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Abstract

Volatility as an asset class has greatly expanded over the past years. Inside the volatility
trading spectrum, risk premia strategies provide hedge funds with multiple opportuni-
ties to develop strategies that provide risk-adjusted returns that have interesting char-
acteristics. The most important issue with those is that they yield large drawdowns in
some environments. Hence, risk modeling plays an important role in the definition and
execution of a trading strategy. The goal of this paper is to exhibit a risk methodology

for cross-asset volatility trading strategies.

To do so, we will carry out a theoretical study on the error on risk, which results from a
linear approximation of market returns. In practice, we will study the co-movements of
the traded volatility products through a beta sensitivity model derived from Greek and
PnL time series. Then, we will use this beta model to propagate extreme local market
moves to the whole market through the definition of relevant sparse-risk scenarios. Fi-
nally, we will integrate these scenarios to a simple volatility trading strategy and will

assess their impact through various performance metrics.
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Introduction

The notion of risk is one of the major components of modern portfolio management the-
ory. Markowitz [14] pioneered this theory by introducing the notion of mean-variance
portfolio optimization, that aims to maximize the expected returns of a portfolio under
risk constraints, modeled by the variance. Later, Sharpe [17] and Lintner [13] introduced
the Capital Asset Pricing Model (CAPM), a statistical approach to risk in finance. They
demonstrate that the expected returns of an asset must be linearly related to its betaq,
a measure of the correlation between the asset’s returns and the market portfolio’s re-
turns: for asset k,
E[r] = ag + o154

Lintner [13] suggests a two-pass approach. The beta estimates 3, are first computed
through linear regression, before computing estimates for «; and «; through cross-
sectional regression

Elry) =T =ay+ By + M

Fama and MacBeth [7] refine this model by computing monthly rolling betas. Gibbons
[8], on the other hand, uses a maximum likelihood estimation approach to the problem
and argues this solves the problem of error-in-variables, introduced by the two-pass ap-
proach [7], that arise when the number of assets V in the portfolio increases. Shanken
[16] discusses the relationship between these two approaches and suggests solutions to

the error-in-variables issue in Fama and MacBeth's approach [7] when N increases.

Meanwhile, the securities traded on markets started to become more and more com-
plex, and more purely mathematical approaches to risk modeling have been developed.
Option pricing in particular, pioneered by Bachelier [2] and followed by the Black-Scholes
model [6], introduced new tools to measure risk. In particular, the sensitivity of option
prices to the variables characterizing them, or Greeks, still play a fundamental role in
hedging portfolios. Hull and White [10] discussed the notions of Delta-Gamma and Delta-
Vega hedging in foreign exchange markets in a stochastic volatility framework. Later,
Jarrow and Turnbull [11] describe a delta-hedging framework for interest rate portfo-
lios. And Greeks are still greatly discussed in textbooks [9, Chapter 14, pp.299-329].




In this paper, we reconcile the statistical and mathematical approaches to risk mod-
eling by suggesting a simple risk methodology for specific volatility trading strategies.
In Chapter 1, we start from the fundamental assumptions of the CAPM and linear regres-
sion [13][7] and show how controlling the error in regression by constructing correlated
portfolios leads to a control of the errors on the Greeks, hence on the portfolio risks.
We also discuss several methods to construct such portfolios and present the beta model,
which we use in practice to estimate the correlations between asset returns, In Chap-
ter 2, we discuss the construction of tail-risk scenarios on asset returns. We present a
statistical methodology to define base-case scenarios for selected benchmarks and use
the beta model to propagate them to the whole universe of assets. Finally, in Chapter 3,
we apply this methodology to a volatility trading strategy, the Gamma scalping strategy,

and discuss the results of such approach.




Chapter 1
Aggregation via the beta model

In this Chapter, we introduce the notion of Greeks in the fundamental option pricing
models (Black-Scholes [6] and Bachelier [2]) and discuss their relation to risk. Then,
we derive the theoretical formulas for spot-related Greeks for option portfolios with
multiple underlyings and show how controlling the approximation errors resulting from
the linear regression of asset returns affects the error on the Greeks. Finally, we present

the beta model, a practical implementation of the linear regression theory.

1.1 The notion of Greeks

1.1.1 Greeks and their relationship to risk

As discussed in [9, Chapter 14, pp.299-300], when an investor trades options in the over-
the-counter markets, an important component of their trading strategy is the risk man-
agement. If similar options are traded on exchange markets as well, it is easy for in-
vestors to hedge their exposure as they simply can buy or sell these. However, it is more
difficult to quantify risk for options that are either listed exclusively on a single mar-
ket or ones that are tailored for specific clients. A different approach to this problem
is to consider options in a framework, such as the Black-Scholes model [6], that yields a
formula for option pricing. In that case, option prices become functions of a set of pa-
rameters, and we can define risk as the sensitivity of the option prices to these parame-
ters. Formally, we define risk for trading options as the partial derivatives of the option
prices with respect to the parameters that characterize them. These partial derivatives
are refered to as the options Greeks.

Consider an option with fixed strike and maturity. In the most common option pric-
ing models, the main parameters that characterize this option’s price P are the under-
lier’s spot price S, the volatility o, the time ¢ and the risk-free interest rate r. The main

Greeks associated to these parameters are




Delta A := dsP, which is the sensitivity of the option’s price to that of the un-
derlier. Basically, if the underlier’s price increases by one unit of currency, the

option’s price increases by A units (it decreases if A < ();

Gamma " := dsg P, which is the sensitivity of the delta to the underlier’s price. It

is a measure of convexity of the option’s price;

Vega v := d, P, which is the sensitivity of the option’s price to the implied volatil-
ity. In other words, the option’s price increases by v units of currency when the
implied volatility increases by one point. In practice, we can also define the Vega

as the sensitivity of the option’s price to an increase of 1% in volatility;

Theta © := 9, P, which measures the variation of the option’s price with time;

Rho p := 0, P, which measures the variation of the option’s price with the risk-

free interest rate.

We can define more greeks as second-order, third-order and cross-variable partial
derivatives, but we focus on these ones as they are the main drivers of risk. In practice,
we can use Greeks to hedge our positions. The most simple case of Greek hedging is the
Delta hedging. In a derivatives portfolio where all the products share the same underlier,
it consists in buying —A shares of the underlier, so that the total Delta of the portfolio
become zero. Other cases of hedging through Greeks have been studied, such as Delta-
Gamma and Delta-Vega hedging. In the following sections, we will only consider the
risk related to the underlier’s spot and volatility, namely the Delta, Gamma and Vega.
However, we will only give theoretical results for the Delta and Gamma, since the results
for the Vega are roughly the same as those of the Delta (we simply replace S by ¢ and
the returns by the change in volatility).

1.1.2 Greeks for single-asset vanilla options

From now on, we will consider a Call option® in a market with no risk-free interest rate
(i.e. r = 0). We will look at two major option pricing frameworks, namely the Black-
Scholes and the Bachelier models. In these frameworks, since we have a formula for the

Call option price, we can easily compute Greeks by differentiation.

