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Abstract

My dissertation is on a new approach to evaluate the Economic Capital. A brief introduction

of the latter is thus essential.

When financial institutions trade with counterparties, there is always a chance (a positive prob-

ability, however small) that these can default, failing to pay back the principal or the interests

of the trade. Being regulated, banks are obliged to hold an amount of risk capital so that

their balance sheets remain solvent over the measurement period. The Economic Capital is

basically the amount of money needed to survive in the case of a worst scenario. This amount

is assessed internally in Risk departments and covers all sorts of risks the bank may encounter.

Amongst these risks: Credit Risk -which is the uncertainty that debtors will not honor their

obligations. Market Risk -which is associated to fluctuations of the market prices of exchange

rates, financial assets, commodities, etc. One can use quantitative skills to simulate scenarios

which output different possible values of losses to have an idea of the risk one is facing. There

are other risks, harder to simulate, a financial firm could encounter: Operational Risk which

includes IT failures, human errors, fraud, wars. . . and Liquidity Risk, which is the risk an asset

cannot be bought or sold quickly in the market, or the risk of not being able to acquire sufficient

funding.

For simplicity, and to introduce the motivation behind the approach we’re taking, we define

the Economic Capital to be the Value at Risk or the Expected Shortfall at high confidence

levels of a given portfolio. The natural way to estimate both risk measures is to do a simple

Monte Carlo simulation to generate scenarios of losses and have an idea on their frequencies.

The default probabilities of many banks’ counterparties are very low (can reach the order of

0.01%), and most of the banks use a confidence measurement level of the order of 99.96% to

99.99%, which is the insolvency rate for an institution with an AA or AAA credit rating.

The motivation behind avoiding to use the classic Monte Carlo method stems from the fact that

a confidence level of 99.99% -which is equivalent to a quantile of 1e-04, requires a big number
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of simulations. If we were to use 1 million scenarios, only 100 scenarios will exceed the 99.99%

level. However, we are mostly interested in what is happening beyond this threshold. Also,

if the probability of default is 0.01%, scenarios that give the biggest values of the loss will be

rare if not non-existent, whereas in real life, they could be reachable with very low probability.

This will make our estimation of risk inaccurate.

The Importance Sampling, as we will detail in the first chapter, is a method used to simulate

rare events. It will prove to be a very efficient method to reduce the variance of our estimator.

Chapter 2 will detail the Normal Copula model (introduced by J.P. Morgans CreditMetrics sys-

tem), which will be used to model the dependence between the obligors of a certain portfolio. It

is based on modeling the dependence by stating they all depend on the same common factors.

The first Importance Sampling procedure consists on changing the distribution of these factors

in order to have a smaller variance. Since the dependence of our counterparties is expressed

through these systematic factors, once we condition on them, the oligors become independent.

The second Importance Sampling procedure will consist in changing the conditional (on the

common factors) default probabilities. The next chapters show the gain of applying Importance

Sampling on the accuracy of our estimator, and the last chapter shows that our method can be

extended to more general cases.

My paper is mainly an implementation on the paper by Glasserman on Importance Sampling

for Portfolio Credit Risk.
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Notations
The notations below will be used throughout the paper.

Φ(x) The cumulative distribution function of a standard normal random variable

φ(x) The density of a standard normal distribution

1x∈A Indicator function: equal to 1 if x ∈ A and 0 otherwise

Eg[X] The expected value of the random variable X generated with the density function g(x)

var(X) The variance of the random variable X

V aR The Value at Risk of a given portfolio
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Chapter 1

Importance Sampling

1.1 Motivation and Objectives

When we are estimating a variable, we are constantly looking for a way to reduce the variance

of our estimator. That is in the aim of increasing the accuracy and the rate of convergence.

Variance reduction methods are effective and easy to implement. Amongst the techniques used,

we have: control variates, partial integration, systematic sampling, re-weighting and Importance

Sampling.

