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Abstract

In this paper, we aim to solve utility maximization problems with different constraints and utility
function. For each utility maximization problem, the primal and dual problems would be con-
structed and formulated, and then we construct their adjoint processes so as to obtain forward and
backward stochastic differential equations (FBSDEs). We solve utility maximization problems by
using either theoretical or numerical methods, and prove that the solutions from primal problem,
dual problem, and FBSDE problem should be the same.
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Introduction

The utility maximization problems have been one of the focus points in the area of mathematical
economics for these years. Solving such problems aim to maximize the utility for consumers under
certain constraints, such as no short selling and other trading restrictions.

The concept of stochastic process was first introduced as a specific mathematical definition in
a 1934 paper by Joseph Doob[4]. After that stochastic process was widely used in finance to
simulate financial products and controls in trading processes. Stochastic control has a significant
meaning in dealing with dynamic portfolio optimization problems, and it has developed greatly
since 1970s. During this time, Robert Merton published two landmark papers in this field, which
is about Hamilton-Jacobi-Bellman equation and the requirement of an underlying Markov state
process [11, 12]. Based on his work, Pliska[14], Cox and Huang[2], Karatzas et al.[8] have extensive
research in optimal investment problems with non-Markov setting.

The stochastic duality theory of Bismut[1] was first applied in solving the constrained optimal
investment problem in Xu and Shreve’s paper [15]. After that, due to efficiency of the convex
dual method, it was widely used in dealing with problems in incomplete market models in the
works of Karatzas et al.[9], He and Pearson[6, 7], Cvitanic and Karatzas[3]. The purpose of using
convex duality theory is to convert a primal constrained problem into an unconstrained one, and
by solving the dual problem, the dual solution can be reverted so as to obtain the optimal solution
for primal problem. However, in general, even the dual problems can be difficult to solve, and the
explicit close form result is hard to obtain. Therefore, numerical method is often used to simulate
and approximate the solution in solving optimal problems.

The theory of backward stochastic differential equations (BSDEs) was proposed and introduced
by Pardoux and Peng[5]. It becomes popular and significant in the field of mathematical eco-
nomics and finance later on because its connections with stochastic controls and partial differential
equation. According to the theory of BSDEs, the non-linear PDEs can be written in probabilis-
tic forms, which extends the Faynman-Kac formula for linear PDEs. The BSDEs provide a way
to solve non-linear PDEs by using numerical methods. The BSDEs are then combined with the
forward stochastic differential equations (FSDEs) and become forward and backward stochastic
differential equations (FBSDEs), which is a powerful modelling tool in solving stochastic control
problems. Li and Zheng[10] proposed the necessary and sufficient conditions for primal and dual
problems in terms of forward and backward stochastic differential equations. The necessary and
sufficient conditions build up the connections among primal problems, dual problems, and their
FBSDEs. Under the circumstance of conditions satisfied, the optimal primal problem agrees with
the adjoint process of the dual problem and vice verse, and thus it provides more flexibility to
obtain an optimal primal solution.

In this paper, we study the utility maximization problems with different constraints and utility
functions, and this paper is mainly divided by three parts. The background setting and theorems
used in this paper are mainly referred to the paper by Li and Zheng [10]. In the first part, we intro-
duce the background and set up the market model, wealth process, and value function. After the
primal problem is formulated, we convert it to a dual problem by using supermartingle approach,
and introduce the corresponding adjoint processes for both primal and dual problems based on
Pham’s book[13]. There are no constraints for the first part, which means the control set is the
whole space and all parameters are deterministic. We will show that the solution of dual problem
coincides with the dual FBSDEs’ for both power utility function and non-Hara utility function.
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In the second part, all the premises remain the same except for the Brownian motion term of
the stock process, which becomes an OU process. The value functions can be solved from primal
and dual HJB equations explicitly with Ansatz. Numerical algorithms are designed to prove that
primal problem, dual problem, and their corresponding FBSDEs problems give the same solution
to wealth process. In the third part, the control set becomes a positive one dimensional space, and
thus short-selling is not permitted and the OU process has a time dependent Brownian motion
term instead of constant. We will solve the dual FBSDE to obtain optimal controls and verify the
controls by checking the value of value functions.

The rest of the paper is organized as follows. There are three Chapters in total, which corre-
sponds to each part mentioned above. The last section concludes the paper.
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Chapter 1

Unconstrained Utility
Maximization

Assumption:
- 1-dimensional geometric Brownian motion asset price process
- All coefficients constant
- Control set K=R
- Maximize utility of wealth at time T

1.1 Market Model

Let (Ω,F ,P) be a complete probability space on which is defined a 1-dimension Brownian motion
{W (t), t ∈ [0, T ]} with T > 0 denoting a fixed terminal time. Let {Ft, t ∈ [0, T ]} be the standard
filtration induced by W .

Denote by F∗ the σ-algebra of Ft progressively measurable sets on Ω× [0, T ]. For any stochastic
process v : Ω × [0, T ] → Rm, m ∈ N+, we write v ∈ F∗ to indicate v is F∗ measurable. We
introduce the following notation:

Hp(0, T ;Rm) = {ξ : Ω× [0, T ]→ Rm|ξ ∈ F∗, E[

∫ T

0

|ξ(t)|pdt] <∞}

Consider a market consisting of a bank account with price S0(t) and risky assets with price S(t)
satisfying SDE: {

dS0(t) = rS0(t)dt

dS(t) = S(t)(µdt+ σdW (t))
(1.1.1)

with S0(0) = 1, S(0) = S > 0, where r > 0, µ > 0, σ > 0 are all constant, W is a standard
Brownian motion.

Consider a small investor with initial wealth x > 0 and a self-financing strategy. Define the
set of admissible portfolio strategies by:

A := {π ∈ H2(0, T ;R) : π(t) ∈ K = R for t ∈ [0, T ] a.e.}

where π(t) is a portfolio process defined as the fraction of the wealth invested in the stock at time t.

Given any π ∈ A, the investor’s total wealth Xπ satisfies the following dynamics:

dXπ(t) = Xπ(t){[r + π(t)σθ]dt+ π(t)σdWt} (1.1.2)

Xπ(0) = x (1.1.3)

where θ = b−r
σ is the market price of risk
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Let U : [0,∞) → R be a given utility function that is twice continuously differentiable, strictly
increasing, strictly concave and satisfies the following conditions:

U(0) = lim
x→0

U(x) > −∞, lim
x→0

U ′(x) =∞, lim
x→∞

U ′(x) = 0

The utility functions that we will discuss in the following steps have the form:{
power : x

p

p

non-Hara : 1
3H(x)−3 +H(x)−1 + xH(x), H(x) =

√
2(−1 +

√
1 + 4x)−

1
2

Define the value function as:
V = sup

π∈A
E[U(Xπ(T ))] (1.1.4)

V (t, x) = sup
π∈A

E[U(Xπ(T ))|Xπ(t) = x] (1.1.5)

where A = {π ∈ H2(0, T ;Rn) : π(t) ∈ K for t ∈ [0, T ] a.e.}

To avoid trivialities, we assume that −∞ < V <∞

1.2 Dual Problem and HJB equation

From (1.1.5), we can get the HJB function for this value function is:

∂tV + sup
π∈A

[DxV x(r + πTσθ) +
1

2
tr((πTσ)(πTσ)Tx2D2

xV )] = 0 (1.2.1)

The dual function of U is defined as:

Ũ = sup
x>0

(U(x)− xy) (1.2.2)

It is clear that Ũ = ∞ if y < 0 and Ũ is twice continuously differentiable, strictly decreasing and
strcitly convex on (0,∞).

The dual process Y is a strictly positive process and has following semimartingale decomposition:

dY (t) = Y (t){αdt+ βT dW (t)}
Y (0) = y

We need to find α and β such that XπY is a supermartingale for all admissible control processes
π ∈ A.

By applying Ito’s lemma, we have:

d(Xπ(t)Y (t)) = Xπ(t)Y (t){[r + πT (t)σ(t)θ(t) + α(t) + πTσ(t)β(t)]dt+ [πT (t)σ(t) + βT (t)]dW (t)}

To make XTY a supermartingale, we must have

r + πT (t)σ(t)θ(t) + α(t) + πTσ(t)β(t) ≤ 0

for all π ∈ K a.s. for a.e. t ∈ [0, T ], which is equivalent to

r + α(t) + δK(−σ(t)(θ(t) + β(t))) ≤ 0

where δK(z) = supπ∈K{−πT z} is a support function of the set -K.

Define v(t) = −σ(t)(θ(t) + β(t)). We have

α(t) ≤ −(r + δK((v(t)))), β(t) = −(σ−1(t)v(t) + θ(t))
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From the definition of the dual function, we have

E[U(Xπ(T ))] ≤ E[Ũ(Y (T ))] + E[Xπ(T )Y (T )] ≤ E[Ũ(Y (T ))] + xy

The second inequality above is due to XπY being a supermartingale. This leads to

sup
π
E[U(Xπ(T ))] ≤ inf

y,α,v
(E[Ũ(Y (T ))] + xy)

For any fix y, v, we can get the solution of the SDE of Y is bounded above by the process Y (y,v)

satisfying the SDE:

dY (y,v)(t) = −Y (y,v)(t){[r + δK(v(t))]dt+ [θ + σ−1v(t)]T dW (t)}, 0 ≤ t ≤ T

Y (y,v)(0) = y (1.2.3)

that is, Y (t) ≤ Y (y,v)(t) a.s. for 0 ≤ t ≤ T .

Since Ũ is a strictly decreasing function, we have E[Ũ(Y (T ))] ≥ E[Ũ(Y (y,v)(T ))] for any fixed
y, v, which implies the optimal α is determined by α(t) = −(r+ δK((v(t)))). The process Y (y,v) is
a dual process and v ∈ D is a dual control process, where the set D is defined by

D = {v = Ω× [0, T ]→ R|v ∈ F∗ and
∫ T

0

[δK(v(t)) + |v(t)|2]dt <∞ a.s.}

According to the assumption K = R, so δK(z) = +∞ for arbitrary z except for z = 0.
To make r + α(t) + δK(−σ(t)(θ(t) + β(t))) ≤ 0, we need v(t) = −σ(t)(θ(t) + β(t)) = 0 for any π.
Also, since all coefficients are constant, we have α = −r and β = −θ.

