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Abstract

Motivated by industry practice of stocks/assets trading, we study the optimal strategies for an
investor to purchase and subsequently liquidate a position over an infinite time horizon, subject to

the market entry cost or namely, the cost of the stocks/assets and transaction costs.

To do so requires the construction of dynamie strategies and optimal static. Modelling the price
by geometric Brownian motion, inspired by Henderson’s liguidation model, we apply a probabilistic
methodology and give a rigorous derivation of an investor’s objective function, as well as the optimal
price thresholds for both entering and exiting the market. Both analytical and numerical results
are provided to illustrate the dependence of optimal strategies on model parameters such as market

entry cost and the coefficient of risk aversion.
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1. Introduction 6

1 Introduction

1.1 Brief literature review of prospect theory

It has been widely observed that, in reality, investors are more likely to hold on losing assets and
sell gaining assets. This phenomenon could arise due to the fact that some investors have prospect
theory preference, suggested by Shefrin and Statman (1985) [18] and Odean (1998) [14]. Prospect
theory, an analysis of the decision making under uncertainty proposed by Kahneman and Tversky
(1979) [10]. It is an expressive and alternative model to reassess the expected utility theory in the
view of decisions made under risky assets display several common effects that are discrepant from
the basic principles of expected utility theory. To be more intuitive, we take a gambling game as
an example. Suppose a stock price x takes possible value x; (discrete) with probability p;, and
define u(x;) as its valuation for each possible outcome z;, under the expected utility theory, we
have
JE[u(T)] =p1 - u(zy) + p2 - ulre) + p3 - ulzs) + ...

which is assumed to be maximised.

However, in the presence of uncertainty, people may not choose the stock with a higher expected

value. For example, if we have the following gambling situation:

Choice 1: a player wins £800 with probability 1.
Choice 2: a player wins £2000 with probability 0.5,
or nothing with probability 0.5.

According to the expected utility theory, the expected value of choice 1 is £800 and that of choice
2 is £1000, so a player should choose the second choice with a higher expected value. While this
may be true, people with enough risk aversion may prefer choice 1 over choice 2 - people choose the
one with much more certainty. In order to investigate more into the invalidity of expected utility
theory in such case, an alternative theory aroused - prospect theory, in which utility is derived
from the realised gains and losses rather than the final wealth, as well as the decision weights are
in place of the probabilities. Moreover, the utility is defined in a way such that it compares the
difference between the asset price and a reference level, this concept is proposed by Markowitz
(1952) [13]. The utility function exhibits concavity for gains and convexity for losses, such feature

is known as loss aversion.

1.2 Behavioural finance leads to the discussion of the disposition effect

Disposition effect by Shefrin and Statman (1985) [18], is a phenomenon found in many experimen-
tal studies that investors are unwilling to sell an asset at a price below the level it was purchased.

This effect has been observed in many settings such as individual investors (see Odean 1998 [14]),
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institutional investors (see Grinblatt and Keloharju 2001 [8]), the real estate market (see Genesove
and Mayer 2001 [7]), and traded options markets (Posteshman and Serbin 2003 [16]). A strong

disposition effect is where investors never sell an asset at a loss willingly but a gain.

In particular, Shefrin and Statnman (1985) [18] demonstrate the disposition effect arises via a
numerical example ! if an investor’s utility is derived from realised gains and losses, and the utility

function captures loss aversion as described at the end of Section 1.1.

1.3 When to purchase and liquidate an asset?

While observing the prevailing market prices, a speculative investor may consider to enter/exit the
market immediately or to seek a future opportunity. This motivates our interest in studying the

optimal strategy of trades.

One natural question to ask is: When is the best time for investors to purchase and liquidate
their assets? This is an important step in understanding the financial behaviour of individual
and institutional investors. Given the dynamics of some risky asset prices, our investigation is
conducted on the side of an optimal double stopping problem. In particular, our formulation leads
to an optimal double stopping problem that provides both the optimal decisions for entering and
exiting the market. We develop both analytical solutions and numerical results to this market
entry & exit problem, especially, we incorporate a market entry transaction cost to see how this

affects an investor's decisions.

The model formulation we study contains piecewise power S-shaped functions and asset prices
following geometric Brownian motion. This is a tractable approach to the problem we are inter-
ested in as the model applies to any diffusion (price) process that is time-homogeneous, and to

conventional utility functions, which enables the model to be applied more widely in this area.

1.4 Aims and structure of the thesis

The main purpose of this thesis is to study the optimal opportunities for investors to open and

close a position with respect to the market entry cost. Our main results provide an analytical

ISuppose an investor purchased a stock for £50 three months ago. The stock is now being traded at £40. The
investor is deciding whether to sell the stock now at a realised loss of £10 or to wait for a future opportunity.
Suppose the stock price will either increase by £10 or decrease by £10 for the next period, with equal probability.
Equal chances for another £10 loss or break-even if the investor chooses to wait. Shefrin and Statnman (1985)
[18] suggest that because the choice is associated with the convex part of the S-shaped function, an investor with
prospect theory preference would wait and gamble on a possible break-even. However, if breaking even is sufficiently

unlikely, the investor may sell the stock and realise a loss at the current stage instead.




2. Utility, Value Function and the Optimal Exit Strategy 8

expression for the value function and stopping thresholds of the stopping problem subject to the
model parameters. The rest of the thesis is structured as follows. In Section 2, we briefly review
the key results that are crucial to our solutions, followed by an introduction and an application
of Henderson’s liquidation model [9]. We then formulate the general trading problem subject to
the market entry cost in Section 3, analytical solutions and numerical results will be given for

determining the entry & exit strategies. Finally, we close with a conclusion.

2 Utility, Value Function and the Optimal Exit Strategy

2.1 Realised utility related to the prospect theory preference

The utility function U(-) will be used to denote the prospect theory preferences, as snggested
by Tversky and Kahneman (1992) [20], we use power functions to construct an S-shaped utility

function:

M x>0
—k(—z)* =<0

where ay, ag € (0,1).

Utility function

—_— g =az=05

-100 -075 -0.50 -0.25 000 025 050 075 100
x

Figure 1: Example of a utility function U(z) with a; = as = 0.5.

The function U(-) being concave (i.e., U” < 0) for & > 0 reflects risk aversion, the function is
more concave when ¢ is smaller, the parameter 1 — o measures the level of risk aversion. Like-

wise, the function exhibits more convexity as as decreases. and the parameter 1 — o measures the
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level of risk-seeking. The parameter k > 1 gives asymmetrical graph which introduces the feature
of loss aversion. (experimental values of the parameters: oy = ag = 0.88, k = 2.25, see Tversky

and Kahneman 1992 [20]).

Another crucial property of this function is that its first derivative at zero from the left and
the right are both equal to infinity, i.e., U'(04) = U'(0-) = oo, indicating infinite marginal utility

at the origin.

2.2 The value function and its characterisation

In this thesis, we will be considering a filtered probability space (0, F, (F¢ )0, P) with historical
probability measure P and a standard Brownian motion W = {H’ it > l']} under . The asset
price Y; follows a time-homogeneous diffusion process with the state space @ € R driven by the

stochastic differential equation:
4Y, = p(Y)dt + o (Y)dW,,  Yo=y (2.2)

for some Borel functions p: 3 — R, and ¢ : & — (0, 0¢). We assume that the state space J is an
interval with boundaries —oc < a < b < oo, and that for any o, y1 € (a,b), if starting at yo, ¥

reaches y; with positive probability.

Our solutions in the next section rely heavily on the key theorems and corollaries on the side
of an optimal stopping problem. For the best understanding of our approaches and solutions, we
first draw our attention to the following setups and results presented in Dayanik and Karatzas

2003 [3].

