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Abstract

This thesis studies the utility maximization problem in a finite state regime switching market
with full and partial information. In the regime switching market, the market state follows a
finite state Markov chain process. And the assets in the market are subject to dynamic processes
with different parameter sets under each market state. Given the incomplete market, the only
information available to investors is the asset prices, while the return processes are unknown in
advance. Then the asset returns depend on some hidden processes, which complex the optimal
control problem that it cannot be solved by the Hamilton-Jacobi-Bellman equation or the dual
control method. We first transform the original partial information problem into a full information
problem by using Wonham filter. Instead of giving some analytical solutions for the optimal control
problem, we suggest a dual control based Monte Carlo method to compute the lower and upper
bounds of the optimal expected utility income (i.e. the optimal value function ) subject to a system
of forward backward stochastic differential equations (FBSDEs). The method is efficient shown
with various utilty functions such as power, and non-HARA utilties.
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Chapter 1

Introduction

1.1 Research Background

As an important field of financial engineering research, the optimal investment problem has been
the focus of academic and industry research. Compared with the asset pricing problem and the risk
management problem, the optimal investment problem describes the most general decision-making
problem that every investor faces, and covers more aspects that need to be quantified. For exam-
ple, what indicators are chosen to measure the return and risk of investments, what operational
strategies are developed to allocate limited assets, and what warning lines are set to determine
the timing of entry and exit, all of these are very real and urgent problems that have plagned
generations of financiers and investors.

In the early days of the market, when there was no relevant theoretical analysis and quantitative
tools, the traders of the major exchanges and securities firms used their accumulated experience
to determine the appropriate allocation ratio and manage their portfolio assets in an extensive
way. The cycle law of the real economy, the sudden events of the political economy and the de-
velopment of the Society of Science and technology are all important references for investment
decision-making in that era. However, with the development of theory and technology, people are
increasingly not satisfied with passively accepting the arrangement of the market, expecting more
reasonable quantitative indicators and investment strategies, and winning more abundant profits,
the Modern Portfolio Theory (MPT) came into the market.

Modern portfolio theory, also known as mean-variance analysis, was proposed by economist Harry
Markowitz (1968) [1]. Markowitz used the variance of portfolio return to characterize risk, and
established a mathematical framework to maximize the average return ol portfolio under a given
risk. The central idea of this theory is that the risk and return of an asset should not be determined
by itself, but should be taken into account its impact on the overall risk and return of the portfolio.

Efficient frontier theory is an important achievement of modern portfolio theory. By Merton
(1972) (2], he takes the standard deviation of the return on the asset as the horizontal axis, and
the expectation of the return as the vertical axis, and he creates a risk expectation return space,
so that every possible portfolio of risky assets can be represented under that space, such that all
the possible portfolios in the market define a feasible region in this space. The left boundary of
this region is a hyperbola. The upper part of the hyperbola is called the efficient frontier. The
portfolio on this boundary is the portfolio with the least risk given the expected return.

Capital Asset Pricing Model (CAPM) is an important derivative theory of modern portfolio theory,
which was put forward independently by Sharpe (1964) [3], Lintuner (1975) [4] and Mossin (1966)
[5] based on Harry Markowitz’s theory. For a single security, the model uses the capital market line
and its relationship to the expected return and systematic risk (beta) of a single security to show
how market’s price affect individual securities based on the risk of a basket of securities, which
establishes the link between individual securities and market portlolios.

Since the modern portfolio theory was put into use, it has been improved continuously by sev-




eral generations of scholars, although it is becoming more mature, it has also been criticized. First
of all, the empirical results show that the theory cannot fit the real market completely, and the
assumption of efficient market and the assumption that the risk of individual securities obeys
Gaussian distribution are far from the reality, which cannot effectively interpret market data and
solve the actual investment problems. Secondly, the theory is based on the static analysis of mul-
tiple securities. The assumption of income distribution is not helpful for people to understand
the dynamic process of investment. Moreover, due to the lack of adaptation to the new market
environment, people can only use historical data to estimate parameters. In addition, use standard
deviation to describe the risk are too general, as it includes both the rising and losing in returns.
In reality, investors are more concerned about the risk of falling losses than the volatility of earnings.

In the dynamic management of assets, the introduction of stochastic control theory has opened a
new era of financial analysis. Stochastic control theory is a branch of cybernetics, which mainly
deals with the optimization problems of dynamical systems driven by observable uncertainties or
noises. In the application of stochastic control theory, it is generally assumed that the dynamical
system satisfies the Bayesian probability, that the development and observation of state variables
are affected by the random noise with a definite probability distribution. The main goal is to
design the path of the control variable with respect to time, so that the optimization problem can
be solved with minimum cost without the influence of noise. From the application form, generally
divided into discrete time and continuous time two categories, which can fit the frequency of data
well.

When applying stochastic control theory to continuous time financial markets, the state variable in
the Stochastic differential equation is usually wealth or net market value, and the control variable
is usually the distribution of different assets at each moment. At any given moment, the wealth
process usually consists of two parts, one is the stochastic return on the risky assets, the other
is the interest return on the riskless assets. Since the 1970s, the application of stochastic control
theory in finance has made a breakthrough development. Merton (1975) [6] first used stochastic
control theory to study the optimal portfolio of risky assets and riskless assets, his work had a
profound impact on the financial field. These theories and methods were then applied by J.L. Stein
to the analysis of the financial crisis of 2007-2008.

Stochastic control theory has been developed and improved in the application of financial markets,
but there are still many research gaps, such as how to describe the optimal investment problem in
incomplete markets; whether there is a simple analytic solution to the optimal strategy of utility
function and the return on investment; how to calculate the non-linear partial differential equation
effectively when there is no analytic solution; how to extend the low dimensional solution to high
dimension, these problems have inspired subsequent scholars to continue to challenge.

1.2 Current research

Stochastic control strategy is generally used to take care of the powerful enhancement issue of mon-
etary resources, and has great execution in other application fields. Its fundamental thought is to
apply the standard of dynamic programming to the ideal worth capacity and infer the halfway dit-
ferential condition it fulfills, this condition is known as Hamilton Jacobi Bellman (HJIB) condition.
If we can find the classical solution of the HJIB equation, we can prove that it is a value function
of martingale principle optimization, and find an optimal control with feedback. In addition, we
can prove that the value function is a unique solution for the HJB equation and approach it by
numerical method.

HJB equation is a complete nonlinear partial differential equation, its solvability depends greatly
on the terminal condition. For the power or logarithmic utility function under the complete market
assumption of Black Scholes, we know that there is a classical closed solution for the HJB equation.
Bian and Zheng (2015) [7] use the dual control method to show there is a classical solution to the
HJB equation for a broad class of utility functions and give a representation of the solution to the
HJB equation in terms of that of the dual HIB equation.

The regime-switching model is popular in the modeling and analysis of financial data because




it allows the parameters of the asset price process to satisfy a finite state Markov chain. It has
been shown in the literature that Markov chain process (MCP) is effective in providing informa-
tion of the market environment. For example, Hamilton (1989) [8] introduces a regime-switching
model for non-stationary time series and business cycles. Moreover, the regime-switching model
not only has a strong adaptability in describing the macro market uncertainty, but also has a
strong operability in the analysis of the underlying asset dynamic process. For example, Zhang et
al. (2005) [9] and Yin et al. (2006) [10] study the trading rules in the regime-switching market.
Honda (2003) [11], Sass and Haussmann (2004) [12] solve portfolio optimization problems with
partial information and regime-switching drift processes.

In Ma et al. (2017) [13], this paper focus on extend the dual control method to the regime-
switching model. And it introduces a new numerical method to find the value of the optimal
problem. The dual value function in the dual space is a pricing problem that can be simply com-
puted by Monte Carlo method by derive the tight upper and lower bounds for the HIB equaiton
with state transition. Moreover, in Zhu and Zheng (2021) [14], they extend the general market
model into a partial informed market, and instead of giving analytical solutions for general set-
tings, they propose efficient methods for giving tight lower and upper bounds of the primal value
functions and estimated controls based on the primal-dual frameworks.

Inspired by these work, we will extend the problem into the regime-switching model with par-
tial information and try to derive the tight bounds for the optimal value functions.

1.3 Purpose and significance of the study

Financial markets are full of cyclical changes. The growth and harvest of agricultural products in
different seasons affects the prices of options and futures; the boom and bust of the real economy
causes the alternation of bull and bear markets in the stock market; the election of a new govern-
ment and the change of policies indirectly cause the rise or decline of the industry, all this reveals a
cyclical trend in security returns and risk, which investors have to take into account when investing.

In describing market periodicity, the regime-switching model is a mature model. Taking the
continnous-time and finite-state regime-switching model as an example, it simulates the market
state through the continuous-time finite-state Markov chain. The transition between different mar-
ket states satisfies Poisson jump, and the subsequent state is determined by the generating matrix
in different market conditions; while the return of risk assets and risk, risk-free asset returns will
be different. For example, when the number of states in the security is two, it can simulate the
different performances of the bear market and the bull market. When the number of states in
the Markov chain is four, it can simulate the economic cyeles of boom, recession, depression and
recavery, the performance of security.

The aim of this paper is to study the optimal investment problem in the regime-switching markets.
For certain utility function, an efficient algorithm for calculating the optimal investment return
and the optimal investment strategy is designed by means of dual control theory and Monte Carlo
method. In the hope to reveal the trade-off and investment behavior of different investors through
the numerical calculation of different utility functions, so as to provide reasonable and feasible
strategies for their investment.

From a theoretical point of view, the method studied in this paper broadens the application scope
of stochastic control theory. For utility function, which does not have an analytic solution, provides
a fast and efficient numerical method for solving a class of problems that can not be optimized be-
fore. From the point of view of application, the methods in this paper provide effective investment
strategies and suggestions for medinm-and long-term investors. For short-term investors, we can
discretize the range of the volatility of risk asset’s short-term rate of return and set it as a finite
state, and use this paper’'s method to achieve the optimal investment strategy and returns.




1.4 Main research

In this paper, we mainly study the optimal investment problem in the regime-switching market
both with full and partial information, and introduce the regime-switching model into the stochas-
tic control problem.

In theory, the Dual control theory is used to transform a set of nonlinear fully coupled partial
differential equation into a linear partial differential equation through a dual transformation, thus
simplifying the corresponding caleulation. Followed by Ma et al. (2017) [13], when dealing with
full informed regime-switching markets, we use the same Monte Carlo algorithm to determine the
expected payoff at the termination time and the optimal strategy in the path. The upper and
lower bounds generated by this method can be well approximated for utility functions where there
are analytic solutions for expected returns and investment strategies. The tight upper and lower
bounds generated by this method are stable and convergent. This paper presents a feasible theory
and a stable convergence algorithm for the optimal investment problem under the certain utility
function in the regime-switching market.

As most papers focus on [frictionless markets, while in practice due to information asymmetry
and trading strategy constraints, such as short selling, borrowing and endowments, the optimal
controls under perfect market assumption may not be realized. Thus, further in this paper, we
will discuss the same regime-switching markets with partial information. To find an explicit form
solution for utility maximization problem with partial information is quite hard. We first convert
the partial information problem into a full information problem by using an innovation process
and use standard filtering techniques of Wonham filter to capture the hidden processes. Under
transformed full information setting, we intend to give optimal controls using stochastic control
method and dual control method. However, both method failed to find an explicit solution to the
problem. Instead of finding the primal control directly, we turn to use an optional method to give
some tight bounds for the optimal value. This new optional method is based on the Stochastic
maximum principle and Forward Backward Stochastic Differential Equations (FBSDEs). By ap-
plying this method under full space setting, we will be able to provide a tight upper and lower
bounds for the optimal value function. This upper and lower bound method can be applied to
general utility functions, non-HARA utilities. This upper and lower bound is very tight, and can
be used as an estimate of the value function.

The paper is organized as follows. In Chapter 2, we state the general utility maximization problem
under both general markets and fullly informed regime-switching markets. The stochastic control
method is introduced with some examples. Chapter 3 extends into using Dual Control method to
solve the optimal problems along with some analytical examples. Chapter 4 introduces in detail the
Monte Carlo algorithm defined by Ma et al. (2017) [13] and use this as a benchmark method for our
further research. Chapter 5 extends the market into a partially informed regime-switching markets,
and provide the filtering results under Wonham filter. Two different methods for the transformed
optimization problem, including stochastic control and dual control method are provided in this
chapter. In Chapter 6, stochastic maximum principle and the approximated methods are provided
in detail. Chapter 7 illustrates some numerical examples under both fully and partially informed
regime-switching markets, with the comparison between them. Chapter 8 concludes the paper.




Chapter 2

Basic Utility Maximization
Problem

In this section, we formulate the stochastic control problem in the markets, and will introduce the
basic theory of utility maximization and how to solve the maximization problem.

2.1 Primal Optimization under General Market model

In this section, we first introduce the general market and the basic theory of utility primal maxi-
mization problem.