Therefore, the dual process Y (y,v)(t) satisfies the SDE:

dY (t) = −Y (t){rdt+ θdW (t)}, 0 ≤ t ≤ T

Y (0) = y

The optimal value of the dual minimization problem is defined by:

V = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))]) (1.2.4)

Since r, b, σ are deterministic, the wealth process Xπ is a Markov controlled process and the
stochastic optimal control theory may be used to solve the first stage problem.

Define V (t, x) = infy∈(0,∞)(xy + Ṽ (t, y)), we have Ṽ is C([0, T ] × R+) and C1,∞([0, T ] × R+),

y → Ṽ (t, y) is strictly convex, and C∞ for t ∈ [0, T ), but Ṽ (T, y) is only convex and continuous.

For 0 ≤ t ≤ T , since Ṽ (t, .) is C∞, minimum point is obtained by solving

∂Ṽ (t, y)

∂y
+ x = 0 (1.2.5)

Since Ṽ (t, .) is strictly convex, so Ṽy(t, .) is strictly increasing.
For every x > 0, there exists unique y solving (1.2.4), write it y = y(t, x).
We have

V (t, x) = Ṽ (t, y(t, x)) + xy(t, x) (1.2.6)

By (1.2.5),

Vt = Ṽt + Ṽy
∂y

∂t
+ x

∂y

∂t

= Ṽt + (Ṽy + x)
∂y

∂t

= Ṽt (1.2.7)
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Vx = Ṽy
∂y

∂x
+ y + x

∂y

∂x
= y (1.2.8)

Vxx =
∂y

∂x
(1.2.9)

By (1.2.4),

∂(Ṽy + x)

∂x
= Ṽyy

∂y

∂x
+ 1 = 0 (1.2.10)

We can get
∂y

∂x
= − 1

Ṽyy

Vxx = − 1

Ṽyy
(1.2.11)

1.3 Necessary and sufficient conditions for primal problems

We now state the necessary and sufficient optimality for the primal problem.[10]

Theorem 3.5 (Primal problem and associated FBSDE): Let π̂ ∈ A. Then π̂ is optimal
for the primal problem if and only if the solution (X π̂, p̂1, q̂1) of FBSDE

dX π̂(t)(t) = X π̂(t)[(r(t) + π̂T (t)σ(t)θ(t))dt+ π̂T (t)σ(t)dW (t)]

X π̂(0) = x0

dp̂1(t) = −[(r(t) + π̂T (t)σ(t)θ(t))p̂1(t) + q̂1
T (t)σT (t)π̂(t)]dt+ q̂1

T (t)dW (t)

p̂1(T ) = −U
′
(X π̂(T )) (1.3.1)

satisfies the condition

−X π̂(t)σ(t)[θ(t)p̂1(t) + q̂1(t)] ∈ NK(π̂(t)), ∀t ∈ [0, T ],P− a.s. (1.3.2)

where NK(x) is the normal cone of the closed convex set K at x ∈ K, defined as

NK(x) = {y ∈ RN : ∀x∗ ∈ K, y(x∗ − x) ≤ 0}

1.4 Necessary and sufficient conditions for dual problems

Next we address the dual problem. To ensure the existence of an optimal solution, we impose the
following condition:

Assumption 3.6: for any (y, v) ∈ (0,∞)×D, we have

E[Ũ(Y (y,v)(T ))2] <∞

Given an admissible dual control (ŷ, v̂) ∈ (0,∞) × D with the dual process Y (ŷ,v̂) that solve the
SDE (1.7), the associated adjoint equation for dual problem is the following linear BSDE in the
unkonwn processes p̂2 ∈ H2(0, T ;R) and q̂2 ∈ H2(0, T ;RN ):

dp̂2(t) = ([r(t) + δK(v̂(t))]p̂2(t) + q̂2
T (t)[θ(t) + σ−1(t)v̂(t)])dt+ q̂2

T (t)dW (t)

p̂2(T ) = −Ũ
′
(Y (ŷ,v̂)(T )) (1.4.1)

Since p̂2Y
(ŷ,v̂) is a martingale, we can find p̂2(t), 0 ≤ t ≤ T from the relation

p̂2(t)Y (ŷ,v̂)(t) = E[p̂2(T )Y (ŷ,v̂)(T )|Ft] = −E[Ũ
′
(Y (ŷ,v̂)(T ))Y (ŷ,v̂)(T )|Ft] (1.4.2)

We now state the necessary and sufficient optimality conditions for the dual problem.
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Theorem 3.9 (Dual problem and associated FBSDE): Let (ŷ, v̂) ∈ (0,∞) × D. Then
(ŷ, v̂) is optimal for the dual problem if and only if the solution (Y (ŷ,v̂), p̂2, q̂2) of FBSDE

dY (ŷ,v̂)(t) = −Y (ŷ,v̂)(t){[r(t) + δK(v̂(t))]dt+ [θ(t) + σ−1(t)v̂(t)]T dW (t)}
Y (ŷ,v̂)(0) = ŷ

dp̂2(t) = {[r(t) + δK(v̂(t))]T p̂2(t) + q̂2
T (t)[θ(t) + σ−1(t)v̂(t)]}dt+ q̂2

T (t)dW (t)

p̂2(T ) = −Ũ
′
(Y (ŷ,v̂)(T )) (1.4.3)

satisfies the condition

p̂2(0) = x0

p̂2(t)−1[σT (t)]−1q̂2(t) ∈ K
p̂2(t)δK(v̂(t)) + q̂2

T (t)σ−1(t)v̂(t) = 0,∀t ∈ [0, T ]P− a.s. (1.4.4)

1.5 Dynamic relations of primal and dual problems

We can now state the dynamic relations of the optimal portfolio and wealth processes of the primal
problem and the adjoint processes of the dual problem and vice versa.[10]

Theorem 3.10 (From dual problem to primal problem): Suppose that (ŷ, v̂) ∈ (0,∞)×D is
optimal for the dual problem. Let (Y (ŷ,v̂), p̂2, q̂2) be the associated process that solve the FBSDE
(1.4.3) and satisfies condition (1.4.4). Define

π̂(t) =
[σT (t)]−1q̂2(t)

p̂2(t)
, t ∈ [0, T ] (1.5.1)

Then π̂ is the optimal control for the primal problem with initial wealth x0. The optimal wealth
process and associated adjoint process are given by

X π̂(t) = p̂2(t)

p̂1(t) = −Y (ŷ,v̂)(t)

q̂1(t) = Y (ŷ,v̂)(t)[σ−1(t)v̂(t) + θ(t)] (1.5.2)

Theorem 3.11 (From primal problem to dual problem): Suppose that π ∈ A is optimal for
the primal problem with initial wealth x0. Let (X π̂, p̂1, q̂1) be the associated process that satisfies
the FBSDE (1.3.1) and conditions (1.3.2). Define

ŷ = −p̂1(0)

v̂(t) = −σ(t)[
q̂1(t)

p̂1(t)
+ θ(t)], t ∈ [0, T ] (1.5.3)

Then (ŷ, v̂) is an optimal control for the dual problem. The optimal dual process and associated
adjoint process are given by

Y ŷ,v̂(t) = −p̂1(t),

p̂2 = X π̂(t),

q̂2 = σT (t)π̂(t)X π̂(t). (1.5.4)

1.6 Power Utility Function

- Solving from dual

In this subsection, we assume U is a power utility function defined by U(x) = (1/β)xβ , x ∈ (0,∞),
where β ∈ (0, 1) is a constant. In this case, the dual problem can be written as:

Ṽ = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))|Y (t) = y])

= inf
y∈(0,∞)

(xy + V̂ )
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where V̂ = E[Ũ(Y (T ))|Y (t) = y]

Since Ũ(y) = supx>0(U(x)− xy), taking derivative w.r.t x, we have:

xβ−1 = y

So Ũ(y) = 1−β
β y

β
β−1 , y ∈ (0,∞)

Recall that Y satisfies the SDE dY (t) = −Y (t){rdt+ θdW (t)}
Then for the dual HJB equation has the form:

∂

∂t
v(t, y)− ryvy(t, y) +

1

2
θ2y2vyy(t, y) = 0

v(T, y) = Ũ(y)

It is trivial to solve Y , and we have Y (T ) = y exp(−(r + θ2

2 )(T − t)− θWT−t).

And thus, V̂ (t, y) = Ũ(y)e−
β
β−1 ((r+

θ2

2 )(T−t))e
β
β−1

2
θ2(T−t)/2.