Suppose we have a diffusion process Y of type (2.2), and Y is stopped instantaneously when
it reaches either the endpoints ¢ or 1. Define V(y) as the following ([3] eq (3.1)) which is usually

referred as the value function
V(y) =supE, [h{Y.,.}]_. y € ¢, (2.3)
TEF

where h(-) is a bounded Borel measurable function such that E, [h{Y,.)] is well-defined for every

F: - stopping time, f(-) is commonly interpreted as the reward function.

In order to find the optimal stopping time or, equivalently, for which 7 that E, [.’L(Y,)] is max-
imised within the constraints in (2.3). Our main task is to firstly identify the value function V().
In such a way, despite the fact that sometimes an explicit expression for V' (-) may be less available,

we will still be able to recognise the optimal stopping time based on the shape of the function
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V(-). We assume that h(-) is a positive function since if i(-) < 0, then trivially we get V =0, and

T = 0o is an optimal stopping time.

N.B. The following theorem is based on the setup ([3] eq (1.2)):
V(y) = supE, [e‘ﬁTh[YT}] (2.4)
TeF

where discounted optimal stopping is considered if § > 0. However, we are primarily interested
in the optimal stopping in the absence of discounting, i.e., 3 = 0. Our purpose to include this
notation here is to provide further insight into the following key results, meanwhile, to smoothly

develop our solution.

Theorem 2.1. (Dynkin, 1963 [{]) Given that h(:) is lower semi-continuous function. The value
function V(-) of (2.4) is the smallest 3-excessive majorant of h(-) on @ with respect to the process

Y.

where 3 — excessive function (for the process Y) is defined [19] to be the nonnegative functions
4(-) such that
dy) = E, [e_ﬁ"é(Yf)], Yyed

Though we may not be able to derive the value function explicitly from Theorem 2.1, it is often
employed as a method of identification. For example, to suppose a value function and then to
examine it with Theorem 2.1, this is also commonly seen in extant literature. Theorem 2.2 and

Corollary 2.3 will be primarily applied to obtain our solutions to the optimal exit & entry strategies.

Theorem 2.2. (Dynkin and Yushkevich, 1969) Every O-exeessive (or simply, excessive) function

for one-dimensional Brownian motion Y is concave, and vice-versa.

Corollary 2.3. The value function V() of (2.4) is the smallest non-negative concave majorant

of h(:) under the following assumptions:

Assume we are in the situation of (2.3) and there exists a standard Brownian motion Y starting
in [¢, Y] which is a closed and bounded interval, with p(y) =0, Yy € [¢.¢]. o(¢) = a(y) = 0, and
o(y) =1, Vy € (&, 1), and the state space O = [p,)] for some —oc < ¢ < 1 < oo. ([3], pp.175)

2.3 The idea of involving the scale function

We now formulate a general solution to the optimal stopping problem. In order to solve for an

investor’s optimal strategies, we introduce the idea of scale function s(-) of the process Y; following
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(2.2). As suggested by Revuz and Yor 1999 [17], we use the scale function s(-) to transform the
process Y; such that s(Yis-),f = 0 is a (local) martingale, the benefits of such manipulation will
be discussed later in this section. The properties of the solutions to one-dimensional SDEs can be
more apparent under such a transformation. Consider the solution to the one-dimensional SDE
(2.2). The technique is to transform Y into a local martingale by defining Xy = s(Y:) and assuming

that s € C?(IR), applying It&’s formula to give
' r ' ]' U 2
4, = o/ (V) (YOdW, + [/ (Yo u(Y,) + 5" (V)oX ()] di
next we would like to find a function s(-) such that
1 .
' Wny) + 55" W)o*(v) =0

such function s(-) is defined to be the scale function of diffusion Y; [Cass]. We shall lead into a

more formal definition of the scale function later in this section (see Proposition 2.5).

The following propositions pave the way for our study of the investor's optimal decisions. The
proofs of Proposition 2.4 and Proposition 2.5 can be found in Revuz and Yor (1999, pp.300-312)

[17).

Proposition 2.4. (Revuz and Yor 1999 or see [3] prop 2.2). There exists a continuous and strictly

increasing function s(-) on 0 such that for any l,u,x € @, with ¢ <1 < a < u < 1, we have

Polr, <mp) = M and P.(r, >m)= %

= 2.5
s(u) — s(l) (2:5)
If there exists another function § with these properties, then 3 is an Affine transformation of s, i.e.,
5§ =cs+d for some c >0 and d € R. Thus the function s is unique up to Affine transformations,

and is called the "scale function™ of Y.

Proposition 2.5. (Revuz and Yor 1999 or see [3] prop 2.3). A Borel function f that is locally
bounded, is a scale function, if and only if the process Yy == f(Xingnronn, ), t = 0, is a local
martingale. Moreover, if X is driven by the stochastic differential equation (2.2), then for any

arbitrary ¢ € O (fived), we have

s(x) = /f exp {/ﬂy —i‘l;g]) dz} dy, xz€d

When trying to obtain an explicit expression for the value function, the following result by

Karatzas and Sudderth (1999) [11] can be therefore convenient.

Proposition 2.6. (Karatzas and Sudderth 1999 [11] or see [3] prop 3.3). On the interval [s(¢), s(1)],

let g() be the smallest nonnegative concave magorant of the function h(s~'(y)). Then V(y) =

a(s(y), Yy € [¢, Y]
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The following proposition characterises the existence of the optimal stopping time 7.

Proposition 2.7. (Dayanik and Karatzas 2003 [3] prop 5.4) If h(-) is continuous on [¢, ], sub-

sequently, so is V(-), and the stopping time 7 is optimal, where we define 7% to be
A={ye[o.¢]:V(y) =h(y)} and 7°:=mf{t >0:Y; € A}
The proof of this result is similar to that in Dynkin and Yushkevich (1969, pp.112-119 [6]).

In this thesis we are mainly concerned with the situation where y and ¢ > 0 are constants.
For simplicity, we denote the constant parameter 5 := 1 — %‘é the term fz- can be interpreted as
the reflection of the asset’s expected performance (per unit variance). We know that the general
solution to (2.2) is Y = Yyeln—zo")t+oW, (with g, o > 0 constants), therefore we have the following

results:

1. If 3 <0, then Y; — oo as t — oc.

The scale function is s(y) = —(y)”.

2. If 3 = 0, then Y; — 0 almost surely as — oo.

The scale function is s(y) = y°.
3. If 3 = 0, the scale function is given by s(y) = In(y).

Provided that the asset price Y is a time-homogeneous diffusion process, the solution will be taking
the form of an interval, for instance, (y1,y2), and the process Y is to be stopped when it exits
this interval. The problem is more tractable and more transparent to solve when we work with

martingales as suggested at the beginning of this section. Let Xy = s(Y3), Xo = s(yo)-

At Y o s the i ; i ime s process Y i 2 inter
Remark 2.8. Let 7, . denote the optimal stopping time of the process Y in the interval (y;, y2),

then let T;:‘m =inf{t > 0:Y; € (y1,42)}. Likewise, let T(fb =inf{t > 0: X; & (s(y1), s(y2))},

where we have defined the transformed interval by a = s(y;), b = s(y=).

By Remark 2.8 we can obtain the exit time(s) for the investor from the transformed exit price(s)
of the asset price Y. Define the function g(z) := U(f(s~(z)) — fr) and observe that g(-) is nec-
essarily an increasing function. Then by Proposition 2.4, for any fixed interval (y1,y2) € @ such

that (s(y1), s(y=2)) is bounded, we have

E [U(Yf -R) | Y, = y] =K [U(s_l(X,-] - R)| Xo= .;-.]