TOnce we have results for Call options, getting the same results for Put options is straightforward. To
do so, we can use the Call-Put parity, which is a relationship between the Put and Call prices, assuming a
no-arbitrage market.




The Black-Scholes model

In the Black-Scholes framework [6], we assume that the Call option price ' is solution

to the partial derivative equation given by
. L,
aC + 39 dssC =0 (1.11)

where

» (.5, is the price process of the underlying asset;

* g is the annualised standard deviation or implied volatility of the stock return
with boundary conditions
. C(0,t) = 0;
+ C(S.t) = Swhen § — +oc;
« O(S,T) = (8§ — K)*, with K and T respectively the strike and maturity of the
option.
Note that, to simplify the notations, we write C'(S, t) for C'(S, K,T,t, ). Upon resolu-
tion®, we get
C(5,t) = SP(dy) — KP(d) (1.1.2)
with

v dip = n\/% (log% + 30%(T — !,));

« @ the cumulative distribution function of a standard Gaussian random variable.

Since we now have a formula for the option’s price, we can compute its Delta and Gamma

by differentiation. We get

Proposition 1.1.1.
1

A=®(d) M= — 2
@) 1= o T =ia(d)

where ¢ is the first-order derivative of ®.

Proof. First, note that

:Ejf; = exp (i(rﬂ% — df)) = exp (i(dz —dy)(d2 + dl))
= exp (la\/ﬁ . Zi)
2 aT —t
S
K

The reader can find a detailed proof in [6, pp.640-645].

10




and that dqd, = dgdy. Then, we have
A =d(d)) + SOsd, ¢(dy) — Kdsdyp(dy) = ©(d;)
and

T = dsA = dgdyp(dy) = - ().

1
SoT —

The Bachelier model

The Bachelier model [2] is mainly used to price interest rate derivatives. In this frame-
work, since we assume there is no risk-free interest rate, the price of a Call option follows

the stochastic differential equation given by
dS; = odWy,

where T is a Brownian motion. Using the same argument as in Black-Scholes [6] and

Merton [15], we can derive a formula for the Call price, given by

C(S,)=(5S— K)®(z) +oVT —tp(z), (1.1.3)
where z := Us_ﬂ% Again, we can compute the Delta and Gamma by differentiation, and
we have

Proposition 1.1.2.

_ $(2)
A=), T = —
Proof. First, note that ¢(z) = —z¢(z). Then
A=22E )+ 00) +0(2) = 20(2) + B(2) — 20(2) = B(2)
- 70— T_!(..Z A (."‘2 72(.'.2 Z .ZQ.Z = Z
and
r—— 1 )
Ty =i

11




1.2 Computing portfolio Greeks

In a portfolio of derivatives that all share the same underlying, it is straightforward to
compute the portfolio Greeks, as the differentiation operator is linear. Hence, the risk of
any linear combination of such assets is simply the linear combination of the individual
risks. However, when trading portfolios with multiple underlyings, we cannot simply
sum risks. To understand that, we can look at the delta of a portfolio with two options,
with prices P, and P,, and underlying prices 57 and Ss. Let S := 57 + Sy and P :=

P, + P,. In general, there is no reason to have
OSP - a‘ql Pl + a‘quz.

Using the same notations, we consider a portfolio of n options, with a price P, and
an underlying price S}, for option k. Note that we can consider the n assets to have dif-
ferent underlyings, since we can aggregate Greeks for options with the same underlying
as discussed above. Let P := 3", | Prand S :=Y_,_, Si.

Throughout the rest of this study, we will use the notation f := g, f, given a func-
tion f that is differentiable in .5;. We will also assume the S;. are differentiable functions
of Srl.

1.2.1 First-order derivatives, the delta

Proposition 1.2.1. The delta of the portfolio P is given by
A=8>" Bl, (1.2.1)
k=1

where
¢ 3= 055y
¢ Bk = 0, Sk
» Ay 1= 0g, P, isthe Delta of option k.

Proof. Using the chain rule, we have

T

A=0sP =Y 0sP =) 0505505, Pi =53 Bl

k=1 k=1 k=1

12




In this formula, the Delta of the portfolio is written as a weighted sum of individ-
ual option Deltas. However, altough the formula looks simple, it is difficult to use it to

compute the portfolio Delta, as the 3 and ;. are not known.

1.2.2 Second-order derivatives, the gamma

Proposition 1.2.2. The Gamma of the portfolio P is given by

n T

[ =" (B0 +85) A+ 5> BTy (1.2.2)

k=1 k=1
where
* 3, By are defined in Proposition 1.2.1;
» Ty := 0g,5, P = Js, Ay is the Gamma of option k.

Proof. Again, using the chain rule, we have

n

[ =dsA = Z (080 + B0sB) A+ 8 BrosAy

k=1 k=1

T T

= (BB + B0sS10s,8t) D+ B BrdsS10s, Sids, Ay,

k=1 k=1

T

Z BB + 38 A,ﬁfo,\ﬂ,\n

k=1

Z 3B + 3261) A + 52 Zf,\n
k= k=1

[

The formula for the portfolio Gamma is even more complex than that of the portfolio

Delta as it requires computing 3, G, B and 3. In practice, it is clearly not usable.

1.2.3 The linear case

A simple case of this problem is to assume that the returns v, := 9,In 5, = ”\’r’* are

linearly dependent. In that case,

Proposition 1.2.3. Assume that, forall 1 < k < n, ri = epry, where ¢, € R*, and that
r1 # 0as Let B:=3", | Bx/ck Then

13




. ;.k = (."3;((."3; — 1)%%,

e B,
* B =pism

e f——p8 [QB + 9%}

Proof. The proofis slightly technical and can be found in Appendix A.1. O

1.3 Simplification through linear regression

The problem of computing the Delta and Gamma in a derivatives portfolio with multiple
underlyings whose returns are linearly dependent is fairly easy to solve. Therefore, we
can intuitively imagine that, if we find a high enough correlation® between the returns
r1 and ro of two stocks, we can use an approximation r, = ¢orq, where ¢, € R*, withan
error that is small enough so that we can neglect it while looking at data. In practice, to

do so we use linear regression.

1.3.1 Linear regression

Consider N random variables r1, -+, rx. The linear regression equation of r;. on ry is
given by
P = Qg + Cpr + £, (1.3.1)

where a;, ¢, € R and ;. is a random variable, Consider a sample (ry,,72:),1 <i < M
of outcomes of (r1,- -+ ,ry). Under a simplified version of the framework presented in

[16], we use the following assumptions:
* The ¢, and 1 are independent random variables;
* The ¢, are centered Gaussian random variables with variance o2 .