To solve

inf
y∈(0,∞)

(xy + V̂ )

We take the derivative w.r.t y and we have

y(t, x) = xβ−1 exp(β(r +
θ2

2
)(T − t)) exp(− β2

β − 1
θ2(T − t)/2)

Since the process starts from time 0, by setting t = 0, we have:

ŷ = xβ−1 exp(β(r +
θ2

2
)T ) exp(− β2

β − 1
θ2T/2)

Since

V (t,X) = V̂ (t, y(t, x)) + xy(t, x)

=
1− β
β

y
β
β−1 exp(− β

β − 1
(r +

θ2

2
)(T − t)) exp((

β

β − 1
)2θ2(T − t)/2)

+ xβ exp(β(r +
θ2

2
)(T − t)) exp(− β2

β − 1
θ2(T − t)/2)

=
1

β
xβ exp(β(r +

θ2

2
)(T − t)) exp(− β2

β − 1
θ2(T − t)/2)

Recall that π∗ = − ∂xV θ
xσ∂xxV

, and ∂xV = xβ−1 exp(β(r+ θ2

2 )(T − t)) exp(− β2

β−1θ
2(T − t)/2), ∂xxV =

(β − 1)xβ−2 exp(β(r + θ2

2 )(T − t)) exp(− β2

β−1θ
2(T − t)/2). As a result, we have:

π∗ =
θ

(1− β)σ

Given that X follows a geometric Brownian motion, we have:

Xπ∗(t) = x exp((r + πσθ − π2σ2

2
)t+ πσWt)

= x exp((r +
(1− 2β)θ2

2(1− β)2
)t+

θ

1− β
Wt)

- Solving from primal and dual FBSDE

Given an admissible dual control (ŷ, v̂) ∈ (0,∞) × D with the dual process Y (ŷ,v̂) that solves

the SDE of Y and condition E[Ũ(Y (ŷ,v̂)(T ))2] < ∞ holds with (y, v) = (ŷ, v̂), the associated
adjoint equation for the dial problem is the following linear BSDE in the unknown processes

12



p̂2 ∈ H2(0, T ;R) and q̂2 ∈ H(0, T ;RN ):

dp̂2(t) = {rp̂2(t) + q̂2(t)θ}dt+ q̂2(t)dW (t)

p̂2(T ) = −Ũ ′(Y (ŷ,v̂)(T ))

Since p̂2Y
(ŷ,v̂)(t) is a martingale, we can find p̂2, 0 ≤ t ≤ T , from the relation

p̂2(t)Y (ŷ,v̂)(t) = E[p̂2(T )Y (ŷ,v̂)(T )|Ft] = −E[Ũ ′(Y (ŷ,v̂)(T ))Y (ŷ,v̂)(T )|Ft]

Recall that Ũ(y) = 1−β
β y

β
β−1 , and we can get the derivative of Ũ = −y

1
β−1 . Since in the last

section, we solved that Y ŷ(T ) = ŷ exp(−(r + θ2

2 )T − θWT )
By applying Theorem 3.9, we see that

p̂2(T ) = −Ũ
′
(Y (ŷ)(T ))

= ŷ
1

β−1 exp(− 1

β − 1
(r +

θ2

2
)T − 1

β − 1
θWT )

Since p̂2Y
(ŷ) is a martingale, then we have:

p̂2(t)Y (ŷ,v̂)(t) = p̂2(t)Y ŷ(t)

= −E[Ũ ′(Y ŷ(T ))Y ŷ(T )|Ft]

= −E[−Y ŷ(T )
1

β−1Y ŷ(T )|Ft]

= E[Y ŷ(T )
β
β−1 |Ft]

= ŷ
β
β−1 exp(− β

β − 1
(r +

θ2

2
)T − β

β − 1
θWt) exp(

1

2
θ2(

β

β − 1
)2(T − t))

Therefore, for p̂2(t), we have:

p̂2(t) = ŷ
1

β−1 exp(− β

β − 1
rT +

1

2
θ2

β

(β − 1)2
T ) exp(− 1

β − 1
θWt) exp(rt+

1

2
θ2(

1− 2β

(β − 1)2
)t)

According to the Theorem 3.9, to get to optimal value, we need to satisfies the following conditions

p̂2(0) = x

p̂2(t)−1[σT (t)]−1q̂2(t) ∈ K
p̂2(t)δK(v̂(t)) + q̂2

T (t)σ−1(t)v̂(t) = 0,∀t ∈ [0, T ] P− a.s. (1.6.1)

where the second and third conditions are satisfied automatically given that K = R and v̂(t) = 0.
For the first condition, we have:

p̂2(0) = ŷ
1

β−1 exp(− β

β − 1
rT +

1

2
θ2

β

(β − 1)2
T ) = x

And thus

ŷ = xβ−1 exp(βrT − 1

2
θ2

β

β − 1
T )

p̂2(t) = x exp rt+
1

2
θ2

1− 2β

(β − 1)2
t− 1

β − 1
Wt

By applying Ito’s formula on p̂2(t), we have:

dp̂2(t) = p̂2(t)(r +
1

2

1− 2β

(β − 1)2
θ2)dt+ p̂2(t)

1

1− β
θdWt +

1

2
p̂2(t)2(

1

β − 1
θ)2dt

According to the adjoint BSDE of dual problem, we observe that q̂2(t) = p̂2(t) 1
1−β θ

By applying the theorem 3.10, we get:

π̂ =
q̂2(t)

σp̂2(t)
=

θ

(1− β)σ

13



X π̂(t) = x exp((r + πσθ − π2σ2

2
)t+ πσWt)

= x exp((r +
(1− 2β)θ2

2(1− β)2
)t+

θ

1− β
Wt)

We can also use Theorem 3.11 to verify if the optimal weight and wealth process are correct.

Define y = −p̂1(0), and v̂(t) = −σ(t)[ q̂1(t)p̂1(t)
+ θ(t)] = 0 given that q̂1(t)

p̂1(t)
+ θ(t) = 0 by Theorem 3.5.

Since dXπ(t) = Xπ(t){[r + π(t)σθ]dt+ π(t)σdWt}, we have:

dX π̂(t) = X π̂(t){[r +
θ2

1− β
]dt+

θ

1− β
dWt}

H(t, x, a, p1, q1) = x(r +
θ2

1− β
)p1 + x

θ

1− β
q1

Then we can get the primal adjoint equation (BSDE):

−dp̂1(t) = ((r +
θ2

1− β
)p̂1(t) +

θ

1− β
q̂1(t))dt− q̂1(t)dWt

= rp̂1(t)dt+ θp̂1(t)dWt

Therefore,

p̂1(t) = p̂1(0) exp(−(r +
θ2

2
)t− θWt)

Recall that Y ŷ = ŷ exp(−(r + θ2

2 )t− θWt), so we have:

Y ŷ(t) = −p̂1(t)

By observing the equations of Xπ(t), p̂2(t), q̂2(t), we can easily know that the second and third
conditions are satisfied.

1.7 Non-Hara Utility Function

- Solving from dual
The Non-Hara utility function has the form:

U(x) =
1

3
H(x)−3 +H(x)−1 + xH(x)

for x > 0, where H(x) =
√

2(−1 +
√

1 + 4x)−
1
2

Then for the dual function, we have Ũ(y) = supx>0(U(x)− xy). Taking derivative with respect to

x and let the equation equals to zero, we have Ũ(y) = 1
3y
−3 + y−1.

The same as the power utility function we have solved before, the dual problem can be written as:

Ṽ = inf
y∈(0,∞)

(xy + E[Ũ(Y (T )])

= inf
y∈(0,∞)

(xy + V̂ )

where V̂ = E[Ũ(Y (T )].

Recall that Y follows the same geometric brownian motion as it is in the power utility func-

tion example, as thus we have Y (T ) = Y (t) exp(−(r + θ2

2 )(T − t)− θWT−t).

Since Y (0) = y, we have Y (t) = y exp(−(r + θ2

2 )(t)− θWt).

Therefore, for V̂ , we have:

V̂ (t, y) = E[
1

3
y−3 exp(3(r +

θ2

2
)(T − t) + 3θWT−t) + y−1 exp((r +

θ2

2
)(T − t) + θWT−t)]

=
1

3
y−3 exp(3(r +

θ2

2
)(T − t)) exp(

9θ2(T − t)
2

) + y−1 exp((r +
θ2

2
)(T − t)) exp(

θ2(T − t)
2

)
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So, for Ṽ , we have:

Ṽ (t, y) = xy+
1

3
y−3 exp(3(r+

θ2

2
)(T−t)) exp(

9θ2(T − t)
2

)+y−1 exp((r+
θ2

2
)(T−t)) exp(

θ2(T − t)
2

)

Taking derivative with respect to y, we have:

x− y−4 exp(3(r +
θ2

2
)(T − t)) exp(

9θ2(T − t)
2

)− y−2 exp((r +
θ2

2
)(T − t)) exp(

θ2(T − t)
2

) = 0

xy4 − exp(3(r +
θ2

2
)(T − t)) exp(

9θ2(T − t)
2

)− y2 exp((r +
θ2

2
)(T − t)) exp(

θ2(T − t)
2

) = 0

y2 =
exp((r + θ2)(T − t)) +

√
exp(2(r + θ2)(T − t)) + 4x exp(3(r + 2θ2)(T − t))

2x

y =
1√
2x

[exp((r + θ2)(T − t)) +
√

exp(2(r + θ2)(T − t)) + 4x exp(3(r + 2θ2)(T − t))] 1
2

Since the process starts from time 0, by setting t = 0, we have:

ŷ =
1√
2x

[exp((r + θ2)T ) +
√

exp(2(r + θ2)T ) + 4x exp(3(r + 2θ2)T )]
1
2

Recall that we can write the equation for optimal π as:

π∗(t) = − θ∂Ṽx

xσ∂Ṽxx

=
yθ

xσ
V̂yy

=
θ

σ

4y−4 exp(3(r + 2θ2)(T − t)) + 2y−2 exp((r + θ2)(T − t))
x

Also recall the equation (1.2.5), we have:

Xπ∗(t) = −∂V̂ (t, Ŷ (t))

∂Ŷ (t)

= Ŷ (t)−4 exp(3(r + 2θ2)(T − t)) + Ŷ (t)−2 exp((r + θ2)(T − t))

= ŷ−4 exp(4(r +
θ2

2
)t+ 4θWt) exp(3(r + 2θ2)(T − t))

+ ŷ−2 exp(2(r +
θ2

2
)t+ 2θWt) exp((r + θ2)(T − t))

= ŷ−4 exp (3(r + 2θ2)T ) + 4θWt) exp (r − 4θ2)t+ ŷ−2 exp (r + θ2)T + 2θWt) exp rt

- Solving from primal and dual FBSDE

Recall that the optimal state process for the dual problem is given by Y ŷ(T ) = ŷ exp−(r + θ2

2 )T − θWT

Using the martingale property of p̂2Ŷ , we have

p̂2(t)Ŷ (t) = −E[Ũ ′(Y (T ))Y (T )|Ft]
= E[Ŷ (T )−3 + Ŷ (T )−1|Ft]

= ŷ−3 exp (3(r +
θ2

2
)T ) + 3θWt) exp

9θ2

2
(T − t)

+ ŷ−1 exp ((r +
θ2

2
)T ) + θWt) exp

θ2

2
(T − t)

And therefore, we have

p̂2(t) = ŷ−4 exp (3(r + 2θ2)T ) + 4θWt) exp (r − 4θ2)t+ ŷ−2 exp (r + θ2)T + 2θWt) exp rt

To satisfy the condition of Theorem 3.9, we have

p̂2(0) = x = ŷ−4 exp 3(r + 2θ2)T ) + ŷ−2 exp r + θ2)T
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So

ŷ =
1√
2x

[exp((r + θ2)T ) +
√

exp(2(r + θ2)T ) + 4x exp(3(r + 2θ2)T )]
1
2

By applying Ito’s formula on p̂2(t), and take out the term of brownian motion, we have:

q̂2(t) = 4θŷ−4 exp (3(r + 2θ2)T ) + 4θWt) exp (r − 4θ2)t+ 2θŷ−2 exp (r + θ2)T + 2θWt) exp rt

By applying theorem 3.10, we have:

π∗(t) =
q̂2(t)

σp̂2(t)

Xπ∗(t) = p̂2(t) = ŷ−4 exp (3(r + 2θ2)T ) + 4θWt) exp (r − 4θ2)t+ ŷ−2 exp (r + θ2)T + 2θWt) exp rt

We can also use Theorem 3.11 to verify if the optimal weight and wealth process are correct.