=E [9(X) | Xo = 2] (2.6)
= g0 + o)

where we have applied the probabilities of the (bounded) martingale (X;);<, hitting each end of

the interval.
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Now the ultimate step is to find the optimal interval (a, b), i.e., to solve

swp {at@) ;== +905 2} (27)

a<z<l b —
to which the solution is given by the least concave majorant of g(-), by Proposition 2.6. Define the

least concave majorant of g(-) as g(-).

Figure 2 demonstrates a stylised example plot of the function g(-). With the help of the graph,
we can give a more intuitive explanation to illustrate that the smallest concave majorant is indeed
the solution to the interval-typed strategies (2.7). We would like to choose the optimised interval
to maximise the quantity in the curly brackets of (2.7). For instance, if the investor decides to
open a position at the point xzs2, or in fact, any other starting point = € (A, B), the quantity in
(2.7) is maximised if we take a = A and b = B. i.e., the stopping points A, B are the best choices.
Nevertheless, if the investor purchases an asset at the point z; then (2.7) is maximised by taking
a = b=z, because all other values of exiting points give relatively lower values. This corresponds
to an immediate liquidation since we stop if we are outside the interval (A, B). Therefore, for
any transformed price x € (A, B) the strategy is to stop when X; reaches either endpoints of this

interval. Any points outside the interval the strategy is to stop immediately.

X1, D A Xp

Figure 2: Stylised example graph of the function g(x) as a function of transformed price x, where

x = s(y).

N.B. the function g(x) represents the value of the game when the investor closes a position
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immediately. The smallest concave majorant g(x) of g(x) is given by the straight dashed line for

z € (A, B) and the function g(z) itself for x > B and = < A.

The following proposition underlies this intuition.

Proposition 2.9 ([9] (Proposition 1)). On the interval (s(¢g). s(ig)). where (¢g,15) is any fived

interval in @, let g(x) be the smallest concave majorant of g(x) = U(s™ (x) — R).
1. Suppose s(dg) = —oco, then Vi(y) = U(f(Va) — fr). y € (da,vs).
2. Suppose s(¢g) > —oc, then Vi(y) = §(s(v)), y € (¢0, ¥s).

This result follows from optimal stopping theory (see Oksendal 2005 [15], and specifically Dynkin
1965 [5], Dynkin and Yushkevich 1969 [6], and more recently, Dayanik and Karatzas 2003).

Proposition 2.9 paves a way to determine the investor’s behaviour under different circumstances

analytically (see Proposition 2.10 [9] and the proof ).

2.4 The exit problem

In this thesis we would like to consider the case where an investor can only sell or buy an entire
position, partial sales are excluded, but are included in our discussion for further research in ?7.
We also make the assumption that one can liquidate his/her position at any time of his/her choice,
this leads to our model to be over an infinite time horizon. For each unit of an asset Y, we denote
the payoft as f(Y'), where f(.) is a non-decreasing function. As the common practice in the litera-
ture, whether the investor is "wining” or "losing” when selling the asset is compared to a reference
level, here we denote it by fr, fg = 0. An appropriate interpretation of the reference level fr
is the price the investor paid for the asset, or equivalently, the break-even level. The investor’s

objective can be derived from his/her utility with the help of the value function.
At the liquidation time, the investor's objective can be written as

Vily) = ‘ﬂelglE [U(f(Ys) — fr) | Yo =] (2.8)

where U(-) is an increasing function (which is consistent with most theoretical models) and the
supreme is taken over the set of all F; - stopping time. At the time of sale, utility is derived from
the realised gains or losses and the investor evaluates utility by taking the difference between the

payoff and his/her reference level, hence we have the objective function V;(y) (2.8).

This leads to the analysis of an optimal stopping problem, which is exactly to find the value

function, as well as an optimal stopping time 7% for which the supreme is attained if such a time
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exists.

Provided that a price process ¥; follows a geometric Brownian motion, we are primarily interested
in the optimal trading decisions for an investor with respect to the market entry cost parameter.
We take f(y) = y and fr = R, where & = 0 is assumed to be the break-even level (or price
paid when purchasing the asset). At the time of sale 7, the investor receives a payoff Y and then
compare this with his/her reference level R. This would be appropriate for modelling the trades

of a stock or a real estate.

2.4.1 The prospect theory liquidation model

section2.4.1 Now we state and prove the main results that are applied to solve the exit problem
(2.8) with respect to the utility U(-) given by (2.1) and the price dynamics we are interested in

studying.
Proposition 2.10 (Henderson 2012 [9] prop 2). Consider an investor facing the exit problem
supE [U(YT —R)|Yy= y]

where Y follows geometric Brownian motion: dY = pYdt + oY dW, and we denote 5 =1 — f%‘ :

and U(-) is given by Tversky and Kahneman (1992) [20] as in (2.1). The solution is given in three

different cases, subjecting to the relative model parameters.

i) If 3 <0, 0or0 << ay <1, it is optimal for the investor to wait indefinitely at all price

levels and to never exit the market (see Figure 3a and Figure 3D).

W) If0<oq <3 <1ora =p0<1, the investor would stop at a point y,,, where y, > R. In
other words, the investor would wait for the price reaches beyond the break-even level, and

therefore liquidates at a gain. (see Figure 3¢ and Figure 3d).

i) If B = 1, the investor’s optimal strategy is to liquidate at either endpoints y; and y, (as
points A, B in Figure 2). Since these two points are on either side of the break-even point,
re, yi < R <y, therefore the investor may either sell the asset at a gain or at a loss (see

Figure 3e and Figure 3f).

Let us prove Proposition 2.10 case by case. Define g(z) to be the least concave majorant of the

fuction g(x).

Proof. If B < 0, by Section 2.4 i) we have s~(z) = (—1)% where x is the transformed price

of price y, # € (—00,0) and s(R) = —(R)”. Recall that we use the utility defined in (2.1) and
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g(x) := U(s™ (x) — R) which can be reexpressed as

((—2)% — R)™ x>—RP
g(x) = , (2.9)
—k(R — (—-z)%)** z < —RP

Perform differentiations with respect to = we get

s NETL(_py\E — Ryl _pB
Sy = dTFCTH(R) - B z>-R (2.10)

—2k(-2)F ) (~(-2)? + R)**~! =< R

Note that the gradient of g(x) at the left and the right limit of the investor’s reference level (after
transformation) both tend to infinity, i.e., g'(—(R)?) = g’(—(R)'f_) = oc. It can also be shown that
g'(—o0) = 0 and ¢'(0) = co. This is to be expected, as a negative 3 corresponds to a high positive
%%, in other words, a high excess return per unit variance. The investor would always wait for a
higher price level regardless of his/her extent of risk aversion, as displayed in Figure 3a.
. 1 4 1 “
@ (—2)F~%((—z)? — R)™~2[(@2B(—z)7 — R(L - 1) x> —RP
gn(m) — ] L, l [ ."'iw_ﬂ } l 8 ] ' (2.11)
L k(-2)F (- (-2)? + R) 2[5 (—2)® + R(; - 1)] z<-RP
We find that ¢"(z) > 0, Vo < —RP. For the first expression in (2.11), g”(z) is nonnegative if

{—:.':}7]7 < % since R < % we have that g"(x) is convex ¥z € (—o00,0). If we were to

draw the least concave majorant of g(z), it will be a horizontal line of value equal to the maximum
value of g(x) which is less applicable since g'(0) = oc.
1

If 8 > 0, we have that s™!(z) = 27, = € (0,0¢) and s(R) = R®. Hence

(:1;% - R)™ x> RP
g(z) = (2.12)

~k(R—2#)* x<RP
Note that g(0) = —kR*2, differentiate g(x) to give
1 1 ‘
mm-:—i{r; —R)xm—1 > R
B
¢(@) = o , (2.13)
‘—}}km-‘f_l(—xﬁ + Ryt < RP

If 0 < 3 < 1, caleulations give ¢'(0) = 0 and g'(0) = oo if F > 1. Moreover, if § > «; we have that

¢'(00) =0 and ¢'(00) = 00 if 8 < .