2.1.1 Market Model Set Up

Assume market has two assets, a risk-free asset (savings account) Sy, a risky asset S, satisfying
the following SDE:

dSo(t) = rSo(t)dt

(2.1.1)
dS(t) = S(t)(pdt + odW(t))

where S3(0) = 1, S(0) =8 = 0, r,p,0 > 0, all constants, W is a standard Brownian motion.
Assume 7 is an Jy-adapted process such that Jr[;F midt < oo a.s. and 7 is proportional portfolio
process. We denote X; as the investor’s wealth at time t. Then m:X; is the amount of money
invested in § and (1 — ;) X; is the amount of money in savings account Sy. The wealth process
X, satisfies the following SDE:

dX; = (1 — m ) Xyrdt + m, Xy (pdt + adWy)

i . . (2.1.2)
= rXpdt + 7 Xe ((p— r)dt + odWy)

with initial wealth Xy = x.

Utility Function: U(-) is a utility function that U : B A[0,00) — R satisfies U € C?, strictly
concave, strictly increasing with Inada’s condition

U = lir_rbf.»”[.r] =00, U'(ex) = lim U'(z) =0

Py oo

for all x,

If a utility function has constant Arrow Pratt coefficient of relative risk aversion — 1;"11]1
then the utility function is called a Constant relative risk aversion (CRRA) Utility function.
There are two well known CRRA utilities:

Power utility: UU{z) = %‘1.‘” for z > 0, where p < 1 and p# 0

Logarithmic utility: U(z) = lnx for = > 0.

Utility maximization problem: Define the value of the expected utility maximization problem




V = sups E[U(X})] (2.1.3)

If there is a 7 such that E[U(X% )] = V, then #* is called the optimal control strategy. One of
the most commonly studied problems in mathematical finance is to find 7*.

2.1.2 Stochastic Control Method

To solve this portfolio optimization problem, we need to apply the dynamic programming principle
(DPP) to the optimal value function V' and show that it satisfies a partial differential equation
(PDE), called the Hamilton—Jacobi-Bellman (ILIB) equation, detail can be found in Bellman &
Kalaba (1965)[15] and the notes from Zheng (2019)[16].

Dynamic programming principle (DPP):
For t > 0,z € R, define the value vuction V : [0,T] x R+~ R:

w(t,z) = sup, E[U(XT(T))| X (t) = 7] (2.1.4)

Assume on [t,f + h], we choose any control process = and X evolves from (¢, ) to (t + h, X[, )
such that

EU(X™(T))|X(t) = 2] = E[E[U(X™(T))|Fea]| X () = 2] (tower property)
= E[E[U(XT(T))|X][, )| X(t) = z] Markov property (2.1.5)
< Blu(t+h, X7 )| X () = 2]

which implies that

u(t,z) < supy Elu(t + h, X7,,)| X (t) = 7] (2.1.6)

Note that now m is between [t + h], for all £ > 0, there exists 7% € [t + h,T] such that

ut+h, Xe) — € < E[U(XE )| X 14 (2.1.7)
and define

(2.1.8)

. Tey, t<s<t+h,
xf, t+h<s<T

Then apply Markov property,

u(t,z) > B[U(XE)|X, = 2]
= E[E[U(X$)|Xernl| X, = 2]
= E[E[U(XE )| X n]| X, = ] (2.1.9)
> Elu(t+ h, Xipn) — €| X: = 1]
= Elu(t + h, Xepn)| X = 2] - &

which implies

u(t,z) = supa Efu(t + h, X)) | X = 2] = £ (2.1.10)

Let £ | 0, we have

u(t,z) = supaElult + h, Xepn )| Xe = 7] (2.1.11)
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Then by equations (2.1.6) and (2.1.11), the DPP is defined as:

u(t,z) = supy Elu(t + h, X0 )| X; = 2 (2.1.12)

Hamilton-Jacobi-Bellman (HJB) equation:
By Bellman & Kalaba (1965)[15] and Zheng (2019)[16], using the Ito principle and the dynamic
programming principle, the HIB equation is derived as the following,.

Assume u € CY2, meaning u(-,x) € C',  w(t,-) € C?. By Ito’s formula, we have

w(t+ h, Xivn)

t+h . - : - o2 -
du(s, X,) du(s, Xg) ., 10%u(s, X)), o
=ult,z) + ds + s+ = : d| X, X],
ult, ) 1 ( ds y A T2 axf X, X],)
— u(t.z) f“’h({')u {'311( x X, ) 18%u 22424 f“’h ou XoodW
= Wha : Bs | pp. e T TeRsTT 2gg2 7T [ gy Tete T s
(2.1.13)
Substituting (2.1.13) into DPP (2.1.12), and cancelling u(t, ), we get
t+h s f o2
. ou  Ou, ; 10%u .., . h
0= .mp,,b[[ [ﬁ + a(rxﬁ X (=) + §Wﬂﬁxjazjda|xt = 1] (2.1.14)
Note that 7 in (2.1.14) is a process on [t, ¢ + h|, thus as h — 0, 7, — m = 7 (a constant).
Divide by h > 0 and let h — 0, we derive the HJB equation as
u(t,x 7 10% , , .
0:.‘?11}’)«&-}2((“( ) —%(r.lr—ﬂ.r(u—r}] gu 2a?) (2.1.15)

F T2 Da?
with the terminal condition given by u(T,z) = U(x).

Our goal is to solve PDE (2.1.15), if w is strictly concave in @, then s, < 0. The maximum point
7in (2.1.15) satisfies

ol —r)u, + mrlotu,r =0

which gives the optimal portfolio strategy as

f t,x
) = o Met:2) (2.1.16)
T Tlga(t, T)
Substituting «* into (2.1.15), the HJIB equation is derived as:
Ju(t, o 1., u2
Nt T) o, — 222 g (2.1.17)
at Uy

where § = £== with terminal condition u(T,r) = U(x).

There are several ways to solve the utility maximization problem defined in (2.1.3). Stochastic
control is the standard solution to the problem; another method is the convex dual martingale
method, details can be found in Karatzas et al. (1998) [17]; and dual control method, our main
focus will be in this method which will be discussed in the later section.

We now first introduce a simple trial and error method that only works when utility function U(-)
a CRRA utility function. We can assume that equation (2.1.3) V = U(z) f(t) or V = Ulx) + f(t),
such that we can reduce the HJB equation (2.1.17) into a linear differential equation system with

unknown function f.

Example 2.1.1 Power Utility

11




Assume power utility Ulz) = J—];.I.‘V for x > 0, where p < 1 and p # 0. The solution of the HIB
equation (2.1.17) would have the following form:

u(t,x) = flt)U(x)

Since the HIJB equation would have the terminal condition (7, ) = U(x), such that we can say
that the function f(-) also has the terminal condition as f({T°) = 1.
First we find the partial derivatives of u(t, z) as the following:

ou U (
ﬁ—f()'(-l):

up = f(t)zP

e = (1) (p — 1)

Substituting the derivatives into HJB (2.1.17), then we have the following linear ODE:

r 1 2 P —
Ft)+(rp— 59 p_lJf(fJ =0

With the given terminal condition of f(-), we can solve the above equation and get

1 .
J(t) = exp(rp — gﬂzp%’lnr )]

Example 2.1.2 Logarithmic utility
Assume logarithmic utility U(z) = lnz for 2 > 0. The solution of the HJB (2.1.17) has the
following form:

u(t,r) =Ulx)+ f(t)

Since the HIJB equation would have the terminal condition (7, z) = U(z), such that we can say
that the function f(-) also has the terminal condition as f({T7) = 0.
The partial derivatives of u(t,z) is derived as:

du ,
— = f'(t),
o = (),
1
Uy = —,
T
1
Uy = -5

Substituting the derivatives into HJB (2.1.17), then f satisfies a linear ODE:
r 1 2
flt)+(r+-67)=0
2
With the given terminal condition of f(-), we can solve the above equation and get
1, .
ﬂl‘]:(i‘—ag WL —1)

2.2 Primal Optimization under Regime-Switching Market
model

The regime-switching model is popular in the modeling and analysis of financial data because
it allows the parameters of the asset price process to satisly a finite state Markov chain. In

this section, we describe the stochastic control problem under the regime-switching model as an
extension to the genral market model.

12




2.2.1 Regime-Switching Market Model Set Up

Consider a fixed time period [0,7], and let (Q2,F, P) be a complete probability space, where
P denotes physical probability, W a standard Brownian motion. We model the market by a
continuous-time stationary Markov chain process (MCP) by {a(t)}.

We identify the state space of {a(¢)} as a finite set of unit vectors E{ej,es, -+ ,e4} where ¢; € R?
is a column vectors with unity in the ith position and zeros elsewhere, i = 1,--- ,d. Denote by
Q = (i) dza the generator of the Marov chain {a(t)} with ¢;; > 0 for i # j and ZLL ¢i; = 0 for
each i € I{1,--- ,d}. Then the MCP {a(f)} has a semi-martingale representation

i
ap = a-[}—/ Qopdv+ My, 0<t<T (2.2.1)
o

where Q' is the transpose of Q, M; is an R%valued martingale with respect to the filtration gen-
erated by {a(t)}.

The setting is the same as the previons section, that is, a financial market consists of a risk-
free asset (savings account) Sy, a risky asset S, satisfying the following SDEs:

dS[}(fJ = ?"gS[}(ﬂdf

. (2.2.2)
dS(t) = S(E) (u(t)dt + o (t)dW (£)

where r(t) = ralt), p(t) = palt),o(t) = oalt), and r = (r1,--- ,ra)op = (p1, - fd), Oded =
(o1,-++ ,04) are vectors of risk-free interest rates, return rates and volatility rates respectively,
with r;, pt;, o; being the rates in regime i. Denote by 8 = (f1,--- , ;) the market prices of risk with
0; = = fori € D{L,-- ,d}.

Assume 7 is an Fy-adapted process such that f[}T widt < oo as. and 7 is proportional portfolio
process. We denote X; as the investor’s wealth at time t. Then m:X; is the amount of money
invested in § and (1 — ;) X, is the amount of money in savings account Sp. The wealth process
X satisfies the following SDE:

dX (1) = X(8)(r(t)dt + n(B)a()(0(t)dt +dW (), 0<t<T (2.2.3)

The utility maximization problem is defined by

sup, E[U(X™(T))] (2.2.4)

where U is a utility function that mentioned in previous section.
To solve the optimization problem, we define a primal value function

V(t.z,i) = supem, By o [U(X(T))], icD (2.2.5)

2.2.2 Stochastic Control Method
We now introduce a functional operator denoted by M, which was first introduced by [18]:
MV (t,2,4) = supren, Br e a[V(Eq AT, X (§en AT) (&1 AT))]

= SUPreln, E:.z.:[la Lt VIE Xa (&), alben)) + 1g, 1:>Tf-"'(Xw(T]J] (2.2.6)
=V

where § ,, denotes the nth jump time of Markov chain {a,} for n € N with & ¢ = £.
This functional operator V' = MV is the dynamic programming equation (DPP), and the
optimal value function V is the smallest non-negative solution to this equation.

Based on the DPP (2.2.6), the optimal value function has the HJB equations as following. An
additional term needs to be added to the formula to ensure that the jumps of the process are
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correctly given by applying Ito’s Lemma for semimartingales by Jacod & Shiryaev (1987) [19],

T
MV(T,z,4) = MV (t,z.1) —f [(MVi(s,2,4) + MV, (8,2, 8)z(r(s) + ms(u(s) — r(s)))
t

+ %;‘VI Vig(s,2,i)(zm,0(s))?|ds

T (2.2.7)
+ f MVy(s,x, 1) zmea(s)dWe
t
+ Z [MV (s, z,i+) — MV (s, z,1)]
t<s<T

Denote by go the jump measure of the Markov chain process a(t), and by T, the successive jump
time points. Then

qo([0,t] x {51 = Y Njar =1 <11

nel

The compensator of g is given by

t
”([Orf] X {J}) :[ Z‘?wlin(-ﬂ=ﬁdﬁ

Vi)

Hence, we have

Z [MV (s, 2,i+) — MV (s,2,1)] =

t<s<T
T

:f! ;E[,-\Al"(s..zr,j]f,MV(S,J.‘_.i]](q[}71))({£s,j] (2.2.8)
s

*f Z[x\/ﬂ"(s,.i.‘,j] — MV (s,2,1)]q;;ds
t jeE

Then by substituting (2.2.7) into DPP (2.2.6), we would have the following HJB equation defined
as:

1., OV( i) o, 0V (e, i
_ g 2
2 il T r/ dx?

AV (-, 1) _r_]‘f)‘.r"[-_.',?‘)

d
) . . .
ot ! A :2;1% (J)=0, i€ ( )

with terminal condition V(T z,i) = U (z) for i € I

Similarly as before, since we are dealing with CRRA utility functions (i.e. power and logarithmic),
there exists a closed form funetion to solve the HIB (2.2.9). We will try to use simple trial and
error method to derive the solution of those utilies.

First, an important proposition was introduced by Fu et al. (2014) (detailed proof in [18]) to
help us find the closed form solution:

Theorem 2.2.1. The optimal value function V' is the smallest non-negative solution of the dynamic

programming equation V = MV, i.e., for any (t,z,i) € [0,T] % [0,00[x D], V satisfies

Vit,a,i) = suprem, By v i[ g, 0 <7 V(€1 X7 (§1), (€e1)) + Lg, 1> U(XT(T))] (2.2.10)

Based on Theorem (2.2.1), it shows that V' is the solution to the dynamic programming equation
(2.2.6) and the ILIB equation (2.2.9). Then we define for each i € I on [0, T7[x]0, 400 the function
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of M(t,z,1) satisfies

Mtz i) = Uf[M!(r, i) +reM(tr, i) — g Mtz i) + Zqi_ji.l(f,ar,j)]

) i# (2.2.11)
Myx(t,z,i) = 5(;1., — r()2Mf(f, i)
and has the boundary condition M(7T,x,i) = U(x)
Similarly, from HJB equation (2.2.9), for each i € D on [0,7[x]0, +00[ the function of V(t,z,1)
satislies
d
V(t,z,i) = of[Vi(t, z,i) + rizV(t,z,4) + Z q:; V(t, x,1))
j=1 (2.2.12)

1 oo
Veelt,x,1) = E(,u.,- — r,-]zlr';_z(f.ar.i]

Exact Solution For CRRA Utility
When U{-) is a CRRA utility, the optimal value function V' (f, i) can be solved by using equation
(2.2.11) and equation (2.2.12), which was first introduced by [18].