Define y = −p̂1(0), and v̂(t) = −σ(t)[ q̂1(t)p̂1(t)
+ θ(t)] = 0 given that q̂1(t)

p̂1(t)
+ θ(t) = 0 by Theorem 3.5.

Since dXπ(t) = Xπ(t){[r + π(t)σθ]dt+ π(t)σdWt}, we have

dX π̂(t) = X π̂(t){[r + θ
q̂2(t)

p̂2(t)
]dt+

q̂2(t)

p̂2(t)
dWt}

H(t, x, a, p1, q1) = x(r + θ
q̂2(t)

p̂2(t)
)p1) + x

q̂2(t)

p̂2(t)
q1

Then we can get the primal adjoint equation (BSDE):

−dp̂1(t) = ((r + θ
q̂2(t)

p̂2(t)
)p̂1(t) +

q̂2(t)

p̂2(t)
q̂1(t))dt− q̂1(t)dWt

= rp̂1(t)dt+ θp̂1(t)dWt

Therefore,

p̂1(t) = p̂1(0) exp(−(r +
θ2

2
)t− θWt)

Recall that Y ŷ = ŷ exp(−(r + θ2

2 )t− θWt), so we have

Y ŷ(t) = −p̂1(t)

By observing the equations of Xπ(t), p̂2(t), q̂2(t), we can easily know that the second and third
conditions are satisfied.
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Chapter 2

Unconstrained Utility
Maximization with OU Process

Assumption:
- 1-dimensional geometric Brownian motion asset price process
- All coefficients constant
- Control set K=R
- Maximize utility of wealth at time T
- dS = HSdt+ σdWt

- dHt = k(c−Ht)dt+ σ1dWt

2.1 Market Model

In the second stage, the drift term of the stock becomes an OU process, and thus the wealth process
is written as:

dXt = (1− πt)Xtrdt+
πtXt

St
dt

= (1− πt)Xtrdt+ πtXt(Htdt+ σdWt)

= Xt(r + πt(H(t)− r))dt+ πtXtσdWt (2.1.1)

Notice that H(t) follows a Vasicek Model, and we have:

d[ektHt] = kektHtdt+ ektdHt

= kektHtdt+ ekt[k(c−Ht)dt+ σ1dWt]

= kektcdt+ ektσ1dWt (2.1.2)

Integrating both sides between s and t, we have:

ektHt − eksHs =

∫ t

s

ekukcdu+

∫ t

s

ekuσ1dWu

H(t) = H(s)e−k(t−s) + c(1− e−k(t−s)) + σ1

∫ t

s

e−k(t−u)dWu

H(t) = he−kt + c(1− e−kt) + σ1

∫ t

0

e−k(t−u)dWu

2.2 Primal Method

The value function has the form:

V (t, x, h) = sup
π∈A

E[U(Xπ(T ))|Xπ(0) = x, H(0) = h] (2.2.1)
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with terminal condition: V (T, x, h) = 1
βx

β

The HJB has the form:

∂tV +k(c−h)∂hV +
1

2
σ2
1∂hhV + sup

π∈A
[x(r+π(h−r))∂xV +

1

2
(πσx)2∂xxV +πxσσ1∂xhV ] = 0 (2.2.2)

Assume that V (t, x, h) = U(x)f(t, h), and f(t, h) = expA(t) +B(t)h+ C(t)h2.

According to the terminal condition, it implies that A(T ) + B(T )h + C(T )h2 = 0. Since this
equation has to be satisified for every h, we assume that A(T ) = B(T ) = C(T ) = 0.
Then for each term in HJB, they can be written as:

∂tV = (A′(t) + hB′(t) + h2C ′(t))V

∂hV = (B(t) + 2hC(t))V

∂hhV = 2C(t)V + (B(t) + 2hC(t))2V

∂xV = xβ−1 expA(t) +B(t)h+ C(t)h2 =
β

x
V

∂xxV = (β − 1)xβ−2 expA(t) +B(t)h+ C(t)h2 =
β − 1

x
∂xV =

β(β − 1)

x2
V

∂xhV =
β

x
(B(t) + 2hC(t))V

Since each term has V , we can cancel out V in the HJB.
Therefore, the term supπ∈A[x(r+π(h− r))∂xV + 1

2 (πσx)2∂xxV +πxσσ1∂xhV ] can be written as:

sup
π∈A

[β(r + π(h− r)) +
1

2
π2σ2β(β − 1) + πσσ1β(B(t) + 2hC(t))] (2.2.3)

Taking derivative w.r.t π, we have:

π∗(t) =
−(h− r)− σσ1(B(t) + 2hC(t))

σ2(β − 1)
(2.2.4)

Plugging in π∗, we have:

sup
π∈A

[β(r + π(h− r)) +
1

2
π2σ2β(β − 1) + πσσ1β(B(t) + 2hC(t))] (2.2.5)

= βr − 1

2

β(h− r)2

σ2(β − 1)
− β(h− r)
σ(β − 1)

σ1(B(t) + 2hC(t))− β

2(β − 1)
σ2
1(B(t) + 2hC(t))2

For the HJB equation, we have:

A′(t) + hB′(t) + h2C ′(t) + k(c− h)(B(t) + 2hC(t)) +
1

2
σ2
1 [2C(t) + (B(t) + 2hC(t))2] (2.2.6)

+ βr − 1

2

β(h− r)2

σ2(β − 1)
− β(h− r)
σ(β − 1)

σ1(B(t) + 2hC(t))− β

2(β − 1)
σ2
1(B(t) + 2hC(t))2 = 0

To solve A(t),B(t) and C(t), we classify the HJB in terms of the power of h and set each term’s
coefficient to zero. Thus, we have

A′(t) + kcB(t) + σ2
1C(t) +

1

2
σ2
1B(t)2 + βr − r2β

2σ(β − 1)
+
βσ1rB(t)

σ(β − 1)
− βσ2

1

2(β − 1)
B(t)2 = 0 (2.2.7)

B′(t)− kB(t) + 2kcC(t) + 2σ2
1B(t)C(t) +

rβ

σ2(β − 1)
− βσ1B(t)

σ(β − 1)
+

2βσ1rC(t)

σ(β − 1)
− 2βσ2

1B(t)C(t)

(β − 1)
= 0

(2.2.8)

C ′(t)− 2kC(t) + 2σ2
1C(t)2 − β

2σ2(β − 1)
− 2βσ1C(t)

σ(β − 1)
− 2βσ2

1C(t)2

(β − 1)
= 0 (2.2.9)

For the equation (2.2.9), we have:

C ′(t)− (2k +
2βσ1

σ(β − 1)
)C(t) + (2σ2

1 −
2σ2

1β

β − 1
)C(t)2 − β

2σ2(β − 1)
= 0 (2.2.10)
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Let a1 = (2σ2
1 −

2σ2
1β

β−1 ), b1 = (2k + 2βσ1

σ(β−1) ), c1 = β
2σ2(β−1) , we can simplify this equation as:

C ′(t) + a1C(t)2 − b1C(t)− c1 = 0

C ′(t) + a1(C(t)− b1
2a1

)2 − (
b21

4a1
+ c1) = 0

Define C(t) = χ(t) + b1
2a1

, we have χ(T ) = − b1
2a1

.

Let φ =
b21
4a1

+ c1, a1 = 1
k1

, we have the ODE:

∂tχ

k1φ− χ2
=

1

k1
(2.2.11)

subject to χ(T ) = − b1
2a1

.
This ODE is of Riccati type and can be integrated exactly, and thus we can easily get:

χ(t) =
√
k1φ

1 + ζe2γ(T−t)

1− ζe2γ(T−t)
(2.2.12)

where

γ =

√
φ

k1
and ζ =

b1
2a1

+
√
φk1

b1
2a1
−
√
φk1

(2.2.13)

Since we have solved C(t), then for equation (2.2.8), we have

∂tB(t) + (2σ2
1C(t)− k − βσ1

σ(β − 1)
− 2βσ2

1

β − 1
C(t))B(t) = −2kcC(t)− rβ

σ2(β − 1)
− 2rβσ1
σ(β − 1)

C(t)

(2.2.14)

Let (2σ2
1C(t)− k− βσ1

σ(β−1) −
2βσ2

1

β−1 C(t)) = P (t), and (−2kcC(t)− rβ
σ2(β−1) −

2rβσ1

σ(β−1)C(t)) = g(t), we

have ODE

∂tB(t) + P (t)B(t) = g(t) (2.2.15)

Then we have

B(t) =

∫
µ(t)g(t)dt+ constant

µ(t)
(2.2.16)

µ(t) = e
∫
P (t)dt

where we can solve constant from B(T ) = 0. Now we have get C(t) and B(t), so for equation
(2.2.7), we have

A(t) =

∫
{−kcB(t)− σ2

1C(t)− 1

2
σ2
1B(t)2 − βr +

r2β

2σ2(β − 1)
− βσ1rB(t)

σ(β − 1)
+

βσ2
1

2(β − 1)
B(t)2}dt+C

(2.2.17)
where C can be solved from A(T ) = 0.

