Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Deep intensity-based CVA with Wrong
Way Risk

Author:
Wiam El Mouden (CID: 01948802)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2020-2021

Declaration

The work contained in this thesis is my own work unless otherwise stated.

Abstract

Wrong Way Risk (WWR) is a heavily model-dependent calculation where we
price an option with random maturity - namely the counterparty CVA - on the
positive exposure of a portfolio netting set when there can be correlation be-
tween the triggering credit event and the portfolio risk factors. This results in
very slow simulations. Our purpose is to see whether Deep Learning can learn
the simulation results and accelerate dramatically the calculation. This thesis
studies CVA for at-the-money European call options under stochastic default in-
tensity models. CVA in presence of Wrong Way Risk (WWR) is embedded in
the correlation between risk factors and default intensity. We develop a Monte
Carlo framework to simulate CVA and then train a neural network, using the
data simulated, that will be able to calculate CVA quickly.

Keywords: Credit Value Adjustment, Wrong Way risk, Numerical simulation,
Cox-Ingersoll-Ross process, Intensity models, Universal Approximation Theo-
rem.

To my parents, Khadija & Aziz
To my sisters, Ikram & Fatima Ezzahra

Acknowledgements

I would like to thank Dr Damiano Brigo, my thesis supervisor, and excellent
lecturer in Interest Rates Models. Thank you for guiding me and providing me
with the tools needed to complete my thesis.

My sincere gratitude goes to Hafsae Tabti, Mohamed Taik and Ivan Schonen-
berger for their precious help and advice this year.

Finally, I would like to thank my parents and my two sisters [kram and Fa-
tima Ezzahra. [wouldn't have made it this far without you. Thank you for
always believing in me and supporting my choices. I will always be grateful to
have you in my life.

CONTENTS CONTENTS

Contents
1 Introduction 10
2 Credit Value Adjustment 12
2.1 Credit valuation adjustment, 12
2.2 WrongWayRisk 13
3 CVA calculation under stochastic intensity models 15
3.1 Creditspreadmodel 15
3.2 Stockpricemodelo 17
3.3 CVA L 18
4 Numerical Evaluation 19
4.1 Simulation procedure and results 19
4.2 Numerical schemes 20
4.3 Variance reduction 22
5 Data Visualisation 26
5.1 Impactofthevolatilitys o 26
5.2 Impactof the correlationp, . 28
5.3 Impact of the speed of meanreversionx 28
5.4 Impactofthe volatilityv 30
5.5 Linear Regressiono 30
6 Artificial Neural Network 32
6.1 Introduction. v v v v i i i e e 32
6.2 Historyof Deep Learning 33
6.3 Properties of neural networks oL, 34
6.3.1 General constructiono e 34
6.3.2 Activationfunction Lo o oo o 36
6.3.3 Universal Approximation Property 37
6.4 Training Neural Networks, 38
641 Lossfunction 38
6.5 Minibactch 39
6.6 Epoch 40
6.7 Stochastic Gradient Descent (SGD) 40
6.7.1 GradientDescent i 40
6.7.2 Stochastic Gradient Descent 41
6.8 Backpropagation 41
7 Creating Deep Learning-Artificial Neural Networks(ANN) model to cal-
culate the CVA 43
7.1 Architecture choice L. 43
7.2 Activation functiono L 44
7.3 Lossfunction 47
7.4 Hyper-parameter tuning of ANN 47

CONTENTS

CONTENTS

7.5 Optimisation Algorithm
7.6 Learningrate,
7.7 Dropoutlayer

7.8 Neural Network implementation using Keras
8 Results
9 Conclusion

A Appendix

LIST OF FIGURES LIST OF FIGURES

List of Figures
1 Sample paths of the CIR process y , with p=0.03,590=0.01. 15
2 E[yt)],withp=003,p=001 16
3 Sample paths of the stock priceS 17
4 CVA(sigma) o e e 27
5 CVA(rho) 28
6 CVA(K) . o 29
7 CVA(Y) o 30
8 Linear regressiOno v v i i e e e e e e e 31
9 Historyof DeepLearning oo v i 32
10 Graphical representation of a neural network withr = 3, I = d, = 4,
d=6,dy=5andO=d;=3. 35
11 Biological neuron and its mathematical model, Source: cs231n by
Stanford 36
12 Loss functionsexamples 39
13 Total number of parametersofthe NN 43
14 NN Architecture 0 e 44
15 Reluactivation function o o 45
16 LReLU activation function e =001 46
17 Eluactivation functiona=1. 46
18 Training loss VS validationloss 47
19 CVA(SIgMA) v o 51
20 CVA(K) .« o o e e 52
21 CVA(rho) 52
22 CVA(Y) o 53
23 Common one-dimensional activation functions and their properties.
Adapted from Wikipedia (2019). 55
24 Common multi-dimensional activation functions and their properties.
Adapted from Wikipedia (2019). 55

LIST OF TABLES LIST OF TABLES

List of Tables
1 The results of MC simulation of the CVA for p = 0.2, 0 = 0.3, x = 0.4,
v=0.04 .. L 19
std error of the simulation using different schemes 22

o~y b Wk

The results of MC simulation of the CVA with Antithetic variate method 23
The results of MC simulation of the CVA with Control Variate method 25

Parameter values o e 26
CVA simulation description 26
hyper-parameter trial results L. 48
Training and validationLoss 49

1 INTRODUCTION

1 Introduction

Before the financial crisis of 2008, the aspect of counterparty credit risk in financial
contracts wasn’t popular and had often been overlooked. However, due to the high
number of default events experienced by a lot of financial institutions and the credit
quality deterioration, counterparty credit risk has proven to be one of the main driv-
ing force of the credit crisis. Several firms had huge mark-to-market (MtM) losses in
their trading books. In 2008, Lehman Brothers, one of the largest investment banks
declared bankruptcy, which was the largest in the U.S. history. At the time of the
default, Lehman Brothers had around half a million derivative contracts with close
to 8,000 different counterparties. The majority of these counterparties most likely
never considered a scenario where Lehman Brothers would default.[13]

As a consequence of the financial crisis, new financial regulation was beginning to
take shape around the practices of banks and it is now common practice to take the
counterparty credit risk into account when valuing some derivatives. This adjust-
ment of the price is known as the Credit Value Adjustment (CVA). In other words,
CVA represents the discount to the standard derivative value that a buyer would of-
fer after taking into account the possibility of a counterparty’s default. !