Y-20,% _ pym—-2[la=B) % _ prl _ :
Sy BT @ RN EE - RG -] o> R (2.14)
@ frh~?(—zh + R)2~2[Eo22)ph L R(S - 1)) z< RS

Recall that 1 — oy represents the coefficient of risk aversion. By also examining the concav-

ity /convexity of g(x), these lead to three possible shapes of g(x).
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(D If0 < B <1and § < oy, g(x) is increasing convex, it is also optimal for the investor to wait
indefinitely due to the moderate value of %’—‘ and relatively low risk aversion level, as shown

in Figure 3b.

(® If0< B <1andf > a, then g(x) is convex for < R? and concave for z > R® as shown
in Figure 3¢ and Figure 3d. In which case the least concave majorant g(z) is to be drawn
by a straight line from the point (0, g(0)) to the point where this line segment touches g(x)
(that is to the right of the break-even level) and finished with duplicating the function g(x)
beyond this point. In this case, the investor’s risk aversion level is higher so that the investor

would sell at a gain at some point above the break-even level.

p R . o B-1 oy o 1B p o A=l . 1-8 '
® If 3 > 1, g(x) is convex for £=-R < 27 < ;=5 R, since 4=-R < R and R < ;=5 R, we

deduce that g(x) switches from concave to convex and then to concave as in Figure 3e ad
Figure 3f. Then the smallest concave majorant g is given by taking the line segment joining
the two points (g(z), g(z4)) on g(z), where 2 € (0, R?), 2, € (R?,00) and the function
g(z) itself for other values of x. In this case the excess return per unit variance is very low,
or in fact, a negative expected excess return. Therefore the investor will choose to sell the
asset at a point above the break-even level with a relatively small gain, moreover, it is also

optimal for the investor to liguidate at a loss under such circumstance.

The special cases where f = 0,1 and # = a; can be treated similarly.
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Figure 3: Optimal sale of an asset under the model of Proposition 2.10

(a) i) 8= —0.5, a1 = az =0.75,
s(R) = —1. The investor never
liquidates for any values of x,
equivalently, waits for all prices
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(c) @) = 0.8, a1 = a2 = 0.5,
s(R) = 1. The investor liqui-
dates at a gain, ie., for z =
x, = L0676 or equivalently, for

y > 1.085.

(e) i) B = 1.2, oy = a2 = (.7,
s(R) = 1. The investor waits for
r € (x; = 0.0461, z, = 1.0144)
and liquidates otherwise. Equiv-
alently, waits for y € (g =
0.078, 1, = 1.012).

(b) i) 8 = 05,01 = ag = 0.75,
s(R) = 1. The investor never
liquidate for any values of x,
equivalently, waits for all prices
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(d) g = 08, a1 = 0.8, ap =
0.5, s(R) = 1. The investor
liquidates at a gain, i.e., for
x = 1.0155 or equivalently, y >
1.019.
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(f) iii) B =12, 0y = 0.7 a2 =
0.9, s(R) = 1. The investor
waits for ¢ € (¢ = 0.307, 2, =
1.0165) and liquidates otherwise.
Equivalently, waits for y € (y =
0.055, yu = 1.014).
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Each graph illustrates the function g(x) = U(s™*(x) — R). The transformed reference level is
denoted by s(£) in each panel plot and indicated with a dotted line. Moreover, the dash-dot lines
are drawn for labelling the exit price levels in plots (¢),(d),(e) and (f), which are resulted from the

smallest concave majorant of g(x).

Due to the fact that the smallest concave majorant function is determined by the shape of the
original function g(-), the solution to onr problem will be purely depending on the characterisations
of such function g(-), which in turn is determined only by the parameters (i.e., the price dynamics)
and the form of utility function invelved. Albeit we only focus on one particular utility function

(2.1) here other possible utility functions can be as well easily addressed.

3 Optimal strategies to enter & exit the market

3.1 The entry & exit problem

Qur interest is not only in investigating investors’ behaviour while they have already owned some
assets but also in the combined problem, i.e., when is the best time for investors to buy and
sell their assets, subjecting to underlying parameters such as transaction costs. From now on we
consider a zero risk free rate and assume that o) = as = o, where ay and a9 are as defined in
(2.1). We will be primarily consider the asset price Y; follows a geometric Brownian motion, i.e.,

a one-dimensional regular diffusion of the type (2.2) with constants g and ¢ > 0, namely
dY; = pYidt + oY dW, Yo=uy (3.1)

The general problem we are considering here is the investor’s objective function:

sup B [U(YT2 —AY, —R) | Yo = y] (3.2)
T1.72
T1IST2

where the supreme is taken over the set of all F; - stopping time, 7 and 72 denote the time of entry
and exit respectively hence the condition 7 < 7. R > 0 indicates the investor’s initial reference
level. A > 1 represents the parameter of entry cost - the cost of purchasing the asset itself and the
transaction costs. People may also be charged an additional transaction cost for selling a position,

we will discuss this situation later in Section 3.5. We can reexpress (3.2) as

s-;up]E[supJE[U[Y,.,_‘ —\Y,, = R) | Fr]| Yo =y (3.3)
T T2
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given the Markov property of the diffusion processes the inner supreme can be written as

sup E [U(Yy, — AYr, — R) | Y, =]

Ta 2Ty

=sup E[U(Ys, - Ay — R) | Yo =] (3.4)

T2 =0

=Vi(y: Ay + R)

where we define Vi (y; I) = sup,~ E[U(Y; — H) | Yp = y]. Ultimately, we will obtain a function

of Y7, and then maximise it over 7.

Given the expression (3.3) and the asset price Y} follows (3.1), we are interested in studying
the sequential optimal double stopping time for trades, or equivalently, the optimal strategies to
buy and sell an asset Y. We will divide our investigation into two steps: first, solve the optimal
exit (sale) problem (see Section 2.4) subject to some fixed time 71, after which we apply a similar

method to solve the optimal entry (purchase) problem.

Our approach is to treat the problem as two "exit problem”, in other words, suppose that 7
(the entry time) is fixed at some time 7" which leads (3.2) to become
swpE [U(Yr, - (\Yr + R)) | Yo = 9] (3.5)
T2
this is our first "exit problem” and its value is given by the general solution to the exit problem
(see Section 2.4) with R replaced by AYr 4+ R. During which step, an expression for the value
function Vi(y; H) defined in (3.4) will be obtained. To determine the optimal entry time, the
problem can be treated as an "exit problem” again because we will still be dealing with an optimal
stopping problem. More precisely, our goal is to determine the shape of the resulted value function
Vi(y; Ay + R) == ga(y) = go(s (x)), which would enable us to discuss its least concave majorant

function and this will be the solution to our optimal entry problem.

