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Abstract

Constant Maturity Swap (CMS) is a swap where the interest rate on one leg is reset periodically
with respect to a market swap rate, instead of being reset with respect to LIBOR. Pricing CMS-
linked derivatives is more complicated than pricing a vanilla produet because of the “unnatural”
payment schedule. One of the most used pricing techniques to price CMS-linked products is pricing
by replication. However, due to the lack of swaption market quotes for every possible strike, we
need interpolation models to achieve the pricing. The most used smile-consistent interpolation
methods in the market are the Vanna-Volga approach and SABR model, since they provide prices
that are in line with swaptions market data. We will implement both techniques and compare
them with the pricing done under Black’s framework which assumes constant volatility. We will
consider different bond-math approximation in our pricing and examine the impact of each one on

the price.
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1 Introduction

The interest rates market is continuously expanding, and it has undergone significant shifts es-
pecially in the last couple of years. It is now considered as the most active asset class with the
largest amount of assets in terms of notional. The derivatives in this market are divided into
three main categories depending on their complexity: the vanilla, the quasi-vanilla, and the exotic
derivatives. Unlike vanilla instruments, quasi vanilla and exotic instruments are less liguid and
may have different payment structures or expiration dates. They can be bespoke to a particular

client or a specific market.

An example of a quasi vanilla interest rate derivative is the Constant Maturity Swap (CMS)
which is a variation of the regular interest rate swap. It is characterised by the fact that its floating
leg resets periodically against the rate of a fixed maturity instrument with a longer maturity than
the length of the reset period. Whereas, a vanilla swap is a swap where the floating leg is set
against a short term rate which is usually LIBOR. Due to the nature of their payment schedules,
constant maturity swaps are exposed to changes in the long-term interest rate movements.
Different pricing techniques have been suggested by practitioners in the financial literature. The
goal of this thesis is to combine them and compare them to provide the traders of CMS with a

good insight into the characteristics of each method.

To understand the basics of CMS derivatives pricing, we start with the pricing of a CMS
swap. The price of CMS swaps is the difference between the present value of the LIBOR leg and
the present value of the CMS leg. Once the vield curve is known, valuing the LIBOR leg is rather
straightforward because it is exactly the same as the case of a vanilla interest rate swap. Valuing
the CMS leg, on the other hand, requires a deeper understanding. At each payment date, the
CMS leg pays a CMS rate. The CMS rate is defined as the swap rate of an underlying swap with
a tenor that is constant and does not depend on the reset frequency. For instance, a 30-year CMS
leg depends on the 30-year CMS rate that is independent of whether the reset happens quarterly
or semi-annually, which explains the term “constant maturity”. A CMS rate can be viewed as an
alternative to LIBOR as a floating index because it allows investors to express their views on the
future levels of rates. An important thing that will be emphasized in Section 2.2.2 is that the value
of a CMS leg is not equal to the underlying forward swap rate, and we will need to do a change

of probability measure in our pricing. Pelsser suggests in [6] that this change of measure should




be accompanied by a convexity adjustment. From a modeling perspective, the use of a convexity
adjustment occurs every time the underlying financial variable modelled is not a martingale under

the pricing measure.

The most used way to calculate the convexity adjustment of a CMS-linked product is pro-
posed by Hagan in [4] and is based on the pricing by replication technique. The idea behind this
method is to replicate CMS swaps, caps and floors continuously using Payer and Receiver swap-
tions. This approach is very interesting because ideally, it would allow a static hedge of a CMS
position based on a continuum of vanilla interest rate swaptions. However, swaptions are only
quoted in the market for a diserete range of strikes, maturities and tenors. Hence we need a way

that provides us with the rest of the swaption values.

Many authors have written around this subject. Hagan proposed bond-math approximations
in [4] and provided closed form formulas for CMS coupons under Black’s model based on the
assumption of constant volatility. However, using this model is not consistent with the swaption
smile or skew present in the market. The term “smile” is commonly used to refer to the pattern
that results from plotting the implied volatility as a function of the strike. Hence, a better approach
would be to use a smile-consistent interpolation method to infer the swaption implied volatilities

for non-quoted strikes.

Castagna, Mercurio and Tarenghi suggest in [1] to use the Vanna-Volga approach to value
CMS adjustments. This method was first introduced by Lipton and McGhee in [13]. It was mainly
used by traders in the FX market, but it was extended to other derivatives markets and we will
now apply it to CMS in particular. Although we will not implement it in our thesis, it is worth
mentioning that Shkolnikov extended this empirical method further in [9] to include the interest-
rate risk.
The Vanna-Volga method is often referred to as the “trader’s rule of thumb”. It is used to recover
the implied volatility smile/skew for a given maturity using only three available quotes from the
market. The main advantage of this technique is it is already calibrated to the market since it uses
three market quoted volatilities, so it is easy and fast to implement. In addition to that, it produces
accurate results that are consistent with the market smile. However, one of the drawbacks of this
method is that it is not based on a robust foundation, so we can encounter cases where it may

create arbitrage opportunities if it is not dealt with care.




Another way of valuing CMS was suggested by Mercurio and Pavallicini in [5]. They pro-
posed to use the SABR functional form that was first developed in literature by Hagan, KKumar,
Lesniewski, and Woodward in [7]. SABR is a stochastic volatility model that attempts to capture
the market smile. For our purpose, it is used to get the swaptions implied volatility that are needed
to calculate CMS convexity adjustments. The key step before using this model is to have a solid
calibration procedure to produce accurate results. When calibrating the SABR model to swaption
volatilities, we usually have one degree of freedom left: the parameter F. Practitioners usually
fix this parameter to some prior belief about the market. For owr purpose, we will calibrate the
parameter 3 to the market CMS swap spreads quotes. Thus, we will use a joint-calibration proce-
dure with swaption volatilities and CMS spreads data. The main advantage of the SABR volatility
model is that it produces accurate volatilities that are in line with the market smile. Nevertheless,
the calibration procedure should be dealt with care, in contrast with the Vanna-Volga approach

that does not require a joint-calibration.

Clearly, each method has a precision/ease of use trade-off. In what follows, we aim to
analyse the advantages of each approach, their differences and their ease of implementation and
accuracy. To do so, we plan to organise the paper as follows.

We start with the basic definitions of CMS-linked derivatives. We then use the replication method
to derive an analytical formula for the convexity adjustment of each of the products. We use bond-
math approximations proposed by Hagan in [4] to model the yield curve and achieve the pricing.
The first approximation we will base our work on is the standard one used by most practitioners
in the literature. We first implement Black’s model that assumes constant volatility. To decrease
the computation time, we resort to a third-order Taylor Series approximation of the standard
function, and we compare the results with the numbers obtained using the exact closed formula.
We then want to implement interpolation methods that take into consideration the smile. We
start with the Vanna-Volga method that has two approaches, and we provide the reader with a
mathematical and a practical ' justification that the two approaches are consistent. We resume
our work by implementing the SABR model and calibrating the parameters to match both the
swaption volatility smile and the CMS spreads market data. We try to provide the reader with
the clear and detailed steps of the calibration as it is the core part before using the model to price
CMS. Additionally, we compare the results obtained with the two interpolation methods and check

whether they are consistent with each other.

Iy application to market data
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The main problem with what has previously been done in the literature is that the yield
curve is assumed to be flat. However, the structure of CMS payments where LIBOR and spread
are exchanged for an N-year CMS rate forces us to be aware of the importance of the shape
and slope of the yield curve in the pricing. Hence as a further exploration, we study the impact
of changing the usual yield curve approximation that is market practice on the price of a CMS
swap. Although the first bond-math approximation is the standard market practice and is used in
most of the papers in the literature, it would be interesting to relax the simplistic assumption of
flat initial and final yield curve. The two other approximations we will use are also proposed by
Hagan in the appendix of [4] but have not been implemented previously. The first one takes into
consideration the initial shape of the yield curve instead of assuming it to be flat but only allows
parallel shifts. The second one, on the other hand, takes into consideration the slope of the vield
curve by allowing non-parallel shifts. Thus, the last part of the thesis will be the inspection of the

two new approximations and their impact on CMS prices in specific.

Finally, we shall mention briefly the motivation for doing this project. Requests for CMS
structures have been increasing lately. The bank where my internship is based does not have
a static model for CMS-linked products. Hence, this project provides a way to benchmark and

validate the valuation provided by the EBRD’s pricing which is a vendor system.
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2 Pricing scheme

The aim of this section is to introduce the important basics of pricing that are needed to value
CMS-related products.

We consider the filtered probability space (£, F, (F¢)i=0, ). We denote by SHP = S(t,T,, Ty) the
swap-rate at time t of an underlying swap that starts at time 7}, and matures at time T}.

The tenor of the CMS coupon’s underlying swap is defined as the difference between the maturity
and the start date of the swap. Usually for a N-vear indexed constant maturity swap, T, = 4,1
and Ty, = t;_y + N years. The swap rate at a fixing time t is defined to be the fixed rate such that
the swap’s value is zero at time t.

Before providing the reader with the necessary background that is needed for the valuation, we

start by introducing the most popular CMS linked products with their payofts.

2.1 CMS linked products

The three most common CMS linked products are: CMS swaps, CMS caps and CMS floors. We
will define each of these products individually in the following subsections. We assume a unit

notional amount.

2.1.1 CMS Swap

A CMS swap is a contract involving two legs: a CMS leg and a floating leg. We denote by

ty,ta, ..., the payment dates of the CMS leg.

The CMS leg consists of payments at time ; of the N-vear swap rate Si:"‘t"‘h\r.

Ti is
usually spot lag business days before the interval begins or before it ends depending on the type
of the contract. In fact, there are two types of contracts. CMS legs can be either set-in-advance
or set-in-arrears. Set-in advance CMS legs are the most common in the market, but there are also

contracts where the CMS legs are set-in arrears. The definitions below are based on Hagan’s paper

[4, p1].

