊆ F and a non-empty

subset B ⊆ F :

d(A,B) = sup
a∈A

d(a,B) = sup
a∈A

inf
b∈B

δ(a, b). (2.15)

This function is not symmetric, that is d(A,B) 6= d(B ,A), hence it cannot be the distance between

A and B . To satisfy the four constraints 2.1, the Hausdorff Distance is defined as the maximum
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of two functions d(A,B and d(B ,A:

dH(A,B) = max{d(A,B), d(B ,A)} = max

{
sup
a∈A

inf
b∈B

δ(a, b), sup
b∈B

inf
a∈A

δ(a, b)

}
, (2.16)

which is a well defined distance.

By comparing the three distances above, it can be easily found that for arbitrary non-empty subsets

A and B ⊆ F , we have:

dS(A,B) ≤ dH(A,B) ≤ dC(A,B). (2.17)

Indeed, dS underestimates the distance between two given sets while dC overestimates it and this

implies important consequences when we cluster a complex system [22]. Both Single and Complete

distances are extreme situations of distance, and they are not well defined as distance.

2.4 Planar Maximally Filtered Graph

The method Planar Maximally Filtered Graph (PMFG) is introduced by Tumminello et al. [13].

Since PMFG is related to graphs, let’s state some basic definitions from Graph Theory before

introducing PMFG.

In the context of Graph Theory, a graph is a mathematical structure which is used to model

relationships between subjects. As showed in Figure 4, graph G consists of vertices (points) which

are linked by edges (lines). A subgraph of graph G is a graph formed from a subset of vertices and

edges of G, such as the red component of graph G.

G

Figure 4: Example of graph G, red part is the subgraph of G.

Furthermore, a planar graph is a graph that can be embedded into a plane [17, Chapter 1,

page 5], so there is way to draw this graph in the plane such that edges will only intersect at

vertices. For instance, for the following two graphs in Figure 5, the graph on the left is a planar

graph, while another is not since edges intersect with others in the middle of the figure. Besides,

in the set of planar graphs, edges are needed as many as possible since the more edges the graph

includes, the more information the graph has. There is a kind of special planar graph named as

Maximal Planar Graph, which is a planar graph that has as many edges as possible. That is, if we

add one more edge to the graph, the planar property will be no longer satisfied.

One important property of Maximal Planar Graph is that the quantity of edges is fixed. In

fact, the number of edges of Maximal Planar Graph is 3(n− 2), where n is the number of vertices.
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This property comes from the corollary based on Euler’s Formula, which indicates that the number

of edges of a planar graph is small or equal to 3(n− 2) [17, Corollary 13.3, Chapter 5, page 67].

A graph is called complete if every vertex of this graph links with all other vertices of this

graph, that is equal to say the graph has n(n−1)
2 edges. Then if a subgraph is complete, we call it

clique. For instance, 3-clique means a subgraph with 3 pairwise linked vertices which indeed is a

triangle, and 5-Clique is the figure 5 showed below on the right hand side.

Planar graph
Non-planar graph

Figure 5: Example of planar and non-planar graph.

Based on the above definitions and properties, let’s now explain the definition of PMFG and

its idea. PMFG is a Maximal Planar Graph with n vertices linked by 3(n − 2) edges. However,

since a graph with n vertices can have at most n(n−1)
2 edges, not every pair of vertices will be

linked when n > 5 and thus we have to remove some edges. What has to be done is to assess how

strongly the vertices relate to each other by a predefined distance function and give a priority to

the pairs having a strong correlation. Hence, for a complex system S = {s1, s2, . . . , sn}, let the

vertices represent variables si which will be linked by edges if they have strong correlations and

describe the construction of this system by a PMFG [16].

According to the definitions and the properties above, the constructing algorithm is straight-

forward.

• Step 1: Given a distance function and compute all pairwise distance between variables.

• Step 2: Sort the distance (in descending order), thus has an ordered sequence{
c1, c2, . . . , cn(n−1)

2

}
, where n is the number of variables and ci > cj if i > j.

• Step 3: Start from c1 to end, connect the corresponding two vertices if the planar graph

property is not violated. Keeping adding the edges until graph has 3(n− 2) edges.

• Step 4: Partition PMFG into 3-cliques and 4-cliques.

Now, let’s state some benefits of using PMFG for analysing a complex system. Firstly, as

mentioned above, the number of edges of PMFG is 3(n− 2), where n is the number of vertices. In

a PMFG, Edges are used to convey underlying information of system to us, thus the more edges
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the graph contains, the better understanding we have to the system. As it has been mentioned

in the last subsection 2.3, the number of edges of MST is n − 1, PMFG definitely contains more

information than MST because it has roughly twice more edges than MST.

Secondly, cliques and loops are allowed in PMFG. Compared with MST, which does not allow

cliques or loops due to its definition, PMFG is more flexible and has more edges.

Note that PMFG consists of 3-cliques and 4-cliques. Before explaining this property, let me

introduce Kuratowski’s theorem [17, Theorem 12.2, Chapter 5, page 62].

Theorem 2.1 (Kuratowski’s theorem). A graph is a planar graph if and only if it does not contain

K5 or K3,3 as subgraphs, where K5 is complete graph with 5 vertices and K3,3 is complete bipartite.

A bipartite graph is the graph in which vertices can be divided into two disjoint sets such that

two vertices within the same set are not allowed to be linked.

Figure 6: K3,3 - A complete bipartite graph

This theorem is sufficient to show that it is impossible to contain a n-clique where n >= 5

in a PMFG, since PMFG is a planar graph and 4-cliques are the maximum sized cliques which

are also planar. Hence, in theory, only 3-cliques and 4-cliques can exist in a PMFG. According

to Tummomello’s [13] description, PMFG only consists of 3-cliques and 4-cliques. Every edge of

PMFG must be an edge of a triangle and there is no singular vertex or segment occurring in

PMFG [13]. This property suggests that we can divide out complex system into smaller groups

which only contain 3 or 4 members, and in such groups, variables are strongly correlated.

The last important property of PMFG is that it includes the basic hierarchical construction of

MST [15]. From this aspect of Graph Theory, MST is a subgraph of PMFG. As both MST and

PMFG are based on correlation, and as they have similar construction rules, their structures are

similar. But PMFG has more relaxed constraints than MST, so it will have a more complicated

structure. Indeed, every edge of MST is a bridge, that is, if we remove this edge, the graph will

partition into two disconnected subgraph. Tummomello used mathematical induction to prove

that PMFG includes all the bridges in its graph so that it must contain MST [13].

Indeed, PMFG is only the first extension of MST. Aste [16] argued that with the respect of

MST, a graph storing more information can not only be constructed by linking the most strongly

connected vertices iteratively but also be embedded on a surface of a given genus g = k. Genus is

the largest number of nonisotopic simple closed curves that can be drawn on the surface without



2.4 Planar Maximally Filtered Graph 20

separating it [14]. Such a surface can at most include 3(n− 2 + 2k) edges, where n is the number

of vertices. However, the improvement of information stored in the graph mostly depends on n

when n � k. Thus, choosing the number of genus to be equal to 0 can reduce the complexity of

the graph with slight information loss and in this case, the embedded graph is a planar graph in

the plane.
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3 Applying Clustering Methods to US Stock Market

3.1 Data Introduction

This section will introduce the data that will be used with the methods introduced in the previous

sections. The data set consists of 724 stocks from US stock market, including 10 sectors and 48

industries, they are represented by the first and second levels of BICS code. Details are showed in

Table 2. Besides, the timespan of the data set ranges from 2nd Jun 2017 to 21st May 2018.