It has been proven that CVA was a key risk driver behind the losses experienced dur-
ing the crisis. The report from BIS (2011)[2] notices that “Under Basel II, the risk of
counterparty default and credit migration risk were addressed but mark-to-market
losses due to credit valuation adjustments (CVA) were not. During the financial cri-
sis, however, roughly two-thirds of losses attributed to counterparty credit risk were
due to CVA losses and only about one-third were due to actual defaults.” This em-
phasises the crucial value of proper CVA valuation.

Computing CVA has become of great importance in the financial industry. One dif-
ficulty in pricing CVA concerns the dependency between exposure and counterparty
credit quality, which is known as Wrong/Right Way Risk (WWR). When comput-
ing CVA, the correct inclusion of WWR is still a major concern. Many different
approaches have been proposed to assess WWR. We focus in our work on the de-
pendence between the counterparty default and general market risk factors using
stochastic intensity models. (see [26] for the Firm Value models approach)

In this paper, we study CVA calulation for at-the-money European call options under
stochastic default intensity models, i.e., the CIR++ process which provides a natural
and effective framework to handle the correlation between the underlying asset and
the default. We develop an efficient Monte Carlo framework for pricing CVA. Then,
we study how CVA computation can be accelerated using Deep Learning. We will
build a neural network to learn the impact of the correlation and other parameters
of the intensity model on the CVA value.

Ihttps://www.risk.net/definition/credit-valuation-adjustment-cva

10

1 INTRODUCTION

The outline of this thesis is as follows. In Chapter 2, we describe CVA valuation
problem in general terms. Chapter 3 describes the stochastic intensity model and
underlying asset driven process. In Chapter 4, we present the general framework
for CVA pricing based on Monte Carlo simulation. In Chapter 5, we present the
simulation results. Chapter 6 is an introduction to Deep learning. In Chapter 7, we
build step by step a Neural Network (NN) to calculate WWR CVA. In Chapter 8, we
present NN results. Conclusion is summarized in Chapter 9.

11

2 CREDIT VALUE ADJUSTMENT

2 Credit Value Adjustment

In this chapter, we will introduce the mathematical concepts of CVA needed for our
study.

2.1 Credit valuation adjustment

Credit valuation adjustment is one of the most important counterparty credit risk
measures. Indeed, according to Basel III, banks are required to hold regulatory cap-
ital based on CVA charges against each of their counterparties [11].

CVA can be defined at time ¢, as the difference of the default risk-free price I1(t; X)
and the true price I1(t; X) of a financial contract X, thus

CVA = T1(t; X) ~T1(£; X)

A better or more technical definition of CVA is in terms of an expected future loss
due to default of a counterparty. It is important to point out that since CVA is con-
cerning valuation rather than risk measuring, the calculations are done under the
risk-neutral measure following the standard valuation principles.[16]

To calculate the CVA, we follow the derivation in Brigo et al. (2013) [6]. Lets
consider a fixed time horizon T > 0 and a probability space (Q,G,G;, Q) where Q
is the outcome space. G, represents the flow of information on whether default
occurred before t and if so at what time exactly. Furthermore, we denote by 7 the
filtration of default-free market variables, i.e F is a o-algebra such that the filtration
JF; contains the same information as G; but the default events. Formally, we assume
that :
G=FRvo(lt<u},0<u<t)

where 7 is the default time of the counterparty.

In this setup, Q corresponds to the risk-neutral measure such that under the risk-free
bank account numeraire B, following the process :

dB, = B;rdt,By =1,

with r; the risk free interest rate and all discounted tradeable assets (i.e. assets di-
vided by B;) are martingales.

Lets consider a portfolio of derivative contracts with a risky counterparty up to a ma-
turity T, which risk-free value is denoted by V(t,T). Suppose that the counterparty
defaults at time T < T and we can recover Rec percent of our exposure (Rec is the
recovery rate). Then at t = 0, we have a discounted loss L of :

B
L=1;<q(1 —Rec}B—“_(V(r,T}r

T

=1{¢<r)(1 = Rec)D(0,7)(V(7,T))"

12

2 CREDIT VALUE ADJUSTMENT 2.2 Wrong Way Risk

where D(t, T) is the discount factor B;/By. CVA is then the risk-neutral expectation
of this loss. Finally, we get that the CVA at time { = 0 can be expressed as follows:

CVA = E®[1(r7)(1 = Rec)D(0,7)(V (t, T))* | G |- m

We can see that CVA is in fact an option on the residual value of a portfolio, with a
random maturity given by the default time of the counterparty r. Hence, CVA is a
strictly positive value which is subtracted from the price. This is very intuitive, since
entering into an agreement with a more risky counterparty would lead to a larger
CVA and thus a lower price.

