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Abstract

This study presents the uncertain volatility model (UVM) which proposes a new
approach for the pricing and hedging of derivatives by considering a band of spot’s
volatility as input. This model is based on the Black-Scholes-Barenblatt (BSB) equa-
tion, which we will solve using two methods: trinomial model and finite-difference.

We have priced different portfolios: call, put, straddle, and bull spread to highlight
certain properties of the UVM model, namely: the sub-additivity of the payoff, the
comparison between Black-Scholes (BS) model and UVM, or the impact of the change
in the volatility band on the portfolio price.

We also looked at a variant of the UVM model: the Lagrangian UVM which relies
on option hedging and we have pointed out numerically that the increase in the number
of options in the hedging portfolio narrows the price range, thus giving more precise
results for the price of the derivatives.

Keywords: Uncertain volatility model, Black-Scholes model, Black-Scholes-Barenblatt
equation, Finite difference, Trinomial model, Numerical implementation.
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Introduction

Derivatives are contracts whose value is linked to the associated underlying asset. These prod-
ucts experienced a significant increase in the volumes traded from the 1980s [14]. Derivatives
are divided into four main classes, namely: options, swaps, forwards and exotic products:
more complex financial instruments that are traded on OTC markets. Derivatives are mainly
used by individuals as well as by financial institutions for a variety of purposes ranging from
hedging to speculation including ’synthetic exposure’ [30]. One of the important issues re-
lated to these products is the determination of their “fair value” prices which depends on the
evolution of the value of the underlying asset. There are different methods and manners for
the pricing of derivatives namely: analytical solution like the closed price given by [33] for
the volatility swap or numerical approach like the Monte-Carlo simulation used by [25],
[27] and [24] to price American options, or finite difference method used by [5] paper.

The “fair value” of options can be determined in a simplified context, where markets
are considered as free of arbitrage by using the binomial model [12] or the Black-Scholes
model. In this context, the option price is the expectation of the discounted payoff under
the risk-neutral measure which is unique only in a complete market (every position can be
hedged or is replicable), as underlined in the articles [16] and [15]. The Black-Scholes model
published [13] is a simplified model widely used in finance which gives an analytical price
formula, considering that the volatility of the underlying is constant. However, in the real
world, volatility is not constant. More complex models have appeared to correct volatility,
based on stochastic volatility such as: Hull White model [19], Stein Stein model [31], the He-
ston model [17] and Scott model [28]. Another model has taken a different approach like the
uncertain volatility model (UVM) introduced by [2], which considers that volatility belong
to a certain interval given as input thanks to options prices available in the market. The
latter model will specify a price range delimited by a upper price corresponding to the best
scenario, in the case of a long position in the derivative, and a lower price representative of
the worst scenario of the volatility path.

This study on the uncertain volatility model (UVM) is divided into five parts: In section
1, we present a benchmark of the main volatility models used. In section 2 we will introduce
Black-Scholes model and price some vanilla options using this latter model. This part can
be seen as an analysis of the different results of the Black-Scholes model (BS) that we will
compare with the UVM model. In section 3, we will present the UVM and Lagrangian UVM
models, as well as the various properties of those models. In section 4, we will discuss the
implementation of the UVM model using the trinominal tree and see the difference with the
classic BS model. Finally in section 5, we will introduce and implement the UVM method
by adopting the finite difference method on the Black-Scholes-Barenblatt (BSB) equation.
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1 Literature review on the main volatility models

1.1 Black-Scholes (BS) model

In this section, we will examine the existing modeling of asset volatility, namely the Black-
Scholes model with constant volatility and the more complex models of stochastic volatility.

We consider a filtered probability space
(
Ω,F , (Ft)t≥0 ,Q

)
where Ft is a filtration, and Q

the risk-neutral measure.

The Black-Scholes equation (BS) model considers that the volatility of the spot is constant
and the returns follow a log-normal distribution, as specified in [6]. Indeed, the underlying
asset follows the equation below of GBM (Geometric Brownian motion):

dSt = St [rdt+ σdZt] , 0 ≤ t ≤ T

With: St: the risky asset price at time t, r: risk-free rate, σ: volatility of the spot S, Zt:
Brownian motion, and T : the maturity.

As quoted in [6]:

ln(
St
S0

) ∼ N(r − σ2

2
, σ2T )

Returns follow a log-normal distribution, which facilitates the calculation of the price of
options, which makes this model very tractable, easy to implement and to calibrate. How-
ever, considering constant volatility does not reflect the characteristics of the options market:
like the heavy tails and asymmetry of returns or the smile of volatility, as specified in [21]
and [10]. Indeed, on the options market we notice that volatility increases when the option
is in the money or out of the money, this is called the smile of volatility, this stylised fact is
not reflected with the BS model.

1.2 Heston Model

The most popular stochastic volatility model is the Heston model because it satisfies a number
of characteristics of the options market and it has an explicit formula for the pricing options
which gives more accurate prices than those offered by the BS model as showed in the article
[11]. Heston model uses a stochastic volatility model where volatility follows a Cox-Ingersoll-
Ross (CIR) process [17]:

dSt = rStdt+
√
VtStdW

S
t

dVt = k (θ − Vt) dt+ σ
√
VtdW

V
t

dW S
t dW

V
t = ρdt

Where: Vt volatility of the spot S, σ the volatility of the volatility (or volatility of
√
Vt), θ:

long-term reversion, k: the speed of mean reversion, W S
t and W V

t Brownian motions associ-
ated with respectively spot and volatility, and ρ: the correlation between spot and volatility
of the risky asset.

7
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k, θ and σ are three non-negative constants. We also add the following condition which
implies that the volatility Vt is positive [17]:

2kθ > σ2

We can also show that Vt follows a non-central chi-square distribution [8], which makes
the computations for the price (for example) more complicated and less tractable than for
the BS model.

One important property of the Heston model is that the volatility follows a mean-reverting
process: the expected value of the volatility Vt converges when t goes to infinity with a
variance which does not diverge, as specified in [8]. This mean reversion property is important
because it is consistent with market observations: volatility will move towards its average
value [22].

Formula of the expectation and the variance of the volatility given below are extracted
from [8]:

E [Vt] = V0e
−kt + θ

(
1− e−kt

)
VAR (Vt) = V0

σ2

k

(
e−kt − e−2kt

)
+ θ

σ2

2k

(
1− e−kt

)2

We note that when t goes to infinity, the expected value of Vt goes to θ, the long-term
mean reversion, and the variance of Vt converges to θσ2

2k
. We note that if the mean reversion

speed k goes to infinity and that the other variables are constant, the variance converges
towards 0: the volatility Vt converges quickly towards the long-term average. Now, if the
volatility of the volatility σ takes large values, the variance also increases and therefore con-
vergence to the long-term average will occur later in time.

To determine the constants of the model, namely: the long-term reversion θ, the speed
of mean reversion k and the volatility of the volatility σ, we perform the calibration which
consists in finding these constants so that the price of the vanilla options given by this model
is as close as possible to the market, as mentioned in [8]. [7] presents two calibration methods
using historical data or the implied method which uses volatility surface.

The Heston model gives an analytical formula for the price of options, it is more consistent
with the market than the BS model. Indeed, this model reproduces the smile of volatility
and the returns are modeled by a fat-tailed distribution, as specified in [22]. In addition, the
correlation between the stock S and volatility plays an important role in obtaining a more
realistic model, as mentioned in [17]. However, its implementation and calibration are more
complicated than the BS model.

1.3 Others Stochastic volatility model

There are also other stochastic volatility models such as: the Stein-Stein model or the White
Hull model which we will briefly present. In the Stein-Stein model, volatility follows the

8
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Ornstein-Uhlenbeck [31] process:

dSt = rStdt+ σtStdW
S
t

dσt = k (θ − σt) dt+ σ̃dW σ
t

σt: volatility of the spot S, σ̃: the volatility of the volatility, θ: long-term reversion, k:
the speed of mean reversion, W σ

t and W S
t are independent Brownian motions.

This model is interesting because the stochastic equation of volatility is linear and we can
obtain an analytical solution for volatility. However, it is better to have a simpler and faster
numerical solution, as specified in [31]. In this model, volatility follows a normal distribu-
tion, which makes the model very tractable than the Heston model (non-central chi-square
distribution for volatility),[8].

Like Heston model, Stein-Stein model is a mean reverting process. When time goes to
infinity the expected volatility converges towards θ with a finite variance, [8].

The disadvantage of this model is that volatility can take negative values, because volatil-
ity follows a normal distribution which can of course take non-positive values with a non-zero
probability. To solve this problem, we can think of a model where volatility follows a normal
logarithmic distribution, this model is the Hull-White, [18].

dSt = rStdt+
√
VtStdW

S
t

dVt = µVtdt+ σ̃VtdW
V
t

dW S
t dW

V
t = ρdt

Where: σt volatility of the spot S, σ̃ the volatility of the volatility (or volatility of
√
Vt),

µ: positive constant, W S
t and W V

t Brownian motions associated with respectively spot and
volatility, and ρ ≥ 0: the correlation between spot and volatility of the risky asset.