2.3 Dual Method

Define the dual function by Ũ(y) = supx>0(U(x)+xy) as before. Also, the same as section one, the
dual process Y is a strictly positive process and has the following semimartingale decomposition:

dY (t) = Y (t)α(t)dt+ βT (t)dW (t), 0 ≤ t ≤ T
Y (0) = y

where processes α and β are chosen such that XπY is a supermartingale for all admissible control
processes π ∈ A. Using Ito’s lemma, we have:

d(Xπ(t)Y (t)) = Xπ(t)Y (t){[r + πt(Ht − r) + α(t) + πtσβ(t)]dt+ [πtσ + βT (t)]dW (t)}
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To make XπY a supermartingale, we must have

r + πt(Ht − r) + α(t) + πtσβ(t) ≤ 0

for all π ∈ K a.s. for a.e. t ∈ [0, T ], which is equivalent to

r + α(t) + δK(−(Ht − r)− σβ(t)) ≤ 0

where δK(.) is the support function of set −K, defined by δK(z) = supπ∈K{−πz}.
Define v(t) = −(Ht − r)− σβ(t), we have

α(t) ≤ −(r + δK(v(t)))

β(t) = −(σ−1v(t) + σ−1(Ht − r))

Given that K = R, we have v(t) = 0, and thus α(t) = −r, β(t) = −σ−1(Ht − r).
Therefore, the dual process satisfies the SDE:

dY (t) = −Y (t){rdt+ σ−1(Ht − r)dW (t)} (2.3.1)

Y (0) = y

The optimal value of the dual minimization problem is defined by

Ṽ = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))]) (2.3.2)

Define the dual value function

V̂ (t, y, h) = E[Ũ(Y (T ))|Y (0) = y, H(0) = h] (2.3.3)

Using the dynamic programming principle (DPP), we have V̂ satisfies the following HJB (Hamil-
ton–Jacobi–Bellman) equation:

∂V̂

∂t
+k(c−h)

∂V̂

∂h
+

1

2
σ2
1

∂2V̂

∂h2
+[−ry ∂V̂

∂y
+

1

2
σ−2(h−r)2y2 ∂

2V̂

∂y2
−yσ−1(h−r)σ1

∂2V̂

∂y∂h
] = 0 (2.3.4)

Assume that V̂ = Ũ(y)f(t, h), where Ũ(y) = 1−β
β y

β
β−1 and f(t, h) = expA(t) + hB(t) + h2C(t)

with terminal condition that f(T, h) = 1, which means A(T ) = B(T ) = C(T ) = 0.

Then for each term in HJB, they can be written as:

∂tV̂ = (A′(t) + hB′(t) + h2C ′(t))V̂

∂hV̂ = (B(t) + 2hC(t))V̂

∂hhV̂ = 2C(t)V̂ + (B(t) + 2hC(t))2V̂

∂yV̂ = − β

1− β
y−1V̂

∂yyV̂ =
β

1− β
y−2V̂ + (

β

1− β
)2y−2V̂

∂yhV̂ = − β

1− β
y−1(B(t) + 2hC(t))V̂

Then, the dual HJB can be simplified as

A′(t) + hB′(t) + h2C ′(t) + k(c− h)(B(t) + 2hC(t)) +
1

2
σ2
1(2C(t) + (B(t) + 2hC(t))2)+ (2.3.5)

β

1− β
r +

1

2
σ−2(h− r)2(

β

1− β
+ (

β

1− β
)2) +

βσ−1σ1
1− β

(B(t)h+ 2h2C(t)− rB(t)− 2hrC(t)) = 0

To solve A(t),B(t) and C(t), we classify the dual HJB in terms of the power of h and set each
term’s coefficient to zero. Thus, we have

A′(t) + kcB(t) + σ2
1C(t) +

1

2
σ2
1B(t)2 +

β

1− β
r +

1

2
σ−2r2

β

(1− β)2
− rB(t)βσ−1σ1

1− β
= 0 (2.3.6)

B′(t)− kB(t) + 2kcC(t) + 2σ2
1B(t)C(t)− σ−2r β

(1− β)2
+
βσ−1σ1
1− β

(B(t)− 2rC(t)) = 0 (2.3.7)

C ′(t)− 2kC(t) + 2σ2
1C(t)2 +

1

2
σ−2

β

(1− β)2
+

2βσ−1σ1
1− β

C(t) = 0 (2.3.8)
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For the equation (2.3.8), we have:

C ′(t) + 2σ2
1C(t)2 + (

2βσ−1σ1
1− β

− 2k)C(t) +
1

2
σ−2

β

(1− β)2
= 0

let a2 = 2σ2
1 , b2 = 2βσ−1σ1

1−β − 2k, c2 = 1
2σ
−2 β

(1−β)2 , and we have:

C ′(t) + a2C(t)2 + b2C(t) + c2 = 0

C ′(t) + a2(C(t) +
b2

2a2
)2 + c2 −

b22
4a2

= 0

Let C(t) = χ(t)− b2
2a2

, and set φ =
b22
4a2
− c2, a2 = 1

k2
, we have the ODE:

∂tχ

k2φ− χ2
=

1

k2
(2.3.9)

subject to χ(T ) = b2
2a2

.

This ODE is of Riccati type and can be integrated exactly, and thus we can easily get:

χ(t) =
√
φk2

1 + ζe2γ(T−t)

1− ζe2γ(T−t)
(2.3.10)

where

γ =

√
φ

k2
and ζ =

−b2
2a2

+
√
φk2

−b2
2a2
−
√
φk2

(2.3.11)

Since we have solved C(t), then for equation (2.3.7), we have

∂tB(t) + (2σ2
1C(t)− k +

βσ−1σ1
1− β

)B(t) = −2kcC(t) + σ−2r
β

(1− β)2
+

2rβσ−1σ1C(t)

1− β
(2.3.12)

Let (2σ2
1C(t)− k + βσ−1σ1

1−β ) = P (t), and (−2kcC(t) + σ−2r β
(1−β)2 + 2rβσ−1σ1C(t)

1−β ) = g(t), we have

ODE

∂tB(t) + P (t)B(t) = g(t) (2.3.13)

Then we have

B(t) =

∫
µ(t)g(t)dt+ constant

µ(t)
(2.3.14)

µ(t) = e
∫
P (t)dt

where we can solve constant from B(T ) = 0.
Now we have get C(t) and B(t), so for equation (2.3.6), we have

A(t) =

∫
{−kcB(t)− σ2

1C(t)− 1

2
σ2
1B(t)2 − β

1− β
r − 1

2
σ−2r2

β

(1− β)2
+
βσ−1σ1
1− β

rB(t)}dt+ C

(2.3.15)
where C can be solved from A(T ) = 0.

2.4 FBSDE

For the primal FBSDE, we will compute the wealth process by using numerical method. Recalling
the theorem 3.5, we have:

Theorem 3.5 (Primal problem and associated FBSDE): Let π̂ ∈ A. Then π̂ is optimal
for the primal problem if and only if the solution (X π̂, p̂1, q̂1) of FBSDE
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dX π̂(t)(t) = X π̂(t)[(r(t) + π̂T (t)σ(t)θ(t))dt+ π̂T (t)σ(t)dW (t)]

X π̂(0) = x0

dp̂1(t) = −[(r(t) + π̂T (t)σ(t)θ(t))p̂1(t) + q̂1
T (t)σT (t)π̂(t)]dt+ q̂1

T (t)dW (t)

p̂1(T ) = −U
′
(X π̂(T )) (2.4.1)

satisfies the condition

−X π̂(t)σ(t)[θ(t)p̂1(t) + q̂1(t)] ∈ NK(π̂(t)), ∀t ∈ [0, T ],P− a.s. (2.4.2)

where NK(x) is the normal cone of the closed convex set K at x ∈ K, defined as

NK(x) = {y ∈ RN : ∀x∗ ∈ K, y(x∗ − x) ≤ 0}

Since K = R, we have q̂1(t) = −σ−1(Ht − r)p̂1(t), for the primal FBSDE, we have:

dp̂1(t) = −rp̂1(t)dt− σ−1(Ht − r)p̂1(t)dWt

p̂1(T ) = −X(T )β−1

We want to find p0 such that p̂1(T ) = −X(T )β−1. In other words, we need to optimize the equation
minp0,π(t)E[p̂1(T ) +X(T )β−1], which is equivalent to minp0,π(t)E[(p̂1(T ) +X(T )β−1)2].
Using Euler scheme, we have:

Hti+1 = Hti + k(c−Hti)h+ σ1
√
hZti

Xti+1
= Xti +Xti(r + πti(Hti − r))h+ πtiXtiσ

√
hZti

p̂1(ti+1) = p̂1(ti)− rp̂1(ti)h− σ−1(Hti − r)p̂1(ti)
√
hZti

To solve this optimal control problem numerically, we divided interval [0, T ] by n intervals with
step size h = T/n and grid points t0 = 0, ti = hi, i = 1, ..., n. Assume on subinterval [ti; ti+1),
control π̂i = α(i) + β(i)Hti , where α(t) and β(t) are piecewise constant within each subinterval.

