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1 Introduction

Fixed Indexed Annuities (FIAs) are customized structured products, usually sold by insurance

companies to retail investors. The payo↵ of an investment in an FIA is often guaranteed not to

fall below a certain minimum level, through a global or local floor. This feature qualifies these

investment products as insurance products. Such products are typically linked to the performance

of one selected equity index, such as the S&P 500 (SPX) or the Euro Stoxx 50 (SX5E), and provide

the retail investor capped potential return.

In recent years, there has been impressive demand for these products originating from the

US, and to some extent, European insurance sectors. According to the article of Woodall [30],

the US retirement market is dominated by the sale of both variable annuities (VAs) and fixed

indexed annuities. FIA products, in particular, fuel the demand for strips of forward-starting call

spreads, known as cliquets. As detailed in [30], in 2015 total issuance of VAs topped $133 billion.

FIAs, meanwhile, hit $54.5 billion - a 13% increase on 2014. Especially, investment solutions that

can reduce downside risk while still o↵ering upside potential have become more popular after the

turmoil in financial markets. FIA is a product embedding such features. During a period known

as the accumulation phase, the investment will track an equity index, and the investor’s account

is credited with its upside performance up to a cap that is imposed either a monthly, semi-annual

or annual basis.

A one-year FIA with a 1.5% monthly cap and 0% one-year floor, therefore, would require an

insurer to buy a cliquet call spread to provide the upside potential and the cap, i.e. buying one

cliquet consisting of at-the-money calls, and another consisting of selling calls at the cap level.

Therefore, the net e↵ect of an investment in an FIA is that the retail investor is short a portfolio

of forward-starting call options; in turn, the insurer selling them the product is thus long this

portfolio. To hedge the exposure, the insurer will typically turn to one of the investment banks,

the net e↵ect being that the long exposure passes from the insurer to the bank. In the past, banks

would have been happy to carry this risk on their books, hedging certain risks in a discretionary

manner with vanillas. But in the post-crisis world of punitive capital charges and restrictive risk

limits, the banks are no longer as willing to retain this risk as they once were. Therefore, they have

looked to o✏oad risk direct to other counterparties, such as mutual funds and hedge funds, to step

in and purchase the portfolio. The key point is that, due to the huge flow emanating from the retail

sector, these portfolios of options may trade at a discount to “fair value”. In general, forward-

starting product are di�cult to price using classical models. In particular, it is very important

that the chosen model is able to capture the dynamics for the future smiles, and is consistent with

the observed dynamics of volatility smiles in reality as well.

Bergomi [3] shows that cliquet-style products are highly sensitive to the shape of the future

implied volatility surface and that many of the popular option pricing models impose constraints



6

on the dynamics of forward skew, which results in the model not being able to capture the observed

dynamics correctly. This causes significant pricing errors for path-dependent or forward-starting

options, in spite of the models being accurate enough to calibrate well to observed implied volatil-

ity surfaces. Motivated by these observations, a new option pricing model has been proposed by

Bergomi [4], [5], [6] (see also similar work of Bühler [11] and Gatheral [15]), in which, instead of

modelling instantaneous volatility, he starts by specifying the dynamics of the entire curve of for-

ward variance. This is philosophically similar to the HJM interest rate model. The Bergomi model,

which treats the forward volatility and forward skew risks accurately, has been used as a reference

in [24] to show the poor volatility modeling of the Heston model, the Barndor↵-Nielsen-Shephard

model and a variance-gamma model with stochastic arrival. However, there is little literature

specifying details of the calibration of the Bergomi model to the market. Most studies are based

on numerical simulations with sets of hypothetical parameters. Indeed, most implementations of

the Bergomi model utilize a flat term structure of variance swap curve, see [4], [6], [7] and [24].

The purpose of this thesis, then, is to provide a comprehensive implementation on the calibra-

tion of the Bergomi model and investigate its properties and applications for pricing cliquet-style

options. Di↵erent parameterisations of initial variance swap curve will be introduced and dis-

cussed, and it will be shown that the proposed parameterisations can provide a flexible fit of the

term structure of forward variances. Moreover, three di↵erent implementations of the calibration

will be introduced and compared. This additional flexibility has relevance to the valuation of

cliquet-style options.

The thesis is structured as follows. Some preliminary definitions and basic setting are first

introduced in Section 2. The general framework of the forward variance model, and, in particular,

the Bergomi two-factor model, are discussed in Section 3. The properties of the model and the

relevant numerical simulations are described in Section 4. Calibration and pricing are conducted

in Section 5, and Section 6 concludes.
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2 Preliminaries

2.1 Cliquet products

A cliquet, with payo↵ being some function of a set of relative returns of the chosen underlying,

is essentially a portfolio of forward-starting options. The first option (a standard vanilla option)

is active immediately and expires after a predetermined period, at which point the next option

activates, basing the performance on the current at-the-money level. This means that at these

dates the strike price is reset at the current level of the underlying. The payo↵ structure makes

the cliquet options particularly sensitive to the future dynamics of the implied volatility surface.

Two models, which generate the same prices of European options, can lead to quite di↵erent

prices for cliquet options if the dynamics of the implied volatility associated with each model is

di↵erent. Wilmott [29] has shown that the sensitivity of a cliquet option to deterministic volatility

is negligible in comparison with its sensitivity to volatility dynamics.

Typically, the payo↵ function of a cliquet-style option incorporates local or global caps and

floors, minimum or maximum functions, sums and fixed coupons. And the relative returns are

typically calculated on a monthly, semi-annual or annual basis. In general, there are no analytical

formulas to price cliquet-style options, even in the framework of Black-Scholes, and one typically

is required to resort to the use of numerical methods.

There are a wide range of investable products embedding cliquet-style features. Before intro-

ducing the three examples, we first discuss the definitions of forward volatility and forward skew.

Forward volatility, �T1,T2

f

(K), is the implied volatility of an option with strike K and maturity T2

which is observed at a future time T1. Then forward skew is intuitively defined as @�T1,T2

f

(K)/@K.

This reflects the slope of the volatility smile as a function of the strike.

Accumulator With local cap and floor, and global floor, an accumulator is very similar to

an FIA. Let T , a future point in time, be the maturity date of the contract. The payo↵ of an

accumulator is

max

 

0,
N�1
X

i=0

max(min(r
i

, cap), floor)

!

, (2.1)

where

r
i

=
S
Ti+1 � S

Ti

S
Ti

, 0 = T0 < T1 < T2 < . . . < T
N

= T.

The existence of these local caps and floors makes the price of the accumulator sensitive to the

forward implied volatility skew. This contract can also be forward volatility sensitive but only in

cases of strong forward skew.

The intuition for this behavior is similar to the intuition for skew and volatility sensitivity of

a standard one month call spread. As mentioned in [24], in the framework of Black-Scholes [9],
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the call spread has negligible vega. However, the absolute value of the call spread increases in the

models that take the skew into account.

Reverse Cliquet As in the previous case, the investment horizon associated with reverse cliquet

is also divided into a series of equally spaced periods. With the maturity T , the payo↵ of a reverse

cliquet is

max

 

0, C +
N�1
X

i=0

r�
i

!

, (2.2)

where

r
i

=
S
Ti+1 � S

Ti

S
Ti

, r�
i

= min(r
i

, 0), 0 = T0 < t1 < . . . < T
N

= T, C > 0.

This option is called reversed cliquet because only negative returns contribute to the final payo↵.

The maximum payo↵ at the maturity is given by the coupon C and the capital is guaranteed by

the existence of a global floor.

The option is both forward volatility sensitive and forward skew sensitive. The forward skew

sensitivity of the reverse cliquet can be explained intuitively. If

� := C +
N�2
X

i=0

r�
i

> 0,

then the value of the corresponding reverse cliquet in the last period is equal to the value of a call

spread option:

max



0,min

✓

S
TN

S
TN�1

� (1� �),�

◆�

,

starting at T
N�1, with maturity T

N

and with strikes 1 � � and 1. Therefore the value of the

corresponding forward-starting call spread has an e↵ect on the value of the whole structure.

On the other hand, in the absence of global floor, the reverse cliquet simplifies to a long coupon

plus a short position on a strip of forward-starting put options. Therefore, the reverse cliquet is

sensitive to the volatility of volatility. In the framework of Black-Scholes, the lower the implied

volatility, the lower the value of the forward-starting puts and, hence, the higher the price of the

reverse cliquet.

Napoleon This contract consists of several building blocks. The payo↵ of each building block,

which is settled individually, is

max

✓

0, C + min
i=0,N�1

r
i

◆

, (2.3)

where

r
i

=
S
Ti+1 � S

Ti

S
Ti

, 0 = T0 < T1 < . . . < T
N

, C > 0.



2.2 Variance swaps and forward variance 9

This type of contract is also analyzed in Bergomi [3], [4]. Numerical simulations in Bergomi [4]

show that this option is extremely forward volatility sensitive, but almost forward skew insensitive.

In Fig.1, the sensitivities of these cliquet-style options to the variance swap volatility and the

di↵erence of the implied volatilities for the strikes 0.99F
T

and 1.01F
T

, where F
T

is the forward price

for maturity T , are displayed. The results are from the simulation method which will be introduced

in the following sections, and based on a flat term structure of VS volatilities. The value of the flat

term structure in the Bergomi model is similar to the implied volatility in Black-Scholes model.

As expected, it is clear that the accumulator is not sensitive to the variance swap volatility, but

very sensitive to the forward skew. And the behaviour of the napoleon is the opposite, volatility

sensitive but almost skew insensitive. For reverse cliquet, it is quite sensitive to both volatility and

skew. In this sense, we could interpret the reverse cliquet and napoleon as puts on volatility.

Figure 1: Sensitivity analysis of accumulator, napoleon and reverse cliquet. Left graph: sensitivity

to the value of flat term structure of variance swap volatilities. Right graph: sensitivity to the

di↵erence of the implied volatilities for the strikes 0.99F
T

and 1.01F
T

.

2.2 Variance swaps and forward variance

A variance swap (VS) with maturity T is a contract which pays out the realized variance of a

financial underlying, computed as the sum of the squares of daily log-returns, in exchange for a

fixed strike called the variance swap variance V T

0 . V T

0 is determined in such a way that the initial

value of the contract is zero.

According to Ould Aly [27], the annualized realized variance of a stock price process (S
t

)
t�0

for the period [0, T ] with business days 0 = t0 < ... < t
n

= T is usually defined as

RV 0,T :=
d

n

n

X

i=1

✓

log
S
ti

S
ti�1

◆2

.

The constant d denotes the number of trading days per year and is typically fixed to 252. We

assume the market is arbitrage-free and prices of traded instruments are represented as conditional
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expectations with respect to an equivalent pricing measure Q. A standard result gives that as

sup
i=1,...,n |ti � t

i�1| �! 0, we have

n

X

i=1

✓

log
S
ti

S
ti�1

◆2

�! hlogSi
T

in probability,

when (S
t

)
t�0 is a continuous semimartingale, with hlogSi

t

being its quadratic variation process.

Therefore, from the perspective of expectation, there is no di↵erence between considering real-

ized variance or quadratic variation of returns as long as the valuation time point is one of the

observation dates t
i

.

The market convention of quoting a variance swap is not its variance swap rate V T

0 . Rather,

the market quotes its variance swap volatility which is the strike K such that

1

T
hlogSi

T

�K2

has zero initial value. Therefore, we call

�̂T

V S,0 :=

r

V T

0

T

the variance swap volatility of the variance swap with maturity T , and the notation �̂T

0 will be

used in the rest part of the thesis for simplicity.

Let T1 < T2 be two maturities and V T1
t

, V T2
t

the corresponding variance swap variances at time

t < T1, T2. Then the forward variance swap variance V T1,T2
t

is defined as

V T1,T2
t

:=
(T2 � t)V T2

t

� (T1 � t)V T1
t

T2 � T1
.

