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Abstract

In this thesis we explore the use of support vector machines and neural networks in
forecasting time series in commodities markets. We tackle the binary classification
task of predicting the direction of day-ahead price changes in front month Brent
Crude Oil futures contracts. Initially we begin by building theoretically intuitive
models, utilising support vector machines with both unlagged and then later lagged
features so as to explore the long term dependencies of the data. Following this, we
develop more advanced feed-forward neural networks that focus on capturing long
and short term memories from the time series. In short we implement recurrent
neural networks with various combinations of simple, LSTM and GRU layers in or-
der to capture the importance of both short and long-term memory. We assess the
models based on their performance over unseen test data across the metrics "Acc-
curacy’, 'Fy Score’, 'Precision’ and 'Recall’. We find that the SVM models perform
significantly better than all artificial neural networks, with the best performance of
62.1% accuracy coming from the model with the raw data with 1 day lag as it’s fea-
ture set. The best feed-forward neural network model achieved accuracy of 58.4%,
basic recurrent network achieved 53.5%, LSTM 54.1% and GRU performed the best

outside of the SVM models achieving an accuracy of 58.7%.
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Chapter 1

Introduction

Let us start by introducing the definition of a Futures Contract. The CME Group
state that "a futures contract is a legally binding agreement to buy or sell a stan-
dardized asset on a specific date or during a specific month”!. Trading futures
over their respective underlying security brings with it many advantages including
high liquidity, greater leverage and lower trading costs, to name but a few. As a
result of the aforementioned benefits offered by trading futures, it is worth explor-
ing the problem of forecasting the binary price change direction. Thus the aim
of this research is to accurately predict whether the next day price change of the
Brent Crude Oil Front Month Futures Contract will be an increase or decrease,
decided on the present day. Machine learning and artificial intelligence have been
incredibly popular in recent vears, especially within financial institutions. Here are
some sources [Waldow et al., 2021], [Hsu, 2011] that highlight the success of such
techniques in futures markets in particular, justifying the choice of using such tech-

niques in the research we propose.

Support vector machines are supervised learning models very commonly used in
machine learning as a result of their robustness in classification and regression prob-
lems. In 1992, Vapnik et al. [Boser et al., 1992] proposed a method from which one
is able to compute non-linear classifiers by employing the kernel trick to maximal-
margin hyperplanes, an earlier piece of work by Vapnik and Chervonenkis in 1963.
SVM’s have been used in time series classification with great success since their
inception, see [10., 2017] and [Samsudin et al., 2010], and are especially useful for
classifying data with a large number of features and not especially large datasets.
Considering the intersection of all the different datasets we will be using reduces
the volume of data down significantly, support vector classifiers are an ideal starting

point for the binary classification problem we face.

thttps: / /www.cmegroup.com/education/courses /introduction-to-futures/definition-of-a-
futures-contract.html




The natural progression from training a model with, in theory, one layer is to im-
plement models where the number of layers is a tunable hyperparameter. From
here we introduce the idea of Artificial Neural Networks (ANN) for classification.
Artificial neural networks were first introduced in 1943, pioneered by McCulloch
and Pitts [McCulloch and Pitts, 1943], so as to replicate the mechanics of neurons
within the human hody. The benefit of working with a model formulated with mul-
tiple layers is the ability to identify more intricate patterns in the data, for our
purposes hopefully locating frequent trends that indicate an upwards or downwards
price movement. However, there was a need for a model that specialises in pro-
cessing sequential data, in particular time series, and thus the Recurrent Neural
Network (RNN) was brought into fruition, first inspired by Rumelhart’s work in
1986 [Rumelhart et al., 1986]. One problem RNN's suffer from is the vanishing/-
exploding gradient problem, as discovered by Hochreiter [Hochreiter. 1991], and so
variations of the RNN were born, namely the LSTM [Hochreiter and Schmidhuber, 1997]
in 1997 and the GRU [Cho et al., 2014] in 2014. These adaptions allowed us to build
models that are able to capture both short and long term memory, making for an
attractive solution to the vanishing/exploding gradient problem.

The paper is structured as follows. Chapter 2 covers the choice in data used for the
feature set in our machine learning and deep learning models, as well as the cleaning
of the data and transformations that were made for the purposes of modelling. In
Chapter 3 we introduce the theory behind support vector machines following the in-
tuition behind them and the foundations that allow us to work towards constructing
non-linear decision boundaries. Chapter 4 provides the same level of explanation,
this time with regards to artificial neural networks in forecasting time series before
moving onto recurrent neural networks and some variants of this type of network.
Chapter 5 goes into detail about the implementation of the models and the evalua-
tion metrics we will use to assess these models. Subsequently we will also state the
results of these metrics and give some explanation as to why some models may have
performed better than others. Finally, Chapter 6 concludes the paper, stating any
further work that should be continued on the topic for future reference.




Chapter 2

Data

The primary data we will be using is the Brent Crude Oil Front Month Futures Con-
tract close price. The front month refers to the contract with the nearest expiration
date which, for oil, is a monthly occurrence. As the contract gets closer towards
the expiration date, the underlying spot price and the price of the futures contract
start to converge until the expiration date at which point they are equal for obvious
reasons. Front month contracts tend to be the most actively traded for oil futures
contracts and so the days leading up to the expiration date are highly volatile as
traders try to make a profit on their purchases.

The feature set used in the commodity forecasting models need to be rich in in-
formation. What we ideally want is a feature set that covers as many aspects of
the life cycle of crude oil as possible, from its extraction to the holding of it as a
commodity, transportation of it as a commodity and it’s uses both domestically and
globally. In the following section we will highlight the reasons for using the features
that have been chosen, those coming under the categories of: Commodities, Indices,
Foreign Exchange, Weather Forecasts and Lagged data. We will then discuss the
cleaning and transformation of the data in order for it to be usable in building and

training our models.

2.1 Commodities

‘When it comes to individual commodities, in this case Brent Crude Oil, it can be
very insightful to look at the behaviour and performance of other commodities in the
same, or similar, sectors. Being purchased and used for related purposes suggests a
demand for one commodity may also indicate a demand in others. Brent Crude Oil
belonging to the energy commodities sector means for the purposes of the project
we will be using other energy commodities, in particular Henry Hub Natural Gas,
European Natural Gas, European Emissions, WTT Crude Qil, Rotterdam Coal and

DE Power. To briefly justify the decision in using this data we calculate the pairwise
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correlations of these different commodities focusing on the values obtained on the
Brent Crude Oil axis. Given that the relationship is most likely non-linear, we still
yield some high correlations between the commodities and Brent Crude Oil, namely
0.9907 (WTI Crude Oil), 0.9116 (European Natural Gas) and 0.7529 (Rotterdam
Coal). We will also use US Crude Oil stock volume as an indication of supply and

demand, and thus any price changes that will come as a result of this.

2.2 Indices

Because of the way crude oil is utilised both commercially and domestically, having
a way to quantify how a country’s economy is performing could also be a factor in
determining what drives the price change in oil. Stock indices offer up a way of
measuring how well a country is doing by keeping track of the top companies listed
in their respective countries based on some metric, market capitalisation being the
metric used by the most well-known indices. In the following research we will be
using the FTSE 100, the CSI 300, the DAX and the S&P 500. Where raw data is
used, we expect that stock indices will be a major factor in determining the direction
of the change in price.

2.3 Foreign Exchange

With reasons similar to those made for the inclusion of stock index data being used,
foreign exchange is also included because of it's correlation with commodities in
general. A countries economic growth can be seen in how valuable it's currency
is in comparison to other countries, development that can be driven by imports
and exports of commodities. Two of the most closely studied and followed foreign
exchange instruments to be used in this project will be EUR/USD and GBP/USD.

2.4 Weather Forecast

As a very simple example, clearly the daily temperature highs and lows are much
lower in the winter months compared to the summer months. As a result, more oil
is needed to warm homes, offices and buildings and so the demand for oil increases,
leading to the price of oil rising. As another example, vast amounts of rainfall
can be cause the activity of operational machinery either needing to stopped to
prevent damage or possibly even damaged, all leading to a drop in supply and once
again oil prices would then rise. The weather data we will be using includes daily
temperature highs (°C), lows (°C) and amount of precipitation (centimetres) from

Cologne Germany, New York USA and Beijing China.
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2.5 Lagged data

‘While not initially included as it’s own feature, in some of the models we also add
the data from previous days for each of the features already mentioned so as to try
and capture the causality of certain types of behaviour. Thus the number of days of
lagged data included becomes it’s own hyperparameter and one we experiment with.
On one hand it may be beneficial to only have 1 or 2 days lag to allow for a model
that generalises well and isn’t overcrowded in terms of dimensionality. However
there may also be trends that are captured by using 10 days worth of data that
wouldn’t be seen in only a small number of days. This is an easy set of features to
include using well-known Python libraries such as Pandas (one of the most common
libraries for dataframe manipulation).

2.6 Cleaning and transforming

Cleaning the data is an imperative step in ensuring the data fed into the model
makes sense. For example, the Crude Oil stock volume was made up of weekly
readings as opposed to the rest of the data which contained daily readings. In this
case we decided the best way to fill in the missing 6 days worth of data every week
was to simply set the next 6 days worth of data to a constant value, that value being
the most recent weekly reading. Despite there being methods such as interpolation
to fill in the missing data, we chose to use a constant value so that we weren’t using

values that may not yet exist between weeks.

Another transformation that had to be made was the shifting of some of the fea-
tures, in particular the data for the S&P 500, CSI 300, EUR/USD and GBP/USD
had to be shifted forward by a day. The reason for doing so was that the data used
for these features was taken at their close, after the close of the Brent Crude Oil
Futures contract. Because of the practical applications of the research we are ex-
ploring, i.e. trading the futures contract, information after the close of the security
is no longer informative for the day we are trading on. However it would be fruitful
for the following day. These transformations were made very easily via the Pandas
library in Python.

Especially so in the building of the SVM models, the data was often standard-

ised. That is, based on the training data, the mean p and standard deviation o were

calculated and the transformation
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was made for each datum z; in the training set, as in [Graves, 2012]. The two most
popular scaling methods available to us in the scikit learn library were the Standard-
Scaler()! (as described above) and the MinMaxScaler()?, a scaling method where all
of the data in transformed to be in the range [0, 1]. In a large majority of cases the
StandardScaler() performed better than MinMaxScaler() and thus standardisation

is the method we will be choosing throughout to scale our input values.

