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1 Introduction

One of the challenges when pricing some type of derivatives is performance in terms of

speed. This is typically the case for structured products with a large number of un-

derlyings. Usual numerical and programming techniques can be used to improve that

performance, however in certain application where the derivatives need to be re-priced a

large number of times, performance in terms of speed becomes extremely critical. One way

to tackle this problem is using a trained machine learning model that can replicate prices.

In this paper, one class of regression model, the Gaussian Process Regression(GPR) is

investigated for the purpose of replicating the price of one particular structured product,

namely Synthetic Collateralized Debt Obligation.

1.1 CDS, CDD and Synthetic CDO

The focus of this paper is not to present the mathematical sophistication behind the pric-

ing models which have already been extensively studied in numerous works in the past.

The following paragraphs will only briefly introduce the pricing mechanism of Credit De-

fault Swap(CDS), Collateralized Debt Obligation(CDO) and Synthetic CDO. A thorough

discussion about the mathematical details of the pricing formula is out of the scope of

this paper. More details about credit derivatives can be found in Elouerkhaoui’s book[1],

Brigo’s book[2] and O’Kane’s book[3].

A CDS contract provides protection against default. Typically, in a CDS contract,

there are protection buyer, protection seller and the reference entity. Like in an insurance

contract, the protection buyer pays the premium leg to the protection seller given there

is no default; the protection seller pays the protection leg to the protection buyer if the

reference entity defaults before the maturity of the contract. Assume face value of $1,

the present value(PV) of a CDS is the difference between PV of the premium leg and

protection leg. Exclude accrued coupon payment for simplicity, the PV of premium leg

and protection leg are given by

Premium PV = S0[

N∑
n=1

∆(tn−1, tn)Z(t, tn)Q(t, tn)], (1.1)
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and

Protect PV = (1−R)

∫ T

t
Z(t, s)(−dQ(t, s)), (1.2)

where t is the effective date of the CDS contract; Z(t, T ) is the Libor discount curve;

Q(t, T ) is the survival probability of the reference entity at time t to T ; tn, n = 1, ..., N are

the premium payment dates; S0 represents S(0, T ), the fixed contractual spread at time

0 which matures at T ; ∆(tn−1, tn) is the day count fraction between tn−1 and tn; R is the

expected recovery rate as a percentage. For a detailed discussion about CDS, please see

[3, chapter 5].

A Collateralized Debt Obligation(CDO) is a structured asses-backed security whose

payoff is specified by the total loss of the portfolio. A CDO is typically divided into

different tranches with different seniority based on level of risk. A synthetic CDO is a

CDO with underlying portfolio made of reference CDSs. A CDO tranche is defined by an

attachment point K1 and a detachment point K2, which determine the range of loss that

will affect the payoff. Denote the cumulative percentage default loss on the preference

portfolio at time T as L(T ) and the CDO tranche loss at time T as L(T,K1,K2), then we

have

L(T,K1,K2) =
max(L(T )−K1, 0)−max(L(T )−K2, 0)

K2 −K1
. (1.3)

The tranche premium leg is a series of cash flows paid by the tranche protection buyer to

the seller. The amount of the payment is determined by the tranche spread S, which is

agreed when signing the contract and the remaining tranche principal E[1−L(ti,K1,K2)].

The present value of tranche premium leg at time zero is

Premium PV = S

NT∑
i=1

∆(ti−1, ti)Z(ti)E[1− L(ti,K1,K2)], (1.4)

where Z(ti) is the Libor discount curve; ti, n = 1, ..., TN are the premium payment dates;

∆(ti−1, ti) is the day count fraction between ti−1 and ti. Here we assume that the premium

paid at time ti is on the tranche notional value at ti. One possible approximation would be

taking the tranche notional as the average tranche notional since last premium payment.

Then one gets

Premium PV = S

NT∑
i=1

∆(ti−1, ti)Z(ti)E
[
1− L(ti−1,K1,K2) + L(ti,K1,K2)

2

]
, (1.5)
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The protection leg pays the tranche loss at the time of loss. The amount of loss on

the tranche over a small period of time is given by dL(t,K1,K2).The present value of the

protection leg at time zero is

Protection PV =

∫ T

0
Z(s)E[dL(s,K1,K2)]. (1.6)

Analogously to the pricing equations of CDS, if we define the survival probability of

tranche as

Q(t,K1,K2) = E[1− L(t,K1,K2)], (1.7)

then Premium PV and Protection PV are

Premium PV =
S

2

NT∑
i=1

∆(ti−1, ti)Z(ti)[Q(ti−1,K1,K2) +Q(ti,K1,K2)],

Protection PV =

∫ T

0
Z(s)(−dQ(s,K1,K2)).

(1.8)

Then the present value at time zero of the tranche for the protection seller is

V (K1,K2) =
S

2

NT∑
i=1

∆(ti−1, ti)Z(ti)[Q(ti−1,K1,K2) +Q(ti,K1,K2)]

−
∫ T

0
Z(s)(−dQ(s,K1,K2)).

(1.9)

For a detailed discussion about pricing mechanism for CDOs, please see chapter 12 in [3].

The loss distribution of a CDO tranche will depend on the correlation of the under-

lying credits. When the correlation is zero, the underlying credits are independent which

means they do not tend to survive or default together. When the correlation is high, the

underlying credits become more likely to survive or default together. There are several

methods to model the credit correlation, see [1] and [3, Part II].

Pricing a structured product like a synthetic CDO tranche with a lot of underlying

CDSs could be challenging. One has to first get the implied default probabilities for CDSs

from observed CDS quotes, then do risk-neutral pricing. The whole procedure could be

time-consuming. To provide an alternative way of pricing those structured products, this

paper proposes a machine learning method – Gaussian Process Regression.
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1.2 Machine Learning for pricing – Gaussian Process Regression

In this paper, an alternative approach to pricing structured products – Gaussian Process

Regression(GPR) – is proposed. The basic idea of GPR is to measure the similarity

within the feature space spanned by all the inputs from the traditional pricing techniques,

then replicate new prices based on the similarity to the prices in training data. A detailed

explanation about how this works will be provided in section 2. Detailed discussions about

examining several model selection techniques in the Gaussian Process settings including

different kernel functions and objective functions for training purposes will be presented in

section 3. Section 4 contains two dimension reduction methods and comparison between

their results. The thesis will be concluded by section 5 with conclusion, discussion and

further study.

Modelling regression problems using Gaussian process is well known in the geo-

statistics field[4, 5], but the studied has only focused on small input dimensions e.g. 2-

dimensional and 3-dimensional input spaces. GPR under machine learning context was

first studied by Williams and Rasmussen in [6]. They also described how to optimize

parameters in the covariance matrix, which will be discussed in the following section.

Other previous works are also focused on lower dimensional input space[7, 8, 9], so it will

be of interest to investigate how GPR can be used in replicating synthetic CDO prices

with much higher dimensional input space. The data used in numerical implementation

is Citigroup proprietary data with input dimension of 1118. The numerical results are all

produced from this dataset unless otherwise stated.
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2 Gaussian Process

There are broadly two common approaches when it comes to supervised machine learning.

One is to assume a specific class of functions one wants the model to learn, then train the

model to learn the parameters that describe that specific function. The other approach

is to assign a prior probability to all the possible functions, then choose the one that

maximise the likelihood of training data to get the posterior distribution of functions.

The first approach has a problem that one has to decide the richness of the class of

functions that the model is trying to learn for each specific task. But sometimes, the

target function that one aims to learn ends up in a totally different class of functions from

the model estimation. For instance, the model may instantiate a linear function estimator

for a highly non-linear target. In this case, the prediction result when evaluate at new

data will inevitably be subprime or sometimes, very poor. The second approach seems

to be intractable in the sense that there are just too many functions that one can assign

probability to. This is where Gaussian Process can be of great use. In this section, we

first define Gaussian processes, then show how they can be used to tackle the regression

problem.