As in Bergomi [4], we have the following property for forward variance, which is the key point in

setting the dynamics of forward variance.

Proposition 2.1. The drift of any forward variance V T1,T2
t

is zero.

Proof. To find the drift of V T1,T2
t

, we first need to know the cost of entering a trade whose payo↵

at time t+dt is linear in V T1,T2

t+dt

�V T1,T2
t

. Consider the following trading strategy with zero trading

cost:

• Buy T2�t

T2�T1
er(T2�t) variance swap with maturity T2,

• Sell T1�t

T2�T1
er(T1�t) variance swap with maturity T1.
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Denote V̂ T

t

is the realized variance over the interval [t, T ], and then the P&L at time t0 = t+ dt is:

P&L =
T2 � t

T2 � T1

 

V̂ t

0

t

(t0 � t) + V T2
t

0 (T2 � t0)

T2 � t
� V T2

t

!

er(T2�t)e�r(T2�t

0)

� T1 � t

T2 � T1

 

V̂ t

0

t

(t0 � t) + V T1
t

0 (T1 � t0)

T1 � t
� V T1

t

!

er(T1�t)e�r(T1�t

0)

= er(t
0�t)

 

(T2 � t0)V T2
t

0 � (T1 � t0)V T1
t

0

T2 � T1
� (T2 � t)V T2

t

� (T1 � t)V T1
t

T2 � T1

!

= (V T1,T2

t

0 � V T1,T2
t

)er(t
0�t) = (V T1,T2

t

0 � V T1,T2
t

)(1 +O(dt)).

This trading strategy generates a P&L which is linear in V T1,T2

t+dt

� V T1,T2
t

at lowest order in dt,

with zero initial cost. Therefore, the pricing drift of any forward forward variance is zero.

In order to specify the dynamics for the variance swap curve, we also need to define the value

of the forward variance for the date T observed at time t as

⇠T
t

:= V T,T

t

.

According to [27], for the continuous setting, it is given that, under Q,

V T

t

= EQ
t

[RV 0,T ] = EQ
t

[hlogSi
T

].

We define the forward variance curve (⇠T
t

)
T�0 as

⇠T
t

:= @
T

V T

t

, T � t � 0.

It is easy to see that the two definitions are equivalent. Note that, if we assume that the underlying

process (S
t

)
t�0 follows the following di↵usion process:

dS
t

= µ
t

S
t

dt+ �
t

S
t

dW
t

,

with a general stochastic volatility process (�
t

)
t�0, then the forward variance is given by

⇠T
t

= EQ
t

(�2
T

).

It can be seen as the forward instantaneous variance for date T , observed at t. In particular,

⇠t
t

= �2
t

, for all t � 0.

As mentioned by Bühler [11], the models used in practice are generally based on di↵usion dynamics

where forward variance curves are given as a functional of a finite-dimensional Markov-process:

⇠T
t

= G(T ; t, Z
t

),

where the function G and the m-dimensional Markov-process Z satisfy some consistency condition,

which essentially ensures that for every fixed maturity T > 0, and the forward variance (⇠T
t

)
tT

is

a martingale.
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2.3 The Heston model

Among the first generation stochastic volatility models, the Heston [22] model is perhaps the most

popular one. The risk-neutral dynamics in the Heston model are as follows:
8

>

<

>

:

dS
t

= (r � q)S
t

dt+
p
V
t

S
t

dW
t

,

dV
t

= �(V
t

� ✓)dt+ ⌫
p
V
t

dZ
t

,

(2.4)

with hdW, dZi
t

= ⇢dt and initial variance V0. All volatilities depend only on the instantaneous

variance V
t

, and the forward variance ⇠T
t

is given by:

⇠T
t

= E
t

[V
T

].

One of the advantages of the Heston model is its semi-closed analytical formula for the price of

vanilla option. The pricing formula of a European call option with maturity T and strike K can

be calculated through Fourier transform, see [2]:

C0(K,T ) = E
�

S
T

� ek
�

+

= S0

✓

1

2
+

1

⇡

Z 1

0

<
✓

�
T

(⇠ � i)

i⇠�
T

(�i) e
�ik⇠

◆

d⇠

◆

�Ke�rT

✓

1

2
+

1

⇡

Z 1

0

<
✓

�
T

(⇠)

i⇠
e�ik⇠

◆

d⇠

◆

=: S0⇧1 �Ke�rT⇧2,

where �
T

(⇠) is the characteristic function of the log-stock price at time T . The characteristic

function can be written in the following form:

�
T

(⇠) = exp
⇣

C
T

(⇠) +D
T

(⇠)V0 + i⇠ log(S0)
⌘

, (2.5)

where

C
T

(⇠) := ir⇠T +
✓

�2

⇢

(� i⇢�⇠ � d
T

(⇠))T � 2 log

✓

1� �
T

(⇠)e�dT (⇠)T

1� �
T

(⇠)

◆�

,

D
T

(⇠) :=
� i⇢�⇠ � d

T

(⇠)

�2

✓

1� e�dT (⇠)T

1� �
T

(⇠)e�dT (⇠)T

◆

,

�
T

(⇠) :=
� i⇢�⇠ � d

T

(⇠)

� i⇢�⇠ + d
T

(⇠)
, d

T

(⇠) :=
p

(� i⇢�⇠)2 � �2(i⇠ � ⇠2).

The above formula is very helpful in calculating the implied volatility and quickly calibrating the

model to the market.

The properties of the Heston model have been well discussed in [6], and here we only summarize

the important details. Taking the conditional expectation on both sides of the second equation in

(2.4) and using the notion V̄
u

= E
t

[V
u

] leads to:

dV̄
T

= �(V̄
T

� ✓)dT,

whose solution is

V̄
T

= ✓ + e�(T�t)(V
t

� ✓),
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which is equivalent to:

⇠T
t

= ✓ + e�(T�t)(⇠t
t

� ✓).

Di↵erentiating the above equation, we have:

d⇠T
t

= ⌫e�(T�t)
q

⇠t
t

dZ
t

. (2.6)

Note that ⇠T
t

is driftless, as it should be from Proposition 2.1. The Heston model is thus a one-

factor model for forward variances. The instantaneous volatility of all forward variances ⇠T
t

is

proportional to the instantaneous volatility
p

⇠t
t

. And it is a Markov-functional model for forward

variances, as ⇠T
t

is a function of ⇠t
t

.

However, as will be discussed in the next section, the Heston model is not a specific case of

the Bergomi forward variance model. In particular, according to Bergomi [6], the one-dimension

Markov representation exists only if the initial values ⇠T
t=0 of forward variances satisfy the following

condition:

d⇠T0
dT

= �(⇠T0 � ✓)dT.

The Heston model is not able to generate general term structures of VS volatilities.

The parameter  denotes the mean-reversion speed. The reciprocal of this parameter ⌧ = 1/

separates the asymptotic behaviours of volatility of volatility and at-the-money-forward (ATMF,

in the sense of the strike being the forward price) skew for short and long maturities. For the

Heston model, the VS volatility �̂T

t

is given by:

�

�̂T

t

�2
=

1

T � t

Z

T

t

⇠⌧
t

d⌧ = ✓ +
1� e�(T�t)

(T � t)
(V

t

� ✓).

Then the dynamics of �̂T

t

are:

d
h

�

�̂T

t

�2
i

= (. . .)dt+
1� e�(T�t)

(T � t)
⌫
p

V
t

dZ
t

.

Bergomi [6] has proposed two limiting regimes for the term structure of volatilities of volatility:
8

>

<

>

:

T � t⌧ 1/ Vol(�̂T

t

) ⇡ 1� (T � t)/2,

T � t� 1/ Vol(�̂T

t

) ⇡ 1/(T � t).
(2.7)

Thus, for long maturities, the instantaneous volatility of �̂T

t

decays like 1/(T �t), while in practice,

a power-law fit is more common.

Similarly, we have the following limiting regimes for the term structure of ATMF skew in the

Heston model:
8

>

>

<

>

>

:

T � t⌧ 1/ S
T

⇡ ⇢⌫

4
p
V
t

,

T � t� 1/ S
T

⇡ ⇢⌫

2
p
V0

1

(T � t)
,

(2.8)
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and market skews of indices still display a power-law decay.

The above summary has highlighted some discrepancies between the dynamics of volatility

generated by the Heston model and the one observed in reality. What makes the Heston model

unsuitable for handling cliquet-style options is the lack of flexibility, rather than its inability to

reproduce exactly the observed market.
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3 The Bergomi Forward Variance Model

To capture forward volatility and forward skew risks accurately, instead of modelling instantaneous

volatility, Bergomi [4] proposed a general framework for the dynamics of forward variance. Ap-

pended to this is a specification of the dynamics of the underlying consistent with that of variances.

In this thesis, we will examine the particular choice of the “exponential kernel”, as proposed by

Bergomi [4]. Other forms can also be considered, see [6] and [17]. And, for practical purposes, we

would like to drive the dynamics of all of the ⇠T
t

with a small number of factors.

3.1 Dynamics for forward variance

3.1.1 A N-factor model

In the general framework, we will use N Brownian motions and write the SDE of ⇠T
t

as:

d⇠T
t

= !↵
!

⇠T
t

X

i

!
i

e�i(T�t)dW i

t

, (3.1)

where ↵
!

is a normalizing factor such that the instantaneous lognormal volatility of ⇠T=t

t

is !, and

the correlation between (W i

t

)
t�0 and (W j

t

)
t�0 is ⇢

ij

. Volatilities of volatilities are more natural

objects than volatilities of variances. Therefore, as suggested by Bergomi [6], we introduce the

lognormal volatility ⌫ of VS volatility with vanishing maturity, which is the square root of ⇠t
t

. Its

instantaneous volatility is half that of ⇠t
t

. We will have:

! = 2⌫,

↵
!

=
1

q

P

ij

!
i

!
j

⇢
ij

.

The solution of (3.1) is given by:

⇠T
t

= ⇠T0 exp

0

@!
X

i

!
i

e�i(T�t)Xi

t

� !2

2

X

ij

!
i

!
j

e�(i+j)(T�t)E[Xi

t

Xj

t

]

1

A,

where the N driven Ornstein-Uhlenbeck (OU) processes (Xi

t

)
t�0 are defined by:

dXi

t

= �
i

Xi

t

dt+ dW i

t

, Xi

t=0 = 0.

The instantaneous volatility of ⇠T
t

is, from (3.1):

!(T � t) = (2⌫)↵
!

s

X

ij

!
i

!
j

⇢
ij

e�(i+j)(T�t). (3.2)

Considering the VS volatility �̂T

t

for maturity T :

�

�̂T

t

�2
=

1

T � t

Z

T

t

⇠⌧
t

d⌧.
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According to Itô’s lemma, the dynamics of �̂T

t

is given by:

d�̂T

t

= ⌫↵
!

1

�̂T

t

X

i

!
i

 

1

T � t

Z

T

t

⇠⌧
t

e�i(⌧�t)d⌧

!

dW i

t

+ (. . .)dt. (3.3)

And denote ⌫T
t

for the instantaneous lognormal volatility of �̂T

t

:

8

>

>

>

>

>

<

>

>

>

>

>

:

⌫T
t

= ⌫↵
!

s

X

ij

!
i

!
j

⇢
ij

f
i

(t, T )f
j

(t, T ),

f
i

(t, T ) =

R

T

t

⇠⌧
t

e�i(⌧�t)d⌧
R

T

t

⇠⌧
t

d⌧
.

(3.4)

3.1.2 A one-factor model

Let us write

d⇠T
t

= !(T � t)⇠T
t

dWT

t

, (3.5)

where !(u) = !e�ku. Choosing an exponentially decaying volatility function is equivalent to

driving the dynamics of forward variances with one OU process (X
t

)
t�0:

dX
t

= �X
t

dt+ dW
t

, X0 = 0.

