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Abstract

This thesis explores how one can use machine learning to predict the volumes of certain European
government bonds to be traded over long term (daily) horizons and short term horizons (hourly, 15
and 5 minute buckets). Our initial regression models contain features relating to previous volumes,
special days in the bond calendar and bond pricing, while our most complicated model, a multilayer
perceptron neural network, contains over 300 weights to be calibrated.

We show that both linear and non-linear models can be utilised successfully, resulting in them
performing better out-of-sample than a benchmark of a moving average of previously observed vol-
umes. Furthermore, we devise a feature selection algorithm in order to determine the key drivers
behind volume prediction, as well as comparing the most useful features when modelling a long term
horizon opposed to a short term horizon.
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Introduction

0.1 Background

Volume forecasting for European government bonds is a topic which both traditional machine
learning techniques, and more advanced ones can be applied towards. The focus of this thesis is on
D2C markets (dealer to client). In these markets, various buy side institutions, such as hedge funds
or pension [unds, approach market makers with a ‘request for quotation’ (RFQ). RFQs were first
introducted by Tradeweb in 1998 (Tradeweb), and serve as a platform to connect buyers and sellers
in the market. An RFQ requests a price for a bid/ask of a certain ISIN (a specific bond). Buy side
institutions will send multiple RFQs to different market makers, such as Deutsche Bank, and will then
pick who to enter a transaction with based upon who provides the best price. Offering a competitive
price, but not one that is too competitive is key, as one aims to win a trade without providing too
good a price which would mean they would not be able to buy/sell on a contract for a profit. Initially
we will provide a static prediction for the amount of bonds traded via RFQs for a given day, however
further on in this thesis we will develop a model to provide hourly intraday updates, based upon
realised volumes in D2C markets.

Bonds have tenors attached to them, indicating how long they are from maturity. The market
for bonds of a 2 year maturity and the market for bonds of a 30 year maturity are vastly different, due
to the respective yields associated with the bonds. As of the publication of this thesis, there is over
a 100 basis point spread between the yields of Italian 2 year and 10 year bonds, and a 35 basis point
spread between the yields of German 2 year and 10 year bonds (MTS). Considering this, this thesis’
primary focus is being able to predict daily (long horizon) volumes for European government bond
‘sectors’. A sector is defined as a combination of both bond issue country, and tenor bucket, and the
sector we carry out our initial analysis on is German 7-11 year bonds. In the most simplistic model
of a simple moving average, we see limited success, since while previously traded volumes can be
indicative of future behaviours, there are many other features that go into volume prediction. In an
increasingly competitive environment, more advanced techniques are required to study the behaviour
of volumes. Whilst we will begin with examining more simplistic topics, such as feature engineering,
cross-validation and OLS/Ridge/LASSO regression, by the end of this thesis we will have examined
the utility provided by techniques such as random forests, multilayer perceptron neural networks as
well as clustering via PCA to examine the inter-dependencies between sectors.

Additionally, via further feature engineering, we will discuss a model that uses our initial daily
prediction in order to predict volumes every hour, 15 minutes and even 5 minutes. Time series
modelling can be difficult, due to features such as non-stationary and temporality, and thus we explore
techniques such as data normalisation and different cross-validation/train-test split techniques to
accommodate for this. For example, a typical k-fold cross validation technique, which can be effective
on non-time series data, cannot be used, since one would be training a model on data in the future
to predict results now.

To summarise, this thesis will be split up primarily into three sections. In our initial section,
we explore both typical regression based models for modelling a singular sector, German 7-11 year
bonds, as well as non-linear more advanced machine learning models. We will then extend our models




to explore the dependencies found within varions sectors, and report the robustness of our models by
seeing if they can accurately predict sectors which do not share many common attributes. Finally, we
delve into intraday modelling, to see how our models fare with a data set with much greater variance.

0.2 Methodology and motivation

Throughout this thesis, we will examine the various factors and features associated with European
government bonds trading volumes, ranging from the aforementioned obvious features such as the
volume traded in the past, to more nuanced and specific features such as European Central Bank
meetings. One potential motivation for studying volume predictions is as follows. Market making
for bonds can be a very competitive environment, and knowledge of volume traded could be used
for the purposes of appropriately hedging as well as allowing a trader to understand how long they
may have to hold onto a position for. If one could theoretically perfectly predict future volumes,
they could execute ‘perfect’ bond to bond hedges, meaning they would not have to enter the futures
market to execute a hedge. Furthermore, holding on to a contract for a long period of time equates
to a potential loss in earnings, as funds cannot be released for more trades to be made.

0.3 Data set

The data set used in this project will be all RFQs received by Deutsche Bank, between January
1st 2019 to 18th May 2021. This 2.5 year time period will ideally be sufficient to pick up any
seasonal trends (for example, volumes dropping during December), as well as allowing us to explore
the performance of models during more tumultuous periods, such as in March 2020. In March 2020,
due to great uncertainty surrounding the COVID-19 pandemic, bond yields behaved erratically. A
paper by Paule-Vianez et al. (14), studied the correlation between search terms via Google trends
as a proxy for COVID-induced fear, and established that a 1 point increase in COVID-induced fear
was associated with an increase in the weekly change in sovereign bond yields of around 0.0007%.
Additionally, many spreads widened during this period. It is interesting to include a period such as
this as a further test of the robustness of our model.

0.4 Limitations

It is worthwhile examining the limitations in this thesis, and potential expansions that could be
covered in further research. Firstly, this thesis will focus on linear regression techniques, as well as non-
linear methods such as random forests and neural networks. Clustering algorithms such as k-means
and t-SNE are not explored in this thesis, only their more simpler predecessor PCA is. Additionally,
we do not provide individual ISIN (bond) level predictions, since this data can be extremely noisy
and also many [SINs have missing data due to being new issues. As previously mentioned, our data
set contains all RFQs recieved by Deutsche Bank (regardless of whether the trade was won/lost),
however we do not include data for RFQs sent to other financial institutions since this is private data.
Finally, holidays are removed from the data set, as they often have zero, or very low, volume traded.




Chapter 1

Models : linear & non-linear

1.1 Bias-variance trade-off

Before we begin exploring the individual models, it is worthwhile taking a detour to explain the
nuances behind the bias-variance trade-off found in predictive modelling. For a single day, let us
assume our model takes p variables as inputs, thus belonging to R” and our output (daily prediction)
is a value belonging to R. For a given day, we denote an observation as (z,,y,) € BPT! | these being
observed values from some unknown joint distribution (X, Y;). We assume some relationship between
our ¥; and X; of the form

T=fX) +e t=1,2,...N
where (z¢) = 0, Var(z¢) = 0°. We take £ = {(z1,71) ... (n,yn)} as the set of all abserved values
from the joint distribution of (X, Y;). We aim to find a function fy to minimise our expected pre-
diction error (with a loss function based on squared loss). The expected prediction error, conditional
on X; = @y is,

" p o[ 1y 2\
EPE[f] = m[(h — felx)’|Xe = :x:;]
If our function f; is too far from the true value of f we may end up with a large error, known
as estimation bias. However, if fp varies wildly amongst different training sets, we construct very
different fp for each of these sets. This is known as estimation variance. We can decompose our
expected prediction error in terms of these, using that Y; = f(X;) + =4, yielding,

EPE[fz] = E[(Y — fe(w)’|X, = =]
= B[(f(@) +20— fe(@) |1 X = ]
= o} +E[(fe() - S (@)’]

Here the a2 represents irreducible error, incurred due to noise, that we cannot model. We can however
further decompose the 2nd term as follows,

E[(fel@) - f(@0)”] = B[ (Fe(ee) - Bl(felwd)] + El(fe(@)] - ()’
= E[(fe (@) - Blfe@o)’] + 2B[ (fe(@e) — Elfe (@) (Elfe (@) - f(@0)]
+E[(Elfe(@)] - f(2)’]

Now note that the cross term E[(fﬁ(m:) — E[fg(m!)]}(lh?[fﬁ(mt)] — f(:x:!]}] = 0 by linearity of

expectation, and additionally we can remove the outside expectation from the third term since




E[fz(x)] — f(=x;) is a constant. This leaves us with,

2

= B[ (fe(m) — Elfe(z)’] + (Blfe(w)] - f(x0)
= Var[fz(z,)] + Bias[fz(z: )]
Thus our final expression for the expected prediction error is,
EPE[fr] = 0 + Var[fe(z:)] + Bias|fe(z:))

Here we have our bias variance trade off, and these two forces normally works against one another.
When we construct a model, typically adding more features will increase complexity, resulting in our
bias being decreased, however our variance increases. In more typical machine learning terms, too few
features and we may underfit the model to our data, yet too many features and we may overfit our
model to the data, resulting in poor out-of-sample performance. It is important to strike a balance
between these two in order to minimise our expected prediction error.

