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Introduction

Context
In the aftermath of the 2008 crisis and with the growing complexity of financial markets, insti-
tutions have been focusing more and more on risk forecasting. Often associated with a negative
fallout, risk represents a major stake for financial bodies, as it describes the possibility of financial
loss. Its measure is often used in decision making - to determine risk capitals or to manage the

riskiness of a position for example [26], Slide 35].

In order to assess financial risks, banks have been developing models of all types. A model can
be defined as follows [33]: a « model refers to a quantitative method, system, or approach that
applies statistical, economic, financial, or mathematical theories, techniques, and assumptions to
process input data into quantitative estimates ». Their accuracy is particularly crucial, as models
can have knock-on effects on the bank’s soundness and even on the economy. Let us remember that
the subprime mortgage crisis of 2007 was partly due to inappropriate models [I5]. Credit rating
agencies provided irregular high scores to debt securities whose quality was undeniably lower. In-
deed, a significant proportion of the loans belonged to homebuyers who had a poor credit situation

or undeclared incomes. Hence, the model soundness is essential.

Since the global crisis, financial institutions have been relying even more on models, notably
with the desire to automate processes and thus to gain time and precision. For instance, banks
have been developing algorithmic trading: large trades are pre-programmed and are then executed
thanks to automated platforms. Concerning credit risk, banks now question their model of prob-
ability of default (PD) in order to extend credit or not. For pricing and valuation, many tools are

widespread and traders use them on a day-to-day basis.

Model Risk Definition
In response to this model-dependent environment, regulations have emerged to raise awareness
about the so-called model risk. In April 2011, the Federal Reserve System delivered a Supervisory
Guidance (SR 11-7) for the purpose of providing guidelines on how to manage efficiently this risk.
In 2013, the Capital Requirements Directives (CRD) have been introduced to present the Euro-

pean Union directives on capital requirements. In the third article of CRD, model risk is defined as:

« the potential loss an institution may incur, as a consequence of decisions that
could be principally based on the output of internal models, due to errors in the

development, implementation or use of such models ».



This definition implies two main sources of model risk [33]:

e The model itself is imperfect and generates incorrect outputs. The errors can be located
anywhere in the development. It can be caused by a theoretical error, a misspecification, an
operational mistake or even an approximation that was chosen to simplify the implementa-

tion.

e The model is used inappropriately or wrongly. The soundness and accuracy of the outputs
do not guarantee a risk-free model. A model is often designed for a specific environment and
using it outside of its limits may produce erroneous results. Moreover, users must be trained

properly and regularly.

Like any other risk, model risk must be analysed and more specifically its sources and con-
sequences should be clearly identified and communicated. In addition to working on individual
model risk, one should also consider aggregate model risk [33]. As financial institutions work in
multi-model environments, relationships and dependencies among models must be considered to

truly encompass model risk. This additional dimension constitutes a further challenge.

Model Risk Quantification
Model risk can be seen as the risk of occurrence of a significant difference between a model value and
an observed value [32]. Hence, it should be possible to identify, mitigate and, above all, quantify
this gap. Currently, the emphasis is on the general management - how models are developed and
used for instance - rather than on the quantification. In the Supervisory Guidance SR 11-7, we

find three steps in the model risk framework that can impact model risk:

1. The model development, implementation and use,
2. The model validation,

3. The model governance, policies and controls.

We want to quantify model risk in order to forestall its potential consequences. Let us think
about how to calculate model risk. What will be the unit of the output? Is it possible to have a
single method which would be applicable to different models? Regarding the first question, one
should consider model risk as any other risk: it should be simply added to other risk measures in
order to evaluate a total risk. Risk forecasts being often computed as ratios with returns, one could
suggest currency or log currency as the reference unit [I6]. With regards to the second question,
we can put forward two approaches to monitor model risk: computing as many models as possible

and then evaluating the gap of the outputs, or assessing model risk against a benchmark model

13]-



However, as models tend to be more and more sophisticated, it becomes particularly difficult
to measure the inherent model risk. This complexity can especially be found in credit risk and
operational risk [32]. Market risk measurement is nevertheless more developed, and evaluating
discrepancies between models or specifying a benchmark model is reasonable. In this way, we shall

concentrate on the measure of model risk within market risk models.

Model risk among market risk models implies that model outcomes are inconsistent [14]. For
example, if we consider several models of market risk measure, it means that, for the same dataset
and time period, we would not have the same results for the different models. Before trying to
evaluate model risk within market risk methods, let us focus briefly on market risk and more
specifically on the measures we will study. In 1996, the Basel Committee (BCBS) put forward the
Value-at-risk (VaR) and asked banks to compute it using 99th percentile. VaR is thus a reference
measure in market risk. In 2013, the BCBS published the Fundamental Review of the Trading
Book (FRTB). One of its key reforms was to replace VaR with Expected Shortfall (ES) at 97.5%.

We shall work with both measures and try to differentiate their results.

Research Structure
This thesis aims at illustrating model risk for market risk measures. More precisely, we quantify

model risk for eight models of 99% VaR and 97.5% ES. The two risk measures are also compared.

In Section [I] we choose and compute eight models of markets risk measures. We start with two
historical methods (filtered and unfiltered), then five analytical models (specific loss distributions,
GARCH volatility estimation and Extreme Value Theory), and we finish with a Monte Carlo ap-

proach.

Section [2]is dedicated to the quantification of model risk. First, we backtest each model of the
previous section in order to assess the quality of the methods via statistical tests. Secondly, we
develop three approaches to quantify individual model risks: the risk ratio, the worst-case measure
and the benchmark model comparison. For the benchmark, we compare each method to a model
that is chosen according to the backtest results at first, and we then introduce a measure based on
the Bayesian perspective. Those three approaches enable to assess the level of disagreement among
the models [14] and give trends on the model outputs. In order to observe if those methods give
similar information, we then focus on the correlation between model risk measures. In the next
step, we analyse the models’ sensitivity by changing parameter values. Finally, we focus on the
model risk management, linking the quantification to the qualitative regulatory framework that

financial institutions have to apply.



1 Market Risk Measure: VaR and ES Models

Market risk is associated with unexpected moves in market prices of financial assets such as stock
prices and interest rates [II), Slide 1067]. Those fluctuations can lead to financial losses in a po-
sition. The evaluation of market risk consists in measuring the riskiness of this loss. Most risk
measures rely upon statistical quantities which connect to the loss distribution [26] Slide 39]. It is
worth noticing that this distribution is often determined in a backward-looking approach, which

implies that the events that did not appear in the history might not be detected.

VaR is an industry-wise standard for market risk. It is a statistical measure of potential port-
folio losses, based on the loss distribution. Already used by JP Morgan in the 1990s through its
RiskMetrics system, VaR was introduced in the regulatory framework in 1996, in Basel I [6]. The
idea behind VaR is to set a large probability « and to find a level [ such that the probability that
the loss surpasses [ is equal to 1 — «, a small probability [26] Notes on risk measures|. In this way,
99% VaR - the risk measure mentioned in regulations - is the loss that should only be exceeded
1% of the time. VaR can also be considered as a measure of capital adequacy [18, Chap 9], which

is used to control the level of capital that banks have to hold to sustain losses.

Nevertheless, VaR presents disadvantages that were outlined during the 2008 crisis - its inability
to detect the severity of losses above VaR notably. ES was presented in 1993 [30] as a ’coherent’ [4]
alternative to VaR and 97.5% ES was in this way put forward in FRTB [§] (2013). To estimate ES,
we need to compute VaR first and then take the expectation on the values of the loss distribution

that exceed VaR.

As mentioned in the introduction, we focus on eight risk forecast models. The first obvious
choice is to implement historical simulation (HS) as it is one of the simplest and one of the
most commonly used in the industry [23]. JPMorgan and Bank of America indeed estimate their
trading risk through HS. Secondly, we introduce a filtered historical simulation combined with
an exponentially weighted moving average (EWMA) volatility model. Next, we take two basic
analytical methods based on a specific distribution: Normal and Student-t. We then consider
GARCH family models. We include a Normal GARCH method (GARCH N), as it is a popular
volatility estimator, and a Student-t GARCH (GARCH St) which is known for accurately capturing
extreme events [I4]. Thereafter, we examine extreme value theory (EVT) and we compute a
model based on the generalized Pareto distribution. It enables us to focus on the tail of the loss

distribution. Last but not least, we implement a Monte Carlo approach (MC).



1.0.1 Definitions

We consider the loss distribution at time ¢ + 1: Lyy1 := —(Vig1 — V;), with V; the portfolio value
at time t. As Viy1 is not known at time ¢, L;11 is a random variable. In this project, a denotes a

real number in (0, 1).

Definition 1.1. The Value at Risk (VaR) of loss L at confidence level « is defined as:
VaR,(L) :=inf{l e R:P(L >1) <1-a}.

We can rewrite the definition: VaR, (L) = inf{l € R : P(L < 1) > a} = q.(L) = F; *(a), with
F;, the cumulative distribution function. In this way, VaR,(L) is the a-quantile of the loss L.

Definition 1.2. The Expected Shortfall (ES) of loss L at confidence level « is defined as:

1 1

:1—a

ESo(L): VaR,(L)du.

[e3

Remark 1.3. ES is well defined when: E(|L|) < co.

Lemma 1.4. Assume that the loss L has continuous Fr, and that we have: E(maxz{L,0}) < oco.
The Expected Shortfall (ES) of loss L at confidence level o can be expressed as follows [26, Notes

on risk measures, Lemma 3.4/:
ES,(L)=E(L|L > VaR,(L)).

Remark 1.5. This lemma illustrates the name "expected shortfall": ES is the expected loss given

that VaR is violated.

As the definition of VaR and ES directly involves the loss distribution, we need to estimate
it in order to have access to both risk measures. Three groups of methods can be considered to

forecast the loss distribution [26] Slide 30] [21]:
e Historical simulation,
e Analytical method,

e Monte Carlo method.