Table 2: BICS Classification of the dataset

Sector Name short BICS code Number of Stocks Number of Industries

Communications 10 23 2

Consumer Discretionary 11 107 11

Consumer Staples 12 39 3

Energy 13 45 2

Financials 14 165 6

Health Care 15 78 3

Industrials 16 101 9

Materials 17 44 6

Technology 18 92 5

Utilities 19 30 1

1. Short BICS code is the first two numbers of BICS codes which represents the sector which stock belongs

to.

2. Number of stocks is the number of stocks contained in the sector.

3. Number of idustries is the number of sub-sectors in the sector.

Here is the formula for the daily return:

ri+1 =
pi+1

pi
− 1, (3.1)

where ri+1 is (i+ 1)
th

daily return, and pi is ith close price of the stock. Daily return is an important

and useful piece of information in stock analysis, it can be used to compute the correlation between

two stocks. Note that, the weekly return is simply the sum of 5 consecutive daily returns in a week,

that is the difference between the close price of Monday and the close price of next Monday .

3.2 Result of K-means Clustering

Pearson’s correlation of two stocks is straight forward to define and compute. Assume that

{rA1, rA2, ..., rAn} and {rB1, rB2, ..., rBn} are n-day returns of stock A and stock B in a certain
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period. The correlation of A and B can be easily computed by using (2.2), and thus the distance

follows equation (2.3). Hence, the K-means clustering can be applied to stock market by using this

correlation based distance. Stocks are divided into 10 clusters, each of them consists of stocks from

10 BICS code sectors. The reason for choosing the 10 clusters for K-means Clustering is because

the BICS code have 10 sectors.

Let’s call the result of K-means Clustering as clusters to distinguish with sectors which is the

name of first level BICS code. Table 3 shows the result of K-means Clustering, where the nth row

shows components of the nth cluster.

Table 3: Result of K-means Clustering

Num Com C-D C-S Ene Fin Hea Ind Mat Tec Uti

111 0.9% 14.4% 4.5% 0.9% 11.7% 6.3% 39.6% 15.3% 6.3% 0%

107 0.9% 22.4% 2.8% 0% 3.7% 9.3% 37.4% 10.3% 13.1% 0%

52 1.9% 1.9% 1.9% 0% 0% 84.6% 1.9% 0% 7.7% 0%

52 0% 0% 7.7% 0% 90.4% 0% 0% 0% 0% 1.9%

91 4.4% 8.8% 3.3% 1.1% 2.2% 15.4% 4.4% 1.1% 59.3% 0%

77 15.6% 54.5% 26.0% 0% 2.6% 0% 1.3% 0% 0% 0%

89 0% 0% 1.1% 0% 97.8% 0% 1.1% 0% 0% 0%

49 2.0% 0% 0% 87.8% 0% 0% 6.1% 0% 0% 4.1%

33 3.0% 0% 0% 0% 9.1% 0% 0% 3.0% 3.0% 81.8%

63 3.2% 25.4% 3.2% 0% 11.1% 4.8% 11.1% 22.2% 19.0% 0%

1. The top line contains ten abbreviations of BICS first level sectors’ names. Check Table 2 for their full

names.

2. First column on the left is the quantity of stocks in each clusters.

3. Every row has 10 Percentage values, which represent percentages of stocks from BICS codes.

Every cluster consists of stocks from at least 3 sectors, and some of them have a significant

component (>80%) from one sector, such as cluster number 3, 4, 7, 8, and 9. Red numbers in

Table 3 are those significant components in high percentage, which suggests that not only their

represented sectors are the main components of these clusters, but also implies that these sectors

are very strongly correlated. Specifically, Health Care, Financials, Energy and Utilities have good

clustering property compared with other sectors.

For instance, the cluster 4 has 52 stocks, in which 47 (90.4%) stocks come from Financials

sectors, the rest consists of 4 stocks from Consumer Staples and 1 stock from Utilities. This

cluster can be seen as a modified Financials sector or a inherited cluster of Financials sectors.

However, one interesting discovery is that similar to the cluster 4, the main component of cluster
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7 comes from Financials sectors. It includes 87 (97.8%) stocks, 1 (1.1%) Consumer Staples stock

and 1 (1.1%) Industrials stock. By checking the second level BICS codes of two clusters, one would

see that Financials stocks in clusters 4 all come from REIT1, which is a sub-sector of Financials

sector (details in BICS code Table 12), on the other hand Financials stocks in cluster 7 consists of

stocks from Asset Management, Banking, Institutional Financial Services and Insurance, which are

another four industries of Financials sector. This means that the K-means algorithm partitioned

Financials sector into two components. Details of these two clusters are presented in Table 4:

Table 4: Details of cluter 4 and 7

Cluster Industry Name (BICS code)
Total number

of stocks

Number of stocks

in cluster

4

REIT (1415) 55 47

Consumer Products (1210) 25 4

Utilities (1910) 30 1

7

Consumer Products (1210) 25 1

Asset Management (1410) 11 4

Banking (1411) 56 55

Institutional Financial Services (1412) 14 5

Insurance (1413) 8 6

Real Estate Oper&Services (1414) 21 17

Waste&Envrnmt Srvc Equip&Fac (1618) 8 1

To assess the result of K-means Clustering, there are two indices that needs to be introduced

first which is related to correlations and dependence. The ideal situation for trading strategy is

that stocks in the same sector are strongly correlated (correlation is close to 1) while stocks in

different sectors are weakly correlated or even independent (correlation close to 0). If so, taking

or removing positions in sector 1 will not influence the price of sector 2. Though two independent

sectors could never be found, it is worth to reduce the influence between two sectors when applying

the method. To assess this ideal situation, inside correlation and dependence are defined to evaluate

the strength of correlation within sectors and dependence between sectors.

Assume A = {a1, a2, ..., an} and B = {b1, b2, ..., bm} are two sectors containing n stocks and

m stocks respectively, each ai and bj represent a series of daily returns. The inside correlation is

the mean of pairwise Pearson’s correlations of stocks within the sector. For instance, the inside

correlation of sector A is:

RA =
2

n(n− 1)

∑
1≤i<j≤n

ρij , (3.2)

1Real-estate Invesment Trust
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where ρij is the Pearson’s correlation between stock ai and aj .

Dependence between two sectors are defined as the mean of pairwise Pearson’s correlations of

two stocks from different sectors. For instance, dependence between sector A and sector B is:

DAB =
1

nm

∑
1≤i≤n

∑
1≤j≤m

ρij , (3.3)

where ρij is the Pearson’s correlation between stock ai and bj .

Inside correlation and dependence can be used to assess the result of K-means Clustering. The

most desirable result is that the inside correlation for K-means is higher than the inside correlation

of BICS code. By contrast, the value of dependence of the K-means Clustering is as small as

possible. Table 5 listed ten inside correlations of K-means result and BICS code.

Table 5: Inside Correlation of K-means and BICS

Clusters 1 2 3 4 5 6 7 8 9 10 Mean

K-means 0.36 0.25 0.17 0.45 0.32 0.24 0.52 0.38 0.44 0.2 0.3317

Sectors Com C-D C-S Ene Fin Hea Ind Mat Tec Uti Mean

BICS 0.19 0.21 0.23 0.41 0.33 0.19 0.31 0.28 0.28 0.45 0.2839

The red numbers in Table 5 are the weighted mean of previous ten inside correlations, that

is giving the weights to clusters according to quantities of stocks of clusters. This suggests that

K-means Clustering efficiently improves the inside relationship of a cluster. Specifically, we can

see clusters 4, 7, 8 and 9 have the top 4 inside correlations of K-means result, which corresponds

to big percentage values in Table 3. However, clusters 3 and 10 contain stocks from many sectors,

they have lower inside correlation than BICS code. These two discoveries implied that K-means

clustering method has strengthen the inside correlation of clusters which has a good clustering

property. But unfortunately, it weakened the inside correlation of the sector which doesn’t have

good clustering property. For example, in Financials sector, the inside correlation is 0.33, it is

inherited by cluster 4 and cluster 7 where the inside correlations are 0.45 and 0.52. On the other

hand, stocks of Consumer Staples sectors are partitioned into many smaller groups which belong

to different clusters.