These different volatility models are the main models that allow us to represent the
underlying asset’s volatility, in order to price financial products. Some models give explicit
formulas for the price like the BS model, others require approximations and a numerical
calculation to estimate the price. The stochastic volatility models can give analytical formulas
which remain quite difficult to derive, that’s why we use a numerical method such as: the
finite-difference method or the Monte Carlo method used by [29] for the pricing of options.
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2 Pricing options with Black-Scholes model

In this section, we will present the basics of the BS model and the price of vanilla options with
this same model. This study will allow us to introduce the BS model in order to compare it
with the UVM in the following sections.

We consider a filtered probability space
(
Ω,F , (Ft)t≥0 ,P

)
where Ft is a filtration.

The BS model is based on a number of assumptions that we will highlight below, [6]:

• We consider that underlying asset does not pay any dividend.

• No transaction fees or taxes are included in the model.

• Short selling is allowed and we can buy a share even if it is small: share are divisible.

• Interest rate r and volatility will be considered constant.

• The underlying asset follows a GBM.

Let S be the underlying asset, the risky asset that follows the process below:

dSt = St [rdt+ σdZt] , 0 ≤ t ≤ T

Where r and σ are two non negative constants, respectively the risk-free rate and the volatil-
ity. Zt a the Brownian motion under risk neutral measure.

Using Ito formula on ln(St) we can write the stock as:

dln(St) =
1

St
dSt −

1

2

1

S2
t

(dSt)
2 (2.1)

= rdt+ σ2dZt −
1

2
σ2 (2.2)

= (r − σ2

2
)dt+ σ2dZt (2.3)

St = S0e
(r−σ

2

2
)t+σ2Zt (2.4)

Let Bt be the bond, a riskless asset that follows the equation below:

dBt = Btrdt

With B0 = 1, and r ≥ 0 the interest rate. The solution of the equation is:

Bt = ert

10
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2.1 Black-Scholes PDE

We consider that the market is arbitrage free, Wt is the value of a portfolio at time t, and
(φBt , φ

S
t ) are the trading strategy defined by:{

φSt = ∂W
∂S

(t, St)

φBt =
Wt−φSt St

Bt

we note that:

φSt St + φBt Bt = φSt St +

(
Wt − φSt St

Bt

)
Bt (2.5)

= Wt (2.6)

With this trading strategy, we can write a Partial Differential Equation (PDE) for Wt. On
one hand we have:

dWt = φSt dSt + φBt dBt (2.7)

=
∂W

∂S
(t, St) dSt +

1

Bt

(
Wt − φSt St

)
dBt (2.8)

=
∂W

∂S
(t, St)St [rdt+ σdZt] +

1

Bt

(
Wt − φSt St

)
rBtdt (2.9)

=
∂W

∂S
(t, St)St [rdt+ σdZt] +

(
Wt −

∂W

∂S
St

)
rdt (2.10)

On the other hand we use ito formula on Wt and we get:

dWt =
∂W

∂t
(t, St) dt+

∂W

∂S
(t, St) dSt +

1

2

∂2W

∂S2
(t, St) dS

2
t

=

[
∂W

∂S
(t, St) rSt +

∂W

∂t
(t, St) +

1

2

∂2W

∂S2
(t, St)σ

2S2
t

]
dt+

∂W

∂S
(t, St)σStdZt

(2.11)

Using the two equations (2.10), (2.11) and that the market is arbitrage free we get the
Black-Scholes PDE:

∂W

∂t
(t, St) + r

(
∂W

∂S
(t, St)St −W (t, St)

)
+

1

2

∂2W

∂S2
(t, St)σ

2S2
t = 0 (2.12)

This last equation is the Black-Scholes PDE, as showed in [30] and [8].

2.2 The price of Black-Scholes for Vanilla options

In this section, we will present some options that we will use in this study, specifying their
Black-Scholes prices and some of the sensitivities used.

Using the Feynman-Kac theorem, we write the portfolio price as the expectation of the
option payoff under the risk-neutral measure.
We can write the PDE as follows:

∂W

∂t
(t, St)− rW (t, St) + AW (t, St) = 0 (2.13)

11
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With:

AW (t, St) = rSt
∂W

∂S
(t, St) +

1

2
σ2S2

t

∂2W

∂S2
(t, St)

We consider an option with payoff f(ST ), so the price of portfolio at time T is equal:

W (T, ST ) = f(ST )

W (t, St) can be written as:

W (t, St) = EQt [e−r(T−t)f(XT )] (2.14)

Where Q is the risk neutral measure, EQt the conditional expectation on filtration Ft and
Sτ follows the SDE below:

dSτ = rSτdτ + σSτdZ
Q
τ (2.15)

2.2.1 Calls prices

If for example the portfolio is composed of a call with strike K and maturity T , the payoff
is written as:

f(ST ) = (ST −K)+

.
The price of the call at time t is :

W (t, St) = EQt [e−r(T−t)(ST −K)+] (2.16)

= e−r(T−t)EQt [(ST −K)+] (2.17)

= e−r(T−t)EQt [(St e
(r−σ

2

2
)(T−t)+σ

√
T−t X −K)1ST>K ] (2.18)

Where X ∼ N (0, 1).

ST > K ⇐⇒ X <
len(St

K
) + (r − σ2

2
)(T − t)

σ
√
T − t

= d2

We can proof this last result by using that ST = St e
(r−σ

2

2
)(T−t)+σ

√
T−t X and the fact that

X ∼ N (0, 1) is equivalent to −X ∼ N (0, 1).
Using this result we compute the price of the call W (t, St):

W (t, St) = e−r(T−t)Ste
(r−σ

2

2
)(T−t)EQt [eσ

√
T−t X1X<d1 ]−Ke−r(T−t)E

Q
t [1X<d1 ] (2.19)

= e−r(T−t)Ste
(r−σ

2

2
)(T−t)

∫ d1

−∞
eσ
√
T−t x · e

−x
2

2

√
2π
dx−Ke−r(T−t)P (X < d1) (2.20)

= StN(d1)−Ke−r(T−t)N(d2) (2.21)

12
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Where d1 = d2 +σ
√
T − t and N is the cumulative distribution function (cdf) of the standard

normal distribution.
So the price of the call using Black-Scholes :

W (t, St)call = StN(d1)−Ke−r(T−t)N(d2)

This proof is more detailed in [30] and [8].

We can compute the ”Greeks” or the sensitivities such us:

• The delta: the first derivative of the price with respect to the spot value S:

∆call =
∂W

∂S
= N(d1)

We notice that delta is between -1 and 1 because cdf of normal distribution belongs to
this interval

• The gamma: the second derivative of the price with respect to the spot value S, thus
it represent the price’s convexity with respect to the underlying asset:

γcall =
∂2W

∂S2
=

N ′ (d1)

Sσ
√
T − t

Gamma of the call is positive.

2.2.2 Puts prices

The payoff for the put is f(ST ) = (K − ST )+. We repeat the same calculations as for the
call and we get a price for the put at time t:

W (t, St)put = Ke−r(T−t)N (−d2)− StN (−d1)

• The delta:

∆put =
∂W

∂S
= N(d1)− 1

Delta of the put varies between -1 and 0.

• The gamma:

γput =
∂2W

∂S2
=

N ′ (d1)

Sσ
√
T − t

We notice that the gamma of the put is exactly equal to the gamma of the call.

2.2.3 Straddle and Bull spread Options prices

PDE of Black-Scholes is linear, the price of a portfolio composed of a linear combination of
calls and puts:

∑
i=1

λi×Optioni, is only equal to the combination of the price of these options:∑
i=1

λi × Ci where :

13
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• Optioni is a calli or a puti

• Ci is the price of Optioni

• If λi > 0 is a long position on the option and λi < 0 is a short position.

The straddle is composed of a long call and a long put of the same strike K. The price
of the straddle is equal to the sum of the call and put prices.

W (t, St)straddle = W (t, St)call +W (t, St)put (2.22)

Concerning the Greek calculations, we show that the sensitivities of the straddle is equal to
the sensitivities of the options composing the portfolio by operator linearity of ∂2.

∂S2 for the
gamma, and the linearity of ∂.

∂S
for the delta

γstraddle =
∂2W (t, St)call

∂S2
+
∂2W (t, St)put

∂S2
(2.23)

= γcall + γput (2.24)

= 2
N ′ (d1)

Sσ
√
T − t

(2.25)

The Bull spread is an option consisting of a long call of strike K1 and a short call of strike
K2 with K1 < K2. Using the linearity of Black-Scholes PDE, we get that the price of the
Bull spread:

W (t, St)Bullspread = W (t, St)call1 −W (t, St)call2 (2.26)

The gamma of the bull spread using Black-Scholes (BS) is equal to the gamma of call1
minus the gamma of call2.