The eight models aforementioned are presented according to their method type. In order to
compute the models, we use R and we start from a code implemented during the Quantitative Risk

Management course at Imperial College London, as part of courseworks [20] [24].
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1.0.2 Choice of Portfolio

We work with a portfolio invested in ten US stocks of large institutions:

Symbol | Company Sector

AAPL Apple Inc. Information Technology
BAC Bank of America Corp. | Financial Services
BOE Boeing Co. Aerospace Industry
BP BP PLC Energy

DIS Walt Disney Co. Entertainment

GE General Electric Co. Diversified Industrials
JNJ Johnson & Johnson Pharmaceuticals
MCD McDonald’s Corp. Restaurants

NESN Nestle SA Consumer Goods
WMT Wal-Mart Stores Inc Retail

We set the investment period from 10/12/2005 to 08/06,/2018 and we harmonize the portfolio

by removing the dates that do not contain information on the ten stocks.

Two criteria were used to select the stocks. The first requirement was that the stocks must

have been traded on the US markets during our investment period. The second one was that the

stocks must come from different industries in order to have a diversified portfolio. We decide to

rebalance the portfolio on a daily basis to have an equal weights portfolio.

As logarithmic prices are often used as risk factors [26, Slide 15], we consider logreturns to be

the risk factor changes:

riy1 = logSiy1 — logSy.

We can then define the linearized loss corresponding to the stock portfolio with equal weights

(we,s = 15) [26, Slide 16]:

10

Litn=-V, E Wi Tt41,i-

i=1

In this project, we work with the daily linearized loss relative to the portfolio value which is

handy to manipulate [27] Slide 104]:

Et+1
v

Lt+1 =

In order to forecast the loss distribution, we use a rolling window of N simulations. It means
that for each estimation of a loss distribution, we base our calculations on the N previous losses.

We set N = 500 which is approximatively equal to two years of data.



1.1 Historical Methods 11

1.1 Historical Methods

Historical methods rely on the hypothesis that history will be repeated and thus that the future will

be a combination of past events. We use the empirical distribution to estimate the loss distribution.

1.1.1 Historical Simulation (HS)

This approach relies on the assumption that returns are independent and identically distributed
(iid), which constitutes its main limitation. Indeed, returns are known to be dependent as they
demonstrate stylized facts such as volatility clustering [25]. Moreover, HS gives the same weight
to all returns [I4] and might not capture extreme events if they did not happen in the historical
dataset [26], Slide 32|. Yet, it is worth noticing that this method has a very simple implementation
and is widespread in the industry. Contrary to parametric models, HS does not specify a distribu-
tion for the returns. Let us note that the method implicitly assumes that the empirical distribution

is accurate and comprehensive: it should be a sound picture of the future returns [23].

Consider the empirical a-quantile §,, of a sample of NV observed losses [26, Slide 45]. The number
of VaR violations during the previous N trading days is given by: M, := #{i € {0,1,..., N —1}:
Li_; > VaRy(Liy1)}. VaR and ES are estimated with the following formulae:

VaRa(Lt+1) = (ja

1 N-1

= M ; Ly il{1, ;>VaRa(Lis1)}-

ES,

We obtain the following results for VaR and ES:

Figure 1: VaR 99% and ES 97.5% with Historical Simulation
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We notice that the tracking of the positive part of the portfolio value is not accurate. Both VaR
and ES are slow to react to the profit and loss (P&L) changes. This can be explained by the fact
that HS gives equal weights to the whole forecasting window. As a consequence, when the losses
decrease, the estimates for VaR and ES remain too conservative, as situations of large losses are
still present in the window [20]. Furthermore, the method has difficulties to predict the first high

losses of a peak such as during the 2008 crisis. Hence, this method does not seem to be optimal.

1.1.2 Filtered Historical Simulation (EWMA)

Definition 1.6. A white noise is defined as a covariance-stationary process (e;)icz with the fol-

lowing autocorrelation function [27, Slide 10]:

Innovations refer to random variables with a white noise process.

The filtered historical simulation combines a non-parametric modelling of innovations €; with

a parametric modelling of the volatility oy.

We choose an exponentially weighted moving average (EWMA) volatility filter for the para-
metric part of this market risk model. The estimate for the volatility, 6;, is computed with the
EWMA scheme (Formula. We take: é; = ry — fiy, with fi; an estimate for the conditional mean

of the risk factor changes.

Definition 1.7. The EWMA iterative scheme for the volatility is defined as [27), Slide 99]:

Gpeq = 1é + P16} (1.1)

As we use daily data in this project, we choose oy = 0.06 and B; = 0.94 [27, Slide 99].

Furthermore, to simplify the calculation, we take ji; = 0.

Remark 1.8. The term «;é; can be interpreted as the "intensity of reaction" to market evolution.
The term (3167 represents the "persistence of volatility" [2]. Hence, by taking oy = 0.06, the
volatility forecasted the previous day has a 94% weight and the residual for that day has a 6%
weight. It makes the result react quickly to the change in volatility.
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VaR forecasts are calculated using the following formula [27] Slide 102]:

VaRo(Lit1) = 614140 (Fz)

ESQ(Lt+1) = &t+1ESa(FZ)'

As we are implementing a filtered historical simulation, Fy is the empirical distribution of the

standardized residuals.

We obtain the following results:

Figure 2: VaR 99% and ES 97.5% with Filtered Historical Simulation and EWMA
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The VaR and ES forecasts give a precise tracking of the positive losses: both measures are

reacting to changes in the position value in short periods of time. We also remark that the risk

measures is sensitive to market conditions and thus is quite volatile. The EWMA recursion scheme

only considers the previous days of volatility forecasts and thus has less "memory" than other

models such as HS [20]. Hence, one should consider EWMA when the volatility is not constant

[29]. Yet, from a computational point of view, filtered historical simulation can manage large

portfolios and it remains a precise predictive method as it is supported by empirical information

123
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1.2 Analytical Methods

Analytical methods consist in selecting a model for the risk factor changes distribution so that
the loss distribution can be analytically determined. The historical data is then fitted in order to

evaluate the different parameters.

1.2.1 Normal and Student-t Distributions

Normal Distribution
We assume that the risk factor distribution is Normal N (u, 02). For each window of N observations,
we estimate p and o by taking respectively the sample mean /i and standard deviation . VaR is
forecasted by [26, Slide 47]:

VaRy(Liyy) = i + 6071 (a).

In the same way, we can estimate ES via its integral definition which gives the following

expression:
(Y
ES@(LtJ,-l) = U + UQS(?(Q)).

Figure 3: VaR 99% and ES 97.5% with Normal Distribution
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We observe that both measures are very similar yet not equal. One can easily notice that the
Normally distributed method is not tracking in an accurate way the positive part of the daily losses.
The highest observed loss is about 9% yet the highest estimate is below 6% in the entire forecasting
period. The most important losses are thus not forecasted: all the peaks are underestimated, in
particular during the 2008 crisis and in the end of 2011. The only reaction to those significant

losses is an almost constant medium high risk forecast after the stress period.
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Student-t Distribution
We fit the Student-t distribution #(v, u,02) to the N observations of the window. It gives us

estimates for the three parameters. VaR and ES are given by [26], Slide 49]:

VaRa(Lit1) = fu+ 6t ' (@)

~ ~ gp t7 13+tf1 a)?
BESo(Liy1) = i+ 6% (1”,65 ) ( 2 § ) )

D—

Figure 4: VaR 99% and ES 97.5% with Student-t Distribution
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The Student-t law has fatter tails than the Normal law. Hence, peaks in positive part of losses
induce larger values in Student-t fit of VaR and ES. Let us also remark that this method is more
sensitive and more conservative than the previous one. However, the highest losses are not well
predicted: the portfolio may suffer important losses without the model preventing it. As a conse-

quence, both Normal and Student-t models do not seem to be reliable risk measures.

1.2.2 GARCH Models

Generalized autoregressive conditional heteroskedastic (GARCH) processes were introduced to
capture non-linear dependence of asset returns. Hence, this method models volatility clustering

and persistence [27, Slide 44].
Definition 1.9. We define a GARCH (p, q) process (r¢)iez by [27, Slide 45]:

o (1¢)tez is strictly stationary.

— 2 _ P2 q 2
oty =012y, O =ao+ iy + 2 B0

with (Zt)tez a strict white noise (iid variables) with mean 0 and standard deviation 1.
We have a9 > 0, a1, ...,ap > 0 and By, ..., 84 > 0.

o (04)tez has positive values and is strictly stationary.



1.2 Analytical Methods 16

Remark 1.10. Let us notice that this writing emphasizes the similarity between the EWMA
forecast recursion (Formula and the integrated GARCH (1,1) expression, where oy + 1 = 1

and ag > 0:

A2 2 A2
6; =ap+arr;_q + P16;_4.

We take ag = 0 in the EWMA scheme.

In this project, we choose to work with GARCH (1,1) as it gives a reliable fit of logreturn data
[27, Slide 47]. We consider the following algorithm to estimate VaR and ES:

1. We choose a distribution for the innovations to fit the GARCH model.
2. We fit a static GARCH (1,1) model on the first 500 trading days.

3. We refit the GARCH(1,1) model every 50 days after the start of the forecasting period to
get a volatility estimate for the whole forecast window. We use a 500 days rolling window

for this step [20].
4. We estimate the a-quantile by taking the prior 500 days to calculate the empirical quantile.

5. We implement VaR and ES via the following formulae, with ji; an estimator of the conditional

mean of the risk factor change r;:

VaRo(Lis1) = fies1 + 64190 (Fz)

ESa(Lit1) = firs1 + 641 ESa(F2).