For the dual FBSDE, recalling the theorem 3.9, we have:

Theorem 3.9 (Dual problem and associated FBSDE): Let (ŷ, v̂) ∈ (0,∞) × D. Then
(ŷ, v̂) is optimal for the dual problem if and only if the solution (Y (ŷ,v̂), p̂2, q̂2) of FBSDE

dY (ŷ,v̂)(t) = −Y (ŷ,v̂)(t){[r(t) + δK(v̂(t))]dt+ [θ(t) + σ−1(t)v̂(t)]T dW (t)}
Y (ŷ,v̂)(0) = ŷ

dp̂2(t) = {[r(t) + δK(v̂(t))]T p̂2(t) + q̂2
T (t)[θ(t) + σ−1(t)v̂(t)]}dt+ q̂2

T (t)dW (t)

p̂2(T ) = −Ũ
′
(Y (ŷ,v̂)(T )) (2.4.3)

satisfies the condition

p̂2(0) = x0

p̂2(t)−1[σT (t)]−1q̂2(t) ∈ K
p̂2(t)δK(v̂(t)) + q̂2

T (t)σ−1(t)v̂(t) = 0,∀t ∈ [0, T ]P− a.s. (2.4.4)

And thus in this case, we can write the dual FBSDE as following:

dY (t) = −Y (t){rdt+ σ−1(Ht − r)dW (t)} (2.4.5)

Y (0) = y

dp̂2(t) = {rp̂2(t) + q̂2(t)σ−1(Ht − r)}dt+ q̂2(t)dWt

p̂2(T ) = −Ũ ′(Y ŷ(T ))
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satisfies the condition

p̂2(0) = x0

p̂2(t)−1[σT (t)]−1q̂2(t) ∈ K
p̂2(t)δK(v̂(t)) + q̂2

T (t)σ−1(t)v̂(t) = 0,∀t ∈ [0, T ]P− a.s. (2.4.6)

We treat q̂2(t) as piecewise constant within each time interval and use Euler scheme for the SDE.

Hti+1 = Hti + k(c−Hti)h+ σ1
√
hZti

Yti+1
= Yti − Ytirh− Ytiσ−1(Hti − r)

√
hZti

p̂2(ti+1) = p̂2(ti) + {rp̂2(ti) + q̂2(ti)σ
−1(Hti − r)}h+ q̂2(ti)

√
hZti

with the initial condition
p̂2(0) = x0

and terminal condition
p̂2(T ) = Y (T )

1
β−1

We want to find optimal y0 and q2(t) such that p̂2(T ) = Y (T )
1

β−1 . In other words, we want to

optimize the problem infy0,q2(t)E[(p̂2(T )− Y (T )
1

β−1 )2].

To solve this optimal control problem numerically, we divided interval [0, T ] by n intervals with
step size h = T/n and grid points ti = hi; i = 0, 1, ..., n. Assume on subinterval [ti; ti+1), control
q̂2(i) is taken to be constant, say that q̂2(i), for i = 0, 1, ..., n− 1.

By setting the parameters as k = 1, c = 1, r = 0.05, σ = 0.8, σ1 = 0.3, T = 1, β = 0.5, t0 = 0, h0 =
0.5, x0 = 10, dt = 0.01(time step), we generate the wealth process from time zero to one with time
step size 0.01, and thus there are 101 points in total.Noting that the same set of Brownian motion
will be used to generate path in all methods (including primal, dual HJB and primal, dual FBSDE).

Using the primal and dual FBSDE methods to simulate wealth processes, we have:

Figure 2.1: Wealth Processes from Primal and Dual FBSDE

2.5 Numerical Verification

In this section, we are going to show that the value functions and wealth processes obtained from
the primal, dual and FBSDE method are the same.

Value Functions
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Since we have solved the closed form solution of value function for primal method, we can plot
V (t, h) = U(x)f(t, h) explicitly, and we use Trapezoidal rule for estimating the integration parts
in A(t), B(t), and C(t).

The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann
sums, and is sometimes defined this way. The integral can be even better approximated by par-
titioning the integration interval, applying the trapezoidal rule to each subinterval, and summing
the results. Let xk be a partition of [a, b], such that a = x0 < x1 < ... < xN1

< xN = b, and ∆xk
be the length of the k-th subinterval, then∫ b

a

f(x)dx ≈
N∑
k=1

f(xk+1) + f(xk)

2
∆xk =

∆x

2
(f(x0) + 2f(x1) + 2f(x2) + ...+ 2f(xN−1) + f(xN ))

For the dual method, we use the same method to solve the dual value function by assuming that

Ṽ = infy[xy + V̂ ] = infy[xy + Ũ(y)f(t, h)] = infy[xy + 1−β
β y

β
β−1 f(t, h)].

By taking derivative w.r.t y, we have:

Ṽ = inf
y

[xy + V̂ ]

=> x− y
1

β−1 expA(t) + hB(t) + h2C(t) = 0

=> y = xβ−1 expA(t) + hB(t) + h2C(t)
1−β

=> Ṽ = xβf(t, h)1−β +
1− β
β

xβf(t, h)1−β =
1

β
xβf(t, h)1−β

By setting the parameters as k = 1, c = 1, r = 0.05, σ = 0.8, σ1 = 0.3, T = 1, β = 0.5, t0 = 0, h0 =
0.5, x0 = 10, dt = 0.01(time step), we have:

Figure 2.2: Primal and Dual Value Functions from Time Zero to One, dt = 0.01

We can see that in this graph, the two value functions overlap completely, and thus it illustrates
that the value functions obtained from primal HJB and dual HJB should be the same.

Wealth Processes

For the wealth process, we use the same parameters as above, and Euler scheme is used to generate
paths of X, H, and Y for primal and dual methods.
For the primal method, we have:

dHt = k(c−Ht)dt+ σ1dWt

dXt = Xt(r + πt(H(t)− r))dt+ πtXtσdWt

where π(t) = −(Ht−r)−σσ1(B(t)+2hC(t))
σ2(β−1) . By using Euler scheme, we have:

Hti+1
= Hti + k(c−Hti)dt+ σ1

√
dtZti
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Xti+1
= Xti +Xti(r + π(Hti − r))h+ πXtiσ

√
hZti

For the dual problem, recall that

Xπ∗(t) = −∂V̂ (t, Ŷ (t))

∂Ŷ (t)

Ṽ = infy[xy + V̂ ] = infy[xy + Ũ(y)f(t, h)] and V̂ = Ũ(y)f(t, h).

Since we have solved that V̂ = 1−β
β y

β
β−1 exp (A(t) + hB(t) + h2C(t)), by taking derivative of Ṽ

w.r.t y, we have ŷ(t) = xβ−1 exp(A(t) +B(t)h+ C(t)h2)1−β ,
and thus ŷ(0) = xβ−1 exp(A(0) +B(0)h+ C(0)h2)1−β .

∂yV̂ = −y
1

β−1 exp (A(t) + hB(t) + h2C(t)) (2.5.1)

= −x

So we have:
X(t) = Y (t)

1
β−1 exp (A(t) +HtB(t) +H2

t C(t))

dY (t) = −Y (t){rdt+ σ−1(Ht − r)dW (t)}

By using Euler scheme, we have:

Hti+1
= Hti + k(c−Hti)dt+ σ1

√
dtZti

Yti+1
= Yti − Ytirdt− Ytiσ−1(Hti − r)

√
dtZti

Also, we are going to use the same set of Brownian motion to generate every paths in primal, dual
HJB and primal, dual FBSDE for consistent. The wealth processes simulated from the primal and
dual HJB are shown in the following graph:

Figure 2.3: Wealth Processes from Primal and Dual HJB, dt = 0.01

By combining figure 2.3 and 2.1 into one plot we have:
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Figure 2.4: Wealth Processes from Primal, Dual HJB and Primal, Dual FBSDE, dt = 0.01

We see that at the beginning of the figure 2.4, all four methods show consistent trend and fit closely,
but as time increase (after t = 0.5), we see that wealth processes start diverging though they still
have the same trend patterns. To see whether the divergence is significant, we will perform error
analysis.

Error Analysis

We use the wealth process from primal HJB as standard and calculate the mean square error
of wealth processes from the other three methods in comparison to the primal HJB.
In other words, we have:

MSE =
1

n

n∑
i=0

(Xi − X̂i)
2 (2.5.2)

where Xi could be wealth processes from dual HJB, primal and dual FBSDE, and X̂i is wealth
process from primal HJB.
Then we have:

Method MSE
Primal HJB 0
Dual HJB 2.375

Primal FBSDE 0.278
Dual FBSDE 1.185

Table 2.1: Mean Square Error

In comparison to the maximum (19.538) and the minimum (3.222) values of wealth process from
primal HJB, the MSEs from the other three methods are acceptable, and thus the wealth processes
from these four methods are considered to be the same.

To see the effect of time step size to the simulation result, we also use different time step size
for simulating. To generate the paths for wealth processes, we use the same parameters and meth-
ods as above, and a same set of Brownian Motion is used within each time step size.

We have the wealth processes for dt = 0.02:
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Figure 2.5: Wealth Processes from Primal, Dual HJB and Primal, Dual FBSDE, dt = 0.02

And the wealth processes for dt = 0.05:

Figure 2.6: Wealth Processes from Primal, Dual HJB and Primal, Dual FBSDE, dt = 0.05

In figure 2.4, 2.5, and 2.6, we see that the wealth processes from all four methods have the same
trend pattern, though as time step size increases the differences among each method become larger
as t moving from time 0 to time 1. This is because, as time step size becomes larger, the simulation
result becomes less accurate and error could be accumulated as t increases, and thus large time
step size gives larger difference on the simulation result of wealth processes.