Importance Sampling is the core of this paper. If the problem is to estimate:

θ = Ef [h(X)]

The idea is to change the estimator of θ, requiring a change of the density function of the

random variable we’re simulating. This change is efficient only if the new estimator has a lower

second moment, in more details:

Let PX(.) and QX(.) be two probability densities such that P is absolutely continuous with

respect to Q (i.e. PX(x) = 0 whenever QX(x) = 0) and such that EQX

[
PX
QX

]
= 1 , let X be

a random variable under the density function PX . The likelihood ratio R = PX
QX

is thus well
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defined. The idea behind IS is based on the following identity:

EPX [h(X)] =

∫
h(x)PX(dx) =

∫
h(x)

dPX
dQX

(x)dPX(dx) = EQX [h(X)R(X)] .

This means that instead of generating X under PX , we generate it under QX , and the change

only requires a multiplication by a likelihood ratio.

The estimator will thus change from:

θ̂Pn =
1

n

n∑
i=1

h(Xi)

where (Xi)1≤i≤n are generated using PX , to:

θ̂Qn =
1

n

n∑
i=1

h(Xi)
f(Xi)

g(Xi)

where (Xi)1≤i≤n are generated using QX .

This change is effective only if the variance is reduced, i.e.

varQX [h(X)R(X)] < varPX [h(X)]

which is equivalent to:

EQX

[
h(X)2R(X)2

]
< EPX

[
h(X)2

]

Importance Sampling becomes efficient in the cases where the events we are interested in are

rare using the PX density. One example of a rare event , as we stated in the introduction, is

simulating a default indicator with very low default probability (the default indicator gives 1

on average every 10000 simulations for a default probability of 0.01%).
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1.2 Some examples of likelihood ratios:

For future use, we provide two examples of likelihood ratios.

-First example:

The likelihood ratio for changing the density from a multivariate standard normal N (0, I) to a

multivariate normal variable with mean µ and covariance matrix I, N (µ, I):

R(x) =
f(x)

g(x)
=

1√
2π
e−x

Tx
2

1√
2π
e− (x−µ)T (x−µ)

2

= e
µT µ
2 −µ

Tx (1.1)

- Second example:

The likelihood ratio for changing a random variable Y with a Bernoulli distribution with prob-

ability p to a Bernoulli with probability :

pθ =
pecθ

1 + p(ecθ − 1)
(1.2)

The parameters θ and c are to be taken as deterministic constants for now, we will see later

what they correspond to. Unlike the first example, this is a discrete distribution, the likelihood

ratio will have two different outputs depending on the value of Y :

• R(1) =
p

pθ

• R(0) =
1− p
1− pθ

This can be put in one expression:

R(Y ) =

 p

pθ


Y  1− p

1− pθ


1−Y

(1.3)
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In the case of N independent Bernoulli variables, Y1, ..., YN , with probabilities p1, ..., pN , the

likelihood ratio would be the product of the individual likelihood ratios, i.e.

R(Y1, ..., YN) =
N∏
i=1

 pk

pk,θ


Yk 1− pk

1− pk,θ


1−Yk

=
1 + pk(e

θck − 1)

eθckYk

= exp(−θL+ Ψ(θ))

(1.4)

where :

Ψ(θ) =
N∑
n=1

log
(
1 + pk(e

θck − 1)
)

(1.5)



Chapter 2

Normal Copula Default Model

2.1 Introduction to the model

Over a fixed horizon of time [0, T ], we would like to estimate the Value at Risk and the Expected

Shortfall of a credit risk portfolio. To do so, one needs to simulate the loss of the portfolio.

Let N be the number of counterparties to which the portfolio is exposed. And let pk denote the

unconditional probability of default of the kth obligor. These unconditional probabilities are

inputs of the model and are linked to Credit Ratings (depending on the obligor’s past history

of borrowing and paying off debts and to its future economic potential), or to the market prices

of corporate bonds or Credit Default Swaps.

The counterparties of a portfolio are usually dependent, which makes the problem more com-

plex. A common way to express this dependence is to use a Normal Copula model, which we

will introduce shortly.

The loss of a portfolio is the sum of losses over all its obligors. We simulate the default of

counterparty k by a default indicator, which is a random variable defined as follows:

Dk =


1 with probability pk

0 with probability 1− pk.

6



2.1. Introduction to the model 7

As a first approach, the exposures of the obligors will be supposed deterministic. We will

discuss the case of the stochastic exposures later in paper. We denote ck the exposure of the

kth obligor. Thus ckDk is the loss due to the kth obligor, and

L =
N∑
n=1

ckDk

is the loss of the portfolio at time T.

