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Abstract

This thesis aims to predict the probability distribution of foreign exchange rates log returns. The
probability density function of the foreign exchange rates log returns are modelled as a mixture
of normal distribution and Mixture Density Network is adopted to estimate the parameters in the
mixture density. The Mixture Density Network is trained with market data of various asset prices
and we compare the marginal contributions of each assets to the neural network predictions by
applying techniques in global interpretability of the neural network. The application we are going
to mainly focus on is to develop foreign exchange trading strategies. The constructed strategies
are then evalnated on market data and we found out the performances of the trading strategies are
improved by considering the dynamics of foreign exchange rates in different trading sessions. In
addition, we present simple regime classification method base on the mixture density parameters
estimations by the Mixture Density Network, and illustrate the classifications on market data.
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Section 1

Introduction

Foreign Exchange (FX) is trading currency of one country for another. FX is currently the largest
traded asset class, and the FX market is the most liquid financial market in the world, with
daily volume around 6.6 trillion US dollar in 2019 according to Bank for International Settlements
2019 [11]. It plays a crucial role in international trade and investment that allows financial investors
to buy and sell securities in foreign currency, corporations import and export goods and services
worldwide. Large mumber of market participants, monetary policies, trades, and news lead to a
volatile and complicated FX market. Therefore, it is important to consider the FX rate prediction
problem in multi discipline across multiple asset classes to examine how prices from other asset
classes impact the X rate.

The main aim of this paper is to predict the probability density finction of the F'X rate mid
log return using neural network with various asset classes as input features. We propose normal
mixture density to model the distribution of the I'X rate log return, and the parameters of the
mixture density distribution are estimated by Mixture Density Network, which is a particular
class of neural network first proposed by Christopher M. Bishop [6] (1994). There are numerous
existing literature that investigate various neural network architectures to perform point estimation
in financial time series price predictions and classification problem in predicting the direction of
price movement using technical analysis indicators, lagged features and macroeconomic factors as
input features. To the best of our knowledge, the combination of using multiple asset classes to
train the neural network to predict the probability density function of financial time series has not
been studied before. The density can give rich information about the direction of price movement,
and various statistical properties such as skewness and kurtosis, which allows practitioners to have
applications in risk management, algorithm trading, and derivatives hedging.

Research on F'X and equities predictions using machine learning and deep learning has become
very popular given the recent advancement in computational power and the proven general result
of universal approximation property in neural network by Leshno et al. (1993) [20, Theorem 1 and
Proposition 1, page 863], which guarantees the existence of neural networks of some architectures
that can approximate any measurable functions. Assaf (2019) [2] and Nielsen (2018) [24] explore
wild range of machine learning methods and neural networks to test the robustness of FX mid-
price forecast using tick by tick data in limit order book (LOB) of several exchanges with feature
creations via introducing various indicators using bid and ask prices of different levels. Long
Short-Term Memory is a type of recurrent neural networks (RNNs), which is designed to solve
the problem of vanishing and exploding gradient in RNNs. The use of Long Short-Term Memory
(LSTM) has become popular in financial time series prediction given its snceessful achievements. Tu
(2020) [35] adopts four architectures of neural network involving RNNs and LSTM using different
price levels in LOB to predict the mid-price and direction of movement in equities. Rather than
using LOB data, technical indicators are often used as features. Achchab and Lanbouri (2020) [19]
use technical indicators such as exponential moving average (EMA), moving average convergence
divergence (MACD), Bollinger Up and Bollinger Down to predict the S&P500 in one, five and ten
minutes ahead. Sheth and Teeple (2020) [31] establish linear relationship between the FX and
equity around the London 4pm Fix. They apply principle component analysis (PCA) to subset
factors, and generates buy and sell signals based on the prediction of FX returns around the London
4pm Fix. The vast majority of existing research on FX rates and stock prices predictions with
deep learning use information of individual asset and news as their input features for training. Hu




et al.(2021) [17] conduct a thorough survey on existing literatures focus on FX and stock prices
predictions using deep learning, we can conclude from the survey that there are significant number
of studies in using technical indicators, macroeconomic statistics, news headlines and sentiments as
variables to train their neural networks. There are very few literature discuss about the reasoning
on their choices of features, and also multiple asset classes have not yet been considered as variables
to train the neural networks to the best of our knowledge. We therefore stress the equal importance
of analysing the rationale behind the choices of the selected variables for training and quantitative
justifications in this thesis.

Non-normality properties in log returns have been empirically observed in various asset prices
for a long time. Alexander and Narayanan (2001) [1] show JPY/USD and EUR/USD empirically
exhibit fatter tails with excess kurtosis known as the leptokurtosis. They attempt to model the
non-normality of log returns by assuming the conditional distribution of log return is normal while
the unconditional log return is not normal, which the normal mixture distribution satisfies such
properties, and the normal mixture density is applied in option pricing and calibration. Similar
derivatives pricing application was done by Brigo (2002) [8]. He use the Fokker-Planck equation
derived analytical form of stochastic differential equation (SDE) which has a solution with risk-
neutral marginal density satisfying the mixture density and to model the volatility smile problem.

Christopher M. Bishop (1994) [6] connects mixture density and neural network. Bishop orig-
inally wanted to solve the inverse problem motivated by robotic inverse kinetics. He described
the inverse problems as having multi-valued mapping from the input to output space. Neural
networks in classical regression problem can only approximate the average of multiple outcomes,
but the average is not necessarily able to represent a solution. In the financial market, rarely we
can predict a single-valued future price accurately. Once we have predicted some future prices,
natural questions including what are the skewness and kurtosis of the predicted returns or how
likely an extreme price drops will take place. Thus, the underlying probability distribution can
provide desirable quantitative references for practitioners. Taylor (2000) [34] has studied proba-
bilistic prediction on financial returns. He applies the nonparametric approach quantile regression
by estimating the quantiles with neural network . Uunlike quantile regression, mixture density not
only provides interpretable parametric form that can recover the quantiles, it is also a natural
choice under the Hidden Markov Model, which can access rich information of the returns under
different market regimes. Therefore, we decide to estimate the FX rates log return probability
density function using Mixture Density Network.

The outline of the thesis is as follows: In Section 2, theoretical framework of neural networks,
mixture density will be reviewed. We will review the paper by Bishop (1994) [6] on the construction
of the Mixture Density Network, and also the theoretical background of global interpretability of
neural network will be introduced. In Section 3, details on data collection, data description and
the rationale behind the choices of various asset classes will be discussed. Section 4 will present the
performances and empirical results of the Mixture Density Network. The marginal contributions of
the assets we have used in the neural network will also be compared. Section 5 will mainly introduce
the application of our Mixture Density Network in algorithm trading and a brief demonstration
on regime classification based on the estimations by our Mixture Density Network. In Section 6,
conclusion and future research will be discussed.




Section 2

Theoretical Framework

In this section, we will review the basics of deep learning and the most common class Feedforward
neural network (FINN). The vast majority of the fundamentals of deep learning and neural networks
are taken from the great lecture notes written by Mikko Pakkanen [23]. We then gradually introduce
the recurrent neural network (RNN), and Long Short-Term Memory neural network (LSTM).
Mixture Density Network (MDN) will then be introduced and the minimisation of squared error in
standard neural network is equivalent to the conditional mean of the probability density estimated
by the Mixture Density Network which was proved by Bishop (1994) [6], will be demonstrated.
Similar results hold for neural network classification and further details can refer to the original
paper by Bishop (1994) [6]. The main objective of deep learning is to find a (non-linear) function
£ R = RO given input features @ := (1, ...,27) € B! in some optimal way. It is a very general
and broad description about deep learning tasks, and the key is to define optimality and how we
can reach the optimality.

2.1 Feedforward Neural Networks

The lecture note by Pakkanen [23, Definition2.1, page 17] gives a very clear outline on the math-
ematical definition and notations of feedforward neural network (FNN), and we will first present
the highlights from (23] to the readers, and explain the key components in FNN.

Definition 2.1.1 (Feedforward Neural Network). Let I,0,r € M. A function f is a feedfoward
neural network (FNN) with r — 1 hidden layers, where there are d; € I units in the i-th hidden
layer for any i = 1,...,7r — 1, and activation functions o, : EY 5 BY G =1,....r, where d, := O,
if

f=0c,0L,0o---0m10L (2.1.1)

where L; : R4—* — R%, for any i = 1,...,r is an affine function
Liz):=Wa+b, zcRh (2.1.2)

parameterised by weight matrix W = [W,] € R**® 1 and bias vector b' = (bj,..., by ) € RE,
with dp = 1.
We denote the class of such functions f by

Ne(L dy, .o idyy, 0oy, 0y) (2.1.3)

If oi(x) = (g(x1),....g(za)) & = (11,...,74,) € B% for some g : R — R, write g in place of o;
and omit o, ..., o, for brevity.




Input Layer e R* Hidden Layer € R® Output Layer e RB*

Figure 2.1: Feedforward Neural Network Example N2(3,5,2)

Key components of a typical feedforward neural network can be summarised as follows:

1. The function f is estimated by compositions of linear affine functions L and activation
functions o

2. Linear afline functions L consist of the weight matrices W and the bias vectors b

3. The activation functions o are usually non-linear in order to capture non-linearities of the
desired function f. For example, the Rectified linear unit (ReLU) function is the most widely
used, which is simply the function g(z) = max{z,0}. Other popular activation functions are
Sigmoid, Hyperbolic tangent (tanh) ete.

4. The hyperparameters of the network are the integers r,dy,...,d,_;. The parameters of the

neural network are the weight matrices W', ..., W and the bias vectors b',. .., b". Together
with the activation functions e,..., e, are called the architecture

Another key component that has not yet been introduced is the loss function that we are going
to introduce in the next part.

2.1.1 Loss Function

Recall that the objective of general deep learning task is to find some non-linear function in some
optimal way, and the loss function is crucial in characterising optimality.

Definition 2.1.2 (Characterisation of Optimality). Suppose f € N.(I,d,,....d._,0). Given
input & € B! and reference value y € RY, which are the realisations the joint vector (X,Y).
Define loss function as | : R? x R® — R. The optimality of neural network is characterised by
minimising the following quantity

E[l(f(X),Y)]

By definition 2.1.2, the optimality is characterised by minimising the expected value of the loss
function. However, the joint distribution is usually not observed, hence samples of realised loss
J.'(_f(m")_.y"] are observed and their empirical mean is computed as an estimator. Furthermore,
instead of taking the mean of the whole sample space, subsets of sample called minibatches are
usually taken. This is because taking the whole sample space is computationally expensive during
the processes of optimisation for large sample size.




2.1.2 Choices of Loss Function

There are many variations of loss functions. We will state three choices of loss functions commonly
used in regression, classification and fitting probability density function respectively.

Squared Error Loss

The square error loss is the most widely used loss function in regression. Suppose the predicted
output in regression is given by §j € R and reference output y € RY, the square error is given by
the Euclidean norm

Squared Error Loss = ||§ — y||3

We often observe samples of realised §* fori = 1,..., N, then the mean squared error loss is nsnally
used for performance evaluations.

N
1 2
Mean Squared Error (MSE) =~ E 5" — yl?