Yhttps://scikit-learn.org/stable/modules/generated /sklearn. preprocessing. StandardScaler.html
https:/ /scikit-learn.org /stable/modules /generated /sklearn. preprocessing. MinMaxScaler .html
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Chapter 3

Support Vector Machines for

Classification

Support Vector Machines are both a very powerful and conceptually simple model
used in Machine Learning classification problems, making them an industry favourite
for classification tasks. The training complexity of SVM’s is very high which makes
them a suitable choice as an initial model based on the size of the datasets we intend

to use, i.e. thousands of training observations.

In the following chapter we will begin by exploring the mechanics of Support Vector
Machines as a Machine Learning classification tool, developing the idea of a separat-
ing hyperplane to allow some misclassifications and transforming the data through

the kernel trick to work in higher dimensions.

3.1 Maximal Margin Classification

‘We begin by defining a hyperplane. In an m-dimensional space, a hyperplane is an
(m—1)-dimensional affine subspace. As an example, a hyperplane in a 2-dimensional
plane is a line, in 3-dimensional space a hyperplane is a plane and for higher dimen-
sional spaces it is simply referred to as a hyperplane. Formally, in an m-dimensional

space, the equation of a hyperplane is given by
unry+ ..+ wyr, +b=0
or for brevity
(w,x) +b=0.

That is to say that any point & = (z1,..., )" lying on the hyperplane satisfies
the ahove equation. Since a hyperplane has codimension of 1, we can think of a

hyperplane as bisecting the whole ambient space leading naturally to the idea of
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binary classes. These classes arise from
(w,z) +b>0 and (w,z)+b<0

which visually is seen as the point = (x1,...,x,,)7 laying either one side of the
hyperplane or the other. The side of the hyperplane the point is found is completely
determined by the sign of (w,x) + b. From here, provided the data is linearly
separable, we need only find a separating hyperplane that correctly separates the
training data of one class from another. Then to classify any test data, for example
x* = (x5,...,25)7, we simply calculate the sign of {(w,z*) + b and classify the
instance as either one of the classes based on this sign. Regardless of sign, a value of
[{w, x*)+b| far greater in magnitude than 0 indicates confidence in the classification
whereas a value close to zero could mean some uncertainty due to how close to the

separating hyperplane it is found.

The difficulty comes in finding the optimal separating hyperplane, if one exists at
all. If one separating hyperplane can be found then in theory there exists infinite
possible separating hyperplanes as a result of infinitesimal rotations and translations
made to the original. In this case, it makes sense to find the hyperplane that puts
the most distance between the hyperplane and the closest training instances to this
hyperplane. This distance is called the margin and thus the hyperplane we are look-
ing to calculate is called the mazimal margin hyperplane. Since the hyperplane is
‘supported’ by the training observations closest to the hyperplane, in the sense that
the largest margin is dependent only on these closest observations, the observations
that support the hyperplane are called support vectors and will play a pivotal role
in Support Vector Classification.

In Figure 3.1 we can see a dataset where the two classes, Class A and Class B,
are clearly linearly separable. In this example the data has two features x; and x5
so that we can easily visualise the data, classes and hyperplanes. The two black
lines are examples of separating hyperplanes that perfectly separate the two classes,
however they have very small margins with the hyperplanes being very close to the
support vectors. In Figure 3.2 we see the maximal margin hyperplane that optimally
separates the two classes. We can also see the margin by the dashed lines cutting

through the support vectors.

We now give the details of the hard margin optimisation problem needed to be
solved in order to find the optimal separating hyperplane. If we consider n training

observations xq, ..., ®, € R™ and class labels i, .. ., yn € {—1,1} then the maximal

13




* (Class A
e Class B

N
Figure 3.1: Examples of two suboptimal separating hyperplanes that perfectly bisect

the two classes but with very small margins.

® Class A
* Class B

I

Figure 3.2: A graph of the optimal hyperplane, the mazimal margin hyperplane, and
the large margin between the decision boundary and the support vectors.
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margin hyperplane can be found by solving

1
min o |lwl;

subject to  y;({w, z;) +b) > 1 Vi=1,..., n

Here we deconstruct the optimisation problem to make it slightly more intuitive.

The norm of the feature weight vector,

|w||2, corresponds to the slope of the de-
cision function and so minimising ||w||2 is equivalent to maximising the width of
the margin. In the optimisation problem we aim to minimise %Hw”2 since it has
a more tractable derivative, i.e. V(3|lw|3) = w, and minimising both [|w]|> and
w2 vield the same argmin. Since we require the hyperplane to be fitted such that
there are no margin violations, the constraint that y,({w,=;) +b) > 1 ensures that

all observations lie outside of the margin.

This maximum margin classification problem is a convex quadratic optimisation
& 1
problem with linear constraints, also known as a Quadratic Programming problem,

and as such there are plenty of pre-existing solvers for these types of problems.

3.2 Support Vector Classifier

A large assumption placed on the data when considering maximal margin classifi-
cation is the ability to linearly separate the data into it’s respective classes by a
separating hyperplane. When the data gets noisier and starts to overlap we must
develop the idea of a maximal margin classifier further so as to account for these
overlaps. A tool used instead is a soft margin classifier, separating the data by a
hyperplane as best it can while allowing for some misclassifications dependent on
a tuning parameter. The added leniency to the maximal margin classifier is called
a support vector classifier and is paramount in the development of support vector

machines as a classification tool.

Even if the data is linearly separable, it may be advantageous to allow for some
misclassifications in return for a model that generalises better for test observations.
If, for example, a hyperplane was fit perfectly to the data but had a very small
margin due to an extreme observation of one class, it might be better to allow this
one extreme observation to be classified incorrectly to allow for a larger margin and
thus a greater confidence in future classifications. If we were to allow such a small
margin, the model might begin to overfit to the data and would be far too sensitive

to individual observations to making accurate predictions.

Figure 3.3 shows the support vector classifier for 4 different values of the regu-
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larising parameter C. The values were chosen so as to give the best visualisation
of how varying C can increase/decrease the margin and alter the hyperplane itself
completely. The regularisation parameter C works to compromise the width of the
margin against the number of margin violations. In short, smaller values of C allow
for a larger margin and thus more misclassifications whereas larger values of C re-
duce the number of misclassifications and therefore we are left with a much smaller

margin.

.
a
H

=

.
a
H

®

& Class &
® ClassB

Figure 3.3: Four graphs showing the support vector classifier on alinearly inseparable dataset
with the regularising parameter C at the different values C = 1, 3,10, 100.

We now state the soft margin optimisation problem, which is to find the hyperplane

16
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that solves

' 1 , n
min EHwHZ—I—C'Ze,-

wber,...en

i=1
subject to  y,({w,z;) +b) > 1 —¢ Vi=1,...,n
e >0 Yi=1,...,n
with C a non-negative regularisation parameter and ey, ... ¢, our slack variables.

Each of the slack variables ¢; quantifies how much the i** observation can violate the

margin. Once again, let us deconstruct the optimisation problem to make it more
intuitive. Similarly to the hard margin optimisation problem we aim to minimise
|[w]|2 however this time we have the added factor of C' " | ¢;. Minimising the sum-
mation of the slack variables accounts to reducing the number of margin violations
while minimising ||w||?, similar to the hard margin optimisation problem, aims to
increase the margin. This is where C acts as a regularisation parameter, allowing us
to control how much we want either factor to influence the whole objective function.
‘We can see from the constraints that a value of ¢; = 0 means the observation is on
the correct side of the margin, ¢; > 0 means the observation lies within the margin

on the correct side of the hyperplane and ¢; > 1 indicates a misclassification.

Much like the hard margin optimisation problem, the soft margin optimisation prob-
lem is also a quadratic programming problem and thus can be solved very easily by

some pre-existing QP solvers.

3.3 Support Vector Machines

But we are still working under a rather constraining assumption; the idea that it is
a linear decision boundary that separates the two classes in our binary classification
problem. Tt is clear from Figure 3.4 that we will most likely be in need of a non-linear
decision boundary which is where support vector machines come to be extremely
useful. Support vector machines utilise a well known method known as the kernel
trick, applied to the aforementioned support vector classifier, to map observations
to a higher, possibly infinite, dimensional feature space. As a result, we're able to
find a linear decision boundary in this higher dimensional space and translate this
to a non-linear decision boundary in the original space, capturing patterns that may

not have been possible using only a linear decision boundary on the initial dataset.

3.3.1 Kernel Trick

If we consider the support vector classifier dual problem, as seen in [Shashua, 2009],

we note that only the inner product of the training observations x;, x; € &, .‘I.’?.‘I.’j =
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Figure 3.4: Different SVM kernels applied to non-linear data to obtain non-linear
decision boundaries. A polynomial kernel of degree 3 (left) and an RBF kernel
(right). Source [James et al., 2013]

(x;, z;). is used in the minimisation problem and thus we look for a kernel function
K(z;, ;) that can be expressed as an inner product in another, higher dimensional
space H. If we can find such a function K (z,y) = {(¢(x), ¢(y))u for our feature map
¢ X — H then finding a non-linear decision boundary becomes significantly less
computationally complex.

Due to Mercer’s theorem, we do not need an explicit representation for the fea-
ture map ¢, provided our higher dimensional space H is an inner product space.
Mercer’s theorem states that ¢ exists whenever the input space X' is provided with
a measure ensuring the kernel function K satisfies Mercer’'s condition.

Definition 3.3.1 (Mercer’s Condition). A real-valued function K'(x,y) is said to

fulfil Mercer’s condition if for all square-integrable functions g(z) one has

/ g(x)K (x, y)g(y) dr dy > 0.

However, in practice, kernel functions do not have to strictly satisfy Mercer’s

condition in order to perform well. If the Gram matrix!

of the empirical training
data is found to be positive semi-definite for some parameter values, one would still

find that the training would converge successfully.

To make things clearer, the following is a well-known example to illustrate the

'The matrix whose (i, j)-th element is K (x;, ;) where K(-,-) is the kernel and x;, z; are the
i-th and j-th observations, respectively.

18




effectiveness of the kernel trick.
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Figure 3.5: An example of the effectiveness of the kernel trick by map-
=] o

ping 2-dimensional data into 3-dimensional space via a polynomial kernel,

source [Jordan and Thibaux, 2004].

Clearly in Figure 3.5 the 2-dimensional data on the left is not linearly separable and
thus we require a non-linear decision boundary to separate the two classes. After
a transformation the two classes are easily separable by a hyperplane in the higher

dimensional space; in this example, 3-dimensional space.

Let ¢ : R? — R®; ¢(x1,22) = (27, v2x129,22) be our feature map, noting that
the transformed vector is now 3-dimensional instead of 2-dimensional. The use of
v/2 here is solely to allow for a cleaner ontput. This gives us a non-linear decision
boundary {w, ¢(x)) +b= u,-'l:f:f w2 w0+ w;;:::% +b =0 in the new feature space.