We display the results for VaR at 99% and ES at 97.5% with GARCH, using Normal (GARCH
N), then Student-t innovations (GARCH St):

Figure 5: GARCH with Normal Innovations  Figure 6: GARCH with Student-t Innovations
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We observe that both GARCH models are responding quickly to the loss changes: there is an
efficient tracking of the volatility dynamics. Regarding the output values, the results are quite sim-
ilar for Normal and Student innovations. Let us remark that overall the Student-t model produces
higher values which is logically explained by the fact that the distribution has fatter tails than
the Normal distribution. However, between 2009 and 2010, we tend to observe higher forecasts
for the Normal innovations model. Finally, the higher forecast is about 18%, which is twice the

maximum value of the observed P&L: this method is conservative and thus introduce few violations.

1.2.3 Extreme Value Theory (EVT)

The objective of extreme value theory is to model the tails of loss distribution. In this way, this
method is particularly relevant in risk management as tails are linked to the probability of extreme

outcomes.

EVT relies on the assumption that the data is independent and identically distributed (iid).
This hypothesis cannot be effective with most financial time series such as returns as we observe
stylized facts. In order to overcome this problem, the dataset can be modified such that the iid
assumption is almost met and then the EVT method is applied: this approach is called conditional

EVT [28, Slide 49)].

We consider the generalized Pareto distribution (GPD) method to model the behaviour of the
right tail of the loss distribution (extreme losses) which relies on threshold exceedances [28, Slide

32).

Definition 1.11. The generalized Pareto distribution with shape £ € R and scale § > 0 has the

following distribution function:

L= (1+5)78 €40

G =
o) 1 - ecap(~%),  €=0.

If £ >0, we must have z > 0 and if £ <0, we have 0 <z < —

M

Let X1, ..., X, be iid observations with distribution function F. We would like to have: Fy,(x) =
Ge p(z) with F,(z) = %@?W the excess distribution and = € [0, sup{z € R: F(x) < 1}].
We consider the losses relative to our portfolio: Ly = pey1+0¢+17Z:4+1. We apply the following

method to estimate VaR and ES [28] Slide 64]:
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1. We model our losses with a GARCH (1,1) model, with constant mean.

2. We use a rolling window to refit GARCH (1,1) to the 500 previous losses via quasi-maximum
likelihood estimation, which means that we assume standard normal errors and as a conse-

quence we can apply EVT.

3. We select the threshold u: we arbitrary take the 93% quantile of the residuals [28], Slide 64]

in the forecasting window.

4. We fit a GPD to the standardized residuals and then we forecast VaR and ES with the

following formulae:

VaRo(Lit1) = fig41 + Grpru + ?((1_1}'(2))75 =] = i1 + 61114a(Zi41),

ESo(Liy1) = fies1 + 011 (%jﬁ*l) + %) ,

with £ and S estimated parameters values of the fitted GPD.

We obtain the following results for the EVT model:

Figure 7: VaR 99% and ES 97.5% with Extreme Value Theory
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One can notice that the VaR and ES forecasts reflect reality. Indeed, the EVT outputs are
volatile enough to track well the observed losses. Even the highest loss peaks are well predicted.
This can be explained by the fact that EVT especially emphasizes on the tail and thus captures
well extreme events. We observe that the risk measures are quite conservative. The maximum
value is just below 20%, which is the highest estimate from the different methods so far. Hence,

this method seems to be sound and reliable.
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1.3 Monte Carlo Method

In the same way as for the analytical methods, the Monte Carlo method (MC) relies on an explicit
distribution for the risk factor changes [26] Slide 33]. The general premise of Monte Carlo is to
generate random samples that are used to compute an empirical mean. In the case of VaR, risk
factor changes are estimated with a random element and the loss function is defined as the opposite

of the sample mean of the logreturns.

The Monte Carlo approach has the property to handle different return distributions such as
Normal or Student-t distributions. However, to capture rare events, this method requires a large
number of replications and can thus be very time-consuming. For now, we only work with 10 000
simulations as the times of computation are important. We increase this number in the subsection

[2:6] dedicated to the sensibility of the models.

We focus on a "basic Monte Carlo method" [19]. We make the assumption that the change
in risk factor AS over At, conditional on historical data, has a multivariate Normal distribution

N(0,Zs).

We describe the method used to compute the loss distribution and the daily VaR. It then gives
access to the daily ES:

1. In a first step, we need to build the portfolio covariance matrix g, which is a symmetric

matrix of dimension m x m, with m the number of stocks in the portfolio.

We choose the exponentially weighted moving average method to evaluate the matrix. It
puts more weight on recent data, with the "smoothing constant" A, and as a consequence
it removes the "ghost feature" that can be observed in a classic historic covariance matrix

method [I].

Remark 1.12. This ghost feature can be observed when changing the length of the forecast-
ing window of a historical method. As mentioned in Section [1.1.1] equal weights are given
to each past data. It leads to a high range of values which significantly fluctuate in a short
horizon, and average results which are less volatile. We observe this feature in Section [2.6]

when analysing the sensitivity of HS to the number of days in the rolling window.

Definition 1.13. Let us assume we have ¢ — 1 observations of a time series (z;)tez. The

exponential weighted moving average of (z;)¢cz is defined as [I:

Tio1 + Ari—o + N2xp_g + ...+ A2y
T4+HA+F A2+ A2 '

EWMA(Z‘t_h...,Il) = (12)
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To estimate the volatility thanks to the EWMA method, we replace the time series (x¢)iez by
the squared returns (72)scz in the equation [1]. Furthermore, as 1+A+A2+... = (1—-)\)71,

the expression for the volatility forecast is: 67 = (1 — X) > ;0 X712

In this way, the EWMA scheme can be changed into the recursive expression:
o7 = (1= Nri_q + 267y

With A = 1 — a4, we find the same volatility scheme as in the filtered historical simulation

part (1.1.2). We forecast the covariance by taking the cross product of two returns rarpg.

Let us consider the vector R; of asset returns on day ¢t. To evaluate the covariance matrix,

we compute the following matricial expression:
Ysirar = (1= ANR:RT + \Zg .

In the literature, several values for the smoothing constant can be found. A method to esti-
mate A could be to minimize the mean squared error between the observed squared return
and the variance forecast [2]. However, most of the time, A is chosen subjectively according
to the length of the period of forecast. In this project, we want to compute daily VaR and
thus we need daily covariance matrices. Hence, according to C. Alexander [2], we choose

A = 0,94 and we set the historical data length to 500 days.

2. In this second step, we perform the Cholesky decomposition of ¥Xg. This method is quite

efficient for modelling dependence structures between several assets.

Definition 1.14. Let Xg be a positive definite matrix. The Cholesky decomposition of g
is defined as:
Yg =CCT,

where C' is a lower triangular matrix with real positive diagonal elements.

Remark 1.15. Let us notice that if 3¢ is positive definite then this factorization is unique.

3. In the third step, we generate a vector of independent standard normal variates Z. Its size
is equal to our portfolio’s. It allows us to compute AS = CZ [19] which is a vector of
correlated variates. The change in risk factor over a short period At has a multivariate
Normal distribution N (0, Xg). Hence, in this step, we transform a vector of standard Normal
variables into a vector of returns that are correlated to the 500 market observations used to

compute the covariance matrix.
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Remark 1.16. At this stage, we introduce the randomness that distinguishes Monte Carlo

from the other methods.

4. We need to re-evaluate our position at ¢ + At for each stock. We introduce the Black-Scholes
model to calculate the terminal stock price: we assume it follows a Geometric Brownian
Motion. AS? has a Normal distribution with mean 0 and standard deviation o;, with o;
being the EWMA volatility that we computed during the step 1, for the covariance matrix.

1; is the expected logreturn. We have the following formula:
. . o2 .
Siias = Siexp ((,ui — ?l)At + VAtASZ> .

Remark 1.17. In this thesis, we consider a stock portfolio and we assume that the stock
prices have a lognormal distribution. Hence, we have a closed form solution and the portfolio

evaluation is simple.

To simulate the value of a more complex portfolio, another Monte Carlo procedure should
be used within the VaR Monte Carlo approach. In our example, we could have used the

following discretization scheme for our stock prices:
S0k — SR L1 4 16y + /6, A8PFY), ke [1,N],

with §; = % with N being the number of simulations to estimate the terminal stock price.

In this project, we only need to generate one Brownian Motion to value the portfolio in one
loss function simulation. With a more complex portfolio, we would have to generate a new
standard Normal variate N times for one loss function simulation. This explains why the

valuation step is considered to be the most time-consuming [19][I8§].

5. After computing the individual logreturns of the terminal stock prices, we evaluate the loss

function. As we want a portfolio with equal weights, the loss function is defined as:

m
1 i
Liyar =—— E Tt nt
mi=
i=

6. We repeat the steps 3, 4 and 5 n times - with n = 10 000. It allows us to estimate the loss

distribution:

1 n
P(L > J)) = E Z]I{L1>:c}
=1
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7. The final step consists in calculating the risk measures. To obtain the daily VaR, we sort
the n values of the loss function by decreasing order. The VaR is therefore defined as:
P(L > VaR,(L)) = 1 — a. We simply take the n(1 — a)* loss function value from the

beginning.

Lastly, to estimate the ES, we refer to the Lemma[I.4)and we calculate the mean of the losses

such that the losses are greater than the VaR.

Remark 1.18. With this method, let us observe that the VaR is less stable than the ES as we take

the n(1 — a) loss function value with n being arbitrary, contrary to the ES that is an average.