Categorical Cross Entropy

On the other hand if a multi-class classification problem of is considered, and the total number of
class to be classified is C and suppose the the reference label y = (31, ..., y¢) is one-hot encoding,
which means if ¥ is in the i-th class Cj, then 3 = 1 and y; = 0 for any j # i. Denote the predicted

class label § = (4,,..., e) € [0,1]¢, the categorical cross-entropy is given by
c
Categorical Cross Entropy = — Z 1yy—1y log s
i=1

Negative Log-Likelihood

Given we have some samples of data points {x,y'}:i=1, . ~, and denote their joint probability
density function as p(z,y; 0) for some parameters §. The likelihood of the data set is given by

N
c=1]pt=" y'06) = Hp ‘|2 0)p(=';0) (2.1.4)
i=1

Maximize the likelihood enables to determine the appropriate values of 8, and equivalently min-
imisation of the negative log-likelihood is often used in practice.

Negative Log-Likelihood = —log £ (2.1.5)

2.1.3 Training of Feedforward Neural Networks
The training of a feedforward neural network consists of three steps:
1. Weight Initialization
2. Forward Pass
3. Backward Pass

The last two steps are often combined known as backpropagation, which is described as a two-pass
procedure in [14]. The three actions show how information flows within the neural network in
order to approximate non-linear functions optimally.

Weight Initialization

The weight matrices W1, ... W and the bias vectors b,....b" require initialization. In practice,
the biases are set to zero initially, and the weights are initialized by some efficient schemes such as
He initialization [15] or Xavier initialization [36] to overcome the vanishing or exploding gradients
problem.
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Backpropagation

Backpropagation consists of forward and backward pass. In forward pass, predicted values will be
determined based on the current weight matrices and biases. The realised loss is computed with the
choice of loss function, then backward pass is performed to adjust the parameters to minimise the
loss function. The two-pass procedure requires iterative optimization techniques namely gradient
descent.

Gradient descent algorithm searches for the minimal solution of the loss function with iterative
gradient updates. Denote the loss function [(@) for 8 € R" are the parameters of the neural
network. Then the iterative update of the parameters at ¢-th step is given by the following recursive
relationship

0, =81 —~Vel(6:1)

where ~ is the learning rate which has to be chosen appropriately during training. Too small or
large values of v will have slow convergence, converge to local minimum or divergence. Optimal ~
is usnally determined through trials, learning rate of 0.01 is usually an appropriate choice to begin
with in practice.

A variation of the gradient descent algorithm, the Adam gradient descent algorithm is often used
nowadays. It was first proposed by Kingma and Ba (2014) [18] and they described the algorithm
as adaptive moment estimation. The Adam gradient descent outperforms other algorithms under
sparse gradients and non-stationary setting. A brief description on the iterative updates of the
algorithm (18, section 2, page 2| is given by:

. ) N m
my = Fymy oy + (1= 3)Vel(8;), 1wy = !,
1-— 43]_
. ) i . . v
vy = fyvs 1 + (1= B2)(Vel(8,))%, 1, = !,
1- 432
0, =0, — ——
t t—1 o e t
By = 0.9, 8, = 0.999, and € = 10°® are usnally selected, and the learning rate v is chosen

appropriately.

Therefore, in order to obtain an update of the parameters in neural network, the derivatives
of the loss function with respect to the weights and biases, Vgl(8;), are required to compute. To
compute the derivatives of the loss funetion Vgi(#;), chain rule in partial differentiation is applied.
We first define some notations, then present the result of the backpropagation equation. Detail
justifications can be found in the book Element of Statistical Learning [14, section 11.3, page 392-
397] and the lecture notes written by Paklkanen [23, Proposition 3.13, page 39-40].
Fori=1,....,r,and j=1,....d;

wi — o.((u_.'imi—l o b()
2= Wipi—! 2+ b

" ol(8)

8= -
g ot
()z_ ;

' is in fact the vectors computed in the i-th hidden layers of the neural network. z' is simply
the vectors by applying the i-th linear affine function on 2!, and 4} is the partial derivatives of

the loss function [ with respeet to the components of zi. The main aim of backpropagaiton is to

determine the expressions % and % By chain rule the desired expressions are given by:
ik J
dig1
i I Sit1yqritl
8 = G’:(}] E oW (2.1.6)
r=1
d ;
ol S a9z 1
- = - — ={4x, 2.1.7
a H"; Z a 21 E] Wi . Lk ( )
=1 Js
d
al ~ dl 9z, ;
- = = =4 2.1.8
a7 Zl FER (2.1.8)
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It is not hard to observe the components of 8" are determined recursively by 67" and Wit!, The
backward pass action is originated in this step, and thus called backpropogation.

To summarise, the feedfoward neural networks are the building blocks of all other classes of
neural networks. The techniques stated above with some variations will be used throughout in the
section of recurrent neural network and Mixture Density Network.

2.2 Recurrent Neural Network and LSTM

Recurrent neural network (RNN) is a class of neural network appropriate for processing sequential
data. In contrast, feedfoward neural networks often ignore the ordering and sequential properties
of the data, and the data are usunally shuflled before forward pass into the neural network. This
is undesirable in the analysis financial time series, since time series of price and volatility often
exhibit autocorrelation structures and clustering phenomenon, which was first observed by Man-
delbrot [22]. The general idea behind recurrent neural network is that sequential information are
stored and passed on within the hidden states in the network, so the network has memory on the
past information which are used to predict future values.

2.2.1 Forward Pass of Recurrent Neural Network

There are various architectures of recurrent neural network, and they differ in how layers are
connected. The Goodfellow’s book [13, Chapter 10, page 367 -415] has introduced several important
examples of recurrent neural networks and the methodologies to unfold recursive computations
into computational graphs. A general and universal recurrent neural network forward pass update
equations [13, Chapter 10, page 372] can be represented by the following equations and Figure 2.2
is a simple illustration :

a = p L Wh' Y L Uz® (2.2.1)
R® = tanh(a®) (2.2.2)
o) — e L VR (2.2.3)
3" = softmax(o'") (2.24)

Figure 2.2: Recurrent Neural Network forward pass

In a forward pass at time sequence f, there are three recurrent connections weight matrices:
input-to-hidden U, hidden-to-hidden W and hidden-to-output V. b and ¢ are the bias terms and

the hyperbolic tangent and the softmax activation functions are assumed to determine the current

h'") and the predicted values y'Y). Analogy to feedfoward neural network, the predicted value ")

can be written as composition of linear affine functions and activation functions, i.e.

Ll(zl.zQ] =b+ Wz1 T UZQ
Ly(z3) i=ec+ Vzy
g =gy o Ly(hY) ooy 0 Ly(zf A V)

where the activation functions oy and oy are the hyperbolic tangent and softmax function respec-
tively.

12




2.2.2 Backpropagation Through Time

To train the parameters in recurrent neural networks, gradient based algorithm is applied and
the gradients are computed by techniques similar to the backpropagation we have described in
subsection 2.1.3, which is called Backpropagation throngh time (BPTT) algorithm. The objective
of BPTT algorithm is to compute the gradients of loss function [ with respect to the parameters
UW.V.bc

In recurrent neural networks, the loss function is evaluated at each time sequence 1D, and the
total loss function is the sum over of all time, Le. [ :=3", 119, Therefore, the gradients have to
sum over all time t, and they are given by the following. For details would advise readers refer to
the Goodfellow’s book [13, Equations 10.22-10.28, page 380

: do®) - _
Vel =) (5) Vool

2.2.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM]) neural network is a particular type of recurrent neural network.
LSTM was first introduced by Hochreiter and Schmidhuber (1997) [16] to address the problem of
vanishing and exploding gradient in recurrent neural networks. Recurrent neural networks have
problems in long-term dependency. They are great in learning past information of input sequence.
However, gradients will tend to blow up or vanish during training of recurrent neural networks with
BPTT algorithm due to long sequence of multiplications. The paper [16] provides detail analysis
on the vanishing and exploding gradient problem. We will briefly highlight the main focus of the
problem.

Recall the backpropagation equation 2.1.6, Hochreiter and Schmidhuber (1997) [16] describes
the expression as j's backpropagated error signal.

di 1
gi_ i citlypritl
8t =al(z)) > sttwt
r=1
In the training of recurrent neural network with BPTT, the following product relevant to the
equation 2.1.6 determines the total error backward pass

Lo Gt =m0,

m

If the above product greater than 1, then the error back flow increases exponentially and blows
up, the weights oscillate and training is unstable. On the other hand, if the product is less than 1,
the error back flow decreases exponentially and vanish, thus nothing can be learned. Since in the
cases of blows up or vanishes mainly depend on the behaviours of multiplication of weight matrix,
another simple intuition is by Singular Value Decomposition (SVD), the SVD of the weight matrix
is given by

W=UxVv"
W' =W wyr=ve'v’

where 2 is the diagonal matrix of non-zero singular values (eigenvalues) of the matrix W. 1f we
raise W to the power of n, the singular values determine whether it blows up or vanish in the case
the singular values are greater than 1 or smaller than 1 correspondingly.

13




Structure of LSTM

The core structure in LSTM is called gates. The idea of gates is carefully deciding the portion
of information that can flow through in forward pass, which eliminates the effects of long-term
dependency in ordinary recurrent neural networks. There are three main gates in LSTM:

1. Forget Gate
When information leaves from the previous time sequence and enters the current state, the
forget gate controls the portion of past information to be dropped out.

F. = sigmoid(W R ™Y + U sz + b5)

2. Input Gate
The feature &'!) at current time enters the LSTM unit, the input gate controls the portion
of current information to be updated.

i, = sigmoid(W, R Y + U, 2® + b))

3. Output Gate
The output gate decides the portion of information at current time to let through as input
for the next LSTM unit.

0; = sigmoid(W(,h“_U + U,z +b,)

Sigmoid activation funetion is applied componentwise amongst the gates in LSTM to deseribe
how much information is allowed to let thronugh, it outputs value between 0 and 1 which makes it
an appropriate candidate for information control, i.e.

- 1
T lte

After the information pass through the gates, there are central processors like structure called the

sigmoid(z) relR

A
~
X (T >
@an
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| 0 | [tanh] [ g |
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_/

Figure 2.3: Single LSTM Unit [27]

cell state to pack information from the gates. The cell state consists of the following two steps:
& = tanh(W RN + Uz2™ + b;)
C =f!*C1_]_—'l:g*é1
where  is the componentwise multiplication operation. ¢;_; contains information of the cell state
from the previous time sequence, and ¢; contains current cell state information from the current
time sequence, while e; is the packed information from the forget and input gates by multiplying the
vectors ,_1, €, componentwise with f,, 4, respectively and sum them up to update the current cell

state ¢;. Lastly, the current cell state together with the output gate will determine the estimated
Y, with some activation function o

4, = oo * tanh(c;))

Analogy to recurrent neural networks, BPTT algorithm is employed to train the LSTM with
parameters within the three gates and the cell states. The expressions of the derivatives in BPTT
of LSTM are variations to those in RNN we have described and they will not be stated for the
sake of brevity.
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2.3 Mixture Density

The insufficiency of using normal distribution to model high frequency returns has been well
established empirically and motivates alternative choices of distribution such as the t-distribution
in modelling extreme values. Norets (2010) (25, Proposition 2.1 and Corollary 3.1, page 5-11]
proofs that mixture density can approximate any parametric and non-parametric density to an
arbitrary degree of precision with sufficient number of components, which justifies the capability
of mixture density to model non-normality characteristics. Moreover, the component densities in
mixture density in financial returns modelling are relevant to the regimes in the market. The
flexibility of mixture density is therefore make it a desirable candidate in financial modelling. We
will first highlight some basic properties of mixture density, then Mixture Density Network will be
introduced. Lastly, relationship between mixture density and market regimes will be justified.