Computing CVA is challenging. Counterparty risk adds a level of optionality to the
payoff. In particular, model independent products become model dependent also
in the underlying market [3]. Hence, calculating CVA of a product does require a
model.

A widely adopted assumption is that credit exposure, V and the counterparty’s de-
fault time, 7 are independent. In this case, we can express the CVA in terms of the
density function f of 7 as follows:

T
CVA = J- E2[(1 —Rec)D(0,T)(V(t, T))* | T =t] f(t)dt
0

T
- J- E®[(1 —Rec)D(0,t)(V(t, T))*] f(t)dt
0

where the last equality follows from the independence of V and 7. In practice,
a counterpary’'s default time distribution is approximated from counterparty credit
spreads observed in the market. Monte Carlo simulation is used then to estimate in-
dependent CVA by estimating ER[D,V,*], based on a discrete time grid. However the
efficacity of the independent CVA is limited, since there a several important practical
cases, where credit exposure and the counterparty’s default time are correlated (see
[14]).

2.2 Wrong Way Risk

When credit exposure is negatively correlated with a counterparty’s credit quality,
the exposure and its associated risk measures are said to be wrong way. In other
terms, Wrong-way risk (WWR) is when the exposure to a counterparty increases
with the risk of default of the counterparty. Wrong Way CVA refers to CVA in pres-
ence of wrong way risk.

A basic example of wrong way risk is when an investor has taken a long position in
a put option on the underlying stock S-. Suppose the counterparty of the option is
the same company as of the underlying stock. We name it company C. Lets consider
a scenario where company C runs into some financial difficulties. The stock value is
likely to drop, and as a consequence the investor’s put option will increase in value.

13

2.2 Wrong Way Risk 2 CREDIT VALUE ADJUSTMENT

Due to company C’s financial difficulties, the risk that they won't be able pay for
the put option at maturity is increasing. Therfore, from the investor’s point of view,
both the exposure and risk to counterparty C has increased significantly [16]. This
is known as wrong way risk.

Similarly, when credit exposure is positively correlated with a counterparty’s credit
quality, the exposure and its associated risk measures are said to be right way. In
order to capture WWR/RWR it is crutial to have a model that models the dependence
between underlying market risk factors and credit risk factors. For instance in the
example above, we can try to capture the dependence between the default risk and
the stock price of company C.

14

3 CVA CALCULATION UNDER STOCHASTIC INTENSITY MODELS

3 CVA calculation under stochastic intensity models

In this chapter, we will present the credit and default correlation models, and we will
derive a formula for the CVA of an at-the-money call option in this set-up. We choose
to work with an at-the-money call option so that the CVA term would be relevant. In
order to keep the computation tractable, we consider a square root diffusion model
driving the intensity of the investor and counterparty.

3.1 Credit spread model
We model the stochastic intensity A, as follows:
Ar=p+P(t6), 20 2)

where the intensity has a random component y and a deterministic component i to
fit the CDS term structure.

We take each y to be a Cox Ingersoll Ross (CIR) process:
dyy =« (pt— ;) dt + vy, d Z; 3)

k=0.6,nu=002

k=03,nu=002 0016
0014 a
0014

0.012
0.012

yith

= 0010 0010
=

0.008 0.008

0.006

0.006

] 50 100 150 200 250 300 3’50 400

o 50 100 150 200 250 300 IS0 400 TimeStep

TimeStep
k=03,nu=005 k=06,nu=005
00225 - 0030

00200
0025
00175
00150 0020

Z 00125

wit)

0015
0.0100

0.0075 0010

0.0050 0005

0.0025

0 S0 100 150 200 250 300 350 400 0 S0 100 150 200 250 300 350 400
TimeStep TimeStep

Figure 1: Sample paths of the CIR process y , with = 0.03,y, = 0.01

where the parameter vector is f = (k, , v, 79) and each parameter is a positive de-
terministic constant. x corresponds to the speed of mean reversion of the process,

15

3.1 Credit spréad G&IALCULATION UNDER STOCHASTIC INTENSITY MODELS

u the long term mean reversion level and v the volatility. As usual, Z is a standard
Brownian motion process under the risk neutral measure. We choose the CIR process
to model the intensity (instead of a Varsicek model for instance) because it has the
important proprety : y > 0 as must be for an intensity model.

0.0300

00275

0.0250

00225

0.0200

E[y(t)]

00175

00150

00125

00100

0 2 4) 8 10
time(years)

Figure 2: E[y(t)], with u = 0.03,y, = 0.01

We also define the integrated quantities :

t t t
A(t) ::J- Ads, Y{f)::J- ysds, ‘P(f,ﬁ}::J- P (s,p)ds.
0 0 0

The default time 7 is defined as the inverse of the cumulative intensity on an expo-
nential random variable & with mean 1 and independent of A :

T=AT() €))

Calibration to CDS Market Quotes
If we can read from the market some implied risk-neutral default probabilities, and
associate to them implied hazard functions TM¥t, we may wish our stochastic inten-
sity model to agree with them [3]. Since the survival probabilities in our model are
given by :
Q (7> t)podel =Ep [e_Am]
=Eo[exp(-W(t) - Y(1)]
=exp(-W(t, B)) Ey[exp (=Y (1))]

For the model to agree with the market, we need to guarantee that :
Q7> t)epsmie = exp (-TM (1)) = exp(—W(t,))Eq[exp (<Y (1))] (5)

Now notice that Eg[exp(-Y(t))] = Eqg [e_L;yst] is simply the bond price for a CIR

interest rate model with short rate given by p, so that it is known analytically. We

16

3 CVA CALCULATION UNDER STOCHASTIC INTENSITY M®ODEIStock price model

denote it by P¥(0,t,yo, B).