Finding the inner product of the transformed observations gives

(@(@). () = (a1, V2u125, 23), (V7. V201102, 13))
= :r:fyf + 2zt Y2 + .-;:3-;;3

(21, 22), (11, 2))°

(@, y)*

so we have our kernel function K(z,y) = (x, y)%

3.3.2 Common Kernels

Here we list some of the most frequently used kernel functions as defined in [Patle and Chouhan, 2013]

elaborating on why they are chosen and their unique advantages.
Euclidean Kernel
K(z.y) =(z.y)=a"
:y - :y - y
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The euclidean kernel is what one would use in a regular support vector classifier; it
is the standard inner product of the observations in the input space. This kernel

compares how close a pair of observations are to each other via Pearson correlation.

Gaussian RBF Kernel
K(z,y) = exp(—v - [lz —yl*). +>0

The RBF kernel is one of the most commonly used kernels in non-linear support
vector machine problems. It can be shown that as v+ — 0, an SVM with the RBF
kernel approaches a linear SVM. Therefore the use of the RBF kernel, with an
appropriate choice of 7, performs at least as well as a linear SVM. Here the feature
space is infinite-dimensional thus it would be infeasible to work simply in just an
enlarged input feature space. Using a kernel function is essential in order to simplify
computational complexity. Clearly the Gaussian RBF kernel ranges between 0 and
1 and it’s output decreases as the distance between observations increases. These
properties mean, like all kernels, the function is seem as a measure of similarity

between observations.

Polynomial Kernel
Kzy ='y+1)? ¢>0,decN

We have already seen an example of a polynomial kernel of degree 2 being used
in Figure 3.5. For ¢ > 0, the kernel is called inhomogeneous whereas the kernel is
known as homogeneous for ¢ = (0. The free parameter ¢ controls how much the higher
order terms are weighted in the polynomial. The polynomial kernel gives a clear
view into the computational complexity saved by using kernels. The feature map

for a polynomial kernel of order d includes all monomials of degree up to d, giving

ritd
d

input data. The kernel polynomial, however, is only of complexity O(n) and is

a feature space of size ( ) and thus a map of complexity @(n?) for n-dimensional

therefore much more computationally efficient.

Sigmoid Kernel

K(z,y)=tanh(y-z"y +r), v, ccR

The Sigmoid kernel is unique in that the Gram matrix is not always necessarily
positive semi-definite for all values of v and ¢. However for the values of v and ¢ that

do output a positive semi-definite Gram matrix, the sigmoid kernel is a function that
takes inspiration from the common artificial neural networks activation function.
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Chapter 4
A Deep Learning Approach

So far we have considered models with only one layer so it seems only natural for us
to develop this idea further by introducing a class of models, deep neural networks,
that benefit from having multiple layers within the model. As we're also dealing
with time series data, capturing long term dependencies in the data is crucial in
identifying signals and thus we expect recurrent neural networks, with the addition

of LSTM and GRU lavers, to be perfectly suited models for the problem we face.

4.1 Feed-forward Neural Network

We begin by first describing the structure of a feed-forward neural network before
diving further into the more specific details of the individual neurons and the training

of the overall model.

4.1.1 Multilayer Perceptron

A feed-forward neural network is a multilayer perceptron in which the signal flows
in only one direction, i.e. from the inputs to the outputs. The network is built
up of neurons, or more recently referred to as units, arranged into various layers.
These layers include an input layer, an output layer and one or more hidden layers.
Every layer, excluding the output layer, also includes a bias newron which is fully
connected to every neuron. In Figure 4.1 we can see a simple example of a dense
feed-forward neural network, named as such since all the layers are fully connected,
i.e. every neuron is connected to all neurons in the layers immediately before and
after it. Here we have an input layer with 4 neurons (the input data has 4 features),
2 hidden layers both made up of 7 neurons (along with a bias neuron) and an output
layer of 3 neurons. Using notation from [Pakkanen, 2020], this neural network would
be the function fg € N3(4,7,7,3; 01,62, 03) with activation functions oy, a4, o3.

Now we will zoom into the model, specifically looking closer at the structure of
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Input Layer e &* Hidden Layer e 2* Hidden Layer € 2* Output Layer  2°

Figure 4.1: A dense feed-forward neural network made up of a 4 neuron input layer,
2 hidden layers each with 7 neurons (plus a bias neuron) and a 3 neuron output
layer.

a neuron. Each neuron is equipped with an activation function in which a weighted
sum of the inputs is fed into the neuron and an output is calculated from this acti-
vation function applied to the weighted sum. The weights of the inputs are subject
to change through the training of the model via a method called backpropagation
which will be discussed in further detail shortly. The output of a fully connected

neuron with activation function ¢ can be expressed by the following equation
Y (@) = o w + b) (4.1.1)

where @ is the input vector, w is the weight vector made up of all the connection
weights and b is the weight of the bias neuron. If we are working with a dense neural
network and the i*" layer of the network has n; neurons in the previous layer then
both & and w are n;-dimensional vectors. These outputs are then passed to the
next layer of the network, repeating until the final layer, the output layer, is reached
in which an activation function specific to the type of problem being solved is used

for the final output.
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4.1.2 Activation Functions

There are many activation functions to choose from, with each activation function
having it's own benefits and drawbacks. Here we will give the details of three of
the most commonly used activation functions, two of which we will be using in our

networks.

1
-" Sigmeid \T) = ———————— 4.1.2
Osigmoia (2) 1+ exp(—z) ( )
Drann () = tanh(z) (4.1.3)
z ifxz =0
DReLu (T) = o 414
PRl =90, 2 (414)

Figure 4.2: Three of the most commonly used activation functions: the Sigmoid
function, the tahn function and the ReLu function respectively.

Graphs showing the 3 most common activation functions

2 2 2
Activation functions
Sigmoid
L5 1.5 1.5
= tanh
Relu
1 1 1
0.5 0.5 0.5
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-1 -1 -1
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Figure 4.3: Graphs of the Sigmoid function, the tanh function and the ReLu func-
tion, respectively.

Let us start with the Sigmoid function given in (4.1.2). The Sigmoid function is
extremely useful for binary classification models given the output of the function
ranges between (0 and 1 and thus we will choose it to be the activation function

used in the final output neuron of our models. Furthermore, the Sigmoid function
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is a non-linear continuously differentiable function which allows the model to cap-
ture non-linear behaviour. The composition of multiple linear functions results in
another linear function so including a non-linear function allows us to move outside
the realms of linear behaviour. However, the gradient of the function tends to 0 as
x — toc and subsequently the model may stop learning given that the tuning of
the connection weights is based on the derivative of the outputs of neurons, i.e. we
may be left with some 'dead’ neurons. Further, the function is not symmetric about
() and so the output of the function will be of the same sign as the input which is

not beneficial for a gradient based learning algorithm.

The tanh function is given in (4.1.3) and has all the benefits of the Sigmoid function
while also being symmetric about 0, as seen in Figure 4.3. This allows for the sign
of the output to differ from the sign of the input and as a result the tanh function is
better suited to gradient based learning algorithms and is often preferred over the
Sigmoid function. Unfortunately the tanh function also suffers from the vanishing
gradient problem where the gradient is extremely small for values of = that tend

towards infinity, leaving some neurons essentially dead.

The ReLu function (Rectified Linear Unit) [Nair and Hinton, 2010], as defined in
(4.1.4), is one of the most commonly used activation functions in the hidden layers
and will be the activation function we choose to use in our models. The ReLu func-
tion is much more computationally efficient due to the nullification of all negative
inputs, thus only activating some neurons at any given time. We do fall into the
same problem as the previously mentioned activation functions in that for negative
inputs the gradient is zero and so some neurons are not updated during the learning
of the model. There are modifications of the ReLu function, such as the Leaky
ReLu [Maas, 2013] and the ELU [Clevert et al., 2016] functions, that attempt to
solve the issue of the the null gradient for negative input values.

4.1.3 Gradient Descent

The overall algorithm we will be using in order to minimise the objective function
for our classification problem will be the Gradient Descent algorithm. Gradient de-
scent is built on the idea that, for a multivariate function £'(x) differentiable in a
neighhourhood about a point &, then the function decreases fastest in the direction
of the negative gradient of F' at the point &, i.e. —VF(x).

Of course for more tractable functions the standard method would be to find the
gradient of the function VF, solve VF(x) = 0 for & € dom(F) and verify which
of the solutions is the minimum point via the Hessian matrix. The problem for

less tractable functions is VF may be difficult to compute or one may find it
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even more arduous to solve VF(x) = (. Instead we consider the gradient flow
of F' [Santambrogio, 2016], defined by the following equation

dx(t)
dt

= —VF(a(t)), t>0, initial condition x, € R?.

For practical purposes we need to discretise the equation and thus, for learning rate
n > 0, we obtain

z(t+n) —=x(t)

n
= x(t+n)=z(t) —nVF(z(t), t>0

~ —VF(z(t), t>0

from which we acquire our iterative gradient descent method
Tpy1 = En — TIVF(SB”)
with initial condition xg.

A big problem with regular gradient descent for training neural networks is that
calculating the gradient of the objective function can take a lot of time and space.
Furthermore, we may not even want to find the unique minimiser of the objective
function for fear of overfitting the network to the data. This is where we introduce
Stochastic Gradient Descent.

Suppose our training data is indexed by {1,... n} and we split the data into k,
ideally equal sized, disjoint minibatches By, ..., By < {1,...,n}. The process of
stochastic gradient descent is simply updating the network’s parameter vector 6
through

9,-:0,-_1—1;:V9£51.(9,-_1), é:l,...,k

with initial condition 6y. Here, L£p (@) is the empirical risk associated with the

minibatch B;, defined to be

1

Lp(0) = ]

D U folx),y").

icB

A complete run through the training dataset is called an epoch where multiple epochs
are used for the training of the network, updating the parameter vector through ev-

ery pass.

We are now ready to apply a gradient descent algorithm for the training of our neural
networks, however we need a method in order to calculate the partial derivates of the

objective function. This leads us naturally onto the next section: Backpropagtion.
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4.1.4 Backpropagation

Backpropagation is one of the most popular methods by which the weights of the
connections between layers of neurons are fine-tuned so as to reach an optimally

performing model according to a particular choice in cost/loss function.