X
t

and its variance are given by:

X
t

=

Z

t

0

e�(t�⌧)dW
⌧

, E[X2
t

] =
1� e�2t

2
.

Then the solution of SDE (3.5) reads:

⇠T
t

= ⇠T0 exp

✓

!e�(T�t)X
t

� !2

2
e�2(T�t)E[X2

t

]

◆

,

where ! is the lognormal volatility of ⇠T=t

t

, a forward variance with vanishing maturity.

The slight di↵erence between (2.6) and (3.5) leads to the structural restrictions of the Heston

model and keeps it from being a particular version of the Bergomi model. However, the Bergomi

one-factor model still cannot provide enough flexibility if we would like to capture the term struc-

ture of forward volatility and forward skew simultaneously. From (3.4), the instantaneous volatility

of �̂T

t

in the case of a flat term structure of VS volatilities at time t is:

⌫T
t

= ⌫
1� e�(T�t)

(T � t)
,

which is identical to the one obtained from the Heston model. Therefore, additional factors are

needed to o↵er more flexibility.
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3.1.3 A two-factor model

We now try with two OU processes (X1
t

)
t�0 and (X2

t

)
t�0. Denote their mean-reversion constants

by 1,2, and the correlation between the Brownian motions driving (X1
t

)
t�0 and (X2

t

)
t�0 by ⇢12.

We also introduce the mixing parameter ✓ 2 [0, 1] and denote by ↵
✓

the normalization constant such

that the instantaneous lognormal volatility of ⇠T=t

t

is equal to 2⌫. Then the Bergomi two-factor is

given by:
8

>

<

>

:

d⇠T
t

= (2⌫)⇠T
t

↵
✓

⇣

(1� ✓)e�1(T�t)dW 1
t

+ ✓e�2(T�t)dW 2
t

⌘

,

↵
✓

= 1/
p

(1� ✓)2 + ✓2 + 2⇢12✓(1� ✓).
(3.6)

And we introduce processes xT

t

defined as:

xT

t

= ↵
✓

h

(1� ✓)e�1(T�t)X1
t

+ ✓e�2(T�t)X2
t

i

,

where (X1
t

)
t�0, (X2

t

)
t�0 are OU processes:

8

>

<

>

:

dX1
t

= �1X
1
t

dt+ dW 1
t

, X1
0 = 0,

dX2
t

= �2X
2
t

dt+ dW 2
t

, X2
0 = 0.

(3.7)

And xT

t

is a driftless Gaussian process:

dxT

t

= ↵
✓

h

(1� ✓)e�1(T�t)dW 1
t

+ ✓e�2(T�t)dW 2
t

i

,

whose quadratic variation is given by:

hdxT , dxT i
t

= ⌘2(T � t)dt,

⌘(u) = ↵
✓

q

(1� ✓)2e�21u + ✓2e�22u + 2⇢12✓(1� ✓)e�(1+2)u.

Then SDE (3.6) now simply reads:

d⇠T
t

= (2⌫)⇠T
t

dxT

t

.

Its solution is

⇠T
t

= ⇠T0 f
T (t, xT

t

),

fT (t, x) = e!x�!2

2 �(t,T ),
(3.8)

where ! = 2⌫ and �(t, T ) is given by:

�(t, T ) =

Z

T

T�t

⌘2(u)du

= ↵2
✓



(1� ✓)2e�21(T�t) 1� e�21t

21
+ ✓2e�22(T�t) 1� e�22t

22

+2✓(1� ✓)⇢12e
�(1+2)(T�t) 1� e�(1+2)t

22

�

.

Note that ⇠T
t

has a Markov representation as a function of xT

t

- a Gaussian process.
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We also take 1 > 2 without loss of generality and call X1 the short factor and X2 the long

factor. From (3.4), we have:

d�̂T

t

�̂T

t

= ⌫↵
✓

 

(1� ✓)

R

T

t

⇠⌧
t

e�1(⌧�t)d⌧
R

T

t

⇠⌧
t

d⌧
dW 1

t

+ ✓

R

T

t

⇠⌧
t

e�2(⌧�t)d⌧
R

T

t

⇠⌧
t

d⌧
dW 2

t

dW 2
t

!

+ (. . .)dt

= ⌫↵
✓

�

(1� ✓)A1dW
1
t

+ ✓A2dW
2
t

�

+ (. . .)dt,

(3.9)

with A
i

give by

A
i

=

R

T

t

⇠⌧
t

e�i(⌧�t)d⌧
R

T

t

⇠⌧
t

d⌧
.

The instantaneous volatility of a VS volatility ⌫T
t

is given by:

⌫T
t

= ⌫↵
✓

q

(1� ✓)2A2
1 + ✓2A2

2 + 2⇢12✓(1� ✓)A1A2. (3.10)

3.2 Dynamics for asset price

We would write the following lognormal dynamics on the underlying:

dS
t

= (r � q)S
t

dt+
q

⇠t
t

S
t

dWS

t

, (3.11)

where WS

t

is correlated with the Brownian motions in the dynamics of forward variance. Particu-

larly, for a two-factor model, we can denote ⇢12 as the correlation between W 1 and W 2, ⇢1, ⇢2 as

the correlations between WS and W 1,W 2 respectively. This yields a stochastic volatility model

which has two factors and which can be calibrated to the term-structure of VS volatilities. Also,

in such a model, the level of forward skew is determined jointly by ⇢1, ⇢2, ⇢12, ⌫,1,2, ✓.

3.3 Approximation of the smile

For the Bergomi model, the pricing equation for European options is not analytically solvable and

we have to resort to Monte Carlo simulations. However, with noisy simulation results and huge

computation cost, it would be a disaster if we utilize Monte Carlo to calibrate our models. To

solve this problem, Bergomi and Guyon [7] has derived an approximation of the smile produced by

the forward variance model at second order in the volatility of volatility. They introduce a scaling

factor ✏ for the volatilities of forward variances and derive that at second order in ✏, the implied

volatility for maturity T and strike K are exactly quadratic in log-moneyness:

�̂(K,T ) = �̂(F
T

, T ) + S
T

ln

✓

K

F
T

◆

+
C
T

2
ln2
✓

K

F
T

◆

+O(✏3). (3.12)
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The ATMF volatility �̂(F
T

, T ), the ATMF skew S
T

and curvature C
T

are given by:

�̂(F
T

, T ) = �̂T



1 +
✏

4Q
Cx⇠ +

✏2

32Q3

�

12(Cx⇠)2 �Q(Q+ 4)C⇠⇠ + 4Q(Q� 4)Cµ

�

�

, (3.13a)

S
T

= �̂T



✏

2Q2
Cx⇠ +

✏2

8Q3

�

4CµQ� 3(C
x⇠

)2
�

�

, (3.13b)

C
T

= �̂T

✏2

8Q4

�

4CµQ+ C⇠⇠Q� 6(Cx⇠)2
�

, (3.13c)

where Q =
R

T

0
⇠s0ds and �̂T =

q

Q

T

, the VS volatility for maturity T , and Cx⇠, C⇠⇠, Cµ summa-

rize the joint spot/variance dynamics of the model at hand. Cx⇠ and C⇠⇠ are integrals of the

spot/variance and variance/variance covariance functions evaluated on the initial variance curve,

and Cµ involves an extra degree of model-dependence as it depends on the derivative of Cx⇠ with

respect to ⇠. The details of Cx⇠, C⇠⇠, Cµ are showed in Appendix A. And when we use these

formulas, we will set ✏ = 1.

It is clear from (3.13a) that ATMF implied volatility is the variance swap volatility plus a

spread. At first order the spread is Cx⇠/4Q. Typically, for the equity market, Cx⇠ < 0, and, hence,

ATMF implied volatility lies below the variance swap volatility. When the correlation between the

underlying and the variance is zero, Cx⇠ = Cµ = 0, we have

�̂(F
T

, T ) = �̂T



1� ✏2

32Q3

�

Q(Q+ 4)C⇠⇠

�

�

.

The ATMF implied volatility lies again below variance swap volatility. And the higher the value

of variance swap volatility, the smaller the ATMF implied volatility.

At order one in ✏, from (3.13b), the ATMF skew is given by

S
T

= �̂T

Cx⇠

2(�̂TT )2
, (3.14)

where we have set ✏ = 1. Whenever spot and variances are uncorrelated, S
T

vanishes both at order

✏ and ✏2, and at all orders, as it should, since it is a well-known result that the smile is symmetric

in log-moneyness for uncorrelated spot and variances.

Bergomi and Guyon conclude that in the case of the Bergomi two-factor model, there are good

aggrements of the order one expression for the ATMF skew, and of the order two expression for

the ATMF volatility, for values of the volatility of short-dated variance (around ⌫ = 200%) that

are typical of implied levels of equity indices. The accuracy of the expansion will be verified in the

following section.
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4 Numerical Simulation

In this section, several numerical simulations have been implemented to test the flexibility of a

two-factor model and the accuracy of expansion in (3.12). For simplicity, a flat term structure of

VS volatilities has been used, if not specified particularly. Additionally, some techniques for Monte

Carlo simulations are also discussed.

4.1 Term structure of volatility of VS volatility and ATMF skew

In the case of a flat term structure of VS volatilitites, ⇠⌧
t

does not depend on ⌧ . The integral in

(3.4) and (3.10) can be evaluated analytically and for a two-factor model, we get the following

simple formula for the instantaneous volatility of �̂T

t

:

⌫T
t

= ⌫↵
✓

q

(1� ✓)2A2
1 + ✓2A2

2 + 2⇢12✓(1� ✓)A1A2,

with A
i

given by:

A
i

=
1� e�i(T�t)


i

(T � t)
.

Among the parameters of the two-factor model, the subset ⌫, ✓,1,2, ⇢12 determines the dy-

namics of the VS volatilities in the model. Once these parameters are set, the dynamics of VS

volatilities is set. Then we can select the additional parameters ⇢1 and ⇢2 to generate the desired

spot/volatility dynamics and the desired vanilla smile.

The accuracy of expression (3.13b) for the ATMF skew S
T

, is excellent already at order one in

✏, as highlighted in [7]. At this order, the formula simplifies to (3.14). For a Bergomi two-factor

model, we have

Sorder 1
T

=
⌫↵

✓

(�̂T )3T 2

Z

T

0

dt
q

⇠t0

Z

T

t

du⇠u0

h

(1� ✓)⇢1e
�1(u�t) + ✓⇢2e

�2(u�t)
i

(4.1)

where �̂T =
q

1
T

R

T

0
⇠t0dt. Particularly, in the case a flat term structure of forward variances/VS

volatilities, the double integrals can be evaluated analytically to obtain:

Sorder 1
T

= ⌫↵
✓



(1� ✓)⇢1
1T � (1� e�1T )

(1T )2
+ ✓⇢2

2T � (1� e�2T )

(2T )2

�

. (4.2)

Normally, for equity indexes, volatilities of VS volatilities usually display a power-law depen-

dence on maturity, with an exponent that typically lies between 0.3 and 0.6. For the numerical

simulations below, we use the same parameters from Bergomi [6].

We will use the following time-homogeneous benchmark form for ⌫T
t

:

⌫T,B

t

= �0

✓

⌧0
T � t

◆

↵

(4.3)

where ⌧0 is a reference maturity and �0 is the volatility of �̂t+⌧0
t

. Typically, we will take ↵ =

0.4, ⌧0 = 3 months and �0 = 100%. Table 1 displays the parameters used to match ⌫T,B

t

in (4.3)

with the above setting.
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⌫ ✓ 1 2 ⇢12

Set I 150% 0.312 2.63 0.42 -70%

Set II 174% 0.245 5.35 0.28 0%

Set III 186% 0.230 7.54 0.24 70%

Table 1: Three sets of parameters used in forward variance process

Fig.2 displays the term structure of instantaneous volatilities at t = 0 of VS volatilities ⌫T
t

as

a function of T generated by the benchmark form (4.3) as well as the two-factor model for a flat

term structure of VS volatilities. The three set of parameters are di↵erentiated by the value of

the correlation between processes (X1
t

)
t�0 and (X2

t

)
t�0, We have used ⇢12 = �70%, 0, 70% and

have selected the remaining parameters ⌫, ✓,1,2 so as to best match our benchmark (4.3) for

maturities from one month to 5 years.