2.1 Introduction to Gaussian Process

Readers are assumed to be familiar with the definition and properties of multivariate

Gaussian distributions and stochastic processes. One can define a Gaussian process by

the following definition.

Definition 2.1. (Gaussian Process) A Gaussian process {Xi}i∈I indexed by an index set

I is a family of random variables Xi’s, all defined on the same probability space, such that

any finite subset F ⊂ I, the random vector XF := {Xi}i∈F has a multivariate Gaussian

distribution.[10]

Because of their analytical tractability, it is convenient to model finite collection of

real-valued functions using multivariate Gaussian distributions. In practice, one can think

of a Gaussian Process as a very long multivariate gaussian vector indexed by some index

space (e.g. time, space, hyperspace . . . ). The training data will be some dimensions of
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this vector that one has already observed, and one wants to make prediction of dimensions

that hasn’t been observed.

Figure 1: The upper panel is the prior of a Gaussian Process with its parameters set

at initial value. The bold black line is the mean, which in our example is constantly

zero. The colored lines are sample functions drawn from this Gaussian Process. Grey area

is one standard deviation away from the mean at each input point. The lower panel is

the posterior. The dots on the black line are our observations. Colored lines are sample

functions drawn from the posterior distribution. Grey area is one standard deviation away

from the mean. Notice that once we have our observation, we are more certain about the

function value around observed points. This is illustrated by the shrinking of the grey

area in the lower panel.

Before observing any values from a Gaussian Process, one only has a prior distribution

over functions specified by that Gaussian Process which may include all the continuous

functions. Once some data points have been observed, the possible functions are now
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reduced to those that go through the observed points. Because of the multivariate gaussian

distribution property of any finite subset of a Gaussian Process, prediction on unobserved

data can be calculated by conditioning on the observed points. Prior combined with

observation gives the posterior distribution over the function that one wants to model.

When there are more data points coming in, the uncertainty from the posterior dis-

tribution will be decreased. Hence, the prediction will become more and more confident

when the model has observed more and more data. For traditional parametric methods,

the model will tend to overfit the training data when the size of training set grows. How-

ever, for Gaussian Processes, since one are not assuming any specific form of the predicted

function, one does not have to worry about overfitting of training data. There are still

some flexibility left (specified by the variance of the posterior Gaussian distribution), even

a lot of training data points have been observed.

2.2 Gaussian Process Regression

So far, we have introduced Gaussian Processes. In order to solve the regression problem,

one needs to first define a prior distribution of the target functions by a Gaussian process,

then apply Bayesian inference[12] to get the posterior distribution of our predictions. The

Gaussian Process Regression can be interpreted in two ways: 1) Weight-space View, and

2) Function-space View.

2.2.1 Weight-space View

The weight-space view of Gaussian Process starts with the standard linear regression

model but from a Bayesian perspective. Recall the Bayesian linear regression model of

input x and targets y is

y = xTw + ε, (2.1)

where w is the weight and ε is Gaussian noise with distribution N (0, σ2n). This formulation

gives the likelihood of the training data

p(y|X,w) = N (XTw, σ2nI). (2.2)
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In the Bayesian setting, one needs to specify a prior over the parameters w before we

do any inference from the training data[13, sec 2.1]. We assume a zero mean Gaussian

distribution for w, w ∼ N (0,Σ). Then by Bayes’ rule

posterior =
likelihood× prior
marginal likelihood

, (2.3)

we have

p(w|y,X) =
p(y|X,w)p(w)

p(y|X)
, (2.4)

where marginal likelihood is a constant and has the expression of

p(y|X) =

∫
p(y|X,w)p(w)dw. (2.5)

Plug in likelihood and prior to get

p(w|y,X) ∝ exp

(
−1

2
(w − w̄)T (σ−2n XXT + ΣT )(w − w̄)

)
, (2.6)

where w̄ = σ−2n (σ−2n XXT +Σ−1)−1Xy. Notice that this is the probability density function

of the posterior of w. We have the posterior probability is

p(w|y,X) = N (w̄, Σ̄) (2.7)

where Σ̄ = (σ−2n XXT + Σ−1)−1. The prediction on a new data point x∗ is the weighted

average from all possible values of parameters by their posterior distribution. Thus the

predictive distribution for y∗ is

p(y∗|x∗,X,y) =

∫
p(y∗|x∗,w)p(x|W,y)dw

= N
(
σ−2n x∗T Σ̄Xy, x∗T Σ̄x∗

)
.

(2.8)

The Bayesian linear model may perform poorly on higher dimensional data because

of its lack of complexity. One way to tackle this problem is to introduce a kernel function

applying to the input data before doing linear regression. This approach will lead to the

weight-space interpretation of Gaussian Process.

Apply kernel function φ(x) to the input, and the model becomes

y = φ(x)Tw + ε. (2.9)
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Apply the same inference process as the standard Bayesian linear model above and replace

X by Φ(X), x∗ by φ(x∗)in eq.2.8, we get

p(y∗|x∗,X,y) = N
(
σ−2n φ(x∗)T Σ̄Φy, φ(x∗)T Σ̄φ(x∗)

)
. (2.10)

Rewrite the above equation to get

p(y∗|x∗,X,y) = N ((φ∗)TΣΦ(K + σ2nI)−1y,

(φ∗)TΣφ∗ − (φ∗)TΣΦ(K + σ2nI)−1ΦTΣφ∗),
(2.11)

where φ∗ = φ(x)∗ and K is defined as ΦTΣΦ. Notice that in eq.2.11, one can interpret

(φ∗)TΣΦ, (φ∗)TΣφ∗ and ΦTΣφ∗ as inner products with respect to Σ. If we define ψ(x) =

Σ1/2φ(x) and k(x,x′) = ψ(x) · ψ(x′), then we have (φ∗)TΣΦ = k(x∗,X), (φ∗)TΣφ∗ =

k(x∗,x∗) and ΦTΣφ∗ = k(X,x∗). Then eq. 2.11 becomes

p(y∗|x∗,X,y) = N (k(x∗,X)(K + σ2nI)−1y,

k(x∗,x∗)− k(x∗,X)(K + σ2nI)−1k(X,x∗)),
(2.12)

which is the predictive distribution of y∗ in Gaussian Process.

2.2.2 Function-space View

Another interpretation of Gaussian Process Regression is through function-space view.

If one considers a Gaussian Process as a continuous stochastic process, then it defines a

probability distribution for functions [11]. Since a multivariate Gaussian distribution can

be completely specified by its mean and covariance, by definition 2.1, then a Gaussian

Process can be fully specified by its mean function and covariance function [13]. If one de-

fines the mean function as m(x) and covariance function k(x,x′) of a real-valued Gaussian

Process f(x) as

m(x) = E [f(x)]

k(x,x′) = E
[
(f(x)−m(x))

(
f(x′)−m(x′)

)] (2.13)

and then one can write the Gaussian Process f(x) as

f(x) ∼ GP
(
m(x), k(x,x′)

)
. (2.14)
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Suppose we choose a finite subset of random variables f from the Gaussian Process

f(x), with the corresponding index set X , then by definition of Gaussian Process, we know

the distribution of f :

p (f | X ) = N (m,K) , (2.15)

whereN (m,K) denotes a multivariate Gaussian distribution with mean m and covariance

K. In our task, the index set X can be a subset of Rd, where d is the dimension of our

input space. Usually we take the mean function to be a constant function equals to zero

for notational simplicity. In practice, one can subtract the mean to achieve this.