Let us first run through a general description of the overall process before describing
in more detail the mathematics of how backpropagation works. The first stage of
the process is called the forward pass in which mini-batches are passed through the
network one at a time until the final output from the output layer is computed.
Here the hidden layers have been initialised with random connection weights so as
to break the symmetry of the network. The network then computes the loss func-
tion specific to the problem being solved. All intermediary results throughout the
network, i.e. outputs from all layers, are saved for the backward pass. For the binary
classification problem we will be tackling, the binary cross-entropy loss function is

the most appropriate to use, given by the following equation

N
W EACORE)

1=1

N
1 . |
— 2 ¥ log(g) + (1 =y log(1 - Gi).

1=1

£(0)

where y¥ is the actual class of the i-th observation, taking values Yl e {0,1},
and g; € (0,1) is the calculated probability that the i-th observation belongs to the
positive class (the positive class taking the label () = 1).

From here the chain rule is applied to calculate how much each of the saved in-
termediary values contributes to the loss function, passing from one layer to the
one before it until the input layer is reached. The error gradients are then used to
execute a gradient descent in order to fine-tune all the connection weights. Let us
lay out this process more rigorously below. For the purposes of brevity we will be
referencing the Imperial College London Deep Learning 2020 Lecture Notes from
the MSc Mathematics and Finance Course [Pakkanen, 2020], borrowing the nota-

tion used in the notes to clearly describe the process of backpropagation.

Let fo € N.(I,dy,...,do_1,0,01,...,0.) be our neural network with hyperpa-

rameters 8 = (W1, ..., Wbt ..., b"), activation functions ey, ..., and batch

B. We assume for simplicity that o; is the component-wise application of the one-
dimensional activation function g;: R — R denoted by g; for i = 1,...,r and thus

g =(g.....9): R% = R% is the component-wise derivative of g;.
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We aim to find the minimum of our cost function via gradient descent which means

VeoLp(0) (|B|Zt‘fg h}))

e

we need to find

however, thanks to linearity, this amounts to finding

VoLr(0 lBlzva (fo(a'), y")

ieh

and so we are justified in working with just the per-sample gradient Vgf( fo(x),y).
Let us introduce some new recursive notation for the remainder of the explanation:

2= (z1,...,24) = Li(a™ ") = W'a" ' + ¥, i=1....r
G‘I:(”Il:'--:”'d()::gx(z): ?::1;...;'!’;
o’ =z ek
: v , )
5"'::82;-’ i=1,....d, i=1....r
thus fg(sr:) = a’ (fg(:n): y) = f(a”,y) and we have introduced the adjoint

We will now quickly recall the chain rule, as it is a major player in the process
of backpropagation. Suppose we have differentiable functions G: R¢ — R and
F=(F,. .  F): R - R?and define H = Go F: R" = R, ie. H(z) = G(y)

with 4y = (y;....,y4) = F(x). Then the chain rule states that
OH e \OF,
d—h(m) _;ﬂy oz, —x), == (r1,...,20).

Definition 4.1.1. (Hadamard product) For two matrices A, B € R™*" the Hadamard

product of the two matrices, @: R"™*" x R™*" — R™*" is defined by
(4 © B P — (4 u( i

i.e. it is the element-wise product of the two matrices.

We are now ready to state the proposition that allows us to calculate the gradient

of the cost function through the process of backpropagation.
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Proposition 4.1.2. We have

8" =g/(z") O Vyl(a'y), (4.15)
' =gl(z') o (WHys i=1,..r—1, (4.16)
o _ . '
o =05 i=1..r, j=1..d, (41.7)
()( = i-[f,;c_lj 1= l:...:'f’: ] = 1:...:dj: k= 1:...:d1‘_1. (‘-118)

6! '[(.1(.7;‘ - J

4.2 Recurrent Neural Networks

One of the difficulties in using deep neural networks to forecast time series is incor-
porating the idea of causality into the model. We want to know if data 10 days ago
or possibly even a month ago is a contributing factor in predicting what will happen
tomorrow. To combat this we introduce the idea of a Recurrent Neural Network.
Recurrent neural networks are artificial neural networks that specialise in this idea

of trying to preserve a cell’'s 'memory’ to be used in future cells.

4.2.1 Basic Recurrent Neural Network

The main difference here is that an RNN cell receives both inputs @, and h;_y
where hg,_;y is the hidden state of the cell at the previous time step ¢t — 1. From
this we receive an output for each time step and for basic RNN architectures, the
output is often equal to the hidden state. We can unroll the network through time
along a time axis, as in Figure 4.4, to make this more coherent.

The role of the hidden state h is to store information about the sequence up to
the time step ¢, incorporating this idea of preserving the networks 'memory’. This
is seen in the recursive component in the definition of the hidden state. If we denote
the connection weights of the input variables to the hidden state by w,;, and the
weights between hidden states w,,;,, then the hidden state at time ¢ can be defined
by

he = ¢(whe, +wihe1 +by) (4.2.1)

with activation function ¢ and hidden layer bias b,. Computing the output of the

output layer is similar to the MLP output, given by
v = wi,hy + b, (4.2.2)
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Rolled RNN Unrolled RNN

Output layer @

Hidden layers O

Input layer @

Figure 4.4: A 'rolled’ visual of an RNN (left) and an ’unrolled’ visual
of an RNN showing the individual time steps within the network (right).
Source [Education, 2020]

-0
-0

with wp, the weight vector for connections between the hidden states and the out-
put layer and b, the output bias weight.

We will be working with sequence-to-vector networks (or many-to-one networks)
where the network is fed in a sequence of inputs and all outputs, excluding the very

last one, are ignored, as seen in Figure 4.5.

@O@

OO«
® O

Figure 4.5: A many-to-one RNN visualised. Source [Education, 2020)]




Backpropagation Through Time

As we walk through the process of Backpropagation Through Time we will assume
we are working with a RNN model with 1 hidden layer. This is only for simplicity
of the explanation and extending the idea to a model with more than 1 hidden layer
is kindred to extending a feed-forward neural network from 1 hidden layer to more

than one.

As we saw in Section 4.1.4, in order for the backpropagation algorithm to work
we must be able to find derivatives of the cost function, which is exactly what we
will be finding in this section. We now have more weights and parameters in the
model and so we must also fine-tune these, however we will find that the recur-
sive nature of the hidden weight connections makes this slightly more involved than
the regular backpropagation algorithm. For more information on training recurrent
neural networks We refer the reader to Chen's paper [Chen, 2018], for which the
remainder of this explanation is accredited to.

Suppose at time ¢ we have inputs x;, hidden states h;, output ;, model param-
eters @ = (W,,, Wy, Wy, by, by) and activation functions ¢(x) = tanh(z) in the
hidden layer and ¢(x) = Softmax(2) = o(a) in the output layer. The activation
functions are defined by

ef —e™" en

tanh(z) = pranpaey o(x); =
et +e "

Therefore we have

h, = tanh (W, hy—q + W, + by)

Py J— i~

g, = o(W hghz -+ bﬁr)
We assume the parameters are the same across each time step to allow for a well
generalised model. Suppose we use maximum likelihood to estimate the parameters,

i.e. we aim to minimise the negative log likelihood so that our cost function is
L@ y)=—) ulog(in).
¢

For the remainder of this section we will denote the cost function by £ and let £,

be the output of the model at time ¢ so that £, = —y, log(y,). Let z, .= Wy ;h, + by

so that ¢; = (z;). Then we get
oL N
— = —(y, — 1
o=, (% — U)
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Let us find the partial derivative of the cost function with respect to Wy, by first
considering the partial derivative of the output of the model at time ¢ 4+ 1 with
respect to Wy, by utilising the chain rule and then backpropagating through time.
The third equality is justified by the weight matrix Wy, being used for all time steps

within the hidden layer. From this we get,
0L _ L1 01 Oy
IWhy, M1 Oy OWyy,
0Ly Yy Oy Ohy
Ofpyr Ohyy Ohy Wy,

Ly 8§y Ohyy Ohy
— Orsr Oy Ohye OWiy,

If we then sum this derivative over all time steps we get the partial derivative

dL ZZ (}£L+1 ()f,fH_l (}h,:+1 ()h;\
W pe1 Ol Ohy OWyy,

Next we look to find the partial derivative of £ with respect to W;,. Just as we did
before, we look first at the partial derivative of the output of the model at time step
t+1 by once again utilising the chain rule and backpropagating through time. This

vields

OLi1 0Ly Ohyyy
W, Ohysy OW,y
2 L, Ohy.y Ohy,

 Ohisr O OWar

Summing over all previous time steps then gives
t+1 - .
EZ ()£g+1 ()h,H_l ()h.;\
()IV o ol Ohy, OW,,'

Simple application of the chain rule and summation over all time steps gives us the

remaining partial derivatives

Wiy = 05 Wiy

or aL oy,

AL~ IL Iy
db; = 3y, by

31




Vanishing/Exploding Gradient Problem

Recurrent neural networks, especially, are faced with the problem of vanishing and
exploding gradients in which unstable gradients in deep recurrent neural network
models are raised to significant powers, either growing exponentially or sending them
to zero. We have seen that the backpropagation of recurrent neural networks in-
volves composition of the same weight matrix multiple times, since it is that same
weight matrix that is used across the whole of the hidden layer, applied for every
time step in the model. For very deep feed-forward neural networks we potentially
face the same problem, however here we can adjust individual weights per hidden
layer so as to stabilise the overall model. Unfortunately we don’t have that luxury
in the case of a recurrent model and so handling instabilities becomes a lot more

involved.

Let us illustrate this in a simple model taken from [Goodfellow et al., 2016]. Sup-
pose we have a very simple recurrent neural network without inputs or a non-linear

activation function, given by the recurrence relation

hy=W"h, ;. (4.2.3)
If we work back recursively from (4.2.3) we obtain

h, = (Wt)rhn

and thus, if W is orthogonally diagonalisable, i.e. W = QAQ” for orthogonal @,
we get the decomposition

hi = Q"A'Qhy.

As a result of this, the eigenvalues of W, and subsequently A, are raised to the
power of t. Eigenvalues less than 1 tend to zero, hence the term 'vanishing’, and
eigenvalues greater than 1 explode and grow exponentially. Consequently, long-term

dependencies are hard to capture due to the instability of the eigenvalues.

There are, however, variations of recurrent neural networks that have been proposed
that allow the model to handle this vanishing /exploding gradient problem much bet-
ter than basic recurrent models, namely the Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU). We will be exploring these in the upcoming section.