2.3.1 Statistical Properties

Definition 2.3.1. (Finite Mixture Density) Finite mixture density is a probability density function
p(z) admits a finite weighted sum of component probability density function pi(z),..., p,(z) and
weights Ap, ..., A, is given by

m

plz) = Apila)

i=1
where m € N~ g is finite, 37" A, =1, and X; z 0 foralli=1,...,m

We will consider the parametric family of densities D = {p(-;0)|8@ € © C R?}. In particular,
we will consider normal mixture where the parametric family of densities belongs to normal dis-
tribution, i.e. the probability density function for the i-th component follows a univariate normal
distribution and the density function is given by

(z—p)*
202

i

— exp(~ )

. 1
PilTi g, 03) = :
(3 phiy 04 5

where p; € R and o; > 0, and p(z; p, o) = 310 Aidi(; pi, 04). The flexibility of mixture normal
density comes from its multi-modality properties and allowing skewness and kurtosis different from
univariate noraml distribution.

Figure 2.4: Multi-modality of Normal Mixture
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Proposition 2.3.2. (Properties of Finite Normal Mizture) Suppose the random variable X follows
a finite mizture of normal distribution with m components has density p(z; p. o) = S| Mg (z: 1. ;).
also let X1..... X be the component random variables, where X; has density function ¢;(x: p:, 0:),

then we have the following:

1. Denote @ be the cumulative distribution function of standard normal distribution (cdf). Then
the cdf of finite mizture normal distribution Fx(x) is given by

m

F(a) = Y ae(—) (2:3.1)
i=1 *

2. For any measurable function f, the expectation of f(X) is given by

m

E[f(X)] =Y ME[f (X)) (2.3.2)

In particular, denote p = E[X], then the k-th moment about zero and the k-th central moment
is given by

m

E[X*] = ME[XF] (2.3.3)

m

: ] It
E[(X — )t = Ao (i — p)F ) ————— (2.3.4)
; [}{;Zﬂ- 27 (k= g)M5)!

q i8 cuen

Proof. See Appendix A.l O

By Proposition 2.3.2, one can compute the skewness and excess kurtosis of the mixture density
by the following:
_ By -EFDY
(E[(Y —E[V]7)%

- . E[Y —EN])T
Y = oy —EVEE

(E[(Y —E[Y])?])
Alexander and Narayanan (2001) [1, Table 4, Page 9] have shown empirically that it is able to
construct all four possible cases of positive and negative skewness and excess kurtosis by choosing
appropriate values of A;, p; and o; for i = 1,2, in 2-component normal mixture density. This shows
its ability to departure from normal distribution, which have zero skewness and excess kurtosis.

Lastly the negative log-likelihood of finite normal mixture given observations z,...,zy is given
h;v
N m
—log £L=—"log{} Miti(a;; pi,00)} (2.3.5)
=1 i=1

2.3.2 Mixture Density Network

The architecture of Mixture Density Network only vary in the output layers of other conventional
neural networks. Rather than having the output wvalues y as some numerical values or labels,
the Mixture Density Networks estimate the parameters A, p, o of linite mixture density in the
output layers. The input and hidden layers can connect through all other existing neural networks
architectures, and only the output layers are wrapped in specific way to determine the parameters
in finite mixture density. Denote 23,2, 27 be the networks outputs before transformation for the
parameters \;, it;, o, then the following transformation proposed by Bishop (1994) [6] is given by

exp(:2)
S ()’

pilx) =z, oi(x) = exp(z])

i

Ailx) =

The weights A;(x) is related to the softmax function, the location parameters p;(x) is an identity
map, and the scale parameters o;(x) is represented by exponential terms. As the neural network is
making predictions on the probability distribution, negative log-likelihood stated in equation 2.3.5
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Figure 2.5: Mixture Density Networks

is chosen to be the loss function. Cradients of loss function with respect to 2} 27, 2" can be
determined analytically (see [6, Page 9-10]), and conventional backpropagation techniques are
processed in the same way.

Lastly, it is not hard to show the standard approach to regression in neural network by mini-
mizing sum-of-squares error is given by the mean of the probability density p(y|x), assuming the
sample size of training data is sufficiently large. For y € R and training samples @1, ..., @y and

cousider the sum-of-squares error loss
L Lo _ _ 19
ES(8) = lim —= 37> [fule'0) — ) = Esz[mw,m — u)*p(y, =) dydz
R Y k=1
By differentiating £° with respect to f;, and set it to 0
oES
Afic
= fulz.6") =ffyw(y|wJp(m)dydw=fy;p(ylw)dy

- ]/[fx-(w~ 0*) — yi]p(y. x)dyde = 0

where 8" is the optimal parameters that minimize the sum of square errors. For a classification
problem with categorical cross entropy as the loss function can be proved in similar manner and
will leave the details for readers refer to the original paper by Bishop (1994) [6]. Moreover, Bishop
points out the ES can be expressed as follows:

<yl >::fyn-p(ylerﬂy- < yiile >::fyf-p(y|w)dy

o o
ES(9) = %Zf[fg.[m,fi)f < yilz > ple)de + %Z[k yile > — < yilz >3 ple)de

k=1 k=1

Clearly, the minimum of £ is achieved by the conditional mean of the density, and the error at
its minimum can be interpreted as the average variance around the estimated conditional mean by
the MDN. Therefore, the greater the variance of conditional distribution estimated by the MDN,
the larger the error. We have further established similar arguments in Appendix A.2 involve SDLs,
which show the deviation between the predicted and realised volatility is the cause of prediction
errors in Mixture Density Network.
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2.3.3 Hidden Markov Model and Mixture Density

When finite mixture density is applied in modelling, often encounter the very first natural question
of the appropriate number of components m should be chosen. Brigo et al. (2013) [7, Section 4.4,
Page 19] highlights from previous empirical studies the number of component densities are required
to model the implied volatility surface in option pricing problems are typically 2 to 3, and typically
one weight takes up most of the value. In [1] nses 2-component finite normal mixture to model
the FX rates. Intuitively, by inspection of the statistical properties of mixture density we have
described in Proposition 2.3.2, it hints that the appropriate mumber of components chosen is related
to the number of regimes present in our data. In fact, the underlying relationship between the
mixture density and different regimes can be justified by Hidden Markov Model (HMM). The
following are inspired by the closely related work that is done by Berhane (2018) [4], we will briefly
introduce the HMM, and how it relates to mixture density in our context. Firstly, we introduce
some basic definitions and useful properties of Markov Chain.

Markov Chain

Definition 2.3.3. (Markov Chain) Let {Q¢}+>0 be a discrete time stochastic process take values
in some state-space If C Z. The stochastic process is a Markov Chain if it satisfies the Markov
condition:

Definition 2.3.4. (Time-Homogeneous Markov Chain) The Markov Chain {@Q;};>¢ is time ho-
mogenous if

P[Qry1]Q:] = P[Q1[Q0] Wt >0

Definition 2.3.5. (Transition Matrix) Denote the discrete state-space E' C Z, and let |£| = D <
no. For k € N, the k-step transition matrix P (k) = (p,;(k)) is the D x D matrix of k-step transition
probabilities

pij(k) = PlQsyr = j|Qr = 4] Vi, jel, t=0

Theorem 2.3.6. (Chapman—Kolmogorov) Let m,n > 0, then
Plm +n) = P(mn)P(n)
In particular, for any k = 0
P(k) = P*

Definition 2.3.7. (Stationary Distribution) A vector w is a stationary distribution of discrete
time Markov Chain {Q }+>0 with state-space E, and transition matrix P if:

L Z;&Eﬂi =1
2. wP=m

In finite state-space, the stationary distribution = always exists and unique, which we omit
the proofs, and the following theorem point out the convergence of transition probabilities and
stationary distribution.

Theorem 2.3.8. (Convergence of Stationary Distribution) For finite state-space |E| < 0o, then
foranyie E
lim p;(t) = m;

t—roc

Furthermore, the stationary distribution is relevant to the quantity called the mean recurrence
time. The mean recurrence time of state i € £ is the average number of time steps ahead from
current time that first revisit state 1. The formal definition is given as follows:

Definition 2.3.9. (Mean Recurrence Time) Define 7} be the first hitting time of state ¢ € E of
the Markov Chain {Q; }+>¢:

T, =inf{k = 1: Q) =i}
The mean recurrence time M, of state 1 is defined as

M; = E[T:|Qo = i
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Theorem 2.3.10. (Stationary Distribution and Mean Recurrence Time) For finite state-space E
and stationary distribution w, we have

Hidden Markov Model

Before going into the formal definition of Hidden Markov Model, the intuition behind HMM is
fairly simple. For example, assume there are only two states present in the market, the bearish and
bullish market. However, the states of the market are hidden and we can only observe sequences
of information such as prices, news, economic statistics etc. Therefore, the goal of HMM is to
model the observed sequences and the hidden states jointly with by supposing the hidden states
are Markov Chain.

Definition 2.3.11. (Hidden Markov Model) A Hidden Markov Model is a collection of ran-
dom variables {(Q;, )}, where {Q:}X, is an unobserved discrete-value stochastic process
and {O;}I is an observable discrete time stochastic process, satisfying the following conditions:

L F[Qe1|Qo, ... Q] = P[Qr11]Q4]
2. P[Ot |Ql}: e :QT:OI}: e :OT] = P[OdQ:]
for all ¢

The first condition in HMM states that the hidden {();}+>0 is a Markov Chain, and the second
condition induces conditional independence properties that the probability of the observed output
O at time t only depends on the hidden state (), while independent of the other observed outputs
and states at other time.

Now we can think of the observed outputs are the log return of the prices {Y;};>p, while the
unohserved states take values in some discrete state-space £ C Z and in relevant with Mixture
Density Network, given we have input features vector at time @, for any time ahead s > 1, the
Mixture Density Network predicts P[Y;.|x,] which can be expanded by the following:

PYyys|ae = Z ZP[Y:+.s.~Q:+.s:Q:|93t]

Ciys (s

= Z ZP[Yt+s|Qt+arQ!rwI]P[Q!+mQ!|w!]
Qips (e

= Z PlQrs || P[Y i s |Qup 5, 4]
it

The last equality makes use of the definition of HMM. Moreover, if we set the discrete state-space
E={1,..., m}, and define the following:

(@) :=PlQuys = iy (2.3.6)
dlylee; pilz,), oi(2)) = P[:"1+.~,-|Qz+.s = ?f_.:x::]

Then we can write the expression as follows:

m

P[Yigslae] = Y M@ dlylass i), o))
i=1

Thus, the number of component densities to be chosen to model the log return is equivalent to
choose the number of hidden states. In the case of finite normal mixture, the i-th component mean
pt; and variance o; characterised the i-th regime in the market. Furthermore, the weights \; are in
fact the probability of vising the i-th regime at time t + s given they are estimated by ;.

Moreover, assume the predicted time frame s is sufficiently large, but not too large to violate
the time-homogeneous property, then by the convergence property in Theorem 2.3.8, equation 2.3.6
can be expressed approximately as

Ml@) = Y PlQrye = ilQum|PQilzd] = Y mil@)P[Qi|ae] = mi(a) (2.3.8)
=1 =1
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where ;(@) is the marginal stationary distribution of the hidden state i. We express the param-
eters in function of x to emphasis the parameters are predicted by our MDN which takes x as
our input features. Also by Theorem 2.3.10, we can infer information about the mean recurrence
time of the i-th regime once the A;(z;) is realised, the greater the A;(a;), the smaller the mean
recurrence time, in other words, the more likely to revisit the i-th regime in closer time.