We can now explore our individual models. We begin by covering more traditional models,
being ordinary least squares (OLS), ridge and LASSO, before covering more advanced machine learn-
ing models (random forest, multilayer perceptron (MLP)). Regarding our linear models, we assume
some sort of linear relationship between our target variable, y € R, and a set of regressors,features,
(r1,72,...7,) € RP. The linear relationship is of the form, y =ty + 612, + ... 2, +;, where ¢, is
some noise term. The role our models play is to determine these coefficients (or weightings), #,.

We begin with examining the simplest model used for this, known as ordinary least squares.

1.2 Linear regression

1.2.1 Ordinary least squares (OLS)

Let us shift our focus to a scenario where we have multiple observations of our target variables
and regressors, that is to say our linear model is now of the form

yi =0yt 0+ B, e i=100n

where p represents the number of parameters (features) in our training set, and n the number of
observations. Let's introduce the notation,

1 O S ) m th

1wy o0 Ty, Yz t;
x—=| o I.p y - e

1 Zu1 oo Tap Yn B

Here we refer to X as our feature set, and it includes a row consisting of only ones, which would

be the intercept. The goal of the ordinary least squares regression is to minimise the following cost
function by choosing appropriate coefficients @,

Loy =1y - xe|[3

where || - ||z is the L2 norm. Via differentiating and setting the derivative to zero, the solution to
this minimisation problem is given by 8 = (XTX)~1XTY. There are many pros and cons associated
with this model. The results of it can be easy to interpret, especially so if the data is normalised
before the regression is carried out {a topic to be explained later). A regressor having a positive
(negative) coeflicient indicates that it is positively (negatively) correlated with the target variable.
It is also overall a simple model to fit, and thus does not require mmch in terms of computing
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power /computation time. However there are drawbacks to it. Firstly, this model is very much
subject to overfitting due to the lack of a regularisation penalty (a topic we will explore later). It
also does not model or taken into account non-linear interactions between our target variable and the
features we supply. Any prediction outputted will be a linear combination of our feature set, plus an
intercept. Additionally, high levels of colinearity within the columns of our data can be troublesome
(7), and this can result n XTX with one or more small eigenvalues. Computer systems may be ill-
conditioned to approximate an inverse to XTX (which is in the equation for 8), and thus even slight
variations in data could cause large changes in our predictions (due to magnified effects of rounding
error), with coefficients changing a lot for small changes in data. Thus we could see a large distance
between 0 and §. We now move on to looking at models that implement a regularisation paramater,
to tackle the issues of overfitting and colinearity.

1.2.2 Ridge regression

Avoiding overfitting is an important task in all regression models. Recall that the mean squared
error of our estimation for @ can be written as MSE(8) = Bias?(8) + Var(8). In ordinary least squares,
it can be shown that E(#) = @(6) , that is to say the OLS regression has no bias. We effectively
choose to set our model to have no bias, and then use this to caleulate our estimates with minimum
variance. The role of regularisation is to include some bias in our estimates, however due to the bias

variance tradeoff, we will have lower variance and potentially a lower MSE.

The ridge regression, originally developed by Horel and Kennard (7), adds a regularisation para-
mater of the form A||@||3 to our cost function, and it aims to address the issues of overfitting and
colinearity found in OLS. Its overall goal is to minimise the following over 8,

L(8) = | — X6[|3 + \]|0][3
A closed form solution to this minimization problem exists, and it is
élidp;u — (XTX 0 )\1)_1XTY

Already, from an intuitive standpoint, one may note that the A term may be of use when otherwise
XTX would not be invertible. The A term here is to penalise high coefficients. As A — oo the
coeflicients shrink towards zero (however do not reach zero, so no feature selection occurs), and for
A = 0, we recover our OLS regression. The choice of A comes down to a bias-variance tradeoff, as a
high (low) A results in higher (lower) bias, but also lower (higher) variance.

1.2.3 LASSO regression

In LASSO regression, developed by Robert Tibshirani 2006 (16), we apply a L' norm penalty,
giving us the following cost function,

L(0) = |IY — X603 + All0]l,

Unlike ridge, we now can see coeflicients being shrunk to zero, and thus we have variable selection
occurring. One must ensure they appropriately choose A via some form of cross-validation, to avoid a
scenario with too sparse parameters. The continuous shrinkage also solves the issue with bias-variance
trade off. This function is no longer differentiable, so no closed form solution exists to the LASSO,
however there are efficient algorithms available for computing the entire path of solutions as A varies
(6) (Chapter 3.4.4).

1.24 ARMA(1,1) model

Finally, since we believe the 1 day lagged volume to be an important feature, as an alternative
benchmark we will create an ARMA(1,1) model. The process {X; }sez is an ARMA(L,1) process if it
satisfies the following,
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X — Xy =Zy + 02 forall t

where Z; ~ WN(0,c?). Thus we see that this model takes new values to be a linear combination of
the previous observation, a noise term, and a lagged noise term. A maximum likelihood estimation
method is used to determine the coefficients ¢ and # to fit the model to the data. Autoregressive
models will be explored further during the intraday modelling section.

1.3 Non-linear machine learning models

1.3.1 Random forest

Before we explore the usage of random forests for regression, we must begin with the more
fundamental building block of decision,/regression trees.

Let us begin by considering the usage of a decision tree in a classification problem, following
the approach of G. Louppe (2015), (10) In machine learning, classification refers to a predictive
modeling problem where a class label is predicted for a given example of input data. For example,
one could transform our regression problem into a classification problem by change our prediction
goal to defining whether a day is to be a low, medium or high volume traded day. Assume we have
a set of classes, {ay,ay,...,a,}. Our target variable (true labels), Y defines a partition over the
universe £). This partition can be denoted as such,

=0, 0

Here ,; are subsets of the entire space whose actual label is a;. We can also denote by f a function
which classifies ohjects, that defines a partition on input space X and provides us with an approxi-
mation Y of the true label space Y. However, this partition can only be defined on our input space
X, and we denote it as such
r— xf - f rf
X=x/uxfu..x{
where now X, are subsets @ € X such that f(x) = a;. Our goal is to learn a partition of £ which
matches (by some sort of loss/error criteria) the best possible partition, which is formed by the Bayes
model fp,
L=cluchu... .l

oy,

The Bayes model minimises the expected prediction error. With this in mind, we now can see the
methodology and principle of a tree structured model. We can define it as a model f : X — Y,
that approximates partitions of the Bayes model by partitioning the space X (feature space) into
subspaces. We aim to recursively partition X until we can assign a constant prediction value y € ¥
to all & in these subspaces.

Focusing now on regression problems, we would have § € R, and we assign a constant value
within each partition we create. Let us briefly explain some terminology used in decision trees, which
will allow us to gain more intuition for the procedure. Our goal is to predict daily volumes, and thus
we have root nodes, where our feature set gets initially split. A root node then gets split into two or
more sub nodes, which then further get split into decision nodes. Finally, we reach a terminal node,
or ‘leaf’, which contains a final volume prediction. Let us address how one comes up with this model
[ and suitable partitions for a regression tree. In classification problems, there are numerous criteria
one can base it upon, such as information gain (12), and Gini impurity (18). However, the focus of
this thesis is on regression problems, and thus we outline the approach found in chapter 9.2.2 of the
Elements of Statistical Learning (6), based upon minimisation of sum of squares . Our goal here is
to come up with an algorithm that is able to automatically split our tree up, with suitable splitting
variables /nodes. Let us assume we have a partition M into regions Ry, Ry, ... RR,,. We model the
target variable to take a constant value within each of these regions, which we denote as ¢,,. Thus
our model function f can be defined as,

12




M
fdec(x) = Z f"m]l{ ®E Ry |

m=1
where x are our observed features. What value of ¢, do we choose? If our goal is to minimise
squared loss, the average of all observed points y; in the region R, (ie. &, = ave(y;|x; € R,,)).
However, finding the optimal binary partition numerically is not computationally feasible, thus a
greedy algorithm must be implemented instead. Giving a brief overview of this, the general idea is
setting up a splitting variable j and a split point s, and considering the half planes,

Ry(j,s) ={X|X; <s} and Ha(j,s)={X|X; = s}

We split X into two disjoint subspaces, however we must optimise over s and j for this. We choose
to solve the following minimisation problem, that focuses on the sum of squared distances for both
planes,

min |min Y (g o) tmin Y (g o)’

LT aeRe) “ @.eRali0)
As we mentioned before, for a sum of squares minimisation, the optimal solution is an average of all
observed points in a region. More formally, we can differentiate and take first order conditions over
the inner minimisation, yielding

1
2 ) (Wi-—a)=0= > @-a)=0= > y=alk| = & = 7 >
-1

xRy @R, x;e Ry

This process continues iteratively, as we continue splitting the data into further optimal splits on
resulting split regions. A hyperparamater here to tune is how deep the tree should go (i.e. the
number of splits we do). Again here, we have the usnal crux of a bias variance tradeoff, as a tree
which goes too deep (shallow) can overfit (underfit) data, resulting in high (low) variance and low
(high) bias. There are various ‘stopping criteria’, which can be enforced to avoid this, however we
simply enforce that trees stop when all leaves are pure (i.e. contain a single value only). As a result,
decision trees can be prone to high variance, and a slight difference in training set can result in largely
different results. Thus, the approaches of bagging and finally a random forest are used to address
this. Let us first explore bagging.