If the target function f(x) is estimated as a Gaussian process, then one needs to

check if the consistency requirement of estimator is fulfilled. One can easily do this by

the marginalization property of multivariate Gaussian distributions. The marginalization

property tells us that if

(f1, f2) ∼ N (m,K) ,

then we also have

f1 ∼ N (m1,K11)

f2 ∼ N (m2,K22) .

where K11 and K22 are sub-matrices of K. The proof is in the following:

Proof. Prove the marginal density p(f1) follows Gaussian distribution. First, by definition

of marginalization, we have

p(f1) =

∫
p(f1, f2)df2,

where

p(f1, f2) =
1

(2π)n/2
√

detK
exp (E)

and E is given by

E = −1

2

(
f2 − (m2 −Λ−122 Λ21(f1 −m1))

)T
Λ22

(
f2 − (m2 −Λ−122 Λ21(f1 −m1))

)
+

1

2

(
fT1 Λ12Λ

−1
22 Λ21f1 − 2fT1 Λ12Λ

−1
22 Λ21m1 + mT

1 Λ12Λ
−1
22 Λ21m1

)
− 1

2

(
fT1 Λ11f1 − 2fT1 Λ11m1 + mT

1 Λ11m1

)
= −1

2

(
f2 − (m2 −Λ−122 Λ21(f1 −m1))

)T
Λ22

(
f2 − (m2 −Λ−122 Λ21(f1 −m1))

)
− 1

2
(f1 −m1)

T (Λ11 −Λ12Λ
−1
22 Λ21

)
(f1 −m1)
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where Λ is the information matrix and

Λ = K−1 =

Λ11 Λ12

Λ21 Λ22

 .

Using the matrix inversion lemma (see Appendix), we have

K−111 = Λ11 −Λ12Λ
−1
22 Λ21,

combined with the line above to get

p(f1, f2) =
1

(2π)n/2
√

detK
exp (E1) exp (E2),

where

E1 = −1

2

(
f2 − (m2 −Λ−122 Λ21(f1 −m1))

)T
Λ22

(
f2 − (m2 −Λ−122 Λ21(f1 −m1))

)
E2 = −1

2
(f1 −m1)

T (Λ11 −Λ12Λ
−1
22 Λ21

)
(f1 −m1) .

Since E2 is independent of f1, we have

p(f1) =
1

(2π)n/2
√

detK

∫
exp (E1)df2 exp (E2).

Integral of a probability density function is one, we get∫
exp (E1)df2 = (2π)n2/2

√
det Λ−122

plug this into the line above to get

p(f1) =

√
det Λ−122

(2π)n1/2
√

detK
exp

(
−1

2
(f1 −m1)

T K−111 (f1 −m1)

)
.

Again, by the matrix inversion lemma, we have

detK = detK11 det(K22 −K21K
−1
11 K12)

Λ−122 = K22 −K21K
−1
11 K12.

Plug those results into the previous line, we get

p(f1) =
1

(2π)n1/2
√

detK11
exp

(
−1

2
(f1 −m1)

T K−111 (f1 −m1)

)
.

which proves that f1 ∼ N (m1,K11).
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Through consistency of Gaussian process, one knows if (f1, f2) ∼ N (m,K), then

f1 ∼ N (m1,K11) and f2 ∼ N (m2,K22). Now one can use Gaussian process to model

target function that one wants to estimate.

Firstly, model the target latent function f by a zero mean Gaussian Process, then f

has prior distribution:

f ∼ N (0,K), (2.16)

where K is the covariance matrix.

Assume the special case where the target functions are noise-free. Suppose we have

observed data {(xi, fi)|i = 1, ..., n}, we want to infer the value of our target function at

input points {xj |j = 1, ..., n∗}. We call f as training outputs and f∗ as test outputs. From

the prior distribution, we know f and f∗ have joint distribution f

f∗

 ∼ N
0,

K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

 . (2.17)

K(X,X) denotes the covariance matrix of n training data points, K(X∗,X∗) denotes the

covariance of n∗ test data points and K(X∗,X) denotes the cross-covariance of training

and test data points. To get the distribution of our prediction on the test data set, we

just condition the joint Gaussian prior distribution on the training data set. Then we get

f∗|X∗,X, f ∼ N (m∗, V∗), (2.18)

where

m∗ = K(X∗,X)K(X,X)−1f ,

V∗ = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗).
(2.19)

Proof. For notational simplicity, let’s denote K(X,X) as K, K(X,X∗) and K(X∗,X) as

K∗ and K(X∗,X∗) as K∗∗.

The conditional probability density function of f∗ given f is

p(f∗|f) =
p(f , f∗)∫
p(f , f∗)df

, (2.20)



2.2 Gaussian Process Regression 18

where
∫
p(f , f∗)df is a normalization constant. Denote the normalization constant as E,

we have

p(f∗|f) =
1

E
exp

−1

2

 f

f∗

T K K∗

K∗ K∗∗

−1  f

f∗


 . (2.21)

Denote K K∗

K∗ K∗∗

−1 =

V V∗

V∗ V∗∗

 , (2.22)

then we get

p(f∗|f) =
1

E
exp

−1

2

 f

f∗

T V V∗

V∗ V∗∗

 f

f∗




=
1

E
exp

(
−1

2
[fTV f + fTV∗f∗ + fT∗ V∗f + fT∗ V∗∗f∗]

)
.

(2.23)

Complete the square to get

p(f∗|f) =
1

E
exp(−[

1

2
(f∗ + V −1∗∗ V∗f)TV∗∗(f∗ + V −1∗∗ V∗f)

1

2
fTV f − 1

2
fTV∗V

−1
∗∗ V∗f ]).

(2.24)

Take out the terms that are independent of f∗ from the exponential and put them into the

normalization constant to get updated constant E′, then we get

p(f∗|f) =
1

E′
exp

(
−1

2
(f∗ + V −1∗∗ V∗f)TV∗∗(f∗ + +V −1∗∗ V∗f)

)
. (2.25)

Recognise this is in the form of Gaussian probability density function with

µ = −V −1∗∗ V∗f ,

σ2 = V −1∗∗ .
(2.26)

By matrix inverse lemma(see Appendix), we haveK K∗

K∗ K∗∗

 =

 (V − V∗V −1∗∗ V∗)−1 −(V − V∗V −1∗∗ V∗)−1V∗V −1∗∗
−V −1∗∗ V∗(V − V∗V −1∗∗ V∗)−1 (V∗∗ − V∗V −1V∗)−1

 . (2.27)

Combining the previous line to get

µ = −V −1∗∗ V∗f = K∗K
−1f ,

σ2 = V −1∗∗ = K∗∗ −K∗K−1K∗,
(2.28)

which concludes the proof for eq.2.18 and 2.19.
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The prediction on the test set is a posterior Gaussian distribution with mean m∗

and covariance V∗. Notice that in the prediction, rather than giving specific parametric

relationship between the test input X∗ and the prediction value, the model just gives a

Gaussian distribution inferred from the prior distribution and observation. If one wants to

get an exact value of f∗ for prediction, one can sample from the posterior distribution or

simply take the mean m∗ as our prediction. For more on this, please see section 2.3. One

can also get the variance v∗ of each individual element in vector f∗ from the covariance

matrix V∗. The smaller the variance is, the more confident we are about the prediction.

In most real-life application, it is more realistic to incorporate noise in the target

values. We can denote the noisy target values as y in training set. Then write the noisy

value as y = f(x) + ε. Assuming identical, independent Gaussian noise ε with mean 0 and

variance σ2n, then the covariance on the noisy observation is

cov(yi, yj) = k(xi,xj) + σ2nδij

where δij is a Kronecker delta which is 1 is i = j and 0 otherwise. The above relationship

is vector form is

cov(y) = K(X,X) + σ2nI, (2.29)

where the identity matrix I comes from the independence assumption of the noise. Then

we can write the joint prior distribution of noisy training data and test data asy

f∗

 ∼ N
0,

K(X,X) + σ2nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

 . (2.30)

Then by the same derivation to eq. 2.18 and 2.19, we get the prediction for test data. The

posterior distribution is

f∗|X∗, X,y ∼ N (m̂∗, V̂∗), (2.31)

where

m̂∗ = K(X∗, X)[K(X,X) + σ2nI]−1y,

V̂∗ = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2nI]−1K(X,X∗).
(2.32)

This is equivalent to the predictive distribution from weight-space view in eq.2.12.