Hence, A is calibrated to the market implied hazard function Mt easily if we set :
W(t,) := TN (1) + 1n(P¥ (0, 1,90; B) 6)

where the parameters g are chosen so that we have a positive function ¢ (ie. a
non-decreasing W) [5].

3.2 Stock price model

In order to keep the computation tractable, we assume that the risk free interest rate
r is constant and we consider the Black-Scholes framework: a market with one risk
free bond and one risky asset with its price following a geometric Brownian motion

dSr - rSrdt+O'SrdWr (7)

where ¢ is volatility of risky asset and W standard Brownian motion process under
the risk neutral measure.

sigma = 0.1
120
A L -
us A
10
~ 105
=
&
¥ 100
&
%5
€
85 >
0 50 100 150 200 250 300 350 400 0 S0 100 150 200 250 300 30 400
TimeStep TimeStep
sigma = 0.5 —
00 sigma = 0.8
350
50 300
200 250
& =
W 200
E]SG Y
& 150
100
100
0 50
0 S0 100 150 200 250 300 30 400 0 50 100 150 200 250 300 350 400
TimeStep TimeStep

Figure 3: Sample paths of the stock price S

We recall that the Black-Scholes closed formula for European call option price at
time 0 with strike K and maturity T in the Black-Scholes framework is given by:

C(So, K, r,0,T)=So® (d;) - Ke T (d,) (8)

17

3.3 CVA 3 CVA CALCULATION UNDER STOCHASTIC INTENSITY MODELS

log(Sy/K)+(r+ ﬂZIZ)T

oVT

Finally, we assume that the stock price process S is correlated to the stochastic in-
tensity [\ via the brownian motion processes as follows :

AW,dZ, = pdt,p e[-1,1] ©)

where d; = ,dy =d; —o VT and @(-) is the standard normal cdf.

In this setup, the default intensity 1 is driven by a Brownian motion Z correlated to
W such that :

Wi =pZi++/1-p2Zf,pe[-1,1] (10)

with Z+ a Brownian motion independent of Z.

3.3 CVA

The CVA of the call option with final maturity T in this set-up is given by :

CVA = (1-Rec)E, I{KT}D(O,T}(NPV(T}}*] an

where NP V() is the residual net present value (NPV) of the call at the default time
7 of the counterparty. The residual NPV in our case is the expected value at time 7

of the discounted payoff of the call, which is NPV(t) = [D(r, 1St -K)]

CVA:(l—Rec}EO[l <nyD(0,7)(E, [D(x, T) (ST—K}+])+]
=e"T(1-Rec 50[1 ceniEe([Sy]]
=¢T(1-Rec EO[E [(r<1) (ST~ K) H

=T (1=Rec)Ey [1jrery(ST—K)]

where we use the fact that 1.} is measurable for E, and we apply the tower prop-
erty of conditional expectation. We also use that in case the risk free interest rate is
constant, we have D(0,t) = e ™.

Now, recalling that 7 = A~1(&), we have :
—-rT +
CVA:E (1_REC}EO[1{A‘]{£]<T|(ST_K) }
= e_’T(l - RBC}EO [E [1{£<A{TH (ST - K)Jr |A,S]]
=¢"T(1-Rec)Eg [(1 —exp(-A(T)))(ST - K)*]

Here again, we use the tower property and the fact that £ follows an exponential
distribution with mean 1.

Finally, we get :

CVA=(1-Rec)(C(Sy,K,r,0,T)- ’TEO [exp(-A(T))(St-K)")) (12)

18

4 NUMERICAL EVALUATION

4 Numerical Evaluation

We use the standard Monte Carlo method to simulate the CVA of a call option. We
fix the following parameters: Sy = 100, K =100, T =1, yp = 0.01, y = 0.03 and
Mkt — (.03, For the sake of simplicity, the recovery rate Rec and the risk free interest
rate r are assumed to be constant and set to zero to put the focus on the credit-
exposure dependency.

4.1 Simulation procedure and results

To evaluate the CVA of an European call option with maturity T and exercise price
K, we divide the time interval [0, T] into n equal subintervals with grid points
ty <t <...<t, satisfying t; = ih,i = 0,...,n, and h = T/n. We then generate si-
multaneously sample paths of S and y by first generating 2» independent N(0,1)
variables Zy,...,Z, and Z{,...,Z;}, and then computing :

St =S +1Sch+0SVhz,
By =0+ K (=g e vl hpZe,, +\1-0721)

YIH—] = Y-r.' +y-f.'h

fori=0,...,n—-1, where S, = Sj and y,, = y, are respectively the initial asset price
at time ty = 0 and the initial value of the CIR process y. This simulation procedure
is called the explicit Euler-Maruyama scheme.

Finally, adding the shift : A, = Y, + @, we compute :
CVA=C(Sp,K,r,0,T)—e (S, —K)*

which gives the value of CVA of a call option for this particular realization of the
sample path. This completes one simulation. If we repeat it M times (M is a large
number) and compute the average, we will get the CVA with Monte Carlo method.
The table bellow displays the simulations results :

n M CVA Standard error (std error) time
10 | 10000 | 0.55288 0.196263 0.00728
100 | 10000 | 0.50830 0.200837 0.05526
10 | 50000 | 0.43660 0.088561 0.03716
100 | 50000 | 0.48732 0.089587 0.34122
10 | 100000 | 0.44439 0.062415 0.07893
100 | 100000 | 0.40429 0.064113 0.90955

Table 1: The results of MC simulation of the CVA for p = 0.2, ¢ = 0.3, x = 0.4, v = 0.04

For the next simulations, we fix n = 100 and M = 100.000. Choosing a higher value
for the sample size M can reduce the standard error of the simulation but is com-
putationally costly, M = 100.000 is a good compromise. We also fix the seed the
simulation to ensure we get the same results every time.