Figure 2: Term structure of instantaneous volatilities of VS volatilities generated by the benchmark

function as well as the two-factor model, with the di↵erent sets of parameters listed in Table 1.

It is clear that the two-factor model is able to capture a power-law dependence for volatilties

of volatilities over a wide range of maturities. Moreover, for a given ↵, many di↵erent sets of

parameters exist that provide an equally acceptable fit to our benchmark.

The next question is how should we choose ⇢1, ⇢2? Once other parameters are set, ⇢1, ⇢2 will

determine both the vanilla smile and future smiles. It is necessary that the two-factor model be

at least able to generate smiles that are comparable to historically observed smiles, in particular

with respect to the term structure of the ATMF skew. This is especially important when pricing

cliquet-style options. Typically, equity index smiles display a term structure of the ATMF skew

that is well approximated by a power law with an exponent usually around 0.5.

As indicated by Bergomi [6], the di↵erence of the implied volatilities for strikes 0.99F
T

and

1.01F
T

, where F
T

is the forward price for maturity T , is approximately equal to �0.02S
T

and
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the order-one expansion is remarkably accurate. We therefore measure the ATMF skew as the

di↵erence of implied volatilities of implied volatilities for strikes 0.99F
T

and 1.01F
T

and calculate

the skew by expression (4.2) for Sorder 1
T

.

⌫ ✓ 1 2 ⇢12 ⇢1 ⇢2

174% 0.245 5.35 0.28 0.0% -75.9% -48.7%

Table 2: Values of parameters of the two-factor model

The values for ⇢1, ⇢2 in Table 2 are such that they generate a term structure for the ATMF

skew that is approximately a power law with exponent 0.5, with �̂0.99FT � �̂1.01FT = 0.6% for

T = 1 year. As illustrated in Fig.3, the Bergomi two-factor model can generate the desired term

structure of the ATMF skew.

Figure 3: Term structure of ATMF skew measured as the di↵erence of implied volatilities for strikes

0.99F
T

and 1.01F
T

, with the parameters in Table 2. A flat VS volatility at 20% has been used.

We could as well haven chosen other values for ⇢1, ⇢2 such that the ATMF skew in the two-

factor model generates a power-law dependence with a di↵erent exponent. However, the freedom

is limited. Indeed, the other parameters in the model are already set and the triplet ⇢12, ⇢1, ⇢2

must constitute a valid correlation matrix. This is the case if ⇢2 is defined as:

⇢2 = ⇢12⇢1 + �
q

1� ⇢212

q

1� ⇢21, (4.4)

where � 2 [�1, 1]. The above restriction will be used in both Monte Carlo simulations and the

algorithm of calibration.

4.2 Vanilla smile

As mentioned before, there is no analytical formula for the price of vanilla options with the Bergomi

model, and, hence, we have to implement a Monte Carlo simulation. For the Bergomi two-factor
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model with (3.6) and (3.11), the Euler schemes for the two OU-processes (3.7) and the underlying

process (3.11) are given below:

X1
t+�t

�X1
t

= �1X
1
t

+
p
�tX, (4.5a)

X2
t+�t

�X2
t

= �2X
2
t

+
p
�tY, (4.5b)

log(S
t+�t

)� log(S
t

) =

✓

r � q � 1

2
⇠t
t

◆

�t+
q

⇠t
t

�tZ. (4.5c)

where X, Y , Z are Brownian motions with mean 0, variance 1 and the following correlation

structure:

X = W 1,

Y = ⇢12W
1 +

q

1� ⇢212W
2,

Z =
⇢1 � ⇢12⇢2
1� ⇢212

W 1 +
⇢2 � ⇢12⇢1
1� ⇢212

W 2 +
p

1� �2W 3,

(4.6)

and

� =

s

⇢21 + ⇢22 � 2⇢12⇢1⇢2
1� ⇢212

,

where W 1,W 2,W 3 are three independent standard Brownian motions. The detailed procedure for

the pricing of options using Monte Carlo simulations is demonstrated in Algorithm 1.

Algorithm 1 Basic Monte Carlo algorithm

1: procedure Option Price(N,M) . Path number N, time step M

2: sum 0

3: for i = 1 to N do

4: generate W 1,W 2,W 3
and calculate X,Y, Z . With (4.6)

5: for j = 1 to M do

6: simulate paths of X1
t

, X2
t

. With (4.5a), (4.5b)

7: set path of ⇠t
t

. With (3.8)

8: simulate path of S
t

. With (4.5c)

9: end for

10: sum sum+ F (S
T

) . Payo↵ F (·)
11: end for

12: return sum/N

13: end procedure

Denote Ĉ0 as an estimate of the true value of the option C0, but with an error due to the fact

that it is an average of randomly generated samples and so is itself random. A measure of the

error is the standard error

Se(Ĉ0) =
Sd(Ĉ0)p

N
,
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where the standard deviation Sd(Ĉ0) of Ĉ0 is

Sd(Ĉ0) =

v

u

u

t

1

N � 1

N

X

j=1

(C0,j � Ĉ0)2.

Another way to measure the quality of the estimator is the half-width, HW, of the confidence

interval. For a fixed ↵, we have

HW = z1�↵/2Se(Ĉ0).

The parameters used for the Bergomi two-factor model is the same as the ones used in last

section, as listed in Table 2. We simulate the price of a vanilla ATM European call option with

the parameters in Table 3.

S0 K T r q

50.0 50.0 1.0 0.5% 0.0%

Table 3: Values of parameters for the option

In order to get an acceptably accurate estimate of the option price, a very large number of

simulations has to be performed, typically in the order of millions (M > 1, 000, 000). But the

cost of computation (running time) is very large, and the speed of convergence for Monte Carlo

simulation is slow, proportional to 1/
p
N , where N is the number of simulation path. Thus,

cutting the error in half requires increasing the number of points by a factor of four, and adding

one decimal place of precision requires 100 times as many points. The results of standard Monte

Carlo simulations are displayed in Table 4 .

Path Num Time Step Price Std Error 95% HW

500,000 100 3.60 0.58% 0.63%

1,000,000 100 3.59 0.42% 0.44%

2,000,000 100 3.59 0.29% 0.31%

Table 4: Values of the option with basic Monte Carlo simulations

This problem can be ameliorated to some extent using some “variance reduction” techniques.

Remark 4.1. The speed of Python code can often be increased greatly by vectorizing mathemati-

cal expressions that applied to NumPy arrays rather than using loops. The results can be observed

from the following simulations in Table 5. The first one is based on code using only loops (two

for-loop: time discretization and path simulation), while the second one is based on vectorization.

The code with vectorization is far much faster, but still not fast enough yet to be used in the

calibration.
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Remark 4.2. Another way to increase the simulation speed is to use Cython, which is an optimis-

ing static compiler for the Python programming language. Cython provides the combined power

of Python and C to let you interact e�ciently with large data sets, e.g. using multi-dimensional

NumPy arrays. The results can also be observed from the following simulations in Table 5. The

code with Cython performs slightly better than the code with vectorization.

Code Type Path Num Time Step Price Std Error 95% HW Run Time

For-loops 125,000 100 3.58 1.17% 1.25% 168.14s

Vectorization 125,000 100 3.60 1.18% 1.25% 4.39s

Cython 125,000 100 3.59 1.17% 1.25% 3.84s

Table 5: Run time of di↵erent code types

4.2.1 Variance reduction

The standard Monte Carlo of averaging vanilla option payo↵ over all simulated paths produces

price estimations that are in practice too noisy to use. In this subsection, we present several more

e�cient techniques.

Antithetic variates: Suppose we would like to estimate E[Y ], and that we have generated two

samples, Y1 and Y2. Then an unbiased estimate is given by

Y1 + Y2

2
,

with variance

Var(Y1) + Var(Y2) + 2Cov(Y1, Y2)

4
.

We could reduce the variance if we could arrange it so that Cov(Y1, Y2) < 0. The method of

antithetic variates is based on this idea. Set Y
i

= h(W
i

), where W
i

=
⇣

W
(i)
1 , ...,W

(i)
m

⌘

is a vector

of independently identically distributed standard normal variables. We now also set Ỹ
i

= h(�W
i

).

Note that E[Y
i

] = E[Ỹ
i

] = E[Y ] so that in particular, if

Z
i

=
Y
i

+ Ỹ
i

2
,

then E[Z
i

] = E[Y ]. This means that Z
i

is also an unbiased estimator, with lower variance.

Control variates: Suppose as usual that we would like to estimate the expected value E[Y ]. On

each simulation, we can generate one sample Y
i

and another variable X
i

, and thus draw a sequence

of pairs (X
i

, Y
i

). Assume that E[X] is known, and define

Y
i

(b) = Y
i

� b(X
i

� E[X]).
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Algorithm 2 Antithetic variate Monte Carlo algorithm

1: procedure Option Price(N,M) . Path number N, time step M

2: sum 0

3: for i = 1 to N do

4: generate W 1,W 2,W 3
and calculate X,Y, Z . With (4.6)

5: for j = 1 to M do

6: simulate paths of X1
t

, X2
t

with X,Y, Z . With (4.5a), (4.5b)

7: simulate paths of X̃1
t

, X̃2
t

with �X,�Y,�Z . With (4.5a), (4.5b)

8: set paths of ⇠t
t

and ⇠̃t
t

. With (3.8)

9: simulate paths of S
t

and S̃
t

. With (4.5c)

10: end for

11: sum sum+
⇣

F (S
T

) + F (S̃
T

)
⌘

/2 . Payo↵ function F (·)
12: end for

13: return sum/N

14: end procedure

Note that E[Y
i

(b)] = E[Y
i

], so

1

M

M

X

i=1

Y
i

(b)

is an unbiased estimator of E[Y ]. We can choose b to minimize variance of Y
i

(b):

Var[Y
i

(b)] = Var[Y ]� 2bCov[X,Y ] + b2Var[X].

The optimal choice b⇤ is also the OLS coe�cient regression of Y on X:

b⇤ =
Cov[X,Y ]

Var[X]
.

And we will have

Var[Y
i

(b)] = Var[Y ](1� ⇢2
X,Y

).

It is desirable to choose a X that is strongly correlated with Y .

In practice, we would not be able to computer the value of b⇤ exactly and would estimate it in

advance by simulation: choose n large and use

b⇤ =

P

n

i=1(Yi

� Ȳ )(X � E[X])
P

n

i=1(X � E[X])2
. (4.7)

In other words, we would first run a pilot simulation (large n) to estimate b⇤, and then use that

fixed value throughout our main Monte Carlo simulation.
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Algorithm 3 Control variate Monte Carlo algorithm

1: procedure Option Price(N,M) . Path number N, time step M

2: sum 0

3: for i = 1 to L do . Do pilot simulation first

4: generate W 1,W 2,W 3
and calculate X,Y, Z . With (4.6)

5: for j = 1 to M do

6: simulate paths of X1
t

, X2
t

with X,Y, Z . With (4.5a), (4.5b)

7: set paths of ⇠t
t

. With (3.8)

8: simulate paths of S
t

. With (4.5c)

9: end for

10: P  F (S
t

), Q H(S
t

) . Payo↵ F (·), control variate H(·)
11: end for

12: Compute b⇤ for P,Q . With (4.7)

13: for i = 1 to N do

14: generate W 1,W 2,W 3
and calculate X,Y, Z . With (4.6)

15: for j = 1 to M do

16: simulate paths of X1
t

, X2
t

with X,Y, Z . With (4.5a), (4.5b)

17: set paths of ⇠t
t

. With (3.8)

18: simulate paths of S
t

. With (4.5c)

19: end for

20: sum sum+ F (S
T

) + b⇤ (H(S
T

)� E[H(S
T

)])

21: end for

22: return sum/N

23: end procedure

For the Bergomi two-factor model, the simulation is path-dependent and it is di�cult to choose

good control variates. One can use the final spot price S
T

as a control variate. This is a generic

control variate, available to all products and models, but not always that e�cient. The payo↵

function of a European call option is

F (S
T

) = max(S
T

�K, 0),

resulting in the option price

C(S0) = e�rTEQ[F (S
T

)].