In the case of stock returns, we can assume that a;, = 0%, Then, for all %, an estimator of

¢, the least square estimator, is given by

- . : 2 Tk
¢ := arg min||r, — eri]|* = pp—,
o o1
where p;. is the Pearson correlation between ry, and ry, and oy, (resp. o,) the standard

deviation of ry (resp. ri.).

3in absolute value.
“We can justify this assumption by invoking the no-arbitrage principle.

14




1.3.2 Controlling the regression error

From now on, we will consider ¢, = ¢, and will write ¢, for simplicity. Sincethes, and r,

are independent random variables, we can compute the variance in (1.3.1) as following

i =clol + crfk. (1.3.2)
The idea is then to set a threshold g on the correlations so that, for all & such that |p;| >
p, the variance o2, be bounded by a constant of our choice®. The following proposition

yields such result.

Proposition 1.3.1. Letry, - - rx N random variables and p € [0, 1]. Even if it means reorder-
ing the ry, supposethat® py > py > -+ > pn. Letn > N suchthat p, > pforalll <k < N.
Then, under the assumptions of 1.3,

(0 < max cri <o} (1-p?) = C, (1.3.3)

k<n

where 02 == max;y 0%

Proof. From Equation (1.3.2), we have, by definition of ¢,

o2
2 _ 2 20k 2 2 2
Oep = Ok = Pr 291 = oi(1 = pi).
1

Then, we have

max o’ = 131\1@})((0%( 1—pd)

k<n  ©k e

I

e 2 -
max o3(1 — min py)
Ik k<n

T

e 201 _ A2
< 131:(13( ai.(1 —p°)
=o%(1—p%).
[
1.3.3 Controlling the error on Greeks
Suppose we have a portfolio of NV assets with returns r, - - - , 7 and suppose we choose

athreshold p € [0,1] andn < N, as in Proposition 1.3.1, that yields a constant ', de-
fined in Equation (1.3.3).

This constant can depend on the r; though.
®Note that p1 = 1, so the variable r; against which we do the regressions does not change its position.

15




Throughout this section, we will denote by 0% = (0% |r, t) the variance of a random
variable X conditional to ¢ and r, and, unless stated, all the inequalities between will

be almost sure inequalities. This is to simplify notations’.
Error on the 3,

Let ﬁ\ = (.‘k%, as seen in Proposition 1.2.3. Then
Proposition 1.3.2. Let 03, := ;. — ... We have

? ‘
058, = 720 = =

C. (1.3.4)

Proof. By definition, we have

- f)ﬁslf)‘ql S’k _3 'J"ISrl —3 T — :."ks_l
k Sg; ok S}; o (9% Sgc-'

hence

Sgc ( £k )
Ch 1+ ——
Srl Ty — &k

I
w
L

which yields 43, = 7*1»%’; Finally, by taking the conditional variance on r, and ¢,

. St S?
2 k2 o Ok

= 550 —C\.
plg2rEr — 202
r15] r1S]

Osp, =

O
Error on B
Let B := pI B /cpand B == > 1 B/ Then
Proposition 1.3.3. Let 6 B := B — B and assume the ¢, are independent. We have
‘ 1 S5 ol St
2 k2 i i
58 = 3G ~ 0., = S oo ~C. (1.3.5)
r3S3 ; ci T st ; ol

"This makes sense in practice, as we want to define scenarios for market moves, starting at time ¢, and
assuming certain base-case scenarios, i.e. 1, as we will see in Chapter 2

16




Proof. Assuming the ;. are independent, we can sum the variances in ¢ B, and we have

T 2
o2 — 58, _ gk z
55—2: 2 = zng:

o
k=1 K 1 =1

S?
:252Zkz
=1

’()
< g Z
k=1
O

The following propositions are proven using the same methods. However, as they

are more technical, their proof is given in Appendix A.2 and ?7.

Error on _7)&
Let 3, := Js, 3 and _fk := 0s,3,. Then

Proposition 1.3.4. Let 63, := 3, — 3, and suppose that S, is a C* function of t. We have

T . S B2
5B, — 1252 zgzgq k

and . & o2
2 3
755, = 7353 ( 252¢ 2 ) ¢
Proof. The proofis slightly technical and can be found in Appendix A.2. O
Error on B

Let B =7 B/ciand B = S7_ By /cy. Then

Proposition 1.3.5. Let 6B := B — B and assume the = » are independent. We have

2(2’25*2 (’250 T 7)1) T (1‘3‘6)

2 2 2
o2 < a1 (Sk (-«_|_Grk)(j
958 = 2,257 \ ;2g2 7 )2
airiS; \riS; ai ] p

and

Proof. First, note that




Then, we have

2 .
T (j—-_. T 2
g = 68 _ 1 St + 3202
§B 2 c2r2g? | p2g2%e k £k
o1 Ck 1 Ck'1P1 11
1 S? ol
= 2.9¢2 2 2(_""_2 c
cre S8\ r2S o
kT1P1 AT 1
2 2 2
%i ( St 3) c
2202 \ 202 2 | =2
arriSt \rist ai ) p
|
Note that, by definition, % = g2 (%ﬁ — 1) decreases with 7, hence controls the error
on o

§B"
Control on 3

Using the same techniques as previously, we can compute a boundary for 3, which we
canthenuse to compute a boundary on the Deltaand Gamma. However, the calculations
for that become too complex and far exceed the purpose of this section. However, we
can show that, if we consider a portfolio with enough weight on the benchmark asset,

we can use the approximation 3 ~ 1, More formally, we have the following result.

Proposition 1.3.6.
lim 5=1.

51 =400

Proof. Since S = 3", _, Sk, we have

8 =05, =0 (5 -y S,L.) =1-) 095
fe=2 =2

T

=1-) 055105,k
k=2
=1-8> B
k=2
- £k Sk
=1-4 (‘.—I——k)
2 ( k T1 S]

. - T Ep S}c
—1-8 Tk k) 2k
2 (ﬂ a1 T ) S]

Consequently, when dividing by 3 (3 # 0 since the portfolio should contain the bench-

mark asset),

- . e Sk
176 -1 <Y (0% + o = 0as Sy — +oc,
a1
k=2

r S

18




since o1 — +oc and r; is independent of the scale of 5. Finally, by continuity of z —+ *
in 1, we have
lim 5=1.

51— +oo

1.4 The linear approximation model

1.4.1 Overview and methodology

The goal of the linear approximation model (or beta model) is to simplify risk scenarios.
Assume, for instance, that we manage a portfolio of derivatives with 30 underlying secu-
rities, and that we want to create tail risk scenarios on these. To keep it simple, assume
that we only consider scenarios on spot moves (i.e. the spot of asset A goes up or down).

In such case, we have 2% —over a billion- possible scenarios.