19

4.2 Numerical schemes 4 NUMERICAL EVALUATION

4.2 Numerical schemes

It is important to note that the explicit Euler-Maruyama scheme :

Vi = Vit K(p -V)h + v, }yhh(pzml +4/1— pEZt])

can lead to negative values since the Gaussian increment is not bounded from below.
Hence, this scheme is not well defined. To deal with this issue, we will introduce
several discretization schemes. This section is based on the paper : "On the dis-
cretization schemes for the CIR (and Bessel squared) processes” by Aurélien Alfonsi
[1]. To explain the different schemes, lets consider a process (X;) following the CIR
process :

dX, = k(0 —X,)dt +o[X,dW, (13)

Fisrt, we consider the following scheme proposed by Deelstra and Delbaen [9]:

kT [—
X'H—] =Xr.' + T(G_er)+(r er]waﬂ(whﬂ _Wr.'}

where we consider again the regular grid t; = %
Another scheme is the one introduced by Diop [10]:

kT [
XrH—] :|Xra+7(g_xra)+0‘ Xra(wrwl_wra”

On the other hand, Brigo and Alfonsi [4] proposed an implicit scheme to assure the
positivity of a CIR process. Rewriting the CIR process with the stochastic integral
and using the fact that d(VX, W), = 3ds, we get :

t t
X, =xO+J k(e—xs}dst- VX AW,
0 0
. T
=xp + lim Z kO -X,) —+o Z X (Wi - W)

i<t it <t

- Z(\‘J er] - \‘J er)(wrfﬂ - W'r.')
i<t
2 T
Y (k-G -k e Y R (W -)

=xp + lim
n—co .
1<t 1t <t

Following this derivation, it is natural to consider the following implicit scheme :

a2

C . AT
R =X+ (k— L kX,); N

This scheme is well defined under the hypothesis 2k@ > ¢ at least when the time
step is small enough. Indeed, when X,f >0and % < 1/k™ (with k™ = max(-k, 0)), we

20

4 NUMERICAL EVALUATION 4.2 Numerical schemes

can choose /}'{,M as the unique positive root of the second-degree polynomial

P(x)=(1+k%)x2—o‘(w

tis1

AT
—W,f)x—(X;: +(k6—%);)

since 2k@ > ¢?and P(0) < 0. Thus we get

2

o (Wi~ W)+ \Jo? (W, W) +4(%, + (0 2) T)(1+ K1)
" 2(1+K)

(14

This scheme is well defined and we can easily check that the monotonicity property
of the CIR process is still satisfied, i.e if xy < x; are two initial conditions, then the
scheme satisfies X; < X;.

We can also derive another scheme if we consider the SDE of the square-root of (X;)

kO - a2/4 k o
d\fz— Wdt_amdt-’_idwr

By impliciting the drift and following a similar derivation to the previous example,

we get again a second-degree equation in /X; . :

i+1 °

kT, o I " k@ -c%/4T
(1+%)Xr,+]_[E(Wr,ﬂ_wr,)"' Xffjl Xrn-]_#;:ﬂ

This equation also has only one positive root when ¢? < 4k and L < 2/k~. Finally,
we get:

2

%(W!H-] _Wfa)“L\/}?rﬁ\/(%(Wrm - Wr,)+\/;h)2+4(1+g—i)—kg_gzmr—?;

2(1+%)

Xr.'+] =

(15)
Again, we can check that the motonicity property of the CIR process is still satisfied.

If we consider the SDEs that derives X¢ for a € IR, it is clear that the only two values
of « that give a second-degree equation are 1 and 1/2. Hence,we cannot get other
schemes looking at the SDE satisfied by X“ since other powers different than 1 and
1/2 don't lead to analytical formulas and require a numerical resolution.

We will run the CVA simulation using the previous schemes : Scheme (14) o2 <
2k6, Scheme (15) o2 < 4k6, Diop and Deelstra Delbaen. The convergence of these
schemes are proven in [1]. The table below displays the average standard error of
on 1000 simulations when using different schemes.

21

4.3 Variance reduction 4 NUMERICAL EVALUATION

Deelstra Delbaen | Diop | Scheme (14) o2 < 2k€ | Scheme (15) o2 < 4k0
0.05 0.07 0.05 0.06

Table 2: std error of the simulation using different schemes

In our work, we choose to work with the Deelstra Delbaen scheme, i.e we will sim-
ulate simultanuously sample path of the stock price process § and the stochastic
intensity process v as follows :

Sy, =S +rS h+0S VhZ,
prm—] = pra + K('u B 3):,)h TV \Jyhlya,>ﬂh(pzh+1 + 1 - f;lz"z'rJ.'_H)
YrH—] = Y'r.l +?r,h
for i = 0,...,n— 1, where we keep the same notation as in the previous section.

Finally, we add the shift and compute the average of the CVA realizations.

4.3 Variance reduction

The efficiency of Monte Carlo methods may be improved if we can reduce the vari-
ance of random sequence. Two common variance reduction methods are antithetic
variate method and control variate method :

Antithetic variate method

The idea of this method is very simple and can be explained as follows: assume
Z ~N(0,1) and we want to compute E[f(Z)]. Since —Z ~ N (0, 1), this is equivalent
to computing

Bl (2)] = HL

[+ E[f(=2)] :E[f(2)+f(—2)
2 2

J:: E[X]

We hope to have Var(X) < Var(f(Z)). Under some conditions, this will be true. The
antithetic variate method is supported by the following general result: Let f be a
monotone function and X be any rv, then we have

Cov(f (X),f(1 -X)) <0 and Cov(f(X), f(-X)) <0

The standard normal variables are ideal in reducing variance due to their symmetric
properties.