Further the underlying asset has known expected value EQ[S
T

] = S0erT , which yields the estima-
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tion as:

C(S0) =
1

N

N

X

i=1

�

�(Si

T

)� b⇤(Si

T

� S0e
rT )
�

.

Another better idea would be to use the sum of delta hedging P&L as the control variate. The

delta hedge P&L control variate is formulated as follows:

�
CV

=
M�1
X

i=0

@C

@S
(t

i

, S
i

, �̂)
⇣

S
i+1 � S

i

er(ti+1�ti)
⌘

.

The delta is computed in the framework of Black-Scholes, with an arbitrary implied volatility �̂.

(a) Final spot price (b) Delta hedge P&L

Figure 4: Correlation between control variate and option payo↵ for 1-year vanilla ATM call option

with S0 = 50.0, r = 0.5%, in the two-factor model with parameters in Table 2, for di↵erent control

variates. A flat VS volatility at 20% has been used.

We have compared the correlations between the two di↵erent control variates and the final

payo↵, as displayed in Fig.4. It indicates that the correlation between the delta hedge and the

payo↵ is 0.9, and will lead to almost 5 times decreased standard error.

Gamma/theta P&L accrual: Bergomi [6] has proposed another technique based on a repre-

sentation of the price of a European option in an arbitrary stochastic volatility model:

C(0, S0) = CBS(0, S0, �̂) + EV

"

Z

T

0

e�rt

S2
t

2

@2CBS

@S2
(�2

t

� �̂2)dt

#

,

where EV denotes that the expectation is taken with respect to the dynamics generated by the

stochastic volatility model at hand, whose instantaneous volatility process is �
t

. The equation

expresses the price of a European option in an arbitrary stochastic volatility model as its price in

the Black-Scholes model with implied volatility �̂ augmented by the discounted expectation of the

integrated gamma/theta P&L evaluated with the Black-Scholes gamma - a natural representation

from a trading point of view. We call �̂ is the risk-management volatility. We still need to simulate
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the spot process, but S
t

is only used to compute the Black-Scholes gamma. In our simulation, we

use for �̂ the VS volatility for maturity T , and X1
t

, X2
t

, S
t

are simulated at discrete times t
i

: over

the path, the second piece in the representation is evaluated as:

N�1
X

i=0

e�rti
S2
i

2

@2C

@S2
(t

i

, S
i

, �̂)(⇠ti
ti
� �̂2)(t

i+1 � t
i

).

The pricing results and standard errors of Monte Carlo simulations with di↵erent techniques

discussed above are illustrated in Table 6 and Fig.5, where we have used the parameters in Table

2. The VS volatilities are flat at 20% and the time step is set as 100.

Variance Reduction Path Num Price Std Error 95% HW Run Time

Original 250,000 3.59 0.83% 0.88% 10.06s

Antithetic Variate 125,000 3.60 0.53% 0.56% 9.02s

Control Variate (Underlying) 250,000 3.59 0.51% 0.54% 10.17s

Control Variate (Hedge) 250,000 3.59 0.18% 0.19% 15.07s

Gamma/Theta Accrual 250,000 3.60 0.18% 0.20% 13.59s

Table 6: Results of di↵erent variance reduction simulations

Figure 5: Standard errors of prices for 1-year vanilla ATM call option with S0 = 50.0, r = 0.5%,

in the two-factor model with parameters in Table 2, for di↵erent Monte Carlo algorithms. A flat

VS volatility at 20% has been used.

As expected, the simulation result with any variance reduction technique outperforms the one

using standard Monte Carlo. However, the e↵ectiveness is greatly reduced for the out-of-money

options where it is barely more accurate than the standard Monte Carlo. It is also clear that the

“control variate with delta hedge” and “gamma/theta P&L accrual” algorithms outperform the

other techniques. However, even for the algorithm with the best performance, it still takes above



4.2 Vanilla smile 30

10 seconds to get a result within our tolerance of accuracy. It seems impossible for us to calibrate

the Bergomi two-factor model with Monte Carlo simulations. We need to find alternatives.

In the following numerical simulations, without any further specification, we will utilize Monte

Carlo with delta hedge as control variate to generate price and vanilla smile.

4.2.2 Flat VS term structure

For the case with correlated variance and underlying processes, the vanilla smiles of the Bergomi

two-factor model with parameters in Table 2 have been illustrated in Fig.6. In the simulation, the

term structure of VS volatilities is flat at 20%.

Figure 6: Smiles of vanilla ATM call option with S0 = 50.0, r = 0.5%, for the two factor model

with parameters in Table 2. A flat VS volatility at 20% has been used.

The ATMF skew is displayed in Fig.7, as the di↵erence of the implied volatilities for strikes

0.99F
T

and 1.01F
T

, approximately �0.02S
T

, together with the order-one expression in (3.14). It

is clear that the order-one expression is remarkably accurate to approximate the term structure of

ATMF skew. We could utilize the order-one expression in our calibration.

And observe that in the Bergomi two-factor model, expression (3.14) for Sorder 1
T

does not involve

the level of VS volatility: at order one in ✏, the ATMF skew is unchanged if VS volatilities are

rescaled by a common factor. Because of the accuracy of Sorder 1
T

, we would expect this behaviour

to persist in the simulated smile: this is illustrated in Fig.8. It shows the implied volatilities for

di↵erent levels of VS volatility, for a one-year maturity vanilla ATM option. As is manifested,

ATMF skew is practically independent on the level of VS volatility.

To finish the discussions in this part, we consider another case when the correlation of forward

variance with underlying process vanishes: ⇢1 = ⇢2 = 0. It is well known that for uncorrelated

spot and variances, the smile is symmetric in moneyness. The parameters used are lised in Table

7.
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Figure 7: Term structure of simulated, as well as order-one approximated, ATMF skew of vanilla

call option with S0 = 50.0, r = 0.5%, for the two-factor model with parameters in Table 2. A flat

VS volatility at 20% has been used.

Figure 8: Smiles of vanilla ATM call option with S0 = 50.0, r = 0.5%, for the two factor model

with parameters in Table 2. Di↵erent levels of flat VS volatility have been used.

⌫ ✓ 1 2 ⇢12 ⇢1 ⇢2

174% 0.245 5.35 0.28 0.0% 0.0% 0.0%

Table 7: Values of parameters of the two-factor model II

Fig.9 displays the simulated smiles for four di↵erent maturities, for a flat term structure of VS

volatilities at 20%. It is clear that the Bergomi two-factor model can capture the symmetric smile.

However, the asymmetric skew is more common for equity index market.
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Figure 9: Smiles of vanilla ATM call option with S0 = 50.0, r = 0.5%, for the two factor model

with parameters in Table 7. A flat VS volatility at 20% has been used.

4.2.3 Non-flat VS term structure

Normally, the assumption of the flat term structure for VS volatilities is not practical. In this

section, we will use the following term structure:

�̂VS = z2 + (z1 � z2)e
�z3T , (4.8)

where z1 = 12.03%, z2 = 21.80%, z3 = 2.166, to simulate the vanilla smiles. The details of this

parameterisation will be discussed in the following section. The parameters for the Bergomi two-

factor model is the same as in Table 2 and the flat term structure is chosen as 17.8%, which is the

VS volatility for one-year maturity. The simulation results are illustrated in Fig. 10 and Fig.11.

(a) Flat term structure for VS vol (b) Non-flat term structure for VS vol

Figure 10: Smiles of vanilla ATM call option with S0 = 50.0, r = 0.5%, for the two-factor model

with parameters in Table 2 – I

In Fig.10, the left graph shows vanilla smiles with flat term structure for VS volatilities. It is

clear that the level of ATM volatility (100% moneyness) stays around the flat term structure value

for all maturities, while for the non-flat term structure, from the right graph, the level of ATM
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(a) Long maturity (b) Short maturity

Figure 11: Smiles of vanilla ATM call option with S0 = 50.0, r = 0.5%, for the two-factor model

with parameters in Table 2 – II

volatility (100% moneyness) varies according to the term structure value for di↵erent maturity,

which can generate more flexible smiles in practice.

In Fig.11, we plot the smiles from flat term structure and non-flat term structure together and

distinguish them by di↵erent maturities. It is noted that for short maturities, 3M and 6M, the

e↵ect of non-flat term structure is significant, adjusting the ATMF vol from around 17% to 12%.

However, for longer maturities, there is only slight adjustment for ATMF volatility. It does make

sense if we take into account the fact that the VS volatility/forward variance tend to stay stable

for longer maturities. Moreover, it seems that there is no connection between the term structure

and the ATMF skew, by observing the slope of the smile.

4.3 Approximation of the smile

In this part, we will conduct some numerical simulations to test the accuracy of the order-2

expansion of the implied volatility in (3.12). The implied volatilities from the order-2 expansion of

the Bergomi two-factor model with parameters in Table 2 are displayed in Fig.12, together with

the ones from Monte Carlo simulations. It is clear that the order-2 expansion works well mostly,

especially for short maturity and around-the-moneyness options.

⌫ ✓ 1 2 ⇢12 ⇢1 ⇢2

148% 0.231 6.00 0.25 0.0% -70.0% -35.7%

Table 8: Values of parameters of the two-factor model III

In Fig.13, the ATMF volatilities from order-2 expansion and Monte Carlo simulations are

displayed for both a flat term structure of VS volatility as 17.8% and a non-flat one as in (4.8),

with parameters in Table 2 and a new set in Table 8. The new set of parameters is chosen with a
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(a) Short maturity (b) Long maturity

Figure 12: Smiles of vanilla call option with S0 = 50.0, r = 0.5% from order-2 expansion and

Monte Carlo simulation, for the Bergomi two-factor model with parameters in Table 2

lower instantaneous volatility of volatility.

Figure 13: ATMF implied volatilities of vanilla call option with S0 = 50.0, r = 0.5% from order-2

expansion and Monte Carlo simulations, with parameters in Table 2

The ATMF implied volatilities are extremely well estimated by the second order expansion.

It is excellent for short maturities and small levels of volatility of volatility ⌫, but deteriorates

at longer maturities. But for calibration, only the options around the money are utilized, where

the second order expansion works well. Therefore, the approximation can be used in calibration,

instead of Monte Carlo simulations. And as we have discussed, for a flat term structure of VS

volatilities, it is clear that the ATMF implied volatilities stay around the flat value.
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5 Practical Implementation

5.1 Su�ciency based on principle component analysis

In the previous section, we have introduced the general Bergomi N-factor model. For practical

pricing purposes, we would like to drive the dynamics of the forward variance with a small number

of factors. How many OU processes should we use and are enough to capture the desired dynamics?

In this part, we will resort to Principle Component Analysis (PCA).

For a large dataset of correlated variables, principal components (PCs) enable us to summarize

this dataset with a smaller number of variables that are able to explain most of the variability

of the original dataset. The details can be found in any theoretical or applied statistical analysis

textbook, see [23].