Dependence matrices of K-means and BICS code are attached in the Appendix A. Since de-

pendence matrix is symmetric, let’s consider the upper triangular part only, and the mean of these

pairwise dependence of BICS code in Table 14 is 0.1504 while the mean of pairwise dependence of

K-means in Table 13 is 0.1476. Dependence of these two tables indicated that K-means Clustering

method does not reduce the dependence of this stock classification system. If we list these pairwise

dependence and compute the variance of them, one can see that the variance of K-means is 0.0623,

which is much higher than the variance of BICS code, which is 0.0479.
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Similar dependence values with high difference in variance illustrate the previous point. K-

means Clustering method optimises the sector which has strong inside correlation, removes stocks

which have weak correlation with other stocks in the same sector and adds stocks which are more

correlated with this sector than the original sector they belong to.

The algorithm works well only with sectors which have good clustering property. In fact, sectors

are unions of industries, and industries may be independent with each other even they belong to

the same sector. For example, REIT industry in Financials sector, is less correlated with Banking

and Asset Management.

Considering the stocks which have more solid correlation with other sectors than the sector

they belong to. In the algorithm, stocks will be classified into a cluster which is the closest one

to them. However, some stocks has no close relationship with any other stocks. For instance, In

Figure 7, the blue and green stars can be seen as two sectors, and black points are the centroids of

the blue and green stars respectively. The green star in the middle of Figure will be classified to

the blue cluster according to K-means Clustering algorithm, since the distance between the green

star and blue stars’ centroid is shorter than the distance between the green star and green stars’

centroid. Although the green star in the middle of figure is assigned into blue cluster, it is far away

from any other star. It is assigned only because the algorithm will give every element a label.

Figure 7: Exampe of isolated stock

The same example can also be found in the stock market, some stocks are not only uncorrelated

to the stocks within their sector but also have a weaker relation with stocks in other sectors. Let’s

call them as isolated stocks. There are two reasons why one stock is isolated. First reason is

that this stock is uncorrelated with all others, for example, stock CMLSQ1, which bankrupted in

November 2017, still exists in the stock market until 4th June 2018. Since the data set ends at

21st May 2018, this stock is included. Second reason is that the data set is a subset of the whole

US stock universe, hence stocks which are correlated with the isolated stock may not be included

in this data set.

The clusters 4 and 7 are containing over 90% of stocks from Financials sector, hence it is more

1CMLSQ is the ticker of Cumulus Media Incorporation
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suitable to increase the number of cluster from 10 to 11 because the Financials sector may take over

the space for other sector to be classified into a cluster. On the other hand, some industries should

be considered together rather than separately, for example, Banking and Asset Management. How

to choose a optimal value for K? The number of clusters is an essential question one needs to

answer when applying K-means Clustering method.

K-means results suggest that K is bigger than 10 (number of sectors), but smaller than 48

(number of industries). In general, there is no robust method to determine the optimal value of

K, however, Andrea Trevino introduced an accurate estimate method for K-means Clustering [12].

The mean distance between stocks and their belonging centroids is a common metric used to

evaluate clustering results with a range of K value. The reason is when we increase the number

of centroids, the mean distance will reduce. In an extreme case when the mean distance is zero

when the number of centroids equals the number of stocks. From Andrea’s methodology, with K

increasing in the range [1,100] for the first step, the mean correlation distance for every K value

can be computed. Figure 8 shows the result.

Figure 8: Relation of number of clusters and mean distance

Blue stars are the mean distances corresponding to different K values and the red line indicates

the convergence of the mean distances. Straightforwardly, mean distance keeps decreasing when

number of clusters increases. However, we can see that the rate of decrease is getting lower, this

suggests that the number of clusters K affects the mean distance significantly at small number of

clusters, and the influence reduces with a constant rate when K is big enough. Moreover, when K

is between 35 and 80, the curve and the red line roughly coincide, this indicates that the influence
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of K to mean distance is approximately constant. Hence, a number between 30 and 35 can be an

appropriate number of clusters, this range has narrowed down even further with the initial guess

(10, 48) ∈ N.

3.3 Result of Hierarchical Clustering

In this section, the distance functions considered are Pearson’s correlation, Spearman’s Rank Cor-

relation and Cosine. The distances between clusters, Single, Complete and Hausdorff, are referred

to as metrics.

Let’s consider Pearson’s correlation as distance funcion between stocks and Complete distance

as metric between two stock sets. Assume ri = {ri1, ri2, . . . , rim} is the daily return sequence

of stock i, and rik is the return of kth day, where k = 1, 2, . . . ,m. The correlation between two

arbitrary stocks i and j is computed by equation (2.2) and therefore, distance between stock i and

j is derivatived according to equation (2.3). The Complete distance between stock sets A and B is

defined as the biggest distance among stock pairs in which one comes from set A and another one

comes from set B. Now, the Pearson-Complete result as an example to introduce dendrogram, a

tree diagram which perfectly illustrates the result of Hierarchical Clustering.

Figure 9: Dendrogram with Pearson’s correlation and Complete distance

The Figure 9 is a dendrogram which clearly describes the hierarchical property of stock system.

The algorithm of Hierarchical Clustering method keeps merging clusters until there is only one

cluster left and this process perfectly expressed in the dendrogram. In Figure 9, every vertical line

begins from the bottom X-axis represents a stock and top ends of two vertical lines will be linked

if algorithm decides to put them into a cluster. Similarly, every horizontal line represents a stock
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cluster and a new vertical line beginning from the middle of a horizontal line will be linked with

another vertical line if algorithm decides to merge two clusters or a cluster and a stock. What’s

more, each colour represents one cluster and Y coordinates of horizontal lines indicate distances

between two clusters. For instance, the red cluster consists of two sub-clusters and their distance

is about 0.98 since the horizontal line is a little below than 1.

When a dendrogram is drawn, a threshold is required to stop the merging at a certain level. For

example, in the dendrogram of Figure 9, the threshold has been set as 1 which is presented as the

horizontal red line. The black lines means the stock is isolated and unsassigned on the condition

of threshold. if the threshold keep increasing, these 9 clusters will continue to merge into a one

cluster. Especially, the longest black vertical line started from X axis lies between pink cluster and

dark blue cluster in the right side of the figure, it represent an unassigned stock. This means that

under the constraint of the given threshold, this stock is not assigned to a cluster and isolated.

However, if threshold increases, this stock will firstly be merged into the pink cluster and then the

light blue cluster.

Now, let’s use a variable control method to compare results based on different distance function

and metrics.

Figure 10: Dendrogram with Single and Pearson’s correlation result

The single distance and Complete distance were used to draw the Figures 10 and Figure 11

respectively, the thresholds will be different also they need to be able to achieve a reasonable

number of clusters. The result of Single distance was not very good, almost half of the stocks are

in the red cluster with rest either keep isolated (black) or in a small cluster which includes less

than 5 stocks. Moreover, if a threshold over 0.7 is given, all the stocks will be in the same cluster.
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What’s more, for red cluster, one can see from left to right, the height of cluster (Y coordinate)

increases, which implies that every iteration of algorithm merges a unassigned stock with an existed

cluster and this cluster becomes bigger when we keep iterating. The reason of this result is that

no stock can be an isolated one, it must correlate with other stocks. Hence when we choose Single

distance, what happens is a cluster with many stocks is more attractive to a unassigned stock than

a isolated one, such that stocks will be merged into a large cluster rather than several smaller

clusters.