We follow the approach outlined by L.Brieman (3). We take £ = {(=1,21)... (2., y.)} as the
set of observed values (i.e. a training set) from the joint distribution of (Xj,Y;). Assume we have a
method (i.e. aregression) for forming a predictor, fq(x) for y when we observe x. In order to reduce
the variance of our model, we would ideally have a sequence of identically distributed training sets,
{Ly}, with n independent observations each. Assuming we have N training sets, we could take an
average over our training sets to form a prediction. However, we often do not have multiple training
sets, thus one can take repeated bootstrapped sample {£(#)}, forming predictors {fEBJ(n:)} (curly
brackets distinguish sequence from individual item in sequence). Each of these bootstrapped training
sets, £B) consists of N samples, drawn randomly from £, with replacement. The probability of a
sample being in a bootstrapped sample £8) is

) . 1. w5 ,
PleclP®)=1-PxglB)=1-(1-—-)" 21— as N300
4
Then, assuming we have M total bootstrapped samples, one can set fg“'g’](a:] = % Z::l x) (ie.
take average over all of our bootstraped samples). In Briemann’s original paper, the usage of bagging
regression trees resulted in a reduction in test set mean squared error between 21% to 46%.

Finally we can address the random forest algorithm, which further reduces the variance of our
estimates. This algorithm works by averaging out the predictions taken from B trees, where boot-
strapped samples are used to build each tree using the aforementioned hagging approach. Considering
a sequence of trees {T,}2 |, our model function is a slight variant of the one for our decision tree,
and is given by

B,y _ 1l
(@) =5 > Ti(x)

b=1
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This approach of averaging over numerous unbiased (albeit noisy) trees is key in reducing variance
of our model. If we consider each of our trees to be identically distributed with variance o2, but not
necessarily independent, we can calculate the variance of the average. Taking B trees, we have,

B B B B
Var(Zm:cJ) = Cm-(meJ,Zm:c)) = Var(Ty(x)) + ) Cov(Tj(2). Te(x))

b=1 bh=1 b=1 b=1 be

The first term is just the sum of the variances of our B trees, and is simply Bo?. For the second term,
we are summing covariance where indexes are not equal, with B x B total terms, minus B repeated,
so B(B — 1) occurrences , with each term being po? (the covariance between trees). Putting all this
together, the right hand side in the equation above can be re-written as,

Bo* + B(B—1)po*
If we consider taking the average, i.e. we divide our initial sum of variances by %, we realise we must
multiply the above by 4=, yielding that the variance of the averages is,
l—p .
ﬂﬂz
B
We see, as the number of trees B increases, the 2nd term tends to zero. The purpose of a random

forest is improving the variance reduction of bagging via reducing the correlation between individual
trees, without increasing total variance by a large amount.

po’ +

1.3.2 Multilayer perceptrons (MLPs)

Neural networks are thought to have been originally developed by Walter Pitts and Warren
McCulloch in 1943 (11), outlined in a research paper on the neural networks of the human brain.
They are credited with a computational model, based upon an algorithm known as threshold logic
in order to mimic the thought process of the human brain. Since then, neural networks have been a
highly investigated topic in science, for both the purposes of modelling human biological processes in
the brain, and for artificial intelligence, the latter of which is our focus here. Multilayer perceptrons
(MLPs) are one of the most popular neural networks, which can be used to model non-linear depen-
dencies between our dependent and independent variables. It is useful to consider a simple neuron
like unit, known as a perceptron. Consider the following diagram below.

output

weights

inputs

I I9 I3

Figure 1.1: A simple perceptron model

The circles in this diagram are known as neurons, with an input layer consisting of the neurons
{z1, 9,3}, and these represent the feature set in our regression problem. We can see that the output
neuron is connected to the input neurons, which has weights passed into it from the input neurons,
which can broadly be thought of as similar to the coeflicients for features. The weights are summed
up and a bias is added, resulting in the pre-activation sum, defined as

PreActiviationSum = wrTk + b
5
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This scalar here b represents the bias. The pre-activation sum is then passed through an activation
function, which places the final value into a bounded range. Examples of activation functions include

the sigmoid function (f(z) = #), tanh (f(z) = !'_j.+!__J.) and ReLu (f(z) = maz(0,z)). The
neural network needs to be trained in order to correctly determine these weights. However now that

we have explored the general intuition surrounding perceptrons and neural networks, let us expand
this by looking at MLPs.

An MLP consists of multiple different perceptrons (networks that we described above), all con-
nected to one another. Our input is as above, a set of features X, and we set our target as Y, the
volume traded in a given day.

We will create a network consisting of 3 layers, an input layer, a hidden layer, and an output
layer that will output a single figure, being the estimate for volume.

. . . . 1 (1) 1) .
(i) Input Layer - As explained above, this contains a set of neurons {.1.“l '_..1'§ L }, which

represent the m different features we are inputting in the model. The superscript 1 represents
us being in the first layer. Each of these features are then passed onto each of the neurons in
the hidden layer.

(ii) Hidden Layer - The hidden layer captures any non-linear dependencies in the data. Initially,
random weights are assigned to these features in each neuron, and as in the single percep-
tron case, these are combined into a preactivation sum and passed into a non-linear activation
function. Then each of these neurons inputs this value to the single neuron in the output layer.

(iii) Output Layer In the output layer, once again a weighted linear sum of the inputted signals
is taken, including the bias. No activation function is used here, due to this being a regression
problem.

What we have just described is known as the forward activation of the neural network. For the
neural network used in this thesis, we have a total of 21 features, thus our input layer contains 21
neurons. The hidden layer is chosen to have 15 neurons, after testing for it as a hyperparamater. For
a single observation (l.e. one day), we can express the values at each layer as follows. In our initial

- (1) (1) (1 ,: 2)
layer, we would have X' = {z;", x5 -+ x4}, in our second layer X? = {z}”

2) .
,zy3 } and in

(3) ;
our last layer z}”. Find below a diagram of the overall structure of our network.

15




Input Layer 2% Hidden Layer Output Layer 1

Figure 1.2: The architecture of our network - with 21 neurons in initial layer, 15 in hidden and 1 in
output.

We can express the weights between neurons mathematically. Between our input and hidden
layer, we can have a 21 x 15 matrix, and for our hidden layer to output layer a 15 x 1 matrix

represented as follows,

1 1 1 2
w{ f ”’(1 3 e w{ Eﬁ w{ E
(1) (1) (1) 2)
aw, wy ... w,
1 2,1 2,2 2,15 9 2,1
Wwh=| - , W=
(1) (1) (1) (2)
Wornp Wapp -+ Wags Wisa

Likewise, each layer also has its own bias. With all this considered, we can express the networks

computations as follows,
Iiz) =g’ (Z wif)ﬂ:;l) + b£2)>
i
-J:EBJ =a° ( Z wff) _r;g) + bim)
i

with b¥ representing the bias in i* neuron in the k' layer and o* representing our activation function
for each layer (i.e. in the output layer, it is just the identity). Here the first equation represents the
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output of the hidden layer, and the second equation represents the output of the output layer (i.e.
our prediction). In vector form, we can write the component equation as follows. Here | represents
the layer,

2 = g (D pl=1) 4 Bl

As mentioned above, the weights initially used are randomised, as well as the bias. The model
uses this feed-forward loop for training, as this will produce a prediction result that can be measured
against the target value. Then, backward propagation can be applied in order to adjust these weights
and biases to further train the model. One total cycle of forward and backward propagation is known
as an epoch, and the number of epochs is a hyperparamater for the model that needs to be trained.
Select too few epochs and the model may underfit the data, too many and it will overfit.