Definition 2.1 (set-in-advance). A CMS leg is set-in-advance if the underlying swap of the swap
rate S; begins at £;_, and ends N years later for each time period i. The fixing date 7; of S; is spot

lag business days before the interval begins at ¢;_;.
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Definition 2.2 (set-in-arrears). A CMS leg is set-in-arrears if the underlying swap of the swap
rate S; that begins at the end date t; for each time period i. S; is fixed on a date 7; that is spot

lag business days before the interval ends at #;.

Thus, each payment of the CMS leg has the following payoff:
91;8!'._|J.._|+.|’\’

where 0; is the coverage (denoted by cvg in [4]) for each period i. It represents the day count

fraction specified by the contract for each period i and is given by:
O =0y, 1, = cvgltioy, ti, dchgy) (2.1)

and dchg,, is the standard swap day count basis.

The floating leg consists of payments at each time t; with payoff
0i(L(7i, tica, i) +m’)

where L(7;, t;—1,t;) denotes the forward LIBOR at time 7; for the interval [t;_;,t;) and m’ is called
the CMS spread. Usnally, CMS swaps are quoted in the market as the value of the spread m’ such
that the present value of a CMS swap is zero.

The value of a CMS swap at time t is defined as the difference between the present value of

the CMS leg and the present value of the LIBOR leg, namely:

m m

PV (1) =Y P(tt)OES [SErt=t+N] = 3 7 Pt t)0Ef! [L(7i, tio,t) +m]

Swap
i=1 i=1

We will illustrate the cash flows of a CMS swap to makes it clearer to the reader. For simplicity,

we will assume that both legs have the same payment schedules.

—ttt++++—+—+—t+—t—t—t—+—+—+—+ >
t to ti1 1 tm—1tm Payer

L, (o, t1) StototN [ (8 q,8;) G rtevts

—_ e "
—tt— >
t to ti—1 ¥ tn—1tm Receiver

We shall define also the level of a swap (also known as the annuity) as it will be used later in the

thesis.

Definition 2.3 (level of a swap (annuity)). The level of a swap is also known as the acronym

DVO01 which stands for dollar value of a basis point. It refers to the change in the present value of
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a swap when there is a shift of the swap curve ? by one basis point. In our framework where the

underlying swap rate is S, p, the annuity is defined as
n
L) =) " 8;P(t,;)
i=1

where ©; is as in (2.1).

2.1.2 CMS caps and floors

A CMS cap is a variation of the interest rate cap in which the rate used is a swap rate with constant
maturity instead of the LIBOR rate. It can be seen as a call option on a swap rate where each
exchange payment is executed only if it has positive value. As mentioned in [11], a CMS cap is
made of a series of caplets just like the usual interest rate vanilla cap,

CMS caps can be useful for hedging positions in the long term. Investors who believe that interest
rates will be increasing rapidly and faster than what is predicted by the yield curve are more
likely to be buying a CMS cap since it will protect them from rises in the CMS rate above the
predetermined level K.

The discounted payoff of a CMS cap with strike K is:

m

> D(t,t:)0:(S(t, tior, ti) — K)

A CMS floor is a variation of the interest rate floor in which the rate used is a swap rate
with a constant maturity. A floor can be seen as a put option on a swap rate where each exchange
payment is executed only if it has positive value. [11] Just like a usual interest rate vanilla cap, a
CMS cap is made of a series of floorlets.

CMS floors can be useful for hedging positions in the long term, specially for investors who believe
that there will be a downward trend in the interest rates and predict that they will go down faster

than what is predicted by the yield curve. The discounted payoff of a CMS floor with strike K is:

m

Z D(t,6:)0: (K — St ti-1, 1))

i=1

#We can think of the swap curve as the the name given to the swap’s equivalent of a yield curve.
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2.2 No arbitrage valuation

While pricing derivatives, one needs to make sure that the market is free of arbitrage opportunities.
We require the absence of strategies which, starting from zero initial capital, create a positive cash
inflow with positive probability and never creates a loss or negative flow. To be able to talk about

the fair value of an option, we must make sure that money cannot be generated freely.

2.2.1 Fundamentals of pricing

Before we proceed with any pricing, we shall state the basic definitions and theorems that will be

used in owr work. For this purpose, we will refer to [23] and [24] in what follows.

We start by stating the Radon-Nikodym theorem that will allow us to change the probability

measure while pricing.

Theorem 2.4 (Radon-Nikodym theorem). P and Q are equivalent probability measures if and only
if there exists a positive random variable Z € L' such that Q(A) = E¥[Z1,4]. The random variable

Z is unique and is denoted by % and it is called the Radon-Nikodym derivative.

Before we state the change of numeraire theorem, we shall define the concepts of equivalent mar-

tingale measure and numeraire pair.

Definition 2.5 (EMM and numeraire pair). The measure N defined on (2, F, (Fi)i=0,P) is an
equivalent martingale measure if N and P are equivalent and there exists a numeraire N such that

the asset price vector normalized by the numeraire is an Fy-martingale under N.

Theorem 2.6 (Change of numeraire theorem). Assume that the economy is arbitrage-free and
admits a numeraire pair (N,N). If (M,M) is another numeraire pair for this economy, then the
Radon-Nikodym derivative connecting Ml and N is given by a ratio of their numeraires. For all

te (0,7,
dM My, Ny

Wy, "N Mo

As a result, arbitrage-free prices are invariant by change of numeraire. For instance, Suppose A is

an JFr measurable random variable representing a payoff at maturity T. Then its arbitrage-free
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price at time t is

A e
Mr dN |z,

A
MEM | —| = M,E! - .
o [ } o Mr Nr Mo Nr

Mr

A My N A
= MoEY [ ! —”} = NoEY [—]

2.2.2 No arbitrage valuation applied to CMS

fraction denoted by 7.
We consider a CMS linked product coupon where the CMS leg pays g(S,.5(T,)) at time T, + 48, &
denoting the accrual period. We want to find the value of the conpon’s CMS leg at time 0. We

start by taking the risk neutral expectation of the discounted payoff.

VU = EQ[D(D T. + E}Q(Sub(Tu}]

= P(0,Ta + 8)ET=+0 (S, 4(Tw)))

We used the change of numeraire theorem (2.6) to get the second equality. The T, + 6 forward
measure is associated with the numeraire P(-, T, + §).

We shall first take the case of a CMS swap where g(Sa.p(Ta)) = Sa.b(Ta).

S.(T,) is not a martingale under the T, + & forward measure. The measure under which the
forward swap rate S, 4(7,) is a martingale is called the annuity measure denoted by Q**, with the
annuity of the underlying swap as numeraire. Since we are computing the expectation of the CMS
rate under a forward measure that differs from its natural martingale measure, this will lead us to
define a convexity adjustment.

The term convexity in finance often refers to any non-linear behavior of the price as a function of the
interest rate. From a mathematical and probability theory perspective, the convexity adjustment
emerges from Jensen equality which states that the expected value of a convex function is greater
than or equal to the function of the expected value. From a modeling perspective, it arises when
the underlying asset is not a martingale under the probability measure used in the pricing.

The convexity adjustment of a CMS swap at time 0 is defined as follows:

CA:= ET:' +a[S.»,‘:,(Ta)] - Sa.bm)'
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P(0, Ty +68) P(Ta,Ta+6) )
P(T,, T, +0) P(0,T, +4) “"'*

— et | LG T ) )]

L(T,) P(0,T, +0)
— E?=u+k ﬁiP(O_I Ir'] a.b P(T“,T“ + 5) b(T ]
Zg:,ﬁ_l efP(Tuv ti) ‘ ‘

P(0,T, +4)
The second equality uses the change to the annuity measure Q" with annuity L * as numeraire.

ET" +6[Sa‘b(Tu)] = ET" i [

Multiplying by P(0, T, + d) and using the tower property of the conditional expectation we get:

Vo= P(0,T, +6) 52 me%hJu+M

P(0, T, + 9) L(T.)

— pab | pab P(TmTa+5)
=Z0R [E ( L(T.)

Sa.b (TO }]

S,,_;,(T,,)) S,,‘;,(Ta)}

= LO)E"*[f(Sa,6(Ta))Sa,o(Ta)]

where, for any t > 0 :
P(t,T, +9)

ﬂ&mn:wﬁ{ 0]

S,,_b(t)] (2.2)

f is called the annuity mapping function as is suggested in [20]. to find an approximation of the
conditional expectation in (2.2), Hagan proposes in [4] to model the yield curve in a way that
enables us to rewrite the level of the swap L(t) and the zero-coupon bond P(t, T, +4) as a function
of the swap rate S, ;(t). We will provide the details of the yield curve modeling in Section 6.1.

At time t=0, S, 5(0) is known so:

_ P(0,T, + 6) P(0,T, +6)
.= Ra.b a = _- e ¥/
and thus, we get:
1 _
ETH(S04(To)] = ==—=B" [[(Su,b(Ta))San(T. 2.3
[(Sa,(Ta)] T(Sas(0)) [f(Sap(Ta))San(Tu)] (2.3)
where the standard market practice annuity mapping is given by:
- 1
flz)= —————, (2.4)
Ga‘b(-‘r)(l + '.l";.‘]’,') m
= Tl - ey | >0
Gu,b(w) = —J =
i=1 (1+7n2) T1(b— a) ifx=0

% is the fraction of the period between the swap’s start date and the pay date.
This model assumes that the initial and final yield curves are flat and that the coverages for the

swaptions are approximately equal to the schedule.

# We write L(t) to represent L™"(t) to simplify the notations
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As mentioned above, the modeling details that lead to this function will be discussed in
Section 6. For the first part of the thesis, we will do our implementation using the function in
(2.4) and the second part of the thesis will study the impact of changing this approximation on

the price of CMS.

3 Pricing CMS by replication

The value of each of the CMS swap, CMS cap and CMS floor is the sum of the values of each
discounted payment. For CMS caplets, floorlets, and swaplets, the payoff g(S2") specializes re-
spectively to:

952 = (S - K
9(52%) = (K — 52y
g(S;_n.b) = S:'b

The purpose of pricing by replication is to replicate European options with payoff f(-) using Call
and Put vanilla options. The main theorem behind pricing by replication is a very well-known

result derived by Carr-Madan in [19].