For the kth counterparty, we introduce the Credit Worthiness index Xk defined as follows:

• Xk is a standard normal variable

• Dk = 1{Xk<tk}

tk is the threshold that determines whether there’s a default or not, it is linked to the uncon-

ditional default probability by:

P (Yk = 1) = pk = P (Xk < tk) = Φ(tk) (2.1)

Thus, at time T, the counterparty defaults when the value of that index falls below tk:

Xk < Φ−1(pk) = tk

For example, if the probability of default is 1%, the credit index must fall below -2.32 for default.

The idea behind the Normal Copula model is to express the dependence between the default

indicators by passing it to the correlation between the Xks. We simplify the model by stating

that there are d common factors that explain this dependence. Mathematically, this can be

modeled by writing that the credit index for obligor k is the sum of contributions from d
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systemic factors F1, ..., Fd and an idiosyncratic factor Ik:

Xk = ρk,1F1 + ...+ ρk,dFd + akIk (2.2)

The idiosyncratic factor Ik, which is a standard normal variable is independent of

{I1, I2, ..., Ik−1, Ik+1, ..., IN}. This is typically an internal factor of default. We also know that

the Dks are correlated, they are all linked to economic variables such as stock market level and

volatility, Non-Performing Loans (NPL) or other credit cycle indicators.

Our main assumption here is that the systematic and idiosyncratic factors, alongside the Credit

Worthiness index are distributed according to the standard normal distribution and are uncor-

related as a first approach. Thus, in order to insure that the variance of the Credit Worthiness

index is 1, we must have, for k=1,...,N:

ρ2
k,1 + ρ2

k,2 + ...+ ρ2
k,N + a2

k = 1 (2.3)

Since the common factors are supposed mutually independent, and are all independent from

the idiosyncratic factor.

Also, the factors {ρ1, ..., ρN} will be supposed non-negative, which is a consequence of the posi-

tive correlation between the defaults of the obligors (in a financial crisis, a financial institution’s

default can cause other institutions’ default).

We will see later that the common factors can be correlated, and in the real world, in fact, are.

The systematic factor has a correlation ρk with the credit index Xk.

Remark 1.

In the case of a one-factor model, simple calculation gives that the correlation between Xk and

Xl is equal to ρkρl.
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2.2 Conditional default probabilities

From the expression (2.2), conditioning on the common factors, i.e. for a given value of

F1, ..., Fd, (we will denote F = (F1, ..., Fd)
T and ρk = (ρk,1, ..., ρk,d)) the counterparty defaults

if the idiosyncratic factor falls below a threshold:

Ik <
N−1(pk)− ρkF

ak
. (2.4)

Meaning that the conditional default probability of the obligor k is given by:

pk(F ) = pk(Yk = 1|F ) = pk(Xk < tk|F ) = N

(
N−1(pk)− ρkF

ak

)
(2.5)

Note that once we condition on the common factors, the default indicators become independent

Bernoulli variables with probability given by (2.5).

Stopping to analyze this function is essential here. We want to see how the common factors

change the conditional default probability. For this, we will plot the value of the systematic

factor against the conditional probability.

In the case of a one-factor model, i.e. all the counterparties depend one only one factor, the

conditional probability becomes:

pk(F ) = N

(
N−1(pk)− ρkF√

1− ρ2
k

)

We plot the values of the common factor in the X-axis, and the values of the conditional default

probability in the Y-axis.

We see from Figure 2.1 that when the normal variable takes negative values, the conditional

default probabilities go up. This will motivate the Importance Sampling on the common factors,

which we will detail in the next chapter.

In the case of two systematic factors, the conditional default probability is:

pk(F1, F2) = N

N−1(pk)− ρk,1F1 − ρk,2F2√
1− (ρ2

k,1 + ρ2
k,2)


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Figure 2.1: The conditional default probability as a function of one systematic factor,
unconditional default probability pk = 1% and ρk = 50%

Figure 2.2: The conditional default probability as a function of two independent
systematic factors, unconditional default probability pk = 1% and ρk = 50%
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We plot the values of the first common factor in the X-axis, the second common factor in the

Y-axis and the values of the conditional default probability in the Z-axis.