Example 2.2.1 Power utility: Recall that power utility is defined as
1
Ulx) = -z
p
for z > 0, where p < 1 and p # 0, then the value function V (f,z,i) has a solution given by
P

Vit,o,i) = a(f,i]'?, W(t, 1) € [0, T)z[0, co[zD (2.2.13)

where a(t,1) is the ith component of an Rd-valued column of

a(t) = (alt,1),a(t,2),- - ,a(t, )"

Since a(-,i) is a continuous function on [0,7], with a(7,i) = 1 for each i € I, then equation
(2.2.13) follows that

1
Vilt,z, 1) = —xPay(t, 1)
P

Vot o) = 2P a(t.i) (2.2.14)

Vie(t,z,d) = (p — 1)zP 2a(t,1)

If a(-) = 0, the mapping x — V{(t,x,7) is concave and the maximizer «* of the HIB equation is
given by

o (t,x,1) = — (2.2.15)
Inserting the derivatives and «* into the HJB equation (2.2.12)gives
1 1 1o
Zae(t, i) +alt, ) (r(t) + ——0%) + = sila(t, i) —alt,i)] =0
P t 2(1—}”) p;f}_;[ ]
and boundary condition a(T,¢) = 1, rearranging we get:
1opi—r P <
a(ti) = [(5=)" 27 — ripla(t. i) - j:ZLq(-ja(r..n (2.2.16)
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Equation (2.2.16) can be rewrite as

a(t) = (A = Q)alt)

(2.2.17)
ar(t) = (as(, 1), ar(t,2), -, ar(t,d))’
where
A= d?a(}()\(l)‘/\(Q]. ces .)\(dn c Rrb.-ri‘
Ni)= LT P rip (2.2.18)

20 o p—1
Then we can conclude that the optimal value function V (¢, z,4) has a solution given by

zF

Vit.x.i) = a(r,i]?, ¥t z,1) € [0, T)z[0, co[zD
where a(t) = exp[—(A - Q)(T —t)]- 1

Example 2.2.2 Logarithmic utility: Recall that log utility is defined as U(z) = Inz for = > 0,
then the value function V' (¢, z,4) has a solution given by

Vi(t,z,i) = alt,i)inz + g(t,i), ¥(t, z,i) € [0,T]z[0, co[zD (2.2.19)

where a(t,1) is the ith component of an Rd-valued column of

a(t) = (a(t,1),a(t,2), - a(t,d)”
and g(t,1) is the ith component of an R%valued column of

g(t) = (g(t. 1), 9(t.2), -+ ,g(t.d))"

Similarly as before, since a(-,i) and g(-,i) are both continuous functions on [0, 7], with a(7,i) =
1, g(T,i) = 0 for each i € I, then equation (2.2.19) follows that

Vilt, 1) = ag(t, i)lnze + g (¢, 1)
) = d(n i)t
'lrl.[f_..]._.]‘.) = {l[f,]‘.]lr (2220)
Vit oz, 1) = —alt, i)i2
T

Substituting equation (2.2.20) into equation (2.2.12), we would get

d
i) = = _gijalt.j)
j=1

(2.2.21)
gelt.i) = —sum_ qisg(t, ) — %(”“' — )%t d) — raa(t, i)
=}
Equation (2.2.21) can be rewrite as
a(t) = —Qa(t)
ag(t) = (ag(t, 1), an(t,2),- -+ ap(t,d))"
2.2.22
g (t) = —Qg(t) — b(t) ( )
g(t) = (g(t, 1), 9(t,2),- ,g(t,d))"
where
B(E) = (b(£, 1), b(£,2), - b(t.d))Th(t. i) = %(““; "i\250t 4) + raa(t, 4) (2.2.23)
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Then we can conclude that the optimal value function V (¢, z,4) has a solution given by
Vit,z,i) = alt,i)inz + g(t,i), ¥(t z.i) € [0,T]z[0, co[zD
where a(t) = exp [Q(T —t)] - 1 and g(t) = exp (—Qt) - ﬂT exp (Qs)b(s)ds.

From the above two examples, we know that there exists a closed-form solution to the HJB equa-
tion for power and logarithmic utility functions by guessing the form of the solution. However,
anything beyond that, when we are dealing with general utilities, the HJB equation would become
more and more complex of non-linear SDEs, which cannot be solved by guessing the solution form.
Thus, in the next part of the paper, we will introduce a new method Dual Control Method to
help us deal with the genearl utilities.
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Chapter 3

Utility Maximization with Dual
Control Method

3.1 Basic Theory

In this section, we will introduce the basic theory of dual control method and its application on
the two markets we have discussed in the previous section.

The core of the Dual control theory is to use the Legendre transformation to transform the non-
linear HJIB equation into a linear partial differential equation, and to transform the original space
optimization problem into a dual space pricing problem, thus simplifying the calculation.

In mathematics and physics, Legendre transformation is a kind of involution transformation, which
is named after French mathematician Adrien Marie Legendre. In classical dynamics, it is often
used to derive the Hamiltonian dynamical system from the Lagrangian dynamical system, which
is widely used in thermodynamics.

In the late 1980s, Karatzas et al. (1987) [20] and Cox Huang (1989) [21] among with others,
realized that for optimal investment and consumption, Dual control theory could delve deeper into
the nature of the problem and provide a more powerful solution. For the Merton problem (see the
general form of Merton (1969) [22]), the Dual control theory can be used to prove the form of the
optimal solution.

Since then, Dual control theory has been widely applied to the optimal investment problem and
has come up with a standard solving solution step:

Step 1@ Try to solve the analytic solution of the original problem

Step 2: If Step 1 fails, find the dual problem of the original problem:

Step 3: Try to solve the analytical solution of the dual problem, and through the inverse
transformation, find the analytic solution of the original problem;

Step 4: If Step 3 fails, find the numerical solution of the dual problem by inverse transformation.

3.2 Dual Control in General Market

Let us first use the general market introduced in Section 2.1 as an example to illustrate the Dual
control theory.
Recall that in the optimization process, the value function has the following dynamic programming
principles:

u(t,x) = sup, Elult + h, Xpp0)| Xe = 1]

Using the Ito principle and the dynamic programming principle, we get the following HJB equation
(2.1.17) and optimal allocation policy (2.1.16):

avite)
at
ViT,z)=U(x)
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The HIB equation is a nonlinear partial differential equation, and its numerical solution is very
complex. The analytic solution only exists for the CRRA (power or logarithmic) utility functions.
So we consider simplifying the HLJB equation by using the Legendre transformation.

Define a positive stochastic process Y such that X™Y is a super martingale for any feasible wealth
process X7, and assume Y satisfies the following SDE:

dY, = Yy («(t)df + B(£)dW (£)) (3.2.1)

with initial condition Yy = y, where o and 3 are some stochastic processes. We need to choose o
and 3 such that X™Y is a super martingale for all admissible control process m € R.
By applying [to's lemma, we have

AXTHY (1) = XT(B)dY (1) + Y (BdX " () + d[ X, Y],
= XY (H)[(r + aft) + ( ) (0 + 3(t)))dt + (w(t)o + B(t))dW (1))
X™(0)Y(0) = zy

X™Y is a super martingale if and only if
alt)+r +a(t)o+ ()3 (t)e <0

for all 7 € R,t € [0,T].
According to the assumption, we have for all ¢ € [0, 7]

B(t) =
r—ﬂ()Sﬂ

Define the dual utility function as:

0(y) = supa>o(U(x) — zy) (3.22)
which is decreasing, convex, and continuous for all y.

The dual utility function can be derived as the following steps:

1. Solve U'(z) —y = 0 for x in terms of y

2. Get the maximum point of i;’(y] as I{y) = (U") y)

3. Compute U(y) = U(I(y)) — yI(y)

Moreover, we can define the dual function as:

V(t,y) = E[U(Y(T)|Y(t) = ] (3.2.3)

By the Feynman-Kac theorem, we know that the dual-valued function v (3.2.3) satisfies the
following linear partial differential

‘ﬂ; m,rlr - —9 v "w =0, (3.2.4)
V(T,y) = Uly)

This equation (3.2.4) is a typical Black-Scholes equation, which is easy to solve and calculate. We

have derived the SDE for the dual process ¥ and the corresponding dual minimization problem
that is, the dual process is given by

dY = —rYdt — Y dW
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with the solution of ¥ with inital value Yy = y: given by

1.
Yi = yoexp[(—r - EGZJ(T —t) — Wy — W3]

The following verifies that the inverse of the dual-valued function is the primal-valued function.
Define the inverse transformation function of dnal-valued function as

Vit z) =infy=o(V(t,y) + zy) (3.2.5)

Now, we have a primal problem of sup, E[U(Xy)| and a dual problem of inf,(E[V(Yy)] + zy).
From the definition of the dual function V, we have a inequality such that primal problem is
bounded above by the dual problem:

sup B[U(Xr1)) < inf,=o(E[V(Y(T))] + xy) (3.2.6)

Now we can find a representation of the classical solution to the HJB equation (2.1.17) via two
simple convex dual operations and solution of a linear PDE, all are relatively easy to perform.

For 0 <t < T, since V() is C°¢, the minimum point is obtained by solving

a - o
Fylr (ty)+zx=0 (3.2.7)

Since V() is strictly convex, so l;fu(f_. -} is strictly increasing. Then for every = > (, there exists
unique y solving (3.2.7) denoted by y = y(t,z). We have

E’(r,.;:) = l;’(r_. y(t,z)) + oy(t, ) (3.2.8)

From the chain rule we have the following derivative relations

Vi = Vi,
Ve =y,
];’u =z, (3.2.9)
- 1
V,,=—-——
vy V..
Substituting (3.2.9) into (3.2.4), we would get
av (t,x 57 2 V2
T +ral, - g0 =0, (3.2.10)
VT, z) =Ul(x)
which coincides with equation (2.1.17), thus we have
Vit,z) = Vit,z) = infy;,[}[l}(f.y] + zy) (3.2.11)

Therefore, the primal value function of the primitive space can be obtained by solving the dual
value function in the dual space and then inverse transformation. The partial differential equation
in the dual space is a linear partial differential equation, which greatly simplifies the calculation.
With the dual control method, we can find the optimal value function u, optimal control *
and optimal wealth process X* in the following way:

Find optimal value function u using V (t,z) = V(t,y(t, z)) + zy(t, z), then optimal control 7* is:

61 -
't x) = ;?y(f,.lr]lx}m(f, ylt, z)) (3.2.12)

20




and optimal wealth X+ by solving SDE dX; = rXdt + 7, Xp((pn — 7)dt + odWy).
We have shown that V (f,z), defined by (3.2.8), is a classical solution to the HJB equation (2.1.17)
and satisfies the terminal condition V(T,z) = U (x).

There are closed-form classical solutions to the HJB equation for CRRA utilities.