Notice that though we assume the mean function as constantly zero in the prior dis-

tribution, we get non-zero mean function in the posterior distribution for the test data
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set. This can be interpreted as after observing the training set, the model has more in-

formation about the distribution of the test set. Also, different from a parametric model,

the Gaussian Process Regression model needs to store all the training data for prediction.

For a parametric model, the goal is to find the predefined parametric relationship between

features and targets, once done that, the model doesn’t need the training data for pre-

diction. The features, x∗i |i = 1, ..., n∗, will give all the information we need for prediction

y∗i ’s. However, in Gaussian Process Regression model, the prediction eq. 2.31 and eq.

2.32 need the information from training set to get the posterior distribution of the test

set.

2.3 Predicition from Gaussian Process Regression

Form eq. 2.31, we know that the posterior distribution of test data is Gaussian with

mean and variance given in eq.2.32. But if one wants an explicit prediction for the target

function rather than a distribution, what is the value then? One intuitive answer would

be the mean of posterior distribution. In practice, this prediction is appropriate in most

real-life tasks. Rasmussen and Williams provides in-depth explanation in [13, sec 2.4], we

present a summary of the rationale in the following.

To find a optimal prediction value, we need a way to measure our performance. Let’s

define a loss function, L(ŷ, y), which specifies the loss between the prediction, ŷ and the

true value, y. The loss function can be mean squared error or mean absolute error which

are both symmetric loss functions.

One wants to give a prediction value that produces the minimum loss possible. But

how do we achieve that when we don’t know the true value? According to [13, sec 2.4],

we can minimize the expected loss, by averaging the loss with respect to the posterior

distribution, which is

R̃L(ŷ|x∗) =

∫
L(y∗, ŷ)p(y∗|x∗)dy∗. (2.33)

Our best prediction is the one that minimizes this loss, i.e.

yoptimal|x∗ = argmin
ŷ

R̃L(ŷ|x∗). (2.34)

For mean squared error loss function, the minimum occurs at the mean of y∗. For mean
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absolute error loss function, the minimum occurs at the median of y∗. In our case, the

distribution of y∗ is Gaussian, so the mean and median coincide. Furthermore, for other

symmetric loss function and symmetric posterior distribution, the optimal prediction oc-

curs at the mean of the distribution. For asymmetric loss functions, the optimal prediction

can be computed from eq. 2.33 and eq. 2.3. For more detail, see [14].
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3 Model Selection

When modelling the target function as a zero mean Gaussian process, i.e.

f(x) ∼ GP
(
0, k(x,x′)

)
.

the main task will be to find a good configuration of covariance matrix, generated by kernel

function k and a set of hyperparameters that gives the best performance. The model selec-

tion is a combination of choosing a good kernel function and optimizing hyperparameters

of the kernel function. In this section, we will discuss several aspects of model selec-

tion, namely marginal likelihood, covariance matrix, kernel functions, hyperparameters

optimization.

3.1 Marginal Likelihood of the training data

From eq. 2.16, the noise-free prior follows multivariate Gaussian distribution with mean 0

and covariance matrix K(X,X). By Bayes’ theorrm, the marginal likelihood of the noisy

training data is the integral of the likelihood times prior, which is

p(y|X) =

∫
p(y|f , X)p(f |X)df . (3.1)

The term marginal likelihood means the marginalization over the function values

f . Assume identical, independent Gaussian noise, then we have y = f(x) + ε, where

ε ∼ N (0, σ2n). Let Ky = K + σ2nI, then by eq. 2.29. one gets

y ∼ N (0,Ky) . (3.2)

Since the likelihood of a Gaussian distribution involves exponential term, one can take the

logarithm of it. The log likelihood of y given X and θ is

log p(y|X, θ) = −1

2
yTK−1y y − 1

2
log |Ky| −

n

2
log 2π, (3.3)

where θ is parameters in kernel function k.



3.2 Covariance Matrix and Kernel functions 23

3.2 Covariance Matrix and Kernel functions

A kernel function k (also called a covariance function) governs the behaviour and property

of a zero-mean Gaussian process. Since for any element Kij in the covariance matrix K,

we know Kij = k(xi,xj), the relationship of covariance matrix K and kernel function k is

K =


k(x1,x1) k(x1,x2) . . . k(x1,xn)

k(x2,x1) k(x2,x2) . . . k(x2,xn)
...

...
. . .

...

k(xn,x1) k(xn,x2) . . . k(xn,xn)

 (3.4)

Figure 2: Heat-map of Covariance matrices. The left panel is the covarianve matrix

K of the training data X. The diagonal component Kii is the variance of Xi, the off-

diagonal component Kij is the covariance between Xi and Xj . The right panel is the

cross-covariance K∗ of X and testing data X∗. K∗ij is the covariance between Xi and X∗j .

A kernel function in some sense measures the similarity between two data points in

the input space. The basic assumption in GPR is that two points that are close in the

input space should be more likely to have similar target values.

Since a covariance matrix is always positive-semidefinite1 and symmetric, for a func-

tion to be qualified as a kernel function, it must be positive-semidefinite2 and symmetric
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in the sense that k(xi,xj) = k(xj ,xi)[13, sec 4.1].

3.2.1 Several Common Kernel functions

To understand what kind of function structure that Gaussian process can express, one

has to first understand properties of embedded kernel function of the GP. Kernel function

map x,x′ ∈ X into R. The similarity of x,x′ in X is measured by the result from the

kernel function.

A stationary kernel function is a function whose value only depends on the difference

between x and x′. One can write k to take only single argument r = x− x′.

Radial Basis Function Kernel

The mostly commonly used stationary kernel function is the Radial Basis Function(RBF)

kernel, which has the form

kRBF = σ2 exp

(
− r2

2l2

)
, (3.5)

where the parameter l is the characteristic length-scale and σ controls the magnitude of

function value. The RBF kernel function is also known as the quared exponential(SE)

function. This kernel function has derivatives at all orders, which means Gaussian process

with this kernel will be very smooth. For detailed explanation, please see [13, sec 4.2].

Sometimes, target functions in real wrold application do not have this smoothness, so

another family of stationary kernel functions, namely the Matérn class kernel functions

are introduced by Stein in [15].

1A symmetric n × n real matrix M is said to be positive-semidefinite(PSD) if vTMv is non-negative

for all v in Rn.
2A kernel is said to be positive-semidefinite if∫

k(x,x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0,

for all f ∈ L2(X , µ), X is the input space and µ is a measure.
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Matérn Class of Kernel Functions

This class of kernel functions was named after the work of Matérn. The general form of

Matern class kernel functions is given by

kMatern(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν
Kν

(√
2νr

l

)
, (3.6)

where ν and l are positive parameters and Kν is a second kind modified Bessel function[16,

sec 9.6]. When ν → ∞, we obtain the SE kernel function. For smaller ν, the resulting

Gaussian process has a rougher path than those from a SE kernel. The most commonly

exploited cases in machine learning is when ν = 3/2 and 5/2 [13, sec 4.2]. These two

kernel functions are of the forms

kMatern32(r) =

(
1 +

√
3r

l

)
exp

(
−
√

3r

l

)
,

kMatern52(r) =

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√

5r

l

)
.

(3.7)

For ν ≥ 7/2, Rasmussen and Williams have proved the resulting Gaussian process is very

smooth in [13, sec 4.2].

Stationary kernels will give the same value as long as the difference between x and

x′ is the same. Hence, stationary kernels are translation invariant. When one wants to

incorporate effects of translation in feature space, non-stationary kernel functions should

be introduced.