Lastly, back to the initial question about choosing appropriate number ol components m is
now clear that it is an equivalent to the classification of the number of regimes present in our
market, which is one of the most popular research topics in quantitative finance. Recent study by
Bilokon et al. (2021) [5] applies techniques in path signatures to classify the number of regimes
in US equities time series data, and the study of regime classification is beyond our main scope.
For readers interested in various regime classification theoretical background and recent algorithm
development can refer to [5] and Nystrup et al. (2020) [26]. In our FX prediction problems, we
fix the number of components m = 2 as suggested by most of the previous studies.

2.4 Interpretability of Neural Network

Interpretability, is a term to describe the level of how human understand how something or a system
works. Neural network is often regarded as a "black box” model, where there are no straightforward
interpretation between the parameters and the target variable, and also relationship between the
input and output are unclear due to its non-linear nature. Therefore, interpretability of neural
network has been gaining attention in finance, due to the broad applications of neural network,
understanding the relationship between input and output is important to explain which features
have significant impacts on our predicted variables, so that those subset of important features
should be the main focus for future analysis.

Interpretability can be categorized into two types, local and global interpretability. Local
interpretability focuses on understanding and explaining how an individual model make certain
predictions. Global interpretability helps to understand an overall view on how the models make
predictions and aims to recognize the average contributions of the features to the predictions. LIME
is one of the most popular local interpretability methods introduced by Ribeiro et al. (2016) [29],
and Shapley values from cooperative game theory [30] is used for global interpretability. We will
focus on Shapley value to interpret the contribution of the different assets we choose to train our
Mixture Density Network due to the non-linear nature and complicated dependencies of the assets
amongst one another.

Let f be the model we desire to estimate, and let f be our neural network model. Also, denote
our input features as @ € RP. Interpretable representation @' € {0,1}” is used instead. In our
main theme that the original input @ € RP corresponding to the prices of the p assets that we
have chosen to train our neural network, however, they are just p numerical values but do not have
much meaningful interpretation. One can give meaningful interpretation to the original input, for
instances, in Brigo (2020) [9] defines a binary transformation to determine if 7; equals the average
of the i-th features:

1, =i =m;

:1?; = ]1{1;‘:,”‘} = {O —
where m; is the average of the i-th features. Other examples such as determination of the presence
of a particular word, where 1 indicates the word is present and 0 otherwise .
Then define the inverse map h : ' — =z to recover the original input from the interpretable
representation. In order to best interpret the non-linear model f estimated by the neural networlk,
it is ideally to choose an explanation model g with linear structure. Furthermore, the explanation
model g should also be able to interpret variations of the interpretable representation «', i.e. words
in a sentence present and absent randomly This can be achieved by perturbing =’ such that the
perturbed observation 2’ € {0,1}” is similar to the interpretable representation, ie. 2z = .
Therefore, the explanation model g should have following:

e Ixplanation model g can ideally approximate the model f, where g is called local:
g(2) = (f o h)(2)
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e Explanation model g has additive feature attribution, and can be expressed as linear structure
of z{ fori=1...., P

P
g(z') = oy + Z &z
i=1
In global interpretability, ¢; is determined by the Shapley values which are given by the following:

. Np— |2 -1 - .
oilfox)= > ww(h(z’ U{i}) — F(h(2)) (2.4.1)
= Ca{i} P

where ®"\{i} is to set the »; = 0 in @', in other words being "absence”, while =" U {i} is to
consider the i-th features being " presence”. In equation 2.4.1, ¢; is not equivalent to the difference
in our neural network prediction by removing the i-th features from training, it is the marginal
contribution of the i-th feature across all possible "competitions” with other features, called the
coalitions in cooperative game theory. In game theoretical point of view, the game is the prediction
task, the features are the players in the game, and the difference between realised prediction and
average prediction is the gain. Shapley values explain the fairly distribution of the total gains
amongst all the players.

In the original cooperative game theory, a solution v in game G is a continuous map from the
game (G to some payout vectors, i.e. 1 : G — RV, where for a good solution 1 satisfies at least
one the four axioms: efficiency, dummy, symmetry and additivity. We will explain briefly about
the four axioms by taking Shapley value as our example. Denote the gain function as v.

L. Efficiency: the sum of all features contributions is equal to the total gain, where the total
gain in deep neural networks is the difference between the predicted f(zx) at & and the mean
E[f(X)]: H H )

S oilf.@) = fla) — E[f(X)]

2. Dummy: if the j-th feature never contributes, called dummy player, then ¢; = 0. Moreover,
for § C {z1,...,x,}, the prediction will not affect by the joining of x;.

(S U{z;}) =v(S) VS C {2y}

3. Symmetry: if any two features r; and x;, contribute equally to the total gain, then they
have equal Shapley value.

v(SU{z; b)) =v(SUu{z}) = & =

4. Additivity: for two prediction tasks f). fu, then the Shapley values ¢(f) + fo, ) = ¢(f,. @) +
Q(fz 1 :I:]

Lastly, Shapley (1953) [30] proved that the Shapley values given in equation 2.4.1 is the unique
solution that satisfies all of the four axioms.

Theorem 2.4.1. (Shapley Theorem) There exisls a unique solution ¢ that satisfies the efficiency,
dummy, symmetry and additimty axioms, and the unique solution is given by equation 2.4.1.

Lundberg and Lee (2017)[21] proposed SHAP (SHapley Additive exPlanations) to neural netwrok
global interpretability, and apart from the four axioms, they state three additional properties that
SHAP should satisfies: local accuracy, missingness and consistency. Lundberg and Lee (2017) [21,
Theorem 1, Page 4] combined the Shapley Theorem that the Shapley values is the only possible
solution satisfies all the four axioms and the three additional properties. For detail mathematical
formulation of the three properties and further technical details can refer to Lundberg and Lee
(2017)[21].
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Section 3

Data Description

Our main aim is to use current prices of various asset classes and features to predict the probability
distribution of the mid log return of our targeted currency pairs of 1-hour, 3-hour and 8-hour ahead.
The three most liquid I'X pairs will be used as our targeted currency pairs: GBP/USD, EUR/USD,
USD/JPY, and the asset classes include bond, equity, derivative, currency SWAP and commodity
will be used as input features to predict the target currency. The dataset is in 1-minute frequency,
ranging from December 2020 to June 2021, resulting in a very large dataset, with over 200000
observations. We split our dataset from December 2020 to May 2021 as our training dataset, while
the rest is our test set. All of our data is obtained through Bloomberg Terminal, where the access
was kindly authorized Bloomberg. The variables of our dataset are summarised in Table 3.1, detail
descriptions about the tickers can be found in Table B.1.

FX Government Bond | Equity | FX Option SWAP | Commodity
GBP/USD GT10 GOV SPrXx GBPUSDVIM | USSW10 | CL1 Comdty
EUR/USD GTGBP10Y Govt VIX EURUSDVIM | BPSW10 XAU
USDh/JPY GTIPY10Y Govt NKY USDJPYVIM

Table 3.1: Dataset Variables in Bloomberg Tickers

In addition, we compute the bid-ask spread which is given by spread := ask price —bid price as the
additional features to train our neural networks. Therefore, suppose at current time ¢, we desire
to predict the probability distribution of the GBP/USD log return of some future time s ahead,
then our input features consist of the prices and bid-ask spread of EUR/USD, USD/JPY and all
other assets, as well as the bid-ask spread of GBP /USD at current time t.

The use of government bond for prediction has straightforward intuition because it has direct
linkage with the FX rates, since yield or interest rate of one government bond affects both the
supply and demand of the currency. Interest rate of government bonds is affected by the central
bank of one country. For example, the U.S. Fed "set” the interest rate by buying or selling
government bonds in the open market from major financial institutions, so the Fed directly gives
or takes liquidity of the U.S. dollar. Furthermore, the interest rate affects cost of funding and trades
with different countries etc. and thus impacts the demand for the currency. Hence, one expect the
government bonds and SWAPs have significant predictive powers on the FX rates. Equity may
not have direct explanatory power on the FX rates. However, equity are often interconnected with
bonds in portfolio constructions for portfolio diversification. FX options are often used by investors
to hedge currency risks or sometimes for speculation on currency moves, thus the options might be
indicative on investor expectations on the FX rates. Lastly, two commodities are selected, crude
oil and gold. Before 1971 under the Bretton Woods system, countries worldwide adopted a fixed
X rate pegged with the U.S. dollars, and the dollars are pegged with Gold. After the termination
of Bretton Woods, the U.S. dollar continue to dominate the currency market due to the fact that
it is the only currency the crude oil prices are quoted. Therefore, the supply and demand of the
oil will directly impact the U.S. dollar. Although gold has already lost its domination role in the
currency rates, investors often invest gold to hedge against inflation, while monetary policies by
most of the central banks from developed countries are inflation targeting, and thus gold nowadays
are connected with currency indirectly via inflation.
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3.1 Data Cleaning

Data cleaning is the process of handling missing data, detecting and removing potential outliers
that may have negative impacts on the performance of model predictions and lead to draw false
conclusion.

Our raw dataset has the issue of missing data, which are caused by two reasons: different
trading hours among different assets and random data missing. The former situation is caused by
different time zone or the nature of the asset itself. For example, the FX market opens 24 hours a
day, while equity markets depend on the opening hours of the exchanges and the time zones where
the exchanges located. The later situation might be cansed by random error. When we examine
the raw dataset closely, we found out for an individual asset, the total number of observations of
bid, ask and mid prices are not the same. The total nmumber of observations should be equal if the
bid, ask and mid prices are well recorded in 1-minute frequency interval in ideal case, however,
there are missing observations in some minutes and the chance of occurrence does not exhibit any
particular pattern, so we consider that as random error.

We handle the missing data by replacing them with the value in previous time for both scenarios
described above. By handling missing data in this way implicitly assumes the Efficient Market
Hypothesis, which the prices adjustment are instantaneous that reflect all available information,
and the current price is the best estimator of future prices.

To improve training in neural networks, it is common to normalize the data. There are several
standard methods for data normalization, we employ the Min-Max transformation to scale data
within 0 and 1:

i T — min(z)
e max(z) — min(r)
3.2 Exploratory Data Analysis

In this section, we will examine empirical statistical of our dataset to have deeper understanding
on the structure of our dataset.

3.2.1 Correlation

We first compute the correlation coefficient amongst all the pairs of asset to explore how different
assets are correlated to each other in the period of our dataset.

GBPUSD MID Open
EURUSD MID Open [ ]
USDJPY MID Open ]
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Figure 3.1: Heatmap of Correlation Matrix

The FXs are highly correlated with bonds and SWAPs. For example, the correlation coefficient
between GBP/USD and US 10-Year Bond Yield is 0.79, and the correlation coefficient between
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USD/JPY and US 10-Year SWAP is 0.95. Moreover, the GBP /USD, USD/JPY have high positive
correlation with the WTI Crude Oil, while the EUR/USD are positive correlated with the Gold.
Detail numerical descriptions can be found in Appendix B.1

3.2.2 Empirical Density and Realized Variance

Eamphs Duonbhas

GEP/USD Q-Q Plot : Vi - EURIUSD ©-Q Piot e : USDWPY 0-Q Plot

T — Thsonabcal Susnises Trasietice: Cusmse:

Figure 3.2: QQ-Plot: 1-hour Figure 3.3: QQ-Plot: 1-hour Figure 3.4: QQ-Plot: 1-hour
GBP /USD log return EUR/USD log return USD/JPY log return

Non-normality of financial returns are often observed in the market. We examine the empirical
distributions of our FX rates data. Figure 3.2, 3.3 and 3.4 are the QQ-Plot of the 1-hour mid log
return of the three currency pairs. Points should fall on the red line if the log returns are normal
distributed. The flipped S-shape observed in all of the three currency pairs indicate non-normality
with heavier tails than normal distribution, and the distribution of the returns are all leptokurtic
with kurtosis greater than 3. We report the empirical mean () , standard deviation (o) , skewness
() and kurtosis () to further justify the 1-hour log return distributions are non-normal.

| I o Ié; K
GBP/USD [ 1.5 x 107" 1.02x107% 0.1812 8.1546
EUR/USD | 3.2 x 107% 7.27T x 10~* -0.0963 5.1026
USD/JPY | 1.6 x 107%  6.62x 107 -0.3231  4.9059

Table 3.2: 1-hour log return empirical statistics

Table 3.2 confirms the 1-hour empirical log return is leptokurtic and GBP/USD is positively
skewed while EUR/USD and USD/JPY are negatively skewed, the kurtosis of the three X pairs
are all greater than 3 over the period of observations of our dataset. This confirms the empirical
distributions of the FX pairs are different from normal distribution and motivate the use of finite
normal mixture distribution to model the log return of the I'X pairs.