Example 3.2.1 Power Utility

Assume power utility U(z) = i P for x = 0, where p < 1 and p # 0. In this case, the dual problem
can be written as

Vit,z) =inf,=o(V(t,y) + zy)
The dual function of U is given by

P

Uly) = supy=o(— —zy)
=0 )

Follow the procedures we mentioned above, we first get the derivative with respect to = of % —zy
and set it equal to be 0, we have

P oy=0, = yv+1
Then the dual utility function can be written as

. 1
Uly) = fay’*.- with ¢ = ?%

Recall that the dual value function is give by
V(t,y) = BlUY(T))|Y: =y] where Y satisfies SDE (3.2.1)

- 1 : .
= Uly)exp[(59(g = 1)6% — gr)(T — 1)]
where f = £
o
Then we solve the equation
a -
@L (ty)+z=10
g1 1 2 .
z =y exp[(zalg = )" —gr)(T )] =0

We would get y* = y(t, ) as

" 1 I ro..
Y=zt OXD[(gqﬁz—ﬁ—l)(f—f)]

Substituting it into (3.2.8), we get

V(t,z) = V() =V(ty') +zy*
. - _l 2 1 T —
= Ulz)exp [p(r 29 l_p](f t)]

Recall that the maximum of the Hamiltonian in the HJB equation is achieved at (2.1.16) 7* (f, z) =

0 _Valta)
7 Vg (b))

by calculation we have

1., 1 ’ 1., 1
A o I R 4 L : 11 — _ I:p—z T I S ¥ iy L
Ve = 2" exp[p(r 26‘ 1 _pj(f t)] and V (p— 1)aP * exp [p(r 29 1 _p)(f t)]

Then we have

_8
(1—plo

Substituting «*(t, ) into the wealth process equation of X" (2.1.2), we have the following linear
SDE

7' (t,x) =

2
4 Jedt + idﬂf’})

dkzz-’iz([f—l_p 1—p
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There is a strong solution to the SDE above, called Merton wealth process, detail in [22]. The
optimal wealth process is given by
6* 16 t
Xy =zexp|(r+ - = )t + Wi
l-p 2(1-p?  1-p

Example 3.2.2 Logarithmic utility
Assume logarithmic utility U(z) = Inz for = > 0. Similarly as the previous example, we first drive
the dual utility function as the following:

o 1 1 -

aln.i.‘—.ry:ﬂ::»;—y:ﬂ:;;,;_-:E Uly) = —lny—1

Then dual value function is give by

Vit,y) = E[U(Y(T))|Y: =y] where Y satisfies SDE (3.2.1)

= U(y) +(r+ 502)(T — 1)

where ## = HZT
)
Then we solve the equation
a -
—Vit,y)+x=10
5y (t.y) +a
1
r——=1>0
Y
We would get y* = y(t, ) as
1
Y=
T

Substituting it into (3.2.8), we get
Vit,z) = V(t.x) = V(t.y") +zy’
1.
= U(z) + (r + =62)(T — 1)
2
Recall that the maximum of the Hamiltonian in the HJB equation is achieved at (2.1.16) «* (¢, z) =

8 Valta)
a =V, (Lx)

, by calculation we have

1 1
Vie=— and Vi, = ——
T T
Then we have
Tt (tx) = —
a

Substituting «*(t, x) into the wealth process equation of X" (2.1.2), we have the following linear
SDE

dXi = Xe[(r + 0%)dt + 0dW]

There is a strong solution to the SDE above, called Merton wealth process, detail in [22]. The
optimal wealth process is given by

X, =rexp[(r+6* - %9% + W]

Compared with Example 2.1.1 and Example 2.1.2, we get the exact same solution of optimal wealth
process by using dual HJB method.

Example 3.2.3 A non-HARA utility Consider the following non-HARA utility function from
Bian and Zheng (2015) [7]:




for = > 0, where

1) = ()

The dual function of U is defined by

- 1 .
U(y) = sups>o(H(x) ™ + H(x) ™ + oH(x) - ay)

Taking derivative with respect to x of :—EH (x)™% + H(z)" '+ xH(z) — 2y and set it equal to be 0,
we have )

y=—H(z) *H'(z)— H(z) *H'(z) + H(z) + =H (z)

0= —H(z)*H'(z) — H(z) 2H'(z) + zH'(x)

y=H(z)

Then the dual function can be written as

And the dual value function is given by
V(t.y) = B[0(Y(T)|Y () = o]
where Y satisfies the SDE (3.2.1), and we have the solution to this SDE as
Yp = yrexp[(—r — éGQ)(T —t) — 0(Wp — W)
Substituting Y7 into the dual value function V, we would get

_ 2 2

1 . f f
Vit,y) = E[g.b’_'i exp(3(r+ )T -8+ 30(Wr — W) +y  exp((r+ FIT -1+ O(Wr — W)l

1 . 2 2
= 2y exp (3(r + 2T ~ 1) Elexp (38(Wr ~ W) +y~"exp ((r + )T ~ 1)) Elexp (0 — W)
L s P e (YEE =0 O e (2L
= 2y exp (Bl + ) (T — 1)) exp (g ) 4y exp (7 + ) (T — 1)) exp (g )
= 2y Pexp (3 + 66°) (T — ) 4y exp ((r+ 6°)(T — 1))

Then we need to solve the equation %ﬁ'(t.y] + x = 0. We have the following equation:

0=ay* —exp|(3r+66*)(T —1)] — y?exp[(r + 67)(T — )]

o expl(r+6°)(T —1t)] + \/exp[(2r + 262)(T — 1)] + 4z exp [(3r + 662)(T — )]

B 2x

[exp ((r + 6%)(T — 1)) + vVexp ((2r + 202)(T — t)) + 4z exp ((3r + 662)(T —¢))]*/?

Y

1
y =yt r) =
Y =uylt x) T
Recall the solution is given in the form (3.2.8),

-

Vit,z) = V(t.y')) + zy*

y* P exp ((3r+ 66°)(T — 1)) + v* L exp ((r + 0*)(T — 8)) + xy*

Wil =

Recall that the maximum of the Hamiltonian in the HLJB equation is achieved at (2.1.16) «* (t, z) =
8 Viltz)
o wVaalte)’

by calculation we have

1
Ve =y" and V,, = ——
L’."J.U

Then we have

_ Oy exp ((Br +660°)(T — 1) + 2y 2exp ((r + 02)(T — 1))
i I

T (t, x)
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Substituting «* (¢, ) into the wealth process equation of X" (2.1.2), we have the following linear
SDE
dXT = [02(dy*texp (3r + 662)(T — 1)) + 2y* Zexp ((r + 67 )(T — 1)) + r X7 |dt
+0(4y" Hexp ((3r +66%)(T — 1)) + 2y Zexp ((r+ 6°)(T —1)))dW,

We can rewrite the above equation in terms of ¥; and recall that ¥} has a solution as Y; =
Yy exp((—r— %82)(T — 1) — #(Wp — Wy)), then we have

X7 =Y, exp ((3r+66%)(T — 1)) — Y, 2 exp ((r + 6%)(T — 1))
=y Yexp ((3r + 602)T + (r — 402)t + 40W,) + y* Zexp ((r + 02)T + rt + 20W;)

Now, we have shown that with Dual Control Method, we can deal with general utilities under the
general market, and we will be able to find a closed form solution for them. However, when we
extend our market into a regime-switching model, things get more complex, and only using dual
control method cannot help us solve the problem anymore.

3.3 Dual Control in Regime-Switching Market

In this section, we extend the model into regime-switching market, and then illustrate the dual
control method under this market.

Similarly as before, the utility function U is continuous, increasing, and concave (but not necessarily
strictly increasing and concave), and U(0) = 0. The dual function of U is defined by:

{j"(y] = supz>o(U(x) —x2Y) (3.3.1)

for y = 0 satisfies {:"(oo) = (. Also, {j"(y] is a continuous, decreasing and concave function on
[0,00) and has U(oo) = 0, details in Bian and Zheng (2015) [7].
Define a dual process Y; as

dY (t) = Y(£)(=r(t)dt — 8(£)dW(t) + CdM (1)) (3.3.2)

where C is a constant row vector in R?, W is a Brownian motion, and M, is the martingale defined
as before in (5.1.1). The solution equation (3.3.2) at time T, with initial condition Y; =y, can be
written as

Y(t) = yexrp(A; 1)

T 1 T
whered; r = — [ (ru + CQ vy + Egi]d“ - [ B dWy, + Zfﬂ.(l +Cas —as_ )
t t

(3.3.3)
()
Y7 defined as in (3.3.3) for all T > t satisfies the SDE (3.3.2) can be shown by the Ito’s formula

for semi-martingales.
The dual value function is defined by

Vit,y.i) = By [0 (Y () (3.3.4)

Since Y; satisfies SDE (3.3.2), and U()isa decreasing concave function, then we say that for y > 0
and fixed t, 1, function V(t,y,1) is also a decreasing concave function. Then for fixed 1, 7, we denote
by W (t,z,i) as the dual function of V(t,y,i) given by

W(t,a,i) = infy=o(V(t,y,1) + y) (3.3.5)
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3.4 Recent research on analytical solutions for Utility max-
imization

When we are dealing with general market, it is easy for us to find an analytical solution for utility
maximization. When U() is a CRRA utility, one may solve this problem by guessing the form of
the solution; moreover, even when U(-) is not a CRRA utility, we can apply dual control method
with the help of HIB equation to find the solution. Bian and Zheng (2015) [7] use the dual control
method to prove that there exists a classical solution for HJB equation and the optimal value
function is a conjugate function of the optimal dual value function.

However, when we extend the market into a regime-switching market, we no longer can find a
analytical solution. When /() is a CRRA utility function, we can find the exact solution by trail
and error in the form of V(t,z,i) = Ulx)a(t,i) (power) or V(t,z,1) = a(t,i)U(x) + g(t.i) (log).
When U(-) is a general utility, it is difficult to solve the HIB equation (2.2.9) since it is a system of
fully nonlinear PDEs, which is impossible to solve by hand. Fu et al.(2014) [18] define a functional
operator M given in (2.2.6) and a sequence of functions {H,,} by H,, ;1 = MH,, and show that H,
converges to the value function V' as n tends to co. This algorithm of Fu et al. (2014) [18] helps to
find an approximate value of the dual value function by reducing the system of fully coupled non-
linear PDEs to a system of decoupled nonlinear PDEs. This method works for solving non-HARA
utilities; however, it is computational complexity as we have to solve a stochastic control problem
using the iteration through H,,.

By Ma et al. (2017) [13], he introduced an efficient Monte Carlo method based on the dual
countrol framework to find the lower and upper bounds of the value function for general utilities
and show that these bounds are tight and can be improved with increased number of the dual
control variables. We will illustrate in this paper how the algorithm is worked and apply it using
numerically tests of power and non-HARA utilities.
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Chapter 4

Utility Maximization with Dual
Control Monte-Carlo Method

4.1 Basic theory of Monte Carlo method

The modern Monte Carlo method was first invented by Stanislaw Ulam in 1940. He was working
on a nuclear weapons program at Los Alamos, after Ulam’s breakthrough, John von Newmann
realized the importance of the approach and ran the Monte Carlo simulation through computer
programming. At the beginning of the simulation, they used real random numbers from nature,
but the programming ran very slowly. Then von Neumann developed a method for generating
pseudo random numbers, the middle-square method. Although it was criticized as primitive, von
Neumann realized that it was faster than his simulations.

The Monte Carlo method is the core algorithm of the Manhattan Project. Because of its fast
and high efficiency, it overcomes the disadvantage of the computing tool at that time. In the
1950s, it was used by researchers at the Los Alamos National Laboratory to develop calculations
for the hydrogen bomb, and was popularized in fields as diverse as physics, physical chemistry and
operations research. During this period, the RAND Corporation and the US Air Force has funded
the research of Monte Carlo method and applied it to a wider range of fields.

Monte Carlo method was first introduced to finance in a 1964 Harvard Business Review arti-
cle by Hertz (1964) [23]. In the article, he applies Monte Carlo method to corporate finance, and
analyzes risk management issues in capital investment. In 1977, Boyle (1977) [24] first introduced
Monte Carlo method to the pricing of Financial derivatives in the Journal of Financial Economics.

Nowadays, Monte Carlo method is used in all areas of the financial markets.

Financial analysts analyze net present value (NPV) expectations, volatility and sensitivity by
simulating random cash flows, and screen for investments with NPV greater than 0.

In derivatives, Monte Carlo method is used to calculate the price of options. The price of the
option at the initial time is the price of the option at the initial time by averaging and discounting
all the rewards in each of the possible paths of the underlying asset through the Monte Carlo
method and following the rules in each of the paths.

In the field of fixed income securities and their derivatives, Monte Carlo method is used to
simulate the change of interest rates over time. Using Monte Carlo simulations, you can analyze
the return curve of bonds and price bond derivatives.

In terms of personal finance, Monte Carlo can simulate an individual’s portfolio, and calculate
whether at the time of retirement, it meets the expected pension requirements; and therefore,
decide whether to take on more risk or put more money into savings at the moment.

The Monte Carlo method, widely used in insurance, marketing, and disaster simulation models,
can efficiently simulate events such as earthquakes and hurricanes that lack sufficient data to
estimate risk using traditional methods.

In reinsurance, Monte Carlo method can simulate the complex reinsurance structure of an
insurance company, analyze the effect of net risk compensation on the insured assets, the effect of
risk transfer on reinsurance, and so on.
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In the case of investment linked insurance, the Monte Carlo method can simulate the pricing
of insurance products under complex rules, which can be used as a reference for the trading of
insurance policies. At the same time, it can optimize the asset allocation, calculate the investment
strategy, and guarantee the value preservation and increment of the insurance fund.

Monte Carlo method is an important method of stochastic simulation that yields numerical results
by repeatedly trying random sampling. The main idea is to calculate the definite problem by
stochastic method.

For example, when caleulating the volume of a set, the volume is connected with the proba-
bility. All the possible results are generated by the method of random sample generation, and the
volume of the set is estimated by counting the samples falling into the set.

The theoretical foundation of Monte Carlo is law of large number (SLLN) and the central limit
theorem (CLT). The law of large numbers guarantees that the Monte Carlo estimate will converge
to the true value as the number of tests increases. The Central Limit Theorem provides an estimate
of the degree of similarity of errors after a limited number of trials. We state these results without
proofs.

Theorem 4.1.1 (SLLN). Let (X,,n > 1) be a sequence of independent and identically distributed
(iid) random variables with values in RY. Assume E|X| < 0o. For N > 1, denote sample mean
of (X1.--+, Xn) by

Then
limy oSy = E[Xy], P-as.