γBullspread =
∂2W (t, St)call1

∂S2
− ∂2W (t, St)call2

∂S2
(2.27)

= γcall1 − γcall2 (2.28)

2.3 Model Critics

The author of this paper [23] compares the Black-Scholes model with the reality of the market
and highlights a number of limitations linked to this model. Indeed, one limit of the model
is that asset return does not follow a normal distribution, which can be seen on empirical
data. However, the returns have a peaked distribution with heavy tails, as specified by the
paper [4], which shows the impact that this can have on the risk assessment.

The weak point of the Black-scholes model is that it considers the volatility of the asset
to be constant, while empirical studies show that the volatility depends on the strike and the
maturity of the options, as pointed out in the article [23]. Indeed, if we consider that time
to maturity is the same for the options and we focus on the evolution of volatility according
to the strike, we obtain the classic figure of the volatility smile. Moreover, if we add to
this evolution of volatility, the maturity parameter we get a three dimensional figure called

14
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surface volatility, [23]. Thus, we see that the volatility is not constant on the empirical data.

There are also other limits which we will only mention without going into details, namely:
the interest rate is not constant over time as considered by the model, and the transaction
cost need to be included in the BS model as specified in [9].

The papers [23] also states that this model is widely used and widespread in finance for its
simplicity and give a price close to the market price, despite the limitations that this model
may have.
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3 The uncertain volatility model

3.1 Model presentation

Stock’s volatility is an important variable, difficult to predict, has an uncertain nature, and is
crucial in determining the price of derivatives. In [2] and [3] papers, the authors present the
UVM model: we consider that the evolution of volatility will remain in a band determined
from the prices of vanilla options in order to price more elaborate options called exotic options.

In this model we consider Stock S as the risky asset, its price follows the dynamics below:

dSt = St (σtdZt + µtdt) , 0 ≤ t ≤ T (3.1)

where:

• Zt a Brownian motion, µt ≥ 0 is called the drift. Under the risk neutral measure the
drift is equal to the interest rate r.

• σt is the volatility that is bounded between two constants σmin and σmax.

σmin 6 σt 6 σmax (3.2)

These bounds are inputs of the model and can be determined by choosing an implied
volatility band where this volatility of the options available in the market falls within
this interval. Therefore, determining a volatility interval for implied volatility: σimplied
is equivalent to finding a interval of value for the asset’s volatility σt, as mentioned in
[3].

Assuming that the stocks S pays no dividends and that there is no transaction costs in
trading, we consider a portfolio composed of: an option of value W (S, t) and a short position
∆ on the asset S, [32].

Π = W −∆S

Using Ito formula :

dΠ =
∂W

∂t
dt+

∂W

∂S
dS +

1

2

∂2W

∂S2
dSdS −∆dS

Using also that: dSdS = σ2
tS

2dt we get:

dΠ =

(
∂W

∂t
+

1

2
σ2S2∂

2W

∂S2

)
dt+

(
∂W

∂S
−∆

)
dS

Choosing that ∆ = ∂W/∂S will eliminate the term associated with dS.

dΠ =

(
∂W

∂t
+

1

2
σ2S2∂

2W

∂S2

)
dt
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The worst-case scenario occurs for volatility which will verify that the change in the value of
the portfolio over a small interval dt is equal to:

min
σ−<σ<σ+

(dΠ) = rΠdt

We note that minσ−<σ<σ+(dΠ) depend on the sign of ∂2W
∂S2 . For example if the gamma is

postive the minimum will be reached in σmin, otherwise the minimum will be σmax.

The worst-case scenario W− is solution of the following equation:

∂W−

∂t
+

1

2
S2 min

σ−<σ<σ+

(
σ2∂

2W−

∂S2

)
−
(
W− − S∂W

−

∂S

)
= 0

∂W−

∂t
+

1

2
σ2

[
∂2W−

∂S2

]
S2∂

2W−

∂S2
+ rS

∂W−

∂S
− rW− = 0

Where:

σ

[
∂2W−

∂S2

]
=

{
σmax if ∂2W−

∂S2 < 0

σmin if ∂2W−

∂S2 > 0

The best-case scenario W+ of the portfolio can be determined by solving the following
equation, called Black Scholes Barenblatt equation (BSB):

∂W+

∂t
+

1

2
σ

[
∂2W+

∂S2

]2

S2∂
2W+

∂S2
+ rS

∂W+

∂S
− rW+ = 0

with

σ

[
∂2W+

∂S2

]
=

{
σmax if ∂2W+

∂S2 > 0

σmin if ∂2W+

∂S2 < 0

The best-case value for a long position in the derivative is equivalent to the worst-case
scenario for a short position, as highlighted in the paper [32]. Therefore, for a short or long
position, the price of a option is between the two extreme values associated with the best and
the worst case, almost surely. In general, we are more interested in the worst case scenario
because it gives us information about how risky the portfolio is and we can hedge against
this scenario. Therefore, the UVM gives a price band for a portfolio of derivatives delimited
by W− and W+.

Lets now see if we are short position on a option with different cash-flows at dates t1,...tN :

F1 (St1) , F2 (St2) , . . . , FN (StN )

The UVM problem can be represented by the following BSB equation [2]:
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{
∀t < tN ,

∂W (S,t)
∂t

+ r
(
S ∂W (S,t)

∂S
−W (S, t)

)
+ 1

2
S2σ2

[
∂2W (S,t)
∂S2

]
· ∂

2W (S,t)
∂S2 =

∑N−1
tk>t

Fk(S) · δ (t− tk)
W (S, tN) = FN(S)

(3.3)
where: W+ and W− are the upper and lower bound of the derivative price. W in the BSB
equation can be either W+ or W−.

The equation (3.3) is a generalization of the Black-Scholes differential equation, called the
Black-Scholes-Barenblatt equation (BSB). In the case where σmin = σmax, we find the classic
Black-Scholes equation. We note that the BSB is similar to BS provided that the volatility
is constant. In the BSB equation, the volatility is determined by the convexity of W , and

when the volatility is σ∗t = σ
[
∂2W (St,t)

∂S2

]
, the value given by the BSB equation corresponds to

the extreme value: either the upper values or the lower values, depending on the position on
the option, this result will be proved in the next section.

There is also another special case, when the second derivative of W relative to the Stock
S (the gamma) has a constant sign (either positive or negative), the volatility in this case
will be equal to a constant. This implies that the BSB equation simplifies to the BS equation
with a volatility of σmax if gamma is positive and σmin if gamma is negative (for the higher
price W+). We also note that the BSB equation is nonlinear unlike the BS equation, and
therefore its resolution can only be done numerically.

The solution of the BSB equation can be formulated as below, [3]:

W+ (St, t) = Sup
P

EP
t

[
N∑
j=1

e−r(tj−t)Fj
(
Stj
)]

W− (St, t) = Inf
P

EP
t

[
N∑
j=1

e−r(tj−t)Fj
(
Stj
)]

Where:

• P is the set of all the measures on the paths which verify the dynamic equation of St
(3.1) and that the volatility belongs to the band (3.2).

• Ep represents the conditional expectation under the set P and under the condition of
all the information up to time t.

3.2 Hedging with underlying asset S and Bond B

In this section we will discuss the hedging of a short position in derivative instrument with
payoff φ =

∑N
j=1 e

−r(tj−t)Fj
(
Stj
)
. If we consider that the volatility σt satisfy:

σ

[
∂2W+

∂S2

]
=

{
σmax if ∂2W+

∂S2 > 0

σmin if ∂2W+

∂S2 < 0
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To hedge this portfolio with payoff φ, we consider the following strategy:

• Buy φS = ∂W+(Sτ ,τ)
∂S

units of stock S.

• Position of φB = W+ (St, t)− St ∂W
+(St,t)
∂S

units of bank account.

At each time tk, we will need to maintain a fix position of φS for the stock S and φB of cash.

This strategy is self financing: this means that the variations in the value of the portfolio
is only due to price changes of B and S, without any withdrawal of cash or addition of it.
This strategy replicates exactly the derivative. We can see it by computing the portfolio
value at each time t: φt × St + φB = W+ (St, t)

We assume now that the volatility σt varies in the interval formed by σmin, and σmax.
This last self-financing strategy gives us a super-replicating strategy: after having paid the
different cash flows Fj(Stj), we find ourselves having a positive cash value. Similarly we can
hedge long derivative security, considering W− instead of W+.

Now let’s mathematically prove these results [2], we recall the BSB equation for a deriva-
tive with payoff φ =

∑N
j=1 e

−r(tj−t)Fj
(
Stj
)

and assuming that r = 0.