We see from figure 2.2 that since the figure the factor loadings corresponding to the common

factors are similar, the figure is symmetric. And as before, the more negative the values of the

common factors, the bigger the conditional probability gets.



Chapter 3

Importance Sampling on the

Conditional Default Probabilities

3.1 The problematic

We want to draw scenarios of the loss in order to evaluate the two risk measures: the Value-

at-Risk and the Expected Shortfall. To do so, we will need to estimate:

θx = P (L > x) = E[1(L > x)].

We want to use an unbiased estimator θ̂x that will have the optimal variance. The loss in our

model is conditional on the common factors, thus the variance of our estimator is:

var(θ̂x) = var(E[θ̂x|F ]) + E[var(θ̂x|F )].

Since the variance of any estimator is positive. We look to minimize both var(E[θ̂x|F ]) and

E[var(θ̂x|F )].

12
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3.2 Changing the Conditional Default Probabilities

We are now interested in minimizing E[var(θ̂x|F )]. Now that the model is settled, we will

move on to applying the Importance Sampling on the conditional default probabilities. Since

these are small, making the event of the default very rare, we will be looking for a probability

density that makes them bigger. Glasserman suggested a method called Exponential Twisting

in his Importance Sampling paper, and the method is based on twisting the conditional default

probabilities in the following way, given a common factor F:

pk,θ(F ) =
pk(F )eθck

1 + pk(F )(eθck − 1)
(3.1)

This twisting method was introduced in the first chapter, we have calculated the likelihood

ratio (see equation (1.4)).

Equation (3.1) is dependent on the parameter θ, we will be choosing this parameter in a way

to optimize the variance of our estimator, this will be detailed later on.

pk,θ(F )

pk(F )
=

eθck

1 + pk(F )(eθck − 1)

and

eθck −
(
1 + pk(F )(eθck − 1)

)
= (1− pk(F ))(eθck − 1)

We see from these last two equations that the new twisted probability is bigger than the real

one if θ > 0, smaller if θ < 0, and equal if θ = 0

Another important remark is that when the default probabilities are equal to 1, they remain

at 1 no matter the θ we choose. This remark is important because the banks usually model a

defaulted counterparty by giving it a default probability equal to 1.

Remark. For real portfolios, the exposures are usually very high (in millions or billions). If

we compute naively the twisted probabilities, we will see that the term eθc will be infinite in
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all programming languages. A good method to tackle this issue is to scale everything by 10−9

and scale everything back at the end of the computations.

3.3 The optimal θ

In order to estimate the VaR and the Expected Shortfall of the estimator, we will be looking

to estimate the value of P (L > x). We will be concentrating our study on large values of

thresholds x. Consequently, our main objective would be to choose a θ that minimizes the

variance of this estimator, or simply that minimizes its second moment:

θm = arg min
θ

M2(θ) = arg min
θ

E
[
1{L > x}e−2θL+2Ψ(θ)

]
(3.2)

We see from (3.2) that the optimal θ does not have a closed formula. We will, as done in [ ]

optimize the upper bound of M2(θ):

M2(θ) ≤ e−2θx+2Ψ(θ)

which is equivalent to maximizing the function :

f(θ, x) = θx−Ψ(θ)

We remind the expression of Ψ:

Ψ(θ, F ) =
N∑
n=1

log
(
1 + pk(F )(eθck − 1)

)
The function Ψ is strictly convex as a function of θ. Its first two derivatives w.r.t. θ are:

Ψ
′
(θ, F ) =

N∑
n=1

pk(F )cke
θck

1 + pk(F )(eθck − 1)
=

N∑
n=1

ckpk,θ(F ) Ψ
′′
(θ, F ) =

N∑
n=1

cke
θck(1− pk(F ))

(1 + pk(F )(eθck − 1))2
> 0

(3.3)
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Figure 3.1: Ψ(θ) for pk = 1% and ck = 1 for all obligors

Figure 3.2: f(θ, 10) for pk = 1% and ck = 1 for all obligors

The optimal θ for this new approach has a closed form:

θm = max{0, solution to Ψ
′
(θ) = x}

We make sure that θ is positive, since a negative one would make the probabilities smaller.