Once our initial prediction is made, for each of our observations, we input this into a loss function
in order to determine the goodness of fit of our weights. A typical loss function used (and the one
used in this thesis), is the quadratic cost function, which can be expressed using the notation from

above as 1
(= — i,—.].“::ﬂ 2
IN § [y i Il

Note the superscript in .1.‘53’] is 3, indicating this is the output of our 3rd layer in our network, i.e. the
prediction we have for the i** sample in our data set. There are some requirements our cost function
should meet for certain gradient descent algorithms, which are of common use. Firstly, they must be
able to be decomposed into an average over the respective samples. That is to say, C' = & 3, Ci.
In this thesis, the gradient descent algorithm which is used is known as Adam, however we will start
from just general gradient descent, and also explain stochastic gradient descent. Gradient descent
is an interative optimisation algorithm, that we use to find the local minimum of the cost function.
Intuitively, the idea behind gradient descent is we approximate the gradient function, trying to find
the minimum of the cost function, and repeatedly adjust and move our position on the gradient curve
in order to reach the ‘bottom’ (i.e. the minimum). In general gradient descent {GD), these updates
for the weights and bias take the following form.

Wit = Wy — NV, Clwg )
b1 = by —nVpC(by)

where V,,C; is gradient of our cost function with respect to time step t. From now on for ease, instead
of specifying updates for bias and weights, we just refer to paramaters #. The initial values wy and
by are initialised randomly. The value 7 here represents the ‘learning rate’. A low value could result
in the algorithm taking a very long time, while if it is too small the algorithm may not be able to
find the minimum, due to it overshooting. Since in GD every instance in the training set requires a
prediction, the algorithm can take very long to run. Thus a variant of it known as stochastic gradient
descent (SGD) can be employed instead. Due to high computational costs, when one carries out back
propagation via a gradient descent method, one does not usually use the entire training sample for
it. Instead, it is typical to take a subset M C {1,2,-.-n}, of size m of the training set. Thus, the
gradient of the cost function can be approximated using a subsample of data as follows,

T VO S,V

m 1

=V(C

This size m becomes another hyperparamater one can tune, known as the batch-size used in gradient
descent. SGD uses these batches, instead of the entire sample size. As outlined by Keskar et al (8)
a low batch size is associated more so flat minimizers of the cost function, while a larger batch size
is associated with more sharp minimisers. These sharp minimisers tend to generalise more poorly to
non-training data, due to large sensitivity of the training function at a sharp minimizer. Find below
a diagram expressing the generic shape of sharp/flat minimisers.

17




Training Function

T
| lesting Function

e

W
Flat Minimum Sharp Minimum

Figure 1.3: Visualisation of sharp vs flat minimisers, with the y-axis representing the value of a loss
function and x-axis the variables.

Mathematically, considering a stochastic cost function €' with respect to some paramaters #,
SGD can be summarised as follows,

1
9:+1 =t — oy (; Z VHCI'W:])

i By

where m is our batch size, and B, is the k' batch, and the subscript 7 in C} is just used to clarify it
is the loss function for data point i.

As previously mentioned, the descent method we use throughout our thesis is known as Adam
gradient descent (9). On a high level, Adam works via calculating individual adaptive learning
rates for different parameters by using estimates of first and second moments of the gradients, the
first moment being the mean and the second the uncentered variance. Adam’s update rule can be
summarised as follows,

my = Fimy_y + (1 — 51)VeCl(ty)

L

Mme=q_ B

vy = [Favpq + (1 — ;3”(?,,(,‘(9!))2
LUy

1y = -3 ﬁé

9:29:—L—ﬂ"fﬁt/(\/a—fj

The first and third update rules correspond to updating biased first and second moment estimates,
while the second and fourth update rules apply a bias correction. Finally, the last rule updates the
paramaters. This algorithm is simply taking an exponential moving average of the first and second
moments of the gradient, with parameters 3; and 3, controlling the exponential decay. The bias
correction is needed since the moving averages are initialized as a vector 0Os, thus the initial moment
estimates are biased towards 0.

In terms of the activation function used, a ReLu function, defined as f(z) = maz(0,z) is opted

to be used, which is computationally efficient and also does not suffer from the vanishing gradient
problem found in the tanh and sigmoid activation functions.
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ReLU

R(z)=mazx(0, 2)

L]

Figure 1.4: ReLu function graph

1.3.3 Principle component analysis (PCA)

PCA is an unsupervised machine learning technique, originally developed in 1901 by Karl Pearson
(15). Despite the process being developed quite a few years ago, it can still provide some insight.
The purpose of PCA is to perform a dimensionality reduction on high-dimensional data. Given a
set of variables, PCA creates principal components, which are linear combinations of our original
variables /columns, in order to maximise the variance in our sample.

We carry out our original PCA on the 5 bonds closest to 2,5,10 and 30 years to maturity in
France, Germany and Italy. For the rest of this subsection, we will refer to these categories of bonds
as sectors, and these effectively act as the features in our PCA. The reason for this is that a specific
bond today will not act similarly in 3 years time say, due to it being at a different point in its
individual life cycle, thus by taking bonds at static points in the curve we are getting a more time
invariant view of bonds. The PCA is carried out on the weekly deltas of these bonds, as we take
linear combinations of these for different bonds for the purpose of dimensionality reduction. Thus
with 2 principal components, we aim to view our data in a 2-dimensional space, whilst still hopefully
maintaining enough variance to make this dimensionality reduction still meaningful.

The purpose of this PCA is we can view which of these sectors get clustered together in a loading
graph. The loadings are the coefficients with respect to the first and second principal component for
each column/sector.

1.4 Training and test data split

A key concept in machine learning algorithms is the idea of a test/training split. If one does not
provide said split, the model may he overfitted to the data, meaning when our model is confronted
with data it has not seen before it performs very poorly. By keeping our training and test data separate
we can avoid this issue, and we will be evaluating all performance of our model on data which it has
not been trained upon. This is known as out-of-sample performance. For all the algorithms below, we
will slightly modify them when implementing our methods to account for an extra feature selection
step, as well as hyperparamater optimisation, however for now we present them in their most general
form.

1.4.1 K-fold

One commonly used train/test split is a k-fold split. A visual representation of this split is as
follows.
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Iteration 1 Test Train Train Train Train
Iteration 2 Train Test Train Train Train
Iteration 3 Train Train Test Train Train
Iteration 4 Train Train Train Test Train
lteration 5 Train Train Train Train Test

Figure 1.5: K-fold train/test split

Its algorithm can be summarised as below,

(i) Divide entire data set into k equal sized ‘folds’.
(i1) Set fold n = 1 as our test fold, and the other & — 1 folds as our training folds.
(iii) Fit data to our training folds (i.e. determine weightings for our features).

(iv) Use these weightings on the test set to predict results on that set. Store these results

<

Shift the training set, increasing n by 1 and set the the other folds as training. Repeat steps 3
and 4. Continue increasing n by 1 until we reach the end of our data set.

(vi

Report performance via a performance metrie, seeing how our predictions compare to the actual
results.

The main issue with this, making it ill fitted for time series, is that it naturally can disregard
the temporal nature of the data, since if our test fold is not either at the start or end of the data
set, our training data will not be a continues series of time points. Furthermore, this method could
not be used on a daily basis to update predictions, since it requires data from the future in order
to predict data today. We present a further test/training splits to generate predictions from a set of
data, without directly training on the data you wish to predict.

1.4.2 Nested

A nested split is an alternative to a k-fold split, which does not suffer from the problems specified
above. A wvisnal representation of the split is as follows.
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Train Test
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Figure 1.6: Nested Train/Test Split

The procedure is as follows,

(i) Specify an initial training set. In our analysis, we take this to be 8 months.
(i1) Fit data to training set (i.e. determine weightings for our features).

(ii1) Test/predict on 5 days data.

(iv) Add these 5 days to the new training set, and predict the next 5 days. Continue this process
until reaching the end of the data set.

Using this train/test split ensure we manage to get a large amount of out-of-sample predictions,
without only being able to train on a small sample.
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Chapter 2

Feature creation and data cleaning

In this section we outline various features in the model that were created, as well as various
actions we must take on our data before we can nse it for predictions.

2.1 Feature creation
There are several caveats we must address before commencing with this section.

(i) Avoid using features that are linear combinations of each other. An example of this would be
including 5 days of volume look back and also including a 5 day volume average. The reasons
for this were discussed above, in terms of the colinearity issues ran into by OLS. Furthermore,
issues could arise in feature selection (covered in a later section).