{
∀t < tN ,

∂W+(S,t)
∂t

+ 1
2
S2σ2

[
∂2W+(S,t)

∂S2

]
· ∂

2W+(S,t)
∂S2 =

∑N−1
tk>t

Fk(S) · δ (t− tk)
W+ (S, tN) = FN(S)

We consider V as the value of the global portfolio composed of: a short position on the
payoff φ and of the hedging portfolio. The value of the overall portfolio at tN is:

VtN = W+ (St, t) +

∫ tN

t

∆τdSτ −
N∑
tk>t

Fk (Stk)

Using Ito formula for W+ (StN , tN), we get:

W+ (StN , tN) = W+ (St, t) +

∫ tN

t

∂W+ (Sτ , τ)

∂τ
dτ +

∫ tN

t

∆τdSτ +

∫ tN

t

1

2
σ2
τS

2
τ

∂2W+ (Sr, τ)

∂S2
dτ

(3.4)

= W+ (St, t) +

∫ tN

t

∆τdSτ +

∫ tN

t

[
∂W+ (Sτ , τ)

∂τ
+

1

2
σ2
τS

2
τ

∂2W+ (Sr, τ)

∂S2

]
dτ

(3.5)

For σ ∈ [σmin, σmax], we have the following result:

σ2
t

∂2W+(S, τ)

∂S2
6 σ2

[
∂2W+(S, τ)

∂S2

]
· ∂

2W+(S, τ)

∂S2
(3.6)
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Because for example if : ∂2W+(S,τ)
∂S2 > 0, then the inequality can be written as :

σ2
t 6 σ2

[
∂2W+(S, τ)

∂S2

]
= σ2

max

and if ∂2W+(S,τ)
∂S2 < 0, then the inequality becomes:

σ2
t > σ2

[
∂2W+(S, τ)

∂S2

]
= σ2

min

and if the ∂2W+(S,τ)
∂S2 = 0, the inequality still true, so this proves the inequality (3.6)

Adding the term ∂W+(S,τ)
∂τ

for the both side of the inequality (3.6):

∂W+ (S, τ)

∂τ
+

1

2
σ2
tS

2
t

∂2W+ (S, τ)

∂S2
6
∂W+ (S, τ)

∂τ
+

1

2
σ2

[
∂2W+ (S, τ)

∂S2

]
S2
t

∂2W+ (S, τ)

∂S2

We integrate this last inequality between t and tN , we add W+ (St, t) +
∫ tN
t

∆τdSτ to
both side of the inequality, and we use the equation (3.5) , we get:

W+ (StN , tN) 6 W+ (St, t) +

∫ tN

t

∆τdSτ +

∫ tN

t

N−1∑
tk>t

Fk(S)δ (t− tk)

W+ (StN , tN) 6 W+ (St, t) +

∫ tN

t

∆τdSτ +
N−1∑
tk>t

∫ tN

t

Fk(S)δ (t− tk)

FN (StN ) 6 W+ (St, t) +

∫ tN

t

∆τdSτ −
N−1∑
tk>t

Fk (Stk)

0 6 W+ (St, t) +

∫ tN

t

∆τdSτ −
N∑
tk>t

Fk (Stk) = VtN+0

0 6 V (tN)

This last result prove that the self-financing strategy (φB, φS) is a super-replicating strat-

egy. If we consider now that σt = σ
[
∂2W+(S,τ)

∂S2

]
, we find that V (tN) = 0 because inequalities

will become equalities. Therefore, this strategy become a replicating strategy. For W−(S, τ),
we can have a similar reasoning.

3.3 Diversification of the portfolio

An important property of the BSB equation is the subadditivity of the payoff. When di-
versifying the portfolio by adding new derivatives, the price range offered by the diversified
portfolio is narrower than that provided by the sum of the individual portfolios. Indeed, this
is due to the fact that the volatility, at time t, given by the overall portfolio may be different
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from the added volatility of the individual portfolios.

Let’s consider two payoffs such that:

Φ =
N∑
j=1

e−r(tj−t)Fj
(
Stj
)

Ψ =
N ′∑
k=1

e−r(t
′
k−t)Gk

(
St′k
)

Where F1(St1), ...FN(StN ) and G1(St′1
), ...GN ′ (St′

N
′
) are the different cash flows generated by

those derivative securities respectively at time t1, ..., tN and at t
′
1, ..., t

′

N ′
.

As specified in [2] paper, the risk diversification property can be written as:

Sup
P

EP
t [Φ + Ψ] 6 Sup

P
EP
t [Φ] + Sup

P
EP
t [Ψ]

Inf
P

EP
t [Φ + Ψ] > Inf

P
EP
t [Φ] + Inf

P
EP
t [Ψ]

The price range proposed by the UVM method for the sum of the individual portfolios is
greater than the price range given by the overall portfolio.

We highlight this sub-additivity when we choose a portfolio made up of options with
gammas of different signs. In this case, there is no constant volatility that will give the value
of the overall portfolio. On the one hand, if the option prices are convex (for example the
call and the put payoff with the same strike K, then the straddle which is their sum is also
convex) the BSB equation is reduced to a classical BS equation with constant volatility, and
in this particular case there is equality between the price of the overall portfolio and the sum
of the individual portfolios. On the other hand, when the options that make up the portfolio
have different convexities, the risk of the overall portfolio is reduced and, therefore, the price
range will be narrower compared to the sum of the individual portfolios.

3.4 The Lagrangian UVM: Hedging with options

In this section, we consider a short position in a derivative with different cash flows Fj at time
tj. To hedge this portfolio, we will use M European options with cash flows G1 ≤ G2 ≤ . . . ≤
GM at maturities t

′
1 ≤ t

′
2 ≤ . . . ≤ t

′
M . The price of these options is noted C1, C2, . . . , CM and

the proportions associated with each option are λ1, λ2, . . . , λM . Therefore, the price of the
hedging portfolio can be written as follows:

∑M
i=1 λiCi. The value of the derivative in the

worst-case scenario W+ is defined by, as specified in [3]:

W+ (St, t;λ1, . . . , λM) = sup
P∈P

EP

{
N∑
j=1

e−r(tj−t)Fj
(
Stj
)
−

M∑
i=1

λie
−r(t′i−t)Gi (Sri)

}
+

M∑
i=1

λiCi
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Where: F1(St1), ...FN(StN ) are the different cash flows generated by the portfolio at time
t1, ..., tN .

To find the optimal hedge in the worst-case scenario, we need to find the proportions of
options to buy if λ > 0 or to sell if λ < 0, to minimize the hedging cost. Therefore, we need
to solve the following problem:

inf
λ1,λ2,...,λM

W+ (St, t;λ1, λ2, . . . λM) (3.7)

This problem has a unique solution because the function (λ1, . . . , λM) 7→ W+ (St, t;λ1, λ2, . . . λM)
is convex, so there exists a minimum for this function.

In the case where the agent has a long position on the derivative, we do the same reasoning
and we find that the worst-case value of the portfolio is now W−:

W− (St, t;λ1, . . . , λM) = inf
P∈P

EP

{
N∑
j=1

e−r(tj−t)Fj
(
Stj
)
−

M∑
i=1

λie
−r(t′i−t)Gi (Sri)

}
+

M∑
i=1

λiCi

The optimal hedge can be found now by solving :

sup
λ1,λ2,...,λM

W− (St, t;λ1, λ2, . . . λM)

Additional conditions, based for example on availability on options can be added to λ1, ...λM
by choosing them in precise intervals.

Λ−i ≤ λi ≤ Λ+
i ∀i ∈ {1, ...M}.

We can notice that when the vector (λ1, ...λM) is equal to zero, then the problem is sim-
plified to the UVM. In this case, we hedge our portfolio only using the underlying asset and
the bond.

It can be noted that the Lagrangian UVM can be reduced to solving the UVM, by

considering new cash flows for the derivative to be hedged: ˜̃F (Sτi) instead of F (Sτi) (See
the proof below).

W (St, t, λ1, . . . , λM) = sup
P∈P

EP

{
N∑
j=1

e−r(tj−t)Fj
(
Stj
)
−

M∑
i=1

λie
−r(t′i−t)Gi (Sti)

}
+

M∑
i=1

λiCi

(3.8)

= sup
P∈P

EP

{
N ′∑
i=1

e−r(τi−t)
(
F̃i (Sτi)− λiG̃i (Sτi)

)}
+

M∑
i=1

λiCi (3.9)

= sup
P∈P

EP

{
N ′∑
i=1

e−r(τi−t) ˜̃F (Sτi)

}
+

M∑
i=1

λiCi (3.10)

with:
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• ˜̃F (Sτi) = F̃i (Sτi)− λiG̃i (Sτi)

• F̃i = Fi if i ∈ {1, .., N} and 0 otherwise

• G̃i = Gi if i ∈ {1, ..,M} and 0 otherwise

• N ′ = max(N,M)

• {τ1, ...τN ′} = {t1, ..., tN}U{t′1, ..., t′M}

The first equality term (3.10) corresponds exactly to the price determined by UVM methods,
to which we add the second term which corresponds to the price of the hedging portfolio,
which gives the price range of the derivatives using the UVM Lagrangian.

We can note that the Lagrangian UVM developed here corresponds to a method of static
hedging because the hedge ratio (λ1, ...λM) are constant and not time dependent.

3.5 Calibration of the volatility band

The article of [3], highlights the method of calibration of the volatility band that we present
in this section.

To find the extreme values of volatility: σmin and σmax, we can use the implied volatility
of vanilla options. Specifically, we will plot the implied volatility found from the market price
using the Black-Scholes formula for liquid options, and then we will take as the volatility band,
an interval that will contain all the implied volatilities of those options. Indeed, considering
a range of volatility for the security is equivalent to finding a range of implied volatility.