As we want to compare this Monte Carlo model to the other market risk methods, the complete

algorithm needs to be repeated for each day of our dataset. We display the results below:

Figure 8: VaR 99% and ES 97.5% with Monte Carlo
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The risk measures are reacting quickly to the changes in the portfolio position. We observe
that the VaR tracking of the positive part of the portfolio losses is quite precise. Nevertheless,
VaR measures tend to underestimate regularly the losses. The ES has more conservative values
yet, when the position observes large losses, the forecasts downplay the situation. As the largest
losses are not well predicted by this MC method, we can suppose that the backtest results will not
be good: in a stress period, the model does not give high enough forecasts and thus the portfolio

suffers important losses.
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We come back on Remark about the time of computation. We focus on the first 6 steps,
before computing the risk measures. We evaluate the average times and the total times for three
steps of the algorithm: the calculation of the covariance matrix, the revaluation of the portfolio

and the determination of the loss function. The times are displayed below:

Algorithm Step ‘ Covariance Matrix | Portfolio Valuation | Loss Function
Average Time (seconds) 7.56e-02 8.20e-04 2.17e-04
Total Time (seconds) 219.0 2 374.5 629.2

Table 1: Times of Computation

The valuation of the portfolio is repeated n times and is therefore the most-time consuming
step, with 57.6% of the total time of the first 6 steps. Yet, one can notice that the covariance

matrix is the longest step of the algorithm in average, but it is only computed once.

We managed to compute a Monte Carlo approach for both VaR and ES. The results are mixed
as it seems that a lot of violations occur. To strengthen this approach, an other method could be
applied: the delta-gamma approximation [19]. This model relies on the assumption that the risk

factors and the portfolio value have a quadratic relation.

Let us now compare qualitatively the eight market risk methods that we implemented in the

beginning of this Section
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1.4 Qualitative Analysis

The purpose of Section [I] was to produce a one-day-ahead forecast for the linearized loss. We
chose two risks measures to do so: VaR at 99% confidence and ES at 97.5%. We implemented
eight different methods and we illustrated the three types of loss distribution modelling: analytical,

historical and Monte Carlo methods.

By construction, the models do not rely on the same assumptions. Analytical and Monte Carlo
approaches need to specify a distribution for the risk factors changes. It is an asset as those mod-
els can work for different distributions. However, it may present a risk as financial returns do
not follow a specific distribution. HS is also based on a strong assumption for the distribution -
returns are iid - which is not verified in real-life. Monte Carlo presents three characteristics it is
worth emphasizing: this method introduces random scenarios - which differs, for instance, from
historical methods relying only on past data, - the portfolio is revaluated using a specified model -
it is an additional hypothesis, thus an additional source of risk, - and the time of computation that
is required is more important than the other methods. Finally, the eight models share a common

feature: we need a significant amount of data to implement them.

The graphs allow a qualitative analysis of the methods. First, we can notice that HS, Normal
and Student-t do not track very quickly the changes in the portfolio value. It takes time before
those models take into account what is happening in the position and thus change their outputs.
It leads to overestimation of the observed losses most of the time and violation of important peaks.
An other trend concerns Normal and MC: the two methods tend to have lower results and are
therefore too optimistic. On the contrary, EVT is the most conservative with, in general, higher

values of risk measures.

The former regulations put to the fore VaR at 99%. FRTB [§] now requires banks to move on
to ES at 97.5% confidence. This project enables us to compare those two metrics. VaR and ES are
quite similar for the different models. Although it has a lower confidence level, ES gives slightly

higher estimates than VaR.

In order to have more precise and quantitative comparisons, we move on to Section [2| which is

dedicated to the quantification and management of model risk.
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2 Model Risk Quantification and Management

As mentioned in the Supervisory Guidance SR 11-7, there are several sources of model risk. In
this section, we first focus on the quality of the models’ outputs via backtests. We then compute
model risk measures to assess quantitatively the coherence of the eight models. At this point, the
correlation between the model risk results is observed in order to evaluate whether these methods
give similar information. Next, we perform a sensitivity analysis on specific parameters. At last,
we describe a management framework that should be applied by financial institutions to reduce

their model risk.

We introduce model risk with different points of view: by examining individually each model,
by analysing the outputs’ divergence of the models, by assessing model risk thanks to a benchmark
model, and by looking at the "parameter uncertainty" [3]. These analysis also enable us to compare

VaR and ES as regulatory market risk measures.

2.1 Backtesting Market Risk Models

Backtesting consists in comparing the observed losses with the risk estimates of a model in order
to assess its quality [8]. It is a common way to evaluate the accuracy of a risk model. It enables

us to address individual model risk.

Backtesting is usually conducted through the analysis of violations [I4]. We define the violation
indicator as [26, Slide 58] :
1, Ly >VaR,(L)
0, Li <VaR,(Ly).

It =

In 1995, the Basel Committee [5] introduced a factor (3 + k), which would be multiplied to the
risk forecast, in order to include model risk in capital requirements. This multiplication factor is
directly based on the backtest results of the risk measure RM - in this project RM refers to
VaR or ES. The purpose of it is to impose a minimum of 3 when models are accurate and to add

a multiplier k - a violation penalty - when too many exceptions are observed.

Basel II presents three zones of confidence. The value of the multiplication factor and the

penalty zone are linked to the number of violations [12].
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We display in the following table the penalty zones and the values of the multiplication factors,

according to the number of violations in 250 business days:

Zone Violations | Multiplication Factor

Green Zone 0to4 3.00
5 3.40

6 3.50

Yellow Zone 7 3.65
8 3.75

9 3.85

Red Zone 10+ 4.00

Table 2: Basel Accord Penalty Zones

In this way, the daily capital requirements C'R are defined as [5]:
CRy := max{RM;_1,(3+ k)RMe¢o},

with RM;_1 the previous day’s risk measure and RMgy an average of the risk measures on

each of the last sixty trading days.

Hence, if a model does not satisfy the minimum backtest results, the multiplication factor is
increased. We understand the importance of having models that fall into the green zone: in the
yellow or red zone, the penalty makes the capital requirements higher and the model is asked to

be reviewed.

The risk measure that is mentioned in regulations is VaR [7]. While backtesting our results,
we forecast the penalty zones for both VaR and ES to complete our analysis. We implement three
backests: the unconditional coverage test (for VaR), the joint test (for VaR) and a Normal ES
backtest.

We analyse the results of each backtest to forecast the penalty zones. We also focus on the
p-values, which measure how close the result is to a defined null hypothesis - a high value corre-
sponds to a high consistency [26, Slide 57]. If the backtest is accepted, the p-value is highlighted

in green; alternatively, we present in red the backtests that are rejected.

For the VaR tests, we use a code provided by M. Pakkanen during the Quantitative Risk

Management lecture in the context of a coursework [20].
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2.1.1 Unconditional Coverage Test

Kupiec’s introduced the unconditional coverage test. The idea is to check whether the number of

violations is coherent with the confidence level [26] Slide 59].

We state the null hypothesis Hy of the test: The VaR forecasts are computed using a model
that is correctly specified. We assume that the indicators Iy, ..., I7 are Bernoulli variables with

probability 7. Under Hy, we have: "7 =1 — o”. We define the likelihood function [26] Slide 59]:

T
L(m Iy, . Ip) o= [ [ = m)' Femr

t=1
The maximum-likelihood estimator is given by: ## = & Zt 1 1:. We can then define the test

statistic LR,., which follows asymptotically a x?(1) distribution [267 Slide 60]:

LA —a,Iy,.... I7)

LR,.:= -2l -
r 9L I, o Ir)

Hence, the p-value is given by the formula: pyc =1 — Fy2(1)(LRyc).

The results of this test are displayed in Table

Model Violations LR,. puc-value | Penalty Zone
(Expected)
Normal distribution (Normal) 86 (28) 74.232 0 Yellow
Student-t distribution (Student-t) 48 (28) 10.541 | 1.168e-03 Yellow
GARCH - Normal (GARCH N) 39 (28) 3.165 | 7.525¢-02 Green
GARCH - Student-t (GARCH St) 42 (28) 5.198 2.262e-02 Green
Extreme Value Theory (EVT) 35 (28) 1.189 | 2.756e-01 Green
Historical simulation (HS) 53 (28) 16.169 | 5.793e-05 Yellow
Filtered historical simulation (EWMA) 39 (28) 3.165 7.525e-02 Green
Monte Carlo (MC) 128 (28) 185.756 0 Red

Table 3: Unconditional Coverage Test for VaR 99%

We first have to react on the MC results. As we saw in the part MC has a good track of
the losses, yet, being too optimistic, it introduces more exceptions than the other models. Hence,
the backtest rejects the MC VaR and MC is associated with the red penalty zone. The capital
requirements are in this way more important and the model should be strengthen. On the contrary,
three models stand out from the other: EVT, GARCH N and EWMA. They have a low number

of violations - about 1.28% for the whole forecasting window - and a p-value that is close to 1.
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2.1.2 Joint Test

One drawback of the unconditional coverage test is that it does not detect if the violations are
evenly distributed or if they happen in clusters which could imply dire consequences for a financial

institution.

In this way, we introduce a second backtest, the independence test, which was first presented
by Christoffersen [26] Slide 64]. This test relies on the hypothesis that VaR violation indicators

form a Markov chain.

We define the corresponding parameters and the transition matrix:
T — P(It = 1|It,1 ES ].)7 o1 - — P(It == ].|It,1 == 0),

1—mo1 o1
II :=

1—my 7w

The null hypothesis of this test is that the indicator functions are mutually independent which
can be written as: Hy : "mg1 = m11”. The maximum likelihood estimator 7 used for the un-
conditional coverage test stays unchanged. The test statistic, which under Hj is also following

asymptotically a x?(1) distribution, is therefore given by [26] Slide 66]:

LR;nq := —2log

In order to have a comprehensive backtest, which covers both the independence and the correct
coverage, we introduce the joint test [26] Slide 67]. The null hypothesis of the joint test is that the

violation indicators are both independent and following a Bernoulli distribution.
Hy:"mgp=m=m, 1=1—a".
We define the joint test statistic as: LRjoint := LRyc + Lina-

This statistic follows asymptotically the x?(2) distribution and its p-value can be computed

with the following formula:

ps = 1- FX2(2)(LRjoint)'
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The results of the joint test are displayed in Table [

Model LRjoint | py-value

Normal 82.347 | 1.314e-18
Student-t 14.307 | 7.823e-04
GARCH N 3.515 1.725e-01
GARCH St | 5415 | 6.671e-02

EVT 1.775 4.117e-01
HS 25.155 | 3.448e-06
EWMA 5.679 5.846e-02
MC 185.779 | 4.557e-41

Table 4: Joint Test for VaR 99%

As predicted with the unconditional coverage test, MC VaR fails again the backtest. It is worth
noticing that the Normal, Student-t and HS are also rejected. It was foreseeable as we observed
in Section [I] that their tracking was poor. With the joint test, more comprehensible, we note that
GARCH St does pass this time. EVT and GARCH N are also emphasized, as they have a higher

p-value than with the unconditional coverage test. EWMA results remain robust.