It is easy to see from the optimal value of θ and the expression giving the derivative of the Ψ

function that:

Eθ[L] =
N∑
n=1

ckpk,θ = Ψ
′
(θm) = x

This means that the Exponential Twisting shifts the distribution of the loss, so that its new

mean becomes a high value of a threshold of our choice.

We see from the histogram that the effect of the exponentially twisting is indeed shifting the
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Figure 3.3: Histogram of the loss simulated with real default probabilities pk = 1% and

ck = 1 for all 100 obligors and for 105 simulations

Figure 3.4: Histogram of the loss simulated with exponentially twisted default probabil-

ities by the optimal θ for pk = 1%, ck = 1, threshold = 10 for all 100 obligors and for 105

simulations

loss to a threshold of our choice. In Figure 5, we have chosen a threshold = 10, and we see

that the mean of the loss under the new distribution is indeed around 10. This means that the

threshold will be an input of our implementation, thus has to be chosen in an optimal way.

The motivation behind using the exponential twisting method stems from the fact that it gives

the asymptotic optimal estimator. We will not detail this here, more details can be found in

section 3.2 of [1].

3.4 The optimal threshold

Since we will be interested in calculating the V aR and the Expected Shortfall of a portfolio at

high levels, we would want to shift the loss distribution to where the V aR is. Indeed, if the loss
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is now distributed around the V aR, calculating the Expected Shortfall becomes more accurate.

However, this means that we have a prior idea of what the approximate value of the V aR is.

In simple portfolios, one can have a vague idea, but in diversified ones, one has to calculate..

One way to do this is to do a Brute Monte Carlo method with a relatively small number of

simulations. This is will give an order of the threshold one has to choose.



Chapter 4

Shifting the common factors

4.1 Motivation

If we look now at the random variable E[θ̂x|F ], we want to apply Importance Sampling to

change the distribution the common factors are drawn from in the aim of reducing the variance

of our estimator. If we remember the figures 2.1 and 2.2, an intuitive way would be to shift

the mean of the common factors to negative values if the factor loadings are positive. In our

model, the common factors are standard normal, which means that there is approximately a

70% chance that the common factors lie in [−1, 1]. This makes the conditional default probabil-

ities low, making the event of default rare, especially if correlations between default indicators

are high.

In order to tackle this issue, we will shift the mean of the common factors towards negative

values. Basically change the distribution of F from N (0, I) to N (µ, I).

Glasserman in [1] chapter 5.1 gives several methods to optimize the µ, these are only approx-

imations to the optimal value and require to look for the optimal vector that maximizes or

minimizes a certain function.

As an example, the Tail bound approximation defined in [1] page 12 is the commonly used

18
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method, because it is easily applicable to our IS. The method states that:

µ = max
f
{F (f, x)} = max

f
{−θx(f)x+ Ψ(θx(f), f)− 1

2
zT z}

However, since the optimization of µ is only approximate, and in some cases, as we will see

in the case of a real portfolio, the dimension of the common factors vector can be high (more

than 20 for some real cases). The optimization problem becomes tricky and time consuming.

This makes the objective of this paper, which is to have the optimal accuracy for the run time

aimed less attractive.

4.2 Simulation steps

Once the value of µ is set up, the steps to follow to estimate the estimator are the following,

for each simulation:

• Generate d independent N (µ, 1) for the common factors F = (F1, .., Fd)

• Calculate the conditional default probabilities pk(Z) for all k ∈ {1, .., N}

• Calculate the optimal θ and deduce pk,θ for all k ∈ {1, .., N}

• Calculate Ψ(θ, F )

• Generate N independent Bernoulli random variables with probability pk,θ: Yk for all

k ∈ {1, .., N}

• Calculate the loss L(i) =
∑N

i=1 ckYk

• Calculate the likelihood ratio for each ith simulation :

R(i) = e( 1
2
µTµ−µT ∗F ) − θ ∗ L(i) + Ψ(θ, F ))
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• Sort the L(i) in a decreasing order

• For each L(i), the estimator for P (L > L(i)) is:

P̂ (L > L(i)) =
1

NS

NS∑
i=1

1{L(i) > x}R(i) (∗)

(∗) NS stands for the number of simulations

Since the L(i) are sorted in a decreasing order, a quick way to estimate P̂ (L > L(i)) is to

do a cumulative sum of the likelihood ratios over the indexes smaller than i.