σmin ≤ σimpl(t, T ) ≤ σmax

with T the maturity time of an option.

A better calibration would be to consider a time-dependent volatility interval in order to
limit an overestimation of volatility and to give a more accurate range for the value of the
portfolio. √

1

T − t

∫ T

t

σ2
min(s)ds ≤ σimpl(t, T ) ≤

√
1

T − t

∫ T

t

σ2
max(s)ds

We can notice that if we take σmin(t) = σmin and σmax(t) = σmax, we find exactly the
same range of volatility as before. Therefore, the implicit volatility of the derivatives used
as inputs must be within the range defined by σmin and σmax. We also note that this time
dependent calibration will give a smaller volatility range than the constant calibration and
therefore a smaller and more accurate price range for the portfolio. Indeed, option price
increases with volatility: the upper price W+ will decrease (because the upper value of the
volatility range decreases) and the lower price W− will increase, thus giving a narrower range
for the portfolio’s price.
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4 Numerical Implementation using trinomial tree

4.1 Trinomial Tree

The non-linearity of the BSB equation implies a numerical solution to determine the price
of the portfolio. To approximate the solution to the BSB equation, we use a finite-difference
scheme to provide an explicit solution. We first consider that the stock S follows a trinomial
model: at the next time, S can reach three levels: up U, middle M or down D. We also
assume that the tree is a recombining tree, which implies that UD = M2. We consider T
as the maturity time by years, N the trading periods, and the time discretization becomes
δ = T

N
. N must be large enough so that the time discretization is as small as possible to

consider the stock S continuous.[2].

U = eσmax

√
∆t+r∆t

M = er∆t

D = e−σmax

√
∆t+r∆t

Figure 1: Trinomial tree : Stock S

with

PU(p) = p ·
(

1− σmax

√
∆t

2

)
PM(p) = 1− 2p

PD(p) = p ·
(

1+σmax

√
∆t

2

)
Where:

σ2
min

2σ2
max

6 p 6 1/2

4.2 Finite-difference scheme

After the introduction of the trinomial model, we will use it to approach the BSB equation.
Sjn denotes the value of the stock S at time n and is located at position j counting from the
bottom of the tree, for more precision, see the tree below.
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Figure 2: Stock S

Using the trinomial tree presented in the previous subsection, we find the value of Sjn is,
as specified in [2]:

Sjn = S0
0ej·σmax

√
∆t+n·r∆t

We consider that the boundary of the price of the derivative security is expressed as a
function of cash flows as follows:

F j
n = Fn

(
Sjn
)

and W+,j
n = Sup

P
EP
t

[
N∑

k=j+1

e−r(tk−tn)Fk (Sk)

]

F j
n = Fn

(
Sjn
)

and W−,j
n = Inf

P
EP
t

[
N∑

k=j+1

e−r(tk−tn)Fk (Sk)

]
Which is equivalent to the result below, according to the paper of [2]:

W+,j
n = F j

n + e−r∆t × Supp
[
PU(p)W+,j+1

n+1 + PM(p)W+,j
n+1 + PD(p)W+,j+1

n+1

]
W−,j
n = F j

n + e−r∆t × Infp
[
PU(p)W−,j+1

n+1 + PM(p)W−,j
n+1 + PD(p)W−,j+1

n+1

]
With:
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Figure 3: From step n to n+ 1, W j
n can take three values, namely: W j−1

n+1, W j
n+1 and W j+1

n+1

.

Where PU , PM , PD defined above.

Wn is finally expressed as:

W+,j
n = F j

n + e−r∆t

{
W+,j
n+1 + 1

2
L+,j
n+1 if L+,j

n+1 > 0

W+,j
n+1 +

σ2
min

2σ2
max
L+,j
n+1 if L+,j

n+1 < 0

W−,j
n = F j

n + e−r∆t

{
W−j
n+1 + 1

2
L−jn+1 if L−jn+1 < 0

W−,j
n+1 +

σ2
min

2σ2
max
L−jn+1 if L−,jn+1 > 0

Where:

Ljn+1 =

(
1− σmax

√
∆t

2

)
W j+1
n+1 +

(
1 +

σmax

√
∆t

2

)
W j−1
n+1 − 2W j

n+1

With Ljn+1 and W .
n+1 can be respectively L−,jn+1 or L+,j

n+1 and W−,.
n+1 or W+,.

n+1.

We can determine the price range of the portfolio delimited by W+,0
0 and W−,0

0 using the
backward induction method. Indeed, at each step we can find W+,j

n starting from W+,j−1
n+1 ,

W+,j
n+1, W+,j+1

n+1 and other variables known at time tn. The same reasoning is valid for W−,0
0 .

4.3 UVM Implemetation

For the implementation, we choose to work on the APPLE options (35 calls and 35 puts),
taken from [1] for a maturity of T =4 days, interest rate r = 0.07, with different strike which
varies from 150 to 250 and for a specific day.

The python script corresponding to the UVM implementation using trinomial method
is given by the google colab link: https://colab.research.google.com/drive/
1LCcsn4dDTEzoh4_YK7EdLEhH4q7xF-e6?usp=sharing.
(see the link of the data used at the end of the thesis).
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Trinomial tree Value
S0 209.68
T 4/365
Kmin 150
Kmax 250
r 7%

Table 1: Parameters of Apple’s options

4.3.1 Trinomial tree

The first step in the implementation is to represent the stock S as a python list of list as
follows:

[[S0
0 ]

[S0
1 S

1
1 S

2
1 ]

[S0
2 S

1
2 S

2
2 S

3
2 S

4
2 ]

[S0
3 S

1
3 S

2
3 S

3
3 S

4
3 S

5
3 S

6
3 ]

[S0
4 S

1
4 S

2
4 S

3
4 S

4
4 S

5
4 S

6
4 S

7
4 S

8
4 ]]

Let’s see an example : for σmax = 0.3, maturity T = 15/365, python list length N = 3,
interest rate r = 0.07 and initial stock S0 = 300:

Trinomial tree Value
S0 300
σmax 0.3
N 3
r 7%

Table 2: Parameters of the trinomial tree

Figure 4: Output of the python code for the trinomial tree

The result given by the python code is well in the form presented below.
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4.3.2 Calibration of volatility band

In this part we will find a volatility band for the Apple calls and puts used, an essential step
to price the portfolio. As previously specified, to calibrate the volatility band, we will first
plot the implied volatility as a function of the strike for Apple options. From the market
price of the options, we can find the implied volatility by reversing the Black-Scholes formula.

The analytic formula for European call price is given by

C (St, K, r, σ, t, T ) = StΦ (d1)−Ke−r(T−t)Φ (d2)

where :

d1 =
log (St/K) + (r + σ2/2) (T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t.

We solve
C (St, K, r, σ, t, T ) = Cmarket

=⇒ σimplied

Figure 5: Implied volatility of the call

Figure 6: Implied volatility of the put
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We also plot the implied volatility of the straddle: long put and long call, as a function
of the strike.

Figure 7: Implied volatility of the straddle

From these plots, we can determine an interval for the volatility band. It is equivalent to
choosing a band for the implied volatility which will contains the implied volatilities of the
used options.

Implied volatility Min Max

Call 0.46 1.54
Put 0.49 1.20
Straddle 0.48 1.54

Table 3: Extreme values of implied volatility for different vanilla options

We can choose for example σmin = 0.1 and σmax = 1.7.

4.3.3 Algorithm presentation

We present the idea of the UVM algorithm which allows to give the extreme prices defining
the price interval. To price or hedge an option with the UVM method, we use the backward
induction method, we start by determining the payoff at maturity of the option and then we
compute W j

T−1 , for a call W j
T = (SjT −K)+, ∀j .

W+,j
T−1 = F j

T−1 + e−r∆t

{
W+,j
T + 1

2
L+,j
T if L+,j

T > 0

W+,j
T +

σ2
min

2σ2
max
L+,j
T if L+,j

T < 0

W−,j
T−1 = F j

T−1 + e−r∆t

{
W−j
T + 1

2
L−jT if L−jT < 0

W−,j
T +

σ2
min

2σ2
max
L−jT if L−,jT > 0

The value of W j
T−1 depends on LjT = f(W j

T ,W
j+1
T ,W j−1

T ), F j
T−1 and W j

T .
Where:
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f(x, y, z) =

(
1− σmax

√
∆t

2

)
y +

(
1 +

σmax

√
∆t

2

)
z − 2x

Figure 8: From step n to n+ 1, W j
T−1 can take three values, namely: W j−1

T , W j
T and W j+1

T

.

All the variables to compute W j
T−1 are known, ∀j, we repeat the same procedure to

compute W .
T−2 until we reach W 0

0 , which corresponds to the portfolio price using the UVM
method.