However, as we showed previously, the linear approximation of returns allows re-
ducing the amount of scenarios while controlling the error on returns and Greeks. This
hypothesis greatly simplifies the model: suppose we cluster the 30 assets in 4 groups
and that all the assets’ returns are well correlated within each group®. Then, if we se-
lect one asset per cluster to define scenarios on returns, then we can propagate these
scenarios on the other assets via the linear approximation. This reduces the number of
possible scenarios to 2* = 16. Another advantage of such model is that it yields histor-
ically accurate scenarios. Since the 3 are computed through data analysis, the market
scenarios resulting from such model will reflect the reality of markets, and we can avoid

unrealistic scenarios that can introduce noise in risk analysis.

Using Kapoor'’s framework [12], we suggest the following methodology:

* Group the assets in clusters and select a benchmark per group, which is an asset
that is representative of the cluster. There are multiple approaches to that prob-

lem, as we discuss in Section 1.4.2;

« Compute the 3, by computing the ¢, through linear regression. In reality, many

discussions arise, as we see in Section 1.4.3.

1.4.2 Benchmark selection and asset clustering

In this model, we want to group assets in clusters and select a representative benchmark

per cluster. Then, the idea would be to propagate scenarios defined on these benchmarks

8in the sense that they exceed the threshold 7 that defines the control on the errors.
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to their respective clusters through the beta model. To do so, we have three different

approaches.

Clustering with fixed 7

The first and maybe most straightforward approach relies on fixing a threshold 7, hence
a control constant ' that bounds the error resulting from the linear approximation.

Assuming we fix p, we use the following clustering algorithm.

Algorithm 1: Clustering and benchmark selection with fixed p
Consider a list of assets L = [Ay, -, Ay] and a threshold g € [0, 1J;

Compute the correlation matrix R.;

while L is not empty do
Select the row 7 of I that maximizes the number of |12, ;| > 7, with A; € L;
Form a cluster with the 4,, and choose A; as a benchmark;
Remove the A; from ;

end

return clusters

This algorithm yields the minimal number of clusters such that, for each cluster,
the absolute values of the correlations between the returns of assets and those of the

benchmark exceed 7.

Clustering with fixed number of clusters no

Another approach to asset clustering is to fix the number of clusters n- and to try to

maximize correlations inside each cluster. This approach is done through the following

algorithm.
Algorithm 2: Clustering and benchmark selection with fixed number of clus-
ters ne
Consider a list of assets L. = [A4, - - , Ax| and a number of clusters nc;

Compute the correlation matrix R;
Define a graph G with N vertices 17, -+ , Vi and no edges;
n<+ N;
while n > ne do
Select the pair (i, j) such that | R, ;| be maximal;
Add an edge between A; and A4; to G;
n+—n-—1;
end

return clusters

This algorithm yields n clusters such that, for each cluster, the absolute values of
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the correlations between the returns of assets are as big as possible. Then, we have

p = min min{p; ; : A; € cis thebenchmark of cluster ¢}.
ecluster Ajee

Clustering by optimization over p and n,

The correlation threshold 7 and the number of clusters n. play opposite roles in the
beta model. Indeed, if we select a high threshold, the clusters become smaller as less
and less asset returns are correlated. This results in the creation of multiple clusters.
On the other hand, if we reduce the number of clusters, they become bigger and start

containing more assets with less correlated returns®, Hence, n¢ increases as p increases.

To solve this problem, we can maximize the following metric over p:

o). T
d(ponc)=p v

where N is the number of assets in the portfolio. Note that we re-scaled n¢ so that

it fall between 0 and 1 in order to avoid any scale effect in the maximization problem.

Since nc decreases as p increases, we have a simple algorithm to solve this problem.

Algorithm 3: Clustering and benchmark selection by optimization over 5 and

Ne

Consider a list of assets L = [A;, -+, Ax];
Set ne = Nand ¢ = 0;
Note that in that case 7 = 1 as each element is alone in its cluster, hence
o(p.nc) =1-% =0,
while n- > 1do
Use Algorithm 2. with L and n¢ and compute the corresponding ;
if ¢(p,nc) > ¢ then
¢ — o(p,ne);
ng—ng—1
end

else

| break

end

end
return clusters
This algorithm makes a compromise between n and p. Note that we can change the

metric ¢ without altering the algorithm.

*We can think of the extreme cases 7 = 1 and 5 = 0. The first case is equivalent to not using the beta
model, hence yields as many clusters as there are assets. In the second case, we cluster all assets together
regardless of their correlations.
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1.4.3 Computing betas

As we discussed in Section 1.3, the 3 are computed through linear regressions of the

returns. Recall that, for asset k, the 3, is defined as

Sk
S1

-".?k =0 s
where ¢, := p; 7= is the least-square estimator computed through the linear regression
of the returns r,, of asset k against the returns r; of the benchmark. Hence, there are

two main components to the beta model:

» The correlations of the returns py;

« The variances of the returns o7,

In practice, when computing variances and correlations, some discussions arise.

The time span of the regression

The goal of the beta model is to devise a risk methodology. Therefore, it should take
extreme-case scenarios into account. However, since these are scarce and take place in
a limited amount of time, computing variances over an entire dataset would smooth the
effects of such events. On the other hand, computing variances over a short amount of
time would result in noisy betas, which might introduce bias in the perception of risk'’.
Following the general idea of Fama and MacBeth [7], Kapoor [12] suggests computing
rolling betas over three time spans:

* Short-time betas, where we consider data over the previous month for computa-
tion. These betas capture the effects of quick yet violent market moves on asset

prices;

+ Mid-term betas, where we consider data over the previous three months for com-
putation. These betas reflect the general trend of the market at the time they are

computed (eg. during a crisis);

» Long-term betas, where we consider data over the previous two years for compu-

tation. These betas reflect the overall trend of the market.

Then, we can use these betas separately to compute multiple risk scenarios for the risk
model.

Consider a situation where markets have just recovered from a crisis, as in mid-2020. A model that is
calibrated only on a few months of data would overestimate risks.
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The problem of market asynchronicity

When looking at correlations between multiple financial time series, we must take into
account that markets do not open and close at the same hours. For instance, computing
correlations between the daily returns at the local closing time (r(t)) of indices that
trade in the United States against the returns (r»(t)) of indices that trade in Asia is not
very relevant'!, Bergomi [4] suggests that if we consider two asynchronous assets with
time processes of returns (r; (t)) and (r,(t)), and if we denote by (1% (¢) ) the shifted time
series defined by 4 (t) := ro(t — 1) for all ¢, we simply compute the correlation between
the two assets’ returns as

P = Prige T Prorh

Table 1.4.3 gives the results of a numerical application of this methodology. We can see
how the correlations are higher in reality, which allows better asset clustering and more
accuracy in scenario definition. The indices we consider are Asian indices that trade in
Hong-Kong (HSI, HSCEI) and Japan (NKY). The correlations have been computed with
data from 01/01/20 to 30/06/20.

Index pr, s, P

HSI -0.47 -0.73
HSCEI -0.45 -0.69
NKY 0.43 0.78

Table 1.1: Correlations between the returns of equity indices and SPX with and without
taking market asynchronicity into account.