Figure 11: Dendrogram with Complete and Pearson’s correlation result

Compared with the result of single distance, the Figure 11 of Complete distance shows a much

more clear hierarchical structure than Single distance. The stock universe is divided into 11 clusters

with a given threshold 1.08. For convenience and computation time, this function defines 1 − ρ

as measure between two stocks rather than
√

2 ∗ (1− ρ), and it is only a metric rather than a

distance due to its definition. The range of 1 − ρ is [0, 2], so that if the value is higher than 1 it

implies two stocks are negatively correlated.

The result of Pearson’s correlation and Hausdorff distance presented in Figure 12 is better than

Single distance but worse than Complete distance. The number of unassigned stocks has been

reduced compared with Single distance while the massive red cluster in 10 disappeared. However,

the hierarchical construction of Hausdorff distance result is not as clear as Complete distance result

shows, small clusters containing less than 5 stocks still exist and a significant number of stocks are

still unassigned.
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Figure 12: Dendrogram with Hausdorff and Pearson’s correlation result

Furthermore, in Figure 13, vertical lines in the red circles start from the middle of horizontal

lines and drop down when two clusters merge. This implies that distance between them is smaller

than distances between their inside subsets. In general, distances between two clusters will increase

when clusters become bigger, just like the result of Complete distance, in which vertical lines always

go up. Nicolas et al. named this phenomenon as ‘backstep’ and gave a mathematical explanation

of it [29] which the details are included in Appendix A. However, the practical meaning of backstep

in our stock system is that though two groups of stocks belong to different clusters, they are more

correlated with each other than stock groups in the same cluster.

Figure 13: Hausdorff discovery
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Since Complete distance result has the best results, we use it to compare results of different

distance functions under the constraint of Complete distance. Figure 22, Figure 23 and Figure 24 in

Appendix are the results of Pearson’s correlation, Spearman’s correlation and Cosine using weekly

returns respectively. The reason why daily returns are not suitable is that weekly returns have less

volatility and are more stable.

The above three results are equally good since all of them have a clear hierarchical construction

without unassigned stocks and small clusters. Therefore, let’s investigate the inside correlation and

dependence function which was introduced during the analysis of K-means clustering. Table 6 has

recorded the inside correlation of every cluster in results of different distance function and tables

of components of three results are presented in Appendix A.

Table 6: Inside Correlation of K-means and BICS

Cluster 1 2 3 4 5 6 7 8 9 10 mean

Pearson 0.16 0.14 0.24 0.20 0.25 0.36 0.28 0.27 0.22 0.15 0.23

Spearman 0.31 0.33 0.31 0.44 0.14 0.21 0.18 0.29 0.26 0.13 0.26

Cosine 0.23 0.19 0.10 0.22 0.36 0.25 0.40 0.22 0.15 0.16 0.23

BICS 0.19 0.21 0.23 0.41 0.33 0.19 0.31 0.28 0.28 0.45 0.28

From the last column of Table 6 one can see that the means of inside correlations of all three

results are 0.23 ,0.26 and 0.23 respectively and their means of pairwise dependence function values

between clusters are 0.1370, 0.1357 and 0.1397 respectively.

By comparing with BICS code, the inside correlation and dependence matrix, the inside corre-

lation means of all three results are lower than inside correlation mean of BICS code. The means

of dependence (0.1370, 0.1357 and 0.1397) have a better performance than BICS code (0.1476).

Among three results, the Spearman correlation is best since not only it has the highest inside

correlation average but also has the lowest dependence average. Moreover, in Table 16, we can see

that the result of Pearson’s correlation and Complete distance using weekly stock returns includes

a small cluster which only contains 3 stocks. Besides, the other cluster consists of stocks from at

least 6 BICS code sector. Both details implies that the result is worse than result of K-means or

BICS code since small cluster exists and some clusters have too many components.

Table 15 and 17 are the results of Spearman-Complete and Cosine-Complete, both of them

have a large cluster which includes over 200 stocks, it indicates that stock universe is not well

partitioned and this is similar with what happened when Single distance is applied. In conclusion,

Complete distance has a better performance than Single distance and Hausdorff distance while

Spearman’s correlation is better than Pearson’s correlation and Cosine measure. However, using

Complete distance and Spearman’s correlation can only partly solve the problem of the existence
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of overlarge clusters.

As we know from previous introduction (Section 2.3) that the result of Hierarchical clustering

is a MST when the Single metric is applied. The stock can only link with one other stock if it is a

leaf and total number of edges is n− 1 where n is number of stocks. However, practically speaking

any given stock is not only correlated with one other stock. Indeed, one stock will usually have

strong correlations with several stocks. Hence, more edges are needed if we want to draw out the

graph of stock system which is too complicated for a MST cannot adequately explain the structure.

Therefore, when different distance functions and metrics are used for Hierarchical clustering,

the only change can make is the way to link stocks but not increase the number of edges. This is the

reason why Complete distance and Spearman’s correlation are only a partial solution. Fortunately,

this fact suggests that even though as one result of Hierarchical clustering does not work, one can

give more edges based on MST so that enough information are contained in the graph to analyse

the stock system.

The final point worth mentioning about Hierarchical clustering is its uniqueness. That is given

a data set, the result is deterministic. Usually one would care about this since every time the

K-means is used, results will converge to a arbitrary local optimal solution if initial points are

randomly chosen and thus many iterations are needed to approximate the global optimal solution.

Fortunately, the result of Hierarchical clustering is unique. Consider that data set, distance

function and metrics are given, so that n× n distance matrix which includes all distance between

pairwise stocks is determined. Hence for every iteration, one would only need to find the minimum

of this distance matrix and merge its corresponding two stocks. The result would not change since

all distances are determined at the start.

3.4 Result of PMFG

Based on the consequence of Hierarchical clustering, we want to find an extension of MST which

contains more information. Fortunately, PMFG could be a good tool to analyse stock system since

it includes MST as a subgraph and have more edges than MST. Let’s refer the stocks as vertices

and apply Pearson’s correlation to compute distance between stocks.

The result of algorithm is a n×n sparse matrix, where n is the number of stocks in the universe,

in this case the size of the matrix is 724× 724. The matrix is symmetric and every row represents

a stock, thus row i and column i is equivalent to each other. In this sparse matrix, most elements

are 0 which indicates that its two corresponding stocks are not linked while each nonzero element

represents an edge between two corresponding stocks. For example, aij = 0.5, as an element of

PMFG sparse matrix, implies an edge between stock i and stock j with Pearson’s correlation value

at 0.5.

In the PMFG matrix, some stocks are very popular since they are connected with more than
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10 stocks while others only connect with 3 or 4 stocks. For example, JPM1 is linked with 16

stocks while IDCC2 is only linked with 3 stocks. The reason of this phenomenon is that a

major corporation such as JPM has many different association with many companies so that it

is a popular company while IDCC only focuses on mobile and wireless technology which simply

correlates with relevant companies.

To quantify the popularity of a sector, let’s define it as the mean number of stocks which link

with stocks in the sector that is for sector i, we have:

POPi :=
1

ni

ni∑
j=1

pj , (3.4)

where ni is the number of stocks sector i and pj is the number of stocks linked with stock j based

on PMFG or the number of nonzero elements of row i of PMFG matrix. Furthermore, for sector

i, one can define the inside popularity and outside popularity as the mean number of stocks from

sector i which link with stocks in sector i and the mean number of stocks out of sector i which link

with stocks in sector i respectively. That is:

POP ini :=
1

ni

ni∑
j=1

aj and POP outi :=
1

ni

ni∑
j=1

bj , (3.5)

where aj is the number of stocks from sector i which link with stocks in sector i and bj is the

number of stocks out of sector i which link with stocks in sector i, thus we have:

pj = aj + bj and POPi = POP ini + POP outi.