Linear Kernel Functions

A linear kernel function has the form

kLinear =
x · x′

l
, (3.8)

where l is the characteristic length-scale. Priors drawn form a Gaussian process governed

by a Linear kernel will be linear functions, see figure 3. The expressive ability of Lin-

ear kernel alone is not very interesting, but combined with other non-linear kernel. the

resulting GP can capture global trend as well as local variation of the target function.
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Figure 3: GP Priors with different kernels. For staiontionary kernels e.g. RBF, Matern32

and Matern53, variance at each point(covariance with itself) is constant for fixed parame-

ters. For non-stationary kernel, e.g. Linear kernel, variance increases as data points move

away from the origin. We can also see that sample functions drawn from prior distribution

of different kernels show different level of smoothness. Sample functions draw from Linear

kernel are linear functions.

GP priors and posteriors with different kernel functions are shown in Figure 3 and

4.
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Figure 4: GP Posteriors with different kernels. The red dots are the training points. The

black line is the mean function, the grey area is 95% confidence intervel.

Combining Kernel Functions

For most real-life tasks e.g. estimating the price of derivatives, using vanilla kernel func-

tions described above may not generate ideal result. We can construct new kernel func-

tions from these vanilla kernel functions by addition, multiplication, convolution and other

methods. Adding two kernel functions is equivalently modelling the resulting Gaussian

process by the sum of two independent Gaussian processes[13, sec 4.2].
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Figure 5: GP prior and posterior with RBF+Linear kernel. The mean function from the

postetior distribution has a upwards trend and local variation.

3.2.2 Optimizing Kernel Parameters

Each kernel function has a set of parameters which determines properties of the kernel

function. In Gaussian process regression, since these parameters specify distributions of

the parameters of target function, so we call them hyperparameters of the model. In the

training process of our model, we want to find a optimal set of hyperparameters in the

sense that the log likelihood of our training data define in eq. 3.3 is maximised. We will

discuss in detail about training methods in the following subsection.

3.2.3 Numerical Results of Different Kernels

Table 1 shows prediction performance of GPRs governed by different kernel functions

namely RBF, Matern32, Matern52, RBF+Linear, Matern32+Linear and Matern52+Linear.

The target function is the price of synthetic CDO. We divide the training set into 4 batches

of 2048 points in each batch for computational efficiency. The testing set size is 998. The

feature space X is [0, 1]1118. We measure the absolute value of difference between predic-

tion and target value from 10 to 10000. The results are shown as the percentage of the

entire testing set. GPR with Matérn32 kernel function has the most prediction within

absolute difference of 10 out of all other kernel functions. This can be explained by the
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Training data absolute difference Testing data absolute difference

10 100 1000 10000 10 100 1000 10000

RBF 59.31 78.02 95.31 99.28 27.66 36.97 50.50 75.85

Matern32 60.77 78.89 94.43 99.46 30.76 40.58 58.02 80.66

Matern52 59.85 78.65 95.00 99.38 30.26 38.78 53.31 77.56

RBF+Linear 50.42 79.90 97.91 100.00 28.36 39.78 53.81 75.55

Matern32+Linear 48.88 77.16 96.48 99.96 27.15 39.68 53.51 75.45

Matern52+Linear 54.24 80.21 96.72 99.77 29.36 41.28 54.61 77.15

Table 1: Results for kernels with single value length-scale.

smoothness by the target function that we are trying to estimate. Functions modelled GPR

with Matérn32 kernel are rougher than those by GPR with RBF and Matérn52 function.

When added Liner kernel function, the results do improve a little within absolute differ-

ence of 1000 and 10000 on training set, this means our model can explain more of the

global trend of the target function compared to the one without Linear kernel. However,

the performance get worse within the absolute difference of 10. This is maybe because the

target function does not have a clear linear relationship with any of the dimensions from

feature space, when fitted by a Linear kernel, the model is not able to give an accurate

prediction.

3.2.4 Automatic Relevance Determination

In the previous discussion, we used single scalar value for the characteristic length-scale l

in hyperparameter θ for kernels functions. In practice, for multi-dimensional feature space,

a universal characteristic length-scale for all dimensions may not perform well. Instead,

We can assign a characteristic length-scale for each dimension. For instance, a RBF and
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Matérn kernel function in this form are

kRBF ARD(r) = σ2 exp

(
−1

2

d∑
i=1

r2i
l2i

)
,

kMatern32 ARD(r) =

(
1 +
√

3
d∑
i=1

|ri|
li

)
exp

(
−
√

3
d∑
i=1

|ri|
li

)
,

kMatern52 ARD(r) =

(
1 +
√

5

d∑
i=1

|ri|
li

+
5

3

d∑
i=1

r2i
l2i

)
exp

(
−
√

5

d∑
i=1

|ri|
li

)
.

(3.9)

where r ∈ Rd, d is the number of dimensions in feature space. ARD stands for automatic

relevance determination[22, Neal]. From eq.3.9, we can see that the inverse of li will deter-

mine how sensitive the covariance is to the change in ri. For large value of li, the inverse

is close to zero which will make the value of covariance all-most invariant to the change

in ri. This effect will determine the relevance of ith dimension of input to the covariance

given enough training data, hence, the name – automatic relevance determination.

Training data absolute difference Testing data absolute difference

10 100 1000 10000 10 100 1000 10000

RBF 47.94 74.13 94.06 99.96 27.45 41.58 65.83 88.38

Matern32 58.51 83.42 98.35 99.98 30.76 44.59 68.34 88.08

Matern52 56.10 81.23 97.52 99.98 29.56 45.29 68.44 87.88

RBF+Linear 31.30 56.18 85.61 99.63 23.75 39.48 65.23 89.78

Matern32+Linear 45.19 75.07 96.25 100.00 28.36 41.98 68.74 90.28

Matern52+Linear 50.92 80.51 97.86 100.00 29.46 42.79 64.73 86.97

Table 2: Results for ARD kernels

Table 2 shows prediction performance of GPRs governed by different kernel functions

with ARD characteristic length-scale. All models are trained with 4 batches training data

with each batch of 2048 points. We iterate the optimization 400 times through the entire

training set. The actual results on the training set is not improved from those by non-ARD

kernels shown in table 1, this may be caused by the relatively small amount of training

data points(2048 each batch) compared to the number of parameters that we have to

optimize(more than 1000). However, from table 2 and figure 6, we can see the results on

absolute difference from 100 to 10000 of testing data are improved for all kernels when
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using ARD. This is because ARD kernels can give a more accurate measure of similarity

between training and testing points than those without ARD.

Figure 6: Absolute difference on testing set with ARD kernels. Kernels with ARD consis-

tently give better results than kernels without ARD.

3.3 Training Methods

Once we have chosen our kernel function, the remaining work of model selection is to

optimise the hyperparameters in the chosen kernel function. In this subsection, we will

suppose three objective functions for training and explain how to use gradient decent

based algorithm for optimisation.

3.3.1 Maximum Likelihood(ML)

Recall from eq. 3.3, we define the marginal likelihood of training data

log p(y|X, θ) = −1

2
yTK−1y y − 1

2
log |Ky| −

n

2
log 2π, (3.10)

where Ky = Kf + σ2I is the covariance matrix for the noisy targets value y. Kf is the

covariance matrix of latent function f and σ2 is the variane of i.i.d. Gaussian noise. We
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can interpret the first term in the marginal likelihood −1
2yTK−1y y as the data-fit since

it is the only term involves target values. The second term −1
2 log |Ky| is the complexity

penalty since it only depends on the covariance matrix. The third term −n
2 log 2π is the

normalization constant[13, Rasmussen and Williams, sec 5.4]. As length-scale increases,

K−1y decreases and log |Ky| increases. So we want to find a set θ such that

θ̂ = argmax
θ∈Θ

log p(y|X, θ). (3.11)

In practice, in order to find θ̂ that maximises the log marginal likelihood, we first

take partial derivatives of the the log marginal likelihood with respect to each element of

the hyperparameter vector θ. Here, we use vector θ to denote all the hyperparameters in

our chosen kernel function. Let θi be ith element in θ, then the partial derivative of log

marginal likelihood w.r.t. θi is

∂

∂θi
log p(y|X, θ) = −1

2
yT

∂K−1

∂θi
y − 1

2

∂ log |K|
∂θi

= −1

2
yT
(
−K−1∂K

∂θi
K−1

)
y − 1

2
tr

(
K−1

∂K

∂θi

)
=

1

2
yTK−1

∂K

∂θi
K−1y − 1

2
tr

(
K−1

∂K

∂θi

)
=

1

2
tr

(
(ααT −K−1)∂K

∂θi

)
, where α = K−1y.