4.3.4 Pricing of some vanilla options using UVM

To determine the price of the call using the UVM method, we implemented in Python the
UVM price call function which takes as argument the different parameters of the model
namely: extreme volatilities, the maturity T, the level of the tree N, the interest rate r,
the initial stock S, the strike K and the upper price parameter which specifies the price to
display: the highest price W+ or the lowest price W−.

We have plotted the market price of the options, the extreme prices given by the UVM
method, as a function of the strike K. We find that the market price is well within the price
range given by the UVM method, almost surely. Indeed, if this condition were not verified,
there would be an arbitrage strategy. The drawback of this method is that the price range
given by UVM method is wide, especially for the at the money (ATM) calls, as we note in
the figures 9 and 10, below for K = 210.
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Figure 9: Market and UVM prices of the calls

Figure 10: Market and UVM prices of the puts

4.4 Comparison with Black and Scholes Prices

In this section, we will compare between the prices given by BS and UVM, for a few options.
More precisely, we calculate the upper Black-Scholes price using a constant volatility equal
to σmax and the lower price using the volatility σmin.

The plot below shows that the two pricing methods give almost the same price. The
UVM price is plotted using a trinomial tree depth N = 75.
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Figure 11: Black-Scholes and UVM prices comparison

To be more precise, we are going to plot the difference between the two upper prices:
UVM and BS for Apple calls for different tree depth N .

Figure 12: Difference UVM-BS upper price calls

We note that the more N increases the more the difference between the two curves narrows.
Indeed, this result is predictable because the gamma (second derivative of the price compared
to the stock) is positive, so the price is convex according to the stock. This result is similar
for puts and the straddle because their gamma is also positive. The BSB equation for the
upper price is:

∂W (S, t)

∂t
+ r

(
S
∂W (S, t)

∂S
−W (S, t)

)
+

1

2
σ2

[
∂2W (S, t)

∂S2

]
S2∂

2W (S, t)

∂S2
= 0
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with :

σ

[
∂2W+

∂S2

]
=

{
σmax if ∂2W+

∂S2 > 0

σmin if ∂2W+

∂S2 < 0

we can note that if the gamma is positive, σ2
[
∂2W (S,t)
∂S2

]
= σ2

max

The BSB equation becomes:

∂W (S, t)

∂t
+ r

(
S
∂W (S, t)

∂S
−W (S, t)

)
+

1

2
σ2
maxS

2∂
2W (S, t)

∂S2
= 0

which exactly corresponds to the BS equation (we can see the PDE for BS in section 2).

Figure 13: Black-Scholes and UVM prices comparison

Figure 14: Gamma of the straddle
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Now let’s take a portfolio where we have a mix of convexity and compare the prices given
by UVM and by BS. We consider a portfolio composed of two calls: a first long call with
strike K1 and a short second call with strike K2, where K1 < K2, this spread option is
called: bull spread. We will first plot the gamma of this option to show that its sign is not
constant as a function of the Stock S. We took K1 = 160 and K2 = 230.

Figure 15: Gamma of the Bull spread

We see that the gamma of the bull spread is positive over the interval [0, 180] then it
becomes negative over [180, 400]. In this case, the UVM price will be different from the
Black-Scholes price because there is no constant volatility that will give exactly the UVM
price.

Figure 16: Black-Scholes and UVM prices comparison

We note that the prices given by Black-Scholes (taking the extreme volatilities) are in
the price range proposed by UVM. Precisely, to calculate the Black-Scholes upper price for
the bull spread, we keep a constant volatility equal to σmax and for the lower price we took
a volatility of σmin.
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4.5 Risk diversification

In this section, we will highlight the property of the sub-additivity of payoffs. We will take
the same portfolio composed of Bull spread options (whose payoff can be written as the
payoff of long call K1 and short call K2) as the previous section and compare the price of
the overall and the individual portfolios. More precisely, we will study the prices for the bull
spread with the sum of the prices of the following portfolios: long call with strike K1 and
short call with strike K2, using UVM method.

The plot highlights the following inequality.

SupP EP
t [Φ + Ψ] 6 SupP EP

t [Φ] + SupP EP
t [Ψ]

InfP EP
t [Φ + Ψ] > InfP EP

t [Φ] + InfP EP
t [Ψ]

The price range given by the overall portfolio is narrower than the price range suggested
by the sum of the individual portfolios. The inequalities above becomes equalities when the
two payoffs are identical. Intuitively, we can interpret this result as a consequence of the
decrease in volatility risk of the overall portfolio when the payoff has a mixed convexity.

Figure 17: The price envelope determined by UVM methods for the bull spread and the sum
of the prices given by BS for the portfolios: long call1 and short call2, taken separately

4.6 Change in the volatility band

In this section, we will highlight the impact of changing the volatility band on the price of
options using the UVM method.

We first plotted the difference between higher and lower prices for different volatility
bands on Apple calls. We chose a wide band where σmax = 1.7 and σmin = 0.1 and a smaller
band with σmax = 1.5 and σmin = 0.4
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Figure 18: Different bands of volatility and its impact on UVM prices

We note that the thinner the volatility band, the smaller the difference between lower
and higher prices. If we consider the extreme case where σmin and σmax are equal, we find
the BS price with constant volatility.

We were then interested in modeling the difference of prices (between upper and lower)
as a function of the width of the volatility band for the ATM Apple call with strike K = 210.
To determine the width of the volatility range, we calculate the difference between σmax and
σmin. We kept σmin fixed equal to σmin = 0.4 and we gradually increase σmax from 1.5 to 1.8.
We note that the larger the volatility range, the higher the spread (and this increase seems
linear), which joins the previous remark. (see figure 19 below)

Figure 19: Plot of spread price according to width volatility band
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4.7 Lagrangian UVM

4.7.1 Presentation of the algorithm

To present the Lagrangian UVM algorithm, we will dissociate two cases, first we consider the
case where the derivative securities (considered as inputs) have the same maturity T as the
portfolio we are studying. Then we study a more general framework where the inputs and
the portfolio have different maturities.

• Portfolio and inputs have the same maturity T

In this particular case, we consider for example that we have two calls (with strike K1

and K2) as inputs and a portfolio composed of one call of strike K. The Lagragian
UVM algorithm will be similar to the UVM algorithm with a different portfolio’s payoff:

W j
T = (SjT −K)+ − λ1(SjT −Khedg1)+ − λ2(SjT −Khedg2)+

The last step of the algorithm is to find λ1 and λ2 which minimize W+, maximize W−,
and we perform this last step on python thanks to the scipy library.

• Portfolio and inputs with different maturities

For the computation of W j
T we must compare between the maturities of the different

options. We consider for example the case where we have available a portfolio composed
of a call of maturity T and two hedging calls of maturity T1, T2 with T1 < T2.

Wj
T Value

if T2<T Wj
T = (SjT −K)+

if T2>T Wj
T = −λ1(SjT −Khedg1)+ − λ2(SjT −Khedg2)+

if T2=T Wj
T = (SjT −K)+ − λ1(SjT −Khedg1)+ − λ2(SjT −Khedg2)+

Table 4: Payoff of the portfolio: W j
T

As for the previous algorithm, to compute W j
n for n ≤ T−1 and j ∈ {0, 1, ..., 2n+1} we

use the backward induction method. Indeed, to compute W j
n we must first determine

Ljn+1 as for UVM algorithm for each n and j:

L±,jn+1 =

(
1− σmax

√
∆t

2

)
W±,j+1
n+1 +

(
1 +

σmax

√
∆t

2

)
W±,j−1
n+1 − 2W±,j

n+1

L±,jn+1 can be computed using W at the step n+1 found by descending induction from
the payoff in table 4 (the indices j, j + 1 and j − 1 of W are represented in the tree
below).
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Figure 20: From step n to n+ 1, W j
n can take three values, namely: W j−1

n+1, W j
n+1 and W j+1

n+1

We will now present the formulas that exists between W j
n and L±,jn+1.

We define two lists: the list of the maturities of the portfolio options which we will call
settlement date and the list of the maturities of the hedging derivatives: maturity hed opt.
We will assume that these two lists are sorted in ascending order. In addition, we will
denote by tk and t

′

k′
the respective elements of settlement date and maturity hed opt.

k and k
′

will be at the start of the algorithm equal to the length of their respective
lists. When one of the conditions in the table 5 below is met the value of k, k

′
or

both will be reduced by one (depending on the variable involved), once we go to the
following time step. For example if the first condition of the table below is met, i.e.
t
′

k′
< n × ∆T ≤ tk, when we go to step n − 1, k becomes k − 1 and k

′
will keep the

same value.

Wj
n Value

if t
′

k′
< n×∆T ≤ tk Wj

n = (Sjn −K)+ + e−r×dt(W j+1
n+1 + p× L±,jn+1)

if tk < n×∆T ≤ t
′

k′
Wj

n = −λ1(Sjn −Khedg1)+ − λ2(SjT −Khedg2)+ + e−r×dt(W j+1
n+1 + p× L±,jn+1)

if n×∆T = tk = t
′

k′
Wj

n = (Sjn−K)+−λ1(Sjn−Khedg1)+−λ2(Sjn−Khedg2)++e−r×dt(W j+1
n+1+p×L±,jn+1)

Table 5: Value of the portfolio at time n: W j
n

The parameter p in table 5 depends on which extreme price we compute: the upper
price or the lower price. For the upper price, the value of p is:

p =

{
1/2 if Ljn+1 ≥ 0

σ2
min/2σ

2
max if Ljn+1 < 0

and for the lower price, the system condition is reversed.