3.2 Optimal entry strategy under the case y =10

For the following subsections in Section 3, we consider our problem subject to three different cases
of u and try to express the solution of the strategy thresholds explicitly and therefore to determine
investors’ behaviour with respect to the underlying parameters. We start with the special case
where p = 0 (3 = 1), to better understand the problem which will also enable us to obtain a

closed-form solution more easily. Hence we have the price dynamic

&Y, = oYidW,  Yo=y (3.6)
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then there is no necessity of the scale function here as the process Y7 is naturally a martingale (i.e.,

¥ is in natural scale, s(y) = y up to Affine transformation), and the utility function yields

¥ y=0

—k(-y)* y<0
We formulate the exit problem as the investor’s value function:

Vi(y; H) := supE [U(Yr — H) | Yo = y]
v (3.8)
=supE [¢1(Y7) | Yo = ]
.

where g1(y) := U(y—H), and H denotes the investor’s reference level. Hence we have the expression
for g1(y):
(y — H)* y>H
aly) = (3.9)
—k(H—-y)* y<H

The value function Vi (y; H) is simply the least concave majorant of the function g (y).
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Figure 4: Stylised graphs of function g, (y) and the corresponding value function Vi (y:; H) with
a=05 k=22 H=1 A=101
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Now we solve for the value function Vi (y; H) analytically to obtain an explicit expression and
solve the problem by determining its least concave majorant function. Denote Y* to be the hori-

zontal axis coordinate of the touching point of g1 (y) and Vi (y; H), where Y* satisfies
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_9Y") - a(0)

o/ Yt
g].( ) Y*
a(Y* — H) = W (3.10)
Y‘ Y‘ a—1 __ Y‘ o -
aglg — VT =(F U +k

which suggests Y is taking the form such that Y* = ¢H, where ¢ > 1 is a constant given by the

solution of the equation (substitute Y* = ¢H into (3.6)):
acle —1)* P =(c—1)*+k (3.11)
Then we have an explicit expression for the value function Vy(y; H):

iy H) = alo Ye—-1)2"1y—kH* y<cH (312)
(y— H)" y>el
Now the joint problem of entry and exit (3.2) can be represented as
supE [Vi(Y,,: AY,, + R) | Yo =] (3.13)
This motivates us to find the form, or geometrically speaking, the shape of
92(y) = Vi(y: \y + R) (3.14)

with parameters A > 1, R > 0.

Since we know that y < c(Ay + R), the first case where y < cH always applies. Hence we

can further simplify the expression of Vi(y; H) to
Vily: Ay + R) = aH* Ye—1)*"'y — kH® (3.15)

where an explicit function of v and its shape depends on the parameters involved.

This is the value function while selling the asset. In order to study the optimal time for pur-
chasing the asset, we would like to study the shape of the function g2(y) defined in (3.14), after
which we will be able to find the least concave majorant function of ga(y) to solve the entry
problem. We consider the second derivative of go(y) to examine the concavity/convexity of the

function.

g4 (1) = Aa(l = a)(\y + H)“_:i [ AMk = ale = 1) Dy + Rk —2(c— 1) ] (3.16)

= (y) =a =b

As a result, we have g5(y) is in the form of g5(y) = ~(y)(ay + b), where 7(y) > 0, a, b are
constants. So the concavity /convexity of ga(y) depends on the signs of @ and b which depend on

the parameters and the result follows:
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Proposition 3.1. Consider an investor facing the optimal purchase problem
supE [Vl{YTl;AYTI +R)|Yy= y]
T

where Y follows a driftless geometric Brownian motion dY = oY dW and Vi(-;-) is given by (3.12).
The value function of the problem is ga which is defined as the least concave majorant of go. The
solution consists of three cases, depending on relative parameter values.

)nr—l

: {c—1
i) If A < e
majorant function ga2(y) is g2(y) dtself. Henee, go(y) = g2(y).

. then galy) is increasing eoncave YWy > 0. Therefore the least concave

i) If A= ) < 2t ey

g2(y) y=<y
go(y) = ; y=0

@) y>y

* —1)" T Ak *y
where y* = ;Ei(;_i:“_”,i’”l} given by gh(y*) = 0.

i.e., ga(y) coincides with ga up to the maximum point y* of go(y) and followed by a horizontal

line valued at this mazimum.

wit) If A > 2(;,?; then ga(y) is decreasing convex Wy = 0. Thus, the least concave majorant

g2 is a horizontal line valued at g-(0). Hence, g2(y) = g(0) = —kR".
Proof. We begin our proof with some investigation of the monotonicity of gs(y)
gh(y) = oAy + R)*2 [A{(.r[(:— D = Mk)y + R((e—1)*"! — )\k)] (3.17)

Recall from (3.16) that g2 can be written as g4 (y) = v(y)(ay + b).

I e—1) "

_1ye-1 ) o 7y=1
&i}— and A < =“—— subsequently if A < L‘f,)—, by

i) ffa<Oand b<0,ie, A<
(3.17), go is monotonically increasing ¥y > (), then g=(y) is increasing concave ¥y > 0. Thus

g2 is the function go itself.

< A<

afe—1)>"1 2(e—1)>"1

ii) fa > 0and b < 0, ie,

%m and convex for y > %ﬂ In addition, from (3.17) ga(y) is in-

R(2(e=1)""1—Xk) R(2(e—1)""1—)k)
AMAk—c(e—1)==1) AlAk—c(e—1)a=1}"

, then g2(y) is concave for 0 < y <

creasing for 0 < y < and decreasing for y > Graphically
speaking, the function go(y) is a concave inverted U-shape to start with, followed by de-
creasing convexity. Under such a situation, g is consists of the function g2 up to the point

- a—1 —_ o i . . - . -
y* = ;“;[,;'_i}c_ T (.’\_”} where g2(y) is maximised and a flat line valued at this maximum.

iii) Ifa > 0and b > 0, ie.,, A > “("_T”._l and A > 2("—1‘&, subsequently if A > w,

by (3.17), g2(y) is monotonically decreasing ¥y = 0, then g2(y) is decreasing convex ¥y > 0.

Hence the least concave majorant go is a horizontal line valued at g2(0).
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a < 0 and b > 0 would lead to a contradiction as a < 1.

O

Proposition 3.2. Phrased economically, with the corresponding enumeration in Proposition 3.1.

'é)

it)

iii)

When A is relatively small, it is optimal for the investor to open a position immediately af
all price levels.

When A 1s of intermediate value (namely case ii) in Proposition 3.1), the investor will choose

to buy the asset at or below the price level y* = %

When A is relatively large, the investor never purchases the asset (or to stop at y = 0
which would not happen as a geometric Brounian motion will not hit zero, this corresponds
to the optimal stopping time 77 = oo which means that the investor never buys the asset,
subsequently, 75 = oo, i.e., the investor never sells. Such o strategqy leads to a 0 payoff from

trading and a realised utility U(—R) = —kR* ).

This provides us with a clearer picture of the properties of go(y).
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Figure 5: Graphs of the value function g, and its smallest concave majorant function g, with

different values of A for p = 0, denote y* to be the maximum point of g2(y).
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Each graph in Figure 5 is plotted with a = 0.7, R = 1, ¢ = 1.0213 where ¢ is calculated from
(3.11) and k£ = 2.2. More specifically, the two thresholds in Proposition 3.1 for A are 1.0093 and
2.8836, corresponds to the other parameter values we have substituted in. When X is relatively
small (i.e., the first two cases in Figure 5) then th least concave majorant function gs coincides
with g2. As for larger value of A, e.g., A = 1.1, we observe that the curve of go starts to decrease
and switches from concave to convex as y increases, as a consequence, the least concave majo-
rant of go will become a flat line valued at where g is maximised, as illustrated in Figure 5. For
sufficiently large value of A, the least concave majorant of g, will be a horizontal line valued at g2(0).
In addition, if we are in the situation where “{r%}“_l < A< 2{"%)._1 we can nevertheless
investigate how the optimal purchase boundaries change with the model parameters. Recall that
go switches from concave to convex at the point y = %ﬁ%—% thanks to the explicit ex-

pression for ¢, we deduce the following, ceteris paribus:

- if A increases (within the range), as a result, § decreases. This would correspond to the case
where the investor chooses to buy the asset when the price level is relatively low, which is

reasonable as the entry cost increases. Vice versa for decreased A.