(3.12)

Notice that ∂K
∂θi

denotes the matrix of element-wise derivatives. Then in each iteration, we

update our the parameters θni by

θni = θn−1i − η ∂

∂θi
log p(y|X, θ) (3.13)

where η is a predefined learning rate.

The main computational complexity of computing this partial derivative lies in the

computing of K−1, which is of order O(n3) for a n dimensional matrix K. After we have

computed partial derivatives for every hyperparameters, we update each of them using

a gradient decent based optimizer. Many well known packages in major programming

languages have those optimizer built-in. We use Python for our implementation. One can

find several more efficient optimizers such as RMSPropOptimizer and AdamOptimizer in

Python. In practice, we will set our objective function to be the negative log likelihood,
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then we use optimizer to minimise our objective function w.r.t. hyperparameters. For

those optimizers mentioned above, We can also use adaptive learning rate during optimis-

ing operation for better performance when approaching to the minimal point. By adaptive

learning rate, we mean learning rate decays by a certain method. For instance, the time-

based decay is specified by η = η0/(1 + k ∗ t), where η0 is the initial learning rate, k is

a hyperpamater that governs the decay speed and t is the iterations that have passed[17,

Bengio].

3.3.2 LOO-CV Based Objective Functions

We can also define our objective function as the leave-one-out cross validation (LOO-

CV) based predictive measure. Cross Validation (CV) based predictive measure has been

successfully used in many model selection tasks in machine learning by Cawley and Talbot

in [18] and Sundararajan and Keerthi in [19].

Geisser’s surrogate Predictive Probability(GPP)

Predictive Sample Reuse(PSR) methods was introduced by Geisser[20] to be applied for

both model selection and parameters optimisation problem. The basic idea is to define a

partition of training data P (N,n,Γ) such that such that P iN−n is the predictive probability

of ith subset of size n in the partition. Leave-one-out cross validation is the special case

when we take the size of element in the partition to be n = 1.

The predictive log likelihood when leaving out training case i is

log p(yi|X,y−i, θ) = −1

2
log σ2i −

(yi − µi)2

2σ2i
− 1

2
log 2π, (3.14)

where y−i means all targets value except the ith value, µi and σi are calculated according

to eq. 2.32. The training data are taken to be (X−i,y−i). We take our objective function

to be the average negative predictive log likelihood, which is given by

G(X,y, θ) = − 1

n

n∑
i=1

log p(yi|X,y−i, θ) (3.15)

This objective function is known as Geisser’s surrogate Predictive Probability(GPP), first
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supposed by Geisser and Eddy in [21]. It is also called pseudo-likelihood by Rasmussen

and Williams in [13, sec. 5.4].

The main computational cost in calculating GPP is in the calculation of the predictive

mean µi and predictive variance σ2i , which are dominated by the inversion of the matrix

K in eq. 2.32. The expression for µi and σ2i was calculated in [19], and they are

µi = yi − [K−1y]i/[K
−1]ii,

σ2i = 1/[K−1]ii.
(3.16)

Plug in these expressions into eq. 3.14 and eq. 3.15 to get the objective function. The

next step is to calculate the partial derivatives of the objective function with respect to

hyperparameters. We first use the expression in eq. 3.16 to calculate the partial derivatives

of the predictive mean and variance

∂µi
∂θj

=
[Zjα]i
[K−1]ii

− αi[ZjK
−1]ii

[K−1]2ii
,

∂σ2i
∂θj

=
[ZjK

−1]ii
[K−1]2ii

,

(3.17)

where α = K−1y and Zj = K−1 ∂K∂θj . Using chain rule and eq. 3.14 to calculate the partial

derivatives of eq.3.15

∂G(X,y, θ)

∂θj
= − 1

n

n∑
i=1

∂ log p(yi|X,y−i, θ)
∂µi

∂µi
∂θj

+
∂ log p(yi|X,y−i, θ)

∂σ2i

∂σ2i
∂θj

= − 1

n

n∑
i=1

(
αi[Zjα]i −

1

2

(
1 +

α2
i

[K−1]ii

)
[ZjK

−1]ii

)
/[K−1]ii.

(3.18)

With partial derivatives calculated, we can use gradient decent based optimizer to

minimise our objective function G(X,y, θ), thus find the optimal θ̂ such that

θ̂ = argmax
θ∈Θ

G(X,y, θ). (3.19)
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Geisser’s Predictive mean square Error (GPE)

Another LOO-CV based objective function is Geisser’s Predictive mean square Error

(GPE)[21, Geisser and Eddy][19, Sundararajan and Keerthi]. GPE is define by

1

n

n∑
i=1

E[(yi − ŷi)2], (3.20)

where ŷi is the predicted value from the model using data set (X−i.y−i) and yi is the true

target value. GPE measures the average expected square error derived from LOO-CV.

The objective function corresponding to GPE is

GE(X,y, θ) =
1

n

n∑
i=1

∫
(yi − ŷi)2p(ŷi|X,y−i, θ)dŷi, (3.21)

where ŷi follows a Gaussian distribution with mean µi and variance σ2i given by eq. 3.16.

Thanks to the analytical tractability of Gaussian distribution, we can simplify the objective

function as

GE(X,y, θ) =
1

n

n∑
i=1

(yi − µi)2 + σ2i . (3.22)

We can see from the expression of GE , this objective function will aim to minimise the

deviation between the predictive mean and the true value as well as the predictive variance.

In the most ideal case, GE should be very closed to zero, meaning that expected error of

training set derived based on LOO-CV should be very small.

We can also use chain rule and eq. 3.14 to calculate the partial derivatives of GPE

objective function

∂GE(X,y, θ)

∂θj
=

1

n

n∑
i=1

∂(yi − µi)2

∂µi

∂µi
∂θj

+ 2σi
∂σi
∂θj

. (3.23)

Plug in eq. 3.17 to get

∂GE(X,y, θ)

∂θj
=

1

n

n∑
i=1

(
[ZjK

−1]ii

(
1 + 2

α2
i

[K−1]ii

)
− 2αi[Zjα]i

)
/[K−1]ii, (3.24)

where α = K−1y and Zj = K−1 ∂K∂θj .

Once we have calculated the partial derivatives, we will follow the similar steps in the

maximum likelihood case to find the optimal hyperparameter θ̂ such that

θ̂ = argmax
θ∈Θ

GE(X,y, θ). (3.25)
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The main difference is that maximum likelihood gives us the probability of training

data given the assumption of model while the two LOO-CV based methods estimate the

predictive probability and error which gives us a measure of how good our assumption is.

3.3.3 Numerical Results

The three objective proposed above have similar computational expense, all dominated by

the inversion of covariance matrix K, which is O(n3). However, the two LOO-CV based

methods have additional O(n2) cost for the entire process of calculating the predictive

probability and error. This difference will emerge when the train set is large and when

we run a large number of iterations. For 4 batches of 2048 points each, ML takes about

one third less time compared to the two LOO-CV based methods. Exact numbers are in

Table 6.