4.2.2 Long Short-Term Memory

The first variant we will look at is the LSTM model, from the work of Hochreiter and
Schmidhuber [Hochreiter and Schmidhuber, 1997]. The aim of the LSTM cell is to

32




preserve as much of the long-term memory as necessary until it is needed, working
to alleviate the vanishing/exploding gradient problem. In the following section we
will describe the structure of an LSTM cell and then go on to analyse the benefits

of such a variation.

i Y
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, 4.C
( 0 Jl O Jtanh)[ O ]
hy, j ) h;
\ J

Figure 4.6: An LSTM cell

Figure 4.6 shows a standard LSTM cell, now with gates that govern how much of
the models state is either remembered or forgotten. Here, the LSTM cell has an
additional state vector, on top of the hidden state, known as the cell state which is
denoted by C; at time ¢t. The cell’s state can be thought of as the long-term state
while the hidden state can be thought of as the short-term state. The gates are
depicted by the red x circles in the diagram, where an x denotes the Hadamard
product and a + is the standard vector addition. The gates are the forget gate, input
gate and the output gate. We also have 4 neural network layers in an LSTM cell as
opposed to a single layer commonly found in standard RNN cells. Three of these
layers utilise the Sigmoid activation function, outputting values f;,4,, 0, € [0,1],
and the remaining layer applies the hyperbolic tangent activation function to out-
put Cnf‘ﬂ € [—1,1]. The Sigmoid function is an important partner to the cell gates;
outputting values in the range [0, 1] allows for the quantities fi, 4, and o, to directly
impact how much of the cell state and g, is carried through at each gate. A value
of one meaning remember everything and similarly a value of 0 meaning forget ev-

erything.
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Since the cell’s state is the component of the LSTM model that makes it unique
to that of standard RNN models, let us explore the life cycle of the cell state as it
is processed through the LSTM cell. As the cell state from the previous time step,
(FHTL,I, enters the current cell, it reaches the forget gate where the Hadamard product
67;_1 © fi is caleulated. Intuitively this amounts to the forget gate controlling how
much of the long-term state should be erased according to f;. Following the forget
gate, memories are added to the cell state at the input gate, where the vector (Fi (O )
is added to the output of the forget gate to get the current cell state. Alongside
this, the current cell state é; is copied and fed to a tanh function and then once
again filtered by the output gate, taking the Hadamard product with o; to finally
produce the cell’s hidden state h, and the output g,. This lends itself to the idea

b}

of the cell state first having "memories” added to it at the input gate, controlled by

i¢, and then the output gate determines how much of the long-term state should be
incorporated into h, and y,, according to o,.

More formally, the relevant equations for the LSTM forward propagation are:

fi=o0(Wlh 1+ W/x, +by)
(~7L = tanh (chrhl_l + W’fncmﬁ + bg)
i =o(Whihi1+ Wiz, +b;)
o, =0 (Wih, 1+ W/lx +b,)
C=(fioCa)+(i,6C)
h; =1y = o; ® tanh (C})

where Wy, W,co, W, W,, are the weight matrices for the connections between the
4 layers and the input a;, the weight matrices for the connections between the 4
layers and the the hidden state of the cell’s previous time step h,_; are denoted by
Wir, Wie, Wi, W, and finally by, be, b, b, are the bias terms for each of the 4

layers.

However in recent years there has also been the development of a new gated mem-
ory cell which is computationally more efficient while performing similarly as well
as LSTM cells: the Gated Recurrent Unit (GRU).

4.2.3 Gated Recurrent Unit

The GRU cell is a variation of the LSTM cell, first introduced by Cho et al. [Cho et al., 2014],
that is much simpler in design and computationally faster while performing on par

with the performance of the LSTM cell. The variation here is a reduction in the
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number of neural network layers from 4 to 3 and combine the 2 state vectors in
the LSTM model to just the one hidden state vector h,. The GRU cell also only
has 2 gates, an update gate and a reset gate, as opposed to the 3 gates the LSTM
possessed. Figure 4.7 shows a block diagram of a GRU cell with input vector a,
hidden state vector h, and output vector y,. The '1—" block represents the function
t(z) = 1 — &, with the x and + blocks having the same meaning as in the LSTM

cell.

Figure 4.7: A GRU cell

In the GRU cell, the gate controller z; controls how much of the hidden state is al-
lowed to pass through the update gate as well as regulating, via 1 — z;, the amount
of h; that is added to the flow of the hidden state z; @ h;_;. We also have a new

gate controller, 7, that tunes how much of the previous state is fed to the main

layer };’L-
More formally, the equations for the forward propagation of the GRU cell are:

= g( f:_:m - ‘I-)V,f:_hl_l - b,.)

z =o0(Wo x, + W, h, _,+b.)

?1,1 = tanh (Wj—lxl + Wf;—l(m © h,L_l) + bﬁ)
hi=y=2z0h 1+ (l - zL) (J?LL




where W,,, W,., W_; are the weight matrices for the connections between the 3
layers and the input ax,, the weight matrices for the connections between the 3
layers and the hidden state of the cell's previous time step h,_; are denoted by
Wi, Wi, W, and finally b, b., b; are the bias terms for each of the 3 layers.
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Chapter 5
Implementation and Results

Here we will give a description of the implementation of the models considered in
Chapters 3 & 4 before going on to detail the performance metrics and numerical
results obtained from the evaluation of the models and interpret them in the context

of the problem we are working on.

5.1 Implementation

All the processing of data and models implemented in this project were done so using
Python, through the appropriate Scikit-learn and Tensorflow libraries. Due to the
stochastic nature of the data, there was no significant imbalance in the target data,
i.e. a roughly similar number of daily increases and decreases in the price of the
futures contract, and thus no alternative methods were needed in order to account
for this. As a result we were free to use a full range of performance metrics where,
otherwise, an imbalance in the target data would’ve made some metrics, 'accuracy’

for example, an unreliable measure.

A crucial element of building a model is making sure that the model is not overfit to
the training data, hoping for a model that generalises well when applied in a prac-
tical setting. Although it is possible to build a model that performs exceptionally
well on the data it has been trained on, often when presented with new incoming
data the model will perform significantly worse. However if one makes the decision
of what model to choose and refine based on the performance on this new data, it’s
possible that we begin to overfit on this new data as well. To overcome the danger of
overfitting we utilise Scikit-learn’s train_test_split class in order to split and shuffle
the data in a 4:1 ratio, first splitting into a fraining set and a fest set and then
performing the same procedure on the training set to obtain a training set and a
validation sel. The benefit of going through this process is we now have a large set
to train the models on, a validation set to evaluate the models on for further refining

and a test set for our final evaluations and results.
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5.1.1 K-fold Cross-validation

As previously mentioned, overfitting a model to the training data is not ideal for the
future use of a model. We don't want a model that performs well on the training
data only for it to be suboptimal when introduced to new data. One method we use
in the training of the models in order to avoid the problem of overfitting is K-fold
Cross-validation. In k-fold cross-validation we split the training data into k distinct
subsets of equal, or as close to equal, size. The training is run through % times,
each time leaving out one of the k subsets which will be used for validation after
the training of the model. A performance metric is used to evaluate each of these
models and then an arithmetic mean is calculated from these individual k scores to

evaluate the model as a whole.

Validation Training
Fold Fold
1st — Performance
o
L
=
5] 5
o = % Z Performance,
%
5th —» Performance 5
7

Training Fold Data
Prediction

Training Fold Labels o D
¢ }Performance
Hyperparameter |:|
Values Validation
Fold Labels
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Algorithm
Figure 5.1: An illustration of k-fold cross wvalidation with & = 5.

Source [Raschka, 2020

For the training of our models we will be using k-fold cross-validation with & = 5.

Before any justification for the choice of & = 5, the author first notes that the
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number of folds used is itself a hyperparameter that can affect the performance
of the model and thus a way of improving our models in future pieces of work
would be to experiment with different values of k. The choice of k = 5 is made for
computational ease. Any larger values of £ would take the models a lot longer to
train whereas any values of k less than 5 would give us less data to train on and thus
the pessimistic bias of the performance metric would increase as well as an increase

in the wvariance due to an oversensitivity to how the data is split.

5.1.2 Hyperparameter Tuning

Within the models there are tunable parameters, known as hyperparameters, that
effect the performance of the models. These parameters are fixed at the beginning
of training and thus cannot be learned through the training of the models. To find
the best performing model we must tune these hyperparameters to their optimum
values. A standard method to find the optimum hyperparameters is utilising the
GridSearchCV class! provided by the scikit-learn library. This entails systematically
working through a defined parameter space for each hyperparameter specified. A
cross-validation is performed for each permutation of the hyperparameter space and
the best performing model is chosen based on which model performed best according

to some metric. For our models this metric will be the accuracy of the model.

5.1.3 Choice of Features

In the building of these models we will be changing the features that are used in
order to capture different types of behaviour. For the support vector machines
and artificial neural networks this will mean including certain parts of the data,

transforming it and even lagging the data in order to capture long term dependencies.

Raw Data

We begin at the very simplest implementation in which daily data for each of the
different feature types discussed in Chapter 3 are used. For this kind of implementa-
tion it is expected that features whose absolute value on the day is important, such
as weather forecasts, foreign exchange and stock indices, will have more influence
over these models when compared to the remaining features whose daily changes

are more telling of future events.

Lagged Data

For the majority of our models we will be lagging the initial features as mentioned
in Chapter 3, that is to say we will be including a varying amount of historical data

Uhttps:/ /scikit-learn.org/stable/modules,/ generated /sklearn.model_selection. Grid SearchC'V . html
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for each feature as it’s own feature. We do this in order to capture any long or short
term dependencies, depending on the amount of historical data we choose to include.
This is a standard method used in forecasting time series in machine learning and
is adopted easily using the Pandas library.

Differences

A transformation we will be applying to the data is looking at the difference between
the data of the current day and the data from the previous day, i.e. 'differenced’
data. The idea in doing so is to see if both the sign and the magnitude of the change
in the last day, and previous days if we are combining differenced data with lagging
the data, make a significant impact on the direction of the price in the future. For
example, a significant drop in temperature may increase demand for certain crude
oil products which in turn would drive the underlying price of the oil up, finally

impacting the price of the futures contract.

5.2 Evaluation

5.2.1 Performance Metrics
Confusion Matrix

A confusion matrix is an intuitive way of visualising the performance of a supervised
learning algorithm. For our binary classification problem the confusion matrix is a
2 x 2 matrix whose rows are the 'actual’ classes of each instance and the columns are

the 'predicted’ classes of the instances having been run through the trained model.

Predicted Class

Actual Class

Figure 5.2: A confusion matrix

If we consider our two classes to be a 'positive’ class labelled by 1 and a 'negative’
class labelled by 0, then the elements in the confusion matrix can be described as

follows:
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e True Positive (TP) - Corrected predicted instances from the positive class,
e True Negative (TN) - Correctly predicted instances from the negative class,

e False Positive (FP) - Incorrectly predicted instances from the positive class
(equivalent to Type I error)

False Negative (FN) - Incorrectly predicted instances from the negative class
(equivalent to Type IT error).