Performing error analysis as before, we have:

Method MSE dt = 0.01 MSE dt = 0.02 MSE dt = 0.05
Primal HJB 0 0 0
Dual HJB 2.375 5.547 17.389

Primal FBSDE 0.278 0.865 0.287
Dual FBSDE 1.185 1.274 9.027

Table 2.2: Mean Square Error

From table 2.2, we see that as time step size increases, simulated wealth processes have greater
error.
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Simulation from Dual Value Function

Also, we can use simulation to get dual value directly for fixed y and h.
Recall that

Ṽ = inf
y∈(0,∞)

(xy + E[Ũ(Y (T ))])

Ũ(Y ) =
1− β
β

Y
β
β−1

And the initial value of Y has to satisfy the condition

x+ E[Ũ ′(Y (T ))]) = 0

Therefore, we can write a function which takes y0 and h as input values and return x+E[Ũ ′(Y (T ))]),
where Y (T ) can be generated by using Euler Scheme as following:
Recall that dYt = −Y (t){rdt+ σ−1(Ht − r)dWt}, so we can have:

d(log(Y (t))) =
1

Y (t)
dY (t)− 1

2

1

Y (t)2
(d(Y (t)))2

= (−rdt− σ−1(Ht − r)dWt)−
1

2
σ−2(Ht − r)2dt

Thus, we have:

log(
Yt
Y0

) =

∫
(−r − 1

2
σ−2(Ht − r)2)dt+

∫
−σ−1(Ht − r)dWt

Y (T ) = y exp

∫ T

0

(−r − 1

2
σ−2(Ht − r)2)dt+

∫ T

0

−σ−1(Ht − r)dWt

Ũ(Y (T )) =
1− β
β

Y (T )
β
β−1 (2.5.3)

=
1− β
β

(y exp

∫ T

0

(−r − 1

2
σ−2(Ht − r)2)dt+

∫ T

0

−σ−1(Ht − r)dWt)
β
β−1

By taking derivative with respect to y in equation 2.43, we have:

Ũ ′(Y (T )) = −y
1

β−1 exp

∫ T

0

(−r − 1

2
σ−2(Ht − r)2)dt+

∫ T

0

−σ−1(Ht − r)dWt)
β
β−1 (2.5.4)

Then we can apply Euler Scheme and Trapezoidal Rule for the integration part, and we have:

Hti+1 = Hti + k(c−Hti)dt+ σ1
√
dtZti∫ T

0

(−r − 1

2
σ−2(Ht − r)2)dt ≈ Σni=0

(−r − 1
2σ
−2(Hti+1

− r)2) + (−r − 1
2σ
−2(Hti − r)2)

2
dt∫ T

0

−σ−1(Ht − r)dWt ≈ Σni=0

(−σ−1(Hti+1
− r)) + (−σ−1(Hti − r))

2
dWt

where dWt = Wti+1
−Wti ∼ N(0, dt).

Then we simulate the value of Ũ ′(Y (T )) for 1000 times and approximate the expectation by taking
average over the sum. Once we have the value of x+E[Ũ ′(Y (T ))]), we can apply bisection method
to find the root of the function x+E[Ũ ′(Y (T ))]), which makes the condition x+E[Ũ ′(Y (T ))] = 0
satisfy.

The optimal y from the bisection method is 0.5500, and recalling in the previous section, we have
ŷ(0) = xβ−1 exp(A(0) +B(0)h+C(0)h2)1−β = 0.5246. After we get y0 from bisection method, we
can use it to simulate wealth process by using dual HJB, and compare with the other four results.
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Figure 2.7: Wealth Processes from Primal, Dual HJB and Primal, Dual FBSDE, and Direct Dual
Method, dt = 0.01

Given that the optimal y from bisection is close to the optimal y obtained from ansatz before, the
generated wealth process performs similar pattern as the other four.
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Chapter 3

Constrained Utility Maximization
with OU Process

Assumption:
- 1-dimensional geometric Brownian motion asset price process
- All coefficients constant
- Control set K=R+

- Maximize utility of wealth at time T
- dS = HSdt+ σdWt

- dHt = k(c−Ht)dt+ σ1(t)dWt

where
- σ1(t) = 1

σΣ(t) + ρσH
- Σ′(t) = (1− ρ2)σ2

H − 2(k + ρσH
σ )Σ(t)− 1

σ2 Σ(t)2

- σ, σH , k, c are positive constants, and ρ ∈ (−1, 1)

3.1 Market Model

In stage three, the wealth process is:

dXt = Xt(r + πt(Ht − r))dt+ πtXtdWt (3.1.1)

Define the dual function by Ũ(y) = supx>0(U(x) − xy). The dual process Y is a strictly positive
process and has the following semimartingale decomposition:

dY (t) = Y (t)α(t)dt+ βT (t)dW (t), 0 ≤ t ≤ T
Y (0) = y

where processes α and β are chosen such that XπY is a supermartingale for all admissible control
processes π ∈ A. Using Ito’s lemma, we have:

d(Xπ(t)Y (t)) = Xπ(t)Y (t){[r + πt(Ht − r) + α(t) + πtσβ(t)]dt+ [πtσ + βT (t)]dW (t)}

To make XπY a supermartingale, we must have

r + πt(Ht − r) + α(t) + πtσβ(t) ≤ 0

for all π ∈ K a.s. for a.e. t ∈ [0, T ], which is equivalent to

r + α(t) + δK(−(Ht − r)− σβ(t)) ≤ 0

where δK(.) is the support function of set −K, defined by δK(z) = supπ∈K{−πz}.
Define v(t) = −(Ht − r)− σβ(t), we have

α(t) ≤ −(r + δK(v(t)))

β(t) = −(σ−1v(t) + σ−1(Ht − r))
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Since K is a closed convex cone, then δK(z) = 0 if z ∈ K̃ and ∞ otherwise, where K̃ = {z : zTπ ≥
0,∀π ∈ K} is the positive polar cone of K. Therefore, the dual process becomes:

dY (t) = −Y (t){rdt+ (σ−1v(t) + σ−1(Ht − r))dWt} (3.1.2)

with Y (0) = y.

3.2 Solving with dual FBSDE

SinceK = R+, the ansatz we used in stage two is no longer satisfied given that π(t) = −(Ht−r)−σσ1(B(t)+2hC(t))
σ2(β−1)

could be negative, and thus HJB may not be solved in this case. Therefore, we use dual FBSDE
in this section.

Recalling Theorem 3.9, the dual FBSDE has the form:

dp̂2(t) = {rp̂2(t) + q̂2(t)[σ−1v(t) + σ−1(Ht − r)]}dt+ p̂2(t)dWt (3.2.1)

with p̂2(T ) = −Ũ ′(Y (T )) satisfies the condition

p̂2(0) = x0

p̂2
−1(t)

1

σ
q̂2(t) ∈ K

q̂2(t)
1

σ
v(t) = 0

with v(t) ∈ K̃.

From theorem 3.10, we have:

π̂(t) =
q̂2(t)

p̂2(t)σ
(3.2.2)

Denote q̂2(t) = π̂(t)p̂2(t)σ and p̂2 = p, the dual FBSDE has the form:

dY (t) = −Y (t){rdt+ (σ−1v(t) + σ−1(Ht − r))dWt} (3.2.3)

dp(t) = rp(t)dt+ π(t)p(t)(Ht − r)dt+ σπ(t)p(t)dWt

Y (0) = y, p(T ) = −Ũ ′(Y (T ))

p(0) = x0, π(t) ∈ K, v(t) ∈ K̃, π(t)v(t) = 0

The solution is equivalent to find y, π, v such that

dY (t) = −Y (t){rdt+ (σ−1v(t) + σ−1(Ht − r))dWt} (3.2.4)

dp(t) = rp(t)dt+ π(t)p(t)(Ht − r)dt+ σπ(t)p(t)dWt

Y (0) = y, p(0) = x0, π(t) ∈ K, v(t) ∈ K̃

and

E[(p(T ) + Ũ ′(Y (T )))2 +

∫ T

0

π(t)v(t)dt] = 0 (3.2.5)

Hence, we can solve

V̂ = minimizey,π,vE[(p(T ) + Ũ ′(Y (T )))2 +

∫ T

0

π(t)v(t)dt] (3.2.6)

subject to equations (3.2.4).

To solve this problem numerically, at first we need to solve Σ(t).
Recall that:

σ1(t) =
1

σ
Σ(t) + ρσH
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Σ′(t) = (1− ρ2)σ2
H − 2(k +

ρσH
σ

)Σ(t)− 1

σ2
Σ(t)2

where Σ(0) = σ0.
Since Σ(t) has Riccati form, we can solve it explicitly.

Σ′(t) + 2(k +
ρσH
σ

)Σ(t) +
1

σ2
Σ(t)2 = (1− ρ2)σ2

H (3.2.7)

Let a3 = 1
σ2 , b3 = 2(k + ρσH

σ ), c3 = (1− ρ2)σ2
H , we have:

Σ′(t) + b3Σ(t) + a3Σ(t)2 = c3 (3.2.8)

=> Σ′(t) + a3(Σ(t) +
b3

2a3
)2 = c3 +

b23
4a3

(3.2.9)

Let Σ(t) = χ(t)− b3
2a3

, and set φ =
b23
4a3

+ c3, a3 = 1
k3

, we have the ODE:

∂tχ

k3φ− χ2
=

1

k3
(3.2.10)

subject to χ(0) = σ0 + b3
2a3

.

This ODE is of Riccati type and can be integrated exactly. Integrating both sides of above over
[0, t]:

log

√
k3φ+ χ(t)√
k3φ− χ(t)

− log
√
k3φ+ χ(0)√
k3φ− χ(0)

= 2γt

√
k3φ+ χ(t)√
k3φ− χ(t)

=

√
k3φ+ χ(0)√
k3φ− χ(0)

e2γt

Let ζ =
√
k3φ+χ(0)√
k3φ−χ(0)

, we have

χ(t) =
√
k3φ

ζe2γt − 1

ζe2γt + 1
(3.2.11)

3.3 Implementation of Numerical Algorithm

After we get Σ(t), we can use it to generate path for Ht, and use Ht for generating p(t), Y (t).
Setting T = 1, N = 10, and dt = T/N = 0.1. The parameters that we are going to optimize are
y0, π(t0), ..., π(t9), v(0), ..., v(9).

First Model

Assuming that π and v have the form π = a(t) + bH(t) and v(t) = c(t) + dH(t), where a(t), c(t)
are piecewise constants within each subinterval and b, d are constants.
Let the parameters be k = 1, c = 1, r = 0.05, σ = 0.8, σH = 0.5,Σ0 = 0.1, ρ = 0, T = 1, β =
0.5, t0 = 0, h0 = 0.5, x0 = 10, dt = 0.1 (time step).