We apply the anthetic variate methode to the Monte Carlo simulation to compute
the CVA. The table bellow displays the simulation results.

22

4 NUMERICAL EVALUATION 4.3 Variance reduction

o P K v | CVA | std o P K v | CVA | std
0.1-05]040.02]0.11 | 0.01 0.5] 0.3 |08|0.02]0.61]| 0.07
0.1]-05]|04|0.08]0.14 | 0.01 0.5] 0.3 |0.8|0.08]0.69| 0.07
0.1]/-0.5]0.8]0.02]0.11 | 0.01 0.5/ 09 |04|0.02]0.73 | 0.07
0.1]/-0.5]0.8|]0.08]0.13 | 0.01 0.5/ 09 |04|0.08|0.82| 0.07
0.1 03 |04]0.02]0.13 | 0.01 0.5 09 |08 |0.02|0.75| 0.07
0.1 0.3]04]0.08]0.17 | 0.01 0.5 09 |0.8|0.08|0.81| 0.07
0.1 0.3 |08|0.02]0.13]|0.01 0.8]-05|04|0.02]1.02] 0.15
0.1 0.3 |08|0.080.16|0.01 0.8]-05|04|0.08]0.97| 0.15
0.1 09]04|0.02]0.15 | 0.01 0.8]-05]|08|0.02]1.01]| 0.15
0.1/ 09 |04|0.08]0.18 | 0.01 0.8]-05|08]|0.08]1.05]| 0.15
0.1/ 09 |0.8|0.02]0.17 | 0.01 0.8 03 |04|002|113| 0.15
0.1/ 09 |0.8|0.08]0.16 | 0.01 0.8 03 |04|008|121| 0.15
0.5]-0.5|04|0.02|0.65|0.07 0.8] 0.3 |08]0.02]1.04]| 0.15
0.5]-05|04|0.08|0.61|0.07 0.8/ 03 |08|0.08|121| 0.15
0.5]-0.5|0.8|0.02]0.56 | 0.07 0.8 09 |04|0.02]|113| 0.15
0.5]-0.5|0.8|0.08|0.51|0.07 0.8/ 09 |04|0.08|1.29| 0.15
0.5 03 |04|0.02|0.61|0.07 0.8/ 09 |08|0.02|110| 0.15
0.5 03 |04 |0.08|0.69|0.07 0.8 09 |08|0.08|132] 0.15

Table 3: The results of MC simulation of the CVA with Antithetic variate method

Control Variate

We recall that the Control Variate method consists on selecting an alternative pay-
off IT*", which we know how to evaluate analytically, i.e: E[IT""] = 7" is known.
Suppose we want to compute the expectation of a payoff IT. When we simulate our
original payoff I'l, we now simulate as well the analytical payoff 7" as a function of
the same scenarios for the underlying variables [3]. We define a new control-variate
estimator for E[I1] as :

ﬁﬁ.(y;np):: +y n

Z”P Han,j
=1 -
] _ 0

with n, the number of scenarios, y a constant to be determined and I/ and I1#*/ iid
copies of IT and TT*" respectively. It is easy to see that estimator above is unbiased.
Lets consider now the random variable :

IT(y) =TI+ (IT*" — ™)
whose expectation is the E(IT) we are estimating, we have :
Var (I1,.(y)) = Var(I1) + yZVar (I1*")+ 2y Corr (IL IT*")Std(I1)Std (IT*")

We may minimize this function of y by differentiating and setting the first derivative
to zero. We can easily show that the variance is minimized by the following value of

23

4.3 Variance reduction 4 NUMERICAL EVALUATION

y 1 y" := —Corr (IL, IT*") Std(IT)/ Std (IT*"). We plug ¥ = y* into the above expression
and we get:

Var (IT. (")) = Var(IT)(1 - Corr (IT,TI")*)

from which we see that IT.(y*) has a smaller variance than the original IT. This
variance decreases when the correlation between IT and IT*" increases (in absolute
value). Accordingly, when moving to simulated quantities, we set :

S_Ea(nf(}/*};”p) — ST&(H;HP)(] — @E(H,Hanmp)z)m

where Cor(H, e, np] is the sample correlation

G}H{I(H,Ha“;np)

Cor (I, T n,) = — h
or{ ") Std (113,)Std (112751,

Hence, we choose :
_ Cor (ILIT*")

i — (16)
Var (I'Tan)
For our CVA simulation, we consider the following control variable :
Hmi :1{£<A{TH(ST_K}+ (17)

such that the stock price process S and the intensity process A are not correlated.
In this case, using the fact that r = 0, the expectation 7" is know analytically and
equal to :

" =Q(t < T)C(So,K,1,0,T) (18)

with Q(t < T) the market risk-neutral default probability.
Finally, taking :

IT=exp(—A(T))(St - K)* (19)
1, = 11 - SO pan_ (20)
Var (IT2")
we get the following CVA estimator :
m:C(SU,KﬂGU’T}_E[HE] (€29

We apply the control variate method to the Monte Carlo simulation to compute the
CVA. The table bellow displays the simulation results.