(ii

Avoid all “look forward’ or ‘peeking’ features. For example, including today’s volume in a feature
such as monthly volume average or normalising data points by including future data, which can
implicitly leak information and give artificially high performance. Note [rom now on, terms
such as n days average, means the average of the previous n days (i.e. not including today).

(iii

Avoid ordinality if it is not originally intended. For example, do not use days of the weeks
as features, with each day represented by an integer 1,2...7, as this may result in the model
treating certain days with unnecessary importance compared to others. Instead, for something
such as days of the week, a ‘one-hot-encoding’ approach should be used (explained later in this
section).

We now outline our features by splitting them into similarity groups.

2.1.1 Volume based features

Volume traded on previous days can be indicative of the volume to be traded today, and these
features aim to capture this relationship.

e Volume traded at a 1,2,...,5 day lag.

o 2 week, 3 week and 1 month average volume traded (not including today's volume).
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e Yesterday's flow inbalance. This is more formally defined as, |z — 0.5] where

L BuyOrderQuantity
" BuyOrderQuantity + SellOrderQuantity

This feature is included to explore whether there is a link between areas of high /low volume and
an order inbalance between buy/sell orders. The transformation with the modulus is applied
since we are interested in how far our flow deviates from a 50:50 split between buy and sell
orders.

2.1.2 (Special) days

As well as what day of the week it is, there are also various other dates which are of particular
importance in the EGDB market.

e Day of the week. Done using a one-hot-encoding approach. In one hot encoding, a column
such as ‘day of the week’ which contains 5 unique values (the weekdays), is transformed to 5
different columns which operate as indicator functions, having a 1 if it is that day of the week
and () otherwise.

Observe the following graph below, which plots the volume traded for each day of the week
with confidence intervals for all German sectors,

1e8 DE Bonds Daily Average Trading Volume

Country_Bkt
— DE_(0-2]
4 DE_(2-7]

DE_(7-11]
—— DE_(11-30]

Quantity

Monday Tuesday Wednesday Thursday Friday
Day

Figure 2.1: German sector daily volumes

For the more liquid German sectors (0—2,2—7) we note that generally a day such as Monday is
traded lower than a Wednesday, and we can see why it is important to include this as a feature.

However, now by circumventing any issue of false ordinality via one-hot encoding, we have
created a new issue, being multicolinearity. On any given day we have that the sum of all ‘Day
of week’ columns is 1, and each feature/day can be expressed as a linear combination of the
other 4. We arbitrarily choose to drop ‘Day of week Thursday’, from our features (we could
choose any day). This does not actually remove any information from the model, since this
column was just a linear combination of the other day of the week columns, and it solves the
issues of multicolinearity.

Last day of the month (a boolean). The bond market can see an uptake of activity on the
final days of a month, due to fund managers who aim to track various indexes buying,/selling
certain bonds at months end to re-weigh their portfolio correctly. Observe the following graph
comparing final day of month volumes vs average in the rest of the month in 2020 for German
7 — 11 vear bonds.
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Iigure 2.2: End of month volume comparisons

e European Central Bank (ECB) meeting dates. There could be a change in activity when an
ECB meeting is approaching.

e Rollover dates for futures contracts. Futures contracts are used to set up hedges in the bond
market. When these contracts are close to expiring, we enter a roll over period, where many of
these futures hedges need to be ‘rolled over’ to the next available contract.

2.1.3 Bond pricing

The spreads and logarithmic returns of bonds within a given sector could be indicative of the
volumes at which they get traded.

e Exponentially weighted moving average (EWMA ) of volume weighted spread. For a given day
t, and a set of spreads for N bouds in our given sector, the volume weighted spread is the
following,

N

Spread(t,i) x Volume(t, i
VofumeweightedSprmd(t):Z pread(t,i) x Volume(t, i)

Total BucketV olume(t)

For ev € (0,1), and time £ € {1,...,7T} the EWMA N x (0,1) = R
EWMA(0, ) = VolumeWeighted Spread(0)
EWMA(t, o) = a x VolumeW eightedSpread(t) + (1 —a) x EWMA(t — 1, )

where the v paramater controls the ‘memory’ of the time series. A higher o places more weight
on more recent data points.

e Yesterday's median logarithmic returns for bonds in bucket.

o EWMA of daily median logarithmic returns for bonds in bucket.

2.2 Data normalisation

Given the features we have listed above, it is clear that these have very different ranges. Thus,
we must normalise our data to a common scale, without distorting the differences in ranges of values.
When it comes to comparing the coefficients assigned by our models, this normalisation will allow us
to understand better the effects each feature has on our target variable. As previously mentioned, it
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is essential to avoid normalising the training and test sets in one go, instead doing them separately,
as otherwise there is an implicit information leak into the test set. There are various normalisation
techniques to speak of, including

e Mean-Standard Deviation Normalisation. Here we use a rolling window of size N to
normalise our data, subtracting the mean and dividing by the standard deviation. The formula
is the following,

This works well on data which does not originally resemble a normal distribution.

e Min-Max Scaling This translates each feature individually, using a rolling max/min, such
that it is now in the closed interval [0,1]. It applies the following formula,

X: — min X('

o~ ig[0,i—1]
X = - - .
max X; — min X;
ic[0,t-1 icf0,t-1]

Throughout this thesis, we apply the first normalisation.

2.3 Stationarity

Machine learning models tend to perform better with data that is stationary (constant mean and
variance in time, and time invariant covariance that can however depend on lag length), and normally
distributed. Thus, we must test whether this is the case for our data. Below, find a diagram of the
ACF plot for the daily volume traded in German 7-11 year bonds

German 7-11 Year Bond Volume ACF Plot
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Figure 2.3: German 7 — 11 year bond ACF Plot

While this graph does seem to suggest that our time series may be non-stationary, since lags are
correlated, we investigate this further with a more quantitative method opposed to a qualitative one,
known as a Dickey-Fuller test.
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2.3.1 Dickey-Fuller test

If we consider an AR(1) model of the form
Yt = PYr—1 +E¢

where £, is white noise term, we know that a unit root is present if ¢ = 1, and in this case our process
is non-stationary. Subtracting y,—; from both sides, and we now get,

Ay =(d—Dys1 + e =ye—1 + & with v:=¢ —1

A Dickey-Fuller test now carries out a hypothesis test, with the null hypothesis being v = 0, that is
that the process is non-stationary. In terms of our time series, the model used in a regular Dickey-
Fuller test would be of the form y;, = ¢y + o + fts;, with this constant e term accounting for
any potential drift, and the 3¢ term accounting for trend. Additionally, the Augmented Dickey-Fuller
test, which we implement, would include high-order regression processes by including Ay, in this
model. The test statistic achieved by carrying this test out on German 7-11 year bonds was -6.216084,
corresponding to a p-value of 0.000001, thus we reject the null hypothesis that the data set is non
stationary. As a result, we do not carry out any differencing/fractional differentiation on our data
set before carrying our regression out.

2.4 Feature selection

To avoid overflitting our data to a test set, we devise an algorithm to filter out features which
do not provide a unique signal. Below we outline a feature selection algorithm that gets used on 6
month intervals. Given a data set, we use a T0:30 split to separate it into training and testing data,
and perform the following algorithm. All removed features are removed for the next 6 months, until
the algorithm is re-ran.

Algorithm 1 Feature selection
input: InputtedData = X-train, y-train, X-test, y-test datasets. Let ¥ = [f1, fa,... fu| be a list of

all features of the training set.

for i in range(1000) do
MSEyenchmary = 10000000

' = RandomlyShuffle( F')
RegressionFeatures = {}

for feature in F do
RegressionFeatures.append (feature)

MSE,,.., = M SE(Linear Regression(InputtedData, RegressionFeatures))

if MSE,cw < 0.99 % MSEpenchmark then
| J‘-ESEM nehmark — ﬂfs-Em'n'

else

| RegressionFeatures.remove(feature)
return RegressionFeatures

Jount number of times each feature picked after 1000 shuffles. Remove all picked < 100 times.

Below we report the results of running this feature selection algorithm on the German 7-11 year
bond sector.
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Figure 2.4: German 7-11 year bonds feature selection on initial training period

We see that the 1 day lagged volume and the final day of the month are very important features,
while the pricing features generally do not increase our predictive power much and do not get picked
by the feature selection algorithm.