Here, one thing to be mentioned is that actually there are two equivalent ways conducting

PCA. Simply put, the traditional PCA viewpoint requires one to compute the eigenvalues and

eigenvectors of the covariance matrix, which is the product XXT , where X is the centred data

matrix of n ⇥ p size. Since the covariance matrix is symmetric, the matrix is diagonalizable, and

the eigenvectors can be normalized such that they are orthonormal:

XXT = WDWT ,

whereW is a matrix of eigenvectors andD is a diagonal matrix with eigenvalues �
i

in the decreasing

order on the diagonal. Moreover, �
i

/(�1 + . . .+�
p

) is the proportion of the total variability of the

data explained by the ith PC, and (�1+ . . .+�
k

)/(�1+ . . .+�
p

) is the proportion of the variability

explained by the first k PCs.

If we would like to retain k components, there is a trade-o↵ between k large to explain more

variability or k small to give a parsimonious representation. To assist in the choice of k, a diagram

is often drawn, by plotting the points (k,�
k

/
P

�
i

), or equivalently (k, (�1 + . . .+ �
k

)/
P

�
i

) and

joining adjacent points by straight-line segments. Normally k is chosen such that

�1 + . . .+ �
k

� �
k+1 + . . .+ �

p

.

On the other hand, applying Singular Value Decomposition (SVD) to the data matirx X as

follows:

X = U⌃V T ,

and attempting to construct the covariance matrix from this decomposition gives

XXT = (U⌃V T )(U⌃V T )T

= (U⌃V T )(V ⌃UT ).

Since V is an orthogonal matrix,

XXT = U⌃2UT ,
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and the correspondence is easily seen.

Our first dataset includes over the counter quotes on VS rates on the S&P500 index extracted

from Bloomberg. The data includes daily quotes with time to maturities 1, 2, 3, 6, 9, 12, 15, 18,

and 24 months from November 4, 2008 to June 1, 2017, generating 2,133 observations for every

maturity and a data matrix of 2, 133 ⇥ 9 size. The centered data is denoted as X, i.e. column

means have been subtracted from the original data and are equal to zero in X.

As demonstrated in Fig.14, PCA shows that the first principal component explains about 97%

of the total variability of VS rates and can be treated as a level factor, while the second principal

component explains an extra 2.33% and can be interpreted as a slope factor. This finding is not

surprising, in that PCA of several other term structures, such as bond yields, produce similar

results. But the first two factors are able to explain nearly all the variance of VS rates, i.e. 99%.

Overall, PCA suggests that two factors are good enough to drive VS rates.

Figure 14: Explained variance by principle components

And while most term structures are upward sloping, they are sometimes U-shaped or downward

sloping. We have reconstructed the variance swap curves with several principal components. Fig.15

shows that with either upward sloping or downward sloping, two principle components are enough

to reconstruct the original curve, indicating that two OU processes are enough in Bergomi’s forward

variance model.

5.2 Calibration

The calibration of the Bergomi model is not based on the traditional standard: how it fits to

the given market volatility surface. The calibration products include variance swaps and vanilla

options. Several implementations of calibration will be described. As the term structure of the

variance swap volatilities is important in constructing the volatility surface, we will first introduce

two possible parameterisations.
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(a) Date: 2017-06-01 (b) Date: 2008-11-05

Figure 15: Variance swap curve reconstructed with principle components

5.2.1 Parameterisation of initial VS curve

In practise, the assumption of the flat term structure of forward variance/VS volatility does not

hold, and the term structure is important in generating smiles. The initial values of forward

variance curve can be calibrated on the market prices of variance swap contracts with:

⇠t0 =
d

dt

�

(�̂t

0)
2t
�

, (5.1)

where �̂t

0 is the VS volatility for maturity t. Alternatively, the ⇠t0 can be chosen so as to recover the

market prices of other instruments, such as ATMF volatilities of vanilla options for all maturities.

In this section, we briefly discuss a few term-structure parameterisation schemes of variance swap

curves.

From [11], a few schemes are given as: �̂t

0 = z1 +w(x) for some term-structure function w, and

the following candidates have been considered:

w1(x) = z2 log(1 + t),

w2(x) = z2
p
✏+ t,

w3(x) = z2/
p
✏+ t,

w4(x) = z2atan(✏+ t),

where ✏ is a small value, which is set as 1e � 08 in our simulation. However, all of these schemes

only works well for either upward sloping or downward sloping. And even if we can vary our

scheme according to the scenario, most of them will generate explosive forward variance curves.

For example, with scheme w1, we have ⇠t0 = O(t), which is not desirable. In the long run, the values

of initial variance swap curve and initial forward variance curve should approach to a constant level.

Therefore, it is reasonable to choose a parameterisation with asymptotic line. One choice is the
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linearly mean-reverting parameterisation:

�̂t

0 = z2 + (z1 � z2)e
�z3t, (5.2)

for z1 � 0 and z2, z3 > 0. z1, z2, z3 stand for the short run variance, long run variance and the

speed of mean-reversion respectively. The scheme is proposed as the functional for variance in [11],

and it is a good choice to model volatility as well. Another candidate with asymptotic behaviour

is the Gompertz function:

�̂t

0 = z1e
�z2e

�z3t

,

where z1 is the asymptote, z2 sets the displacement along the x-axis, i.e. time to maturity, and z3

sets the growth rate.

From the discussions in the previous section, the term structure of the initial forward variance is

very important in the volatility modelling with the Bergomi two-factor model. The initial forward

variance curve ⇠t0 can be obtained analytically or via the numerical solution:

⇠t0 = (�̂t

0)
2 + t

(�̂t+✏

0 )2 � (�̂t�✏

0 )2

2✏

with ✏ = 1e� 08.

The performances of fit for the two parameterisations are illustrated in Fig.16. Two di↵erent

scenarios are considered: upward sloping and downward sloping initial VS volatility curves. It

is clear that the two parameterisations work equally well for di↵erent term structure scenarios.

Moreover, there are no significant di↵erences between the extracted initial forward variance curves

as well, and both of them present asymtotic behaviours, which are what we expect. Therefore,

it is reasonable to fit the initial VS volatility curve with either of the parameterisations. With a

more intuitive financial explanation, the linearly mean-reverting scheme is selected in the following

implementations.

For the date 2016-04-18, which is also the date in calibration and pricing, the values of param-

eters used in mean-reverting scheme (5.2) are listed in Table 9. The short run variance is 12.03%,

and the long run variance is 21.80%

z1 z2 z3

12.03% 21.80% 2.166

Table 9: Values of parameters in linearly mean-reverting scheme on 2016-04-18

5.2.2 Market Data

The second dataset consists of market quotes on vanilla options on the S&P500 index from Op-

tionMetrics.1 The expiration date of index options is the Saturday following the third Friday of

1 OptionMetrics, is a comprehensive database of historical market quotes, with best bid and best o↵er, for the

entire US listed index and equity options markets.
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(a) Variance swap 2017-06-01 (b) Initial forward variance 2017-06-01

(c) Variance swap 2008-11-05 (d) Initial forward variance 2008-11-05

Figure 16: Performance of variance swap parameterisation schemes

the expiration month. And the index options generally may be exercised on last business day be-

fore the expiration date. Therefore, trading in index options will ordinarily cease on the business

day (usually) preceding the expiration date. Part of market data of the options on S&P500 for

2016-04-18 is listed in Table 10.
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strike cp flag date ex date best bid best o↵er

300.0 C 20160418 20160520 1787.7 1790.8

300.0 P 20160418 20160520 0.0 0.25

400.0 C 20160418 20160520 1687.7 1690.9

400.0 P 20160418 20160520 0.0 0.25

... ... ... ... ... ...

2500.0 C 20160418 20160520 0.0 0.15

2500.0 P 20160418 20160520 408.0 411.2

300.0 C 20160418 20160617 1783.9 1787.1

300.0 P 20160418 20160617 0.0 0.05

... ... ... ... ... ...

3500.0 C 20160418 20181221 0.05 0.95

3500.0 P 20160418 20181221 1422.5 1432.2

Table 10: Market quotes of options on S&P 500 for 2016-04-18

From the discussions in the previous section, we could calibrate the correlations between forward

variance and underlying processes to match the values of ATMF skew, measured as the di↵erence

of implied volatilities for strikes 0.99F
T

and 1.01F
T

. Therefore, a proper interpolation scheme is

necessary to construct the volatility surface. On the other hand, we also need zero rate / discount

factor and spot price / forward price to calculate the price of exotics derivatives.

Calibrate discount factor and forward price Assume that the put-call parity holds for the

European vanilla options:

C(K)� P (K) = DF · (F �K),

where DF is the discount factor and F is the forward price. Therefore, we can utilize it to calibrate

the discount factor and forward price for each maturity.

For the implementation, in practise, it is seldom to use all the instruments provided, considering

that many of them have no open interest or trading volume. Instead, we can select a calibration

window, say 30%, of all the instruments provided, and use them to calibrate our parameters. The

idea is illustrated in Fig.17. The quoted prices in the “box” are used to conduct the calibration.

For each maturity, we can obtain the respective discount factor and forward price through the

following optimization problem:

argmin
⇥

X

K

(C(K)� P (K)�DF · (F �K))2 ,

where ⇥ = {DF,F}. A good choice for the initial guess of forward price used in the optimization

would be the strike for which the call price and put price are equal. In Fig.17, it is illustrated as
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the point of intersection of the call and put price curves.

Figure 17: Illustration of the calibration window for expiry date 2016-05-20

The calibrated discount factor and forward price for di↵erent tenors on 2016-04-18 are listed in

the following Table 11. These results will be used to simulate the Bergomi model and price other

exotic instruments.

tenor (yr) discount factor forward price

0.088 0.999533 2090.27

0.164 0.999025 2087.41

0.241 0.998398 2085.65

0.337 0.997698 2081.99

0.414 0.997270 2079.24

0.663 0.994850 2072.21

0.759 0.994035 2071.12

0.912 0.992701 2065.88

1.162 0.990439 2059.74

1.660 0.985090 2048.70

2.677 0.969909 2030.96

Table 11: Values of discount factor and forward price on 2016-04-18

Construct volatility surface with raw SVI parameterisation Here, we consider an alter-

native, not based on some stochastic dynamics, but on a particular parameterisation, to construct

the volatility surface with the provided market data. The SVI model was originally devised at

Merrill Lynch in 1999 and subsequently publicly disseminated by Gatheral [12].

First, denote CBS(k,�2t) as the Black-Scholes price of a European call option on S with strike

F
t

ek, maturity t and volatility �, where F
t

is the forward price, and denote �BS(k, t) as Black-
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Scholes implied volatility. Then the total implied variance is w(k, t) = �2
BS(k, t)t. For a given

parameter set ⇥ = {a, b, ⇢,m,�}, the raw SVI parameterisation of total implied variance reads:

w(k;⇥) = a+ b
n

⇢(k �m) +
p

(k �m)2 + �2
o

, (5.3)

where a 2 R, b � 0, |⇢|  1, m 2 R, � > 0, and the condition a + b�
p

1� ⇢2 � 0, which ensures

that w(k,⇥) � 0 for all k 2 R.

The ease with which SVI can fit listed option prices led to its subsequent popularity with

practitioners. In the implementation, we still select a calibration window, as illustrated by Fig.17.

Due to the relatively high liquidity, only out of money calls and puts, with calibration window

15% for each, are utilized to calibrate the volatility surface. For each maturity, the optimization

problem is:

argmin
⇥

X

k

�

wSVI(k,⇥)� wMKT(k, t)
�2

.

The calibrated volatility surface is displayed in Fig.18. It is clear that the volatility surface

generated by SVI parameterisation fits the market well. From the discussions in the previous

section, ATMF skew and ATMF volatility are useful for the calibration of the Bergomi two-factor

model, and generally, the SVI parametersation tends to work well around-the-money.