The confusion matrix allows us to see exactly where our predictive models are class-
ing instances and whether there may be bias towards one class over the other. While
accuracy, which will be discussed in more detail next, is usually the immediate per-
formance metric to be considered, for general problems the performance of a model
purely based on accuracy can lead to problems when there is imbalanced data, i.e. a
significantly higher proportion of one class of data over the other. Let us consider a
well-known example of where accuracy can be misleading. This isn't to discourage
the use of accuracy as a performance metric but instead more of an example of
where carefully examining the confusion matrix can be beneficial in understanding

how a model is behaving.

Consider the binary classification problem in which we have
an imbalanced dataset of 100 samples made up of 95 positive
instances and 5 negative instances. Suppose we have a model
that classifies every instance as positive. Then we would yield
a performance of 95% accuracy and an F1 score of 97%. Both
of these scores are very high for a classification problem, how-
ever if we were to consider the performance metric that calcu-
lates the proportion of correctly classified negative instances,
selectivity, then we would yield a result of 0%, which is signifi-
cantly worse than all the impressive results we had previously
achieved.
Fortunately, for the data we are using, there is roughly the same proportion of both

target classes and so accuracy is still a viable metric to consider.

Accuracy

Accuracy is one of the most natural performance metrics to consider and can be

formally defined in the now familiar terminology by the following equation,

TP + TN
TP + TN+ FP +FN

Accuracy
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i.e. it is the total proportion of instances correctly classified. For a balanced dataset
it gives one of the best indications of how well a model performs and will be one of

the leading metrics we will be basing the performance of our models on.

Precision & Recall

Precision can be thought of as the proportion of the data that is correctly predicted
in the positive class. The formal definition is given hy,

TP

Precisior e
recision TP+ 7P

Essentially, it is the ability of the predictive model to accurately predict the positive
instances that are classified as positive. In the context of the model we are trying to
build, a high precision would mean the model has a high success rate in predicting

an increase in the price of the futures contract.

A metric that often goes hand in hand with precision is the recall of a model.
Formally we define recall to be the following equation,
TP

ecall =
feeca TP + FN

In essence, it is the ability of the model to accurately classify all actually positive
instances as positive. For the problem we face, a high recall would mean the model

performs well as identifying all the positive price changes as positive.

Achieving either a high precision or a high recall on their own is relatively easy
with some very trivial models; for example if every observation was classified to be
the positive class then the model would achieve a 100% recall. However clearly this
model would never correctly identify any of the negative instances and thus recall,
or precision, on it's own is not enough to judge the performance of a classifier. In-
stead they are often considered alongside each other in a precision-recall curve or
combined in the Fz score, which will be looked at further in the following section.

I Score

One of the measures that we will be considering is the F; score, in particular the
F} score. Taken from the scikit-learn metrics documentation?, the Fjs score is ‘the
weighted harmonic mean of precision and recall, reaching its optimal value at 1 and

?https:/ /scikit-learn.org /stable/modules /generated /sklearn.metrics. fbeta_score. html
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its worst value at (. The formal definition is given below,

Precision x Recall
(82 x Precision) + Recall

Fs Score = (14 8%) % (5.2.1)
Different weightings of either precision or recall may be necessary depending on
what kind of problem is being solved. As an example, if one was training a model
to identify a cancer in the body, it is far more beneficial for a classification model
to be overcautious and thus have a much higher weight on recall so that all cancers
are identified. In the Fj score, 8 is defined to be the weight attributed to precision,
i.e. it is the scale by which we consider recall 5 times more important than precision.

Given our halanced dataset, and the fact that neither precision nor recall is more
important than the other, we will be using the Fj score which weights the two met-
rics equally. That is, we will set 3 =1 in (5.2.1) so that our measure is calculated
by the following equation,

Precision x Recall
Fy Seore = 2x

Precision + Recall’

There are criticisms of the F; measure in using it for unbalanced data which is
justified given it’s focus purely on the positive class. However, given the dataset we
are using. the F} score is fairly justified and the choice of 5 = 1 allows for a perfectly
weighted harmonic mean accounting for both precision and recall equally.

5.2.2 Support Vector Machines

‘We now present the results from the best performing SVM models for each of the
different feature sets. After an extensive search, there was no well-respected global
benchmark for the time series forecasting performance metrics so in order for us to
make some comparisons we have introduced a "naive model” in which we predict
the price of the futures contract to increase one day, decrease the next, increase the
day after that and so on, i.e. our prediction vector is [1,0,1,0,...,1,0]. Comparing
our models to this, and each other, allows for us to quantify how well our actively
tuned models are performing. Table 5.1 shows how well this naive model performs
while Table 5.3 gives the performance scores from the SVM models, with the best
scores for each metric highlighted in bold. To visualise the results further, Figure
7?7 graphs all of the performance metrics for each of the models.

Accuracy | Fy Score | Precision | Recall
Naive Model | 0.458491 | 0.451243 | 0.445283 | 0.457364

Table 5.1: Results of the naive model
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Raw data - 5 Day Lag
Raw data - 10 Day Lag

0.565217
0.571970

(0.554264
(.590580

Model Accuracy | Fj Score | Precision Recall
Raw data - Unlagged 0.515094 | 0.566610 | 0.501493 | 0.651163
Raw data - 1 Day Lag 0.620755 | 0.644248 | 0.610738 | 0.681648
Raw data - 2 Day Lag 0.578450 | 0.598198 | 0.628788 | 0.570447
Raw data - 3 Day Lag 0.604915 | 0.604915 | 0.573477 | 0.640000

0.567460
0.548822

0.541667
0.639216

Differenced data - 1 Day Lag
Differenced data - 2 Day Lag
Differenced data - 3 Day Lag
Differenced data - 5 Day Lag
Differenced data - 10 Day Lag

0.568998
0.578450
0.593573
0.589792
0.541667

(0.589928
(0.586271
0.616756
0.589792
0.566308

0.618363
0.546713
0.570957
0.573529
(0.548611

0.563574
0.632000
0.670543
0.607004
0.585185

Table 5.2: Table of results for the 11 different SVM models

The first result we can conclude is that all of the SVM models perform better
than our benchmark model which justifies the use of the support vector machine as
a predictive model. Not only that, all models also have an accuracy of over 50%
which means our models are better than making a decision based on the flip of a
coin. Clearly the 'Raw data - 1 Day Lag’ model performs best across all but one
metric with an accuracy of 62.1%, Fy score of 64.4% and a recall of 68.2%. Even
the precision of this model ranks as the second highest with 61.1% only bested by
‘Raw data - 2 Day Lag’ with a precision of 62.9%. Thus we can conclude that, of
the SVM models, the model we would use for the forecasting of price changes is the
‘Raw data - 1 Day Lag’ model. From now on 'n Day Lag’ with be abbreviated to

nDL for brevity.

A closer look at 5.3 reveals that in most cases, the top scoring models belong to the
‘Raw data’ class of SVYM models. The top two accuracy scores (1DL and 3DL), two
of the top three Fy scores (1DL and 3DL), two of the top three precision scores (2DL
and 3DL) and three of the top five recall scores (1DL, 3DL and 10DL). With this
in mind, we conclude that, for the SVM models, the more socioeconomic features in
the feature set play a much bigger role in correctly predicting our classes. That is
to say that factors such as foreign exchange, stock indices and weather forecasts are
expected to play a more significant role in the calculation of the hyperplane than
possibly other features. We can explore this hypothesis by plotting the square of
the coef_ attribute, as in [Guyon et al., 2002], from the LinearSVC class we have
implemented for the 'Raw data - 1 Day Lag’ model.

The square of the hyperplane’s coeflicients indicates how important each coeflicient
is compared to the others. Clearly a coefficient of 0 shows that the direction of
that component played no part in calculating the separating hyperplane. As hy-

pothesised, the two major contributors to the SVM hyperplane are the present day
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Figure 5.3: 'Raw data - 1 Day Lag’ LinearSVC coef_ square weightings

and previous day values of the S&P 500 stock index; an index tracking the top 500

companies, by market capitalisation, listed in the US.

Model Kernel | Hyperparameters

Raw data - Unlagged Linear C'=10.04
Raw data - 1 Day Lag Linear C=19.0
Raw data - 2 Day Lag Linear C=10
Raw data - 3 Day Lag Linear C' = 1000
Raw data - 5 Day Lag Linear C=380

Raw data - 10 Day Lag Linear C =100.0
Differenced data - 1 Day Lag | Sigmoid C= 1'{0.
' ' v =0.026

Differenced data - 2 Day Lag | Linear C'=0.02
Differenced data - 3 Day Lag | Linear =14
Differenced data - 5 Day Lag | Linear C'=0.02
Differenced data - 10 Day Lag | Linear C'=10.01

Table 5.3: Table of hyperparameters for the 11 different SVM models
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5.2.3 Deep Neural Networks

Following the SVM results, we proceed onto the results obtained from employing
deep feed-forward neural networks in our classification problem. First we note that
no model outperformed the best SVM model 'Raw data - 1 Day Lag’ in the 'accu-
racy’ metric. Since this is the metric we will be prioritising in choosing a superior
model, we can conclusively state that no feed-forward neural network we explored
is better than the SVM model’s already looked at. While the feed-forward neural
networks do offer some high scores in terms of Fy Score and Recall, we will see that
this is as a result of the model’s inability to train or find a pattern. In most cases,

these models should then be ignored. The results can be found in Table 5.4.

Let us first dissect the 'Raw Oil Data’ models. In general the accuracy’ scores
for these models fluctuate around 50%, which is only just slighter better /worse than
the flip of a fair coin. The lowest "accuracy’ score among the lagged SVM models
was (.541667, a score greater than all of the 'Raw Oil Data’ scores and so we can
conclude that this category is not worth exploring further. Moreover, we can see
that this category boasts some incredibly high 'recall’ values, with one of the models
even achieving a recall of 100%. Upon further inspection of the models’ confusion
matrices, this is as a result of the models inability to train on the data provided and
thus dumping all observations in the positive class. Because the target variables are
marginally unbalanced, in particular there are slightly more positive class instances
than negative class instances, classifying every single observation as the positive
class allows the model to achieve an accuracy of just over 50% in most cases and so
the model sees this as a win. The F; Score is a weighted average of the precision and
recall and thus very high recall scores, despite note necessarily being advantageous,
scale up the Fy Score, making them appear better than they actually are in spite of

fairly average precision scores.