24

4 NUMERICAL EVALUATION 4.3 Variance reduction

o P K v CVA std error
0.1]-0.5]|0.4|0.02| 0124235 | 0.018766
0.1|-0.5|0.4|0.08| 0113267 | 0.018825
0.1-0.5]0.8]|0.02]| 0124295 | 0.018765
0.1]-0.5]|0.8|0.08| 0113682 | 0.018823
0.1|03]04]|0.02]| 0131032 | 0.018726
0.1 0.3]04|0.08| 0138989 | 0.018686
0.1 03 |0.8|0.02| 0130935 | 0.018726
0.1|0.3]0.8|0.08| 0138579 | 0.018687
0.1 0.9]04|0.02]| 0136054 | 0.018698
0.10.9|04|0.08| 0161356 | 0.018547
0.1 09 |0.8|0.02| 0135981 | 0.018698
0.1 09 |0.8|0.08| 0159978 | 0.018556
0.5]-0.5]|0.4|0.02 | 0.587033 | 0.049702
0.5|-0.5]0.4|0.08 | 0.523515 | 0.040144
0.5]-0.5]|0.8|0.02| 0587438 | 0.049698
0.5]-0.5]|0.8|0.08| 0.525335 | 0.040137
0.5] 03 |0.4|0.02| 0629641 | 0.049381
0.5] 0.3 | 0.4]|0.08] 0.676339 | 0.041910
0.5| 0.3]0.8|0.02] 0629134 | 0.041938
0.5|03]0.8]|0.08| 0674131 | 0.041911
0.5 09 |04|0.02]| 0659058 | 0.041917
0.5 0.9 |04|0.08| 0818958 | 0.041797
05|09 |08|0.02| 0658814 | 0.041917
0.5] 09 | 0.8|0.08| 0809908 | 0.041805
0.8]-0.5|0.4|0.02 | 0877284 | 0.073479
0.8]-0.5|0.4|0.08| 0765224 | 0.083577
0.8 -0.5|0.8|0.02| 0878246 | 0.083478
0.8]-0.5]|0.8|0.08| 0.767839 | 0.083576
0.8] 0.3 |0.4|0.02| 0957674 | 0.084046
0.8] 0.3 |0.4]|0.08]| 1.037982 | 0.083481
0.8] 0.3 |0.8]|0.02] 0.956815 | 0.084054
0.8] 0.3 |0.8|0.08| 1.034519 | 0.083500
0.8] 09 |0.4|0.02| 1.009239 | 0.083590
0.8 09]04|0.08] 1308031 | 0.080834
0.8 09 |0.8|0.02| 1.008968 | 0.083606
0.8 09 |0.8]|0.08| 1.290402 | 0.081030

Table 4: The results of MC simulation of the CVA with Control Variate method

As Control Variate method gave better results, we will use this technique to simulate
CVA values from now onwards.

25

5 DATA VISUALISATION

5 Data Visualisation

We fix the parameters Sy, K, p, r, Rec, T and Mkt and we simulate 200.000 CVAs.
We will give the fixed parameters the same values as in the section Numerical eval-

uation, i.e :

Parameter | Value
So 100
K 100
Yo 0.01
7 0.03
r 0
Rec 0
T 1 year
Mkt 0.03

Table 5: Parameter values

The table below summarises the results of the simulation.

Parameter | Count Min 25% 50% 75% Max
o 10 0.1 0.3 0.55 0.8 1
P 20 -1 -0.525 0 0.525 1
K 20 0.1 0.35 0.5 0.7 1
v 50 0.01 0.032 0.055 0.078 0.1
CVA 200.000 | 0.11204 | 0.39824 | 0.69641 | 0.92544 | 1.46692

Table 6: CVA simulation description

Next we plot the CVA as function of the different parameters: o , p, x and v.

5.1

Impact of the volatility ¢

We plot the CVA as a function of o for different values of p, k¥ and v. We notice that
the CVA is always increasing with o, which is what we expected. Indeed, when &
increases the call option price increases and therefore the credit value adjustment
as well. We also notice that when the correlation p is bigger (in absolute value) the
volatility v has greater impact on the CVA.

26

5 DATA VISUALISATION

5.1 Impact of the volatility

rho=-05.k=04

rho=03. k=04

12
10
10
08
08
< 06 =
4] S o8
04 0s
02 02
02 04 06 08 10 02 04 06 08 10
sgma sigma
rtho=08.k=04 tho =-0.9, k=04
10
12
. 08
08
« < 06
2 [+
06
04
04
. 02
02 [06 08 10 02 04 06 08 10
sigma sgma
rho=05,k=08 rho=03.k=01
12
12
- 10
08 08
-4 4
% o6 X"
o4 04
02 02
02 04 06 08 10 02 04 06 08 10
sgma sSgma
tho =08, k=06 tho=02,k=06
10
08
= 06
[=]
04
02
02 04 06 08 10 02 04 06 08 10
agma i
rho=09.k=06
14
12
10
< 08
06
04
02

02 08

sigma

o8

Figure 4: CVA(sigma)

27

5.2 Impact of the correlation p 5 DATA VISUALISATION

5.2 Impact of the correlation p

The figure bellow shows the plots of the CVA as a function of p, the correlation
between the default intensity and the stock price S. The plots show that the CVA
is linearly increasing with p. We notice that as the default dependence grows, the
CVA increases. This can be explained by the fact that, when the intensity goes up,
the probability of the default increases, and when the correlation is larger, the equity
goes up as well and the option becomes more in money. Hence, it has more value
and the CVA is larger.

sigma = 0.2 . k=05 sigma = 0.2,k = 0.8
o3

sigma =02, k=032

o {
030 { 030
029 (¥

028 { [+]

gox EXPR fom
03s | 026 § 026
0z — =002 02s { — we0m a8
v =004 =004
0 - = 0.06 02a f =006 0
- — =008 — nu= 008
033 | - 023 . - v alk
100 =075 =050 =035 Q00 0I5 050 Q15 100 -100 -0.7% -050 -025 000 025 @050 @5 100 100 =075 050 =035 000 025 Q50 i]
ha o he
sigma =05, k=02 sigma =05, k=05 sigma =05, k=08