The volatility betas

Computing volatility betas is done fundamentally the same way as for spots, except that
we look at implied volatility changes d% instead returns r. However, when the spot of an
option depend only on its underlying product, it is not the case for volatility. In stochas-
tic volatility models, the volatility of an option mainly depends on two parameters: the
time to maturity 7" of the option and its moneyness, defined as the ratio of the price of
the underlying and the strike of the option % The implied volatilities (E(T, %))
are referred to as the volatility surface.

T,5/K

In[12], the idea is to compute a beta surface by interpolation of the implied volatili-

"since the market closing times in that case are interspersed, we can imagine that part of the corre-
lation on day # is achieved by comparing 7 (t) to r,(t) and part of it is achieved by comparing r,(f) to
ot +1).
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ties of market quotes on a grid (TI (£) }_) . To do so, we apply the following algorithm
P I.j

Algorithm 4: The Benchmark Equivalent Risk model for volatility betas.

for i, j do

for time t do
Select the option with maturity 7'(¢) and moneyness % that minimizes

S(t 5
OEYHN 152 - (%),

maxy T maxy (%) A

For its strike K (t), compute the volatility change over this fixed strike,
ie. 65(t) = S(T — 1, 22) — 5(T, 52

end

Compute the beta for pair (4, j) on the time series 6.
end

For the rest of the study and to simplify notations, we will consider a fixed maturity
and a fixed moneyness. This will allow to have one volatility beta, 3, per underlying k

in the portfolio.
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Chapter 2

Construction and calibration of risk

scenarios

In this Chapter, we use the beta model defined in Chapter 1 to define risk scenarios. We
start by defining the notion of risk scenarios and show how the beta model contributes
to simplify and improve the quality of scenarios. Then, we devise a statistical approach
that allow computing base-case risk scenarios through various metrics. Finally, we de-
fine the notion of scenario equivalence and present a methodology to calibrate scenarios
equivalent to the base-case risk scenario, by resorting to constrained optimization algo-
rithms,

2.1 The notion of risk scenarios

The main goal of our risk methodology is to study the behavior of markets in extreme
cases inorder to estimate and control the potential losses of the trading strategy in place.
Therefore, a natural idea is to apply stress tests to the markets in order to check their

behavior. To do so, we introduce the notion of risk scenarios.

Consider a portfolio of N assetsand assume we defined a benchmark, as we discussed
in Chapter 1. A risk scenario on the portfolio S := (451, 6Z:, {8i}, {3.}) is defined by

» The spot move of the benchmark 4.51;
+ The volatility move of the benchmark 6%;;
* Spot betas for the underlyings in the portfolio 5;
» Volatility betas for the underlyings in the portfolio 3;.
Then, we can propagate the spot and volatility moves of the assets in the portfolio by
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using the linear regression approximation, and we set
§Sy = 3051, 0%y = 80X,
The idea of the risk methodology is to

« Find base case risk scenarios. In other words, build a scenario & where the 3.
and g are computed as seen in Chapter 1 and where 0.5, and éo, are set. The

discussion about methods to set .57 and 6%, takes place in Section 2.2;

* Build multiple risk scenarios that are equivalent to scenario S. In other words,
build scenarios &' where the 5. and " are computed as seen in Chapter 1, and
where 4.5} and 6%} are calibrated in order for scenarios S and S* to be equivalent
in some sense. The notions of scenario equivalence and calibration are discussed

in Section 2.3.

2.2 Creation of base-case scenarios

A natural idea to define a base-case risk scenario is to look at the biggest historical re-
turns and volatility moves for the benchmark. However, returns and volatility are not
independent, hence we must look at their joint distribution to determine extreme case
scenarios. Figure 2.1 displays such distribution for SPX and shows that there are almost

no scenarios where both returns and volatility changes are positive.

Figure 2.1: Joint distribution of daily returns »; and volatility changes §%; for SPX be-
tween 01/01/12 and 30/06/20.

In order to define 4.5, and o, for the base-case scenario S, we define a score
s:(r, 08) = s(r, 0%).
The score is simply a function that aggregates the returns and volatility changes. Then,
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we define 4,57 and do; as
605y 1= S51E[r[s(ry,0%,) > q]

and
601 = E[&E]l&(?’],gzl) Z Q]J

where ¢ > 0. In practice, we define ¢ as the 95%-quantile of s(r,5%).

The question remaining is that of the definition of the score s in practice. In Figure
2.3, we consider

s(r,08) := 10 68<0),

whereas in Figure 2.2, we consider
s(r, 0%) := ||(r, 0%) [l = [r| + |0Z]

and

5(r,68) = || (r,08)||2 = r* + 65%

vol_change

Figure 2.2: Data for SPX between 01/01/12 and 30/06/20 that is above the 95%-quantile
for the score s(r. 0X) 1= 150 550

The three scores have different interpretations and yield different results:

» The first score is biased, in the sense that it assumes a risk scenario to be a signif-
icant increase of the benchmark's underlying price with a decrease in its implied
volatility. This scenario makes sense when looking at Figure 2.1, as the returns
and changes in implied volatility for SPX seem negatively correlated. However, it
is only a risk scenario when holding certain short positions on options (eg. short
Call). Hence, it should only be used as a risk scenario when holding such positions

in the portfolio;
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woi_change

wol_change

Figure 2.3: Data for SPX between 01/01/12 and 30/06/20 that is above the 95%-quantile
for the scores s(r, 6%) := ||(r,d%)|1 (top) and s(r, 6 := ||(r, §¥)|2 (bottom).

* The second score in unbiased, contrary to the first one. However, the risk sce-
nario might be attenuated as we average returns and changes in implied volatility
to compute 457 and §%; (the negative and positive returns, for instance, will com-

pensate each other). An idea to improve that would be to compute
651 = ySiE[[r1|[s(r1, 0%1) > g

and
60’1 = —’}'E[|§El||s(?’13621) 2 q]J

where v = 41} is defined according to the positions we hold in the portfolio.

The third score works and can be improved exactly the same way as the second
one. The only difference between them is that the third score is smoother, hence

more risk-averse®.

!In the third score, more pairs (r, §X) are considered withing the risky zone than in the second one.
Hence, the third score is more risk-averse than the second one.
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2.3 Generation and calibration of equivalent risk sce-

narios

A base-case risk scenario is not enough to fully measure and understand the risk in a
portfolio strategy. In order to cover more cases, we might want to change the parame-
ters of the scenario (the benchmark, for instance), or create custom scenarios, such as
having multiple benchmarks or modifying the direction of the benchmark’s returns and
implied volatility changes. Therefore, we want to create custom risk scenarios by hand.
However, such scenarios can introduce bias in risk assessment, as they canbe unrealistic
or they can over/underestimate risk, compared to the base-case scenarios. Therefore,
we need a way to assert a custom scenario is equivalent to the base-case scenario, in the

sense that it is as realistic and that it yields risk that is of the same magnitude.