2.1.3 Backtesting ES

In order to backtest ES, we introduce a Normal test. Let us first come back to the definition of

the risk measure. As E [IL{LQV,IRQ(Lt)}] =1 — «a, we have:
E [(Lt = ESo(Li))1{L,>VaRa (L)) =0

Backtesting ES is equivalent to observing when the loss is greater than the expected shortfall

forecasts on days when there is a VaR violation [26], Slide 69].

We define a new variable: k; := (Ly — ESa(Lt))1¢r,>var,(L,)}- Ho is accepted if both ES and

VaR are equal to their forecasts.

We consider the following test statistic which follows asymptotically the standard Normal dis-

tribution under Hy [26] Slide 70]:
T
TS := 7Zt:1 i

Ny

We can compute the p-value with the following formula: p=1— ®(T'S).
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The results of the Normal test are displayed in Table [5}

Model Violations TS p-value | Penalty Zone
Normal 85 5.536 | 1.544e-08 Yellow
Student-t 35 -2.215 | 9.866e-01 Green
GARCH N 39 0.084 | 4.663e-01 Green
GARCH St 34 0.166 | 4.341e-01 Green
EVT 35 0.479 | 3.160e-01 Green
HS 46 1.891 | 9.231e-02 Green
EWMA 33 0.219 | 4.133e-01 Green
MC 66 -2.016 | 9.781e-01 Yellow

Table 5: Backtest for ES 97.5%

It is worth noticing that the Monte Carlo ES gives better results than VaR. Next, as we noticed
in Section [1, most 97.5% ES are more conservative than 99% VaR. As a consequence, we observe
less violations and that most models are placed in the green zone, which is what we are looking
for. The best p-value is awarded to Student-t, yet, one should not forget that most exceptions
occurred for significant losses. Hence, even if the backtest results are quite good, it is important

to conduct other tests and observations, and not to conclude only with those statistical tests.

One should keep a critical opinion on the backtest results. The tests rely on statistical distribu-
tions and we saw previously that financial data does not follow a particular distribution. Moreover,
backtests assessed the number of violations rather than their location within the time period. It
would be preferable to have uniform exceptions: if a model presents a small number of violations
- and passes the backtest requirements - the violations could occur at the same moment. This
implies that the financial institution suffers important losses [23]. Hence, backtesting may not be

the most efficient way to compare our models.

To conclude, in the model risk framework, backtesting is an important step to assess both
market risk and individual model risk. Indeed, the p-values can be understood as model risk
measures. Unfortunately, it is not comprehensive and qualitative analysis should be conducted to

complete the quantitative results.
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2.2 Risk Ratio

The paper Model Risk of Risk Models (2016) [I4] introduces a new method called risk ratio to

illustrate the "level of disagreement amongst different chosen models". We rely on it in this section.

Definition 2.1. Let us consider K models of risk forecast. Each model gives a risk measure
RMZ“_H on day ¢ + 1 by using data available at time t. We define the risk ratio RR as the ratio
between the highest and the lowest measure [14]:

maa:{RMtkH }5:1
min{RMtk+1}kK:1

RRt+1 =

Remark 2.2. The risk ratio provides an easy way to quantify model risk. If the chosen models give
similar forecasts, then the risk ratio is close to 1. On the contrary, if the forecasts are significantly

different, then the risk ratio can capture this divergence and quantify it.

We start by calculating the risk ratio for the eight chosen models on a daily basis. The results

are displayed below:

Figure 9: Risk Ratios for VaR 99% and ES 97.5%
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We observe two major peaks: 5.682 (for VaR) in the end of 2008 (2008-10-16) and 7.062 (for
ES) in 2010 (2010-04-27). The first is undoubtedly due to the 2008 financial crisis. The second
peak - the highest - may be linked to the models that do not track well the losses, such as the
Normal and HS models. Indeed, we look at the portfolio stock prices that are displayed in the Ap-
pendix (Figure to check if a market event would have explain this drop. If we do not observe a
particular decline in prices at this period, the P&L displays a large peak in the end of 2011. Hence,
the explanation must be linked to both the P&L peak in 2011, and the gap between the models

that are slow to react after a large loss and the models that have a good tracking after the crisis.
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Other peaks can be noticed at the end of the forecasting period. The largest one, spread over
2016 and 2017, could be linked to the Brexit and Donald Trump’s presidential election. Indeed,

these events were not foreseen by the main polls and led to instability on financial markets.

To complete the analysis of the risk ratios, we examine the maximum and minimum VaR as
well as ES forecasts [14]. The purpose is to find trends in the models to answer the following
question: are some models’ outputs always superior to the other values? We take about six points

per year to make the graph more readable:

Figure 10: Highest and lowest daily 99% VaR forecasts
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Figure 11: Highest and lowest daily 97.5% ES forecasts
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We first observe that GARCH N does not appear on both figures, as its values are not the
most extreme ones. In the same way, HS is not present for ES. Then, we observe for both VaR
and ES that the Normal and MC models constantly generate the lowest estimates. We note that
the highest observations tend to be produced by EVT and Student-t, fat-tailed models, which was

foreseeable.
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Next, we analyse the sensitivity of the risk ratios when we exclude one model [I4]. In particular,
we look at the maximal value, the mean of the ratios and the standard deviation (sd) on the whole

period of analysis. The results are displayed below in Table [7] We underline the highest values.

Excluded None HS EWMA Normal Student-t GARCHN GARCH St EVT MC
Model

Max 6.969 6.969 6.969 6.969 6.211 6.969 6.969 6.969 5.805
Mean 2.047 2.026 1.989 1.972 1.987 2.047 2.045 2.027 1.631
Sd 1.131  1.120 1.137 1.090 1.086 1.131 1.130 1.119 0.902

Table 6: Risk Ratio Sensitivity to an Excluded Model - VaR 99%

Excluded None HS EWMA Normal Student-t GARCHN GARCH St EVT MC
Model

Max 7.062 7.062 7.062 7.062 5.787 7.062 7.062 6.157 7.062
Mean 1.756  1.750 1.669 1.636 1.633 1.754 1.750 1.746 1.716
Sd 0.976 0.977 0.930 0.880 0.881 0.975 0.973 0.958 0.982

Table 7: Risk Ratio Sensitivity to an Excluded Model - ES 97.5%

Overall, ES displays less variability and a lower mean than VaR, as ES is more stable. Yet,
the maximum risk ratio is higher than VaR. Surprisingly, we notice that this value is produced by
the ratio between Student-t and EVT, which are two fat-tailed models and should produce more
conservative values. The maximum risk ratio for VaR is the ratio between Student-t and MC,

which is what we could have expected, as we previously analysed the maximum /minimum.

One can also notice that, if EVT often produces the highest estimates, the mean of risk ratios
is sparsely changed. The standard deviation is yet decreased. We observe that excluding MC leads
to lower means - the lowest for VaR - which is logical as MC produced most of the minimal risk

measures.

From the risk ratio implementation, we note that most of the fluctuations between the models
are observed during the 2008 crisis. As a consequence, in the following analysis, we focus on this

period.
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2.3 Worst-case Approach

We implement a method presented in Model Risk and Regulatory Capital (2002) [22], called worst-
case approach. As its name suggests it, this methods consists in taking the worst-case situation as

a reference and then comparing it to the model of study.

Definition 2.3. Assume that we have a class I of different risk measures whose forecasts are
given by RM*. The worst-case market risk measure is computed via: sup;exc{RM®}. We define

the worst-case model risk for the model & [22]:

WO, = supieK{RMi} — RM*.

Remark 2.4. In Model Risk and Regulatory Capital, a subset of K is introduced in order to take
into account the choice of the models. Hence, the model risk measure is defined according to a risk
measure k and a subset of I that contains k. In order to analyse all the models we implemented,

we assume that the subset of K is actually K.

As seen in Section[2.2] we observed more fluctuations in the models during the 2008 crisis. This
period of financial stress is appropriate to assess the strength of our models. Hence, we choose to

focus on the period from 14-04-2008 to 01-07-2011 for this study.

We obtain the following results for the worst-case model risk measure:

Figure 12: Worst-case approach for VaR 99%
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Figure 13: Worst-case approach for ES 97.5%
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The maximum difference of market risk forecasts - which is equal to 17.537% for VaR and
16.889% for ES - is obtained by the MC model in the end of 2008. It is logical as MC produces
most of the minimum values. We observe that four models have very similar results for both
VaR and ES: EVT, GARCH N, GARCH St and EWMA. Student-t produces quasi-null model risk

measures after mid 2009, as it is most of the time the maximum market risk estimate.

The worst-case model risk measure has more fickle results between the last third of 2008 and
the first third of 2009. After this period, the outputs are more constant, being all included between
0 and 8%.

A drawback of this method is that it is not robust. Indeed, the maximum market risk estimate
may be produced by a model that would have been eliminated during the backtest step. It is
therefore dependent on the set of selected models. Moreover, if our set of models does not contain
a conservative model, such as Student-t and EVT, then the values of this model risk measure are

low and do not capture the risk of some models.
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2.4 Benchmark Model

In this section, we want to quantify model risk thanks to a benchmark model [3]. In addition to
quantifying the level of divergence between the models, we would like to assess trends in the mod-
els” outputs, and to answer the question: are some models systematically under or over estimating
the observed losses? Ideally, a market risk forecast should indeed be preventing the observed loss.