Table 7 shows details of popularity of every sectors. It is straightforward that stocks in the

Industrial sector and Financials sector are the most popular (popularity is 7.1 and 6.9 respectively)

while stocks of Communication sector are the least popular. POP in is higher than POP out for

most sectors except Communications and Materials. Among them, one can see POP in of Energy,

Financials and Utilities are much higher than their POP out which indicates that stocks in these

sectors have a stronger correlation with stocks in the same sector than stocks in other sectors. In

other word, these sectors have a good clustering property which means they have a solid inside

correlation. One thing worth noting is that one of the consequences of the result with K-means

clustering (Section 3.2), it is consistent with the result of popularity.

What’s more, as mentioned in Section 2.4, PMFG consists of 3-cliques and 4-cliques in which

are strongly correlated stocks. Specifically, for the data set made up of daily returns of 724 US

stocks in a timespan ranging from 2nd Jun 2017 to 21st May 2018, it contains 2 3-cliques and 718

4-cliques. Let’s start by analyse the structure of cliques, since there are 724 stocks in universe,

the number of edges is 2166 according to properties of PMFG. However, 720 cliques contains 2878

1JPM is the ticker of JPMORGAN CHASE & CO
2IDCC is the ticker of INTERDIGITAL INC
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Table 7: popularity of sectors

Com ConDis ConSta Energy Fin Heal Ind Mat Tech Uti

POP 3.9 5.1 4.8 6.3 6.9 4.8 7.1 5.8 6.0 6.0

POP in 1.6 2.8 2.8 5.1 5.6 2.5 3.6 2.3 3.5 5.1

POP out 2.3 2.3 2.0 1.2 1.3 2.3 3.5 3.5 2.5 0.9

vertices and 4314 edges which is much larger than 724 vertices and 2166 edges. The reason maybe

that some vertices and edges must be included in several cliques. For example, two 3-cliques have

the form presented in Figure 14. Stock TKR, stock AOS and edge between them are in public for

both two 3-cliques.

Figure 14: Example of 3-cliques

As shown in Figure 15, 4-cliques can only share vertices but have distinct edges. What’s more,

the structure can be even more complicated, as the red vertex in Figure 15 which is shared by

three cliques in different ways. These three figures are just some examples of components of the

whole clique structure, since some stocks are so popular, they are included in over 10 cliques, like

JPM which is contained in 14 cliques.

Figure 15: Example 1 of 4-cliques

Figure 16: Example 2 of 4-cliques

Among 720 cliques, some of them have a special structure. As the example been given in the

Introduction Section 1, some stocks have a higher correlation with stocks in other sectors due to

their underlying products and business aspects.

Now, let’s use the Communications sector as an example to study this phenomenon. Figure 27

attached in Appendix A contains the stocks in the Communications sector and edges between
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stocks belonging to this sector, the edges between stocks in Communications sector and stocks

in other sectors are removed. Red rectangles with tickers are vertices representing stocks while

double arrow segments are edges given by algorithm. We can see that there is a group of 6 stocks

which consists of 3 4-cliques and a smaller group of 4 stocks which is just a 4-clique. What’s more,

10 isolated vertices lay around the figure. The reason why these stocks are separated is that they

are only linked with stocks from other sectors, so that they become isolated when I remove these

edges.

Since edges are given according to pairwise Pearson’s correlation between stocks, we can con-

clude that isolated stocks showed in Figure 27 have a stronger relation with other sectors than its

belonging sector. Here are three possible explanations of isolated stock formation:

Firstly, several companies might rely heavily on an underlying product and hence will strongly

correlate. This effect can be stronger than the effect of a company’s own sector.

Secondly, the data set is incomplete. Since 724 stocks in our data set are randomly chosen from

whole US equity market, stocks which are relevant with isolated stocks may not be chosen into our

data set.

Thirdly, this may be just a coincidence, hence we need to do experiments to check it. Moreover,

one can see that there is a pair of stocks which only link with each other. However, one should

know that the PMFG only consists of cliques, hence this pair must be a component of a clique

in which other vertices belong to other sectors. This pair indicates that some stocks are not only

close with stocks in the same sector but also stocks in different sectors. A convincing reason of this

is that some major corporations have many aspects of business with companies both in the same

sector or other sectors so that stock price of major corporations is influenced by many companies.

Even some isolated stocks are fairly strongly correlated with the stocks in the same sector,

but the PMFG graphs shows most of them are clustered in a different sector. This simply means

the correlation between the isolated ones and other sector stocks are slightly stronger, that’s why

PMFG classifies them in to same cluster.

Finally, among the BICS code 10 sectors, the amount of isolated stocks of Energy, Financials

and Utilities is less than 3, it’s significantly fewer than other sectors. This illustrates previous

remark that these 3 sectors have a better clustering property than others. Besides, Financials

sector is clearly divided into two groups: a small group corresponds to REIT industrial and a big

group which corresponds to the union of other industries in Financials sector. This is another way

to demonstrate the consequence we got from K-means clustering mentioned in Section 3.2.

Since the stock market has been divided into cliques, the cliques can be treated as elements to

construct clusters so that these clusters will have better inside correlations and dependence than

BICS code sectors. The descirbed method can be explained through the following algorithm:

• Step 1: Compute the average daily return sequence of stocks in the same clique and regard
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them as pseudo stocks.

• Step 2: Draw a PMFG of pseudo stocks and divide it into cliques.

• Step 3: Keep iterating until the amount of cliques reduces to a preset threshold k.

• Step 4: Each clique represents a cluster, go back to find stocks belong to each clique.

However, some cliques need to be broken up before the start the algorithm. The reason being

many stocks are included in multiple cliques so that if the cliques are directly merged into clusters,

some stocks will belong to multiple clusters.

Figure 17: Clique Breaking up

For a stock, one would like to assign the stock in to a clique which is most correlated to this stock.

For instance, in Figure 17, black point belongs to one 3-clique and three 4-cliques. The numbers

present distances between their corresponding red points and black point, it is straightforward that

the purple clique on the right has the highest average correlation (0.73) so that the black point

belongs to the purple clique while blue clique and orange clique will be broken up into 3 clique and

green clique will be a segment.

The same strategy is applied to the PMFG cliques, they will be broken into either 3-cliques,

segments or isolated stocks which can be regarded as elements of next iteration. For every element,

the average daily return sequence is used to construct a dash stock such that it’s ready to draw a

new PMFG graph. The result of this algorithm details in Table 8.
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Table 8: Result of PMFG Clustering

Num Com C-D C-S Ene Fin Heal Ind Mat Tec Uti

48 0% 0% 0% 89.6% 0% 0% 6.3% 0% 0% 4.2%

103 0% 13.6% 1.0% 1.0% 12.6% 2.9% 46.6% 17.5% 4.9% 0%

59 13.6% 66.1% 15.3% 0% 3.4% 0% 1.7% 0% 0% 0%

95 0% 25.3% 2.1% 0% 4.2% 4.2% 37.9% 10.5% 15.8% 0%

35 5.7% 2.9% 62.9% 0% 2.9% 8.6% 0% 2.9% 14.3% 0%

52 0% 0% 0% 0% 0% 92.3% 0% 0% 7.7% 0%

89 4.5% 10.1% 2.2% 1.1% 1.1% 19.1% 3.4% 1.1% 57.3% 0%

88 0% 0% 0% 0% 98.9% 0% 1.1% 0% 0% 0%

76 10.5% 26.3% 3.9% 0% 10.5% 3.9% 11.8% 17.1% 15.8% 0%

32 3.1% 0% 0% 0% 9.4% 0% 0% 3.1% 0% 84.4%

47 0% 0% 0% 0% 97.9% 0% 0% 0% 0% 2.1%

The threshold has been set as 10, the algorithm will stop at point when it has 11 clusters.