The 'Differenced Oil Data’ doesn’t offer any particularly attractive results. Sim-
ilarly to the 'Raw Qil Data’ category we have accuracy scores fluctuating around
50% which, coupled with very high recall scores and inspection of the confusion ma-
trices, can be attributed to the models once again not training successfully on the
data and classifying every training instance as the positive class. As seen before, we
have some quite large F; Scores due to extremities in the recall of the models and so
they are nothing significant. Without large recall values, as seen in the models with
more than 15 days of lagged data, we can observe very insignificant values across all
performance metrics. From the previous two paragraphs it is enough to conclude
that in order to build effective classification models we will need to use more than

just historical Brent Crude Oil data.
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The introduction of our complete feature set immediately shows improvements. To
begin with, the Full Raw Feature Set - 15 Day Lag’ achieves the second highest
accuracy score across all feed-forward neural network models with 57.1%. This is
clearly a model that has trained to some degree and can successfully predict binary
movements more often than not without unrealistic recall and precision sores, i.e.
this score is not down a bulk classification of all positive or negative instances. If
we exclude all FNN models that have been unsuccessful in training, made evident
by a very large recall or precision score, them the 'Full Raw Feature Set - 15 Day
Lag’ model also has the highest F; score across all accepted models. This is clearly
a move in the right direction in terms of improving our models and we will see that
the final category performs arguably the best out of all the categories.

Here we highlight the performance of the "Full Differenced Feature Set’ category
of feed-forward neural networks. The first point to note is the "Full Differenced Fea-
ture Set - 2 Day Lag’ model achieving the highest accuracy score of 58.4%, which
also places it as the fifth most accurate model amongst the SVM models. This
category of models also hosts 4 of the top 5 best performing feed-forward neural
networks in terms of accuracy which justifies it's use as a category. All of these top
5 results have an accuracy of over 54% which is typically how the target variables are
split and thus clearly these models have trained successfully and recognised various
signals in the data that give them a competitive edge. This category is also home to
the model with the highest precision ("Full Differenced Feature Set - 1 Day Lag’ with
61.9%) which, given the results we’ve seen so far, is a significant result. Typically
we've seen fairly average precision scores amongst our results due to the models
classifying all results in one lass for models that are unable to train effectively. A
higher precision suggests a lower number of False Positives which is promising; less
False Positives means more classifications in the negative class which is a sign that
our model is training successfully. Overall we can conclude that the "Full Differenced
Feature Set” was the most successful set of features with the best performing model
amongst the feed-forward neural networks being the model associated with the "Full
Differenced Feature Set - 2 Day Lag’ feature set.

While disappointing, it doesn't come as a surprise that the majority of our SVM
models perform better than the feed-forward neural networks. Research by Ince
and Trafalis [Ince and Trafalis, 2008] produced similar results whereby SVM's were
shown to perform better in short-term stock price prediction over Multi-layer Per-
ceptrons.
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Model Accuracy | F; Score | Precision Recall
Raw Oil Data - 1 Day Lag 0.524218 | 0.676127 | 0524611 | 0.950704
Raw Oil Data - 2 Day Lag 0.513182 | 0.649603 | 0.520878 | 0.862837

Raw Oil Data - 3 Day Lag
Raw Oil Data - 5 Day Lag
Raw Oil Data - 10 Day Lag
Raw Oil Data - 15 Day Lag
Raw Oil Data - 20 Day Lag
Raw Oil Data - 30 Day Lag
Raw Oil Data - 40 Day Lag

0.498467
0.492638
0.438029
0.514742
0.502766
0.510154
0.533580

0.664754
0.425295
0.655941
0.617248
0.644396
0.640145
0.686802

0.497851
0.522184
0.488323
0.517045
0.506916
0.523669
0.533419

1.000000
0.358734
0.998744
0.765625
0.584198
0.823256
0.96.3995

Differenced Oil Data - 1 Day Lag
Differenced Oil Data - 2 Day Lag
Differenced Oil Data - 3 Day Lag
Differenced Oil Data - 5 Day Lag
Differenced Oil Data - 10 Day Lag
Differenced Oil Data - 15 Day Lag
Differenced Oil Data - 20 Day Lag
Differenced Oil Data - 30 Day Lag
Differenced Oil Data - 40 Day Lag

0.521153
0.494788
(0.522992
0.500613
0.531614
0.512899
0.507683
0.485538
0.512015

0.682907
0.659222
0.656664
0.583419
0.621715
0.557724
0.534031
0.501193
0.530806

0.522360
0.495955
0.522105
0.505768
0.534527
0.535906
0.519231
0.505415
0.527059

0.985932
0.982737
0.884661
0.689238
0.742891
0.581395
0.549701
0.497041
0.534606

Full Raw Feature Set - 1 Day Lag
Full Raw Feature Set - 2 Day Lag
Full Raw Feature Set - 3 Day Lag
Full Raw Feature Set - 5 Day Lag
Full Raw Feature Set - 10 Day Lag
Full Raw Feature Set - 15 Day Lag
Full Raw Feature Set - 20 Day Lag
Full Raw Feature Set - 30 Day Lag
Full Raw Feature Set - 40 Day Lag

0.523629
0.540643
0487713
0.514178
0.503788
0.571157
0.515209
0.505725
0.500000

(0.524528
0.522593
0.549085
0.541889
0.540351
0.594982
0.495050
0.483034
0.561345

0.538760
0.607306
0.492537
0.515254
0.496774
0.549669
0.510204
0.542601
0.470423

0.511029
0.458621
0.620301
0.571429
0.592308
0.643438
0.480769
0.435252
0.695833

Full Differenced Feature Set - 1 Day Lag
Full Differenced Feature Set - 2 Day Lag
Full Differenced Feature Set - 3 Day Lag
Full Differenced Feature Set - 5 Day Lag
Full Differenced Feature Set - 10 Day Lag
Full Differenced Feature Set - 15 Day Lag
Full Differenced Feature Set - 20 Day Lag
Full Differenced Feature Set - 30 Day Lag
Full Differenced Feature Set - 40 Day Lag

0.565217
0.584121

(.555766
0.556818
0.518027
0.56464

0.500952
0.500956
0.533589

0.575646
0.584906
0.575045
0.561798
0.511538
0.568738
0.513011
0.479042
0.542373

0.619048
0.587121
0.578182
0.576923
0.542857
0.583012
0.530769
0.493827
0.558140

0.537931
0.582707
0.571942
0.547445
0.4836364
0.555147
0.4964029
0.465116
0.527473

Table 5.4: Table of results for the different feed-forward neural network models

5.2.4 Recurrent Neural Networks

Finally we examine the results of our recurrent neural network models and their

variations, ie. LSTM and GRU models.

Due to time constraints, only the full

feature set was explored as opposed to isolating the oil data aswell, given the per-

formance of both feed-forward neural network and simple recurrent neural network

models were best for these feature sets.
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Immediately we can conclude that the basic recurrent neural networks, across all
choices of feature sets, are the worst performing of all the models we have im-
plemented. The best performing model across this choice of architecture is "Full
Differenced Feature Set - 40 Day Lag’ with an accuracy of 53.3%. Compared to
the SVM models previously mentioned, the best performing model for the recurrent
neural network underperforms compared to every SVM model except the 'Raw data
- Unlagged” model. This is disappointing as one would hope that by the very na-
ture of recurrent neural networks, they would be able to hold some kind of memory
throughout the model and perform better than they have done here. A onsiderable
number of models are even trained to achieve accuracy scores of less than 50%, per-
forming worse than basing ones decision on the flip of a coin.

As we saw with the feed-forward models, for the oil data alone there are some
extremely high recall values, with 2 models achieving 100% recall. But once again,
after a closer inspection of the confusion matrices, this is entirely down to the mod-
els being unable to train and thus classifving a large majority (if not all instances)
as the positive class. This in turn will produce some large F; values, as can be seen
in both Oil Feature set categories where a large F; score is not accompanied by a

high level of accuracy. These suggest poorly fit models, if fit at all.

After implementing and evaluating the simple recurrent neural network architec-
tures we try to capture any long term dependencies and preserve both long and
short term memories within the data, thus choosing to implement recurrent neural
network architectures with LSTM and GRU cells. We begin by giving the results for
the LSTM cell networks in Table 5.6 before then giving the GRU results in Table 5.7.

The LSTM models are more promising than the simple recurrent neural network
models, evident by our ability to immediately identify more stable recall values.
This suggest the models are making 'conscious’ decisions about the observations
rather than dumping all instances in one class or the other. Our most accurate
LSTM model, 'Full Differenced Feature Set - 40 Day Lag’, is also more accurate
than all simple recurrent neural network models and greater than 54% which once
again suggests some ‘conscious’ decisions by the model rather than a possible split
in the day. Interestingly we may note that the most accurate model is in the Full
Differenced Feature Set, as is the best performing model from all our artificial neural
network architectures. This suggests that for models that learn in the way these ar-
tificial neural networks do, i.e. backpropagation, the most information is extracted
from the changes in the previous days data across the whole dataset which is in

contrast to the best performing model of the SVM models. The best performing
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model for the SVM models was trained on a raw dataset rather than the changes.
Our guess it that, unlike the SVM models, the artificial neural network models learn
the most from features where their daily changes are more telling of future events
rather than their raw absolute value.

Introducing GRU cells into our recurrent neural networks gives us our best perform-
ing model across all recurrent neural network models in "Full Differenced Feature Set
- 20 Day Lag’ with an accuracy of 58.7%. This model also has the highest precision
amongst all the GRU models, boasting a precision of 61.7%. A large precision is
now significant given the identification of some of the models’ tendencies to dump all
observations in the positive class if unable to train successfully. The highest F; score
and recall value go hand-in-hand, unsurprisingly, with the 'Full Differenced Feature
Set - 30 Day Lag’ model. From this we can possible claim that GRU cells train on
less data better than the LSTM cells and are thus more suited to this problem than
the other recurrent unit cells.