If k increases, i.e., a higher extent of loss aversion, will also resulting in a decreased value of §.
This is intuitive because investors with higher loss aversion are more reluctant to purchase
assets with a comparatively high initial price. Vice versa for investors with less aversion

towards losses.

3.3 Optimal entry strategy under the case >0 and a < 3 <1

Now we explore the case where p > 0, < 8 < 1 and oy = a2 = @, The diffusion process Y follows
(3.1), with the help of the scale function, we denote the transformed price process X; = s(Y;), and

s(H) = HP. Recall that g () == U(s~'(x) — H), then the function g () yields

—k(H —29)" 2 < HP
gi(z) = . ) (3.18)
(x7 — H)™ x> HP

Recall that g, (-) is an increasing function regardless of the value of A (for fixed ). We approach
the problem in a similar fashion as in the previous Section, i.e., to find X* satisfies
X*) = 9:1(0)
! Xn — QL(
(X*) -
(X*3~! _ H)* 4 kH*
Xx

(3.19)

(X* _ H—)Q—IX*},—J. =

w| 2

which suggests that X* takes the form X* = ¢?H?, where ¢ > 1 is a constant and solves the
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equation
o

E[’

from which ¢ = 1.0737 is given by taking o = 0.5, § = 0.8, k = 2.2, and this value of ¢ will be later

1) le=(e—1)*+k (3.20)

used in the graphs.

Thus the least concave majorant Vi (a; H) of the function g1(x) reads

g (X )e —kH> <P HA
Vi(z; H) = , i
q(x) = (-H +z7)* 2> HP

&(c—1)*-le!~BHe—Pz —kH® z < PHP

Vi(a; H) = (3.22)

(—H + z%)e x> cPHP

Provided that ¢ > 1,A > 1,R > 0, and H depends on a: H(z) = AP + R, we have ¢ <
c"j(/\.ré + R)? = ¢®H(z)?, hence the first situation in (3.22) always applies. For simplicity of
notation, define gs(z) := V;[:r:;/\:r:% + R).

Likewise, we explore properties of the function go by investigating its first and the second or-

der differentiation

(@) = H@P(G(c~ 1)1 - ki (@)°)
We first consider the first derivative
dh(x) = %}r(z)ﬂ—»’*—L [e=1)*tBR+ ‘:—;\f) - kAa.-%—LH(u.-)f’]
= %H(m)“_ﬂ*m-”' [(c = 1)“_1(:1_3(1'{.7:_-1" + %) — kAN + R~ )’(’]
= ZeP H@)" P (e 7P)
= 37 0% + R)* P (a7H)

where hy(2) = (e — 1)Ll =F(Rz + “r—f) — kMM + R2)8.

Check that g3(0) = F(c - Dt =AR=A > 0, also note that the sign of gh(oo) is governed
by the sign of hy(0).

: ’ >0 if A< (&(e—1)>"1elB 3
hy(0) = A(%{c _1)elelA _ ad) f (Fele—1) )

<0 if A> (f(c—1) 1 F)F
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Now we check the monotonicity of hy(-).

¢ kAGR
! o 1ya—11-8p ‘
h(z)=(—-1)""¢""R Rz + V)P
. a—1,1-3 kABR 2 9
Ze—-1)""¢"R- 1=P (3.23)
. 1ja=1.1-8
- (% - kN RS

I
from the first line of (3.23) we observe that h; is an increasing function in z, i.e., hi(z) = 0. This

observation assists us to deduce that
a 1
o If A< (ﬁ(( —1)*" 227 then h is increasing.
I L - o - - -
o If A > (ﬁ(c - 1)"‘1c1"’} 7, then hy is first decreasing and then increasing,.

Note that hi(c0) > 0 which means go(x) is always increasing for small @ regardless the value of
A. One can also check that hy(z) = kB(1 — f)R?(Rz + \)?~2 > 0 which indicates that hy(-) is a

convex function.

Thus:
a1 . - .
o If A< (Flc— 1)e=1et=8) 5 “then hy(0) > 0 and since hy is increasing, hi(z) > 0,¥z = 0.

o If (fp(e—1)*71eP) 7 < X < (gele = 1)*71e!=#) 7, then hy(0) < 0 and hy is increasing.

i
-3

o If N> (d—lk[(f 1)2=1e1=8) % then hy(0) < 0 and hy is initially decreasing and then increasing

as z increases.

we therefore deduce that hy goes through the x-axis (hi(z) = 0) at most once. Especially, for
1

A= (ﬁ(c — 1)@= Let=A)5 by crosses 0 exactly once and it goes from negative to positive, this

results in go initially increases and then decreases.

We treat g4 (x) in a similar fashion. Write
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(B—a+1)(R+ "‘—;f)]

CC|>f

q;()_ﬁr( )"'} o, -—2{(C_1)n—1 1= H\L[?H-( )

- BAH(? | = A1 - b 4 R - 1) }

i

A o i e Ao Ro
= 3 H(2) ‘”T“{{r )it -’a{ 32{6’ a]'r';+,),(l§—5+a—l]}
_kH@P| - a1 = et - r(L -
LH(r)[ A= Z)z +R.{ﬁ 1)]}
2
= %fi(w)“*’“‘”w%‘ﬂw?* {(c— 1)“*1&*%,-{- %w —a)+ g(g -B+a- m—ﬂ

_ A-w(»\+R.-r:_%)ﬂ[ M- _3) +R(g B~ )'x_%”
Ao

= FH@)™ B=235~1py(zP)
)‘” -2, 31 I
3 —(Ax? +R) - hal(z™7)

where hy(2) == (c—1)*"1e! P [ 33 (B—a)+ £ ( —B+a—1)z] —k(A+R2)?[-A(1-§)+R(3-1)z].

>0 if A>(&(c—1)-14-A)F
hg(ﬁ] ' 1
<0 if A< (ﬁ{( — 1]“_1{:1_‘3)”

1
Note that h5(0) < 0 provided that A < (S(c — 1)*~'¢'~P) 7. Direct differentiation yields that
h4(z) <0, therefore ha(z) exhibits concavity.

Hence
o If A< (4 grple—1)"" Ll=A)%, 3 then ha(0) < 0, h5(0) < 0 and ha(z) < 0, ¥z = 0.

ax A
o IfA> (.{f—k{(: —1)*71e! =) 7 then hy(0) > 0 and h(z) initially increases then decreases as z
ErOwWSs.
oo,

therefore ha(z) crosses the x-axis exactly once (since ha(z) — —o0).

Calculations show g2(0) = —kR™ < 0, and keep in mind that z = 275, Our result is as fol-

lows:

Proposition 3.3. Consider an investor facing the optimal purchase problem
sup £ [Vl (Yﬂ?/\yﬂ + R) | Yo = y]
Tl

where Y follows geometric Brownian motion dY = Y (udt + odW) with p > 0, we write § =
1- —% < 1 and Vi(-;-) is given by (3.22). Define the transformed price X, = s(Y}), and the scale

function yields s(y) = y®. The value function of the problem is go(y®) where go(a) is defined as
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the least concave majorant of ga(x). The solution consists of three cases, depending on relative

parameter values.
i) If A < (ﬁ{{ - l}“_lcl_-’j)l’., then go(x) is the function go(z) itself. Hence, go(z) = go(x).
i) IFA> (&(c— 1) 1c1-F)7,

*

golr) x<x
galz) = ) x>0
g2(z”) x> a”

where ™ satisfies

(@) =0
& hy(z*"F) =0

p A
& (c—1)* AR + ‘%) = kXA + Rz*)P

1
*— g

where z* = x
Hence, ga(x) coincides with g2(x) up to the mazimum point of g2(x) and becomes a flat line

valued at this mazimum.