3.1 Carr-Madan formulae

Theorem 3.1 (Carr-Madan formulae). Let f: R — R be a C? function. Then P — a.s,

flx) = fla) + f'(a)(z —a) + /0‘{1: — )t f"(v)dv + / (z—v)tf"(v)dv (3.1)

“Ja
where x is strictly positive and a is a positive constant.

In the special case where a =0, we have P — a.s

ﬂﬂ=ﬂm+fmﬁ+ﬁ.w*ﬂﬁﬂﬂ® (3.2)

Proof. The proof follows closely the original paper [19].
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By the Fundamental Theorem of Calculus,

1(@) = 1@ + 1 | " F ()~ Tecay / " (w)du
= 1@ s [ [F@+ [ 0o a1y [ [0~ [ 1010
~ @)+ @) F sy [ [ tuto ey [ [ 0)dute
- @+ @@ =) 1 | 1)@ - v+ ) / " (o) — 2)dv
= f@)+ @@ -a)+ [ @0 @it [ -2 o)

a 0

The 3" equality uses Fubini’s theorem and that f’(a) does not depend on u. )

We will see that this result is useful from a hedging point of view. It provides us with a way
of replicating a European payoff f(-) that is C? by using a continmm of Call and Put Options for
a given maturity.

We shall apply the replication technique to CMS linked products in what follows.

3.2 Pricing by replication of a CMS swaplet

The value of the CMS swap is just the sum of the values of each discounted payment. We start by

valuing a single coupon at time t. We consider 7 > ¢ to be the fixing date of the swap rate.
cMS ~ b [ 70 ga,by gab
V&wapict(t) = L(?)E; [f(S: )S: ]

where f is given by (2.4).

We apply Carr-Madan formulae to the function h(x) = zf(x) which is C? since it is the product
of C? functions *. Indeed, in our modeling it is easy to see that f given by (2.4) is C? by noticing
that it is the composition of C? functions on the domain [0, oc).

A straightforward computation of the first and second order derivatives gives: ' (x) = af'(x)+f(x),
and h"'(z) = 2 f"(x) + 2f'(x).

By a direct application of Carr-Madan formulae (3.2) at @ = .S',f.Lb , we get:

o0
h(S®") = h(0) + B'(0)S™P 4 f (820 — K)th"(K)dK

0

= F(0)S™® + / h (2f'(K) + ["(K)K) (S** — K)*dK

0

4x is a polynomial so it is C?
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VEMS o(t) =~ LIEEP® [h(s2?))]

swaplet

= L(t) (E;‘-*’ [f0)52*] + f h (2f(K) + ["(K)K) Ex® [(S20 — K)*) dh’)

0
Now using martingale pricing theory, S® is a martingale under the Q%" probability measure.
Hence, we will use the following:

E?‘b I:S::b] = S;a,h

E¢? [(S** — K)] = Cap(K) (3.3)

where C, ,(K') denotes the time t- price of a Payer swaption with strike K, divided by its annuity

term. Namely, it is a Call option on the swap rate S p, divided by L®(t).
Hence, we get:
> - o - -
Vapiee(t) = L(t) [f(ﬂ)S:.“*’+ fu Cus(K) (K F'(K) +2F(K)) fm}

To interpret the idea of “replication” behind this formula, we will discretise it.

L
Vapien(®) = L(t) {f(fl)si“*’ + lim " Cop(K)(Kf" (K) + 2 () AK,
i=1

It would be interesting to interpret the result we just got from a hedging point of view to show
the particularity of the replication method. “Ideally”, to hedge the CMS position above, we buy
a contract that pays a floating coupon (with LIBOR as the reference rate) with notional f(0)
and frequency d, and we buy Call swaptions with strikes K; and notional (K;f"(K;) + 2f'(K;))
for i ranging from 1 to infinity and AK; small enough. This is a very interesting aspect of the
replication method that is specially useful for sell-side traders. Indeed, in the ideal case where
vanilla swaptions quotes are provided for every strike, it would provide them with a hedge against
their positions in the market.

Pricing by replication is considered to be very accurate as it is consistent with the prices of European
options in the market. However, it is very computation intensive because as we can see, it requires

to compute an integral to infinity.
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3.3 Pricing by replication of CMS Caplets and CMS floorlets

In the caplet case, the payoft is not differentiable, so we cannot apply Carr-Madan formulae directly.

We start by writing the payoff g(S¢*) = (S = K)* = (S2 — K)1gus g

VEMS(t) = L(t)EP[F(S2b)g(S2b)
= L(t)E?"’[f(SS"’)(SE‘° — K)Lgars ]

By letting h(z) = f(z)(z — K), we get by following [4, p.4]:

WS gans gy = W (K)(SE® — K)* + fK (Sr — =) " (z)dz (3-4)

with 7'(z) = f(z) + f'(z)(z — K) and h"(z) = 2] () + " (z)(z — K)
Vi &) = LIOES® [f(K)(Sp® - K)* + F(K)(K - K)(S¢* - K)*]
E'“’[ (2P —2)* (2f' (@) + (= )(J—I‘\)}da;j|

= L(t)Ca(K)F(K) + L(t) [

JK

B [T 620 -0t @ @)+ @) - )| do

The second equality is done by using (3.3) and Fubini’s theorem. Hence,

Vs @) ~ L(t) (Ca.b(K )F(K) + /K Cun(@) (2] (=) + () (x — K))drn) (3.5)

The pricing of the CMS floorlet is very similar to the pricing of the CMS caplet done

previously. The payoff is
o(534) = (K = SE9)* = (K = S50 geo

The only difference is in step (3.4) above where we now use instead:
K
MSE M grcrey = —WSEVE = S207 + [ (0= S2) W (@)

=%}

Completing the computations, we get:

K

-0

Vfioorier(t) = L(t) (f(h')f’a.b(ﬁ’) —f Pap(2) (2f' (@) + [ (z)(@ - f\’})dﬂ?)

where we used the following:
Ef® [(K - Sp0)¥] = Pay(K)
and P, 3(K) is the time t- price of a receiver swaption with strike K, divided by the annuity at

time t. Namely, it is a Put option on the swap rate S, 5 divided by L(t).
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4 Pricing under Black’s dynamics

As we can see, in all three cases of a CMS swap, cap or floor, we have integrals going to infinity.
If we had all the possible strikes with their corresponding volatilities quoted in the market, then
the pricing would be directly and easily achieved. However, this is not the case in reality. The
most liquid swaption volatilities quoted in the market are the at-the-money swaptions. Apart from
these, we can find few quotes for in-the-money and out-of-the money strikes. This being said, we
need an interpolation method to continue the pricing of CMS-linked products.

As a first approach to achieve the pricing, Hagan proposes to use Black’s model. This model is
characterized by holding all the swaption volatilities constant, setting them equal to the at-the-

money Black’s implied volatility oarar.

4.1 Black’s model exact form

We start with the valuation of a CMS swap at time t=0 where g(S,4(T%)) = Sas(T0)-

Following the pricing by replication done in (2.3), we have:

o pTats TVa L ab [ F -
O:=E + [Sa,b(‘!a}]"’ f{So_:,(U))E [f(Sa.h(Ta}Sa.b{lu)]
where
b [ Fy y VGE’J‘;‘I;IJS(?I,(D)
FE . [ (Sa.b(Ta)-Sa.b(Tu)] = T‘;])
Hence,
Ma = | F(0)Sas(0 cm(- f"(x) + 2f"(2)) Cap(z)d 4.1
oF o [f() a(0) + ﬁ f"(@) + 2] (z)) Cap(@)da (4.1)

We plug in Black’s (Call) Swaption formula:
B3 (K) = BUK, 5040, 0 arnrv/To)

where
BI(K,5,v) := S®(d1(K)) — K®(d2(K))
_ log(S/K) +v?/2

_ log(S/K) — v?/2

v

di(K)

da2(K)
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P(-) denotes the standard Normal cumulative distribution. Hence, we get:

g 1 v = e i 3 f A
09 o 2t s [ 018000+ [ (0" (@) + 27 () CES )t (12)

4.2 Black’s model with approximation

When implementing the integral in (4.2), the computation time is high. So to speed up the pricing,
it is proposed in the literature to approximate the funetion f using its Taylor expansion around
the known value f(S,.4(0)).

The n' order Taylor Series approximation of f is

_ = nofli) .
Fa) = fula) = 3 L0ty g o) (4.3)

i=0
A typical choice of n would be n=3 because it gives an accurate approximation very close to f.

The graph below shows that f and f3 are indeed very close.

fbar _—
4  —— 3rd order approximation

Figure 1: Comparison between f and its 3" order approximation

We need to compute the first, second and third order derivatives of f. The calculations are already

done in [1, p.9] and lead to:

Az) = 9(:)
2x) — ~(x
by = 20596
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where setting n:= b — a and T'(2) := (1 + )" — 1

T d n
Hz)i=1— —— | —
(z) 1+ (n +T(:r:))

(rya)? § n+n? n?
ey =l= (1+ma)? (; @ TQ(”-'))

(ra)? §  n+15n2+050°  1.5(n%+n%) n’
@) =1- o (; T(z) TTRE) T3(w))

Once we get the derivatives, we plug them in (4.3) to get fJ Then, we plug ﬁ; in the integral (4.2)
to get the final results of the approximation in this setting.

Another way to calculate the price under Black’s framework using the approximation func-
tion fy is to evaluate the following integral that nses the Breedon-Litzenberger formulaes as sug-
gested in [10]:

dz B‘;( )
MBS ~ p—b X g 4.4
o ] o) =2 g (1.4)

where

dz(‘o ’{.T] 1 1013( Sa, h(ﬂ]) _ 1(72 To
: :2 ' Nk 30ATM _
dr T xoarm aaTMV s

The way to look at (4.4) is as follows:

Cunlk) = EZ* [(53* - K)*] = [ (@~ K)ot 2)
K

where ¢(7, ) is the distribution function of the random variable S2** under the Q®*-measure.