2.4.1 Hyperparamater cross-validation

Additionally, we run inner loops for hyperparamater cross validation. In our ridge/LASSO
models, this corresponds to the alorementioned A penalty, that shrinks coeflicients. For our random
forest, we use a grid search method to optimise various hyperparamaters, such as the number of
features to be considered in each tree, as well as the number of samples required to be in a leaf node.
For the MLP, we again use a grid search method to tune the number of epochs, the batch size and
the learning rate of Adam gradient descent. We present below a graph of mean square error with
respect to the size of the A paramater in a ridge.

German 7-11 Year ridge lambda penalty cross validation
1.0
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104

Mean Square Error

0.2
0.0
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Figure 2.5: Model loss for training and test set with respect to epoch

We see the graph reaches a minimum and thus we would hope for our cross validation to select
this point as our A paramater for our regression.
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Additionally, we present below a graph of the loss (mean square error) on both the training and
test set for our MLP.
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Figure 2.6: Model loss for training and test set with respect to epoch
Here we observe that increasing epochs seems to continuously improve performance on the train-

ing set, however it ouly does this to a certain point on the test set, before it begins overfitting and
our MSE begins to increase.




Chapter 3

Performance metrics & results

3.1 R-Squared

The coefficient of determination, &2, for N observations of data, is defined as follows,

N Y
R2 =1 Ziman —d)”

Z?:l(?}i - ?])2

where y; are observations of our target variable, §j; is the models output (predictions) and § is the
average of the observations of the target variable.

Qualitatively this can be thought of as what proportion of the variance seen in results our model
is able to explain. 1? lies between [—oo,1]. An R? of 1 implies that the model perfectly describes
the relationship, since X(g; —y;) = 0 (i.e we have no difference between our predictions and the
target variable). An B? of 0 implies the model only does as well as simply taking the average of the
entire target variable and finally a negative R? implies it does worse than the average. This is one
advantage of R?, that since it is compared to a baseline it is normalised, and thus easy to interpret.
It does however has its shortcomings. Firstly it is unable to show whether estimations are biased.
Furthermore, if a dataset is non-stationary (i.e. let’s assume there is a large upwards drift), the R?
over the entire dataset may be ‘artificially’ high, however if one was to take a subset of this data to
examine, where this drift is less evident, the RB? would be different. For these reasons listed above,
we use further performance metrics.

3.2 Mean absolute error

Mean average error (MALE) is defined as follows,

N
1
MAE = =S| —y;
I [ — il

i=1

This metric measures the average distance of our predictions from their actual values. Evidently,
a lower MAE is desirable. One benefit is that it has the same unit as the variable we are trying
to predict, giving it greater interpretability. However, if we are comparing model performance over
two different sectors for example, which have vastly different volumes traded, it can be difficult to
determine which sector the model performs better on since this metric is not normalised. Furthermore,
the function is non-differentiable.
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3.3 Results

Below we find the out of sample results for our models, based on R?, for the German 7-11 year
bond sector.

Table 3.1: German 7-11 yvear bonds results summary

Model R* Score | MAE
5 Day SMA 0.172 1.50
OLS (with feature selection algorithm) 0.238 1.48
Ridge (with feature selection algorithm) | 0.248 1.47
LASSO 0.250 1.47
Random Forest 0.134 1.51
Multilayer Perceptron 0.270 1.44
ARMA(1,1) 0.235 1.48

All the models beat the benchmark in terms of R? and MAE, which is a success. The random
forest models appears to perform the worst out of all our models, perhaps due to the instability
of hyperparamater optimisation. During testing it was discovered that even slight variations of the
training set could result in different optimal hyperparamater values, meaning any sort of optimisation
would in fact be somewhat redundant. The linear regression models all perform well, and there is
not very much to separate them. When we expand the model to look at other sectors, we will be
able to compare this easier. The best performing model is our neural network. While it having the
highest R? and lowest MAE is good reasoning to use it, the neural network does have to make many
sacrifices for this compared to our regression models, namely in the spaces of computational time,
as well as interpretability. Regressions output coefficients which make interpreting the correlations
between our dependent and independent variables easier. Let us briefly draw attention to a couple
plots of our models outputs.
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Figure 3.1: Model output comparison 1 - last Day of Month

The first of these here demonstrates how our model is able to pick up on increases in volume
on the final day of the month (highlighted by the purple lines). The simple moving average has no
mechanism to predict this.
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Figure 3.2: Model output comparison 1 - days of Week

The second here is slightly more subtle. As shown before (Figure 2.1), Mondays are generally
lower traded than Wednesdays, and as a result the model created will very rarely predict Mondays to
be higher volume than Wednesdays. As expected however, the moving average has no such mechanism,
thus suffering in its predictions compared to our models.

We can additionally observe some of the main outputted coefficients from our ridge and our
LASSO models below,

Ridge Coefficients on normalised data (with feature selection algorithm)
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Figure 3.3: Ridge coeflicients on German 7-11 Bonds
LASSO Coefficients on normalised data (no feature selection algorithm)
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Figure 3.4: LASSO coefficients on German 7-11 Bonds




These coefficients are normalised so one can broadly interpret their magnitude as being related to
their importance. As we would expect, the 1 day lagged volume and isLastDay have large magnitude
positive coefficients, reaffirming their importance as suggested by the feature selection algorithm.
Likewise, we note how Mondays have a large negative coeflicient, due to volumes generally being
lower on Mondays compared to other days of the week (Figure 2.1). Finally, we note how in the
LASSO model, during the Christmas periods where volumes tend to crash, we see the coefficients
shrink towards zero.




Chapter 4

Expanding analysis to larger bond
universe

This section will focus on taking the work we have carried out on the German 7-11 Year Bond
sector, and applying it to additional sectors. We will examine the similarities and difference between
the results of our analysis for different sectors, as well as commenting on potential reasons for this.
Furthermore, we will perform clustering analysis via PCA in order to determine what factors may
cause certain bonds to act similar to one another. The features used in this section are the same as
the ones used in the previous section, although once again we run a feature selection algorithm to
remove unnecessary features.

4.1 PCA analysis results

As previously mentioned, bonds behave differently depending on what tenor they are in. For
running a PCA, it makes more sense if we were able to construct a portfolio of bonds that are in a
sense invariant in time. Thus, we group bonds, by taking the 5 bonds closest to 2, 5, 10 and 30 years
to maturity, points that are associated with high liquidity. We aggregate each of these 5 bonds for
every one of these tenors, running a PCA on the weekly volume delta (AV; = V; — V;_1). The results
of this PCA are found below.
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Figure 4.1: PCA results - weekly deltas
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We can see that the loading coefficients for Italian bonds, which are colored green, are much higher
on the 2nd principal component, compared to that of French and German bonds. This clustering
is most likely due to the split we see between core countries in the soveriegn bond market (i.e.
sermany,/France), and periphery countries such as Italy. While there is only (as of the publication
of this thesis), around a 35 basis point spread between 10 year French and German bonds, there is a
105 basis point spread between Italian and German bonds according to worldgovernmentbonds.com.
This can be attributed to the lack of investor confidence toward [talian bonds, and this spread can
be thought of as a price investors are willing to pay for a safer investment that reduces the risk of
sovereign default.

4.2 Results

Below, we present the results in terms of R? for all of the sectors in our data set. We do not
include MAE here, due to its lack of interpret ability between different sectors.

Table 4.1: All sectors out of sample &2 - henchmark, OLS, ridge and LASSO

Sector 5 Day SMA | OLS | Ridge | LASSO
DE(0-2 -0.001 0.099 0.142 0.119
DE(2-7 0.019 0.227 0.207 0.227
L)E-(T—11| 0.172 0.238 0.248 0.250
DE(11-30] 0.428 0.539 0.553 0.550
FR{0-2 -0.022 -0.040 | 0.010 0.082
FR(2-7 -0.153 0.159 0.139 0.181
FR(7-11] -0.123 0.109 0.111 0.082
FR(11-30] 0.250 0.264 0.300 0.274
FR (30-100] -0.030 0.101 0.105 0.097
IT(0-2 0.205 0.302 0.322 0.316
IT(2-7 0.430 0.427 0.483 0.481
[’l‘(?—ll‘ 0.105 0.102 0.125 0.118
IT(11-30] 0.275 0.362 0.370 0.370
[’l‘(3[]—l[][]‘ 0.326 0.328 0.340 0.339