We will continue in this way until we determine W 0
0 .

The last step of the algorithm is to find the value of λi for i ∈ {1, ...M} that solve the
following problem.

inf
λ1,λ2,...,λM

W+ (St, t;λ1, λ2, . . . λM)

sup
λ1,λ2,...,λM

W− (St, t;λ1, λ2, . . . λM)

This problem has a unique solution because the function (λ1, . . . , λM) 7→ W+ (St, t;λ1, λ2, . . . λM)
is convex and (λ1, . . . , λM) 7→ W− (St, t;λ1, λ2, . . . λM) is concave. [3]
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4.7.2 Comparison between three and four input derivative instruments

We have a portfolio of calls of maturity T, which we want to hedge using first three then four
calls as inputs or hedging derivatives.

We consider now that the hedging derivative instruments to be used are three calls with
the same maturity T as that of the Apple calls.

Inputs calls strike K Maturity
CALL1 180 T=4/365
CALL2 210 T=4/365
CALL3 220 T=4/365

Table 6: Parameters of the hedging portfolio’s calls

We plot the upper and lower prices using the Lagrangian UVM method as a function of
the strike K, by choosing that λi varies between -1 and 1.

Figure 21: Market and lagragian UVM prices of the calls, using three calls as hedging options

We notice that if λi is equal to zero for all the hedging options, we find that the range
of price given by UVM and Lagragian UVM methods are the same. To check this results
graphically, we plot the upper and lower price as a function of the strike using the Lagragian
algorithm UVM with lambda equal to 0. Indeed, we find exactly the same graph as that
plotted in the section 4.1.4 for a call.
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Figure 22: Market and lagragian UVM prices of the calls with vector lambda equal to zero

Figure 23: Smoothed curve of the difference between upper and lower prices for UVM method
and Lagrangian UVM with three hedging instruments

The Lagrangian method makes it possible to reduce the difference between the extreme
prices in comparison with the classic UVM method, as the plot using the two methods un-
derlines.

We notice that the spread between upper and lower prices is strongly reduced with the
lambda UVM method. We can also note that the spread is almost equal to zero for the Apple
calls with the same strike as the hedging portfolio’s calls. For example we see in the figure
21 that the Apple calls with strikes 180, 210 and 220 have a spread of zero.

We keep the same portfolio as before but this time we use four calls as inputs to hedge
the portfolio.
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Inputs calls strike K Maturity
CALL1 180 T=4/365
CALL2 200 T=4/365
CALL3 210 T=4/365
CALL4 220 T=4/365

Table 7: Parameters of the hedging portfolio’s calls

Figure 24: Market and lagragian UVM prices of the calls, using four calls as hedging options

We compare the difference called the spread between the upper and lower price for three
and four hedging instruments. We find an important result: the more we increase the number
of hedging options the more the difference between the two extreme prices decreases (see
figure 25). Indeed, let us consider 4 hedging options with λ2 = 0, and keeping the other λ
equal to the optimal ratio given for the three hedging options (as for the previous example),
in this case the price range proposed by 4 hedging options would be equal to that given by
3 inputs, and as we optimize the lambdas the result given by 4 inputs would necessarily be
better than that given by a lower number of hedging options.
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Figure 25: Smoothed curve of the difference between upper and lower prices using Lagrangian
UVM

4.7.3 Lagrangian UVM with input derivative which have different maturities

We want to price the Apple calls using the Lagragiam UVM method with four calls as inputs
(with strike K = S0), with different maturities presented in the table below.

Inputs calls strike K Maturity
CALL1 S0 T=1/365
CALL2 S0 T=2/365
CALL3 S0 T=4/365
CALL4 S0 T=8/365

Table 8: Parameters of the hedging portfolio’s calls

In this section, we want to show the link between λ, which represents the proportions
to be considered in each input (to compute the upper price), according to their maturities.
Indeed, we take the average of λ1, λ2, λ3 and λ4 on all Apple calls. These λ are shown in
the table below. We note that for the maturity of T = 4/365, which is the maturity of our
portfolio, the λ value is the most important: 0.42. It can also be noted that the furthest
maturity from T = 4/365 is that with the least weight almost 0.

Average of proport. on Apple calls Value
λ1 0.032
λ2 0.077
λ3 0.417
λ4 0.00

Table 9: Proportions of the hedging portfolio’s calls associated to the lagrangian UVM upper
price
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Now we will be interested in representing the lambdas of each Apple call and not the
average over all the calls as done previously. We notice in the figure below 26 that the ratio
associated with call3 is the most dominant. To hedge the ATM (at the money) call, we can
see that the ratio associated with call3 with the maturity T (the same as the call to hedge)
is equal to 1 and the other ratios are worth 0, which is logical because we are hedging the
call by itself.

Figure 26: Market and lagragian UVM prices of the calls, using four calls as hedging options
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5 UVM and finite-difference method

5.1 Finite-difference method to solve the BSB equation

In the previous section, we examined the UVM option pricing method using a trinomial
model for the underlying asset S. We will now study UVM pricing for barrier options, by
approximating the BSB equation using the finite-difference method: by discretizing the time
t and the values of the asset S. There are studies and articles in this direction like the papers
of [20] and [26]. In this section, we will more focus on the article of [26].

Recall the expression of the BSB equation for a derivative with payoff FN(S){
∂W (S,t)

∂t
+ r

(
S ∂W (S,t)

∂S
−W (S, t)

)
+ 1

2
σ2
[
∂2W (S,t)
∂S2

]
S2 ∂

2W (S,t)
∂S2 = 0

W (S, tN) = FN(S)

with:

σ

[
∂2W+

∂S2

]
=

{
σmax if ∂2W+

∂S2 > 0

σmin if ∂2W+

∂S2 < 0

σ

[
∂2W−

∂S2

]
=

{
σmax if ∂2W−

∂S2 6 0

σmin if ∂2W−

∂S2 > 0

To approximate BSB equation, we can discretize: ∂W (S,t)
∂t

, ∂W (S,t)
∂S

,and ∂2W (S,t)
∂S2 . Using

Taylor Expansion, we get that:

∂W (S, t)

∂t
=
W (S, t+ ∆t)−W (S, t)

∆t
+O(∆t)

for ∆t << 1, we use that ∂W (S,t)
∂t

≈ W (S,t+∆t)−W (S,t)
∆t

, the error in this case is ∆t.

∂W (S, t)

∂S
=
W (S + ∆S, t)−W (S −∆S, t)

2∆S
+O(∆S2)

For ∂W (S,t)
∂S

, we used the centered approximation, we can show that in this case the error is

of the order of ∆S2, so this last method is more precise than that used for ∂W (S,t)
∂t

∂2W (S, t)

∂S2
=
W (S + ∆S, t) +W (S −∆S, t)− 2W (S, t)

∆S2
+O(∆S2)

∂2W (S, t)

∂S2
≈ W (S + ∆S, t) +W (S −∆S, t)− 2W (S, t)

∆S2

This formulation of the second order derivative is centered, and the error of approximation
is of the order of ∆S2. We obtain this formulation by making the difference of the Taylor
expansion of W (S + ∆S, t) and W (S −∆S, t).

Time t ∈ [0, T ] and asset S ∈ [Smin, Smax] are discretized into N and M sub-intervals
respectively. More precisely, ti = i × ∆t, with ∆t = T

N
, and Sj = Smin + j × ∆S with

∆S = Smax−Smin
M

, for i ∈ {0, 1, .., N} and j ∈ {0, 1, ..,M}.

44



El Jerrari Robust option pricing

Figure 27: Grid representation: in red the boundary conditions of the price W (S, t) and in
green the points of the grid used to calculate the point at the next instant.

Using this discretization, we get that:

∂W (S, t)

∂t
=
W (j, i+ 1)−W (j, i)

∆t

∂W (S, t)

∂S
=
W (j + 1, i)−W (j − 1, i)

2∆S

∂2W (S, t)

∂S2
=
W (j + 1, i) +W (j − 1, i)− 2W (j, i)

∆S2

where: W (j, i) denotes W (Sj, ti).