We introduce next an example of a portfolio we will be working on. For simplicity, we will be

using a one-factor homogeneous portfolio with 1000 obligors. The portfolio is defined such that

for all k ∈ {1, .., 1000}:

• pk = 0.01

• ck = 1

• threshold = 80

• Number of simulations = 104

• ρk = 30%

We use the Tail bound approximation to get the optimal µ, we obtain µ = −0.98.

In order to see the importance of shifting the common factor, we estimate the variance of the

99.99%V aR for µ ∈ {−2.5,−0.98, 0}, we use the unbiased estimator of the variance with 100

different seeds:

σ̂2
100 =

1

99

100∑
i=1

(
V aR99.99%,i −

1

100

100∑
j=1

V aR99.99%,j

)2

We have the following results:

Value of µ -2.5 -0.98 0

Variance of the estimator 0.6138963 2.69635 20.66016
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The table above confirms the gain we have from shifting the common factor. When µ = 0

(no shifting), the variance is about 20, we can reduce it by a factor of 8 using the optimal

µ = −0.98. However, we notice that when µ = −2.5, the variance is further reduced, this stems

from the fact that the optimization we did is only an approximation, and that the range from

-2.5 to -1 give approximately the same outputs for the function F (f, x)(see figure 4.1). That is

why we have decided to choose the common factors mean using a heuristic method based on a

simulation approach.

When we are looking at the Expected Shortfall, we want to estimate the tail of the loss distri-

Figure 4.1: Function F(f, 80) against f

bution accurately. We look at the convergence of the probability of default plotting P (L > x)

against x for the portfolio above.

Remark 2. The 99.99% VaR corresponds to log(10−4) ' −9.2 in figure 4.2

In an equivalent way, if we were to shift the common factors to positive values, the variance of

the estimator would be bigger than the one with µ = 0 (see equation (2.5)).
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Figure 4.2: The convergence of the tail probability, black curve is for µ = −2.5, blue
for µ = −1 and red for µ = 0



Chapter 5

The marginals

In order to evaluate the economic capital, we will mainly be working on the two famous risk

measures; the Value-at-Risk and the Expected Shortfall.

The overall loss of a portfolio is the sum of the losses over all its counterparties. Thus, we will

be interested in estimating the contribution of each counterparty in the overall risk amount,

and use this to estimate the error of our estimator.

This type of decomposition is used for capital allocation and for measuring risk-adjusted per-

formance.

5.0.1 Reminder on the risk measures

• The Value-at-Risk

The most prominent loss-distribution-based risk measure in Risk Management is the

value-at- risk. Formally, it is defined as follows:

Let α ∈ (0, 1), The VaR of loss L at a confidence level α is given by:

V aRα(L) := inf{x ∈ R : P (L > x) ≤ (1− α)}

Intuitively, for a large probability α, it is the level such that the probability that the loss

exceeds this level is less or equal to 1− α, which is a small probability.

23
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One of the limitations of the VaR is that it does not see the severity of losses and tail

risk”, and that it isn’t subadditive, meaning that the sum of the VARs of two portfolios

may be less than the VAR for the combined portfolio.

In order to address the shortcomings of the VaR, we introduce a new risk measure:

• The expected shortfall:

Let α ∈ (0, 1), the expected shortfall of loss L at confidence level α is defined by:

ESα(L) :=
1

1− α

∫ 1

α

qu(L)du

The ES is related to the VaR by :

ESα(L) =:=
1

1− α

∫ 1

α

V aRu(L)du

Remark

If L has continuous cdf FL and E[max{L, 0}] <∞, then, for any α ∈ (0, 1):

ESα(L) =
E[L1L≥V aRα(L)]

1− α
= E[L|L ≥ V aRα(L)]

The expected shortfall is a coherent measure, it is subadditive and sensitive to the severity

of losses.