Table 3, 4 and 5 show that results from these three methods vary between different

kernels. For the data set used, the best performance comes from the GPP method with

Matérn32 kernel, which is consistent with results from Table 1 and 2. Out of the three

methods, the GPE method is consistently the worst performer with all kernels. One can

explain this result by reparameterizing the objective function GE(X,y, θ).

Start by denoting the covariance matrix by K = σ2K̄, where σ is a variance parame-

ter. Then we have K̄−1 = σ2K−1. By eq. 3.16 and 3.22, we get the reparameterized GPE

objective function

GE(X,y, θ) =
1

n

n∑
i=1

(yi − µi)2 +
1

n

n∑
i=1

σ2i

=
1

n

n∑
i=1

(
[K−1y]i
[K−1]ii

)2

+
1

n

n∑
i=1

1

[K−1]ii

=
1

n

n∑
i=1

(
[K̄−1y]i
[K̄−1]ii

)2

+
σ2

n

n∑
i=1

1

[K̄−1]ii
.

(3.26)

Since σ is independent of K̄, when minimising the objective function, σ will be pushed

towards zero. Then the covariance matrix K will be pushed towards zero too, which is

not true[19]. This is why results from GPR are bad for all kernel functions.
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Training data absolute difference Testing data absolute difference

10 100 1000 10000 10 100 1000 10000

ML 47.94 74.13 94.06 99.96 27.45 41.58 65.83 88.38

GPP 42.86 68.66 89.23 99.89 24.45 38.28 60.72 85.57

GPE 15.25 31.98 60.23 81.73 13.03 26.55 52.40 77.86

Table 3: Different training methods for RBF kernel

Training data absolute difference Testing data absolute difference

10 100 1000 10000 10 100 1000 10000

ML 58.51 83.42 98.35 99.98 30.76 44.59 68.34 88.08

GPP 63.22 83.58 97.64 99.83 31.56 43.59 64.03 84.97

GPE 17.57 36.76 65.73 85.42 14.03 29.46 54.91 79.26

Table 4: Different training methods for Matern32 kernel

Training data absolute difference Testing data absolute difference

10 100 1000 10000 10 100 1000 10000

ML 56.10 81.23 97.52 99.98 29.56 45.29 68.44 87.88

GPP 57.65 78.82 96.00 99.88 30.36 40.98 62.73 84.77

GPE 29.24 57.01 78.88 95.47 20.24 36.77 59.12 83.77

Table 5: Different training methods for Matern52 kernel

RBF Matern32 Matern52

ML 5.89s 5.70s 5.93s

GPP 9.01s 8.85s 8.79s

GPE 9.14s 9.04s 8.92s

Table 6: Training time per iteration of entire dataset from different methods. Algorithm is

implemented using Python 3.5 and Tensorflow packge. Run on machine with CPU: Intel

Xeon E5-2620 v4 2.10GHz, RAM: 32.0GB.
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4 Data Analysis

4.1 Data Description

The data used during implementation is propriety data from Citigroup. The feature space

contains 1290 dimensions of numeric values and the target value is the price of synthetic

CDO. Since all feature dimensions are numeric, this paper will not discuss handling with

missing features and converting non-numerical features to numeric features. After remov-

ing feature dimensions with variance less than 0.013, there are still 1118 dimensions left.

Within some of these dimensions, there are large differences between the minimum and

maximum values. So before doing any specific data processing, one should first rescale

all feature dimensions into the interval of [0, 1] for better computational performance. By

rescaling all dimensions into uniform interval, it can effectively avoid model misspecifica-

tion because of large difference in numeric ranges of feature values[26]. Another benefit of

rescaling all feature values into uniform interval lies in the more reasonable initialization

of parameters. The characteristic length-scale in kernel functions can be conveniently ini-

tialized to be 0.5 or 1.0 for all dimensions, then perform optimization. After doing this

pre-processing, the remaining section will be focused on dimension reduction techniques.

4.2 Dimension Reduction

Due to the computational expense of calculating the inverse of covariance matrix, which

is of order O(n3) for a n-dimensional positive semi-definite matrix, it is hard to work with

large data set in practice. However, for high dimensional input, one must train the model

with a reasonably large amount of data so that on average each dimension is adequately

represented. Also, as mentioned above, one has to optimize more parameters for high

dimension data if using ARD kernels. This also requires training the model with a large

amount of data for parameters to converge. But it is restricted by O(n) computational

complexity of covariance matrix inversion. To tackle this dilemma, one needs to reduce

3The variance of a random variable measures how far a set of observations are spread out from the

mean. A constant random variable has zero variance. By removing dimensions with near zero variance,

we discard those dimensions that are almost constant in all data points.
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the dimension of feature space while retaining the information from the original data. In

this subsection, two dimension reduction techniques will be presented, namely Principal

Component Analysis(PCA) and Autoencoder(AE).

4.2.1 Principal Component Analysis

Principal Component Analysis(PCA) is used extensively in statistics for data represen-

tation and dimension reduction. The main purpose of PCA is to find a new coordinate

system in which we can express the original data with less dimensions without significant

loss of information. The following paragraph will briefly explain how PCA works. For a

detailed discuss about PCA, please see [23, Jolliffe].

To perform PCA, one will first need to standardize the data by subtracting mean and

dividing standard deviation. Then calculate the sample covariance matrix of the input

data Q = 1
n−1XXT , where each column of X is one data point in original input space,

Rd. Then find the eigenvalues λ1, · · · , λd of Q and corresponding orthogonal eigenvectors

u1, · · · ,ud. Once all the eigenvalues have been calculated, one needs to sort the eigenvalues

in descending order and corresponding eigenvectors. The eigenvector corresponding to the

largest eigenvalue is called first principal component and so on. To reduce dimensions, one

discards those eigenvectors corresponding to eigenvalues that are smaller than a predefined

threshold(small eigenvalues correspond to eigenvectors containing less information about

the original data). One can also precede by choosing the first d eigenvalues until∑k
i=1 λi∑d
j=1 λj

≥ ε, (4.1)

where ε is the percentage of variance one wants to keep from the original data. Now

there are k(< d) eigenvectors to form the feature matrix U which is of shape k × d. The

dimension reduction is done by multiplying X by U from left,

X′ = U ·X (4.2)

where X′ is a k × n matrix with each column a transformed data point in reduced input

space Rk.
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4.2.2 Autoencoder

An autoencoder is a type of feed forward neural network that is mainly used for efficient

data encoding[25, chapter 14]. The most simple case of autoencoder contains three layers

– namely, input layer, hidden layer and output layer. This type of autoencoder can be

divided into two parts: an encoder function and a decoder function. An encoder function

takes the original data as input and transform it to a transformed space. Denote the

encoder as h = f(x), where x ∈ Rd,h ∈ Rm. A decoder function takes h as input

and outputs a reconstruction of the original data x′ = g(h), where x′ ∈ Rd. One can

train the model by minimize the reconstruction error between x and x′. Commonly used

reconstruction error measure is the Mean Squared Error loss function

L(x,x′) =
1

n

n∑
i=1

(xi − x′i)
2. (4.3)

Figure 7: Undercomplete Autoencoder Training Scheme. In an undercomplete autoen-

coder, number of neurons in the hidden layer is smaller than the number of input dimen-

sion.

When m < d, it means the encoder function transforms the original data into a

lower dimensional space and the decoder function can recover the original data from the

transformed space within a tolerable error range. This type of autoencoders is called
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undercomplete autoencoders(hidden layer dimension fewer than input dimension) and is

widely used as a dimension reduction tool. By setting the hidden layer size smaller than

the input dimension and minimizing the reconstruction error, it forces the autoencoder to

learn meaningful transformation of original features. When the activation function used

in the encoder part is linear, i.e. f(x) = w ·x + b, and the hidden layer is fully connected,

the subspace spanned by the autoencoder by the encoder function is the same as the one

spanned by principal components from PCA. Detailed discussion and proof are provided

by Plaut in [24].