2.3.1 Notion of risk equivalence

For a scenario S, consider the time process d P(S, 51, %1, +), defined by
OP(S,51,81,1) == P(S,+05, K,5,+0X,,T—1,t+1) - P(S, K, 3,,T,1). (23.1)

The process P is the time series of the daily price change of the option on the bench-
mark, if it is subject to the risk scenario S. Then, define the expected shortfall of scenario
Sas

E5, = E[pP(S, 51, %1,°) [ 0(S, 51,21, ) < g5,

where ¢s is the 1%-quantile of § P(S, 51, X1, ). It is the average of the loss under sce-

nario S over the 1% worst days.

Consider a base-case scenario § := (851,6%1, {5}, {6 }) and a custom scenario
S = (651,654, {Bi}, {8/}). Consider an option of fixed strike K and maturity T on
the benchmark asset, and denote by P(.S,, K, %,, T, t) its price at time {.

Definition 2.3.1. The scenario &’ is equivalent to the scenario S if
ES; = ESg.

In other words, a custom scenario is equivalent to the base-case scenario when, if we
hold a position on the benchmark of the base-case scenario, we lose the same amount
in extreme cases in both scenarios. Note that this definition is not reciprocal® if the

benchmark for the custom scenario is different from that of the base-case scenario.

%in the sense that &' being equivalent to § does not mean that S is equivalent to S°.
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2.3.2 Calibration of the scenario parameters

Consider a base-case scenario S := (851, X, { B¢}, {5, }). Then, consider a custom sce-
nario ' := (§9%,0%%, {3}, {8¢}) that we want to calibrate so that it be equivalent to
the base-case risk scenario. When defining a custom scenario, we often set constraints
on the parameters (457, %] ) € C. For instance, if we want a scenario where the volatil-

ity moves up by at least 5% while the returns go down, we would set

C:=R™ x [0.05, +oc).

In practice, it is virtually impossible to achieve the equivalence relationship, and it is
generally impossible to find an explicit formula that yields 4,57 and §%}. Besides, there
is no guarantee that perfect equality can even be achieved. Therefore, the problem of
scenario calibration can be expressed as a problem of optimization under constraints.
The values § 57 and 421" of 4.5] and 6% we take satisfy the following problem:

(057,057) =arg  min  (ES, — ESqu)Q. (23.2)
(881" 587 )eC

2.3.3 Solving the calibration problem

In order to solve the problem in Equation (2.3.2), we use an optimized version of the
BFGS algorithm [18]. Consider a differentiable function f : # € R™ — R that we wish
to minimize. Let H an initial guess of the Hessian matrix of f and # € R"™ an initial

guess of the minimizer of f. The BFGS algorithm works as following.

Algorithm 5: The BFGS algorithm.
H,z,¢>=0;
while |V f(z)] > =do

p + solutionto Hp = —V f(x)%

«v + optimal step found using a line search algorithm;
T4 T+ap=:1T+S5;

y+ V@ - Vf(x);

H (yy")/(y's) — (Hss"H)/(s" Hs);

end

2This is a linear system of equations and can easily be solved with matrix inversion, for example by
using Gauss-Jordan elimination. The reader can refer to [1] for more details.
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This algorithm uses a line search algorithm, which works as following,

Algorithm 6: The line search algorithm,

pox, e =0

while |V f(z)| > ¢ do
o« minimum of o — f(x + ap);
T T+ ap

end

Note that the problem of minimization of v — f(x <+ avp) is fairly easy to solve since

o € R. Table 2.3.3 gives some examples of calibrated scenarios with this method.

Scenario 857 03X,

Base case +322.47 -0.08
Spot up, volatilityup ~ +203.91  +0.04
Spot up, volatility static  +467.23  +0.00

Table 2.1: Results of the calibration of custom scenarios using the BFGS algorithm. In all
cases, the benchmark is SPX and the position in the portfolio is a Short 3 month at-the-
money Straddle (see Section 3.2 for more details).
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Chapter 3

Application to a gamma scalping

strategy

In this Chapter, we apply the methodology outlined in Chapter 2 to a simple volatility
trading strategy. We start by defining the Gamma scalping strategy, which will give an
overall idea of the strategy we test our model on, and will show how such strategy can
make profit in volatility trading. Then, we will define the at-the-money straddles, the
main structures traded in this strategy, and discuss how to calibrate risk scenarios on
them. Finally, we will define some performance metrics to show the impact of the risk

methodology on the strategy.

3.1 The Gamma scalping strategy

3.1.1 Gamma scalping

In [3, Chapter 2, pp.40-41], Bennett refers to constant Delta-hedging as Gamma scalping.
When continuously Delta-hedging a portfolio, an investor is no longer exposed to moves
of the underlying’s price. Instead, such strategy makes profit based on the rate at which
the Delta changes, making it an interesting volatility strategy: the higher the volatility,
the higher the profits.

Consider a volatility portfolio with both long and short positions (i.e. a portfolio
where positions make PnL based on volatility). Profit is generated on long positions
when the volatility is high, while short positions make profit when volatility is low. In
other words, risk on long positions is that the underlying’s price stays still, whereas risk
from short positions comes from significant market moves. Gamma scalping is a strat-

egy that reduces such risk.

In short, the Gamma scalping stategy can be summarized as following,
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* Buy a volatility product (for instance, a Straddle, see Section 3.2 for more details);
* Delta-hedge the portfolio;
» If the underlying rises, add short stock in order to keep a Delta-neutral portfolio;

» If the underlying falls, add long stock in order to keep a Delta-neutral portfolio.

We will see through a simple example how this strategy can make profit from volatil-
ity.
3.1.2 A practical example

Consider a three-period model (¢t € {0, 1, 2}).

t=120

Suppose that the underlying is at S, = 100 and that we buy a long Straddle of strike
K = 5, = 100. Suppose that the portfolio is Delta-hedged!. Table 3.1.2 summarizes the
situation of the portfolio at ¢ = 0.

Sy 100
Stocks 0
Cash 0

Table 3.1: Gamma scalping portfolio at time ¢ = 0.

t=1
Consider the following cases

» The underlying increases in price, 51 = 110. Then, the Delta of the portfolio A, is
positive, and we short-sell A units of stock. Table 3.1.2 summarizes the situation
of the portfolio at = 1.

51 110

Stocks  —|Aq|
Cash  +110[A,|

Table 3.2: Gamma scalping portfolio at time ¢ = 1 when S} > ;.

» The underlying decreases in price, S; = 90. Then, the Delta of the portfolio A, is
negative, and we long |A | units of stock. Table 3.1.2 summarizes the situation of
the portfolioatt = 1.

!In theory, an at-the-money Straddle has a Delta of 0, hence is already Delta-hedged on its own.
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S1 90

Stocks  +|A|
Cash  —90|A,|

Table 3.3: Gamma scalping portfolio at time £ = 1 when S; < Sp.

t=2

Now, suppose the underlying is back at its original price S, = S; = 100. Then, the
Delta on the Straddle becomes 0 again while the Delta on the stocks remains the same,
hence is equal to A; in both cases. Consequently, the total Delta of the portfolio is A,
no matter the case.