Hence, we would prefer to slightly overestimate the portfolio loss rather than the contrary.

Definition 2.5. Assume we have K models of risk measure and each model gives a forecast RM*.
We take the model m as the benchmark. We define a model risk § associated to the measure of

study RM* and the benchmark model RM™:

B(m, k) :== RM* — RM™.

In this section, we compute the measure 8 with two types of benchmark model:

e a benchmark model selected according to its backtest results,

e a benchmark model estimated from all models, based on a Bayesian approach.

As we did previously, we choose to focus on the 2008 crisis which contains more variations in

the P&L than other times of the forecasting window.

2.4.1 Choice of Benchmark Model

In Section we assessed the quality of the risk measures. We decide to take two models that

presented good backtest results as benchmarks:

e Extreme Value Theory

e Filtered Historical Simulation with EWMA.

In this section, we analyse the model risk of our eight models by comparing their values to
one of the two models mentioned above. It enables us to evaluate if some models are constantly

underestimating the risk measures or on the contrary, if they tend to overestimate the values.

We implement the model risk 8 by looking at the difference between the model of study and
the benchmark. We first analyse VaR models.
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Figure 14: Comparison with EVT Benchmark for VaR 99%
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Figure 15: Comparison with EWMA Benchmark for VaR 99%
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First, we observe that Student-t and HS models provide similar results for both EVT and
EWMA benchmarks. It is interesting as we observed in Section [I] that the graphs for ES are quite
different for the two methods. The two GARCH models have very similar model risk measures as

well.

One can notice that the most important peaks are negative, which implies that the biggest
gaps are observed when models are underestimating the benchmark. This can be dangerous for
an unprepared financial institution, as we have already mentioned. HS, Student and Normal un-
derestimate both the EVT and EWMA benchmarks until approximately mid 2009. Then, they
overestimate the benchmarks. We notice that MC is almost always underestimating the bench-

marks.
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Next, we focus on ES models:

Figure 16: Comparison with EVT Benchmark for ES 97.5%
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Figure 17: Comparison with EWMA Benchmark for ES 97.5%
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We observe that with the EWMA benchmark, the two GARCH models and the EVT model
give similar results. HS and Student-t are not comparable this time. This is explained by the fat
tails of the Student-t distribution. Again, the higher peaks are observed for negative values, at the
end of 2008. Finally, as for VaR models, we notice that MC is almost systematically underesti-

mating the benchmarks.

Choosing EWMA and EVT was arbitrary, only based on the backtests and we said that these

results should be carefully interpreted. We need another way to select the benchmark model.
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2.4.2 Bayesian Model Averaging

Bayesian model averaging refers to a method that forecasts a predictive value which is estimated
from a weighted average of several models outputs [34]. The weights are based on prior information.
Hence, rather than choosing a reference model, which constitutes a source of risk, we construct a

new one, by using this Bayesian approach.

A framework of this statistical point of view can be defined as follows [9]:

1. Before estimating a risk measure for the time ¢ + 1, we have some prior knowledge, based on
the prior information, at time ¢.

2. We are able to analyse the data and thus extract relevant information.

3. We can update our prior knowledge and obtain a posterior information.

Assume that we have K models for calculating the risk measure. Each model has a set of
parameters 0 - those sets can be different according to the nature of the model. In order to assess

a Bayesian model averaging, we need to have access to two pieces of information [I3]:
e prior density p(6;| M) which contains our beliefs on the model parameters 0y, given that the
model M* holds.

e prior probability P(My) that the model k is the "true model".

Definition 2.6. Let us assume we have a set of observations z. p(x|Mjy) is the integrated likelihood
of the data for the model M. We define the posterior probability for the model M}, given z [13]:
(x| My)P(My,)
= .
Zj:l p(x|M;)P(M;)

]P’(Mk|x) =

Remark 2.7. p(z) = Zlep(x\Mj)P(Mj) corresponds to the uncertainty in the data z [9]. We

can condense the previous definition as a proportionality expression: P(My|x) o< p(x|My)P(My).

In order to obtain the Bayesian averaging estimate, we calculate the risk measures for the
different models, then we compute the posterior probabilities and finally we take an average of the

resulting risk measures weighted by its posterior probability [32].

Definition 2.8. The Bayesian model average of the risk measures RM given the K models and
the set of observations x is defined as:

RM(z) := zK: RM*P(M,|z). (2.1)
k=1



2.4 Benchmark Model 40

In order to apply this Bayesian methodology, we need to assume that both the model and the
parameters are uncertain. Furthermore, a major difficulty consists in measuring the priors [34].
We develop a simplified method that is linked to this Bayesian approach, as we use prior knowledge

to obtain a posterior probability that is used to weight our risk measure results.

Given a set of observations x, we want to assess the posterior probability P(M|z) that the

model k is the most accurate.

Definition 2.9. Consider the portfolio’s loss L; at time ¢ and K models of risk measures. RMF
is the risk forecast of the model k at time ¢. We define the weight associated to the risk measure

k at time t:
Wi, Li+10%L; < RMF

Wa, Ly < RMF < L; +10%L,
Ws, L;—10%L; < RM} < L,
Wy, RM} < Ly — 10%L;.

This weights’ breakdown allows us to rate our models on a scale of importance, according to
their output values. For each output, we analyse if the value is higher than the observed loss and
if it is overestimating or underestimating this loss by more than 10%. This is how we define the

four cases defined in Definition
Remark 2.10. It is worth noticing that the weight w? is our prior knowledge of the model k. The

weight values are based on our beliefs.

Definition 2.11. Given the weight w¥ of the model k at time ¢, we define the posterior probability
P(M/,|x) that the model k is the best model given the observations z:

k Pf
]P(Mt+1|x) = oK
i=1Pt

: PR t 1 %
with Dy = Zj:t—gg mw]

Remark 2.12. The choice of p! was influenced by the EWMA premise. Indeed, we give more
weight to the most recent observations and we decrease the influence exponentially when moving

away from the time ¢.

In order to find an optimized set of weights, we need to identify criteria that will enable us to
compare them. We decide to backtest the Bayesian averaging estimates using the formula 2.1} We
focus on the number of violations and on the p-values associated with the backtests. We analyse

two tests for VaR: unconditional coverage test (UC) and joint test (J).
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99% VaR 97.5% ES
Test Weights Violations | pyc-value py-value Violations p-value
1 Wi =Wa =Wz =Wy 35 1.996e-01 1.452e-02 27 3.362e-04
2 10W1 = Wa = W3 = 10Wy 37 1.020e-01 1.177e-02 30 9.355e-04
3 W1 =10Wa = 10W3 = Wy 35 1.986e-01 1.452e-02 26 3.234e-04
4 Wi = Wa = 10W3 = 10Wy 33 3.526e-01 1.557e-02 26 5.078e-04
5 10W1 = 10W2 = W3 = Wy 57 1.313e-06 2.841e-06 43 2.540e-05
6 10W1 = Wy = 10W3 = 50Wy 32 4.541e-01 1.526e-02 27 5.990e-04
7 10W1 = Wa = 20W3 = 50Wy 32 4.541e-01 1.524e-02 27 6.096e-04
8 20W; = Wo = 10W3 = 50Wy 31 5.714e-01 | 1.203e-01 29 8.403e-04
9 25W1 = Wa = 5W3 = 50Wy 34 2.677e-01 1.046e-01 31 8.449e-04
10 20W1 = Wa = 10W3 = 100W4 31 5.714e-01 | 1.203e-01 28 9.503e-04

Table 8: Comparison of 10 sets of weights for 99% VaR and 97.5% ES

We observe that the last test gives the overall best results. It was what we were expecting as
a good risk measure should be higher than the observed loss value but not too far from the real
outcome. This is why a risk forecast between L; and 10% of L; has the largest weight. Then,
the risk measure underestimating the loss value by less than 10% has the second most important
weight. Next, a risk measure overestimating the loss by more than 10% has the third biggest
weight. Finally, a forecast underestimating the P&L by more than 10% is not put aside but we

assign it the smallest weight.

Remark 2.13. The backtest results cannot be directly compared to the results in Section as

we used the first 100 days to calculate the Bayesian estimator.

We assign the following weights, with respect to the 10th test of Table Wy = 5 Wy =
100, W3 = 10, Wy = 1. We decide to analyse the means of the weights for our eight models. It

reflects the influence of a given model in this Bayesian averaging estimate.

Model Mean W; - VaR 99% | Mean W; - ES 97.5%
Normal 5.748 5.782
Student-t 5.318 5.347
GARCH N 5.580 5.330
GARCH St 5.421 5.518
EVT 5.425 5.467
HS 5.522 5.391
EWMA 5.400 5.274
MC 5.716 5.594

Table 9: Mean of weights used in the Bayesian Approach
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For both VaR and ES, we observe that the Normal model and the MC model have the highest
means in weights. Hence, in average, those two models have the greatest influence on the Bayesian
estimator. On the contrary, the lowest influences are observed for the Student-t and EWMA

models for the VaR, and GARCH N and EWMA models for the ES.

Remark 2.14. We observe that the means are higher but close to 5, which is the value of the

weight Wi. It implies that most values are over 10% of the observed losses.

With the weights chosen above, we compute the Bayesian averaging estimate. We compare it

to the observed losses below:

Figure 18: Bayesian Averaging estimate for VaR 99% and ES 97.5%
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We observe a good tracking of the losses’ volatility. Very few violations are observable. We can

finally compute the model risk measure  with RDM taken as the benchmark:

Figure 19: Comparison with Bayesian Benchmark for VaR 99%

— HMormal
— Student
— GARCHN
GARCH 5t

Difference with Bayesian estimate
0
|

I I I
2009-01-01 2010-01-01 2011-01-01

Date



2.4 Benchmark Model 43

Figure 20: Comparison with Bayesian Benchmark for ES 97.5%
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As we took a weighted average over all models, we observe that the differences are less im-
portant than for the EVT and EWMA benchmarks (between -9 to 9%). Moreover, the positive
and negative values are similar, as the average smoothed the gaps. Most of the fluctuations are
located at the end of 2008, like in the worst-case analysis and in the arbitrary-chosen benchmark

comparison: half of the models is underestimating the Bayesian result and half is overestimating it.