Table 4.2: All sectors out-of-sample R? - random forest, ARMA(1,1) and MLP

Sector Random Forest | ARMA(1,1) | MLP
DE(0-2 0.065 0.040 0.134
DE(2-7 0.165 0.059 0.217
L)E-(T—ll| 0.184 0.235 0.270
DE(11-30] 0.510 0.469 0.556
FR{0-2 -0.003 0.032 0.069
FR(2-7 0.090 0.051 0.151
FR(7-11] 0.049 0.030 0.120
FR(11-30] 0.238 0.274 0.256
FR(30-100] 0.073 0.095 0.073
IT(0-2 0.260 0.268 0.327
IT(2-7 0.378 0.420 0.440
['l'(?—ll‘ 0.090 0.125 0.135
IT(11-30] 0.333 0.370 0.372
[’l‘(3[]—1[][]‘ 0.298 0.353 0.249

To help us visualise these tables better, we can plot the R? amongst different models, averaged
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out across all sectors in a country.
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Figure 4.2: Average country R? comparison amongst all models

We note what sectors our models seem to do best on, and also what models perform the best.
As with when we looked at only German 7-11 year bonds, we see that our models for the most part
beat the benchmark in terms of 2. The ARMA(1,1) model can be thought of as an alternative
benchmark, that notes that the 1 day lagged volume is the most uselul feature, and creates a model
based upon this. We see the ARMA(1,1) model beating the benchmark on most occasions. 1f the
ARMA(1,1) model were to outperform our other models too, we would have to conclude that our
other features apart from 1 day lagged volume were not providing much utility. This is not the case
however, as we see the regression models as well as the MLP beating it on most occasions. The ridge
appears to be the best performing regression model, outperforming the OLS and LASSO in 10/12
sectors, however these improvements in performance are not particularly large. The MLP does do
very well in some sectors, such as DE(7 — 11], however there are certain sectors such as I7(30 — 100]
where it performs very poorly. This combined with the lack of interpratatability associated with
the output of the MLP model, as well as the increased computational time, leads us to conclude
that while the MLP model does give some improvements over the traditional regression models, the
regression models are still better fit for the problem we have at hand.

Regarding the sectors our models perform best on, the main quantity worth examining is how
much they are able to improve upon the benchmark. There is a trend here, with our models beating
the benchmarks for French/German sectors, whilst strugeling more for [talian sectors. As previously
mentioned in this thesis, [taly is a periphery country, which means its market can be a lot more
volatile and being able to beat a benchmark is a much harder exercise. This leads us to believe that
perhaps for the Italian markets further research can be done to determine potential features that
could be included, such as bond auction dates. While in terms of K2, the results for French markets
are not as good, our results do show that our models are able to beat the benchmark. The lower R?
is most likely due to the number of data points of French bonds simply being lower than Germany
and Italy, meaning there is more variance in our datasets.
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Chapter 5

Intraday updates & modelling

5.1 Updating total daily prediction

This section explores using intraday modelling in two ways. Our first exercise is to create a
regression with the same target as before, total volume traded in a given day, but observe how by
including a couple hours of information, we can greatly improve our predictive power. That is to say,
after 2 hours of trading, we should be able to accurately determine whether we are having a high
volume, medium volume or low volume day.

To do this, we once more run a linear regression. We take a ridge regression, and use the same
features as beforehand, however now we include an additional feature, volume traded up to hour n
in a day. As before we used a nested train/test split, however before we would use our weights to
predict 5 days ahead. Now we choose to only predict 1 day ahead. As we increase the value of n our
predictions generally trend towards the true value for the volume traded in a given day.

The graph below demonstrates the utility that can be provided by an additional 2 hours of

information.

2020-09-11 Volume Prediction Evolution German 7-11 Year Bonds

Updated Predictions
Volume Realised

~

Predicted Volume Traded
(-]

&n

Initial 8 9 10 1" 12 13 14 15
Hour In Day

Figure 5.1: 2020 — 09 — 11 prediction including volume traded up to n, with n =8,9,...15

We can see for this day 2020 — 09 — 11 our initial volume prediction missed out on the spike in
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demand for that day. However, with 2 additional hours of information, the model is able to pick up
on the fact that it is going to be a high volume day, and thus accordingly adjusts its prediction.

While this information is useful in evaluating the impact of observing values up to a given
point of the day, we can carry out further quantitative and qualitative analysis. A kernal density
estimation (KDE) can be used to estimate the probability desnity function of a random variable in
a non-parametric way. By observing the KDE for the R? scores of our sectors at different times in
the day, we can observe the impact of increase the value of n. Mathematically, we let (z1,z9,...,2,)
be identically distributed independent samples drawn from a univariate distribution with unknown
density f at a given point x. One can estimate the shape of this density function, via a kernel density
estimator, which is defined as follows,

N 1 n i 1 n T -1
fulw) =~ ; Kylz —z;) = E; K (T)

Here K is some non-negative function, and h > 0 is a paramater called the bandwith which
controls the smoothness of the estimation. The kernal that is used throughout this section is the
Gaussian kernal, defined as

) 1 -2
Kir) = €327
V2
The results for this are given below.
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Figure 5.2: Hourly plot KDE evolution

There is a shift towards the right in terms of the values in the KDE (i.e. R? increases as we
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increase n). Additionally, the standard deviations of the R values reduces, as the scores hecome
closer to one another. By the time we are a 16 : 00, the model is essentially just placing all of the
weightings coefficient wise on the volume traded up to 16 : 00, since this is very close to the total
volume traded in the day. We note a large shift towards the right with the R? increasing when one
increases the volume traded up to 9am, signifying that this hour long period between 8§ and 9 is

crucial.

We also observe the coefficients in our regression models as we change the value of n. For n =8,
we can see below that the volume traded up to 8 is clearly an important feature, as it has the highest
magnitude coefficient, and clearly correlates positively with total volume traded on that day. If we
observe the coefficients with n = 12, we see by this point the volume traded up to 12 dominates the
regression, and the other coeflicients are shrunk.
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Figure 5.3: Coefficients for Germany 7-11 Bonds at 8am
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Figure 5.4: Coefficients for Germany 7-11 Bonds at 12pm

The main conclusion that can be reached from this task, from a business perspective, is that a
couple hours of trading information can be useful in being able to determine the total volume to be
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traded on that day. What could be more useful is actually being able to predict the volume to be
traded in the next hour or even the next 15/5 minutes, and this is the focus of our next section.

5.2 Intraday modelling

The purpose of this section is as follows. Given we have a prediction for the total volume to be
traded on a given day, how can this be used to predict the volume to be traded in hourly, 15 minute
or even 5 minutes buckets? Omne could use total volume predicted as a feature in a regression, but
there are other techniques, which we will explore further in this section. Let us begin by defining a
benchmark.

5.2.1 Benchmark model

Observe the following graph below, which shows the volume traded in given hours of the day for
all German sectors, with confidence intervals.

,
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Figure 5.5: Hourly volume traded German sectors

We note that the volume starts off low generally, however trading peaks between 8 and 10 (note
that Europe is an hour ahead). Then there is generally a decrease in volume towards lunchtime, before
another smaller peak at around lpm/2pm when the U.S. markets go live. Finally, as we approach
the end of the trading day, volumes decrease. Given that there are these very clear patterns, these
must be utilised in order to create a successful model. As a benchmark for the volume traded in the
4" time bucket of the day on day ¢, we define the following benchmark

BucketVolumey' = 55 Z BucketV olumel”;
i=1

This is a 1 month moving average of the volumes traded in the same time bucket.

5.2.2 AR(p) process on residuals

This model aims to utilise our total daily predicted volumes fully. Given that for a given day we
have a daily volume prediction, we carry out the following,
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Take 22 days data (a month), and find the average proportion of daily volume to fall into each
time bucket

(ii

I'it the aforementioned daily prediction model, and predict the total volume to be traded on a
set of days for training data.

(iii

Multiply this figure by the average proportion expected to fall into each bucket.

(1w

Calculate the residual errors between the realised volume falling into each bucket and this initial
estimate.

<

Fit an AR(p) model to this data and forecast the residuals for a given day.

(vi) Add these residuals onto the initial estimates to get an updated prediction of volumes to fall
into each bucket.