* In the first case, the price decreases from 57 = 110 to S, = 100, hence we long

|A;| units of stock, Table 3.1.2 summarizes the situation of the portfolio at ¢ = 2,

Sy 100

Stocks 0
Cash  +110]A;| — 100]A;| = 102,

Table 3.4: Gamma scalping portfolio at time £ = 2 when 57 > Sj.

» Inthe second case, the price increases from S} = 90 to Sz = 100, hence we short-

sell | A4 | units of stock. Table ?? summarizes the situation of the portfolioat ¢ = 2.

Sy 100

Stocks 0
Cash  —90|A;| + 100]A,| = 10]A,|

Table 3.5: Gamma scalping portfolio at time ¢ = 2 when 5] < S;.

In all cases, the Gamma scalping strategy makes a profit of 10|A;|. This simple example

illustrates how such continuous Delta-hedging volatility structures can make profit.

3.2 At-the-money Straddles

3.2.1 Definition

A Straddle option is a derivative that involves buying a Call and Put with same strike and
maturity. When a Straddle is bought at-the-money (i.e. when the strike is close to the

underlying price) profit from the Straddle is independent from the direction in which
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the underlying price moves.

At expiration, if the underlying price is close to the strike price, the Straddle leads to
aloss. However, the Straddle makes significant profit if there is a sufficiently large move
of the underlying price in either direction. In other words, a Long Straddle position
makes more profit as the implied volatility of the Call and Put options that constitute
it increase. Therefore, a Straddle is a commonly used instrument in volatility trading

strategies.

In our risk framework, we look at Short Straddle positions, as these can theoretically
yield unlimited losses. The payoff function of a Short Straddle is given in Figure 3.1. The
profit of such position is limited to the premium received from the sale of the Put and
Call, and a maximum profit at maturity is achieved if the underlying security trades ex-
actly at the strike price of the Straddle.

L5 Strike

Figure 3.1: Payoff of a short straddle of strike $4 where the total price (call + put) is $3.

3.2.2 Pricing at-the-money straddles

In order to calibrate the scenarios as seen in Chapter 2, we need to compute the process
dP(S, Sy, £y, -) defined in Equation (2.3.1). In the Black-Scholes framework [6], we have

the following result.

Proposition 3.2.1.
OP(8, 51,51, 1) = 65:(49(d) — 1),

where d := o+/T — L.

Proof. The proofis given in Appendix A.3. O
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3.3 Scaling the strategy through risk scenario analysis

3.3.1 The notion of Lambdas

Once scenarios have been defined and calibrated, we should use themto scale the trading
strategy: if a majority of scenarios tell us a certain position is risky, we should scale it
down so we meet certain risk requirements. Formally, suppose we have I scenarios S*
(S! being the base-case scenario) and that they are all calibrated. Suppose also that we
define a maximum loss target L on a certain position, which is the maximum amount

we are willing to lose on that position. The goal is to find functions
A(8Y o 8LSLE L) = AS, 815,50t

that yield a risk PnL on the positions in the considered portfolio and that aggregates the

scenarios. Bergomi [5] suggests defining the benchmark’s Lambda in the form

I T
A8 S8 N ) = — (de(si- S1, X1, ﬂ)ul{ap{sfﬁl_):l_a}<r1}) ;

=1

where a > (). We can extend the definition of Lambdas to any asset k in the portfolio by
defining

I @
(S ST E L) = — (Z aP(S*‘,,.-a’;;_sl.,,.-9;;'2,,z,)u1{HP{S,.__I,D,L._SI__,..,,L.EI__“{m) :

i=1
Figure 3.2 shows the time series of the Lambda for SPX. They are given in absolute value
and computed for a short position on a 3 month at-the-money Straddle. Note how the

Lambdas drop during major crises such as the subprimes in late 2008 and COVID-19 in

2020, suggesting that a Short Straddle strategy would yield more PnlL during crises.

3.3.2 Computing scaling factors

These Lambdas aggregate scenarios and yield a representative risk PnL for the consid-
ered position. For instance, if we consider holding a position on a certain option on asset
k, the operation would potentially yield a loss of A.(S?, - - - , ST, t). Therefore, if we wish

to meet a loss target L, we should hold a position of

L
)‘k(slﬁ e '.SI'.‘Srk: Ek1 ’)

units of the considered option. By doing so, we re-scale the positions on all underlyings

in the portfolio so that they yield the same potential loss L: all assets in the portfolio
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Evolution of scenario lambdas for sach asset in equity

Figure 3.2: Lambda time series for SPX between 2006 and 2020, given in absolute value.

are equally weighted with respect to risk.

3.4 Application to a US equity index based strategy

In this section, we consider a Gamma scalping strategy® on US equity indices (SPX, NDX,
RUT), using 3 month at-the-money straddles. We will denote by T1(#) the value of the
portfolio at time ¢.

3.4.1 Definition of success metrics

In order to evaluate the impact of the scenario-based risk methodology on this strategy,
we will compare several metrics on the strategy with and without using it. We will use

the following metrics.

*» The maximum drawdown, MDD := min, ([T, — max,_, [1,), which is the maxi-

mum observed loss from a peak to a through of the portfolio;

« The yearly Sharpe Ratio, SR = - Z:_l W

the end of the calendar year y, and o1 (y) is the sample variance of the portfolio,

, where I1(y) is computed at

computed over year y. Note that we still assume the risk-free rate to be zero;

» The yearly Delta-hedged PnL,

LY. 6y I(t) —II(t — 1) — A(t — 1)(S(t) — S(t — 1
b1y 3 M0 ) (S )

365

y=1 t=365(y—1)

2In reality, the strategy is slightly more complicated than that, but I cannot delve in the details. This
is why, for instance, the Sharpe ratios can seem abnormally high for such simple strategy.
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3.4.2 Summary of the results

Table 3.4.2 presents the results of the backtests of the strategy between 2006 and mid-
2020, with and without using the risk methodology.

Metric Without the risk methodology ~ With the risk methodology

MDD (kUsD) -77.2 -64.6
SR 2.01 2.12
PnL (kUSD) +60.02 +68.23

Table 3.6: Summary of the evolution of the success metrics for the risk methodology
between 2006 and mid-2020.

We can see that applying the risk methodology improves the strategy. Not only does
it help increase the Sharpe ratio, which illustrates the performance of the strategy, but
it also increases the maximum drawdown, which is a pure risk metric. In other words,

the methodology helps the model loose less in case of loss.
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Conclusion

Overall, we have successfully built a risk methodology for volatility trading strategies.
After introducing the notion of Greeks and their relation to risk,we carried out a the-
oretical study to show that, when asset returns are highly correlated, the approxima-
tion errors resulting from the linear regression yield a good control of the error on the
Greeks. This study justifies the use of the beta model, as it still yields relevant results

while greatly simplifying the risk methodology.