Although the Bayesian averaging estimate is a fair risk measure and enables us to assess model
risk, it requires to have a certain number of models at the outset, which is not systematically
the case for financial institutions. Moreover, the weights were chosen from a set of ten tests:
an optimization process should be implemented in order to minimize the number of violations.
Finally, we note that this measure is not very robust as changing one model has repercussions on

the Bayesian estimate and thus on the model risk measure S.
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2.5 Correlation Analysis

After implementing different measures of model risk, for market risk models, we would like to
analyse their correlation [I4]. Indeed, we want to observe if the measures are going in the same

direction and are, in a sense, giving the same warnings.

First, we need to compare the quantification methods of model risk that we implemented in
Sections[2.2] 2:3]and 2.4 Risk ratio is providing a unique measure for the eight market risk models.
The worst-case approach and the Bayesian benchmark are giving a measure for each market risk
model. EWMA and EVT benchmarks produce seven measures as one of the model is used as
the reference. The number of measures being different according to the model risk approach, we

cannot analyse the correlation directly.

Before analysing the dependence among the model risk approaches, we focus on the correlation
within one model at a time. We work on the whole forecasting period. We display the results for
ES 97.5% in Appendix @ We define a scale of color in order to highlight the large correlations

(positive or negative).

-1 to -0.75 -0.75 to -0.40 -0.40 to 0.40 0.40 to 0.75 0.75to 1

Table 10: Color Scale for Correlation Matrices

We start with the worst-case approach. The correlation matrix is shown below:

Normal Student Garch N Garch St HS EWMA EVT MC

Normal 0.51 0.39 0.45 0.74 0.16 017 086
Student-t -0.23 -0.19 0.55 -0.46 -0.41 0.22
GARCHN |  0.39 -0.23 0.55
GARCH St | 045 -0.19 - 0.66

HS 0.74 0.55 -0.23 0.43
EWMA 0.16 -0.46 0.58 0.68 -0.29 0.49
EVT 0.17 041 | 088  0m | 023 0.50

0.36

MC - 0.22 0.55 0.66 0.43 0.49

Table 11: Correlation Matrix for the Worst-Case Measures - VaR 99%

Overall, we observe that the correlations are positive and quite high. Especially, we notice a
high dependence between the two GARCH models, due to their similar implementations. On the
contrary, HS and GARCH St are not correlated at all.
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We go on with the Bayesian estimate comparison:

Normal Student Garch N Garch St HS EWMA EVT MC
Normal 0.32
Student-t 0.05
GARCH N -0.08
GARCH St -0.05
HS 0.09
EWMA -0.04
EVT -0.05
MC 0.32 0.05 -0.08 -0.05 0.09 -0.04 -0.05

Table 12: Correlation Matrix for the Bayesian Benchmark Measures - VaR 99%

We easily notice that the correlations are very large - half of the models is correlated over 75%

in absolute value. The negative correlations are due to the fact that half of the market risk models

is underestimating the benchmark while the other half is overestimating it. We have similar results

for the ES models.

Next, we analyse the two benchmark models - EVT and EWMA:

Student Garch N

-0.11

Garch St
-0.18

Normal

Normal

Student-t 0.04 -0.05 0.27
GARCH N 0.28

GARCH St 0.42

HS 0.02

EWMA -0.32 0.28 0.42 -0.33

MG - I

Table 13: Correlation Matrix for the EVT Benchmark Measures - VaR 99%

Normal Student Garch N Garch St EVT MC
Normal 0.26 0.21 0.12 0.49
Student-t 0.34 0.28 0.38
GARCH N -0.27
GARCH St -0.32
HS 0.39
EVT 0.20
MC 0.38 -0.32

Table 14: Correlation Matrix for the EWMA Benchmark Measures - VaR 99%
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We observe that the correlations are less important than for the Bayesian benchmark. It can be
explained by the fact that the Bayesian estimate is taking, in average, every model and therefore

each measure of § takes into account a certain proportion of each market risk models.

Now, we compare the correlation between the model risk measures we implemented. We cannot
compare the worst-case for the MC model with the Bayesian approach measure for the EVT model
as the market risk models have different trends. We have to focus on one market risk model at a
time. Overall, the Normal model has the highest correlations for each model risk approach and is
therefore a fair representative of the different model risk models. As a consequence, we display the

correlation between the model risk measures, for the Normal market risk model:

Risk Ratio Worst-Case Bayesian EVT EWMA

Risk Ratio 0.47 0.32 0.46 0.48
WorstCase -0.43

Bayesian

EVTBenchmark

EWMABenchmark

Table 15: Correlation Matrix for the Model Risk Measures of VaR 99% Models

Risk Ratio Worst-Case Bayesian EVT EWMA
Risk Ratio 0.01 0.13 0.14
WorstCase -0.38
Bayesian
EVTBenchmark
EWMABenchmark

Table 16: Correlation Matrix for the Model Risk Measures of ES 97.5% Models

As one could have forecasted, the three benchmarks give high correlation values. This is linked
to their similar structures. The worst-case approach gives negative correlations with every other
model except the risk ratio, to which it is quite well correlated. We explain it by the fact that
the benchmarks can produce negative measures contrary to the worst-case approach. Finally, we
observe that the risk ratio method gives lower correlations with the benchmarks for ES than for

VaR. To conclude, the model risk measures that we computed are going in similar directions.
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2.6 Models’ Sensitivity

A sensitivity analysis is usually performed by changing a particular feature of a model and then
observing the differences in the model results. In particular, one can modify the parameters of
the model or the methodology [22]. When changing a parameter, the sensitivity analysis gives a

"measure of the impact" of an input on the model output [22]. We examine two measures:

e the percentage of violations

e the standard deviation of the outputs.

The violations are directly linked to the regulations and more precisely on the capital require-
ments. As a consequence, it is an important variable in the model risk analysis. The standard

deviation enables to measure how a model diverges from the average risk forecast. Hence, it is a

credible measure of model risk [14].

We have to keep in mind that the models we chose have not the same parameters. We focus

on four models to assess their sensitivity to a particular parameter:
1. HS: sensitivity to the number of days in the rolling window
2. EWMA: sensitivity to a; in the EWMA volatility scheme
3. EVT: sensitivity to the threshold v which impacts the excess distribution

4. MC: sensitivity to the number of simulations.

We begin with the sensitivity analysis of HS. We select a lower and a higher number of days
in the rolling window: 300 and 700 days. We observe similar results for VaR 99% and ES 97.5%.
The results for VaR are shown in the Appendix [A] We display below the ES analysis:

Figure 21: HS ES 97.5% Sensitivity Analysis to the Number of Days in the Rolling Window
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We observe, as we were expecting, that the longer the rolling window, the slower the track
of the observed losses. Indeed, HS gives the same weight to each day of the forecasting window,
so with a larger window, it takes more time to ’forget’ the high values. HS with 700 days gives
forecasts that are far from the reality. Indeed, when the 2008 crisis appears, this model takes more
time than HS with 300 or 500 days to increase its risk forecasts. Furthermore, its values are in
average lower than the other models’ results - which are below the observed peaks. The 300 days

HS reacts quicker than the two other models but seems to produce more exceptions.

Remark 2.15. The Figure is a good example of the "ghost feature" that we mentioned in
Remark

% Violations % Standard Deviation

Number of days | VaR 99% | ES 97.5% | VaR 99% | ES 97.5%
300 days 1.899% 1.657% 1.921% 1.930 %
500 days 1.829% 1.588% 2.006% 1.966%
700 days 1.568% 1.520% 1.961% 2.060%

Table 17: HS Sensitivity to the Number of Days of in the Rolling Window

As predicted with Figure HS with 300 days gives more violations than HS with 500 days
and 700 days. However, it gives lower standard deviations. HS with 700 days has less violations
than HS with 500 days while their standard deviations are similar. Yet, one should remember that

the loss tracking is less precise: HS with 500 days - the model we chose - is the most robust.

In a second step, we come back on the filtered historical simulation model - EWMA - and we

analyse its sensitivity with respect to the parameter «; in the volatility recursive formula

Figure 22: EWMA ES 97.5% Sensitivity Analysis to «; in the Volatility Scheme
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We observe that with the lowest value of o the tracking is less precise and the values are more
optimistic. On the contrary, EWMA with a7 = 0.1 gives more fickle outputs, with its highest value
equal to approximately 18% during the 2008 crisis while «; = 0.01 only produces a risk forecast

near 12%. We now analyse the violation and standard deviation results:

% Violations % Standard Deviation
Alpha VaR 99% | ES 97.5% | VaR 99% | ES 97.5%
ap = 0.01 1.381% 1.139% 2.311% 2.412%
ap = 0.06 1.346% 1.139% 2.350% 2.426%
a; = 0.10 1.312% 1.174% 2.386% 2.573%

Table 18: EWMA Sensitivity to the Value of Alpha

As one could have expected, a higher value of alpha leads to a higher standard deviation, as
the "intensity of reaction" is increased (Remark . Nevertheless, it implies that it is less stable.
We notice here that the number of violations do not fluctuate significantly when we modify «;.
EWMA with o; = 0.06 is the right balance: it gathers a precise track of the losses’ change with a

reasonable standard deviation.

Next, we analyse the EVT model by modifying the threshold u. We display the graphs in
Appendix [Al Let us notice that globally, when v = 0.99, VaR is higher than ES while, for the

other thresholds, the risk measures give similar forecasts.