5.1 Marginal expected shortfalls

For the kth obligor, we define the marginal expected shortfall to be:

ESk,α(L) = E[ckYk|L ≥ V aRα(L)]

So that the overall expected shortfall is:

N∑
k=1

ESk,α(L) =
N∑
k=1

E[ckYk|L ≥ V aRα(L)] = E[
N∑
k=1

ckYk|L ≥ V aRα(L)] = ESα(L)
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Another way to estimate the error of our estimation would be to calculate the error of the

marginals. Meaning that we will be looking at the outputs of a homogeneous portfolio, which

are supposed to be the same, and estimate the error from the difference we obtain.

Using the IS, the estimator for the kth marginal expected shortfall is:

ÊSk,α(L) =

∑NS
i=1 ckY

(i)
k 1L(i)≥V aRα(L(i))∑NS

k=1 1L(i)≥V aRα(L(i))

Consider the following portfolio of 100 obligors (same as the one in [3]):

• pk = 0.01 for all k ∈ {1, ..., 100}

• ρk = 30%

•

ck =



1 for k = 1..20

4 for k = 21..40

9 for k = 41..60

16 for k = 61..80

25 for k = 81..100

Each 20 obligors are supposed to have the same marginal contribution to the overall Expected

Shortfall since they have the same inputs. Yet, we see from Figure 4.2 that it is not the case,

especially for the Monte Carlo case. Set the error to be:

err(X̂) =
max
1,...N

Xi − min
1,...N

Xi

1
N

∑N
i=1 Xi

∗ 100

For 105 simulations, we calculate the error for the last 20 identical obligors:

Brute Monte Carlo 58.27506%

Importance Sampling 4.168058%
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Figure 5.1: Marginal Expected Shortfall, red curve is for Brute Monte Carlo, blue
for IS

We see that the gain is very important for a relatively small number of simulations (approxi-

mately 12 times better!).



Chapter 6

Some generalizations

6.1 The case of guarantors

This section is to show that IS can be applied for a more general case, where there is a presence

of guarantors.

For example, when we are looking at a portfolio of loans, these can be guaranteed. In this case,

default happens when both the counterparty and the guarantor default.

We have introduced the normal copula model in chapter 2 where we have defined the credit

worthiness index Xk. In the case of a guarantor, the loss on the loan will be dependent on

more than one credit worthiness index. For the counterparty k, we will set Xkc to be the credit

worthiness index for the default of the counterparty, and we will set Xkg to be credit worthiness

index for the default of the guarantor. In this setting, the probability of losing the exposure of

the kth obligor with probability:

P (Dkg = 1) = P ({Xkc < xkc} ∩ {Xkg < xkg})

The loss now becomes:

L =
N∑
i=1

ckgDkg

27
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Note that the exposure ck changes to ckg because the LGD (Loss Given Default) changes in

the case of a guarantor. Set LGDkc and LGDkg to be the LGDs corresponding to the kth

counterparty and guarantor respectively. The overall LGD becomes:

LGDk = LGDkcLGDkg

If we want to apply IS on the case of guarantors, we need to express the correlation between

the kth obligor and its counterparty (these are not independent, because the default of the

counterparty can cause a systematic risk, causing the insurer to default too, creating a domino

effect).

For simplicity, we will be expressing this dependence by the same common factors of the different

counterparties, i.e.

Xkc = ρk,1F1 + ...+ ρk,dFd + akIkc

Xkg = βk,1F1 + ...+ βk,dFd + bkIkc

Denote ρ := (ρ1, ..., ρd) and β := (β1, ..., βd) Thus, the conditional default probability for the

kth obligor given the factor loadings F = (F1, ..., Fd)T is:

P (Dkg = 1|F ) = P ({Xkc < xkc} ∩ {Xkg < xkg}|F )

= P ({ρk,1F1 + ...+ ρk,dFd + akIkc < xkc} ∩ {βk,1F1 + ...+ βk,dFd + bkIkc < xkg}|F )

= N

(
xkc − ρkF

ak

)
N

(
xkg − βkF

bk

)

The last equality stems from the fact that once we condition on the common factors, the events

{Xkc < xkc} and {Xkg < xkg} become independent.

Consequently, the only difference here is that the conditional default probabilities change, the

IS method described before follows easily.