One can see Table 8 is quite similar with the result from K-means clustering Table 3. Specifically,

89.6% of cluster 1 is mainly the Energy sector, similarly cluster 9 are mainly the Utilities sector.

Moreover, Financials sector is mainly distributed in cluster 8 and cluster 11.

In fact, all Financials stocks in cluster 11 came from REIT, and the same result can be seen in

result of K-means clustering. Furthermore, other BICS code sectors are located in many clusters

without significant distributions except Health Care sector. Indeed, Health Care sector is a special

one since it has a good clustering property with a low inside correlation. Finally, to compare result

of PMFG and result of K-means clustering, need the inside correlation and dependence in Table 9.

Table 9: Inside Correlation of PMFG and BICS

PMFG 0.41 0.38 0.26 0.28 0.27 0.19 0.35 0.54 0.22 0.48 0.49 0.3518

K-means 0.36 0.25 0.17 0.45 0.32 0.24 0.52 0.38 0.44 0.20 0.3317

BICS 0.19 0.21 0.23 0.41 0.33 0.19 0.31 0.28 0.28 0.45 0.2839

From Table 9, one can see the average inside correlation of PMFG is 6% higher than K-means

and 24% higher than BICS. Indeed, the PMFG can increase the strength of correlations inside

a cluster and has a better performance than K-means. The blue numbers corresponding inside

correlation of Health Care sector or clusters whose main component is Health Care sector, which

are very small comparing to the others.

According to results of PMFG and K-means, Health Care sector has a good clustering property.
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However, its inside correlation is below 0.2, which is even smaller than sector which does not have

a good clustering property.

In general, sector with good clustering property normally have a high inside correlation since

algorithms are based on distance or metric so that if stocks in the same sector do not have strong

pairwise correlations, they will be distributed into many clusters. The only reason these blue

numbers can be explained is the stocks in Health Care sector have even worse relations with stocks

outside of Health Care sector than those which are within the same sector.

As Figure 8 is shown, with the K-means result, when the number of clusters is increasing, the

average distance between stocks and centroids will gradually decrease. The decrease in average

distance is equivalent to the increase of inside correlation, the outperformance of PMFG is due to

either the increase of cluster number or the method since the result of PMFG has one more cluster

than K-means and BICS code.

Figure 18: relation between inside correlation and number of clusters, red line is the reult of PMFG,

the blue star is the result of K-means.

Figure 18 compares inside correlations of PMFG and K-means when the number of cluster

increases. Whatever the number of cluster is, the inside correlation of PMFG is higher than K-

means. Besides, the red line is more stable than blue stars which is due to the unstability of

K-means result. What’s more, both inside correlations of PMFG and K-means increase sharply

when the number of cluster is small than 10, then the rate of lines reduces to a certain level after

the number of clsuter is over 10. From the aspect of inside correlation, 10 or 11 is a suitable

number of cluster.
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4 Application in Trading

In this section, two existing trading strategies will be introduced, Momentum Strategy and Betting

Against Beta (BAB) Strategy. Then the BICS code and the results of K-means clustering and

PMFG will be compared by the Profit and Lose (PnL) and statistics.

4.1 Sector-Momentum

The Sector-Momentum strategy seeks to invest sectors which have the best performance over a

specific timespan. James O’Shaunessey [30] stated in his book that Momentum investing is one of

the best performing strategies in over the last fifty years. He argued that the stronger sectors tend

to get stronger while the weaker sectors tend to get weaker since ’Wall-Street loves winners and

hates losers’. The following steps are based on Mebane Faber’s work [31].

The strategy does sector rotation trading where monthly returns data is applied. Specifically,

for BICS code: Firstly, at the beginning of every month, three best performing sectors are chosen

from 10 BICS code sectors according to their previous month performance.

Secondly, buying all the stocks in these three sectors and holding the positions for the next one

month. Then at the next beginning of month, we rebalance the portfolio.

The strategy uses the 12-month moving average as a threshold to decide to get into the market

or not. That is at the beginning of every month, one will buy the chosen stocks if the S&P500

Index is above the 12-month moving average and one will not buy stocks and/or remove positions

as soon as S&P500 Index is below the 12-month moving average.

Figure 19: S&P500 and its 12-Month Moving Average.
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The price of the S&P500 and its moving average are presented in Figure 19. Most of the

time, the S&P500 is above its moving average, which indicates that the market return is positive.

However, during the Financials Crisis in 2008, the moving average is above the S&P500, which

indicates that one should sell his holdings. Therefore, the moving average ensures that investors

are out of the market during extended down-trends and in the market during extended up-trends.

The strategy also works based on the clusters from the result of K-means and PMFG. Thus,

following the steps introduced above and applying the 724 stock universe with timespan ranging

from 30th Aug 2003 to 21st May 2018, Figure 20 presents the PnL lines of this strategy based

on different classifications and Table 10 presents values of some statistics in terms of different

methods.

Figure 20: PnL of Momentum Strategy based on BICS code, K-means and PMFG.

Table 10: Statistical data of PnL Lines

Annualised Return Annualised Volatility Sharpe Ratio t-Statistic

K-means 0.1203 0.1463 0.8391 3.3132

PMFG 0.1335 0.1434 0.9126 3.6036

BICS 0.1039 0.1189 0.8739 3.4506

In Figure 20, difference between PnL lines is not remarkable. In fact, PMFG beats others with

the respect of Sharpe Ratio and Annualised Return. All t-Statistic values for three methods are

not small, which implies that results are reliable. In conclusion, for momentum strategy, clusters

given by PMFG perform slightly better than BICS code sectors and clusters from K-means, which
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implies that PMFG adds value when desiging a trading system.

4.2 Betting Against Beta

The Betting Against Beta (BAB) Strategy is detailed by Cliff Asness [32]. The idea of this strategy

is that safer (low-risk) stocks deliver higher risk-adjusted returns than riskier stocks. Hence, the

strategy buys low-beta stocks and sells high-beta stocks. In the following, steps of constructing

the strategy are stated.

For a stock sector S = {s1, s2, ...sn}:

Firstly, Beta βi of a stock si is estimated by product of the rolling one-year daily standard

deviation stdi which is normalised by the rolling one-year daily standard deviation of S&P500 and

the rolling five-year three-day correlations ρi between the stock returns and S&P500 index:

βi =
stdi

stdS&P500
∗ ρi.

Correlation of three-day returns is applied here since it is more stable than correlation of one-day

returns.

Secondly, all stocks in the sector S is ranked in ascending order on the basis of their estimated

Beta. Denote zi = rank(βi) as the rank of stock si and z̄ as the average of {z1, z2, ...zn}.

Thirdly, give weights to stocks. Dividing stocks into two portfolio: low-risk portfolio and high-

risk portfolio. Stock si belongs to low-risk protfolio if zi − z̄ < 0 otherwise belongs to high-risk

portfolio. For stock si in low-risk portfolio, weight is given by:

wi
L =

(zi − z̄)−

β′L ∗ zL
,

where βL is a column vector of Betas for all stocks in low-risk portfolio and zL is a column vector

of the values of (zi − z̄)− for all stocks in low-risk portfolio.

Similarly, for stock sj in high-risk portfolio, weight is given by:

wj
H =

(zj − z̄)+

β′H ∗ zH
,

where βH is a column vector of Betas for all stocks in high-risk portfolio and zH is a column vector

of the values of (zj − z̄)+ for all stocks in high-risk portfolio.