Realized Volatility

The realised volatility of frequency n (RV(™)) is a statistics often used to measure the instanta-
neous volatility of the underlying price dynamics. In fact, Nielsen and Shepherd (2001) [3] show
the realised volatility converge in probability to the integrated instantaneous volatility of general
stochastic volatility model, i.e. [a(t)*dt. Prediction of volatility is challenging and volatility
is often the main cause of deviations of models predictions and realisation (see Appendix A.2).
Therefore, it is important to understand its dynamies which allows us to outline the potential
obstacles of the accuracy of our model predictions. _

Denote the realised variance of frequency n at time t is R.l';‘“’]_. and we look back n discrete

time points #; < -+ < t,, = ¢, and the statistics is given by taking the sum of squared log return
n—1 q!
j?_‘/"“'] — 10 The41 2
ARED I 55, ))
k=1
We can compute the l-hour realized wvariance by taking n = 60 and taking the square of the

l-minute log return of the three currency pairs.
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Figure 3.5: 1-hour Realized Variance R1/(60)

We first compute the realised variance RV for every minute, then the computed values are
grouped by each 24 hours in a day and their sample mean is determined. In Figure 3.6 is the plot
of the RV sample mean in every hours in a day.

The FX market opens 24 hours a day, but trading activities vary in different hours due to
different international time zones. Hours of major trades take place in one region is called the
trading session. Investors mainly concern about three important regions of trading sessions: Tokyo,
London, and New York, where major financial institutes are located. In practice, investors set the
Tokyo Session (12am - 9am UTC), the London Session (8am - 4pm UTC) and the New York
Session (1pm - 10pm UTC). The dynamics of the mean realized variance in different sessions
varies. The three FX pairs start to get more volatile when the London Session comes in, exhibit a
U-shape pattern, and peak at a specific time point calls the ”"London 4pm Fix” (The Fix). The Fix
is considered an important currency benchmark, and execution around the Fix, from 3:59:30 to
4:00:30 London local time, is used by global banks, asset managers and other institutional investors
as the official benchmark rate that best values their portfolio holdings, hedging, measuring tracking
error ete. [31]. Thus, the realized variance over the 24-hour period peeks for the three FX pairs
at the I'ix due to the large volume of transactions around the Fix. Moreover, the overlapping
hours between the London and New York Session is considered to be the most volatile hours, due
to frequent transactions and announcements of important economic data are often made in those
hours. Thus, surprised changes in prices often occur and one may expect greater prediction errors
within the London Session and New York Session.

1-heur Average Realized Volstilty in 24 hours

— GBPUSD
EUR/USD
UsDUPY

—== London dpm Fix
Tokyo Session
London Session
MNew York Sassion

Figure 3.6: Mean RV in 24 Hours




3.2.3 Bid-Ask Spread

We compute the bid-ask spread of each asset as additional features to train our neural network.
Investors concern about the bid-ask spread is becaunse it is the main source of transaction cost
in trading FX, and it is an effective measure for the liguidity of the underlying asset. Existing
literature and empirical studies have shown the bid-ask spread contains various components in-
cluding inventory cost, adverse selection, volume of trading, risks expectation of market makers
cte. Studies by Stoll (1978) [32], (1989) [33], Glosten and Milgrom (1985) [12] ete. investigated in
the information of the bid-ask spread contains. Thus, we expect the bid-ask spread is an effective
feature for predicting future prices.

Lastly, we report the mean (u), standard deviation (), median and maximum of the bid-ask
spread of the three X pairs over the period of our dataset in Table 3.3

median max

i o
GBP/USD | 0.000279  0.000726  0.0001  0.014
EUR/USD | 0.000117 0.000271 0.0001  0.0112

USD/JPY | 0.013944 0.032725 0.01 0.58

Table 3.3: Bid-Ask Spread Statistics

FX trading in practice usually measures rates in pips. 1 pip refers to the the smallest price move
that an exchange rate can make, which is the smallest decimal place that the FX rate can be
changed and quoted. For GBP/USD and EUR/USD, a pip refers to 0.0001, while a pip in US-
D/JPY is 0.01. From Table 3.3 the average bid-ask spread for both EUR/USD and USD/JPY is
around 1 pip and GBP/USD is arouind 3 pips. The maximum spread are 140 pips, 112 pips and
58 pips for GBP/USD, EUR,/USD and USD/JPY respectively. Nielsen (2018) [24] points out large
spread might have the problem of illiquid market that one may observe the move in mid price is
dominated only by either the bid or ask price and such data should be avoided during training.
By looking at the three FX pairs at their maximum spread, only the USD/JPY exhibits a one
side domination on the ask price at very short instance and return to normal level very quickly
as illustrates in Figure 3.9, while the other two FX pairs showed symmetric patterns on their bid
and ask prices at the instance of maximum spread. It is uncommon to detect such phenomenon
unlike frequent detections in [24], it is becanse the FX rates data from Bloomberg are based on
collections of hundreds of currency data providers, while the data in [24] are collected from only
three different providers. Hence FX rates from our data source have higher level of generality that
we do not neglect such data in our training in order to build a robust neural network.
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Figure 3.7: GBP/USD Bid
Ask at Maxinum Spread

fak
[E]

Figure 3.8: EUR/USD Bid
Ask at Maximum Spread
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Section 4

Mixture Density Network

4.1 Architecture

The proposed MDN architecture for training our dataset is a hybrid of dense layers and LSTMs.
We fix m = 2, the number of components in finite normal mixture density, to model the mid log
return of our targeted FX pairs as discussed in section 2.3.3

@—-{ LSTM Units x20 |—{ LSTM Units %20 |—{ LSTM Units %20 ||

-
N\

OCO®OO

0]0)|[0]0)|[G]C,

Figure 4.1: Mixture Density Network Architecture

In Figure 4.1 is an illustration of the architecture of our MDN. The input @ passes to three
stacked layers of LSTM, with 20 hidden units in each LSTM. A dense layer with 50 hidden units
and ReLU activation function is added after the three stacked layers of LSTM, and the output
parameters of the normal mixture with 2 components are then computed as in section 2.3.2. (.2
dropout layers are added between all the layers to avoid the problem of overfitting. A summary of
the architecture is shown in Table 4.1. The negative log likelihood stated in equation 2.3.5 is used
as our loss function, the Adam optimizer with learning rate 0.001 is applied and with batch size
of 256.

Units Hidden Layer Dropout
20 LSTM 0.2
20 LSTM 0.2
20 LSTM 0.2
50 Dense Layer ReLU Activation 0.2
6 Mixture Density Parameters Layer 0

Table 4.1: MDN Architecture Summary

The constructions of using stacked RNN are discussed by Pascanu et al.(2014) (28], in which
they discuss the architecture of stacking layers of recurrent units potentially allows the hidden

state at each level to operate at different timescale. They described stacked layers of RNN as deep
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RNN, which they found out the deep RNNs outperform conventional RINNs in tasks of polyphonic
music predictions and language modelling. Also, Chen et al.(2017) [10] improves their house price
prediction problem with neural network architectures by stacking layers of LSTM. These form the
rationale of designing our neural network architecture and it is worth to explore if such architecture
is robust in predicting the probability density function with Mixture Density Network.

4.2 Empirical Results

4.2.1 Losses

In the following, we train our MDN to predict 1-hour, 3-hour and 8-hour mid log return of the
three FX pairs. The empirical training and validation losses are presented in the Table 4.2.

Training Validation
Hour(s) 1 3 b 1 3 b
GBP/USD | -1.7432 | -1.4311 | -1.3317 | -0.6970 | -0.5412 | -0.0636
EUR/USD | -1.5821 | -1.1143 | -1.0497 | -0.9048 | -0.8783 | -0.1012
USD/JPY | -1.2786 | -1.1087 | -0.7739 || -0.6402 | -0.6213 | -0.2540

Table 4.2: MDN Empirical NLL Losses

The training losses are less than the validation losses for the three X pairs, which indicates
overfitting is not significant. The losses increase as the time ahead of prediction increases, which
is sensible in general as prediction uncertainty inecreases.

We can also compute the conditional mean of the predicted probability density function by
Proposition 2.3.2 which equals to the predicted values of conventional neural networks. We can
pick out the mean square errors evaluated in a specified hour for every trading days and determine
the sample average. Figure 4.2 shows the mean square errors with normalization (ie. =’ = ==&,
where p, o are the empirical mean and standard deviation) for the purpose of better visualisation
and comparison.

1-hour Mid Log Return Prediction (Standardized) Mean Square Error in 24 hours

— GBP/USD
EURMUSD
- USDUPY
Tokyo Session
Londen Session
New York Session

Figure 4.2: Mean Square Error in 24 Hours

The mean square errors remain low during the Tokyo Session, while the mean square errors of
the three FX pairs show U-shape pattern over the London Session, peaks at around the start of
the London Session and around the "Iix", follow by a decline after the end of London Session.
The similar patterns in Figures 3.6 and 4.2 shows that the prediction performances in hours with
high volatility, such as the overlapping hours London and New York Sessions, is relatively worse
than other hours. We report the numerical values of the mean square error for the whole dataset
in Table B.2.
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4.2.2 Parameters

1 Hour A1 Ao J15% i) a1 as
GBP/USD | 0.7600 | 0.2400 | 627 x 1077 | 16T x 1077 [ 7.62x 1077 | 141 x 107 T
EUR/USD | 0.7879 | 0.2121 | 1.65 x 10=* | —1.00 x 10~* | 5.34 x 10~ | 11.0 x 10~*
USD/JPY [ 0.7530 [ 02470 [ L03 x 1073 | —1.22x 1073 [ 753 x 107% [ 13.9 x 107

Table 4.3: Empirical Mean of Predicted 1-Hour Log Return Mixture Density Parameters

Table 4.3 shows the empirical mean of the 1-hour mid log return with 2-component normal
mixture parameters predicted by our Mixture Density Network. One can observe some patterns
on the parameters: the weight is mainly dictated by Ai: g1 is positive and po is negative; oy is
smaller than os. In section 2.3.3, we have discussed the component densities are correspond to
different hidden states or regimes characterised by the mean and variance (pu, o) in the case of using
normal distribution as our component density. Nystrup et al.(2020) [26] proposed the market is
in two states: the first state has positive mean and low volatility, and the second has negative
mean and high volatility, which our predicted mixture density parameters of 1-hour log return are
consistence with the properties of regimes suggested by previous studies. Moreover, information
about the probability of being in the i-th regime is captured by A; as shown in equation 2.3.6.
Therefore, there is a higher probability of being in Regimel with positive mean and lower volatility
than the Regime2 with negative mean and higher volatility by our empirical results in 1-hour FX
rates log return.