Model

Accuracy

Fy Score

Precision

Recall

Raw Oil Data - 1 Day Lag
Raw Oil Data - 2 Day Lag
Raw Oil Data - 3 Day Lag
Raw Oil Data - 5 Day Lag
Raw Qil Data - 10 Day Lag
Raw Qil Data - 15 Day Lag
Raw Qil Data - 20 Day Lag
Raw Qil Data - 30 Day Lag
Raw Qil Data - 40 Day Lag

0.505212
0.511956
0.496628
0.521472
0.438643
0.507985
0.507068
0.483615
0.516944

0.590563
0.662426
0.660883
0.677952
0.656495
0.642251
0.668369
0.403446
0.636564

0.520107
0.518936
0.496894
0.523263
0.488643
0.511016
0.508475
0.527205
0.529730

0.683099
0.915592
0.986436
0.962485
1.000000
0.864183
0.977081
0.326744
0.796748

Differenced Oil Data - 1 Day Lag
Differenced Oil Data - 2 Day Lag
Differenced Oil Data - 3 Day Lag
Differenced Oil Data - 5 Day Lag
Differenced Oil Data - 10 Day Lag
Differenced Oil Data - 15 Day Lag
Differenced Oil Data - 20 Day Lag
Differenced Oil Data - 30 Day Lag
Differenced Oil Data - 40 Day Lag

0.522379
0.497241
0.503985
0.507362
0.522406
0.528870
0.503380
0.515077
0.494763

0.685507
0.664210
0.632773
0.533952
0.56487T
0.654349
0.626962
0.663535
0.572917

0.522783
0.497241
0.511747
0.513393
0.534958
0.534216
0.510143
0.519038
0.508318

0.995311
1.000000
0.828775H
0.556227
0.598341
0.844186
0.813174
0.919527
0.656325

Full Raw Feature Set - 1 Day Lag
Full Raw Feature Set - 2 Day Lag
Full Raw Feature Set - 3 Day Lag
Full Raw Feature Set - 5 Day Lag
Full Raw Feature Set - 10 Day Lag
Full Raw Feature Set - 15 Day Lag
Full Raw Feature Set - 20 Day Lag
Full Raw Feature Set - 30 Day Lag

0.529301
0.502336
0.497164
0.506616
0.515152
0.515152
0.511407
0.522901

0.572899
0.493256
0.519855
(0.561345
(0.555556
0.593651
0.541889
(0.533582

0.536977
0.558952
0.500000
0.507599
0.506329
0.505405
0.504983
0.554264

0.613971
0.441379
0.541353
0.627820
0.615385
0.719231
0.584615
0.514388

Full Raw Feature Set - 40 Day Lag 0471264 | 0.584337 | 0457547 | 0.808333
Full Differenced Feature Set - 1 Day Lag | 0.468809 | 0.270130 | 0.547368 | 0.179310
Full Differenced Feature Set - 2 Day Lag | 0.510397 | 0.483034 | 0.514894 | 0.454887

Full Differenced Feature Set - 3 Day Lag
Full Differenced Feature Set - 5 Day Lag
Full Differenced Feature Set - 10 Day Lag
Full Differenced Feature Set - 15 Day Lag
Full Differenced Feature Set - 20 Day Lag
Full Differenced Feature Set - 30 Day Lag
Full Differenced Feature Set - 40 Day Lag

0.523629
0.496212
0.497154
(0.521822
0.506667
0.506692
0.533589

0.556338
0.539792
0.515539
0.533333
0.407323
0.568562
0.571429

0.544828
0.513158
0.518382
0.543396
0.559748
0.500000
0.551020

0.568345
0.569343
0.512727
0.523636
0.320144
0.658915
0.593407

Table 5.5: Table of results for the different recurrent neural network models




Model Accuracy | Fy Score | Precision Recall
Full Raw Feature Set - 1 Day Lag 0.491493 | 0.562602 | 0.504373 | 0.636029
Full Raw Feature Set - 2 Day Lag 0.461248 0.219178 | 0.533333 | 0.137931
Full Raw Feature Set - 3 Day Lag 0.489603 | 0.474708 | 0.491935 | 0.458647
Full Raw Feature Set - 5 Day Lag 0.512287 | 0.575658 | 0.511696 | 0.657895
Full Raw Feature Set - 10 Day Lag 0.490530 | 0.629986 | 0.490364 | 0.880769
Full Raw Feature Set - 15 Day Lag 0.492424 | 0.658163 | 0.492366 | 0.992308

Full Raw Feature Set - 20 Day Lag
Full Raw Feature Set - 30 Day Lag
Full Raw Feature Set - 40 Day Lag

0.526616
0.507634
0.486590

0.636496
0.516854
0.554817

0.512941
0.539063
0.461326

0.8358462
0.496403
0.695833

Full Differenced Feature Set - 1 Day Lag
Full Differenced Feature Set - 2 Day Lag
Full Differenced Feature Set - 3 Day Lag
Full Differenced Feature Set - 5 Day Lag
Full Differenced Feature Set - 10 Day Lag
Full Differenced Feature Set - 15 Day Lag
Full Differenced Feature Set - 20 Day Lag
Full Differenced Feature Set - 30 Day Lag
Full Differenced Feature Set - 40 Day Lag

0.529301
0.517958
0.523629
0.520833
0.491461
0.531309
0.540952
0.531549
0.541267

0.506931
0.597156
0.505882
0.540835
0.480620
0.480000
0.554529
0.617785
0.621236

0.595349
0.514986
0.556034
0.537906
0.514523
0.570000
0.570342
0.516971
0.547486

0.441379
0.710526
0.464029
(.543796
0.450909
0.414545
0.539568
0.767442
0.717949

Table 5.6:

Table of results for the different LSTM neural network models

Model

Accuracy

) Score

Precision

Recall

Full Raw Feature Set - 1 Day Lag
Full Raw Feature Set - 2 Day Lag
Full Raw Feature Set - 3 Day Lag
Full Raw Feature Set - 5 Day Lag
Full Raw Feature Set - 10 Day Lag
Full Raw Feature Set - 15 Day Lag
Full Raw Feature Set - 20 Day Lag
Full Raw Feature Set - 30 Day Lag
Full Raw Feature Set - 40 Day Lag

0.519849
0.506616
0.483932
(0.525520
0.518939
0.498106
0.505703
0.484733
0.498084

0.552817
0.472727
0.534923
0.593193
0.513410
0.567700
0.566667
0.490566
0.546713

0.530405
0.570732
0.489097
0.521368
(0.511450
0.492918
0.500000
0.515873
0.467456

0.577206
0.403448
0.590226
0.687970
0.515385
0.669231
0.653846
0.467626
0.658333

Full Differenced Feature Set - 1 Day Lag
Full Differenced Feature Set - 2 Day Lag
Full Differenced Feature Set - 3 Day Lag
Full Differenced Feature Set - 5 Day Lag
Full Differenced Feature Set - 10 Day Lag
Full Differenced Feature Set - 15 Day Lag
Full Differenced Feature Set - 20 Day Lag
Full Differenced Feature Set - 30 Day Lag
Full Differenced Feature Set - 40 Day Lag

0.489603
0.527410
0.504726
0.515152
0.497154
0.523719
0.586667
0.523901
0.506718

0.427966
0.410377
0.545139
0.580328
(0.535902
(0.582363
0.597403
0.647808
0.536937

(.554945
0.550633
0.526846
0.526786
0.516892
0.536810
0.616858
0.510022
0.528369

0.345276
(.327068
0.564748
0.645985
0.556364
0.636364
0.579137
0.887597
(.545788

Table 5.7: Table of results for the different GRU neural network models




Chapter 6
Conclusion

In this thesis we have tackled the problem of predicting the direction of the day-ahead
price change of Brent Crude Oil Front Month Futures Contracts by employing sup-
port vector machines, feed-forward neural networks and recurrent neural networks
and their variations. It is clear to see that support vector machines performed consis-
tently better than than the other two types of models, achieving the highest accuracy
of 62.1% with the 'Raw data - 1 Day Lag’ feature set which was significantly better
than the results of hoth the feed-forward networks and the recurrent networks. Of
the artificial neural networks, the recurrent neural network architecture made up of
GRU cells with 'Full Differenced Feature Set - 20 Day Lag’ performed the best, with
an accuracy of 58.7% marginally beating the feed-forward network with the "Full Dif-
ferenced Feature Set - 2 Day Lag’ feature set. Overall the artificial neural networks
performed disappointingly which can be attributed to two main factors: not enough
data for the models to train on and too shallow a search in the hyperparameter space.
On the other hand, the support vector machines performed surprisingly well with
most SVM models outperforming the majority of the ANN models implemented. In
particular we saw that the S&P500 dataset provided great insight into the move-
ments of Brent Crude Oil Futures, contributing significantly to the coeflicients of
the separating hyperplane. Unfortunately, the "blackbox’ nature of artificial neural
networks allows us to draw little information about the factors that influence the

weightings of the models, which is something that could be explored in further work.

Upon reflection, there are three directions I would like to take the research further.
Firstly, a more intelligent, efficient method to find the optimum hyperparameters
should be used in order to blah blah blah. Bayesian optimisation is a popular and
effective method used in a vast number of machine learning problems and thus it
makes for an ideal starting point for a more intelligent global optimisation method.
Secondly, given more time, it would be beneficial to tune as many hyperparameters
as possible. This includes using different values of K in our K-fold cross-validation,
trying different permutations of Basic RNN, LSTM and GRU cells, the learning

53




rate, etc. Any parameter that was initially fixed can become a hyperparameter
with enough time and resources. Finally, experimenting with more advanced kernel
functions for the support vector machines, tailored to sequential data would be an
interesting idea to take further. Salvi et al. [Salvi et al., 2021] suggested using the
Signature Kernel, finding success in applying it to forecasting time series in ma-
chine learning tasks. This would be the next step in improving the current research
proposed.




Appendix A

Technical Proofs
A.1 Proof of Proposition 4.1.2

Once again recalling from [Pakkanen, 2020], here we prove Proposition 4.1.2.

Proof. First note that ¢ = {(a”,y) = €(g,(z"),y) so that, along with

da;, g,’(Zj) s=7,

f)zl;' o 0, s
and the chain rule gives
o o dar ar
0 =— = —(a’, S =gz =—(a",y). j=1...., O,
1T 9z z_; 5. @Y PR ()5, (@y) J e

and (4.1.5) is the above in vector form.

If we view ¢ as a function of z'*! and z'*! as a function of 2z then the chain
rule gives
A div1 4, il
5 al 'Z o4 ( I._1)();;; !
= — = — z 3
CN Ozttt az
7 s=1 s J
dis 1
., 0z
= E gt )*I j=1 d;
dz
s=1 J




Since

2 = ZHW gi(24) + bt

d;
=Y Wittal, + (A.1.1)
u=1
and thus g1
O ‘Zi_ it i
f)l = W l‘ :(ZJ)
z.}‘
through which
iy disy
5 = gi(zh) Za*—‘n"— = gi(z) Y (WY 6 =1,
s=1
and (4.1.6) is the above in vector/matrix form
Using the relationship shown in (A.1.1), we can see that
92 )1, s=} 9z a ", s=],
(’)b;- 0, s# 7, f)I-l"ik 0, 5%,
and so the chain rule gives
ol &L or oz ot NP Y
o=y = =) = gy
v, — dz; ob; awy o Dz, OW3 !

which completes the proof of Proposition 4.1.2
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