Theorem 4.1.2 (CLT). Let (Xu,n = 1) be a sequence of real valued iid random variables. Assume
p = E[X1] and 0? = Var(X1) < 0o, Consider normalized sequence of Sy with mean E[Sy| = p

and variance Var(gN) = %O’Q.‘

N

Sy—E[Sy] VN 1 .
Yy= — = — X, —p
N S 5n) > (J,\, ; 0]

The sequence Yn converges in law to N(0,1), namely
limy o P(Yy <2)=@(2) forallz e R

Take solving definite integral as an example
1
o= flz)dx
0

We can think of this integral as an expectation E[f(U/)], where U is uniformly distributed over
[0,1]. Suppose we can generate n i.i.d [0, 1] uniformly distributed sequence of numbers Uy, Us, - - -
by some algorithms (such as linear congruence algorithm), then by averaging the values of the f
function at these n random points, we get the Monte Carlo estimate of the integral

t;:fu = %ZJ{({;()
Ci=1

If function f(-) is integrable on [0, 1], then by the weak law of large mumbers, when n — oo, @,
converges in probability to a. Moreover, if f(-) is square-integrable, we define

1
orf; = / (flz) — a)’dz

0
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then using Monte Carlo, &, — « has a Normal distribution with mean equal to 0 and standard
deviation equals to 3\/-% As n grows larger, the estimated results are going to get better and better.
Since « is unknown, such that oy is also unknown, which can be estimated as

The form of the standard deviation E-IL‘ is a central feature of the Monte Carlo method. To cut
the margin of the error in half, you need to increase the selection by four times, and to increase
it by one decimal place, you need to increase it by 100 times. The general calculation method of
trapezoid formula is defined as

n—1

IOESIONRE =
S ta @

For a double differentiable function, the order of convergence is O(n~2). Thus, in a one dimensional
integral problem, the Monte Carlo method does not have an advantage. For higher dimensional
integral, however, Monte Carlo method can effectively deal with the curse of dimensionality.

For a integral has dimension higher than [0,1)9, after n Monte Carlo tests, the standard error
is still ﬂ—{‘, which will not increase as the dimension increases. Instead, when the trapezoidal
formula is used for the numerical integration, for a continuous double differentiable function, a
d-dimensional integral has the order of convergence O(r~% ). All the definite numerical integration
methods have the problem that the order of convergence decreases as the dimension increases. As

a result, Monte Carlo method is very attractive when dealing with high dimensional integrals.

In the following sections, we will use Monte Carlo simulation to calculate the optimal investment
return and the optimal investment strategy for the optimal investment problem in the regime-
switching market, based on the Dual control theory and the extension of the market.

4.2 Dual Control Monte Carlo in Regime-Switching Market

The next theorem is the main idea behind this method of tight bounds for utility maximization.
Detail see in Ma et al. (2017) [13].

Theorem 4.2.1 (Tight Bounds). Let W(t,x, i) be given by equation (5.3.5) and 51 and S» be sels
of veetors C' satisfying |C;| < § for i € D. Then the optimal value function V (t,x,i) defined in
equation (2.2.5) satisfies

Vit,x,i) < infoes, W(t, z,1) (4.2.1)

Furthermore, suppose V (t.y,1) given by equation (3.3.4) is twice continuously differentiable and
strictly convex for y > 0 and fired t and i. Let y = y*(t,z,1,C) written as y* be the solution of

Vv o,y (4.2.2)
y
Let the feedback control m;(t,z) be defined by
Lg% 92 -
wlt,zi) = 2L D gy i) (4.2.3)
o Jy

fort € [0, 7] and z > 0. Let X be the unique strong solution of SDE (2.2.3) with control process
w(t) = Tay (6, Xe ). Let W(t,x,i) be defined by

W(t,a,i) = Er o [U(X(T))) (4.2.4)
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The optimal value function V (t,x,1) satisfies
Vit,z,1) = supces, Wtz 1) (4.2.5)

4.2.1 Construction of upper and lower bounds algorithm

By applying this theorem, the Monte-Carlo method can be used to find the tight lower and upper
bounds. To compute the tight lower bound, one key step is to find a solution of (4.2.2). We assume
that the 11t111h U is strictly concave and satisfies nada’s condition of 7 "(0) = no, ' (nc) = 0, which
implies that U is continuously differentiable and U(0) = —o0, U(o0) = 0. From equation (3.3.4],
the pathwise differentiation method gives

My D) _Lp, , v @i () (42.6)
Ay Yy

which is —0o as y — 0, and 0 as y — oo. Choosing a sufficiently small y and a sufficiently large

y such taht the expression L:“l + & has opposite signs for & > 0. Then We can then use the
bisection method to find the solution to equation (4.2.2).

The Markov chain process « can be generated in a standard procedure as follows. Assume the
MCP is at state i. Generate two independent standard uniform variables &; and &, define

Ti = —afﬂfl
where ¢;; = 3., ¢i; is the intensity rate of MCP jumping from state i to some other state (not
decided yet). Then 7; is the first jump time of MCP from state i. To decide which state it jumps
to, divide interval [0, 1] by d 1 subintervals, with length of ¢;;/q;; for j #i. If & is realized in
the jth subinterval, the MCP has jumped to state j at time ;. Repeat these steps to generate a
sample path of MCP on the interval [0, T].

The dual control variable C in (3.3.2) must satisfy 1 + Cla(t) — a(t—)) = 0 for t € [0,7] in
(3.3.3). This suflicient condition is to ensures that || < % In numerical implementation, one
may be chosen randomly by specifying a distribution for C which ensures |C;| < £ and then gen-
erating samples C by simulation, or deterministically by specifying particular values such as fixed
grid points on a d-dimensional hyper-cube satisfying |C;| < . By doing this, we might be having
a tighter lower and upper bounds.

Monte-Carlo method for computing the tight upper bound:

Step 1: Sample d independent uniform variables C'iin [ 0.4 , 0.4] , which are components of a
vector C .

Step 2: Generate M; sample paths of Brownian motion W and MCP «, which are used to
compute Yy with Yy =y and the average derivatives:

M,

r'}l;'((]_.y i) VY (T
_ Y
Ay y Ml Z )

Step 3: Use the bisection method to solve equation (4.2.2)

AV (t.y.i)

By +r=0

and get the solution y ~ y*
Step 4 Compute the upper bound

Wi(0,2) ~ V(0,5",7) + 2"
Step 5: Repeat Steps 1-4 N times and then compute the tight upper bound in foes, W(0,x, 1)

Monte-Carlo method for computing the tight lower bound:
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Step 1: Sample d independent uniform variables C iin [ 0.4, 0.4] , which are components of a
vector C.
Step 2: Generate Mo sample paths of Brownian motion W and MCP «, which are used to find
the control process T given by equation (4.2.3)
; y* 9* -

Ttz 1) = ;T@L (t,y*, 1)

and the wealth process X given by (2.2.3)

dX(t) = X(£)(r(t)dt + 7()a()(O(t)dt +dW (), 0<t<T

Step 3: Compute the lower bound

Ma

W0, z, i) IZU(X’(T]]

JUQ =1
Step 4: Repeat Steps 1-3 N, times and then compute the tight lower bound supee s, W0, z,i).

We will illustrate this algorithm using numerical examples of power and non-HARA utilities in
the later sectiomn.

Remark 4.2.2. This method studied by Ma et al. (2017) [13] broadens the application scope of
stochastic control theory, and provides a fast and effective numerical method for calculating the
utility function of investment income, return and investment strategy without analytic solution in
the state transition market, solved a class of problems that could not be optimized before. Inspired
by this work, we now consider a new situation where the market is partially informed.

Most papers focus on frictionless markets, while in practice due to information asymmetry, trading
strategy constraints, such as short selling, borrowing and endowments et al., the optimal controls
under perfect market assumption may not be realized. In the next sectoin, we will extend our
problem into the regime-switching markets with partial information where the only information
available to investors is the asset prices, while the return processes are unknown in advance. Based
on this model, we will try to solve the same utility maximization problem.




Chapter 5

Utility Maximization in
Regime-Switching Markets with
Partial Information

The market model is the same regime-switching models as previous section, and the utility max-
imization problem is the same. However, we are dealing with incomplete information, the only
information available to investors is the asset prices, while the return processes are unknown in
advance. In order to caputre those unavailable information, we followed by the paper from Bjok
et al. [25], and Zhu & Zheng (2021) [14] which points out to model the refurn process as a finite
state Markov chain that leads to Wonham filter.

5.1 Market Model Set Up

Similarly as before, we consider a fixed time period [0, 7] and the stochastic basis (Q,F, F,P) for

financial markets, where the filtration F = {F; }y<; <7 satisfies the nsual conditions. We model the
market by a continuous-time stationary Markov chain process (MCP) by {a(f)}.

We identify the state space of {a(t)} as a finite set of unit vectors E{e;,es, -+ ,eq} where e; € R
is a column vectors with unity in the ith position and zeros elsewhere, i = 1,--- ,d. Denote by
Q = (qij)dza the generator of the Marov chain {a(t)} with ¢;; = 0 for i # j and Z_r;:l gi; = 0 for
each i € {1,--- ,d}. Then the MCP {«(f)} has a semi-martingale representation

t
n!:nu—/ Qaydv+ M, 0<t<T (5.1.1)
0

where Q' is the transpose of Q, M; is an R%-valued martingale with respect to the filtration gen-
erated by {a(t)}.

We consider we consider a market consisting of one risk-free bond account whose price is de-

noted by So(t) and one risky security with prices denoted by S(t)
dSy(t) = r(t)Se(t)dt, Sp(0) =1, e[0T
dS(t) = S(t)(u(t)dt + o(t)dW (£))

where {W(t),t € [0,T]} is a R-valued standard Brownian motion. Also, r(t) = raf(t), p(t)
pe(t),o(t) = oalt), and r = (ry, JTd) b= (g, Jftd), Oded = (o1, ,o4) are vectors of
risk-[ree interest rates, return rates and volatility rates respectively, with r;, u;, o; being the rate
inregime i. Denote by # = (#,--- , ;) the market prices of risk with #; = “'ﬂ;" fori e D{1,--- ,d}.

Remark 5.1.1. We assume o(#) are uniformly bounded by f!“"—prc)gmﬁﬁivoly measurable processes
on @ x [0,7]. We also assumes that there exists k € Rt such that

Loty (t)z > B
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for all (z,w,t) € B x @ x [0,7]. This ensures that the metrics of J(f),o(f)T are invertible and
uniformly bounded.

We introduce the following notations:
T
HY(0,TR) 2 {v: Qz[0,T] > Rlv € F-"“,E[/ [u(t)[Pdt] <]oe}
0
T
H0,T:R) 2 {€ : (0, 7] = RJE € }'S_.E[/ (1) 2dt] <)o)
0

Define a self-financing trading strategy as @ = (7(t))ycjo,1), I8 an F;-adapted process such that

f[}T midt < oo a.s. and w is proportional portfolio process. Additionally, the set of admissible

portfolio strategies is given by
A={n e H*(0,T:R):x(t) € K forte[0,T]|a.e.}

where K C IR is a closed convex set containing 0.
Some examples of K are discussed in Sass (2007) [26], including K = BR", K = R", and so on.

We dencte X[ as the investor’s wealth at time t, is given as

dXT () = X" (O){[r(t) + 7" () (u(t) — r(t)D)]dt + 7" (o (t)dW (1)}, 0<t<T
XT0)=x

For initial capital > 0, Ax () denotes the class of K-admissible trading strategies m. Define the
value of the expected utility maximization problem as

V(2) 2 suppea, ) E[U(X™(T))) (5.1.4)

As we mentioned before, the return processes are unknown in advance. By involving partial infor-
mation, the utility maximization problem becomes a non-Markov, setting, such that the Hamilton-
Jacobi-Bellman (HJB) eqaution of dynamic programming method invalid. To reduce the partially
observed problem to an equivalent problem under full information, we define the innovation process

V= (V(t)ew .

t
V(t) :f o ) (pe(w) — fila))du + W(t) (5.1.5)

o

where ji(t) = E[u(t)|F5] is the filter for p(t).
Then we would have the following representatives:
dS(t) = Diag(S(t)(a(t)dt + o(t)dV (£))) 5.16)
. 5.1.6
dX7(t) = XT(E{[r(t) + 77 () () — r(1)1)]dt + 77 (t)o(t)dV (£)} j
As we are discussing the regime-switching model, we would have the continuous time Markov chain,

under which the Wonham filter would be described by a stochastic differential equation, see Bjork
et al. (2021) [25]. In this case, the dynamics of asset prices would be given by

dS(t) = Diag(S(t)(u(H(t))dt + a(t)dV (1)) (5.1.7)

where we assumte that p(H(t)) = (p* (H (), ,pN (HE)T and p;(H(t)) = pH(t), where H (#)
is a stationary, irreducible, continuous time Markov chain independent of W with state space
{e1,-+ ,en}, e is the k-th unit vector in E?. The columns of [T = RN=N denote the N possible
states of p(t) and H (f) has the rate matrix Q = (gi;). The filter H(t) = E[H(t)|F] is given as:

dH(t) = QTH (#)dt + (Diag(H (£)) — HE)HEO ) (o (&) ) TdV (1) (5.1.8)
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where V(t) is the innovation process given in (5.1.5). The initial condition H(0) of process H is
assumed to be independent of W, and p(h) is assumed to be deterministic with respect to h.
Based on the new filter H (t) defined in (5.1.8), we would rewrite the wealth process as below:

AXT(t) = XT(){[r(t) + 77 (£)(figg (1) — r(8))dt + 7T (B)a(£)dV(£)} (5.1.9)

Under this transformation, the original partially observed problem has been reduced to a related
problem as in the full information. After solving the reformulated completely observed problem,
the partially observable case would be discussed by embedding the filtering equations for unob-
servable processes. As discussed in Bjork et al. [25], for general hidden Markov models, the infinite
dimensional state space problem of the Kolmogorov backward equation would make it impossible
to give explicit solutions of optimal control. However, we can still derive the corresponding Primal
HJB equation and explore the transformed optimal control problem using the equation.