Similar characteristics with Table 4.3 can be observed in the empirical results of 3-hour and
8-hour predictions are reported in Appendix B.3 (see Table B.3 and B.4). The decreasing accuracy
for a much larger prediction time horizon weakens the model confidence of our Mixture Density
Network. The characterisation of A; as the stationary probability of being in the i-th state require
the assumption of time-homogeneous property of the underlying hidden Markov state, which may
be violated in a large prediction time horizon. In general, we can draw conclusion on our overall
results: the predicted 2-component mixture density is able to distinguish two regimes, a regime of
higher return with lower volatility (Regimel) and a regime of lower return with higher volatility
(Regime2).

[T iz, o7}
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y

Figure 4.3: Empirical (g, o) Figure 4.4: Empirical (p, o) Figure 4.5: Empirical (p, o)
2D-Contour Plot: GBP /USD 2D-Contour Plot: EUR/USD 2D-Contour Plot: USD/JPY
(1-hour) (1-hour) (1-hour)

We plot all the predicted pairs (p11, 01) and (e, o9 ) for the three currency pairs estimated by our
Mixture Density Network in Figures 4.3, 4.4 and 4.5, with the values of component mean on the x-
axis and the values of component standard deviation on the y-axis. Moreover, we label the predicted
pairs with respect to their components. The blue clond represents all the predicted pairs (p1,01),
and we label it as Regimel and the orange cloud represents all the predicted pairs (ps, o3), and we
label it as Regime2. It is not hard to see the blue clouds generally have relatively smaller standard
deviation and higher mean than the orange clouds, which confirms the capability of components of
mixture density to capture information of different regimes as described in [26]. Moreover, as one
might have noticed there are clusters formed in between the blue and orange clouds, which have
similar mean returns as Regimel with higher standard deviation similar to Regime2. Nevertheless,
our empirical results justify the fact that either 2-component or 3-component mixture density is
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sufficient in modelling FX rates log return, and the Mixture Density Network is able to capture

characteristics of different regimes present in the market.

4.2.3 Global Interpretability

Rank GBP/USD EUR/USD USD/JPY
1 EUR/USD U.K. 10-Year SWAP U.S. 10-Year Bond
2 U.S. 10-Year Bond GBP/USD UK. 10-Year Bond
3 GBPUSDVIM USDJPYVIM USDJPYVIM
4 USDIPYVIM S&P 500 EUR/USD
5 EURUSDVIM GBP/USD Spread Nikkei 225
6 Nikkei 225 U.K. 10-Year SWAP Spread | Japan 10-Year Bond
T U.S. 10-Year Bond Spread Japan 10-Year Bond USD/JPY Spread
8 EUR/USD Spread U.S. 10-Year SWAP UK 10-Year SWAP
9 VIX UK. 10-Year Bond Spread GBPUSDVIM
10 EURUSDV1M Spread U.S. 10-Year Bond Spread WTI Crude Oil

Table 4.4: Rank by Shapley Values

In section 3 we have qualitative discussed about the relationship between FX and the selected
assets, as well as their potential predictive powers. Interpretability of deep neural networks has
introduced in our theoretical [ramework, now we report the top 10 of our features which have
significant contribution on the prediction of our MDN in terms of Shapley values in Table 4.4.

Overall, the government bonds have the most significant contributions to the prediction of
the FX rates and are confirmed by the Shapley values. The predictions in GBP/USD are mainly
coutribute from the EUR/USD and the US 10-Year government bond. Also, the UK 10-Year SWAP
and GBP/USD have the most significant contributions to the EUR/USD predictions. The British
Pound and the Euro are closely related has been known by investors, the Shapley values confirm
their significant predictive powers from one another, despite of the EUR/USD and GBP/USD
is nearly uncorrelated in the period of our dataset (see Table B.1.2). Major contributions in
GBP /USD predictions also include the 1-month at the money implied volatility of the currency
options. Possible explanation is that, institutional investors are the major market participants
in the UK, and currency options are one of the major financial tools to hedge against currency
risks in their portfolios. Therefore, the three FX options are listed with top ranks in contributing
the predictions of GBP/USD in terms of Shapley values. The US 10-Year government bond
has dominant contribution to the predictions of USD/JPY. The relationship between the US
government bond and the USD/JPY is a well known fact amongst investors due to the popular
usage of carry trades strategies by investors in trading the pair USD/JPY under the low interest
rate policies of the Bank of Japan. Moreover, it is worth to highlight the fact that the bid-ask
spread of certain assets has significant predictive powers. For instance, the EUR/USD bid-ask
spread has significant contributions to the GBP/USD prediction. Therefore, the Shapley values
justify that the bid-ask spread of the assets should be included in the prediction problem.
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Section 5

Applications

With the ability to predict the probability distribution of the log return of the X pairs, there
are a broad range of potential applications by using the density estimated by our Mixture Density
Network. Applications in derivative pricing, algorithm trading and risk management are possible.
Derivative pricing with mixture density has been studied by Brigo (2002) [8]. He showed that
given the marginal density is some mixture density, there exist some drift and diffusion coefficients
in a stochastic differential equation (SDE) such that it admits a strong solution, and the diffusion
coeflicient can be obtained analytically by applying the Fokker-Planck equation. Therefore, appli-
cations in derivative pricing, hedging and volatility modelling (see [8] and [7]) are possible once
the mixture density is estimated by the Mixture Density Network.

In this thesis, we will mainly focus on application in algorithm trading. We will construct
simple trading strategies by generating trading signals based on the finite normal mixture densities
predicted by the MDN we have described. The FX pair GBP /USD and its 1-hour mid log return
prediction will be used for backtesting and demonstration throughout. In general, the strategy can
be applied to other FX pairs. In addition, we will briefly demonstration how to classily regimes
with simple classification rule based on the parameters estimated by our Mixture Density Network.

5.1 Algorithm Trading Strategy

Let Y; be the random variable of the 1-hour mid log return at time ¢ and is estimated mixture
density predicted by our MDN by time t, where the density function is given by pe(y: A, o, o). The
probability of the I'X rate will rise and decline is given by

+ o
Bt = P[Y, > 0] :[ p( A p,o) =1—-PY; <0 (5.1.1)
1]

Denote Z; € {—1,0,1} as our buy (1), sell (-1) and hold (0) trading signals at time ¢ which are
defined as follows:

1.~ if f)t 2 pupp{-r
Zy= {1 i fy < Prower (5.1.2)

0 otherwise

where pupper, Plower € [O, 1] are some upper and lower probability threshold respectively.

The probability given in 5.1.1 can be easily determined by Proposition 2.3.2 once the X, p, o
are estimated by the MDN. The probability thresholds correspond to the decision rule that if
probability of rising FX rate is greater (less) than some pupper (Plower) to generate buy (sell)
signals, and hold is the decision of neither buy nor sell. The choices of the thresholds can be
chosen manually or through certain schemes of optimization in backtest according to the risk and
reward preferences of different investors. In the following backtest, we explore three different sets
of values of the threshold

1. Stl‘ﬁteg}' L: Plower = 0.5 s Pupper = 0.5

2. Strﬁt@g}’ 2: Plower — 0, Pupper = 0.5
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3. Sf-rﬁti?g}' 3 Plower = 0.4, Pupper = 0.6

Strategy 1 corresponds to the long and short position of the FX when it is predicted to have over
50% probability of going up and down. Strategy 2 is a variation of Strategy 1, but short selling is
not allowed, which is a long only strategy. Strategy 3 is in between with long and short position
are generated when the predicted probability is exceeding 60% of going up and down.

5.1.1 Backtest
Evaluation Metrics

We split the data for backtesting into training and validation datasetas described in Section 3.
The Profit and Loss (PnL) at time ¢ of our strategy is expressed in terms of the trading signal Z;
and also the transaction cost as following

PuLy := (S — Si—60) Zr—a0 — te (5.1.3)

where S is the mid FX rate at time t measure in one minute interval. The PnL we have defined
implicitly implies buying or selling unit amount of the currency whenever trading signals are
generated. Also, the cumulative PnL is given by summing the PnL over all time

Cumulative Pnl := z Pnl;
t

Institutional investors can often gain access to 1 pip constant spread for trading liquid FX pairs,
hence the transaction cost te in equation 5.1.3 is constant over time, and we set tc = 0.0001 for
GBP/USD.

Sharpe ratio (SR) and maximum drawdown (MDD) are often used as metrics for evaluation of
trading strategies, the definitions are given as follows

Definition 5.1.1. (Sharpe Ratio) Let r¢ be the risk-free rate, R, and o, be the mean and standard
deviation of the strategy return, then the Sharpe ratio (SR) is given by

R, —
SR = =1

Definition 5.1.2. (Maximum Drawdown) Let T be the time horizon our strategy to consider.
Let the cumulative PnL at time ¢ € [0, 7] be R.!C'_. and define M; := maxg,«; RE' be the running
maximum of the cumulative PnL up to time ¢, then the maximum drawdown (MDD) over the time
horizon T is given by
MDD := — max (M, — RY)
te[0,7)
Moreover we can define the absolute of maximum drawdown so that the larger its value, the more
undesirable of the strategy.
AMDD := |MDD|

Apart from using the Sharpe ratio and maximum drawdown, one may interest in the decisions
of the strategy in consecutive time steps. Notice we can treat the trading signal Z; takes discrete
values from finite state & = {—1.0,1}. For any state ¢, j € &, one may consider the one-step
transition matrix P = (P);; € B**® such that

By = P21 = j|Ze =)

For the time horizon of our strategy T, one can estimate F; for any states 4, j by

1 T-1
f-?('_-,i = 7]_ 1 Z 1{Z2+1=?|Z2=x}
t=0

and by weak law of large number P;; converge in probability to FP; given sufficiently large 7.

We backtest our trading strategy in two different ways. Firstly, we implement the strategy
generating trading signals continuously over 24 hours whenever the FX market is open. Secondly,
certain hours are selected and we only implement our trading strategies within the specific range
of hours we have chosen.
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Trading Without Hours Specification

We backtest our strategy by trading continnously every one minute according to our trading signals
over 24 hours a day. In Figure 5.1, we backtest our strategy on our training dataset (December
2020 - May 2021) with several particular values of pyppe, and pioye and their cumulative PnLs are
illustrated.

?

—— Pupper = 0.5, Plower = 0.5
—— Pupper= 0.5, Plower =0
—— Pupper = 0.6, Plower = 0.4

Cumulative PnL

;012 ;210 w2102 2103 02104 w108

Date
Figure 5.1: Trading Without Hours Specification: Cumulative PnL

We backtest the three strategies and their cumulative PnLs are illustrated in Figure 5.1. We
can observe the cumulative PnL of Strategy 1 is greater than Strategy 2, this is because the former
is able to profit from declining by short selling. The cumulative PuL of Strategy 3 grows relatively
slow, it is because the probability thresholds are comparatively conservative, long or short signals
will only be triggered if the predicted probability of increase or decrease is significant. Hence, one
may inspect the flat line indicates a long period of rarely buy or sell.