Proof. Recall that z = 7.

1
]

i) When A < (3—;{{ —1)*=1el=F) 7 gi(x) > 0 and g4(z) < 0 (since hy < 0), then go(x) is an

increasing concave function, so the least concave majorant g, is the function g,.

ii) Since h; passes through the x-axis at most once, we can deduce that g(x) has at most one
stationary point. When A\ > (ﬁ(( = 1)“_1(:1_-'3)%, hi(0) <0 = gh(z) <0as z — oo, hy(z)
changes sign from negative to positive as z increases, equivalently, g5(x) goes from positive to
negative as z increases. Additionally, ha(z) = —0o = g4 () < 0 and ha(0) > 0= g¥(x) >0
as  — 00. Thus go(z) is concave for small 2 and convex for large . Also notice that hy
passes through the x-axis exactly once gives that go(2) changes concavity/convexity exactly
once. Combing all of which gives us the least concave majorant ga(x) of ga(x) is an initially
increasing concave function until the maximum point z* of ga(x), followed by a horizontal line
with the y-axis value of ga(x*). The ideas can be more intuitively and further demonstrated

by Figure 6.
]

Proposition 3.4. Followed from Proposition 3.3, in the context of financial behaviour, the optimal

purchase opportunity for an investor under different circumstances.

i) If the entry cost parameter A is comparatively small, the investor will purchase the asset

immediately at all price levels (e.g., see the first four graphs in Figure 6).
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i) If A is comparatively large, the investor’s optimal purchase opportunity will be constrained

*

up to a certain price level (namely, ©* in Proposition 3.3), in other words, the investor will
choose not to purchase the asset when the price is beyond this level (e.g., see the last four

graphs in Figure 6).
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Figure 6: Graphs of the value function g, and its smallest concave majorant function g, with

respect to different values of A for u > 0, denote * to be the maximum point of ga(x).
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Each graph in Figure 6 is plotted with o 1.0737 and k = 2.2,

The two A thresholds are (&[( — 1)-11=h)

L
]

or, more specifically
1.0772 and 2.562 in our particular case. As one can observe, for A = 1.3 and onwards, the curve
of ga(x) begins to decrease and becomes convex as x increases. Thus the least concave majorant

gz2(x) for larger value of A is a horizontal line with value g2(x*) after the maximum point * of g2 ().

Similar to our discussion in the g = (0 case, we investigate the problem further by studying
the optimal purchase level with respect to the model parameters. We have showed that g}(z) =

1 1 i -1 . . v
GasH a=f=1p,(x~7), write z = 277 and we have an expression for h1(-), our goal is to find the

point where g obtains its maximum, i.e., for which point z such that h;(z) = 0. We have

(c—1)2" e "P(Rz + %} = kA(A 4+ Rz)? (3.24)
A

1
We know that hy crosses 0 for A > (F(c - 1)*~tet=#) 7, Ceteris paribus,

When A increases, since the highest order of the term A on the LHS is A and is AB+1

on
the RHS of (3.24), in order to balance the magnitude on both sides of the equation, z will
increase (i.e., @ will decrease). In other words, the investor would purchase the asset at a

lower price if the entry cost is relatively high.

- When k increases, similarly, comparing the magnitude on both sides of the equation will
result in an increased value of z (i.e., a decreased value of x). Thus investors with a higher

level of loss aversion are more likely to purchase the asset at a lower price level.

3.4 Optimal entry strategy under the case u < 0

In this section we study the case where u < 0 (8 > 1), as discussed in Section 2.4, we have

s(H) = H? and the function g,(x) takes the form

91 (x) = B (3.25)
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Figure T: Stylised representation of the function g;(x) and its least concave majornt Vq(z: H) for

p# < 0 (here we used parameter values oy = ay = 0.5, = 1.2, k = 2.2).

The existence of the thresholds described follows from the proof of Proposition 2.7. We adapt
the same methods as previously to obtain an expression for the value function V) (z; H). We solve a
pair of eritical points @ < x,, at which the gradient of g1(z) coincides the gradient of line segment

joining them, i.e., use the relationship

g1lTy) — 1l :
dilm) = g (z.) = 2T — (@) (3.96)
Iy — &g
and calculations give

k Fra—1. 51 (H w-'_l'}"+k(u t’l'J"

_r_x'__'(‘r{_a._!")ﬂ— 3-'1’ = %
S l T (3.27)

=] - A SN 2 S Y

%(H—.’J’,‘E)“il.’raf :%

B

suggesting that x, = ¢?H®, z; = ¢/ H?, where ¢, > 1 and ¢; < 1 are constants solve the pair of

equations given by the relationship in (3.26).

ﬂ(c _ 1)m—lcl—£i — (Cu - 1){1:+ k(l - CI)?

g “ b — {_:f (3.28)
k{l‘l vy —1 1=8 (C( = 1)? R .ti'(l - (_.'j)? :
I_i(l —e)M Tl == R

" Y

[\’\’e will use parameter values ¢; = 0.3096 and ¢, = 1.0070 calculated from (3.28) later where

other parameter values = 1.5, a = 0.7 and k = 2.2 were substitutcd.]
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Hence the value function Vi (x; H) yields

2 ¥ z < PHB
—k(H —x¥)™ r<e'H
Viles H) = Q6H* P — k(1 — )" H™ — ricfH“ (_T;jH":j <z <clHP (3.29)
[;r% - H)y~ x> (.’{:Hﬁ

where § := o=V Hk(=c)® "opq I depends on z, H(z)? = (\x? + R)® and A > 1,R > 0, we

Cu—Cp

deduce that only the first two cases in (3.29) apply. Define ga(z) == V(22 AzF + R).

{-:L‘(l - N (H(x) - :;1;%)"_1:1;%7L @< cfH(:t.')ﬂ
dh(z) = V{(z;22% + R) = { (a — B)6H(2)*B-1H'(x)z + §H(z)*—P
—aH (z)* YH'(z) (k(1 — e1)* + r)'r:f) r.'fiH ()P <z < P H(x)?
(3.30)
Because the case where p < 0 is far more complicated to be analysed in generality, thus analytical
results in terms of A dependence are less available, nonetheless, numerical results will be provided

here.

Figures 8, 9 and 10 demonstrate some stylised representations of the function go(x) along with
its least concave majorant, subject to different values of X and shared parameter values o = 0.7,
=15 R=1,k=22 ¢ =0.309 and ¢, = 1.007, define g2(x) to be the least concave majorant

of ga(x). The optimal entry price thresholds are given to the stylised graphs correspondingly.
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Figure 8: Graph of the functions go(z) and go(z) for p < 0 with o = 0.7, 8 = 1.5, k = 2.2 and
A=1.01

Note that in (3.30), if z < (:?H (2)7, ga(x) is decreasing since A > | = gh(x) < 0. Therefore in
our stylised Figure 8, * is in the region [cfH (2*)?, ¢ H(2*)?]. This corresponds to the situation
where A is relatively small, the investor will choose to enter the market when the price is sufficiently
*

large, i.e., for z > z*, where z* satisfies

go(x*) = G‘z(l)r—t@(o) c.'fH(a;* )P <z < LH@E)? (3.31)
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Figure 9: Graph of the functions go(z) and go(z) for p < 0 with o = 0.7, 8 = 1.5, k = 2.2 and
A= 1.05.