Market volatility of volatility and ATMF skew To calibrate the forward variance process

and to reflect the market’s view in some way, the level and the term structure of the volatility of

volatility, by the expression (3.10), should be consistent with historically observed ones.

As a measure of the volatility of the variance swap volatility with maturity ⌧ for a given time

scale �
t

, Bergomi [4] defines

Vol(�̂⌧

0 ) =
1p
�t

Sd

2

4log

0

@

q

V �t,�t+⌧

�t

q

V �t,�t+⌧

0

1

A

3

5 ,

where Sd is the standard deviation. For the calculation, we still use the data of over the counter

quotes on variance swap rates on the S&P500 index extracted from Bloomberg as before. In this

case, �
t

= 1 day. With the market quotes, the realized volatility of VS volatility is calculated as

the sample standard deviation of the log-return of VS volatility:

Vol2(�̂⌧

0 ) =
1

n� 2

n�1
X

i=1

 

log(�̂⌧

0,i+1/�̂
⌧

0,i)�
1

n� 1

n�1
X

i=1

log(�̂⌧

0,i+1/�̂
⌧

0,i)

!2

⇥ 252,

where n is the number of observations in our variance swap dataset.

After we construct the volatility surface from SVI parameterisation, the ATMF skew, measured

as the di↵erence of implied volatilities for the strikes 0.99F
T

and 1.01F
T

, can be calculated directly

through (5.3):
r

w(0.99;⇥⇤)

T
�
r

w(1.01;⇥⇤)

T
,
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Figure 18: Market volatility surface with SVI parameterisation
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where ⇥⇤ = {a⇤, b⇤, ⇢⇤,m⇤,�⇤} is the optimal parameters of SVI fit for maturity T . The mar-

ket volatility of VS volatility and ATMF skew are displayed in Fig.19, together with the fitted

benchmark functions (4.3).

Figure 19: Market volatility of VS volatility and ATMF skew on 2016-04-18

Remark 5.1. From the right graph of Fig.19, the power-law benchmark only produces a general

fit to the term structure of ATMF skew, which will have e↵ect on the performance of calibration.

The reason is that the S&P500 skew has been magnified during recent years, as is manifested in

Fig.20. One potential explanation, see [30], is that dealer hedging of popular retirement products

will a↵ect the index greeks. We have mentioned in Section 1 that the US retirement market is

dominated by both variable annuities and fixed indexed annuities. And the flows from dealers

looking to hedge these positions is pushing up skew on the SPX. They usually buy put options

and risk reversals to flatten their position, putting upward pressure on skew.

Figure 20: ATMF skew of S&P500 for date 2010-12-06 and date 2016-04-18
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5.2.3 Calibration of Bergomi two-factor model

Now we are ready to implement our calibration for the Bergomi two-factor model. We will discuss

three di↵erent ways of calibrating the model to the market. The non-flat term structure of VS

volatilities in (5.2) has been used. And all the calibration procedures are tested for the date

2016-04-18. Another calibration example for the date 2010-12-06 is shown in Appendix B.

Separate calibration (Bergomi I) Bergomi [4] has introduced a two-step procedure for the

calibration:

• Set dynamics for the forward variance process, i.e. choose the values for the parameteres

⇥ = {⌫, ✓,1,2, ⇢12}, by the following optimization problem:

argmin
⇥

X

T

�

⌫T0 (⇥)�Vol(�̂T

0 )
�2

,

where ⌫T0 (⇥) is calculated by (3.10) and Vol(�̂T

0 ) is the market volatility of VS volatility for

maturity T .

• Calibrate the term skew, i.e. set the correlations ⇥ = {⇢1, ⇢2} between the forward variance

process and the asset process, by the following optimization problem:

argmin
⇥

X

T

(Sorder 1
T

� SMKT
T

)2,

where Sorder 1
T

is calculated by (4.1) and SMKT
T

is the market ATMF skew for maturity T .

The separate calibration is very easy and fast to implement. We can calibrate the parameters in

the Bergomi two-factor model step by step. The results of calibration are listed in Table 12. The

time scales of the OU processes 1/1, 1/2 are clearly separated and can generate a volatility of

VS volatility term structure that cannot be captures in a one-factor model.

⌫ ✓ 1 2 ⇢12 ⇢1 ⇢2

177% 0.260 13.21 0.56 62.08% -90.43% -89.61%

Table 12: Values of parameters in Bergomi two-factor model with separate calibration

Although we can fit the volatility of VS volatility very well, the flexibility of the term structure

of ATMF skew is restricted when the parameters for the forward variance process are set. As

discussed before, the triplet ⇢12, ⇢1, ⇢2 must constitute a valid correlation matix with restriction

(4.4). As S&P500 skew has been largely magnified, it may be not possible to get such large level of

skew, if we would like to recover the term structure of volatility of VS volatility at the same time.

The volatility of VS volatility and ATMF skew from Bergomi two-factor model with parameters

from separate calibration have been displayed in Fig.21, together with the market values. It is
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Figure 21: Volatility of VS volatility and ATMF skew with separate calibration

clear that we cannot match the ATMF skew very well, although the calibration works perfectly

for volatility of VS volatility.

In Fig.22, the vanilla smiles are extracted using parameters from a separate calibration. The

volatility surface produced by the model cannot reproduce the observed market, neither at the

level of ATMF volatility nor at the ATMF skew.

Joint calibration (Bergomi II) From the previous discussions, the results from the separate

calibration are not good enough to capture the market skew. Considering that the dynamics of skew

is important in the pricing of cliquets, the joint calibration is introduced. In this implementation,

all the parameteres, ⇥ = {⌫, ✓,1,2, ⇢12, ⇢1, ⇢2}, in the Bergomi two-factor model are calibrated

simultaneously. As the ATMF skew is more important for pricing, a “weighted” error function is

utilized:

argmin
⇥

0

@w1

X

T

✓

⌫T0 (⇥)�Vol(�̂T

0 )

Vol(�̂T

0 )

◆2

+ w2

X

T̃

 

Sorder 1
T̃

� SMKT
T̃

SMKT
T̃

!2
1

A , (5.4)

where w1 = 0.05, w2 = 0.95, with ⌫T0 (⇥) and Sorder 1
T̃

calculated by (3.10) and (4.1) respectively ,

and Vol(�̂T

0 ) as market volatility of VS volatility for maturity T and SMKT
T̃

as the market ATMF

skew for maturity T̃ . In the error function, relative errors are used to eliminate the issues of

di↵erent scales for volatility of VS volatility and ATMF skew. In practical implementations, one

can adjust the weight factor w1 and w2.

The results of the joint calibration are listed in Table 13. Still, the time scales of the OU

processes are clearly separated. The calculated volatility of VS volatility and ATMF skew from

the model are displayed in Fig.23, together with the market values. It is noted that the ATMF

skew matches the market well, but we have to sacrifice the fitness of volatility of VS volatility.

⌫ ✓ 1 2 ⇢12 ⇢1 ⇢2

172% 0.118 4.69 0.01 75.36% -98.93% -84.12%
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Figure 22: Vanilla smiles with separate calibration
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Table 13: Values of parameters in Bergomi two-factor model with joint calibration

(a) Vol of vol (b) ATMF skew

Figure 23: Volatility of VS volatility and ATMF skew with joint calibration

The smiles of implied volatilities with joint calibration are displayed in Fig.24. In most cases,

the vanilla smile generated by Bergomi two-factor model with joint calibration can fit the market

well. For short and long maturity, the ATMF skew is captured, but not the level of ATMF implied

volatility. If the Bergomi model is assessed according to how it fits given market option prices

across strikes and maturities, i.e., how it fits the volatility surface, then joint calibration produces

more reasonable volatility surface than the separate calibration. And another flexibility in the joint

calibration is that you can adjust the weights in (5.4), in order to get a customized calibration.

Calibrated to ATMF implied volatility (Bergomi III) Considering the drawbacks of joint

calibration for the short and long maturity, another calibration implementation based on joint

calibration will be introduced. From the previous discussions, the term structure of the initial

VS volatility/forward variance has nothing or little e↵ect on the ATMF skew. Therefore, we

can calibrate a hypothetical term structure of VS volatility, according to (5.2) and the order-2

expansion of ATMF volatility (3.13a), to match the ATMF implied volatilities.

However, the initial VS volatility/forward variance curve is an input to the Bergomi two-factor

model and the ATMF skew and ATMF volatility are jointly determined by the initial curve, with

parameters z1, z2, z3 and the other parameters ⌫, ✓,1,2, ⇢12, ⇢1, ⇢2. It would not be a good idea

to calibrate them, 10 in total, simultaneously. Alternatively, the method and results from the joint

calibration can be utilized, and the new calibration is implemented through a two-step procedure:

• Calibrate ⌫, ✓,1,2, ⇢12, ⇢1, ⇢2 simultaneously with the “weighted” error function (5.4) in-

troduced in joint calibration.

• Fix the parameters from the joint calibration and calibrate the ⇥ = {z1, z2, z3} in the initial
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Figure 24: Vanilla smiles with joint calibration
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VS volatility curve (5.2) by the following optimization problem:

argmin
⇥

X

T

�

�̂(F
T

, T )� �̂MKT(F
T

, T )
�2

,

where �̂(F
T

, T ) is calculated by (3.13a) and �̂MKT(F
T

, T ) is the market ATMF implied

volatility for maturity T .

The new calibration is based on the results from joint calibration and takes more time than the

previous two implementations. The results of calibration for the values of z1, z2, z3 in the hypo-

thetical term structure of VS volatility are listed in Table 14, and the values of other parameters

for Bergomi two-factor model are the same as in Table 13. There are slight di↵erences between

the new z1, z2, z3 and those used in previous two calibrations in Table 9. The calculated volatility

of VS volatility and ATMF skew are displayed in Fig.25, together with the market values. Still,

ATMF skew are fitted much better than the volatility of VS volatility, and the calibration can

capture the observed levels of ATMF volatility.

z1 z2 z3

10.40% 22.48% 1.94

Table 14: Values of parameters in VS volatility curve after calibrated to ATMF implied volatility

(a) Vol of vol (b) ATMF skew

Figure 25: Volatility of VS volatility and ATMF skew after calibrated ATMF volatility

In Fig.26, the vanilla smiles after calibrated to the ATMF implied volatility are slightly better

than the ones from the simple joint calibration, especially for short and long maturities. However,

none of these three implementations can capture the curvature of smile well. It would be hard to

obtain desirable curvature for every maturity if we calibrate the model only with ATMF implied

volatility and ATMF skew. However, both joint calibration and the calibration to match ATMF

volatility work well around-the-money.
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Figure 26: Vanilla smiles after calibrated to ATMF implied volatility



5.2 Calibration 52

The summary of the three di↵erent calibrations is listed in Table 15. Calibrating a model

amounts to deciding which instruments our exotic option price is a function of , along with the

spot. If we calibrate our forward variance model to variance swaps, then these are the hedge

instruments. Alternatively, if we calibrate so that the term structure of ATMF volatilities is

recovered, we will use the corresponding vanilla options as hedges. Moreover, we should select the

calibration method based on the payo↵ structure, i.e. more sensitive to the dynamics of volatility

or skew.

Vol of Vol ATMF Skew Vanilla Smile Run Time

Bergomi I 3 7 7 Shortest

Bergomi II 7 3 3 Medium

Bergomi III 7 3 3 Longest

Table 15: Comparison of three di↵erent implementations

5.2.4 Calibration of Heston model

The Heston model is assessed according to how it fits the given market option prices across all

strikes and maturities. To calibrate the parameters ⇥ = {, ✓, ⌫, ⇢, V0} in Heston model, the

optimization problem is:

argmin
⇥

X

T,K

�

V Heston(K,T )� V MKT(K,T )
�2

,

where V Heston is the price of the contract calculated from (2.5) and V MKT is the market price.

The calibration tries to fit the smiles for all maturities.