Taking the first derivative with respect to K we get:

O (K) i
— =0- .x)d.
oK 0 . o1, x)dx

Taking again the second derivative with respect to K and using the fundamental theorem of calculus

we get:
9*C™(K)

DK2 = ¢'(T'. I)

Hence we can now use that:

@, 7 a, F (ﬂ‘!C ()
E“ [2f(x)] ~ Ebm ] f“ s

Computing the integral (4.4) is equivalent to the computation of the first four moments 5 of a log

5The k' moment of a random variable X is defined to be f(f"‘ z*¢(x)dx where ¢(-) is the distribution function

of x if it exists
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normal density. Indeed, using that the integral of a sum of functions is equal to the sum of their
integrals, we get:
: 1 % 3 (8, 4(0)) . d2CES(z)
35 =~ _7f LA e — Sap(0)) e —— L
Fo@ Jo 2@ B SO
San
\/'.ITgD 10%(%] - %'7?1TMTG
a
garmvTa

The calculations of the moments is lengthy but straightforward so we will not include them in the

1L & [ f9(5a0(0) ;
= —f(_s'“h([])) 2 J, _T.T [‘L = Sa,b(o)] TATM

thesis. This leads us to the final result presented in [1, p.10]:

M55 gl [80b(0) (1= A(S00(0)) Sas(0) + 058 (52.(0)) 2,(0) = AC (Sas(0)) 52,(0)) |

24 (S00(0)) Iy + B (840(0)) (382 = 2504(0)11) + C (S0.(0)) (215 = 380s(0)a + S2,(0)11)
(45)

where

I = %Sﬁ_b[o)cﬂ!n

1. w3
Ip = =83 ,(0)e>" T
L

550 T

Iy =

4.3 Results and discussion

To test the formulas above, we need to apply them to real market data. The main goal is to
examine how good the approximation is. We do not want to use any approximation just for the
purpose of decreasing the computation complexity. We should also make sure that the results are
accurate and consistent with the closed form. We consider 5 different one-look USD CMS coupons
6. CMS-2Y, CMS-5Y, CMS-10Y, CMS-20Y and CMS-30Y. We also consider 9 different underlying
swap tenors for each one of them, ranging from 2Y to 10Y. The underlying swap of the CMS leg
has quarterly payments as per market convention for USD. The market data we will use is as of

May-20-2019 7.

To make sure that f; is indeed a good approximation of f , we need to check that plugging fs or

plugging f in (4.2) give very similar results. Another thing to check is that plugging ﬁ; in (4.2)

BWe are considering same currency CMS
7All data used is from the EBRD database
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and using the formula given by (4.5) lead exactly to the same values since both are using the 3d

order approximation of f. We illustrate the results obtained in the following graphs.

- ExnB5 —— - Exs B3 e
Aoprosimated 65 e Apcecaarated 05 e
i S o opemionton i et et — m- Sl st s et bl s
- ——— =
- _’_/- " //
. e o
.= -
: ’ - " Usdaing Swap Tonnr ) : | : | | " Undeying Seesp Tonce -
(a) 2Y-CMS coupon. (b) 5Y-CMS coupon.
Fana BS ——— T — Emass —
T _‘____-—r"" e e —rry /’_F
" S o appomain kvl . 0 crrier appromenalon in dxct Regul ==
e p—
- _— - e
- e - _/—/

~ | aoie=—==

Vedating Suss Ton Vneeyeg Sesp Tener

() 10Y-CMS coupon. (d) 20Y-CMS coupon.

Exact BS
Approximated DS
—— Sed ardar approximation in exact inegral

Unidetpng Swap Tenoe

(e) 30Y-CMS coupon.

Figure 2: Comparison of IT5% exact and 1175 approximated

The blue curve represents the implementation of (4.5). The purple curve represents the
implementation of the integral (4.2) after plugging fs and the red curve represents the same
integral but with exact f. We can see that the three curves coincide for a given CMS coupon
across all different underlying swap tenors which is exactly as desired. This shows that using a 3"
order Taylor Series approximation gives accurate results, while increasing the computation time
considerably.

However, as discussed earlier, caleulating TI®S does not take into consideration the market smile
for swaption volatilities. The reason behind the smile is that in usual market conditions, options
that are out-of-the money and in-the-money are riskier than the at-the-money options. The risk
premium is what causes to see a smile in the implied volatility plot as a function of the strike to
appear. This being said, we need to consider models that are consistent with the smile. We will
introduce in the next chapter two smile-consistent interpolation methods and use them to price

CMS swaps and caps.
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5 Interpolation methods and smile

5.1 Vanna-Volga

Vanna-Volga is an interpolation method that produces option prices in a market where three basic
options quotes are available for a given maturity T. This method is mostly useful in cases where
practitioners need to have the value of an option that is not liquid (for example, the strike could
be very in-the-money or very out-of-the money). The problem with non-liquid options is that we
can hardly find them quoted in the market. Hence we need to interpolate the data that is already

present to get a value for these options.

5.1.1 First approach

We consider a payer swaption with strike x and maturity 7, where the underlying is the swap rate
Sa.p- to use Vanna-Volga, we must have three available quotes for the swaption volatilities. The
three strikes we need are K; and their corresponding implied volatilities are o; fori =1,2,3. Ko is
the ATM strike which is equal to the forward swap rate at time 0. Ky and Ky are two away-from-
the-money strikes such that K| < K3 < K3. We set 0 = 02 = 047a. The Vanna-Volga price of a
payer swaption with strike x and maturity T, (divided by the annuity) is defined in [1, p.5] as:
3
Oy (@) = CFH () + Y wil@) (O (Ki) — O (Ki) (5.1)
i=1
where :

CP(x) = Bl(x,5,4(0),0 a7/ Ta)
CYMRT(K) = BUK:, Sa(0), 05/ Ta)

BI(K, S,v) i= S® (d1(K)) — K® (da(K))
log(S/K) + 4v?

v
_ log(S/K) — 3v?
==

di(K) =

do(K)
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The weights w;(x) are the solution of the following system:

aCPS () 3 aCBS (K.)
e = Lim Wil®) =5

Pl (K

a.b

da?

POEE _ 5

He?
FroSa) = Lt 04(2) T

The idea behind the method described above is to construct a portfolio made of w;(K) units of
payer swaptions with strikes K;. This portfolio is created such that it creates a perfect hedge to
the payer swaption with strike K under the Black and Scholes settings. In fact, we are equating
the Vega , Volga and Vanna of the portfolio created respectively with the Vega, Volga and Vanna
of the payer swaption with strike K.

Vega represents the sensitivity of the price of an option with respect to a change in the

implied volatility of the underlying asset. Its closed form ¥ is:

acb‘b’ T
via) = Ko g, o) st )

Volga is the sensitivity of the Vega with respect to a change of the implied volatility . Volga

has the following closed formula:

PO @) _ V),

do? 1(z)da(x)

Vanna represents the amount the Vega changes in reaction to a percentage change in S. The

closed form is as follows:
PCH () —V(z)
— = da(x)
()O“C)Sr,‘f,(o) Sa,_b(o)o\a"Ta

The figure below shows a comparison between the Black-Scholes Call price and the Vanna-Volga

Call price as a function of the strikes.

8The closed form of the 3 Black-Scholes Greeks for a payer swaption with strike x at time 0 are given divided by

the annuity
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[

—— BS swaption value
—— VV swaption value

Figure 3: Black-Scholes and Vanna-Volga European swaption

We can interpret the difference between the two prices shown in figure 3 as the cost of the

portfolio that hedges the risks associated with the greeks described above. This discrepancy is

called the “smile cost” since it is the difference between the price computed holding the volatility

constant and the price that includes the volatility smile.

Proposition 5.1. The weights w;(x) are given by:

where

Proof.

wy(z) = —J’Ef{?l}] log i log f:_
log 7 log &}

x K.

wo(x) = J}E‘;:) :ogzlogj
(K2) 08 %, log L)

V(z log & log &=
ws(2) =
V(K3) log 7o log g2

OCES (x)
a,b _ o)
v(']“j = T = Sa,_b(n)\" 1(1¢(dl (T))
aCe] () 907 (K1) ICTT (Ka) aC (Ks) wi(x)
do de do e wile
PeliE | o | Pelit) 820,105 (K2) & Cqy (Ka) wa(w)
do® o da* do® 24+
a*cly (k) a*Cly (K1) DL} (K2) A SAGEVE I (x)
DadS, ,(0) DadsS, ,10) dads, ,(0) DS, (0) A

We are solving a system of equations of the form Ax=b.

By Cramer’s rule it has a unique solution if and only if A is invertible, or equivalently

det(A) # 0. The proof below shows that A has a non-zero determinant using the formulas of the
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Greeks Vega, Volga and Vanna above.