We define the value functions using the new innovation process and Markov process

VTt z,h) = By o [UXT(T))] forallmeR

5.1.10
Stz h) = suprea @ V(2 h) & )

In the following sections, we will discuss different method for the transformed optimal control
problem, and explore the analytical or numerical solution to the problem.

5.2 Stochastic Control Method

Applying the stochastic control approach, We can derive the HJB equation as following. Recall
that the HJB equation under regime switching model has the following form given in equation
2.2.9

V(i) | V(i)

AU . g ST L o
—392(01’ G, '.1]]2/0 LAYEL) _Zf}‘ij‘f"('s'sj) =0, ieD
j=1

ot ! dr 2t T A2

Then it follows as:

0=1J + suprex{zrt) + o) (h—r(t)-1))J, + %.1:2n(r)Ta(f)o(r)Tﬂ,f“ + figy (£ )Ty

1

+an(t) o ()a(t) S + ETr[U(f)rf(f]TJ;,;,]}
where the boundary condition J(T',z, h) = Ulx).
Equation (5.2.1) is a nonlinear PDE with control constraint, which is in general difficult to solve,
even numerically. There is one important special case in which the nonlinear PDE (5.2.1) can
be simplified into a semi-linear PDE, and the solution may have a representation in terms of the
solution of a BSDE. When U(-) is a CRRA utility, the optimal value function J(t,z,h) can be
solved it with the help of the HIB equation (5.2.1).

Example 5.2.1 Power utility: U(z) = ;—l).r*” for x > 0, where p < 1 and p # 0.
Then the value function .J(-) has a solution given by

1
J(t, . h) = —xPg(t,h)' P (5.2.2)
P
We first compute the derivatives of J followed from equation (5.2.2):
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1
Jy=—aP (1 —plg?
t P ( Plg "Gt

’;.e, — 1"”_ lgl—p

Jow = (p— 1)z’ g"P
5.2.3
Jp = lﬂ"’(l -plg "an (5.2.3)
P
"Iz;fr, = '1-‘p_l(]- - P)Q_pgh

1 B .
T = ?—,:r”(l =)o g — 2o angn)

Substituting equation (5.2.3) into the HJIB (5.2.1), we assume that g > 0 and the coefficients of
the linear parabolic differential equation for g are polynomials in H, the function g is sufficiently
differentiable given by [27], we obtain that g has to satisfy the partial differential equation given
by

1
0= - a?(1 = p)g Pgu + suprexi{as' P[r(t) +7(0) (g = r(t) - 1)

+ %a-”(p —)g' Px(t) o (Do (t) n(t) + iglt, z,.)?l)a:m —p)g "on

+2P(1—p)g Fgrn(t) o (t)o(t)T

1, 1 ) —p —p— 5.2.4
+ 5 Trlo (o) e (1 =)y —pg ™" gnn )]} (5.2.4)

) 1, .
0= ge+ iy (t;h)gn + 5 Trlo(t)o(t) gn] = Glt.h,g,0(t)gn)  where

G() = suprerc{g:[r(t) + n(t) (iy — r(t) - 1))

+ %:r%r(r)'*"c(r)o(rJTrr(rJg“ +an(t) o (t)o(t)" gun}

with g(T,h) =1 for all h € A
Moreover, by [28], if there exists a classical solution f of (5.2.4), then f has a BSDE representation
in the form of f(t,h) = Y5"(t) and (Y, Z) is the solution of the following BSDE:

—dY(s) = G(.Q,Hﬂ_. Y(s), Z(s)ds — Z(s)dv(s)),t <s<T (5.2.5)
thedaed
Y(T) =1
and H(s) satisfies (5.1.8) with initial condition H(0) = h.
The Feynman-Kac formula yields a stochastic representation of g given by:
P . P T T
— Eler T )+ itz — 207 ot / = 5.2,
oltsh) = Eleap(r( 2@ 04 [ 5P 20 - 00 07 )| 20 = ] (526)
where the stochastic process (Z(¢)) € R? is a solution of the SDE
dZ(H) = ap(Z(t))dt + b(Z(1))dV (t)
ar(h) = fig(t,h) + %Hm —p"H)(@"H — (1)) (o (Do(t)T) (5.2.7)

bi(h) = (oo ()") (o — p"H) (o — T H)HH"

The the maximum point of the optimal portfolio strategy 7" = (7, ) € A is well-defined and given

by

1
l—p

H{(ji— p" H)gy(t. h)
g(t.h)

(fTH —r(t))(a(t)oT ()7 + (o(t)o T (t)) (5.2.8)

T =

34




Example 5.2.2 Logarithmic utility: Recall that log utility is defined as U(z) = Inz for = > 0,
then the value function V' (¢, z,i) has a solution given by

Vit,xz, h) = log(x) + f(t, h) (5.2.9)

Similarly as before, we first compute the derivatives of V followed from equation (5.2.9):

Vi=fi
| 1
V, ==
I
; 1
Vie = 2 (5.2.10)
Vie=fr
L”'J.h = O

]’”}rh = fhh

Substituting equation (5.2.10) into the HJB (5.2.1), we get that

0= fo + jig (t.h) fn + %rr[o(r)am'*"m] +suprexc{r(t) +n(®)T(H —r(t)- 1)} (5.211)

We assume that f > 0 and after some algebra with f is sufficiently differentiable, f(-) is given by

&

T
flth)y=El | ro+ (s —ro)me — s7loolmds + f o medVs)
t t

T
— Eo ] Pt (fly — 7a)s —
t

Note that we need w. € [—M, M| in order to have b[f[}T m.dVe] = 0 and that , does not depend
on r. The the maximum point of the optimal portfolio strategy ©* = (7} ) € A is well-defined and
given by

(5.2.12)

T T
T, 0.0, (Teds]

[ A

af = (i —r(®) (e o))" (5.2.13)

However, those above two solutions are only based on trail and error method. They are only a
guessing form of the solution and are too computationally complex. It does not really help us to
solve the optimal problem. In the next section, we will introduee the dual control method under
this market and try to solve the problem.

5.3 Dual control Method

The dual control method is the same as before, we denote the dual function of {7 by U(-) such that
it is a continuous, decreasing and convex function on (0,00}, and it is defined as

U(y) = supa=o(U(z) — 7y)
The dual process is given as:
dY W () = YOI r(E) + S (v(E))|dE + (e (B (A) — () -1+ o) TaV(t), 0<t<T
yri) =y

where dg () is the suport function of the set —K, defined by dx(z) = .wpﬂ;:}({ffrT:z},:z € R, and
the dual control process v € D.delined by

T
D={v=0x[0,T]| = Rlve }_‘“] (65 (w(t)) + |v(t)?)dt < o0 a.s.} (5.3.2)
0
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The dual value function is given by

V(t.2,h) = infiy e 0,000 (@Y + By on UV (1)) (5.3.3)

Recall that the primal and dual value functions satisfy the following weak duality relation:

Erex [U(X™(T))] < suprex BJU(X™)(T)] < infy o(By o n[0(Y(T))] + 23) (5.34)

Any (y*,v"*) € (0,00) % D satislying
zoy* + E[U(YY (1)) =V

is called the optimal dual control and the corresponding Y(#" ") is called the optimal dual
process.

Fix y, the dual value function becomes

J(t . h) = infuep By 1 [0(YOH(T))) (5.3.5)

Suppose K is a closed convex cone as we defined previously, which gives dx(v) = 0 for v € K
and oo otherwise, where K = {v : vTw > 0,%r € K} is the positive polar cone of K for the

corresponding optimal dual control problem.

By using the dynamic programming principle (DPP) and applying Ito’s Lemma, .J satisfies the
following HJB equation:

0= ?:T?.fm,:}'({-}g —r(tyJ, + —y Ho@) Hh—r@) - L+ o)) o (t) (b= r(f) - L+ 2(8)]dyy
+ I (Bxc (v(0) (H = h)) —ylo(t) (b= r(t) - L+ v()| T oo (t) T Jyn + %rr[o(rmr)?fm,]}
(5.3.6)

where K = {v: vIn > 0,1 € IC} is the positive polar cone of K'; and .}(T, yh) =y

Remark 5.3.1. For general utilities with closed convex constraint case, one can write the ILJB
equation but is not possible to find an exact solution even for power utility due to we only have
partial information. The Monte Carlo method we have introduced in the previous chapter can
help to solve this problem numerically; however, we need to solve equation (4.2.2) d“;—“’] =0
which is too computationally complex.

Based on our constrained optimization problems, another method applies. Li & Zheng (2018)
[29] study the constrained portfolio optimization problem for maximizing expected utility from
terminal wealth/consumption and construct the necessary and sufficient conditions for both pri-
mal constraint problem and dual one in terms of forward and backward stochastic differential
equations(FBSDEs). In the next section, we will show that with the help of a systems of FBSDEs,
we would be able to solve the partially informed optimal problem numerically. This idea was first
introduced by Zhn & Zheng (2021) [14].
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Chapter 6

Stochastic Maximum Principle for
Utility Maximization

6.1 Background Information

In this chapter, we still focus on the utility maximization problem under the regime-switching mar-
ket with partial information. In the previous chapter, we have introduced two other methods to
help solve the optimal problem. The stochastic control is wedded to the Hamilton-Jacobi-Bellman
equation and the requirement of an underlying Markov state process. Using this method, we can
derive a guessed solution to the power utility maximization problem; however, this form of solu-
tion is too computationally complex, which does not actually solve the problem. Then we use the
stochastic dual control method which we introduced in Chapter 3 to solve the optimal investment
problem. The spirit of this approach is to suitably embed the constrained problem in an appro-
priate family of unconstrained ones and find a member of this family for which the corresponding
optimal policy obeys the constrains. However, despite the evident power of this approach, it is
nevertheless true that obtaining the corresponding dual problem remains a challenge as it often
involves clever experimentation and subsequently show to work as desire. In the previous chapter,
we can only use this method to derive the corresponding HJB equation (5.3.6), but it is impossible
to solve this equation as consists of a systems of nonlinea PDEs.

In this chapter, we follow the approach given in Li & Zheng (2018) [29]. We use the machin-
ery of stochastic maximum principle and Backward Stochastic Differential Equations (BSDEs) to
derive the necessary and sufficient conditions of the primal and dual problems separately. Then
we progress to a stochastic approach to simultaneously characterise the necessary and sufficient
optimality conditions for dual problems as systems of Forward and Backward Stochastic Differen-
tial Equations (FBSDEs) coupled with static optimality conditions. This formulation allows us to
characterize the primal optimal control as a function of the adjoint processes coming from the dual
FBSDEs. Along with the Monte Carlo Method, we will be able to find an approximate solution to
the optimal problem under this regime-switching partial informed markets.

6.2 Necessary and Sufficient Condition for the Primal Prob-
lems

In this section, we followed by Li & Zheng (2018) [29], we will first derive the necessary and suffi-
cient optimality conditions for the primal problems and use these two conditions to extend to the
dual problems.

From the stochastic maximum principle (SMP), we first introduce an admissilbe control « € A

and a solution X7 of the SDE (5.1.9), the associated adjoint equation is the following linear BSDE
in the unknown processes P € H2(0,T:R) and Q1 € H2(0, T 1R):
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{f”’ )= —{[r(t) + 7" (O (g (8) — r(O)] P () + QF (t)o" ()m(t) Yt + QF ()dV/(¢) (6.2.1)

P(T) = —U'(XT (f]]

We now state the necessary and sufficient optimality conditions for the primal problem.

Theorem 6.2.1 (Necessary & Sufficient condition for the primal problem). Let @ € A and the
strictly positive adapted process X™ satisfy the SDE (5.1.9), then there exists a unique solution
(P1,Q,) to the adjoint BSDE (6.2.1). Moreover, 7 is optimal for the primal problem if and only
if the solution (Xﬁ,131,(§1) of FBSDE:

X (1) = XF(E[r(t) + 77 (1) (g (1) — (1))t + 77 (D)o ()aV (1)},
X(0) =
APy fl=—{[r + 77 (1) () = r@O) P () + QF (o™ (1))}t + QF (v (2)
P(T) = —U'(X*(T))

(6.2.2)

and satisfies
~XFW)a(B)[Pr(#) (i (8) — r(8)o ™ (E) + Qu(t)] € Nk (7(2)) for ¥t € [0.T|.P —a.s.  (6.2.3)

where Ny (x) ts the normal cone to the closed conver set K at x € K, defined as
Nig(r)={yeR :vs* e K,y (v" —x) <0}

From this theorem and the dual control method, we will in the next section introduce the necessary

and sufficient condition for the dual problems.