Fourthly, the return of low-risk portfolio rLt and the return of high-risk portfolio rHt at day t is

constructed as:

rLt = rL ∗ wL,

rHt = rH ∗ wH ,

where rL = (r1t , r
2
t , ..., r

n
t ) is a row vector of stock returns in low-risk portfolio at day t, wL =

(w1
L, w

2
L, ..., w

n
L)
′

is a column vectors of stock weights in low-risk portfolio, rH = (r1t , r
2
t , ..., r

m
t ) is a
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row vector of stock returns in high-risk portfolio at day t and wH = (w1
H , w

2
H , ..., w

n
H)
′

is a column

vectors of stock weights in high-risk portfolio.

Finally, the return of strategy at time t+ 1 is computed by:

rt+1 = rLt+1 − rHt+1. (4.1)

Since the strategy is defined on a sector S, BICS code sectors, result of K-means and result of

PMFG are applied respectively to the data set of this strategy. For the BICS code, the strategy

will work based on 10 sectors respectively. For K-means and PMFG, stocks will be divided into

10 clusters and then clusters will be applied to the strategy. Thus, following the steps introduced

above and applying the 724 stock universe with timespan ranging from 31st Aug 2009 to 21st

May 2018, Figure 21 presents the PnL lines of this strategy based on different classifications and

Table 11 details values of diffrent statistics with respect to different methods.

Figure 21: PnL of BAB Strategy based on BICS code, K-means and PMFG.

Table 11: Statistical data of PnL Lines

Annualised Return Annualised Volatility Sharpe Ratio t-Statistic

K-means 0.5012 0.7433 0.6743 2.0264

PMFG 0.5666 0.6908 0.8202 2.4651

BICS 0.3420 0.4130 0.8282 2.4890

In Figure 21, both PMFG and K-means have a higher PnL than BICS, while PMFG is signifi-

cantly higher than K-means. However, the Sharpe Ratio of K-means is 0.6743, which is much more
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lower than PMFG and BICS. Hence PMFG and BIC beat K-means in terms of Sharpe Ratio. The

lower Sharpe Ratio of K-means implies that its volatility is higher than others. In other words,

the highest Sharpe Ratio of BICS suggests that this is risk-lowest one. Hence, the performance of

K-means are not as good as one supposed.

The reason why this happened is because the result of K-means and PMFG are both only based

on distance functions, that is to say only one parameter is used. In fact, more parameters are

required to classify stocks since stock market is too complicated to be estimated by one parameter.

For instance, stock volatility and trading volumes.
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5 Conclusion

We have introduced three clustering methods and applied them to analyse a stock universe which

includes 724 stocks from US stock market. Based on the daily return sequences of stocks, the

distance functions were used to assess correlation between the stocks. The strong correlations

are picked out by clustering algorithms and thus structure of stock market has been described by

clustering results.

Applying Pearson’s correlation in K-means clustering method, it pointed out the extent of clus-

tering property of every BICS code sector. Among them, Energy, Financials and Utilities sectors

have a good clustering property while others are partitioned into several subsets and randomly

distributed into many clusters. However, even though the K-means clustering method offers a

remarkable result which improved the inside correlations of clusters, its algorithm can only find

local optimal solutions.

Hierarchical clustering cares not only about the distance between stocks but also distance

between stock groups. Three different but related distance functions were defined to evaluate

relations between groups and applied to construct a hierarchical model for stock system. Indeed,

it came out that the result of this method is a minimum spanning tree (MST), which contains too

little information to draw out a super complex system like stock universe. However, this method

became the foundation for constructing a even more complicated graph which is more informative.

PMFG is regarded as the extension of MST which have much more edges than MST and thus

can convey more information. As components of PMFG, the cliques illustrated that the stocks

are widely correlated with many others so that MST is not an adequate model. Besides, discovery

of isolated stocks indicate that the existence of stocks which only have strong correlations with

other sectors reduce the inside correlations. However, although the result of PMFG is better than

K-means, stocks which have relations with many sectors remain to be difficult to split. The reason

why this happens is that the distance which is based on daily return sequence cannot represent

all the features of stock system. For example, technical data such as volatility and trading volume

and fundamental data such as price earning ratio.

Both Momentum Strategy and BAB Strategy have a better performance when clusters based

on PMFG are applied in terms of annualised return. Though K-means has a higher annualised

return than BICS, Sharpe Ratio indicates that K-means is not as good as BICS. Indeed, the PnL

based on PMFG is not as good as supposed. The Sharpe Ratio of PMFG is just slightly higher

than or equal to BICS code. Hence, PMFG only makes a limited contribution to correction of

BICS code.

In conclusion, clustering methods are useful tools to analyse structure of stock universe. How-

ever, an algorithm which has multivariate parameters is needed to draw out the structure of data

in many different aspects.
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A Appendix

Proof of derivative covariance formula

Assume X and Y are random variables, x1, x2, ...xn and y1, y2, ...yn are their n samples respectively.

The covariance of X and Y can be expressed as:

cov(X,Y ) =
1

2n2

n∑
i=1

n∑
j=1

(xi − xj)(yi − yj). (A.1)

Proof. Denote ~x = (x1, x2, x3, ...xn)T , ~y = (y1, y2, y3, ...yn)T and ~E = (1, 1, 1, ...1)T . Then con-

struct two matrices:

A =



x1y1

x2y2

x3y3
. . .

xnyn


B =



x1y1 x1y2 x1y3 · · · x1yn

x2y1 x2y2 x2y3 · · · x2yn

x3y1 x3y2 x3y3 · · · x3yn

· · · · · · · · · · · · · · ·

xny1 xny2 xny3 · · · xnyn


Hence we have:

cov(X,Y ) =
1

n

n∑
i=1

(xi − x̄)(yi − ȳ) =
1

n

n∑
i=1

(xiyi − x̄yi − ȳxi + x̄ȳ)

=
1

n

n∑
i=1

(xiyi)− x̄ · ȳ =
1

n2
[n

n∑
i=1

(xiyi)− (

n∑
i=1

xi)(

n∑
j=1

yi)]

=
1

n2
(nETAE − ETBE)

It is easy to compute that:

A−B =



(n− 1)x1y1 −x1y2 −x1y3 · · · −x1yn
−x2y1 (n− 1)x2y2 −x2y3 · · · −x2yn
−x3y1 −x3y2 (n− 1)x3y3 · · · −x3yn

...
...

...
...

...

−xny1 −xny2 −xny3 · · · (n− 1)xnyn


,
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so if we time n2 on both sides, the equation will be:

n2cov = ((n− 1)x1 − x2 − x3 − · · · − xn)y1 + ((n− 1)x2 − x1 − x3 − · · · − xn)y2

+ · · ·+ ((n− 1)xn − x1 − x2 − · · · − xn−1)yn

= (nx1 −
n∑

i=1

xi)y1 + (nx2 −
n∑

i=1

xi)y1 + · · ·+ (nxn −
n∑

i=1

xi)yn

=

n∑
i=1

(x1 − xi)y1 +

n∑
i=1

(x2 − xi)y1 + · · ·+
n∑

i=1

(xn − xi)yn

=

n∑
j=1

n∑
i=1

(xj − xi)yj .

Then let us do a subscript exchange:

n2cov =
1

2

 n∑
j=1

n∑
i=1

(xj − xi)yj +

n∑
j=1

n∑
i=1

(xj − xi)yj


=

1

2

 n∑
j=1

n∑
i=1

(xj − xi)yj +

n∑
i=1

n∑
j=1

(xi − xj)yi


=

1

2

 n∑
j=1

n∑
i=1

(xj − xi)yj +

n∑
j=1

n∑
i=1

(xi − xj)yi


=

1

2

 n∑
j=1

n∑
i=1

(xj − xi)yj −
n∑

i=1

n∑
j=1

(xj − xi)yi


=

1

2

n∑
j=1

n∑
i=1

(xj − xi)(yj − yi).