V(K3) dnUﬁ )3 (K3)

V(K )dy (Ko)da(Ka)
o

—V(Ka)dz(Ka)

det(A) = V(K,) det (
84,0(0)vTa

—V(ia)da(Ka)
8, u(OJ\/’_

P[K1]d|(K1}dz(K1
=V( K'a]dz[f\‘t)
)]

V(K1 )d, (K1 )dz(Ky)
V(K>) det 7
=V(K)dz(Ky)
S u(0)vTa 0 Sa (0T,
VUK )dy (Ko )ds (Ky) V(f\z]dlif\z}dz{f\z}
V(K3)det v
V(K1 )d2 (K1) —W( K;Jdg[f\g!
S0, (0)vTa 75, u(UJ
I\’;)V{I(g)dg([(z)dg(f ';)[ (In I{g
2 o2 Sas(OVT.
- V(f(l )V(I\J)dg(f\kjdg(i :] [di (f(;;:] —dy (.Ki )]
— V{.ﬁg} )
a Sa‘b(o)\/ﬁ
K Ko)do (K )do (K o) [dy (Ky) — dy (K
+V(I\’;;)V{ 1)V(K2)da (1 )da( z]'[1 (Kz) — di(K,))]
028{4‘!’(0)‘\/1_(1
= — = "o o o
S (OVT, Kl UK P K

The last equality is by straightforward algebraic simplifications. Hence we have det(A) > 0 because
the strikes are chosen such that K < Ky < K3,

So the system admits a unique solution and we get the desired solution by:
aCE i (x)
da
= A-1p with b= | #Cai=)
r=A"bwith b= | e o
AL

daidS, ,(0)

After providing the reader with the necessary background behind the first the Vanna-Volga ap-

proach, we shall use the method in the pricing of a CMS swap. We plug (5.1) in (4.1) to get:
% 1 ~ Vv

IvVos ——— [fta)su.bwn f af"(z) + 2 (2)) CYY (z)dz (5.2)
F(San(0)) ) | ) Cos

5.1.2 Second approach

The first Vanna -Volga approach consists of pricing CMS linked products by replication following
the steps in section 3, and then applying the Vanna-Volga method to get the Payer swaption price
for a given strike K denoted by Cy ,(K). The second approach that will be detailed in this section

is to apply Vanna-Volga directly on the European payoft H to find E*?[H]. For example, H could
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be the payoff of a CMS cap:

H(Sap(Ta)) = F(Sap(Ta))(Sap(Ta) — K)*

3
1 - - . KT
TGy Gas T (SualT) = K] = VY = DS 4 5 7wl (CT () = CUJ ()
a, i=1
I1#:55 is the time 0-Black and Scholes price of the payoff H payed at time T, + d. We can

compute it the exact same way as we did in section 4. The weights .Lf" are the unique solution of

the following system:

arntiBs Zs L HOCET (K

der i=1 "2 do
MBS _ 3 g P00 (K
o ? - i=1"1 Do’

P ) Gl HdzC,fjff(K.}
DedS, (0] Z, 1 Ti' 3eas, 4 (0)

In what follows, the proofs follow closely the work ? done in the appendix of [3].
Lemma 5.2. : Let H be the payoff of a CMS swap. The relation between the weights of the first

Vanna -Volga approach and the second Vanna-Volga approach is as follows:

H _ /m{f”{j\’)j{ + 2 (K))w; (K)dK
0

Proof.

H-BS _ f{S T [f{gjsu b{0]+/ (F'(K)K + 2f (K))CZ (K)dK

Computing the partial derivatives to get the Vega, Volga and Vanna of 1175, we get:

Pl (K:)

aMEE _ [ (K )I(+2f(]\))(ﬂ\]M
(KK + 2f/(K)) di] 25450

‘-JZI-IH.BS
=

()2 H.BS _ dzCrf{;‘f(Kl']
s = Lo (F"(K)K +2f'(K)) dK] w550

But the weights w;(K) are defined as the solution to the system:

CBE(K} CB:(K]
e Z =1 w‘( ) de

FCEi(K) 3 - BPCPTK)
o = =i wi(K) JaZ

P*CEY(K) 3 ~ 2CEY(K))
505, 510) — >im1 'wi(f\)m

9We did them separately at first but we then found them in the appendix of [3].
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So we plug in and we get:

BSrypr
LI _ 5[ (FUK)K + 2 (K)) wi(K)dK ] 2t
a2rpH, BS = = 2CEE(K:)
- = z,_k [fo (F/(E)K +2f (K)) wi(K)dK] =2~
RTHBS Fory

- a.b (4:)
AR =Y [fo? (F'UOK +2f/(K)) wi(K)dK) Gogd

However, we know that the 2/ are defined to be the unique solution to the system

anss _ 5 :L.H"JC‘{%E(K:}

e i=1 "1 der

2N _ 33 oH B KD
a2 =1 "1 der?

22185 £ I_Hr’)z(.'-"‘f“.f(h’,}
BodS, ,0) Doim T oS, 4 (0)

Hence by identification, ## = [ (f"(K)K + 2" (K))w;(K)dK a

We use lemma (5.2) to prove the following proposition:

Proposition 5.3. The first Vanna-Volga approach and the second Vanna -Volga approach de-
scribed above are equivalent. This means that the price of a CMS linked product is the same using
both approaches.

For instance, for a CMS swap, we have: PVY'Y = PVyYV where :

PV = [(0)Sa(0) + f C(PUOK + 2P ()CYY ()

]

3
PV = PVES+ 3 wl(Caf (k) - CFF (k)]

a.b
i=1

Proof. By plugging C}/ () = C7j (z) + Z;—L wi(@)[Cal T (Ki) — O ()] into PV}YY we get:

PV"Y = f(0)Sa(0 / (F(K)K +2f [I\}}Zﬂ‘a(ﬁ] [V (K) = G (K)] dK

i=1

—PV“~"+Z [CMET(K;) — CB ()] L (f'(K)K +2f (K))wi(K)dK

i=1

3
= PVES 4+ Y wf [CMET (k) - CEJ (K] = PVYY
i=1

The last equality uses the lemma (5.2) proved above. O
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5.1.3 Results and Discussion

In all what follows, we will use the third order approximation of f to increase the computation

time since we made sure in the previous section that it produces accurate results.

v First Apereazh — - Frst Azprosst - ——
. — Secnd Apprmach e o — Second Approach T
N e - - =
- o . e

Urderting Swap Tenor Undertymg Suap Tenor

(a) CMS-2Y. (b) CMS-5Y.
Firit Appraach i — = L —
. Secand Appruach — . Second Appeoach "’_7____---"
- / """"" ——
[ o .“/—/
e . == e

Undertjing Smap Tenar Urcetyig Swsg Tence

(¢) CMS-10Y. (d) CMS-20Y.
First Approach L —]
—— Second Approach e
—
—
-
",/

Undeslying Swap Tenor

() CMS-30Y.

Figure 4: Comparison of the Vanna-Volga price computed with the first approach and the second

approach.

The blue curve shows the price calculated with the first approach where we compute the
Vanna-Volga payer swaption price and use the replication method to price. The purple curve ap-
plies Vanna-Volga directly on the payoff of the CMS swap. Figure 4 provides a good assertion of
our claim that the two Vanna-Volga approaches are consistent and give the same prices.

We would like to implement another CMS pricing method that takes the smile into consid-
eration to evaluate how accurate is the Vanna -Volga approach. Thus in the following subsection,

we will introduce the SABR model and implement it to price a CMS swap.
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5.2 SABR model

The Stochastic Alpha, Beta, Rho (SABR) model is a stochastic volatility model which, in contrast
to Black’s model, does not assume that the volatility is constant. It is used to match the volatility

smile or skew by modeling one forward rate with stochastic volatility dynamics.

5.2.1 Model definition and dynamics

A constant volatility model, as the name indicates, does not capture any part of the volatility smile
present in the market. The assumption of constant volatility is therefore unrealistic and needs to
be relaxed. Thus the urge to switch to a model that is consistent with the observable market skew.
At first, we might think of choosing a local volatility model where the volatility is a function of the
current forward level S, ;(¢) and the time t. The reason we might think it is a good choice is that
such a model can be calibrated to have a perfect mateh with the market smile. However, if we use
a local volatility model, S, and the market smile will move in opposite directions, contrary to
what is supposed to happen. To resolve this problem, Hagan et al. derived the stochastic model
SABR in [7] which correlates the forward asset with the volatility, and most importantly, matches
correctly the market volatility smile. It assumes that the dynamics’ type of the forward-asset is
CEV (Constant-Elasticity-of-Variance).

Using SABR model, the forward-rate dynamics under the associated forward swap measure Q%"

are modelled as follows:

dsu.b(t) :v(”Sa.b[t)ﬁdz“‘b(t).~
dV(t) = eV (t)dWeb(),
V(D) =a

where Z% and Wb are Q®’-standard Brownian motions that are correlated by p:

dZOY(YdW () = pdt

[5]. It is complicated to work with the probability distribution of the SABR model as it is hard
to find an analytical closed formula of the implied volatility ¢™P (K, S, ,(0)) of the swaption with

maturity T, and strike K. Hence, Hagan et al used singular perturbation techniques and derived
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the following approximation [7]:

oMK, Su4(0) = — : £
: . e T p(0) TR TR D)
(SaaOF) T [14 95205 10g2 (T ) U toge (Zesp ]

(1-8)%a’ 2l 22-35"
[1 N (zusu.b(nm‘-- trooSE e A )T“]

T—7
4(Sa p (0)K)Z

where

o K

zi= i(Su‘v(O))l'_‘_’z log (S—“'b(n))

1-2pz+z224+2z—p
1-p

x(z) :=log

In the special at-the-money case where K=S, ;(0), the implied volatility o?"?(K, S, ,(0)) reduces

to:

- 1-8)2a2 o R
o P(S0u(0), Sas(0) = iy [+ (sl + e + 42— 30)¢) T.]

(5.4)

[

5.2.2 SABR parameters

Before starting with the model calibration to market data, it is important to study the effect of

each parameter individually on the volatility smile.
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Figure 5: Effect of @ on implied volatility

We notice that as we increase a, the implied volatility shifts upward. The explanation of
this is rather straightforward becanse we know that V(0) = o so a is the time 0-expectation of
the stochastic volatility process V. It is also good to see that around the ATM-strike which is

represented by the gray vertical line in the figure above, o has a larger effect than the shift it
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produces at the extreme strikes. So « has a more substantial effect on the ATM volatility which

can also be directly seen analytically by comparing the two formulas in (5.3) and (5.4).
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Figure 6: Effect of € on the implied volatility

The figure above shows that when we manipulate e, the eurvature of the volatility smile
changes. More specifically, increasing ¢ leads to a smile that is more convex.
The next step is to consider the impact of p on the volatility smile. It is important to take into
account that p can take negative values so comparing two values of rho with opposite sign makes

no sense. Thus, we will look at the impact of p in two separate cases.
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Figure 7: Effect of p on the implied volatility (for positive p)
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Figure 8: Effect of p on the implied volatility (for negative p)




36

As is shown in the two figures above, we can see that when the correlation is positive,
increasing p leads to a volatility smile that is steeper. Whereas it is the opposite in the negative

case as increasing the p produces a smile that is flatter.