The figure below shows the difference between Brute Monte Carlo and applying Importance

Sampling in the case of presence of obligors. As before, we see that the Monte Carlo doesn’t
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capture big values of losses, and it starts diverging at low probabilities (here e−9 ≈ 10−4 )

Figure 6.1: Comparison between Monte Carlo(blue curve) and Importance Sampling
(black curve) in the case of 1000 obligors and 1000 identical guarantors

6.2 The case where the common factors are dependent

As a numerical example, we introduce the case of a real Banking portfolio. The inputs are the

default probabilities ranging from 0.01% to 1 (the obligor has defaulted), and the exposures

taking into account the LGDs.

For simplicity and without loss of generality, we suppose that there are no guarantors.

There are two main common factors, one common factor of the region of the counterparty, and

the second one is the sector of the counterparty. The model we apply is the following:

Xk = ρ(ak,RFR + ak,SFS) +
√

1− ρ2Ik (6.1)

where :
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• FR = (FR,1, ..., FR,NR) and FS = (FS,1, ..., FS,NS) (NR and NS are the number od regions

and sectors respectively that our portfolio handles)

• ak,R is a row vector of dimension NR which has only one non-null component, the non-null

element will be equal to 2√
5

• ak,S is a row vector of dimension NS which has only one non-null component, the non-null

element will be equal to 1√
5

• ρ expresses the dependence of the counterparties on the common factors, in our model,

ρ = 0.68 for all the obligors.

• FR is a multi-normal vector with correlation matrix ΣR (The different regions are corre-

lated between them)

• FS is a multi-normal vector with correlation matrix ΣS (The different sectors are corre-

lated between them)

In our example, there are 10 regions and 13 sectors. This makes the dimension of the common

factors equal to 23.

As we have mentioned before, the optimization problem for shifting the common factors becomes

heavy, since it is a maximization over a high-dimension vector. The idea now is to minimize

the dimension of the optimization.

We will be using the Principal Components Analysis to reduce the dimension from 23 to, for

example, 2 dimensions. In oder to generate the standard multi-normal vectors for the region

and sector common factors, we will avoid using the Cholesky decomposition, because the latter

method doesn’t give information on the principal directions of the common factors.

Let:

ΣR = URDRU
T
R

and:

ΣS = USDSU
T
S
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The common factors are thus generated as follows:

FR =
(
UT
RD

1
2
R

)
ZR

FS =
(
UT
SD

1
2
S

)
ZS

ZR and ZS are two independent standard multi-normal variables (with dimension NR and NS

respectively).

Once we have done this, the PCA approach tells us that the principal directions are the eigen

vectors matching the biggest eigen values. So we will be shifting only the components of the

eigen vectors with the biggest eigen vectors. If we want to reduce our dimension to 2, then we

will be shifting the principal component of the region factor and that of the sector factor.

For our code to be clear and easy to read, we will adjust the inputs so that the common factors

are always generated independently. Equation (6.1) becomes:

Xk = ρ(ak,R

(
UT
RD

1
2
R

)
ZR + ak,S

(
UT
SD

1
2
S

)
ZS) +

√
1− ρ2Ik

The difference here is that the components of ZR and ZS are mutually independent, which

simplifies the code.

The IS follows easily once the above is settled.

For a real case numerical example, we apply a simple Brute Monte Carlo using low number of

simulations. We have an approximate value of the Value-at-Risk, here, around 4 millions. We

ask our code to shift the loss distribution so that most of the simulations are centered around

4 millions:

If the Monte Carlo value of the Value-at-Risk isn’t very accurate, for example, 3 millions, we

would have asked our program to shift the loss so that more outcomes are around 3 millions.

This indeed is not optimal, yet, it has still a big gain compared to Monte Carlo:

If we calculate the variance σ2 of our estimator (evaluated for 100 values of the Value-at-Risk
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Figure 6.2: Tail of Probability of the Loss centered around 4 for 1 million simulations

Figure 6.3: Tail of Probability of the Loss centered around 3 for 1 million simulations

using 100 different seeds) and set the error to be:

err(θ̂) =
3σ

V aR1

We get as numerically for the threshold 4 a value around 1%, which is relatively a good error.
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