% Violations % Standard Deviation
Threshold | VaR 99% | ES 97.5% | VaR 99% | ES 97.5%
u = 0.85 1.346% 1.312% 2.562% 2.615%
u = 0.93 1.208% 1.208% 2.574% 2.627%
u = 0.99 1.105% 2.761% 2.673% 2.301%

Table 19: EVT Sensitivity to the Value of the Threshold u

We observe that EVT with ©v = 0.99 produces less violations for VaR than the two other
thresholds. However, the number of exceptions is more than double for ES. The standard deviations
of u = 0.85 and uw = 0.93 are similar - slightly lower for 0.85 - but the violations are better for 0.93.

Hence, u = 0.93 is a sound choice.
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Finally, we move on to MC and its sensitivity to the number of simulations. The graphs are
presented in Appendix [A] We obtain the following results for the violations and the standard de-

viations:

% Violations % Standard Deviation
Number of simulations | VaR 99% | ES 97.5% | VaR 99% | ES 97.5%
10 000 simulations 4.729% 2.106% 1.212% 1.367%
100 000 simulations 4.487% 2.175% 1.216% 1.372%
500 000 simulations 4.349% 2.209% 1.215% 1.372%

Table 20: MC Sensitivity to the Number of Simulations

We observe very similar results for the three models. As expected, with less simulations, we
have less volatility for the outputs. For VaR especially, the number of violations does not seem to
converge: the simulations should be even more increased. We only conclude that the ES is giving

risk forecasts that present significantly less violations than the VaR measures.

The standard deviation is giving us information on how the outputs are dispatched, compared
to the outputs’ mean. However, it is not a precise model risk measure as the standard deviation

of the market risk forecasts has to be compared to the standard deviation of the P&L to make sense.

With this sensitivity analysis, we understand that the parameter calibration is an essential part
of model implementation. This is especially true as all parameters do not have the same sensitivity

and therefore do not impact the outputs with the same intensity.
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2.7 Model Risk Management Framework

The objective of this section is to build a general model risk framework. Regulations such as SS11-7
[33] and FRTB [§] are delivering guidance and advice on how to manage model risk. We try to

gather processes and concepts to create a comprehensive framework.

As mentioned in the Introduction, the Supervisory Guidance SR 11-7 gives three main steps

that can impact model risk. We keep the main expressions as in the text.

1. The model development, implementation and use,
2. The model validation,

3. The model governance.

Let us focus on each stage [33]. Model development contains notably the statement of purpose
and the theory. The implementation consists on several elements such as the methodology, the
numerical methods, the chosen approximations and the data assessment. It leads naturally to the
model use. It enables to assess the performances of the model over time. Guaranteeing strong
competences for the development and implementation team, as well as a complete and regular

training of the users is essential in this first part of model management.

Model validation should be processed with an independent point of view: the validation team
should not have interest in accepting a model. Three main goals are quoted in SR 11-7. The
first one is to assess the theoretical concepts. The second objective is to conduct a continuous

monitoring of the model. Finally, the validation step should evaluate the outputs’ accuracy [33].

Last but not least, model governance must be conducted by the highest level of management
to ensure a proper influence and diffusion of the decisions. The main roles of the governance are
to define the risk management procedures, to allocate roles and responsibilities, and finally to
make sure that the policies are implemented. The governance can also include the intervention of
the "internal audit" and the use of "external resources" [33]. This management work has to be

documented in order not to repeat the same mistakes.

We now introduce a widespread concept in risk governance: the three lines of defence [I5] [17].

It describes the risk management structure that should be employed.

1. The first line of defence is represented by the business units which can be understood as an
operational function. It consists on a daily control of model risk with the implementation of

predefined processes.
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2. The second line is provided by the risk management team. The risk management is overseen

and advice can be given to the first line.

3. Finally, the third line is composed by the audit function. It is oriented toward procedures

and controls of the two first lines.

With this brief description of the two frameworks, we conclude that the three lines of defence
are included in the SS 11-7 management framework. Indeed, the three levels of control are mainly
focusing on responsibilities and not on the processes. Yet, it is worth noticing that the two frame-

works can be put in parallel as the three elements are coherent one at the time.

In this way, we consider a model risk management framework applied for market risk. We take

into account the environment presented in Model Risk (2010) in Chapter 15 [3I] and we align it

to the frameworks we saw previously.

Figure 23: Model Risk Management Framework
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The first step of model risk management for market risk is to define the model, to state the
hypothesis such as risk factor distribution [3I] and then to implement it. The calibration of the
parameters is an important stage of the implementation. Next, the market risk is estimated by
the user and backtested after the observation of the portfolio position. This analysis gives a first
hint on the model quality. The third step consists in conducting a model risk evaluation via the
implementation of a quantitative measure - such as risk ratio, worst-case approach or benchmark
comparison. It can be completed by a more qualitative analysis of the model risk outputs, in order
to step back on the results and to compare it to the backtests. The conclusions of this step are
then analysed, and potential remarks and model improvements can lead to an impact on capital

requirements [31].

In practice, all the measures and tests should be reviewed regularly, and the models’ assets and
drawbacks should be conveyed to the whole hierarchy [31]. Finally, a key factor of a model risk
management relies on the permanent challenge of the models. Each step should be conducted in

order to challenge the models.

The Supervisory Guidance SR11-7 specifies that, in particular situations, a quantitative eval-
uation of model risk is not possible. A solution would be to modify the inputs and calculations so
that the model results are more conservative. Another possibility would be to integrate a qualita-
tive assessment of model uncertainty to the model risk analysis. It would be a complement to the

numerical outputs, which would then be less emphasized [33].
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Conclusion

In this project, we introduced and quantified model risk, applied to market risk models. We
started with the implementation of eight VaR and ES methods, which are the most widespread
market risk forecasts in the industry. Then, we backtested our results and we applied three differ-

ent measures of model risk: risk ratio, worst-case approach and benchmark comparison.

A general remark regarding those measures is their instability: they all depend on the set of
market risk models, chosen at the beginning of the project. Removing a model from this set can
impact to a certain extent the final outputs and thus change the capital requirements of the in-
stitution in question. A great difference between the three model risk measures is that the risk
ratio provides one single metrics for the whole set of models, whereas the other measures give one
output per model. The Bayesian benchmark can also be differentiated as its implementation is less

straightforward than the other risk measures.

The measures we developed in this thesis enabled us to assess the risk of suffering losses due
to the use of models. In particular, we evaluated the discrepancies among models’ outputs and we
observed that those gaps are greater in times of financial stress. Model risk should also increase
with the complexity and the prospective impact of models [33]. Moreover, as models have different
parameters and implementations, model risk should be decomposed to capture those differences.
For instance, the calibration, convergence and sensitivity influence on model risk could be subject
to additional studies. Furthermore, model risk should be assessed in an aggregated manner, as
most financial institutions are evolving in multi-model environments. Therefore, it should be cal-
culated once rather than added independently from different units’ results. As a consequence, the

approaches we presented are not sophisticated enough to be a comprehensive measure of model risk.

« All models are wrong » as George E. P. Box’s aphorism states. A model approximates the
reality, yet it is possible to optimize its risk thanks to an exhaustive framework. High model risks
should be compensated by a strong management involvement [I0]. More than that, it would be
better to develop more efficient models than to try to remove negative effects a posteriori [31}

Chapter 15].

Finally, this project was the opportunity to compare VaR at 99% and ES at 97.5%, as FRTB
requires banks to move from the first one to the other. Overall, ES produces more conservative
risk forecasts than VaR and the backtest results are stronger - less violations are observed. We

also note that model risk measures are similar for both VaR and ES models.



Appendix 55
A Appendix
Risk Ratio
Figure 24: Stock Prices of the Portfolio
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Correlation Analysis
Normal Student Garch N Garch St HS EWMA EVT MC
o— Bl o D o o N
Student-t -0.41 -0.35 0.54 -0.59 -0.50 0.05
GARCH N 0.36 -0.41 0.15 0.53
GARCH St 0.50 -0.35 0.26 0.71
HS |08 | oss 0.61
EWMA 0.26 -0.59 0.02 0.57
EVT 0.26 -0.50 0.06 0.61
MC - 0.05 0.53 0.71 0.61 0.57 0.46

Table 21: Correlation Matrix for the Worst-Case Measures - ES 97.5%
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Normal Student Garch N Garch St HS EWMA EVT MC
Normal 0.26
Student-t -0.23
GARCH N 0.11
GARCH St 0.19
HS -0.02
EWMA 0.14
EVT 0.11
MC 0.26 -0.23 0.11 0.19 -0.02 0.14 0.11

Table 22: Correlation Matrix for the Bayesian Benchmark Measures - ES 97.5%

Student Garch N Garch St HS EWMA MC

0.30 0.15
0.21 0.00

0.49 0.22

Normal

Normal
Student-t
GARCH N
GARCH St
HS

EWMA
MC

Table 23: Correlation Matrix for the EVT Benchmark Measures - ES 97.5%

Garch N
0.40
0.45

Garch St
0.49
0.48

EVT MC
0.33 0.50

Normal Student

Normal
Student-t
GARCH N
GARCH St
HS

EVT

MC

Table 24: Correlation Matrix for the EWMA Benchmark Measures - ES 97.5%
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Models’ Sensitivity

Figure 25: HS VaR 99% Sensitivity Analysis to the Number of Days in the Rolling Window
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Figure 26: EWMA VaR 99% Sensitivity Analysis to « in the volatility scheme
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Figure 27: EVT VaR 99% Sensitivity Analysis to the Value of the Threshold
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Figure 28: EVT ES 97.5% Sensitivity Analysis to the Value of the Threshold
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Figure 29: MC VaR 99% Sensitivity Analysis to the Number of Simulations
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Figure 30: MC ES 97.5% Sensitivity Analysis to the Number of Simulations
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