Hence, the covariance is as expressed on (A.1).
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BICS Code Table

Table 12: First two levels of the Bloomberg BICS stocks system

Level 1 Level 2

Code Macro Sector Code First level Microsector

10 Communications
1010 Media Content

1011 Telecom

11 Consumer Discretionary

1110 Apparel & Textile Products

1111 Automotive

1112 Consumer Discretionary Srvcs

1113 Distributors

1114 Home & Office Products

1115 Leisure Products

1116 Recreation Facilities & Srvcs

1117 Retail Discretionary

1118 Travel, Lodging & Dining

1119 Distributors

1120 Retail

12 Consumer Staples

1210 Consumer Products

1211 Dist/Whsl-Consumer Staples

1212 Retail Staples

13 Energy
1310 Oil, Gas & Coal

1311 Renewable Energy

14 Financials

1410 Asset Management

1411 Banking

1412 Institutional Financials Srvcs

1413 Insurance

1414 Real Estate Oper & Srvcs

1415 REIT

15 Health Care

1510 Biotech & Pharma

1511 Health Care Facilities/Srvcs

1512 Medical equipment/Devices
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Code Macro Sector Code First level Microsector

16 Industrials

1610 Aerospace & Defense

1611 Electrical Equipment

1612 Engineering & Const Srvcs

1613 Industrial Distribution

1614 Machinery

1615 Manufactured Goods

1616 Transportation & Logistics

1617 Transportation Equipment

1618 Waste & Envrnmt Srvc Equip & Fac

17 Materials

1710 Chemicals

1711 Construction Materials

1712 Containers & Packaging

1713 Forest & Paper products

1714 Iron & Steel

1715 Metals & Distribution

18 Materials

1810 Design, Mfg & Distribution

1811 Hardware

1812 Semiconductors

1813 Software

1814 Iron & Technology Services

19 Utilities 1910 Utilities
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Dependence Matrices of K-means and BICS code

Table 13: dependencekmeans

Clus No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10

No.1 0 0.26 0.18 0.19 0.28 0.20 0.32 0.20 0.14 0.21

No.2 0 0.14 0.14 0.21 0.17 0.29 0.15 0.10 0.18

No.3 0 0.11 0.16 0.13 0.16 0.11 0.06 0.14

No.4 0 0.15 0.15 0.15 0.11 0.31 0.14

No.5 0 0.13 0.21 0.14 0.12 0.18

No.6 0 0.23 0.15 0.08 0.15

No.7 0 0.18 0.10 0.21

No.8 0 0.02 0.17

No.9 0 0.08

No.10 0

Table 14: dependenceBICS

Com ConDis ConSta Energy Fin Health Ind Mat Tech Uti

Com 0 0.17 0.15 0.15 0.18 0.13 0.18 0.18 0.16 0.09

ConDis 0 0.18 0.17 0.22 0.15 0.22 0.21 0.19 0.09

ConSta 0 0.12 0.19 0.14 0.18 0.18 0.16 0.15

Energy 0 0.17 0.12 0.20 0.21 0.16 0.03

Fin 0 0.17 0.25 0.23 0.20 0.17

Health 0 0.18 0.18 0.19 0.09

Ind 0 0.27 0.24 0.10

Mat 0 0.22 0.11

Tech 0 0.10

Uti 0
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Scoring function of three similarity measures

Table 15: Result of Spearman’s correlation and Complete distance

Num Com C-D CS- Ene Fin Heal Ind Mat Tec Uti

29 0% 82.8% 13.8% 0% 3.4% 0% 0% 0% 0% 0%

46 0% 2.2% 0% 69.6% 10.9% 2.2% 4.3% 4.3% 6.5% 0%

34 2.9% 0% 8.8% 0% 85.3% 0% 0% 0% 0% 2.9%

43 0% 0% 2.3% 0% 44.2% 0% 0% 2.3% 0% 51.2%

30 13.3% 40% 6.7% 0% 6.7% 10% 0% 6.7% 16.7% 0%

43 0% 32.6% 23.3% 2.3% 27.9% 2.3% 2.3% 0% 0% 9.3%

38 2.6% 13.2% 18.4% 0% 10.5% 31.6% 5.3% 2.6% 7.9% 7.9%

286 2.8% 13.3% 2.4% 0.7% 28.7% 13.6% 22.4% 9.8% 6.3% 0%

141 4.3% 9.2% 3.5% 1.4% 3.5% 8.5% 19.9% 6.4% 43.3% 0%

34 8.8% 0% 0% 23.5% 17.6% 29.4% 11.8% 2.9% 5.9% 0%

Table 16: Result of Pearson’s correlation and Complete distance

Num Com C-D C-S Ene Fin Heal Ind Mat Tec Uti

3 0% 0% 33.3% 0% 0% 66.7% 0% 0% 0% 0%

20 10% 10% 5% 0% 15% 30% 5% 0% 20% 5%

43 2.3% 23.3% 0% 0% 2.3% 16.3% 32.6% 11.6% 11.6% 0%

46 8.7% 26.1% 2.2% 4.3% 13.0% 21.7% 0% 6.5% 17.4% 0%

122 0.8% 4.9% 0% 27.9% 1.6% 11.5% 11.5% 4.9% 33.6% 0%

115 7.0% 7.8% 0.9% 5.2% 61.7% 3.5% 5.2% 3.5% 3.5% 1.7%

93 0% 2.2% 10.7% 0% 45.2% 6.5% 1.1% 3.2% 2.2% 29.0%

159 1.3% 18.9% 3.1% 0.6% 12.6% 11.3% 29.6% 10.7% 11.9% 0%

94 4.3% 36.2% 21.3% 2.1% 17.0% 1.1% 10.6% 6.4% 1.1% 0%

29 3.4% 6.9% 0% 0% 13.8% 34.5% 13.8% 0% 27.6% 0%
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Table 17: Result of Cosine measure and Complete distance

Num Com C-D C-S Ene Fin Heal Ind Mat Tec Uti

48 0% 37.5% 4.2% 6.3% 14.6% 6.3% 12.5% 10.4% 8.3% 0%

47 4.3% 53.2% 6.4% 4.3% 6.4% 12.8% 8.5% 2.1% 2.1% 0%

11 9.1% 18.2% 0% 9.1% 27.3% 36.4% 0% 0% 0% 0%

59 3.4% 8.5% 18.6% 1.7% 20.3% 8.5% 3.4% 15.3% 20.3% 0%

132 4.5% 9.1% 5.3% 0% 58.3% 5.3% 7.6% 6.1% 3.8% 0%

248 3.6% 9.7% 2.0% 14.9% 6.5% 11.3% 25.4% 6.5% 19.4% 0.8%

67 0% 3.0% 6.0% 0% 49.3% 0% 0% 1.5% 0% 40.3%

50 6% 10% 4% 0% 12% 24% 26% 6% 10% 2%

27 0% 33.3% 18.5% 3.7% 11.1% 25.9% 7.4% 0% 0% 0%

35 0% 14.3% 0% 0% 14.3% 17.1% 2.9% 2.9% 48.6% 0%

Comparison of distance function under Complete metric

Figure 22: Complete and Pearson’s correlation of the weekly returns result
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Figure 23: Complete and Spearman’s correlation on weekly returns result

Figure 24: Complete and Cosine’s correlation of weekly returns result
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Mathematical explanation of backstep

Figure 25: Single and Pearson’s correlation result

Figure 26: Single and Pearson’s correlation result

Biograph of Communications sector

Figure 27: Biograph of Communications sector
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