The BSB equation for upper price W+ becomes:

−W (j,i+1)−W (j,i)
∆t

+ r
(
Sj

(
W (j+1,i)−W (j−1,i)

2∆S

)
−W (j, i)

)
+

1
2
σ2
[
∂2W (S,t)
∂S2

]
S2
j
W (j+1,i)+W (j−1,i)−2W (j,i)

∆S2

= 0

With

σ

[
∂2W+

∂S2

]
=

{
σmax if W (j + 1, i) +W (j − 1, i) > 2W (j, i)
σmin if W (j + 1, i) +W (j − 1, i) < 2W (j, i)

Therefore,

W (j, i+ 1) = W (j, i)
(

1− r∆t− σ2
[
∂2W (S,t)
∂S2

]
∆tS2

j

∆S2

)
+W (j + 1, i)∆t

(
−r Sj

2∆S
+ 1

2
σ2
[
∂2W (S,t)
∂S2

]
S2
j

∆S2

)
+W (j − 1, i)∆t

(
1
2
σ2
[
∂2W (S,t)
∂S2

]
S2
j

∆S2 +
rSj
2∆S

)
.

From this last expression, we notice that we can calculate W (j, i + 1) at time ti+1, from
W (j − 1, i), W (j, i) and W (j + 1, i) at time ti. Boundary conditions and initial condition
must be added to compute the values of W (j, i) for i ∈ {1, ..., N} and j ∈ {1, ...,M}.
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5.2 UVM price of a up-and-out Call

To apply the finite difference method to an up-and-out call, we will introduce the boundary
conditions:

W (Smin, 0) = 0

W (Smax, 0) = 0

and the initial condition:
W (Sj, 0) = (Sj −K)+

The various constants and parameters used to solve BSB equation using the finite-
difference on an up-and-out call are presented below:

Up-and-out call Value
Smin 150
Smax 240
T 30/365
K 210
σmin 0.1
σmax 0.2
r 0.07
N 30
M 30

Table 10: Parameters of the up-and-out call’s range UVM-prices

Figure 28: Prices of Up-and-Out call: UVM prices and BS prices for a volatility of 10% and
20%
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The figure 28 above represents the values of the up-and-out call, with the characteristics
presented in the table, using UVM method. We also represent the Black-Scholes values for a
constant volatility of 10% and 20%. We note that the prices of the two methods are different,
this is predictable because the gamma of the up-and-out call is not of constant sign (see the
figure 29). Therefore, we can’t get UVM prices using constant volatility.

Figure 29: Gamma of the up-and-out call

Figure 30: Prices of up-and-out call using BS and UVM methods as a function of the volatility

Now we are interested in implied volatility, from the market price we can find the value of
implied volatility by inverting the Black-Scholes formula. We kept the call up-and-out with
the same characteristics, and we plot the BS price as a function of the volatility. We also
represent the UVM call prices which are of course constant for a volatility band [0.1,0.2] and
for S0 = 213. We see that the Black-Scholes price varies between 5 and 6, and on this inter-
val: some prices can have two implied volatilities. For the other prices outside this range, no
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volatility is associated with it and an arbitrage is possible at these prices, as specified in [32].
Using UVM methods, we have a wider range to determine market prices: between around
4.3 and 7, as we can see in figure 30.

The python script corresponding to the UVM method using the finite-difference is given by
the google colab link: https://colab.research.google.com/drive/1_RB6aJb-hBA_
LdpzXnjIkCxSFG2E-JZd?usp=sharing
(see the link of the data used at the end of the thesis)

5.3 Lagragian UVM and finite-difference

5.3.1 Finite difference solution for the Lagrangian UVM prices

In this section, we will use the Lagrangian UVM method to evaluate vanilla options by using
the finite-differences method. The Lagrangian UVM method, as explained in the first part,
is a hedging method using options, and the expression below represents the price of the
portfolio composed of a short position on an option with cash flow Fj at time tj.

W (St, t, λ1, . . . , λM) = sup
P∈P

EP

{
N∑
j=1

e−r(tj−t)Fj
(
Stj
)
−

M∑
i=1

λie
−r(ti−t)Gi (Sti)

}
+

M∑
i=1

λiCi

(5.1)

= sup
P∈P

EP

{
N ′∑
i=1

e−r(ti−t)
(
F̃i (Sti)− λiG̃i (Sti)

)}
+

M∑
i=1

λiCi (5.2)

We have kept the same notations as for the presentation of the model in the section 3.4.

We notice that the first part of this expression is similar to UVM when considering the
global cash flows: F̃i − λiG̃i

We therefore return to the previous method (UVM), on condition of adding to the value
of the portfolio: the weighted sum of the prices of hedging options by the proportions:

M∑
i=1

λiCi

.
The last step that remains to be done is to minimize the value of the worst case scenario

of the portfolio according to λi. We consider an interval λi ∈ [Λ−i ,Λ
+
i ] which will be fixed

by the availability of options in the market. In the case where we are in a long position in
derivatives, we need to maximize over λi.

5.3.2 Hedging of Up-and-out call with one call

We approximate BSB equation as above but this time with different initial condition. We
took the example of the up-and-out call with the following characteristic. We hedge this
portfolio by a call of strike Khedging
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λ−UVM for Up-and-out call Value
Smin 0
Smax 240
T 50/365
K 109
Khedging 113
σmin 0.1
σmax 0.2
r 0.07
N 100
M 30

Table 11: Parameters of the up-and-out call’s range λ-UVM-prices

The boundary conditions for this example are:

W (Smin, 0) = 0

W (Smax, 0) = 0

The initial condition:

W (Sj, 0) = (Sj −K)+ − λ(Sj −Khedging)

Figure 31: Prices of up-and-out call as a function of lambda

We have drawn the price envelope using lagrangian UVM as a function of the proportion
λ. We notice first that the lambda which checks the last step of the Lagrangian UVM algo-
rithm is approximately λ = 0.7: for the higher price we look for the lambda which minimizes
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the price and for the lower price it is the opposite.

We also note that the difference between the upper and lower price curves is larger for λ =
0 than for λ = 0.7. When λ = 0, we find the exact price with the UVM method. Consequently,
the Lagragian UVM method reduces the deviation of the price envelope compared to the
UVM method.

5.3.3 UVM and Lagrangian methods with two hedging calls

In this previous case, we were only interested in a call as a hedging instrument. Now, we will
deal with the case of two calls to hedge an up-and-out call, and we will plot the upper and
lower value of the portfolio for the Lagrangian UVM and the classic UVM methods according
to the value of the stock S, and compare them.

λ−UVM for Up-and-out call Value
Smin 0
Smax 240
T 50/365
K 112
K1
hedging 210

K2
hedging 220

σmin 0.1
σmax 0.2
r 0.07
N 100
M 30

Table 12: Parameters of the up-and-out call’s range λ-UVM-prices

Figure 32: Prices of up-and-out call using Lagrangian UVM and classic UVM methods
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Figure 33: Difference between upper and lower prices using Lagrangian UVM and classic
UVM methods

As stated with one hedging instrument, the Lagragian UVM method reduces the difference
between the upper and lower price compared to UVM. Indeed, we have represented a barrier
call, with the characteristics of the table above, which we have priced with two methods and
using two calls as inputs in the case of λ-UVM. The latter method gives greater precision
over the possible range of portfolio’s values.

Conclusion

In this study, we have presented the option pricing method using a volatility range. We
determined the possible price range using two methods: the trinomial model and the finite-
difference. With this first method, we priced the Apple vanilla options and we highlighted a
number of results. It has been shown that the market price is indeed included in the price
range given by the UVM method, almost surely. We have compared the classic BS model
with the UVM model: we have shown that for a convex or concave price payoff UVM and
BS give the same result, while for a mixed convexity option, it was pointed out that the two
previous methods provide different results. One of the key results of the UVM method is
risk diversification: we have underlined the property of portfolio price sub-additivity which
indicates that the overall portfolio is less risky than the sum of the individual portfolios. We
also introduced a variant of the UVM method called Lagrangian UVM, we implemented it
with different hedging portfolios and we were able to show the importance and the impact
of hedging portfolio on the price range. The last point discussed is the implementation of
an alternative method to solve BSB equation: finite-difference method for the barrier options.

We have seen two approaches for option pricing using UVM: with trinomial tree and finite
difference, there is also another more efficient method using Monte Carlo method especially
if we are working with multiple assets.
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Python Script links

The python script corresponding to the UVM using trinomial method and finite-difference is
given respectively by the google colab links:
Trinomial method: https://colab.research.google.com/drive/1LCcsn4dDTEzoh4_
YK7EdLEhH4q7xF-e6?usp=sharing.
Finite-difference method: https://colab.research.google.com/drive/1_RB6aJb-hBA_
LdpzXnjIkCxSFG2E-JZd?usp=sharing.

To access to the data used, we will find the links below:
For the Apple calls:
https://drive.google.com/file/d/1V56y34LAo6FKSXCaTBnBWjnKUsP_gVei/
view?usp=sharing.
For the Apple puts:
https://drive.google.com/file/d/1Tlkt1Buj8gNU2BeY6r62Hphg_mhocVSk/
view?usp=sharing.
And for the Apple straddles:
https://drive.google.com/file/d/1AlyCT0Jv8HUMIcUot99BL99zt4bZCx6d/
view?usp=sharing.

Acronyms

BS Black-Scholes equation. 7

BSB Black Scholes Barenblatt equation. 17

cdf cumulative distribution function. 13

PDE Partial Differential Equation. 11

UVM uncertain volatility model. 3
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