The AR(p) process is included since if we only used our initial estimate, we are relying on 1) our
predicted total daily volume being accurate and 2) the intraday volume distribution being accurate.
Our first step is to determine what order p we must choose for the autoregression process. We can
do this via a partial autocorrelation (PACF) plot. If we were dealing with a M A(q) process an ACF
plot would suffice, since all lags greater than g are zero, this is not the case for an AR(p) process.
Due to the iterative nature of the model there is a chain of dependence. For example, considering an
AR(1) model defined as X; = ¢ X, 1 + Z;, where Z; ~ WN(0,0?), we note,

7(2) = Cov (X, Xy 2)
= Cov(pX; 1+ Ze, X;_2)
= Cov(¢*X¢ o+ ¢0Zs_1 + Z, Xt 0)
= E[0*X2 , + 6Z 1 Xoo + ZiX,o] — E[X, ]E($°X (g + 6Z,1 + Z,))
~ G?E[X2 )
= ¢%4(0)
We see that there is a non-zero autocorrelation between 2 lags, since X; depends on X,_, through

X;_1. The core idea of a PACF function is to remove this dependence. More formally, one can prove,

denoting ¢; as the j™ coefficient in an AR(k) process that the coefficients satisfy the following set

of equations, (2).

pi = dpj-1+ o+ Guk-1Pj—kt1 + Ok §=12, 0k

which leads to the Yule-Walker equations, which can be written as,

1 2 P2 e Pe—1]| |@r1 2
p1 1 P e Pr—z| [ kz P2
k=1 Pk—2 Pk—3 .- 1 Dok Pk
One can solve these equations for £ = 1,2,3.... The quantity ¢, is referred to as the partial

autocorrelation function, and is zero for k > p. It is the partial autocorrelation of the process X;
at lag k, since it is the partial correlation between X; and X;_j adjusted for the variables hetween,
being X; 1, X; 2.... X; k1. We can now use the partial antocorrelation function plot on our time
series to determine the order p. Observe as an example the PACF plot for German bond volumes
residuals in 15 minute buckets.
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Germany 15 Minute Bucket Residuals PACF
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Figure 5.6: PACE plot Germany 15 minute buckets

After 3 lags, the lags stop being statistically significant, and thus an AR(3) model appears to be
appropriate for the time series. Different orders p were used for different time bucket sizes. We note
a spike in the autocorrelations at around lag 40. Since we are looking here at 15 minute buckets, and
we are considering 10 trading hours in a day, 40 lags from a given bucket in a day would correspond
to the same bucket in the previous day. So, 1 day lagged bucket residual is in fact correlated, however
an AR(3) model would not be able to account for this. Therefore, we choose to consider one more
model that would be able to pick up on these dependencies.

5.2.3 Regression Model

Our final model in the intraday modelling section is a regression model. In this model, due to
the lack of utility provided by pricing features in interday modelling, we opt to omit them from the
model. Thus, we can split our features up now into two broad categories, being volume based features
and special days/times,/booleans.

Volume Based Features

e Volume of previous bucket.
e Yesterday's bucket volume.
e 1 week and 1 month bucket volume average.

e Daily volume prediction

(Special) Days/Booleans

e Hour of the day
e Last day of month
o ECB meeting

e [utures rollover
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The dataset for 5/15 minute predictions is heavily skewed, so in order to get normally distributed
residuals, a log transformation is applied to all volume related quantities (4). Observe the coefficients

from this model,
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Figure 5.7: Germany 15 minute update non-hour coefficients
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Given the high variance of volumes traded in buckets, we see that the bucket monthly average has
a higher coefficient than yesterday’s bucket value (they are on similar scales so comparable). This is
interesting since in the daily case, the 1 day lagged volume was the most important feature, however
the equivalent in intraday modelling is too noisy to be particularly useful. In the hour coefficients,
we see a perfect match almost between it and Figure 5.5, the graph of hourly trading volumes in
German sectors. Hours of the day where the volume is high have a high hour coefficient, while hours
of the day where the volume is low have a low hour coefficient.

42




5.3 Intraday Results

We now summarise the overall performance of all of our models below.

Table 5.1: Sector hourly modelling R? results

Sector Benchmark | AR(p) | Ridge
DE(0-2 0.131 0.107 0.160
DE(2-7 0.138 0.154 0.193
DE(7-11] 0.134 0.161 0.182
L)E-(ll—3ﬂ| 0.122 0.149 0.171
FR(0-2 -0.030 -0.028 | -0.012
FR(2-T 0.008 0.043 0.047
FR(7-11] 0.018 0.034 0.048
FR.(ll—3U| 0.045 0.065 0.104
FR(30-100] 0.021 0.054 0.066
Iro-2 0.042 0.064 0.071
IT(2-7 0.142 0.162 0.195
IT(7-11] 0.080 0.091 0.112
['l‘(11—3f]| 0.067 0.089 0.111

IT(30-100] 0.038 0.074 0.102

Table 5.2: Country 15 minute bucket R? results

Country | Benchmark | AR(p) | Ridge
Germany 0.126 0.141 0.184
France 0.038 0.067 0.087
Italy 0.124 0.140 0.195

Table 5.3: Country 5 minute bucket R? results

Country | Benchmark | AR(p) | Ridge
sermany 0.047 0.055 0.134
France -0.004 0.008 0.027
Italy 0.037 0.045 0.086

Due to higher variance and noise, our predictive power falls as we go from 15 minute predictions
to 5 mimite predictions. We cannot fairly compare the drop in R? between hourly and minutely
buckets however, since we shift our target from sector volumes to country volumes. We note both
our autoregression model and our ridge beat the benchmark, however it appears the ridge offers the
best out-of-sample performance. This could be attributed to the fact that the autoregressive model
would not account for similar residual sizes for the same buckets at different sizes of the day, given
that p was consistently smaller than the mumber of buckets in a day. When it comes to liquidity
and amount of RFQs, France has a far smaller amount than Germany and Italy, which leads to its
data set having a higher variance and being somewhat more difficult to predict, resulting in it having
the lower out-of-sample R?. The models perform best on Germany, perhaps due to it lacking the
aforementioned liquidity problem that France has, yet being a lar less volatile market than ltaly.
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Chapter 6

Conclusion

In this section, we summarise the main conclusions that can be drawn from our thesis, and
reiterate the reasoning behind this research project to evaluate whether the models created can be
put into production to provide genuine use to Deutsche Bank.

Our original goal was to model daily total volumes amongst German, French and Italian bond
sectors. We saw successful results doing this, with an average R® increase from our best models
compared to the benchmark of around 13% for Germany, 17% for France and 9% for Italy. As this
is all out-of-sample, we can conclude this to be a successtul statistic. This model would be useful to
traders to give them an idea of how long they may have to hold onto certain positions for.

In terms of which model performed the best, the ridge, LASSO and MLP all appeared to perform
well. The ridge model did have the highest /2 on average, but not by a statistically significant amount
compared to the LASSQ. This increase in B2 may be due to the ridge having our aforementioned
feature selection algorithm applied to it, while our LASSO did not. When it comes to putting a
model into production, features which did not seem to provide any sort of clear signal, such as our 3
pricing features, would not be included, so there is not too much separating these two models. The
MLP, while performing very well overall, does have two major shortcomings, being the very large
computation time associated with creating and running a neural network, and additionally the lack
of interpretability that comes with it.

In terms of the most important features associated with predicting daily volumes, it appears that
the most important one, according to our feature selection algorithm as well as (normalised) coefficient
size is 1 day lagged volume. This makes sense, as high activity from one party generally would lead
to a counter-reaction from another party, and this effect could last over multiple days. As previously
mentioned, pricing features did not improve out-of-sample R? for any sectors, and it appears that the
most successful linear model consists of taking linear combinations of previously observed volumes,
along with some long term averages, and finally including weighted indicator functions for certain
market events (last day of month, rollover etc...)

Regarding intraday modelling, again we saw in general a success, with both our autoregressive
model and our regression model beating our benchmark. While we are able to predict sectors on an
hourly level, we must switch to predicting entire countries at a 5/15 minute level, due to the high
variance of the dataset. As previously mentioned, here it appears that compared to modelling daily
volumes, long term lagged averages provide a better indicator of volumes to be traded in a short time
bucket, rather than just simply take the previously observed bucket value as a feature.

There are still further areas of research in volume prediction that one could potentially look
into. As mentioned at the start of the thesis, predicting individual ISINs was beyond the scope
of this project, however with further advancements in machine learning constantly on the horizon,
perhaps this could eventually be done successfully. Also, while our target here was total volume
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traded, further research could be on changing the target to signed volume by modelling both the
volume of buy orders and sell orders, as this would give more practical usage to traders. We note
that our random forest model did not perform well, however an adaptation of tree models could still
potentially be used. In L. Arous’ paper on predicting corporate bond volumes (1), a multiple additive
regression trees (MART) model was developed, as well as a support vector regression model, both of
which performed better than an OLS. As a bagging approach did not perform well in this thesis, the
boosting approach in MART could be an area of further research (5).

To conclude, our most successtul model appears to be a ridge model, that comfortably beats its

benchmark in both an interday and intraday setting. This model would provide utility to traders,
and also would be computationally efficient, meaning it could be deployed in a high frequency space.
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