Since we have solved Σ(t), by applying Euler Scheme, we have:

Hti+1
= Hti + k(c−Hti)dt+ σ1(t)

√
dtZ

Yti+1
= Yti − Ytirdt− Yti(σ−1v(t) + σ−1(Hti − r))

√
dtZ

pi+1 = pi + rpidt+ (π(t))pi(Hi − r)dt+ σπ(t)pi
√
dtZ

By substitute π(t) = a(t) + bH(t), v(t) = c(t) + dH(t) and σ1(t) = 1
σΣ(t) + ρσH , we have:

Hti+1 = Hti + k(c−Hti)dt+ (
1

σ
Σ(ti) + ρσH)

√
dtZti

Yti+1
= Yti − Ytirdt− Yti(σ−1(c(ti) + dHti)

+ + σ−1(Hti − r))
√
dtZti

pi+1 = pi + rpidt+ (a(ti) + bHti)
+pi(Hi − r)dt+ σ(a(ti) + bHti)

+pi
√
dtZti
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Using numerical method, we can find the optimal parameters (y, b, d, a(ti), c(ti), i = 0, ..., 9) such

that minizing the function E[(p(T ) + Ũ ′(Y (T )))2 +
∫ T
0
π(t)v(t)dt], where p(T ) and Ũ ′(Y (T )) are

generated by using Euler Scheme, and the integration is estimated by using Trapezoidal Rule. To
ensure that π ∈ K and v ∈ K̃, we make π(ti) = max(a(ti)+bHti , 0) and v(ti) = max(c(ti)+dHti , 0)
during optimization.

After we have the optimal parameters, we have:

t 0 1 2 3 4 5 6 7 8 9
a(t) -0.0496 0.0051 -0.0132 0.0484 -0.0189 -0.0091 0.0102 -0.2172 -0.0782 -0.0803
c(t) -0.0507 -0.1529 0.0025 -0.0068 0.1428 -0.0786 0.1237 0.0190 -0.0285 -0.0280

Table 3.1: Optimal parameters a(t) and c(t), N = 10

And optimal y, b, d:
y = 0.3369, b = 0.0397, d = 0.0175

Plotting a(t) and c(t) on graph, we have:

Figure 3.1: Optimal a(t) and c(t), N = 10

Using the optimal parameters to generate paths for Ht, we can get π(ti) and (̌ti) for i = 0, 1, ..., 9:

t 0 1 2 3 4 5 6 7 8 9
π 0 0.0208 0.0022 0.0613 0 0.0010 0.0222 0 0 0
v 0 0 0.0093 0 0.1477 0 0.1290 0.0244 0 0

Table 3.2: π(t) and v generated by optimal parameters, N = 10

Recalling that from Theorem 3.10, X π̂(t) = p(t). Thus, p(t) is the wealth process, and Y (t) is the
dual process. Since supπ E[U(X(T ))] = supπ E[U(p(T ))] = miny,v E[Ũ(Y (T ))], and

E[U(p(T ))] ≤ sup
π
E[U(p(T ))] = min

y,v
(E[Ũ(Y (T ))] + xy) ≤ E[Ũ(Y (T ))] + xy

Using the optimal parameters, we can generate paths for p(T ) and Y (T ), and simulate the values
of E[U(p(T ))] and E[Ũ(Y (T ))]. Given that E[U(p(T ))] is the lower bound, and E[Ũ(Y (T ))] + xy
is the upper bound, if these two values are close to each other, we can approximate the true value
of supπ E[U(p(T ))].

By simulating, we have:
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E[U(p(T ))] 6.9946

E[Ũ(Y (T ))] + xy 7.3011

Table 3.3: Values of upper bound and lower bound, N = 10

The value of supπ E[U(p(T ))] should fall within the interval [6.9946, 7.3011].

Second Model

To enhance the model, we assume that π(t) = a(t) + b(t)Ht and v(t) = c(t) + d(t)Ht, where
a(t), b(t), c(t), and d(t) are piecewise constants within each subinterval. Using the same algorithm
as before to compute the optimal value of y, π, and v, we have:

t 0 1 2 3 4 5 6 7 8 9
a(t) -0.0102 -0.0281 0.0959 -0.0396 0.1259 -0.0326 0.0292 -0.0220 -0.0468 -0.0349
b(t) -0.2129 -0.0219 -0.0382 -0.0438 -0.0195 0.1008 -0.0413 0.0165 -0.1293 -0.0281
c(t) 0.1024 0.0747 -0.0101 -0.0103 0.0313 -0.0021 0.0559 -0.0479 0.0431 -0.0073
d(t) -0.0199 -0.0100 -0.0104 0.0284 -0.0319 0.0556 -0.0134 0.0662 -0.2088 -0.0255

Table 3.4: Optimal parameters a(t), b(t), c(t), and d(t), N = 10

And optimal y:
y = 0.3215

Plotting a(t), b(t), c(t), and d(t) on graph, we have:

Figure 3.2: Optimal a(t), b(t), c(t), and d(t), N = 10

Using the optimal parameters to generate paths for Ht, we can get π(ti) and v(ti) for i = 0, 1, ..., 9:

0 1 2 3 4 5 6 7 8 9
π 0 0 0.0796 0 0.1185 0 0.0149 0 0 0
v 0.0925 0.0700 0 0.0006 0.0191 0.0152 0.0513 0 0 0

Table 3.5: Optimal π and v, N = 10

The values of E[U(p(T ))] and E[Ũ(Y (T ))] + xy are:
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E[U(p(T ))] 6.9979

E[Ũ(Y (T ))] + xy 7.3129

Table 3.6: Values of upper bound and lower bound, N = 10

By comparing the figures 3.1 and 3.2, we see that the optimal parameters are fluctuate around
-0.2 and 0.15, and no special trend pattern is shown. Aiming to minimize the equation E[(p(T ) +

Ũ ′(Y (T )))2 +
∫ T
0
π(t)v(t)dt], it seems reasonable that the optimal parameters are small.

Theoretically saying, the optimal parameters should compute y, π, and v such that E[(p(T ) +

Ũ ′(Y (T )))2 +
∫ T
0
π(t)v(t)dt] = 0. Therefore, the closer the value of E[(p(T ) + Ũ ′(Y (T )))2 +∫ T

0
π(t)v(t)dt] to 0, the better the model performs.

To verify whether the optimal parameters are reliable, we use the optimal parameters to gen-
erate paths for Y , H and p, and compute the value of V̂ = minimizey,π,vE[(p(T ) + Ũ ′(Y (T )))2 +∫ T
0
π(t)v(t)dt]. The same set of Brownian motion would be used for generating paths for Y , H,

and p based on two different sets of optimal parameters, which makes the result of comparison
more accurate. Thus, we have:

V̂
First Model 0.0050

Second Model 0.0048

Table 3.7: Values of value function, N = 10

From table 3.7, we see that the values of V̂ from both models are quite close to zero, which means
both models’ optimal parameters are reasonable. Also, the second models give a better result given
that its value is closer to zero in comparison to the first one.

First Model, N=20

To see the effect of time step size to models, we let N = 20, which means dt = 0.05. Then
for the first model, where π(ti) = a(ti) + bHti and v(ti) = c(ti) + dHti , i = 0, 1, ..., 19. Thus we
have:

y = 0.3235, b = −0.1315, d = −0.0323

Considering that showing tables for a(t) and c(t) will be cumbersome, the figure for optimal pa-
rameter is shown as following:

Figure 3.3: Optimal a(t) and c(t), N = 20
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The values of E[U(p(T ))] and E[Ũ(Y (T ))] + xy are:

E[U(p(T ))] 6.9921

E[Ũ(Y (T ))] + xy 7.2600

Table 3.8: Values of upper bound and lower bound, N = 20

By comparing the first model of N = 10 and N = 20, we see that for N = 20, a(t) and c(t) fluctuate
around -0.15 and 0.15, which have smaller volatility. Also, the interval becomes smaller, where
[6.9921, 7.2600] is more precise than [6.9946, 7.3011].

Second Model, N =20

For the second model, where π(t) = a(t) + b(t)Ht and v(t) = c(t) + d(t)Ht, we have:

y = 0.3161

And optimal a(t), b(t), c(t) and d(t) is shown as following:

Figure 3.4: Optimal a(t), b(t), c(t) and d(t), N = 20

The values of E[U(p(T ))] and E[Ũ(Y (T ))] + xy are:

E[U(p(T ))] 7.0084

E[Ũ(Y (T ))] + xy 7.2419

Table 3.9: Values of upper bound and lower bound, N = 20

And the values of value function V̂ are:

V̂
First Model 0.0040

Second Model 0.0035

Table 3.10: Values of value function, N = 20

By comparing the models from two different time step size, the model with smaller time step
size gives a slightly better result overall, where the lower bound E[U(p(T ))] and upper bound
E[Ũ(Y (T ))] + xy are getting closer to each other. For tables 3.10 and 3.6, the accuracy in-
creases from 7.3129−6.9979

6.9979 × 100% = 4.5% to 7.2419−7.0084
7.0084 × 100% = 3.3%. Thus, the true value of

supπ E[U(p(T ))] can be estimated in a more accurate way. The values of value function are still
very close to 0, which ensure that the optimal parameters are reasonable.
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Conclusion

In this paper, we study the utility maximization problems with and without the constraints.
For each utility maximization problem, after the primal problem is formulated, we convert the
primal problem to dual problem by using supermartingale approach. After that, we write down
the corresponding adjoint processes for both primal and dual problems according to the book of
Pham[13]. In the next step, the FBSDEs and conditions are formulated based on Li and Zheng’s
work[10]. The value functinos and wealth processes are solved either theoretically or by using
numerical algorithms. In all three chapters, given the same model setting, the wealth processes
and value functions obtained from primal, dual, and FBSDEs problems show consistence or similar
pattern. Thus, we believe that we have successfully verified the connections among primal, dual,
and FBSDEs in the specific utility maximization problems provided in this paper.
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