Implied volatility

s
Strike

Figure 9: Effect of 5 on implied volatility

We can see in figure 9 that when we decrease the value 3, the volatility smile becomes
steeper. We notice that 3 has the same impact on the volatility smile as p, in the sense that they
both affect the steepness of the smile. Since it is undesirable to fit parameters having the same
effect simultaneously, we will see in the next section that 3 is fixed during the model’s calibration
to the swaption volatilities data. Aside from affecting the steepness, we also notice that increasing
3 causes a drop in the volatility level which is rather intuitive since 3 is the exponent of the forward
swap rate in:

dSe,b(t) = V(t)Sa(1)’dZ*(2). (5.

o
[543
—

ranging between 0 and 1. We look at the diffusion term V(#)S,,(t)? in the SDE (5.5) and we
interpret it as the volatility of the forward rate process. So, if we decrease 3, the volatility is
expected to become higher. Another thing to observe is that modifying 5 has more impact on the
volatility smile of swaptions with lower strikes. In fact, we notice in figure 8 that the “difference”
between the two curves is larger for lower strikes than for higher strikes.

Having discussed the individual impact of each parameter on the volatility smile, we are now ready

to calibrate the model.

5.2.3 Model Calibration

Model Calibration is particularly crucial before we take any further step in the pricing. The steps

usually depend on the purpose of use of the model. For instance, the calibration of a SABR model
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that is used to price CMS linked products is different than the usual calibration process where
SABR is used for other vanilla instruments. Ideally, to price CMS swaps using SABR model, we
should calibrate the parameters to CMS swaps spreads market data. However, there are only a
few CMS spreads quoted in the market so these are not enough to compute directly the convexity
adjustments. Hence, this motivates a joint calibration with swaption volatilities data as suggested
by Mercurio and Pavaliccini in [5].

While attempting to fit the SABR model to match the swaptions market data, an important
step is the determination of the parameter 3. There is a standard approach suggested in [7] that
is often implemented by practitioners to determine this parameter. This approach uses historical
observations of the “backbone”. The term backbone is used to describe the at-the-money volatility
as a function of the forward price. In this procedure, 3 is found from the gradient of the plot of
historical values of o 7y against the forward price. Additionally, it is claimed in the financial
literature that any value of 3 results in a good match with the market smile. Indeed, we can
choose two different values of 3 and have a good fit of the volatility smile with both values.

On top of that, we observed in the previous section that the parameter 3 has a similar effect on
the volatility smile as the parameter p which usually represents the “market noise”. This shows
that calibrating 5 using market data is not desirable.

For our purpose, the calibration of the SABR model is done in two parts. First, we fix 5 to a
random value and we calibrate the three parameters a, € and p to the swaption volatilities data.
Each swap rate is thus associated with different parameters a, e and p. We then calibrate 3 to
CMS swap spreads data. The parameter /3 is assumed to be equal across different maturities and
tenors.

We shall provide the reader with the detailed steps of our calibration.

For each couple (a,b) corresponding to the start date and the maturity date of the swaption’s
underlying swap, we will use five available quotes in the market: the at-the-money strike (K; =
K a7pr) with its corresponding volatility o2 = a1 and 4 other quotes K, K3, Ky, K5 with their
corresponding volatilities oy, o3, o4 and o5. Two of the quotes are in-the-money (K, K;) and the
other two are out- of-the-money (K3, K5). The goal is to minimize the square error between the

implied volatility given by the SABR model and the implied volatility given by the market.
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So for each couple (a,b), we have the following optimization problem:

5

R : . IKT /7r 2
}‘1_1(11}’2 (ﬁ;jsABR (I\ir Sﬂ,_b(n)) - (T?IKI (‘Kir Saeb(n)))
=1

subject to
0<a<oo,

0<e<oo,

-l1<p<1,

Once we get the parameters that are solution to the above optimization problem, we calculate
the implied volatility given by (5.3) and then use it to get C, ;. We then plug Cyp in (4.1) and
subtract S, ,(0) to get the convexity adjustment for each couple (a,b).

The second part of the calibration is for the determination of the parameter 3 and is related to the
CMS spread data. For every couple (n,c) where n represents the last payment date of the CMS
swap and ¢ corresponds to the c-vear swap rate payed by the CMS swap, we need to calculate
the CMS swap spread using the parameters 3, a(3), €(5) and p(3). The definition of a CMS swap

spread leads to the formula below given in terms of the convexity adjustment in [5, p.11]:

xsapr _ Xiz1(Sic(0) + CASL(0),0)PO.T))  1- P(O,T;) (5.6)
2iz P(0.T) 0% POO,TY) '
The implementation of the formula (5.6) is not very straightforward as the payment dates and
frequencies can be tricky. We are considering USD CMS swap spreads where the payment dates
T} are semi-annual, whereas the frequency of the underlying swap’s payments is quarterly (as per
market convention for USD). So we be aware of this difference. Another thing to note is that very
often, we might encounter cases where we need the convexity adjustment of a swap rate that we
did not calculate in the step above. Indeed, the swap rate’s underlying swap could have a different
maturity or tenor due to the payment schedule discussed above. A different maturity or tenor
means that it does not correspond to any couple (a,b) considered in the previous calibration step.
Thus, to get the value of these convexity adjustments, we must do a cubic spline interpolation of

the CMS adjustments calculated in earlier.
For our purpose, will use the quoted CMS swap spreads in the market, with CMS swap maturities

and tenors equal to 5.10,15 and 20 years. We have to solve again a minimization problem which is
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given by:
min Z Z(X;:”:BR — XMKTy2
T ]

subject to

0<p<1

So the idea is to minimize the square error between the CMS spreads given by the model and
those quoted in the market. After calibrating the SABR model, we are now ready to use it for our

purpose of CMS pricing.

5.2.4 Application to market data

As a first step, we will treat the trivial case of SABR with constant volatility to compare with
1155 caleulated earlier in (4.2). Indeed, if we take 8 =1, ¢ = 0 and a = 7™ we should be able
to get that the price calculated with SABR matches the price calenlated under the Black-Scholes
framework. The figure below shows the CMS swaps prices for a 5-year CMS coupon and underlying
swap tenors ranging from 2 to 10 yvears. We can see that the two prices match, which proves that

our calculations in the first part were correct.
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o
a3
Q!
I
o £l il L1 w o w Wy

o
Unerdlying Swap Tenor

Figure 10: 5Y-CMS swap coupon values under the assumption of constant volatility

We would like now to compare the results obtained with the Vanna-Volga approach and
SABR model. We start by fixing the parameter 5 = 0.5 to calibrate the three remaining parameters
«, p and € to the swaption volatilities. We will use the same volatilities quotes as the ones we used
in Vanna-Volga approach but with two additional quotes (K and K5) to improve the precision of

the calibration. The minimization is done using sequential least squares programming ('SLSQP’)




in Python. "SLSQP’ is an iterative method that solves a sequence of constrained optimization

problems. We will not detail this method in our thesis as it is not our main goal, but interested

readers can read about it in 14, chapter 2].

We start with an initial vector guess wy = [a, €9, po], and we suggest to replace it at each iteration
by the calibrated parameters of the previous couple maturity/tenor. The reason for that is that
we want to avoid using a random initial guess for every single iteration, so we thought of a way
that minimizes the randomness involved in each iteration. We tried using a new random initial
guess at every step in the iteration but the results were not as accurate as using the way that we
suggested. The justification behind this choice of implementation is that we are assuming that

there is a certain “complementarity” between the parameters when the swaptions’ maturities and

tenors are close.

The tables below show the results of the first calibration to swaption volatilities data.

Table 1: Results showing the value of a calibrated

’I];_Ta
2Y 3Y 4Y 5Y 6Y
T,
2Y 0.066533  0.065210 0.063488 0.061291  0.059268
5Y 0.053901  0.052881 0.051871 0.050849  0.049G34
10Y 0.045263  0.045010 0.045226  0.045226  0.044570
20Y 0.040695  0.041097  0.041596  0.042097  0.041686
’113_11(1
Y 8Y 9Y 10Y
T,
2Y 0.057407  0.055690  0.054130 0.052703
5Y 0.048533  0.047464  0.020707 0.019738
10Y 0.044030  0.043448  0.042878  0.042343
20Y 0.041279  0.040877 0.040478  0.040083
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Table 2: Results showing the value of € calibrated

Tb_Tu
2Y 3Y 4Y 5Y 6Y
Ta
2Y 0.01327  0.01405  0.01563  0.01696  0.01630
5Y 0.01390 0.012881 0.014812 0.010793 0.013294
10Y 0.032032  0.032031 0.032031 0.032030 0.032017
20Y 0.031157 0.031166 0.031169 0.031172  0.031166
Tb_T‘a
7Y 8Y 9Y 10Y
.
2Y 0.014503  0.016594 0.017331 0.017269
5Y 0.015823 0.014654 0.034167 0.034141
10Y 0.033109  0.033091 0.033074 0.033058
20Y 0.032004  0.031993 0.031981 0.031970
Table 3: Results showing the value of p calibrated
Ty — T
2Y 3Y 4Y 5Y 6Y
Ty
2Y 0.33292  0.33289 0.33285 0.33281 0.33277
5Y 0.33171  0.33170  0.33168  0.33167  0.33165
10Y 0.31105 0.31089 0.31073 0.31073 0.31048
20Y 0.29605 0.29508 0.29589 0.29580 0.29563
Tb_jqa
Y 8Y 9Y 10Y
Ta
2¥ 0.33274  0.33271 0.033268 0.033266
5Y 0.33164  0.33162  0.36460  0.36619
10Y 0.31028  0.31006  0.30986  0.30966
20Y 0.29546  0.29529  0.29512  0.29495
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We use the parameters in tables 3,4 and 5 above to calibrate the 8 parameter to CMS swap
spreads quotes as discussed earlier. We get that 3 = 0.66998453.
Using the above results together, we will find CMS swaps and caps prices given by the SABR

model.