We take the 1-Month U.S. Treasury rate as a proxy of the risk-free rate, and report our strategies
performances for both training and validation data, with daily Sharpe ratio and absolute value of
maximum drawdown in Table 5.1

Training Validation
Strategy | Daily SR | AMDD || Daily SR | AMDD
1 0.2064 1.7863 0.1053 0.8984
2 0.1848 1.0020 0.1808 0.7406
3 0.1477 0.5605 -0.0425 0.7475

Table 5.1: Trading Without Hours Specification: Performance Metrics

In general, a good strategy should have large Sharpe ratio and small AMDD. By Table 5.1,
Strategy 2 has better performances amongst the three strategies, whilst Strategy 3 has the worst
performances. Our trading strategies can be considered as a type of momentumn trading strategy,
which buys the FX when they are rising and sell them when they are declining. If the trading
signals at current time t is i € {—1,0,1}, then the signal generates in the next minute is very
likely, with probability P;; == 1, to be 7 as well (see Appendix B.5)
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Trading With Hours Specification
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Figure 5.2: Trading With Hours Specification: Cumulative PnL

In order to improve our trading strategies, we propose to trade the FX in specific hours rather
than continuously trading over 24 hours, then it comes to the question on choosing the range of
specific hours. Recall that the performances of our neural network varies in different hours due to
the changing in volatility as illustrated in Figures 3.6 and 4.2. In the spirit of that, we can try
to avoid hours with high prediction errors, and only trade within hours that the neural network
performs better. By inspection on Figure 4.2, we decide to devise our trading strategies from 21:00-
7:00 (UTC), which avoid the London Session and the overlapping of the London and New York
Session. Therefore, our strategies only start to trade from 21:00 (UTC), and closes all outstanding
positions by 7:00 (UTC) in the next trading day. Figure 5.2 shows the cumulative PuL just trading
within 21:00-7:00 (UTC) each day. Notice that the cumulative PnL of Strategy 2 is more closer to
Strategy 1 than its cumulative PnL during contimious trading as shown in Figure 5.1. This implies
there are more short positions during the trading hours we avoid. Similar to the analysis perform
in continuous trading, we report the daily Sharpe ratio, AMDD to evaluate the performances.

Training Validation
Strategy | Daily SR | AMDD || Daily SR | AMDD
1 0.1727 1.5434 0.3030 0.6786
2 0.1778 1.4636 0.3165 0.5864
3 0.0429 0.6115 0.1433 0.8672

Table 5.2: Trading With Hours Specification: Performance Metrics

From Table 5.2, we can notice the performances in the validation dataset significantly improve
for both the Sharpe ratio and AMDD. These show the robustness of our Mixture Density Network
in the validation as well as the stability of our trading strategies in the specific hours. Lastly, the
transition matrices are reported similarly in Figures B.6 and B.7.
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Relationship with Technical Indicator

As we discussed that our strategy is a type of momentum strategy, and some FX traders often
look at technical indicators that are relevant to the momentum of the FX rates. One of the most
popular momentum technical indicators that FX traders often use as trading signal is the moving
average convergence divergence (MACD). Since our strategy uses the log return as the variable to
generate trading signals, we will explore their mathematical relationship and how they are relevant
to each other. To begin with MACD, we first define the exponential moving average (ENMA).

Definition 5.1.3. (Exponential Moving Average) Suppose we have discrete time steps --- < f_; <
to < t1 < .... Denote S, be the price at time .. The A-period exponential moving average (EMA)
at time ¢ is defined by the following recursive formula:

EMA, (o) = Si,

EMA () = aS;, + (1 — o) EMA,(ty 1), for k=1
where « is the weighted multiplier, which in practice is given by o := TZA
Definition 5.1.4. (Moving Average Convergence Divergence) The moving average convergence

divergence is defined as the difference between 12-period and 26-period exponential moving average.
At any diserete time ¢, the MACD is given by

MACD(t) = EMA12(t) — EMAxg(2)

By the definition of exponential moving average (EMA), we can apply recursively to express
the EMA as an infinite weighted sum of the prices
(==
EMAL(ty) = Y _a(l—a)'S, (5.1.4)

i=(

The original idea of the MACD technical indicator is to measure whether there is a shift in
momentum, and FX traders often look at whether the MACD is greater (smaller) than some
threshold to indicate a buy (sell) signal. Traditional technical analysis set the 9-period EMA
(EMAg) as the threshold, and it is known as the signal-line. We propose the following proposition
to characterise how our trading strategy using the probability of log return greater or less than
some thresholds relates to trading strategies using the MACD.

Proposition 5.1.5. ((‘hamr‘tens‘atmﬂ of Log Rf'imn and MACD)

Denote Ay = 12, Ao = 26, and oy = T 2 = H— . Let Gy, be the cdf of the m-component finite
normal mirture density of the random variable log(gtk/?tk_l ), realized by the MDN. Then for any
T, we have the following:

Py, 1 [MACD(t;,) > 7] = 1 — Gy (my—1 + log(T + C1)) (5.1.5)

where P, 1s the probability qiven all information up to time t,_, are known, and ny_1,Cy_1 are
qiven by

Me—1 = —log(8;, _, (a) — az))
Croy = (1 —an) EMA,, (tp—1) — (1 — oy JEMA, (t.1)

In particular, consider the case T = =¥, where % := e ™1 — C}_q, then

S
Pi1[log( 5 i

1

) > 0] = Py [MACD(t;) > 2% (5.1.6)

Furthermore, =% can be expressed as follows:

= i S, (5.1.7)

{nl—nz 2— o — ), i=1

) ! (5.1.8)
o (l—aq) —as(l —ag), 122
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Proof. See Appendix A.3 O

With the above characterisations, the probability of the log return greater or less than 0 is in
fact equivalent to the probability of the MACD greater or less than some z*. Moreover, one can
use equation 5.1.5 to determine the probability of the MACD crossing above or below the signal
line by setting T = EMAg, which can be used to examine the probability of the shift in momentum
from the perspective of technical analysis.

Further Discussion

In the previous we have discussed the applications of mixture density in algorithm trading. The
trading strategies described can be further optimized that is worth to highlight but beyond our
main theme in this thesis, and will leave the implementations as future research.

The trading strategy can be optimized in two ways, the probability thresholds and the weight
allocation on the FX. The optimal probability thresholds pj,,., and p{, . can be determined
through optimization with respect to certain objective function. The most popular objective
function is the Sharpe ratio, however, as one can see in Table 5.1, strategies can have promising
Sharpe ratio overall, but sharp losses might be problematic. The Sharpe ratio only measures the
first two moments of the PnlL, it ignores the non-normality characteristics and does not consider
statistics such as the drawdown, skewness, kurtosis etc. One can define alternative performance
measure by considering both the Sharpe ratio and maximum drawdown similar to the mean variance
optimization as follows:

5y, = Daily SR — A\]MDD|

where A is the risk aversion level preference of investors, and pf,,., and pj, .. can be determined
by maximising the 4.

Another consideration is the optimal weight allocation to trade whenever trading signals are trig-
gered. In order to compute the optimal weight, one can apply utility optimization. A utility
U:R — [-00,00) is a non-decreasing function, which quantifies one satisfactory or happiness
level of consumption. Often the utility function is chosen as a concave function to model the risk-
aversion behaviour of investors. To determine the optimal allocation on the FX to be traded, we
can choose the constant absolute risk aversion (CARA) as our utility, where fix v > 0, the CARA.,
takes the form

Ulz) = CARA. (z) = —exp(—x)

Consider a one-period optimization setting, with random variables ¥}, be the current log return,
and Y; be the log return of the next time frame. As we predict the random variable Y] admits
a m-component finite normal mixture density p(y; p, o) = 3.0, Ay pi,0:). Let 8 € R be the
weight that are desired to optimised. One can maximise the expected utility E[{7 (#Y1)] subject to
the initial condition #Yj. By considering the Lagrangian function with the Lagrange multiplier a,
we get (see Appendix A.4)

m 2922
L8, a) :—Zl)\iexp(—‘_,rﬁp.i—#) — afY) (5.1.9)
Hence, it remains to mlv’e% =0 and % = 0 numerically to obtain the optimal allocation 6*.
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5.2 Regime Classification

In this short session, we present another application using the mixture density of the 1-hour log
return estimated by our MDN. We propose a simple classification rule by using the estimated
weight parameters A to classify the regime which the prices are belonged to. Intuitively, when
there is an inecreased in A;, then the i-th component density increases its impact on the overall
distribution. Moreover, recall that the weights Aj(x;), Ao(x;) are the approximated stationary
probability (condition on x;) of being in the i-th regime at time t and the reciprocal of the mean
recurrence time of the i-th regime. Thus an increase in A;(@;) is equivalent to a rise in the
probability of being in the i-th regime and a decrease in the mean time of first revisit the i-th
regime. Denote the empirical mean of the weight parameters as Aj, A2, to be the representative of
the Regimel and Regime2 respectively, if A;(z,) = X;, then Regimel is labeled at time ¢, otherwise
Regime2 is labeled. Figures 5.3 labeled the FX rates time series into Regimel (blue) and Regime2
(orange).

The proposed classification scheme is able to label regimes which are interpretable through sub-
period analysis. For instances, Regime2 is labelled throughout the beginuing of the GBP/USD
realised time series. It corresponds to the volatile period from December 2020 to January 2021
which we have seen its high realised volatility in Figure 3.5. Furthermore, one can label unseen
data with appropriate regime once the parameters of the mixture density are estimated by the
Mixture Density Network. This provides tractable and interpretable metrics to measure how likely
the cwrrent FX rate belongs to different regimes.
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Figure 5.3: Regime Classification
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Section 6

Conclusion and Future Research

In this paper, our main objective is to predict the probability density function of FX rates log
return with Mixture Density Network by using prices and bid-ask spread of multiple assets as our
input features. Throughout, we have shown the ability of mixture density to model non-normality
of the returns and demonstrated interpretation of the component densities correspond to different
market regimes with Hidden Markov Model. The properties of different market regimes are able
to be captured by our Mixture Density Network and showed consistency with previous studies.
Shapley values from game theory is adopted as global interpretability of our neural network to
compare the marginal contribution of different assets in the prediction. Furthermore, we have
extended beyond the prediction task and developed trading strategies by inferring the probability
of having positive and negative returns, and also highlighted the significance of considering trading
sessions in strategy implementations. We demonstrated the rich information we can gain from the
density estimated by the Mixture Density Network, and its robustness to apply in a broad range
of financial applications. These show the area of distributional prediction of financial time series
is worth to be further established in future research and applications.

Firstly, future work can enhance our current framework in several aspects. Larger training
dataset with a wider historical window can be used to train the neural networks to adapt the
financial market more well rounded. This enables to predict the FX rates for a longer time hori-
zon, and capable to have applications in derivatives trading, hedging etc. As discussed before,
the number of component density selected can be optimized by applying existing regime classi-
fication algorithms to determine the number of regimes exist in the FX market. We can also
choose alternative distribution family as the component density to capture heavier tail than the
normal components we have chosen, such as the t-distribution, Pareto distribution etc. Moreover,
our Mixture Density Network only predicts univariate probability density function, which can be
extended to nmmltivariate version to consider the joint distribution of the assets.

Future research in regimes classification by using Mixture Density Network is worth to be
explored. Possible extensions can be done on multivariate regime classification by inferring the
joint distribution of the assets and development of regime-switching trading strategies which are
able to adapt optimal trading strategies under different regimes. We will leave these extensions for
future justifications.