It is well known that the objective function of the Heston model calibration is not necessarily

convex and may exhibit several local minimum, which complicates the estimation of the optimal

parameters. The solution of the optimization might be dependent on the initial guess ⇥0. There-

fore, a good initial guess might be critical. From the previous discussions, we have already got a

good sense of the market.

• Mean-reversion speed : the parameter should take positive value. However, it is not clear

which upper value could be an appropriate bound. The initial guess is set as 5.

• Long-term variance ✓: given the mean-reversion, the volatility of most financial asset rarely

reaches levels beyond 100%. A good guess can be obtained from the (5.2) as z22 , where z2 is

the long-run VS volatility.

• Volatility of variance ⌫: being a volatility, this parameter should exhibit positive values.

However, the volatility of financial assets may change dramatically in short periods. The

volatility itself is very volatile. We will use the ⌫ in the Bergomi two-factor model as the

initial guess for the Heston model.
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• Correlation ⇢: statistical correlation takes values from �1 to 1. As previously discussed, the

index market is highly skewed, indicating a strong negative correlation between the volatility

and stock price. �80% is used as initial guess.

• Initial variance V0: similarly, the initial guess is set as z21 from (5.2).

In the calibration, we try to fit the smiles for all maturities. Still, the calibration window is set

as 30%, i.e. about 25 ⇤ 11 = 275 options at hand. Even with good initial guess, the calibration for

the Heston model is very slow. The results of the calibration are listed in Table 16.

 ✓ ⌫ ⇢ V0

2.78 0.052 0.88 -0.85 0.015

Table 16: Values of parameters in the Heston model

Using these results, the model predicted vanilla smiles and their comparison with the market

smiles are shown in Fig.27. The calibrated Heston model provides a general good match for the

traded options. However, as the figure shows, it cannot fit the desired ATMF skew well.

5.3 Pricing

In this part, we use the calibrated model to price an accumulator, a reverse cliquet and a napoleon.

We will compare the prices from di↵erent calibrated models and analyze the relative contribution

of dynamics of volatility and skew. As an illustration, to highlight the importance of the dynamics

of volatility and skew for the valuation of this type of options, we also consider the prices obtained

from the Black-Scholes model. To this end, we use Monte Carlo simulations with 20 time steps for

each month and 150,000 trials.

Table 17 and Table 18 display the prices corresponding to monthly cliquet options for maturity

with 1 year and 3 years. Note that, as expected, the pricing errors associated with the Black-Scholes

framework, with constant instantaneous volatility are extremely high for cliquet-style options. And

the Heston model provides higher prices than Bergomi model, overestimating the related risks.

As discussed previously, cliquet-style options are very sensitive to the dynamics of skew. The

fitness to ATMF skew can lead to important discrepancies in the pricing of exotic skew dependent

derivatives. With the similar performance of the fitness to ATMF skew, Bergomi II and Bergomi

III perform equally in pricing. The three methods of Bergomi calibration can provide an interval,

regarded as the bid-ask spread, for the fair price of cliquet-style options.

Bergomi I Bergomi II Bergomi III Heston Black-Scholes

Accumulator 2.31% 2.47% 2.47% 3.22% 1.25%

Reverse Cliquet 2.21% 2.87% 2.87% 3.78% 0.77%

Napoleon 1.45% 1.78% 1.78% 2.02% 1.03%
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Figure 27: Vanilla smiles from the Heston model
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Table 17: Model prices of cliquets with scenario I: B-S volatility 17.8%, maturity 1 year. Accumu-

lator: monthly basis, floor 1%, cap 1%. Reverse cliquet: monthly basis, coupon 15%. Napoleon:

monthly basis, yearly payout, coupon 8%

Bergomi I Bergomi II Bergomi III Heston Black-Scholes

Accumulator 5.48% 6.00% 6.00% 8.12% 2.06%

Reverse Cliquet 3.22% 4.50% 4.24% 4.71% 0.27%

Napoleon 4.61% 5.48% 5.33% 5.67% 3.06%

Table 18: Model prices of cliquets with scenario II: B-S volatility 17.8%, maturity 3 years. Accu-

mulator: monthly basis, floor 1%, cap 1%. Reverse cliquet: monthly basis, coupon 45%. Napoleon:

monthly basis, yearly payout, coupon 8%

To test the impact of dynamics of skew on the pricing of cliquet-style options, another hypo-

thetical pricing example has been conducted. In this case, we switch o↵ the dynamics of skew by

setting ⇢1 = 0.0% and ⇢2 = 0.0%. The prices are listed in Table 19. It is noted that without corre-

lations between the variance and underlying processes, the price of accumulator from the Bergomi

model is just the Black-Scholes price. Almost all the contribution comes from the forward skew.

Moreover, the volatility of volatility in the case when there is no skew has no material impact on

the price of accumulator while it does when forward skew is switched on, by comparing the prices

from three Bergomi implementations in Table 17 and 19. Again, for the Napoleon, the volatility

of volatility accounts for most of the price, as di↵erences between prices with and without for-

ward skew are not very significant. As expected, the price of a reverse cliquet is sensitive to both

volatility of volatility and forward skew.

Bergomi I Bergomi II Bergomi III Black-Scholes

Accumulator 1.24% 1.24% 1.25% 1.25%

Reverse Cliquet 1.11% 1.52% 1.56% 0.77%

Napoleon 1.26% 1.52% 1.54% 1.02%

Table 19: Model prices of cliquets with scenario III: B-S volatility 17.8%, maturity 1 year. Accu-

mulator: monthly basis, floor 1%, cap 1%. Reverse cliquet: monthly basis, coupon 15%. Napoleon:

monthly basis, yearly payout, coupon 8%
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6 Conclusion And Further Work

In [29], Wilmott described Cliquet-style options as “the height of fashion in the world of equity

derivatives”. As these contracts provide a downside protection while simultaneously o↵ering a

potential upside return, they, being insurance products, have become popular post-crisis. Cliquet-

style options provide interesting opportunities for investors or arbitragers, especially in the current

highly skewed market. Nevertheless, research literature on this topic is not widespread, neither

in the theoretical modelling nor in the practical implementations. There is no agreement on the

model for the pricing of these products.

To price them accurately, we should have an in-depth understanding of these contracts. From an

investor’s perspective as well as the product issuer’s, the choice of the local cap and floor is crucial

and changes the pricing results dramatically. And we have illustrated that these products are very

sensitive to the dynamics of volatility, or dynamics of skew, or both. Due to these properties,

great challenges will be faced by exotic traders when they try to price these path-dependent or

forward-starting structures.

This thesis has mainly explored the Bergomi forward variance model. In order to capture the

dynamics of volatility, it makes sense to model tradables such as variance swaps rather than non-

tradables such as implied volatilities. And we confirmed that using principle component analysis of

variance curves that two factors are su�cient. In contrast to the popular Heston model, it provides

the flexibility to match the term structure of the volatility of volatility and the ATMF skew and

allows the model user to directly control the behaviour of future smiles and hence properly price

forward smile risk of cliquet-style exotic products.

The practical implementations have been discussed in a comprehensive way to test the cali-

bration capabilities of these models in this thesis. We have abandoned the assumption of the flat

term structure of variance swap curve used by Bergomi [4], [6] and validated the e↵ectiveness of

the linear mean-reverting parameterisation of the variance swap curve. The normal calibration

of Bergomi two-factor model involves two levels of calibration. In the first step, we calibrate the

parameters that generate the forward variance curve to match the term structure of the volatility

of volatility. At the second step, we use the calibrated parameters, from the first step, and calibrate

the correlation coe�cients to control the term structure of the skew of the vanilla smiles.

However, as shown in the thesis, there are some constraints on the term structure of volatility

of volatility and ATMF skew in the normal calibration of Bergomi two-factor model for the current

highly skewed market. Therefore, we also considered other two implementations of the calibration.

Nevertheless, these alternatives are not su�cient to perfectly recover the observed term structure

of volatility of volatility and ATMF skew simultaneously, but still could improve the market fitting

in comparison with a simple two-step calibration, especially for a highly skewed market. And it

is noted that we should select the calibration method based on the payo↵ structure, i.e. more
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sensitive to the dynamics of volatility or skew.

For the pricing of cliquet-style options, the dynamics of volatility and skew contribute a lot

to the fair value. The pricing errors associated with the Black-Scholes framework are extremely

high and the Heston model will overestimate the risk of the dynamics of volatility and skew. The

Bergomi model can treat these risks accurately. And slightly di↵erent prices are obtained from the

three calibration implementations and can be regarded as the bid-ask spread.

To improve the current work, more e�cient calibration techniques should be developed. And

one can bring in another factor and consider a three-factor model. Alternatively, as suggested

by Bergomi [4] and [6], one can construct a constant elasticity of variance (CEV) model for the

underlying, along with consistent log-normal two-factor dynamics for the forward variances term

structure.
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A Expansion of the implied volatility

Bergomi and Guyon [7] has derived an approximation of the smile produced by the forward variance

model at second order in the volatility of volatility. They introduce a scaling factor ✏ for the

volatilities of forward variances and derive that at second order in ✏, the implied volatility for

maturity T and strike K are exactly quadratic in log-moneyness:
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B Practical implementation example

In this part, to compare the results, we will demonstrate the practical implementations of calibra-

tion and pricing of cliquet-style options for another date, 2010-12-16.

The calibrated term structures of volatility of VS volatilities and ATMF skew for three di↵erent

calibrations are displayed in Fig.28. It is noted that, in the less skewed market, all the three

calibrations perform the same and can capture the dynamics of volatility and skew simultaneously.

The vanilla smiles from calibrated Bergomi I, II, III and the Heston model are displayed in Fig.

29, Fig. 30, Fig. 31, Fig. 32 respectively. For the market at that time, there are no significant

di↵erences between the three calibrations of Bergomi model. Still, the Heston model cannot fit the

market skew well for all maturities.

The pricing results of accumulator, reverse cliquet, napoleon, using Monte Carlo simulations,

are listed in Table 20 and Table 21. It is noted that there are no significant di↵erences in the

pricing of accumulator as well.

Bergomi I Bergomi II Bergomi III Heston Black-Scholes

Accumulator 2.21% 2.20% 2.21% 2.89% 1.21%

Reverse Cliquet 1.52% 1.47% 1.56% 2.41% 0.49%

Napoleon 0.97% 0.94% 1.00% 1.31% 0.62%

Table 20: Model prices of cliquets with scenario I: B-S volatility 20.8%, maturity 1 year. Accumu-

lator: monthly basis, floor 1%, cap 1%. Reverse cliquet: monthly basis, coupon 15%. Napoleon:

monthly basis, yearly payout, coupon 8%

Bergomi I Bergomi II Bergomi III Heston Black-Scholes

Accumulator 5.06% 5.05% 5.06% 7.23% 1.91%

Reverse Cliquet 2.18% 2.29% 2.45% 1.83% 0.08%

Napoleon 3.47% 3.46% 3.60% 3.78% 1.83%

Table 21: Model prices of cliquets with scenario II: B-S volatility 20.8%, maturity 3 years. Accu-

mulator: monthly basis, floor 1%, cap 1%. Reverse cliquet: monthly basis, coupon 45%. Napoleon:

monthly basis, yearly payout, coupon 8%
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(a) Bergomi I Vol of vol (b) Bergomi IATMF skew

(c) Bergomi II Vol of vol (d) Bergomi II ATMF skew

(e) Bergomi III Vol of vol (f) Bergomi III ATMF skew

Figure 28: Volatility of VS volatility and ATMF skew with three di↵erent calibrations
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Figure 29: Vanilla smiles with seperate calibration
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Figure 30: Vanilla smiles with joint calibration
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Figure 31: Vanilla smiles after calibrated to ATMF implied volatility
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Figure 32: Vanilla smiles from the Heston model
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