5.3 Comparison of the two interpolation methods

5.3.1 Results

We shall now compare the results of the two interpolation-methods. We illustrate the CMS swap

prices in the following graphs.
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We will plot the absolute difference in percentage in the figure below to have a clearer
comparison. In all the bar plots that follow, we will denote by maturity the CMS coupon payment
date. In fact, each CMS coupon is related to a series of swaptions with maturity equal to the

payment date.

Moty O

Figure 12: Absolute difference (in percentage) of the SABR and the Vanna-Volga CMS swap value

As we can see, both interpolation methods give results that are close. The difference is very
negligible for short maturities and short tenors. Figure 12 shows that the difference increases if
we fix the tenor and increase the maturity. It also increase if we fix the maturity and increase
the tenor. The difference hits its maximum of 0.1% for a maturity of 30 years and a tenor of 10
years, which is still considered a small discrepancy. This shows that the two methods’ results are
in line with each other. We would like to try to justify our observation that the difference increases
as the maturity and the tenor increase. We will do so by plotting the smiles obtained with both
interpolation methods. Our hypothesis is that the smiles obtained from the two methods are closer

for a shorter maturity and a shorter tenor.
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Figure 13: Comparison between the swaption implied volatilities generated by Vanna-Volga and

SABR.

The subfigures 13.a and 13.b show that the volatility smiles given by the two methods are
less matching for a higher underlying swap’s tenor (keeping the maturity constant). Additionally,
figures 13.b and 13.c show that by increasing the maturity, the difference between the implied
volatility using SABR and Vanna-Volga increases too. These results combined together are a good
explanation of the barplot in figure 12. Hence, this confirms our hypothesis about the difference
between the implied volatility smile given by SABR and by Vanna-Volga.

Since the prices we got for Vanna -Volga are consistent with the results we got from implement-
ing SABR, we could think that we can use either of the methods with no particular preference.
However, each method has its own characteristics that create an advantage or a disadvantage for

traders. We shall discuss these.
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5.3.2 Discussion

Clearly, our work shows that Vanna -Volga method is easier to implement than the SABR model
as it does not need any further calibration to the market data, whereas the SABR model requires
a joint calibration to give accurate results. So, in terms of ease of implementation, Vanna-Volga
has an advantage over SABR. This good characteristic of the Vanna-Volga comes from the market
information on three swaption volatilities that are used to get the swaption price for a given strike
K. Nevertheless, we should be cautious while using the Vanna-Volga approach since it is only an
empirical “rule of thumb” and it is not built on a stable foundation. More specifically, there is
nothing in the way this method has been constructed that guarantees the absence of arbitrage.
This being said, before using this approach to price CMS linked products, we should make sure to
eliminate possible arbitrage opportunities. The first thing that should be checked is that the value
of a swaption given by (5.1) must be positive. The latter condition is not always satisfied. We
will provide the reader with an example in figure 14 below that illustrates a case where the value
of a payer swaption is negative which can lead to an arbitrage. We would like to give possible
conditions that could lead to inappropriate results in this method. First, we must ensure that
we have a good choice of the wings Ky and K3. We cannot choose any two strikes that satisfy
K, < Ky < K4. The two strikes respectively lower and higher than the ATM have to be chosen
carefully such that the absolute value of the delta !0 of the payer and receiver swaptions is as close
as possible to a certain target level (typically 25% for liguidity purposes) [1]. On another note,
evaluating the price of a swaption with a strike that is different than the input at-the-money and
the delta pillars will not necessarily lead to a correct value. Indeed, the inputs of this method
consist of only three volatilities so we are only sure of having good results for the aforementioned
strikes. Hence while using the Vanna-Volga approach, as mentioned in [15], one should not be
optimistic about retrieving correct values for swaptions that are other than the at-the-money and
target-A swaption. Indeed the nature of this method does not guarantee the accurate reproduction
of the entire volatility matrix based on only three input volatilities. A final thing to note is that
the Vanna-Volga method oftens gives good interpolation values between the range K and K5 but

the extrapolation outside of the wings chosen is not always good.

10A is here used with a slight abuse of terminology as it does not include the annuity
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Figure 14: Negative Vanna-Volga swaption price.

The figure above clearly shows that the Vanna-Volga method can indeed lead to a negative
payer swaption price.

We shall now provide the reader with the properties of SABR model. The first advantage is
the presence of an efficient approximation of the implied volatility as a function of the 4 parameters
given by (5.3). Although it is only an approximation, it is often used by practitioners as an exact
closed form formulae because it allows for a relatively quick calibration to the swaption volatilities
market data. However, it is worth mentioning that Hagan et al. used assymptotic expansions in
[7] to derive this closed formula which can lead to a negative probability density function of the
forward rate for very low strikes. Many authors in the financial literature attempted to improve
this weakness of the SABR but we will not discuss this area of research in this thesis. Interested
readers can find the details in [21].

Another common weakness of this model that is more relevant to our work is the stability of the
4 parameters. It would be very inconvenient to have major bounces in the SABR parameters
across maturities and tenors. This is why we tried to overcome this issue by replacing the initial
guess at each iteration in the calibration with the calibrated parameters of the previous couple
maturity/tenor. On top of that, we might encounter an additional problem in the calibration which
is the presence of more than one local minima in the square error that is minimized. This leads us
to say that using the SABR model could result in an uncertainty in the parameters, which is not

faced in the Vamna-Volga approach.
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5.4 CMS Cap Results

Strike  Cap Value VV  Cap Value SABR  Cap Value BS

2% 93.74 93.21 91.87
4% 36.96 36.32 34.95
10% 7.10 6.93 3.19

Table 4: Results showing the values in basis points of 7T-years CMS caps on the CMS-20Y index,

calculated in the three ways

Table 4 again shows that the prices of CMS caps are very close using both interpolation methods
SABR and Vanna -Volga. The discrepancy is bigger with the price calculated under Black’s model

which is very expected since the latter does not take into consideration the market smile/skew.
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6 Different yield curve models

From an econometric stand point, the dynamics of the yield curve can be modeled using three
factors loading. The first factor is called the level of the yield, the second one corresponds to the
slope and the third one represents the curvature. As an example, this is well-presented in the

Nelson-Siegel model !! given in [18, chap. 2] by:

1— e 1—e™>
’ = f I- . AT
y(r) 1’31 -+ ,J)Q ( v ) -+ ,JJ ( Py € ) .

The figure below is taken from [18] and it shows the loadings plotted as a function of the maturity
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Figure 15: Loadings as a function of the maturity T-t

Following this, we would like to change the standard bond-math approximation used by
most practitioners by considering different yield curves modeling. The first function which is
market practice assumes a flat vield curve. The second one models the yield curve with parallel
shifts which is linked to the first loading factor. The third one assumes non parallel shifts so it
takes into consideration the slope of the yield curve, involving the second loading factor.

In this section, we denote by Rg(t) the swap rate of an underlying swap that starts at time sq
and ends at s, where usually s,, = sy + N. > We also denote by 7, the strictly positive constant
year fraction. We will start by explaining the rationale behind the standard model used by the

practitioners.

1T his is not the 1987 original version of the model, it has been updated in 2006

12 R (t) was denoted by Sf"'“”"”v in the previous sections but we change the notation in this section just to be

consistent with the notations in the reference paper [4].
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6.1 Standard Model with flat yield curve

The standard “bond math model” used for the computation of convexity adjustments assumes flat
initial and final vield curves. On top of that, it assumes that there is a perfect correlation between
the rates of different maturities. We will justify the steps behind the function in (2.4).

For all j < n, we have:

P(I‘-, Sn) _ P(f,, .5'()) P(f-, S]_) P(f-, b‘j_‘)) P(f,, b‘j_l)

.P(f.. HJ'} .P(f, 3].) ,P{f,_.r's’z} o f’{t,ﬁj_l} P[t.‘sj}

~ (1+ i Ru(t))

The approximation above is obtained by discounting all cash flows after time t at the same rate
given by the swap rate Ry(t), due to the assumption of flat yield curve. This justifies why the j

ratios that we decomposed above are all equal. Hence,

P(f'! sj) - !
P(t,s0)  (1+mRs(t))

We plug this in L(t) to get:

_ - N N — D - _P(irsj)
L(t)=) _6;P(t,s;) = P(t, ‘qo)gﬁj P s0)

§=1
n

=P L TRy

=1

_ P[t,%) [1 _ 1
~R(t) (1+ 7R (2))"

The second step is by considering that #; = 7. The last equality uses the sum of a geometric
sequence,

Similarly, we can write:
Pt tp) 1
P(f, Sn) (]. +‘?“1Rs(t))‘r‘\‘l

where A is the fraction of the period between the swap’s start date and the pay date given by:

A= ty — 5p :fp—,‘iu
51— 8o Ti

Hence, we get:

tp—ag

1 @
147 R, (t)

1 b—a
1= (L+1’|R«(t])

~ Ryt
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(6.1) shows that PE'{":]”] can be expressed in terms of R,(t), so once R4(t) is given, P}f'{":j’] is just a

constant and the expectation of a constant is the constant itself. Hence,

tp—an

F(Ru(t) = B [M Rs(t)] ~ R(f)%
I-\t=mo

L(t)
Rewriting it according to our notations in the sections above where § denotes the accrual period,

this will retrieve the function in (2.4) as desired.

A flat yield curve is a sign that there is very little difference between short-term and long-term rates
for bonds having the same credit quality. Although this assumption is very simplistic and rather
unrealistic, practitioners still use it in their work. For example, Castagna, Mercurio and Tarenghi
used it in their implementation for the Vanna-Volga approach and SABR model for CMS pricing.
We are interested in seeing how relaxing some of these simplistic assumptions would contribute to

the prices of CMS.