Lastly, one should notice global interpretability of neural network using Shapley values only
explain the marginal contributions of each features in the task of predictions, but ignoring causal
relationship between the chosen features and the target variables. The financial market is com-
plicated in a way that there is no one-way causality, but instead assets are constantly influencing
and interacting with one another. In this paper, input features are chosen manually throngh qual-
itative analysis based on subjective domain knowledge. An ideal predictive agent should be able
to identify assets from a diversify set of assets with the highest level of causality to the targeted
assets we desire to predict. This hints the possibility of applying reinforcement learning techniques
in choosing the optimal actions that maximise future rewards. Thus, input features can be chosen
with more sophisticated techniques in future works.

Nevertheless, substantial research in predictive model should be expected in the future to have
deeper understanding about the complex structure and the behaviour in the financial market.
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Appendix A

Supplementary Proofs

A.1 Statistical Properties of Mixture Density

Proof. The proofs of proposition 2.3.2 are given as follows:

Equation 2.3.1 and 2.3.2 is clear by linearity i.e.
¥ m m
:f Z)\{-efh{-(.z.‘:,u.{-_a Jdx —Z)\ [ ¢ilws py, 0;)de
—o oy .

m m

E[f(X l_/ Z). oi(x; py, o3 )d _Z)\/ f'(.].‘]qh{-(.x;p{-_.o{-)rf.z.‘

By taking f(y) = y* to obtain equation 2.3.3, then it is clear that u = Z”’ Aip; and equation 2.3.4
can be determined by the following

m

E[(X — )" =Y MNE[(X; — s+ pi — )]

i=1

:Z,\ m[z (1) pa)? (s — )]

=0

:ZZ)“’ ( ) (i — )" E[( 0—"“).;]

i=1j=0

:Z > )‘f’()# —p)* -f_);(l!

i=1 0<j<k
4 18 even

= o (pi — p)
; ugk 2% (k —J)!(3)!
7 is even

in the second last equality we have used the fact that for Z ~ N(0,1), then II:.[A’] = J!J if 7is
23 \7,1!

even and (0 whenever j is odd. O
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A.2 Stochastic Differential Equations and Mixture Density

The flexibility of normal mixture density can also establish relationship with stochastic differential
equations (SDEs). Let Y; admits a finite normal mixture density py, (y) = >0, Niod(ys i, 07
Brigo (2002) [8, Proposition 1.2 and Theorem 2.1, Page 4-7| have shown the existence for some
SDE with drift and diffusion coefficient f and of admits a unique strong solution and its solution
has as the marginal density the final normal mixture density py, (y), and the SDE is given by

dY; = fo(Y,)dt + of (Ye)dW,

where (Wi)i>0 is a standard Brownian motion. In the original proof, the Fokker-Planck equation
is applied and one is able to derive analytical form of the diffusion coefficient of. We do not
go through technical details, but strongly recommend interested readers refer to [8] for further
details. If we let Y; be the true log return, and Y; be the predicted log return which admits a finite
normal mixture density py, (y), then one can write

dYs = fi(Yi)dt + o (Y)dW, (A.2.1)
dY: = fu(Va)dt + 6] (Vi) dw, (A.2.2)
Yo =Yy, dW, W], = pdt (A.2.3)

where (W;);~y and (ﬁ-’}):;,[} are standard Brownian motions in probability space (€2, F,F), and
p € [—1,1]. One can establish relationship between mean square error and the diffusion coefficients
of the SDEs by the following

Proposition A.2.1 (Mean Square Error and Diffusion Coefficient). Assume A.2.1, A.2.2 and
A.2.3, then the expected value of the square error process {(Y: — Y1) }esa is given by

t . t o
BI(Y; = V%) = [ Blo!(v) — 6l (7)PIds + 20— p) [ BlolV)al(Tlds (A24)
0 0
In particular, consider the special case p = 1, then the expected square error process given in

equation A.2.4 achieves a minimum and is given by
- t . .
E[(Y; — T2)?] :/ E[(of (V) — 6/ (Va))?]ds (A.2.5)
0

Proof. It is straightforward by applying Ita’s formula to (¥; — ¥;)?
d(Y?) = 2Y,dY; + of (Vi) dt
d(Y2) = 2YdY; + &f (V,)%dt
d(2Y,Y,) = 2Y,dY, + 2Y,dY, + zpaf(z’t)%f(f’t)?dr

then by linearity we can get the integral form as follows

t . t .
(V=¥ = (= ¥oP* + [ (ol () = 6l (T)Pds +21 - ) [ ol (V6] (Vs
0 0
Finally taking expectation on both sides and applying Fubini theorem to interchange the expecta-
tion and integral to obtain equation A.2.4. Moreover, equation A.2.5 follows immediately by the
fact that p < 1. O

In our context relevant to Mixture Density Network, proposition A.2.1 tells us that for any
robust normal mixture density predictions on the log return using the MDN has to capture the
trend of the true process p == 1, also MDN not only are able to minimize the mean square error
on the conditional expectation of point estimation, and also able to best approximate the diffusion
coefficient of the true underlying stochastic volatility model, and this indicates the source of re-
alised prediction errors comes from the deviation between the predicted and the realised volatility
processes.
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A.3 Characterisation of Log Return and MACD

In order to obtain equation 5.1.5, one have to first derive an expression of log return in terms of
the MACD. By expanding out the EMA terms in the MACD, one will obtain the following:

MACD(t;) = EMA,, () — EMA,, ()
=015y, + (1 — a1 )EMAy, (fr1)] — [0S, + (1 — an)EMAy, (1x_1)]

1
Sy = [MACD(t;) + (1 — o) EMA, (tr1) — (L — a1 JEMA,, (t41)]

) — G

S
log( b ) = —log(Ss,_, () — ap)) +1og[MACD(#;.) + (1 — ) EMA,, (£1) — (1 — ey JEMA  (£1)]

D

= -1 + log[MACD(t;.) + C—1]

Therefore, it is clear that equation 5.1.5 is straightforward from the above expression

! ; Sy )
Py 1 [MACD(t;) < 7] = Py [log( S by <y g+ log(E + Cr1)]
Sti_q

= Gp(np—1 +log(T + Cr_1))

Next, we are going to derive the expression z* = e ™"~ — ('} stated in equation 5.1.6, by writing
the EMAs as infinite summation

e Mt —Cpor = Sy (o1 —az) + (1 —a1)an Z"gtk—|(1 — 1) = (1 - az)ar ZS“-'U — )™

i=1 i=1

=St 201 — a2) — (af —a3)] + Zs,k_,(n-l(l —a1)' —ap(l — ag)’)

i=2
o0
= E i Sy,
i=1

where the coefficients 45 is given by equation 5.1.8

A.4 Weight Optimization Lagrangian function

To obtain the expression in equation 5.1.9, it remains to to express the expectation of the CARA.,
with the log return is given by the m-component finite normal mixture as follows:

E[U/(0Y1)] = E[— exp(—y0Y7)]

+ oo
= —f exp(—0y)p(y: p. o )dy

-
Foc m
= —f exp(—v0y) Y Nid(y: par i)y
o i=1
m +mc
=- Z/\f exp(—0y)bly;: pti 0:)dy
i=1 e
m Ar_gggﬂ_?

=" Mexp(—bpu; + )
i=1

The last equality is by the moment generating function (MGEF) of normal distribution with mean
p and variance o2, which has the known form MGF(t) = exp(ut + o#%/2)
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Appendix B

Supplementary Tables and
Diagrams

B.1 Data Description

This section provides the descriptions of the Bloomberg tickers and also numerical values of corre-
lation coefficients across assets in Section 3

B.1.1 Bloomberg Tickers Descriptions

Ticker Description
GBP/USD Exchange rate of the British Pound against the US dollar
EUR/USD Exchange rate of the Euro against the US dollar
USD/JPY Exchange rate of the Yen against the US dollar
GT10 Govt US 10-Year Treasury Yield
GTGBP10Y Govt UK 10-Year Gilt Yield
GTIPYL0Y Govt Japan 10-Year Government Bond Yield
SPX S&P 500 Index
VIX Chicago Board Options Exchange Volatility Index
NKY Japan Nikkei 225

GBPUSDVIM GBP/USD l-month at the money (ATM) option implied volatility
EURUSDVIM EUR/USD 1-month at the money (ATM) option hmplied volatility
USDJPY VIM USD/JPY l-month at the money (ATM) option implied volatility

USSW10 US 10-Year interest rate SWAP
BPSW10 UK 10-Year interest rate SWAP
CL1 Comdty Generic Crude Qil Futures
XAU Gold Spot price in US dollar

Table B.1: Bloomberg Tickers Descriptions

B.1.2 Correlation Matrix

GBP/USD EUR/USD USD/IPY GRPUSDVIM EURUSDVIM USDIFYVIM USCGIOVR GIGEI0 GIGRI0 USSWI0 BPSWI0 NKY SPX  VIX L1 Comdiy  XAL




B.2 Mean Square Error

Given the mixture density is estimated by the Mixture Density Network, it is able to compute
the conditional mean of the mixture density and evaluate the performances between the predicted

mean and realised I'X rates log return by using mean square error.

Hour(s) 1 3 8
GBP/USD | 218 x 1077 | 6.00 x 107% | 15.0 x 107
EUR/USD [ 1.78 x 1077 [ 2.82 x 107 ° | 8.00 x 107
USD/IPY [ 1.90x 1077 [ 285 x 1072 | 5.36 x 1072

Table B.2: Empirical Mean Square Error

B.3 Mixture Density Network Estimated Parameters

We compute the empirical mean of the parameters of the mixture density estimated by the Mixture
Density Network for 3-hour and 8-hour mid log return for the three X pairs. The results are

reported in the following two tables:

3 Hours A Az 15} 2 Tl agz

GBP/USD | 0.7492 | 0.2508 | 2.16 x 107° | —2.56 x 107° | 1.29 x 107% | 2.10 x 1072
EUR/USD | 0.7333 | 0.2667 | 1.63 x 107* | —1.94 x 107* | 0.991 x 1073 | 1.84 x 1073

USD/JPY | 0.9930 [ 0.0070 | 9.14 x 1077 [ =385 x 1077 | 1.25 x 1077 | 10.5 x 1077

Table B.3: Empirical Mean of Predicted 3-Hour Log Return Mixture Density Parameters

8 Hours A Aa 15} fto a1 e
GBP/USD [ 0.7823 [ 02177 | 294 %1077 | =650 x 1077 [ 2.09 x 1077 [ 249 x 1077
EUR/USD | 0.9989 | 0.0011 | —1.10 x 10-* | =823 x 10~ % | 1.62 x 1077 | 12.0 x 1073
USD/JPY | 0.5144 | 0.4856 | 1.22x 1073 | 0931 x 1073 | 1.32 x 1073 | 217 x 1073

Table B.4: Empirical Mean of Predicted 8-Hour Log Return Mixture Density Parameters

B.4 Shapley Values Diagrams

AP AR ISR S 54 Pt A

Figure B.2: Shapley Values: Figure B.3: Shapley Values:

Figure B.1: Shapley Values:
Usbh/Jry

GBP/USD EUR/USD
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B.5 Trading Signals Transition Matrices

1 0 0.049 0
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Figure B.4: Trading Without Hours Specification: Transition Matrices of Training Data
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Figure B.5: Trading Without Hours Specification: Transition Matrices of Validation Data
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Figure B.6: Trading With Hours Specification: Transition Matrices of Training Data

-1 0.92 0 0.083 1] 1] ] 0.094 0.00054 0.8
- 0.6
0 0 0 ] 0 0.083
-0.4
1 0038 0 0 0.038 0.00029 0.048 0z
-1 0 1 -1 1 -1 1] 1
Strategy 1 Strategy 2 Strategy 3

Figure B.7: Trading With Hours Specification: Transition Matrices of Validation Data
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