6.3 Necessary & Sufficient Condition for the Dual Problems

Next we address the dual problem. To establish the existence of an optimal solution, we impose
the following condition:

Armrdmg to the optimal dual control method, there exists some (j,1 ] € (0,00) x D such that
V =z + E[U(Y'%P(T))]. Then given some admissible control ( ) € (0,00) x D with the
state dual process ¥ ¥ that solves the SDE (5.3.1) and E[U (Y% (T))2] < 0o, the associated
adjoint equation for the dual problem is the following linear BSDh in the unknown processes
Py e H2(0,T:R) and Qs € H2(0,T: R):

dPy(t) = {[r(t) + S (v Palt) + QF(D)[(fg (1) —r(D)o ™ (1) + o (@u(t)] e + QF (1)dV (8),
Py(T) = —U (r"'*'ﬂ(r))
(6.3.1)

Since Y% is a margtingale, we can find IHJQ(f). 0 <t < T from the relation

BY#2(t) = B[PY T (T)|F) = —E[Y &2 (T (Y#2(T))| Fi) (6.3.2)

Then we derive the necessary and sufficient conditions of optimality of the dual problem.

Theorem 6.3.1 (Necessary & sufficient condition for optimality of the dual problem). Let (y,v) €
(0,00) x D and Y'Y be the corresponding state dual process satisfying the SDE (5.3.1) with
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E[f:"(l"-""-"'J(T))2] < oo, Then the random variable Y ¥V (T)U' (YY" (T)) is square integrable and
there exists a solution (Py, Qs) to the adjoint BSDE (6.5.1).

Let (g,0) € (0,00)D. Then (3,7) 1s optimal for the dual problem if and only if the solution
(Y@, P Q) of FBSDE

dY @0 () = =Y @IV [r(t) + O (0(8))]dt + [0 H(#) (jig (£) — r(E) - 1+ 0(2))]|TdV (£)}
Y@a(0) = Ir
APy(t) = {[r (D) Po(t) + Q2" 0 (1) gy (1) — r(1) - 2}t + Q' ()dV (1)
Py(T) = - f’(Y‘”'J(fJJ
(6.3.3)
satisfies the following conditions
Py(0) = xq
Py (00T (0] Qs (1) € K (6.3.4)

Py(t)6y(5(t)) + Q2 (t)o~ (t)0(t) =0, V€ [0,T]Pa.s.

We can now state the dynamic relations of the optimal portfolio and wealth processes of the primal
problem and the adjoint processes of the dunal problem and vice versa.

Theorem 6.3.2 (IFrom dual problem to primal problem). Suppose that (i, 0) is the optimal for the

dual problem. Let (Y57 P Q) be the associated process that solves FBSDE (6.3.3) and satisfies
condition (6.3.4). Define

D telo.1] (6.3.5)

Then 7 is teh optimal control for the primal problem with initial wealth xo. The optimal wealth
process and associated adjoint process are given by

X7 (1) = Pu(t),
Pty = -y, (6.3.6)
Qi(t) = YU o ) (t) + o () (g (t) — r(£) - 1))

Then provided by the necessary and sufficient conditions, we will be able to transfer the original
optimal problem into a system of FBSDEs and solve for the optimal control.

Example 6.3.1 Power Utility Let U(z) = J—E;r*” for # > 0, where p < 1 and p # 0. The

dual function is defined as [7(y) = —r—iy'f for q = I—;’_’—l
formation, we assume K is the whole space, which leads to v(f) = 0¥{. Using the method of Li &
Zheng (2018) [29] and the previous two theorems, we illustrate this example.

Without any constraint under partial in-

In order to find the optimal #, we will be needing to solve the adjoint BSDE involving Pyt
and (J5(t) as follows:

dPy(t) = {[T(f)fﬂ’2(f]—cjof7_l(f (n(H) - 1]}df—Qz
Po(T) = =0 (Yl (TY)

dH (t) = Q" H (t)dt + (Diag(H(t)) — H(t)H ()" )(a(t) " p)TdV (t)
where H has the following SDE (5.1.8).

The above BSDE is a systems of nonlinear PDIls. Since the innovation process V(t) and the
Wonham filter H is driven by the same Brownian Motion as the wealth process X7, it is difficult
to solve the optimal problem.
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Remark 6.3.3. If we are dealing with linear Stochastic differential equations under Kalman
filtering of OU processes, see Zhu & Zheng (2021) [14] for details. We will be able to use all of
the above methods, including stochastic control, dual control and stochastic maximum principle
to solve the optimal problem. Moreover, all the methods can be applied for other general cases.
However when we change the model into a regime-switching market, even for specific CRRA
utility function under full space, it is almost unlikely to give the optimal control explicitly, not to
mention adding closed convex constraints. The regime-switching market with partial information
assumption makes those method to be invalid. Additionally, the derivation of m# under this case
requires the corresponding dual control v* and certain functions of y, both of which are difficult
to be given explicitly.

6.4 FBSDEs Monte Carlo Tight Bounds

For utilities in regime-switching markets with partial information, one can write the HJB equation
(both primal and dual), but it is not possible to find an analytical solution even for power utility
due to the double driven Brownian Motion which complex the whole equation into a nonlinear
SDEs. Then we show that it is possible to use the dual FBSDEs to find upper and lower bounds
for the value function, even works for general utilities.

Recall that the primal and dual value functions satisfy the following weak duality relation:

Erex [U(X™(T))] < supre E[U(X™)(T)] < infy o(Ey o n[0(Y(T)] + zy) (6.4.1)

The inequalities show that the dual formulation gives an upper bound for the primal value func-
tion, instead of focusing on the exact controls, we try to explore the tight lower and upper bounds
for the value function of general cases. In what follows, we will focus on finding tight bounds by
Stochastic Maximum Principle(SMP).

Using Theorem (6.3.1), (y,v) is an optimal dual mntrolﬂif and only if (Y{-*"-"'J.IHJ_.Q] satisfying
equation (6.3.3) and equation (6.3.4). Denote by w(t) = P~ e? ()] 1Q(¢) from Theorem (6.3.2)
and we can rewrite equation (6.3.4) as

f’(ﬂ) = Ly,
m(t) € K, (6.4.2)
)+ T () =0, ¥te[0,T)Pas.

=5

Then we can write the dual FBSDE system of (6.3.3) and (6.3.4) as the following:

dY (t) = =Y (t)[r(t)] + 5 (0())dt — Y (£) o~ L) (H (t) — r(t) - 1) + v(£)]TdV (1)
dP() = P(#)[r(t) + xT () (H(t) — r(t) - 1)|dt + P(t)a” ($)o(t)dVi
. ! SN 2 / . (6.4.3)
dH(t) = QT H (t)dt + (Diag (H(t) — H(t)H(t)") (" (H)p)TdV/ (1)
Y(0) =1, P(0) = x4, H(0) = hy, 7(t) € K,
and
. ~ T
Elw|P(T)+ U7 (yY (T)]? + (1 - u.']] [ (w(t)) + w(t)u(t)]dt] = 0 (6.4.4)
)
with

T

min,, , Elw|P(T)+ U (yY (T))* + (1 —w]/ [6¢ (v(£)) + 7 ()u(t)]dt] subject to equation (6.4.3)
]

(6.4.5)

where w € (0,1) is a given constant, and dx is the support function of —K mentioned in (5.3.1).
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Remark 6.4.1. Note that equation (6.4.3) is a forward controlled SDE system with state variables
Y, IH’_.I-HI and control variables m,v, and equation (6.4.5) is a standard control problem with an
additional decision variable y > 0. If we can manage to find (y,7,v) that makes the objective
function zero, then we have solve equation (6.3.3) and (6.3.4). The key advantage of equation
(6.4.5) over the dual FBSDE system (6.3.3) and (6.3.4) is that (6.4.5) is an optimal control problem
with known optimization techniques, which can help solve the problem.

6.4.1 Construction of Tight Upper and Lower Bounds Algorithm

The dnal FBSDE system of (6.3.3) and (6.3.4) is difficult to find its solution. We may only be
able to find (y, m,v) that makes the objective function close enough to zero, which is not the exact
solution to FBSDE system. However, (y. 7, v) and (Y, P) may provide with us a lower and upper
bound for the system as

Lower Bound = E[U(P(t))]

X (6.4.6)
Upper Bound = x4y + E[U(Y (1))]

The algorithm is quit the same as in the full information part (Dual Control Monte Carlo Method),
and it goes as the following:

Step 1: Dived the interval [0, 7] into n subintervals with grid points t; =ih,i =0,1,--- ,n and
step size h = %

Step 2: On each interval [f;,f;41),i = 0,1,--+ ,n — 1, choose constant controls 7; and v; that
are J;, measurable.

Step 3: Iterate throngh equation (6.4.3) by using a discrete time controlled system with Y (t;)

denoted by Y; as

i1 = Yi = Yilri + e (vi)]h = Yi[o, (Hy —1i - 14 0)]T (Viga — Vi)

b1 = P+ By + 7 (Hi — i - 1)+ Pl o:(Vier — 1) (6.47)
Hi1 = Hi + QTHih + (Diag(H:) — HiHT) (6, ju) (Vi1 — Vi) o
Yo=1,P = zo, Hy = ho,m; € K,i =0, ,n—1

where f”(-_;_l — l:'},?‘ =0,1,-+-,n — 1 are independent Normal random variables of N (0, h), nsually,
we would generate n independent standard normal random variables N (0, 1) denoted by Z;4,,i =
0,1,--- ,n—1 to replace Vigr — Vi with VhiZiga.

Step 4: Generate M sample paths of MCP a, which are used to compute different vector paths
of risk-free interest rates, return rates and volatility rates.

Step 5: Repeat Step 1 to 3 M times and take average of M copies of | P, + U'(yY,,)[2, and we

would get an approximate value for the following equation

n—1
VEw| P+ U'(yYn)[* + (L—w)h Y [0r(v:) + ]| subject to (6.4.7)  (6.4.8)

i=(

ANy v

Then with a total of 2n + 1 variables we would be able to minimize the objective function (6.4.8)
by finding the (y, T, v). .

Step 6: The lower bound is given by LB = E[U(P,)] and the upper bound by UB = zyy +
E[U(Y,)].
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Chapter 7

Numerical Examples

In this section, we will use the numerical methods we have introduced in the previous chapters to
compute the lower and upper bounds for optimal problem under regime-switching markets with
full and partial information. At the end of the chapter, we will compare the results from the two
scenarios.

7.1 Full Information Case

When dealing with the regime-switching markets with full information, we use the Dual control
Monte Carlo method to compute the tight bounds. Detailed algorithm can be found in Chapter
4.2.
7.1.1 Power Utility
In this example, we assume that {/(x) is a power utility given by
. 1,
Ulzx)=—-2F, O0<p<l
P
and the dual function is given by

. 1 /]
Uly)=—-y", ¢ L
q

:p—l

v (t,y.i)
Vityil |

Follow the method we discussed in Chapter 4.2, we need to solve the equation (4.2.2) ay

0. Given the SDE Y(T) = yexp(A; 7) in (¢

3), we have

Vit y,i) = —ly”ﬂ(f,i),
q

B(t,i) = E; ;|exp(gA, 7))

By solving equation (4.2.2), we have the following equation
. T,
Y: = [——
vi (d“,”)

Then follow the last step of the algorithm, we have the tight upper bound as:

UB = infoes, W (t,7,1) = infocs, {—~ () 1B(t 1) + 77}
q

To calculate the lower bound, we first calculate the optimal control 7(t,z,7) given by equation
(4.2.3) w(t,z.1) = %L%%l:'(f,y*,i), by direct computation, we have
Bt i) 1
Tt i) = ( ,)
o(t, i)l —p
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Substituting this 7 into the wealth process X™ and solve we get

= f,
‘r — 92 &
]!MP[] J] )d 1—p

Follow the last step of the algorithm, we have the tight lower bound as:

LB = supces, {W(t,x,i) = Ulz)E; i Ey i[exp [/ (pre+ ( 6’2 )s]|}
For mumerical solution, we consider the following set ups.
For power utility, we take p = % the intial wealth at time ¢t = 0 is zy = 1, the total invest-

ment period T = 1, and the mumber of simulations is M; = M, = 107.
We consider a 2-state Markov chain process with generating matrix

Q= —a
“\b b
where a,b are positive constants from the uniform distribution on interval [0.1, 2|, which means
the transition of one state to another can be slow (average once every 10 years) or fast (average
twice a year) or anything in between. The states are a “growth economy” (state 1) and a “recession

economy” (state 2). We generate 5 sample sets of a,b for robustness. The riskless interest rates,
return, and volatility rates of risky asset are given by

r=(0.05,001), p=(0.13,007), o=(0.2,03)

The comparisons are carried out for the cases of €' = 0 and additional control vector C (sampling
Ni = 50 times for computing the tight upper bound and N, = 0 times for computing the tight
lower bound). In the test, the benchmark value is the primal value explicitly given by equation
(2.2.13)

P

Vit,o,i) = n.(f,?f]'?, Wt z,1) € [0, T)z[0, co[zD

where a(t) = exp[—(A—Q)(T —1)]-1 and A(i) = —E(%)ZJ” —r;p for i € DD, given by equation
(2.2.18).