In Figure 9, A is of certain intermediate value, the function gs(x) starts to exhibit convexity
for large values of 2. This results in the least concave majorant gs(x) of the function go(z) formed
by a chord from (0, —kH®) to (xi, g2(2;)) where x; satisfies (3.31) for the same reason, and the
function go(x) itself until the price level reaches z,,, finally, followed by a horizontal line valued at

g2(x,), where @, is the maximum point of go(x) satisfies
(a— B)SH' (zu)zw + SH(z4) = aH(22)  H' (20) k(1 — &)* + 8¢]), §H(zw)? < 2u < SH(2,)?

Under this circumstance, the investor will choose to buy the asset if the price level x € (xy,x,)

and wait for all other values of a.
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Figure 10: Graph of the functions go(z) and ga(z) for p < 0 with & = 0.7, 8 = 1.5, k = 2.2 and
A=11.

If A is relatively large, go(z) will become a decreasing convex function, go(x) is therefore taking
the structure of a horizontal line at go(0) starting from = = 0, i.e., go(x) = g2(0). Which can be

interpreted as the situation where the investor waits indefinitely.

When considering the case where g < 0 or , equivalently 7 > 1, one approach is to convert
this back in terms of g and o. This choice of 5 does not have a very sensible magnitude, however,
this is a value that some existing literature have been using. One way of arguing a large 3 value
is that we can think of the drift of the asset also capturing some kind of discounting effect. For
example, imagine that we replace the price diffusion process Y; by e~9Y;, the & here can be referred
as some subjective discount rate, then the notation 3 we used throughout this thesis will become

2(p—4 : : : : :
1- (—’;3—} where the existence of the discount rate § will result in an increased value of 3.

3.5 Problem extended with exit costs

We have discussed how the investor’s behaviour depends on the entry cost parameter A, in general,
we find that it is optimal not to purchase assets with sufficiently large entry costs, which is very
reasonable and pronounced. However, it is also common in practice that investors have to pay
extra fees when closing a position, i.e., investors are charged some proportion of their sale as a
transaction cost. Then how would investors behave correspondingly? If we denote the exit price

to be vY,, where v < 1 is a constant (before we only had Y7,). Then (2.8) become




4. Further Research and Discussion 40

sup E [U(7Yr, =AY, — R) | Yo = y] (3.32)
T

with respect to the same filtration and state space.

This extended problem can be handled in the same fashion. We still consider the utility func-

tion (2.1) and due to the fact that U(Cxz) = C*U(xz) for some constant C' > 0, we have:

1. If g = a2 = a,

sup E [U(7Yr, — AYs, — R) | Yy = 9]
n<n
A

R
= sup E [’Y(‘U(Y’Q - _Y'n - _) | YU = y]
T1.T: '} '-)’

T <T2

=

A
=y sup E[U(Y,, - 2V, — =) | Yy =]
T1.T2 o Y

TI<T2

2. If @ # @, the utility function (2.1) with argument Cz yields

Corgs Cz >0
U(Cz) =

—kC (~z)* Cz<0

We can, in turn, rewrite the second line as

then continue with the analysis conducted in Section 3 with the parameter k replaced by k.

4 Further Research and Discussion

4.1 Piecewise exponential utility

Another S-shaped utility function often discussed in the literature is the piecewise exponential
utility, where the utility function is concave exponential above the investor's reference point and

convex exponential below the reference point. As studied in Kyle et al. (2006) [12],

Ei(l—e %) 220
Uz) = . where 71, y2, k1, ka > 0.
ka(e™® —1) a2 <0
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Exponential utility function
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Figure 11: Stylised representation of an exponential utility function

Observe that different from our utility in (2.1), the limits U'(0_) > U’(0,) are finite, thus the
investor is more sensitive to losses around the origin. If taking ¥ = 0 to represent the investor's
reference point, v, represents the local absolute risk aversion above this reference point, whereas
~o represents the local absolute risk-seeking below this reference point. In their model they also

assume kv, < koy2 to ensure loss aversion.

Their results also consist of dependence on the excess expected return (per unit variance) and
the coefficient of loss aversion, which can be found in Kyle et al. (2006) [12] (pp.280-283). However,
in their model, there is not a case where an investor would wait and liquidate an asset at a loss,
i.e., our scenario ##i) in Proposition 2.10. We may nonetheless apply our methodology in Section 2

and Section 3 to determine an investor’s optimal strategies.

4.2 Piecewise linear utility

Up to this point, we have been considering the S-shaped realised utility. Barberis and Xiong
(2012) [1] suggest a dynamic stopping model whereby it is possible for an investor to reinvest in a
previously sold asset. In which model they consider a piecewise linear function for utility,

r x>0

Ulz) =

kx <0
where & > 1 determines an investor’s relative sensitivity to realised losses as against realised gains.
Furthermore, an investor’s decisions in their model are found to be consistent with many situations
that have been observed in the markets. However, they concede that their model predicts a strong
disposition effect because, in their model, an investor will only liquidate at a gain, never at a loss,

unless forced to exit the market by a liquidity stock. A natural direction of research could be
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testing the implications of this realisation utility.

4.3 Partial liquidations

Another interesting extension of this thesis would be to consider partial liquidations. For example,
if the investor has N > 1 units of claim on the asset Y, each unit ¢ with payoft f;(¥), 1 <i < N,
and the investor can choose to sell any units at different times, we denote 7; for unit i of the asset
Y sold, 1 <i < N. If the investor realises utility over gains and losses on each partial liquidation,
indeed, we can regard the sale of each claim as a separate exit problem. Then the optimal trading
strategy follows immediately from Proposition 2.10 for all units of the asset Y. Another possible
approach could be supposing that the investor derives utility from the aggregated realised gains and
losses over all partial sales. In which case the investor’s objective can be expressed as (Henderson
2012 [9] eq (9))

Va(y,0) = sup E[UQ_ f(Yr) - nfa+0)|Yo=1y] (4.1)
i=l1l

Tn S ST
where n < N denotes the number of units remaining and # represents the wealth at the current
stage. This formulation allows us to work backwards from the solution given by N=1. Note that
if N=1and # =0, we will recover the case in (2.8). This function represents the value when an
investor holding n < N units of claim, with initial asset price y and each unit with the identical
reference level. Thus the solutions have the same structure regardless of whether the investor

realises utility over each individual partial liquidation or over accumulated partial liquidations.
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Conclusion

At the beginning of this thesis, we introduce some results in the extant literature that are crucial
to our approach to determine the investor’s best trading strategies. Motivated by Henderson’s Lig-
uidation Model [9], we extend it to a double stopping problem by including the best opportunity
to enter the market/purchase an asset. Upon which, we have derived explicit expressions for the
value function under certain parameter values, together with optimal price thresholds for entering
and exiting the trading market subject to the market entry cost. Now we finish with a reminder

of several important contributions.

Firstly, the model and the methodology provide an approach to determine an investor’s best
behaviour subject to the market entry cost, as well as a characterisation for the value function for
both optimal entry and exit. The model itself integrates the preference specification of Tversky and
Kahneman (1992) [20] and the common practice that asset prices following geometric Brownian

motion.

Secondly, we find that if 4 > 0 (i.e., nonnegative instantaneous expected excess return), and
the market entry cost parameter A is relatively small, an investor will purchase the corresponding
assets immediately. On the contrary, if A is relatively large, an investor will purchase the asset
within a certain price interval and wait otherwise. Although explicit solutions are less available
for the case where p < 0, we are still able to proceed with numerical analysis and study how the

optimal strategies may be chosen.

Finally, our extension to include other possible utility functions, namely, piecewise linear utility
suggested by Barberis and Xiong (2012) [1] and piecewise exponential utility by Kyle et al. (2006)
[12], to provide us with other aspects to study investor’s prevalent behaviour observed in the
market. Furthermore, partially liquidating enables an investor to have a greater combination of

selling strategies, which may potentially improve his/her realised utility.
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