Then, we used the beta model to define risk scenarios and saw how clustering as-
sets through various algorithms and propagating simple market moves on all clusters
reduces the dimension of the problem of scenario definition while keeping the scenar-
ios relevant. We devised a practical methodology to define base-case scenarios and to

calibrate custom scenarios to be equivalent in terms of risk profile.

Finally, we applied this risk methodology to Gamma scalping, a fairly simple volatil-

ity trading strategy. We displayed its impact through various performance metrics.

Though this model seems to yield interesting results, we can discuss further im-
provements. Among the many interesting potential improvements to the study and

methodology, we can cite the following.

* Refine the assumptions in Equation 1.3.1 and compute a better boundary on the

error on Greeks, which will eventually allow better clustering of assets;

» Extend the methodology to other asset classes and study its behavior, It is partic-
ularly interesting to see how the methodology works on interest rate options, as

these are very different from equity options;

» Extend the methodology to multi-class strategies, and see how the methodology
behaves when multiple asset classes are traded in a portfolio For instance, in prac-

tice, will the methodology cluster assets by class?

* Improve the study of the methodology's performance metrics. Though the risk

methodology seems to improve the performance of the Gamma scalping strategy
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overall, performance might be due to effects of both alpha and scaling through
risk, and not purely from risk. Hence, we might find better metrics to assess the

impact of the risk alone, independently from the way the strategy behaves.

40




Appendix A

Technical Proofs

In this section, we present detailed proofs of some propositions mentioned in this paper.

These proofs are gathered here to make the paper more readable.

A.1 Proof of Proposition 1.2.3

Proof. First, note that, by the chain rule and by linearity of the differentiation operator,
JsB = 055,05, B = 3B

and
dsB = 05,05, B = 3B.

Then,

* By using the chain rule, we have

!f’),r, S] f)_f,*l S}c B I']Sfl ,-"IJ)I;c Sfl
rE = — = I,-‘j]k_ — = ——"Tk
bk bk Cj bk
hence, since ry # 0 a.s.,
3 Sk
B = c.—.
O k )
» By differentiation of {3,
g Sfl a‘ql ka — ka ,."3;\.51 — ka ("k‘-qk — ‘ka ( 1) S’k
O = O ; = (. o = Cp - = Cp\Cp. — —
e g2 e s Mo gz
* From the first point, we have
T n 3,
S=Y 8= 58 =88,
k=1 =1 %
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hence?

o 1 dsB
B =08 == — 2
f Ugi2p B BE
1 B
=5 9')’§
This yields B
B 1
3I1+5—= | =—
(+5%) =3
hence
1 B

&)

B B+SE T B+ SB’

« Note that 3(B? + SB) = B. Then, we have

3 — o8 dsB(B?+ SB) — B(2BJsB + B + S0sB)
H=ugl =

(B2 + SB)?
B8B(B%+ SB) — B(28BB + B + S3B)
- (B? + SB)?
BB — B(28BB + B + S8B)
h (B? + SB)?
. _2BB+SB
7P (B2+SB)
_ _p2BB+ SB
' B
JIP B
=5 2B+ 55|

!Here, the divisionby 37}, i /ey, is justified by the fact that for anon-empty portfolio, S > 0,5} > 0
a.s., hence §/S5) > 0 as.
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A.2 Proof of Proposition 1.3.4

Proof. We have

B, = 05,8k + 05,08, = B, + 05,061,

Sk
dg, | ——=1
I8 (T’];S{l k)

. 1 . £k Sk .
()Sl —Srkf,‘k =+ ()5'1 Srk,—k + —k()‘qlfk

hence

88, = ds, 68,

.5, 9,5, 0,5,
_ (“’(19"3‘2 Seer + ﬁﬁ

—_ d:;qu‘ Sker + i 1;‘1

=P ’:;1

- Srk Ek
(I et 'J"ISrl k) TIS’I )

by independence of S} and £, and by Schwartz’s thearem. Besides we have the following

result.

Lemma A.2.1. Let X ~ N(0,0%) and a,b € R. Then

Var(X(aX + b)) = oxoy + oxE[Y]* + oy E[ X"
Proof. LetY := aX + b. We have

Var(XY) = E[X?Y?] - E[XY]?
= Cov(X?,Y?) + E[XYE[Y?] — (Cov(X,Y) + E[X]|E[Y])%

Then, we have

Cov(X?,Y?) = Cov(X?%,a*X? + 2abX + b*) = a*Var(X?) + 2abCov(X?, X)

4
X

= 2a%
since (X/c%)? ~ x? (hence Var(X?) = 20%) and, by symmetry,
Cov(X%, X) = Cov((—=X)? —X) = —Cov(X?, X).
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Then,
E[X?E[Y?] = 02 (a®0% + 2abE[X] + 1?) = 0% (a’0% +b?).
Finally,
(Cov(X,Y) + EBX|E[Y])? = Cov(X,Y)? = d®0k.

Following that, we have

Var(XY) = a’oy + b2 0%

(|
Consequently, using this lemma with X = ¢, a = ,:’—;1 and b = 3,., we have?
, 1 SE o, ) 1 S} o}
2 ke 2 a2 2 ke ke
o= = —— — g + 55 |07 < —— = 4+ = \C
@ risy (;f‘?f =k ") sk = pdSt (;f?f o}
by definition of Be. [

2Recall we are computing variances conditional to t and r|, hence we can "get the S; and r, outside
the variances”.
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A.3 Proof of Proposition 3.2.1

Proof. First, note that, when S; = K, wehaved, = —dy = o+/T —{ =: d. Besides, note
that, by symmetry of the Gaussian distribution, ® () + ®(—x) = 1. Then, we have the

price of the at-the-money Call at time ¢

C(Sy,t) = 5B(dy) — KD(dy) = Sy (D(d) — D(—d))
= S (2®(d) — 1),

and by Call-Put parity, we have the price of the Put at time ¢
P(Sy.t) = C(S, 1),
hence the price of the Straddle at time ¢
(C+ P)(S,t) = 28,(2®(d) — 1).

At time ¢ + 1, if we shock the benchmark’s spot and the Straddle's implied volatility with

the scenario &, we have the Call and Put prices at time ¢ + 1
C(S1+651,t+1)=(51+65)(28(d) — 1)

and
P(S;1+8S;,t+1)=C(S; +65,t+1)— 45,

again by the Call-Put parity. Note that, in these formulas, the definition of d; does not
change, as T' — t is constant in the definition of § P(S, S1, £;,-). Hence, we have the
price of the Straddle at time £ + 1

(C'+ P)(S; + 85, t+ 1) = 2(5, +05)(2®(d) — 1) — 85,
and

SP(S,S1,51,t) = (C + P)(Sy + 6S1,t + 1) — C + P)(Sy, 1)
= 205,(2®(d) — 1) + 65,
= 65, (49(d) — 1).
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