When the activation function is non-linear, e.g. the logistic function

f(x) =
1

1 + exp[−(w · x + b)]
,

g(h) =
1

1 + exp[−(w′ · h + b′)]
,

(4.4)

where w, b and w′, b′ are weights and bias of the encoder and decoder function, the au-

toencoder can learn a more useful non-linear generalization of the one generated by PCA.

After the training process, one can discard the decoder part and only apply the encoder

function to the whole data set for dimension reduction purpose.

Apart from dimension reduction, one can also add denoising feature to the autoen-

coder by feed the model with noisy data, then try to reconstruct the clean data. This

type of autoencoders are called denoising autoencoders.

In a denoising autoencoder, a random noise, usually Gaussian noise, is added to the

original data y to get noisy data ŷ. Then apply the encoder function and decode function

to get ĥ = f(y) and ŷ′ = g(ĥ). The loss function is defined as Mean Squared Error

between the reconstructed ŷ′ and the original data y. The training process it to minimize

L(y, ŷ′).

4.3 Numerical Results

While traditional dimension reduction techniques like PCA are methods, undercomplete

autoencoder is a family of methods. One can configure different autoencoders by number

of nodes in the hidden layer or number of hidden layers. One can immediate see this
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Figure 8: Denoising Autoencoder Training Scheme. Manually add noise to the original

data before feeding into the AE.

can go on forever. Like the configuration of a normal Neural Network, the configuration

of an undercomplete autoencoder for a specific dataset is often based on experience and

experiments. For computational tractability, the implementaion will use only one hidden

layer in this paper. The hidden layer is set to be a dense layer, which means every nodes in

a layer is fully connected to every nodes from the previous layer. The empirically-derived

rule-of-thumb for sizes of hidden layers is 2n. In this implementation, it starts with 256

nodes, approximately one-fourth of the original dimension and gradually decrease to 16.

Training results for autoencoders with different sizes are shown in the following figures.

From figure 9 and 10, when further compressing the data to lower dimension, the AE

is actually able to reconstruct the original data within smaller error range. This means

the AE with non-linear activation function can effectively learn meaningful features in a

much lower dimensional space that can recover the original information within little error.

Feed the reduced data into our GPR model with RBF kernel and Matern32 kernel.

Results from differnt methods are shown in table 7. Consistently with previous results,

Matern32 kernel continues to outperform the RBF kernel in all reduced data set. This

means that indexed by the reduced feature space, our target function is still not smooth

enough to be modeled by a GP with RBF kernel. The column PCA99% means the PCA
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Figure 9: Training Process of Different AE Size. All sizes converge at similar speed, the

MSE differences between 4000 and 10000 iterations are subtle. AEs with fewer hidden

nodes(128,64,32,16) are able to reconstruct the original data with less error than AE with

256 hidden nodes.

Figure 10: Training Results at 2000 Epochs. Reconstuction error is at lowest when the

AE has 32 hidden nodes.

remains 99% of the variance from the original data when performing PCA, which will

reduce feature dimensions to 225. The results from PCA99% is worse than those from AE

with different sizes. This is because PCA only performs linear transformation from the

original feature space to the reduced space. For the data set we use, the reduced space

from PCA method does not contain as much information as those spanned from AEs. On
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the other hand, the non-linear activation function embedded in AEs is able to learn useful

non-linear transformation from the original feature space that can be used to reconstruct

the original information with little error. Results from GPR prediction shows that this

non-linear transformation does not necessarily benefit from the increasing in the number

of hidden nodes. This means for the used data set, non-linear mapping into a smaller

space is able to retrain more information than a larger one. For the AEs used, the one

with 64 hidden nodes performs the best.
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5 Conclusion, Discussion and Further Study

This section will wrap up what has been shown in previous sections and discuss other

applications of GP for further study.

This paper starts with brief introduction to pricing formulas for synthetic CDO – a

structured credit product. Then it proposes an alternative way of replicating prices using

a Bayesian learning model – Gaussian Process Regression. In section 2, it has shown

Gaussian process from a extended weight-space view and a more intuitive function-space

view. For a zero mean Gaussian process as proposed in this paper, the behaviour of

the GP is fully specified by its covariance matrix produced by kernel functions. There are

numerous choices for kernels function. Section 3 has discussed three stationary kernel func-

tions namely, Radial Basis Function(RBF) and Matérn family kernel functions(Matérn32

and Matérn52), and one non-stationary kernel function – Linear kernel function. Sec-

tion 3 has also proposed three objective functions for parameter optimization – namely,

Maximum Likelihood(ML), Geisser’s surrogate Predictive Probability(GPP) and Geisser’s

Predictive mean square Error(GPE). In terms of computation complexity, ML objective

functions requires less time for each iteration during training than other two objective

functions. Numerical results are shown in Section 3.3.3. For the used dataset, Matérn32

kernel function combined with GPP objective function gives the best predictive results.

The expensive computational complexity(O(n3)) of GPR model during training pro-

cess prohibits us from using a larger, more representative data set. To tackle this problem,

we have used two dimension reduction techniques – namely, Principal Component Analy-

sis(PCA) and Autoencoder(AE) and compared the results on our dataset in Section 4.3.

When applying the reduced data to our GPR model, results from AEs with different

number of hidden nodes are consistently better than those from PCA. This is because

the non-linear transformation performed by the activation function of AEs can produce a

reduced space retaining more meaningful information from the original dataset than the

linear transformation in PCA.

The autoencoder is a family of methods. One can construct complex hidden layers

and nodes configuration as well as training loss function when dealing with a specific data
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set. For computational tractability, this paper has used one dense hidden layer for the

implementation. However, one can build an autoencoder tailored for a specific data set

for better performance.

It has been shown in Section 3.2 that sample paths of GPs governed by a Matérn32

kernel function are rougher than those by a RBF kernel function. Prediction results also

validate that Matérn32 kernel performs better than RBF kernel on the dataset used in

this paper. However, when applied to a another dataset, one needs to first analyse the

distribution of features and the behaviour of the target function so that one can construct

a suitable kernel function. It is also worth exploring that different kernel functions can be

applied to different dimensions of the feature space, based on their different distribution

and the smoothness of target values with respect to that dimension.

Since differentiation is a linear operation, the derivative of a Gaussian process is

another Gaussian process. Thus one can model the derivative of the target function as

a GP and make inference from that. This can be applied to modelling underlyings of a

structured or exotic products for hedging and risk management purposes. The covariance

of partial derivative with function value and covariance between partial derivatives can be

specified by the kernel function k in the following form

cov

(
fi,

∂fj
∂xdj

)
=
∂k(xi,xj)

∂xdj

cov

(
∂fi
∂xdi

,
∂fj
∂xdj

)
=
∂2k(xi,xj)

∂xdi∂xdj
,

(5.1)

where dj denotes the jth dimension in the feature space[13, sec 9.4]. If certain dimensions

in the feature space are of interest, one can just remove columns in the covariance matrix

that are irrelevant. Inference and predictions when modelling with partial derivative can

be done similarly to the procedure described in this paper.
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Appendix

Matrix Inversion Lemma

Matrix Inversion Lemma also known as the Woodbury, Sherman & Morrison formula[28].

states that

(Z + UWV T )−1 = Z−1 − Z−1U(W−1 + V TZ−1U)−1V TZ−1,

assuming the relevant matrices inverses all exist. Here Z is n× n, W is m×m and U, V

are n×m.

The equation for determinants is

|Z + UWV T | = |Z||W ||W−1 + V TZ−1U |.

Let the invertible n× n matrix K and its inverse V be partitioned into

K =

K11 K12

K21 K22

 , V =

V11 V12

V21 V22

 ,
where Kij and Vij are submatrices. Then we have

V11 = K−111 +K−111 K12MK21K
−1
11

V12 = −K−111 K12M

V21 = −MK12K
−1
11

V22 = M

where M = (K22 −K21K
−1
11 K12)

−1.
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