No Control C With Control C
a.b g | Benchmark LB UB LB UB

1.873029 1 2.3099 2.3005 2.3103 2.3098 2.3100
1.779791 | 2 2.2248 2.2243 2.2250 2.2247 2.2249
1.675422 1 2.3529 2.3516 2.3531 2.3528 2.3530
0.512917 | 2 2.0003 1.9998 2.0004 2.0003 2.0004
0.669115 | 1 2.2037 2.2930 2.2041 2.2037 2.2940
0477458 | 2 2.2270 2.2264 2.2276 2.2268 2.2271
0.356473 | 1 2.0868 2.0864 2.0877 2.0866 2.0869
0.972562 | 2 2.0521 2.0518 2.0524 2.0521 2.0522
1.742312 | 1 2.1799 2.1796 2.1804 2.1795 2.1804
1.100127 | 2 2.1270 2.1263 2.1274 1.1270 2.1271

diff rel-diff (%) diff rel-diff(%)

mean 0.000951 0.043366 0.0003 0.012313

std 0.000301 0.013041 0.00022 0.010152

Table 7.1: Numerical results for Power utility with Full information

The numerics in Table (7.1) show that the dual-control Monte- Carlo method generates correct
and tight lower and upper bounds on the primal value. From the table, we can see that the use
of control vector ' can tighten the gap between the lower and upper bounds. We have also listed
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statisties in Table (7.1), including the mean and the standard deviation of absolute and relative
difference between the lower and upper bounds. The relative difference is defined as (.-'Ji—BLB + 100.
It is clear that the gap between the tight lower and upper bounds is very small given the mean

and standard deviation difference between them.

7.1.2 A non-HARA utility

In this example, we assume that U(x) is a non-HARA utility given by Bian and Zheng (2015) [7]:
7 1 -3 -1
Ulz) = EH(J.‘) S+ Hiz) " +zH(x)

for = = 0, where
2
1+ 1+ 4z

The dual function of U is defined by (from previous Example 3.2.3)

H(z) = ( )t

7 1 3 -1

Uly)=3v "+
Given the SDE Y(T) = yexp(A; ) in (3.3.3), we have

. 1
Vit,y i) = Ey“‘b"(r,i) +y (L),

D(t,i) = E[exp (=34.1)).
F(t,i) = E,q[exp (—Aer)]

By solving equation (4.2.2), we have the following equation

yl = V‘l’%[j’(f.i) + /F2(t,1) + 4zD(t, 1))

The tight upper bound is given by
Lo . L .
UB =infoes{3(y") *DIt1) + (y") " F(t1) +xy'}

Then we calculate the optimal control 7(t, z,4) given by

T(tox, i) = 2% %[(y*)‘J‘D(f,i) + 1

.

Substituting this 7 into the wealth process X™ and solve we get

X+ A) = (1 +r(OADXT(E) + XT (AT () (D) (0 A(E) + Way)

Follow the last step of the algorithm, we have the tight lower bound as:

LB = supces, Ev e :[UXT(T)))

For numerical solution, we consider the following set ups.

Basically we follow the same set up in the previous example with the intial wealth at time ¢ = 0 is
xy = 1, the total investment period T = 1, and the number of simulations is M; = My = 107.
We consider a 2-state Markov chain process with generating matrix

—a a
where a = b = (.5. The riskless interest rates, return, and volatility rates of risky asset are given

by
r=(0.05,0.01), p=1(0.13,007), o=(020.3)
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No Control C With Control C

an LB UB diff rel-diff(%) LB UB diff | rel-diff(%)
1 2.5220 | 2.5288 | 0.0068 0.2696 2.5220 | 2.5243 | 0.0023 0.0912
2 | 24923 | 2.4967 | 0.0044 0.1765 2.4923 | 2.4935 | 0.0012 0.0481

Table 7.2: Numerical results for non-HARA utility with Full information

The comparisons are carried out for the cases of €' = 0 and additional control vector C (sam-
pling N1 = 50 times for computing the tight upper bound and N; = 50 times for computing
the tight lower bound). Since under regime-switching model, there is no closed-form formula
for this non-HARA utility, thus we do not have any benchmark to compare with. However, with
the previous power utility example, we believe that our algorithm works well for this utility as well.

The numerics in Table (7.2) show that the dual-control Monte- Carlo method generates correct
and tight lower and upper bounds on the primal value. We have also listed statistics in the table,
the relative difference between the lower and upper bounds show that the gap between the lower
and upper bounds are small.

Clearly from both examples, we can see that the dual control Monte Carlo method has provide
with us an accurate approximation of the true optimal value function. Moreover, with the extrac
coutrol vector €', the gap between the lower and upper bounds have been tighten. Thus, we can
conclude that this method is a good approximation, and we will use those results as an benchmark
to compare with the results in partial information.

7.2 Partial Information

When dealing with the regime-switching markets with partial information, we use the FBSDE
Monte Carlo method to compute the tight bounds. Detailed algorithm can be found in Chapter
6.4. For simplicity, we assume the market has riskless asset and one risky asset and r, o are con-
stants. We first consider the case where K is the whole space (i.e. K = ).

Since K is the whole space, then K = {0} and v; = 0 for all i, and we consider controls 7; in
the following form: m; = a + bH; with a, b being constants. Then we can rewrite discrete system
(6.4.7) as the following:

Vi =Y, Yirh - Yo Y H —r 1)|"VRZi,
P =P+ PBr+al(H —r-1)h+ PalovhZ,

i

Hi+L = H(' s QTHJ’- e (Di‘fﬂ_‘]‘[ﬂi) - HiH?](5_lﬁ-i]\/HZi+1 (7.2.1)
Yo=1HF = -1-‘[}330 = hy,
7w, = a+ bH;
with
ming ., E[|P, + U'(yYn))?]  subject to (7.2.1) (7.2.2)

The lower bound is given by LB = E[U(P,)] and the upper bound by UB = xgy + E[U(Y,)].

7.2.1 Power Utility

The utility function is power utility given by
Ulx) Lo D<p<l
J(z) = —xP, P
P

The dual funetion is given by




and the derivative of dual function with respect to y is given by

U'ly) =~y

g—1

For numerical results, we follow the same numerical set-ups in previous section. We consider a
2-state Markov chain process with generating matrix

o=(7 %)

where ¢,d are positive constants from the uniform distribution on interval [0.1, 2]. We generate 6
samples of ¢ and d to illustrate the robustness. The riskless interest rates, return, and volatility
rates of risky asset are given by

r = (0.05,0.01), po=1(0.13,0.07), o =1(0.2,0.3)

along with zy = 10,7 = 10,7 = 1,such that step sizeh = T — 0.1, the number of simulations is

M = 107. Define the initial guess of hy as below: "

o (01 01
=101 01

Moreover, we will varying through hy and o to see how the tight bounds would change.

c,d oo | ho LB UB rel-diff(%)
1.873029 1 0.05 | 2.1244 | 2.1474 1.0826
1.779791 2 | 0.05 | 2.0280 | 2.0487 1.0207
1.67TH422 1 0.05 | 2.2991 | 2.3224 1.0134
0.512917 | 2 | 0.05 | 2.2556 | 2.2806 1.1084
0.669115 1 0.1 2.2540 1.4402
0477458 | 2 0.1 2.1286 1.18584
0.356473 1 0.1 2.4038 1.2126
0.972562 | 2 0.1 2.3098 1.3208
1.742312 1 0.2 2.4390 1.4981
1.100127 2 0.2 2.3622 1L.6TRT
1.742312 1 0.2 2.4293 1.8873
1.100127 2 0.2 2.2789 18776

mean 1.3607
std 0.3164

Table 7.3: Numerical results for Power utility with Partial information by Varying hg

Tables (7.3) and (7.4) indicate that FBSDEs Monte Carlo method gives reasonable ranges for
optimal values. The results show that by using dual method, we can always give a range for the
alue function and generate tight lower and upper bounds. From the tables we can see that as the
hy increases, the value of the tight bounds seem to be increasing as well, along with the relative
difference between them. Similar situation happens when we vary through oy. However, based on
the relative difference, we still can conclude that this method provides with us an accurate tight
bounds for the optimal value function.

7.2.2 A non-HARA Utility

In this example, we assume that U(z) is a non-HARA utility given by Bian and Zheng (2015) [7]:

r 1 -3 -1
Ulz) = EH(J.‘) + H(z) " +zH(x)
for = > 0, where
2
Hiz) — < 1/2
A Y v v




c,d Qg oy LB UB rel-diff(%)
1.873029 | 1 | (0.1,0.2) | 2.1645 | 2.1875 1.0626
1.779791 2 (0.1,0.2) | 2.0277 | 2.0484 1.0209
1.675422 | 1 | (0.1,0.2) | 2.0475 | 2.0725 1.2210
0.512917 2 (0.1,0.2) | 2.0263 | 2.0496 1.1499
0.669115 1 (0.2,0.3) | 2.3361 | 2.3611 1.0702
0477458 | 2 | (0.2,0.3) | 2.2906 | 2.3226 1.3970
0.356473 1 (0.2,0.3) | 2.3177 | 2.3465 1.2426
0.972562 | 2 | (0.2,0.3) | 2.1652 | 2.1952 1.3906
1.742312 | 1 | (0.3,0.4) | 2.4949 | 2.5339 1.5632
1.100127 | 2 | (0.3.0.4) | 2.3505 | 2.3865 1.5316
1.742312 | 1 | (0.3,0.4) | 2.4591 | 2.5041 1.8299
1.100127 | 2 | (0.3.0.4) | 2.3976 | 2.4396 1.7517

mean 1.3526
std 0.2716

Table 7.4: Numerical results for Power utility with Partial information by Varying og

The dual function of U is defined by (from previous Example 3.2.3)

i 1 4 —1

Uy)=3gv "+
thus the derivative of the dual function with respect to y is given by:

4 -2

Uly)=—y -y

For numerical results, we follow the same numerical set-ups in the power utility case, with gener-
ating matrix ) with ¢ = d = 0.5. Also with an initial guess of hy as

o (0101
=101 01

and vary throngh hy and oy to see the change of the results.

ap | hy LB UB rel-diff(%)
1 | 0.05 | 22957 | 2.3211 1.1064
2 | 0.05 | 2.1420 | 2.1690 1.2133
1 0.1 | 2.3864 | 2.4184 1.3409
2 0.1 | 2.2127 | 2.2439 1.4078
1 0.2 | 2.4038 | 2.4384 1.4373
2 0.2 | 2.2354 | 2.2722 1.6536
mean 1.3599
st 0.1901

Table 7.5: Numerical results for non-HARA utility with Partial information by Varying hy

Tables (7.5) and (7.6) indicate that FBSDEs Monte Carlo method gives reasonable ranges for
optimal values. From the tables we can see that as the hy increases, the value of the tight bounds
seemn to be increasing as well, along with the relative difference between them. Similar situation
happens when we vary through o,. However, based on the relative difference, we still can conclude
that this method provides with us an accurate tight bounds for the optimal value function.

7.3 Comparison between the model

Theoretically, despite of the utility function we choose, the value of the optimal control function
under full information should always be greater than the values under partial information. When
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p oy LB UB rel-diff( %)
1 | (0.1,0.2) | 2.1955 | 2.2215 1.1843
2 [ﬂ 1.0. 7) 2.1955 | 2.2215 1.1843
1 | (0.2,0.3) | 2.2337 | 2.2591 1.1371
2 | (0 2.0 3) | 2.2209 | 2.2521 1.4026
1 | (0.3,04) | 2.4368 | 2.4713 1.4178
2 | (0.3,0.4) | 2.3407 | 2.3775 1.5721
mean 1.3455
std 0.1609

Table 7.6: Numerical results for non-HARA utility with Partial information by Varying og

dealing with partial information, we need to make assumptions and approximation such that we
can transfer this incomplete dataset into a complete dataset. In our case, we use the Wonham
filter to transform our partially informed model setting into a fully informed model. By doing this,
some of the true values are not observed and will be lost. Thus suggesting the value of the optimal
control function will be smaller.

In practice, when we use the dual control based Monte Carlo method to find the tight upper
and lower bounds for the optimal value function. The numerical results from both fully and par-
tially informed model are quit close. In addition, the tight npper and lower bounds in the partially
informed model is slightly less than the values in the fully informed model. This result consists
with what we have discussed above in theoretical. By comparing the results from the two model,
and see from the relative difference between the tight upper and lower bounds, when dealing with
full information market, we tends to have a more accurate tight bounds compare to the values
in the partially informed market. This also makes sense, even when we are usign approximation
method to calculate the optimal value functions, with full information in hand, we still tends to
have a better approximation as we do not deal with the loss of information. However, we can still
conclude that this Monte Carlo method for computing an approximate value for optimal value
function is quit accurate for both full and partial information markets.
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Chapter 8

Conclusion

In this paper, we study the dual control approach for the optimal asset allocation problem in the
general market, and extend it into a contimous-time regime-switching market. Under the fully
informed market, we followed a Monte Carlo algorithm to compute the tight lower and upper
bounds of the value function based on a system of fully coupled nonlinear partial differential HJB
equations. Then we focus on the portfolio optimization problem with limited market information
under full space. By transforming partial information problems into ohservable cases using Won-
ham filter principle, the optimal controls are explored with the help of stochastic control, dual
control and dual FBSDES respectively. Applying the Monte Carlo method on the dual FBSDEs,
we can find the tight lower and upper bounds of the primal objective value function. To show the
method is reliable and accurate, we illustrate with some numerical tests for power and non-HARA
utility functions under both fully and partially informed markets. The results indicate that un-
der both markets this method can provide tight bounds. We can therefore find the approximate
alue function and its corresponding control strategies mumerically for general utility functions in
a regime switching Black-Scholes model with both full and partial information.

Since in our paper, we assume we are dealing with a full space, and we do not consider any

constraints. In future studies, we can study for some constrained cases. Some examples of K are
discussed in Sass (2007) [26], including K = R", K = R*, and so on.
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