6.2 Yield curve with parallel shifts

We will implement the first model that takes into consideration the shape of the initial yield curve.
The model still assumes parallel shifts of the yield curve which is rather a simplistic assumption.
Parallel shifts usually happen when the interest rates on all fixed-income maturities change by the
same number of basis points regardless if the maturity is short term, intermediate term or long
term. The slope and the shape of the vield curve thus do not change, we just have a shift of the
data points. Hagan proposes the following approximation in [4]:

P(tb;) - P(O.b_’)
P(t, sq) P(0, 50)

C—(&j—so}:c (()2)

where x represents the amount of the parallel shift depending on t. However, the paper does not
justify the rationale behind this approximation. Hence, we will try to provide the reader with a

possible justification. Our starting point is:
P(t,T) = e~ i St)ds (6.3)

where due to the assumption of parallel shifts, we suggest to model the instantancous forward rate
as follows:

flt,s) = f(0,s) + @, (6.4)
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It is important to notice that the amount of parallel shift in (6.4) depends on t only and not on s.

13 Plugging (6.4) in (6.3) leads to:

P(t,s;) _ e 57 flos)ds—(s; —t)x
P(t,so) e ' F0s)ds—(so—t)a

e— Iy Fl08)ds e—f,”-‘ F(0,5)ds
e— Iy f0.8)ds ™ o= 70 F(0,8)ds
P(0. 5;)

= P—(-&_,—su]a:

B P(O -S{)j

—(8;—s0)x

We continue by following the same steps as the subsection above and we get:

" P(0, s, .
L(t) = P(t,s0) Z 0; —PED':Z; e~ (si=s0)z
=1 y

P(f’r""ll) - P{f'r""n)

L(t)
_ P(0,55) — P(0, s, )e~(sn—50)x
T X OiP(0,sg)em (s

R,(t) =

The new model gives the following function:

P(t tp) N Re‘c_(t'r-r_snlx (ﬁ I_))
Lt) 1— ’;Z{(Ej:;c—(an—ao}x

where x which is the amount of the parallel shift and is determined implicitly in terms of R¢(t) by:

n
Ry(t) Z 0;P(0,55)e” 5% 4 P(0,5,)e(» 00" = P(0, 50) (6.6)
i=1
Again, (6.5) expresses %%]‘-]- in terms of R4(t) so using the same argument as before we get:

f Ii‘-g(ﬁ_(lf‘_sn]i!.‘
f(Rs) = -
(0.5m) o — 80 )
1= poagye Cneos

(6.7)

As mentioned earlier, the drawback of this function is that it only assumes parallel shifts. Never-
theless, taking into consideration the initial shape is quite an important addition to the previous
standard model. It mostly contributes to a big difference whenever we are working in an envi-
ronment where the yvield curve is steep. If the initial vield curve is already flat, then relaxing the

assumption of flat initial curve will not bring any difference.

13We will denote ¢ by x in what follows to simplify the notations.
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The implementation of this model is not as simple as than the first one because we do not have one
single closed form that works. Indeed, we need to solve the equation (6.6) numerically multiple
times, as we can clearly see in (6.6) that the amount of the parallel shift x depends on the swap’s
fixed leg maturities. So, x is not constant for every swap rate R,.

The figure below illustrates the absolute difference in percentage between the prices of CMS swaps
obtained using the standard model and the ones obtained using the new model. Each color repre-
sents the absolute difference of CMS swaps that have the same maturity and different underlying

swap tenors.

Figure 16: Absolute difference (in percentage) between the prices using the the flat yield curve

model and the parallel shifts model

Figure 15 shows that there is a clear difference between the prices caleulated with the two
different models. Furthermore, the difference seems to increase with both the maturity and tenor
Indeed, we can see that for a CMS-2Y, the difference is very low specially for shorter tenors
and it hits 0.2% for the higher tenor. Whereas if we take a CMS-30Y, the difference in prices hits
approximately 1.4% for the largest 10Y tenor.
This difference could be explained by looking at the yield curve of 20 May 2019 which is the date
we are using for our pricing throughout the thesis. We can see that the yield curve of this day is
not flat so the assumption of initial flat yield curves will for sure lead to an error in the pricing.
So this is a first explanation of the non-zero differences presented in the figure above. Intuitively,
the farther we go from the starting point, the more we are dropping information about the shape
of the yield curve by assuming a constant slope. So this could be a possible explanation of why

the differences are increasing with respect to the tenors.
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We would still like to use an improved model of the yield curve for our purpose of CMS pricing.

We will detail this in the following subsection.

6.3 Yield curve with non parallel shifts

When there is a non parallel shift in the yield curve, this means that changes in vields for bonds
are not constant for different maturities. Following similar steps as in the above subsection, the

approximation is as follows:

P(t, s5) = P(D-Sj)[,—(J.(.ej)—;:{sn}]x
IJ(t'.HU) IJ(U.”‘"U} .

where x is still the amount of the shift. However, instead of having the maturity s as in (6.1), it is
now replaced by h(s) which is the effect of the shift on the maturity.

Again, similarly to the previous case, x is found implicitly in terms of R, by solving:
n
R, Y a;P(0,55)e~h(a)=hie))e 4 p(g, 5, )™ (h(sn)=hiz))e = Py, 50) (6.8)
i=1
This model leads to the following function:

_ R c—{h{t,,}—h{s")]:‘
F(Re) » —¢

P05, e—(h(s)=h(so))a

1 = F@.50)
We sill require to choose the function h to determine the shape of the non parallel shift. One of

the suggestions proposed in [4] is to assume a constant mean reversion, which translates to:

R(s) = h{so) = = |1 — g~"(s7%0) (6.9)

ER

\Vh(!l‘(! K is t}l(} mean reversion constant.
We would like to see the effect of % on the function f.
— kappa=1%

—— kappa=3%
—— kappa=5%

Figure 17: Effect of £ on f
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The figure above shows that increasing & leads to an upward shift in f. If we have a closer look,
we can see that the upward shift is not parallel and the slope of f increases when & increases. The
slope being directly related to the first order derivative, this shows that increasing x leads to an
increase in f'. IIVY given by (5.2) depends directly on both f and f’ so we should expect that if
we increase k, the value of IIVY also increases. We compute the price of a 10-years CMS swap on
the CMS-10Y index using £ = 0.01 and x = 0.03. We get respectively 0.29723 and 0.03014 which
indeed confirms our observation above.

We would like to compare the two new models implemented with each other to see the effect of the
additional feature of non parallel shifts on the price. Following the advice in [12], the calibration
of & to vanilla swaptions shows that it is best chosen between -1% and 6%. We take x = 3% as it

is a sensible parameter with the market data.

Figure 18: Absolute difference (in percentage) between CMS swap prices using the parallel shifts

model and the non parallel shifts model

Figure (18) shows that for if we fix the maturity and increase the tenors, this will lead to
higher absolute differences in the prices between the model with parallel shifts and non parallel
shifts. We will provide a mathematical justification for this observation in what follows.

For shorter underlying swap tenors, s — s is small. Furthermore, multiplying s — sg by & = 0.03,
the product is very close to 0. Hence we can use a second order Taylor series approximation:

2
CR'R'J1+.'L'+?
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. We get:

h(s) — h(sg) = i [1 —(1— k(s —sp) + K3(s — 3(,)2)]

=(s—sp)— k(s — s{,)2

The difference s — sy is small for shorter tenors, so if we square it multiply it by a small number

(k is usually strictly less than 0.06), we get that x(s — s0)? 2 0. Thus,
h(s) — h(sp) = (s — sg)

Hence for shorter tenors, this model is very close to the model with parallel shifts, which explains
the smaller differences in figure 15. However, for longer tenors, the value of s — s is larger, so the
error term (s — .5'{,)2 is not close to 0. This being said, the argument above that uses a Taylor
Series approximation does not apply and the difference between h(s) — h(sy) and s — s is larger.
Combining the arguments above together, this could be a possible explanation of our observation

that the absolute difference between the two models increases with respect to the tenors.




57

7 Conclusion and Further Reseacrh

In this thesis, we have introduced the replication method and the notion of convexity adjustment
that provide a good background for the reader, since they are widely used in the pricing of several
derivatives in the financial market. We specified the use of these concepts for the CMS linked
products, namely the CMS swap, cap and floor. We presented progressively the theoretical and
the practical side of different approaches that are used to achieve the pricing of CMS. First, prices
are obtained under Black’s framework. The second method we implemented is the Vanna-Volga
approach. Finally we used the SABR model for our purpose of CMS pricing. We provided the
reader with all the details of the joint calibration procedure which is core part before the of this
model. After implementing each method separately to price CMS swaps, we compared them and
used the three approaches to price CMS caps. Prices were very close for the Vanna-Volga and the
SABR model, but they were different than the price computed under Black’s framework, due to
the presence of a swaption volatility smile in the market.

Last but not least, we changed the standard bond-math approximation that is used by
most practitioners to see how this would impact the prices of CMS. It would be good to take this
contribution into consideration as the slope of the yield curve brings a lot of information especially
for CMS-linked products. For instance, the yield curve is currently flattening which makes CMS
contracts attractive today as mentioned in [16]. The reason is that the yield curve will eventually
steepen in the future and the CMS swap’s value will be positive compared to the market price.
This situation is comparable to the period 2005-2007 when the yield curve was also flat. The
peculiarity of the flat yield curve made the swaps receiving CMS prominent and trendy at that
time [17]. However, despite being comparable to the 2005-2007 period, the current situation is not
the same. The main difference is that the Federal Reserve is unlikely to cut short term rates in
2019. Hence, we should be aware that there is a mitigating risk that the slope of the yield curve
may not increase {*lg{*lill S001 (}I’l()llg}l.

A further query is the announcement of the discontinuation of LIBOR by the end of 2021. A
significant work should be undertaken to be prepared for a transition away of LIBOR. Practitioners
sill do not have a clear idea of what will happen to trades that indirectly reference LIBOR such
as CMS rates from LIBOR swaps, as is mentioned in [22]. Currently, there is no clear definition
provided on how CMS payouts will be determined. Hence the main question we will consider in

our future research is to look closely at what will happen to CMS LIBOR-based products after the
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discontinuation.
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