100 -0.75 -050 -025 000 025 050 075 100
e

100 <075 =050 -025 000 025 050 075 100

sigma = 0.8, k=02 sigma =08, k=05
115 L1
11 110
105 105
ch(410
oas | Yo
om0 - — =002 sy — weooz
085 | =004 085 p 004
T om{ 7 —miow
100 =075 =050 =035 :IEG 025 @50 075 100 100 =075 =050 =025 000 025 050 075 100 -100 075 050 —0.25 3:'.' 0% 0% 075 1M
e o

Figure 5: CVA(rho)

5.3 Impact of the speed of mean reversion «

We look now at the impact of x on the CVA results. We notice that CVA values are
more less constant when we change x and fix the other parameters. This is because
for small maturity (1 year), the speed of mean reversion x has a low impact on the
CVA. Howerver, the figures show a clear pattern : a decreasing tendency of the CVA
as we increase « for positive p and an increasing tendency of the CVA as we increase
x for negative p.

28

5 DATA VISUALISATION 5.3 Impact of the speed of mean reversion x

sigma = 0.3, rho =05, nu = 0.04 sigma = 0.2, the = -0.5, nu = 0.08
03832 02466
03830 02464
03828 o 02462
3 g
03826 02460
03024 02458
03822 . . .
02 04 06 08 10 0z 04 06 08 10
k k
sigma = 0.8, tho = -0.5 , nu = 0.02 sigma=023,rho =03, nu=0.04
092225
04076
092200
092175
04074
< 092150 e
& G
092125 04072
092100
092075 04070
092050
02 04 06 o8 10 02 04 06 o8 10
K 3
sigma=02.rho=03,nu=008 sigma = 0.8, rho = 0.3, nu = 0.02
09608
02796
0.9606
02794
0.9604
E-9
€ 02z 5 ossn2
02790 .
0.9598
02788
0.9596
02 04 koa 08 10 0 0e e s o
K
sigma = 0.3, tho = 0.8, nu =004 sigma =02 . rho =08, nu = 0.08
04250
03025
04245 03020
03015
04240
P
5 g 03010
4
04235 a3005
04230 03000
02995
04225
02 04 06 08 10 0z 04 06 08 10
K k
sigma = 0.8, rho = 0.8, nu = 0.02
09608
09606
0.9604
£ 09602
0.9600
0.9598
09596
02 04 06 08 10
k

Figure 6: CVA(x)

29

5.4 Impact of the volatility v 5 DATA VISUALISATION

5.4 Impact of the volatility v

The plots of the CVA as a function of v show that the CVA increases slightly with v
when p is positive and inversely when p is negative. We notice that ¥ and v have
opposite effects on the CVA. Indeed, in the CIR process, x¥ and v fight each other.
x is the speed of mean reversion, so if we increase x, the paths will converge to
the long time mean faster and that means there is less uncertainty in the system
because there is faster convergence to the long term mean. Hence, it is like lower-
ing the volatility in a sense. On the other hand, if we increase v, we increase the
randomness. Therefore, the two parameters have obviously opposite effects.

sigma =03, mo=-05.k=04 sigma =02, o =-05k=08 sigma = 0.8, tho = -0.5,, k=02

0390 { 092

o3%0 e <
g g 2 o8
0375 {
030 { 0250 . 088
0365 { 4
045 o
0360 1 - . - - .
002 004 aoe 208) acz ate 206 ate alo ooz 004 14 o8 [31]
o - N
sigma=03.rho=03. k=04 sigma = 0.2 . tho = 0.3, k= 0.8 sigma = 0.8, tho=0.3. k=02
oz { Loz {
0420
[F) 1o1 {
oais [£20) Low |
< o 077 { < 099]
- 2 &
“ na1n 2
04 ase
pes 0 as?
uzm ass |
a00 B . . .
oz 19 05 08 olo v o 006 8 ol 0 00 006 08 ol
s
sigma =03, rho=08.k=04 sigma =02, tho =08, k=08 sigma =0.8.rmMo=08,k=02
o310
s 2305 115 {
o4y 0300
st 0295
] 5 0290 g
043 . Las 4
0288
o aB0 __
041 0TS
LEL
0 004 0 o8 Bl 00 004 006 o8 o 002 s 06 noe 1)
n ™ s

Figure 7: CVA(v)

5.5 Linear Regression

Although the CVA graphs seem linear in certain cases, a linear regression fails to
map well the CVA, especially for large volatilities and correlations. The figures bel-
low illustrate this issue.

30

5 DATA VISUALISATION

5.5 Linear Regression

rho =-09,k =02, nu=009

rho=-0.7,k=0.2,n=0.05

09 10
08 — —
07 08
06
< < 06
S 05 [+
04
03 — Simulation b — Simulation
Linear Regression Linear Regression
02 02
01 T T T T T T T T
02 04 0.6 08 10 02 04 06 08 10
sigma sigma
rho=-08,k=06,nu=0.04 rho=-1,k=02,nu=004
10 10
’/‘-H_ ’/_H-’
08 08
< 06 < 06
= <
4
04 = Simulation 0 — Simulation
Linear Regression Linear Regression
02 02
02 04 06 08 10 02 04 06 08 10
sigma sigma

Figure 8: Linear regression

To capture the non-linearity of the CVA, we use a Neural Network approach. We will
discuss the different Deep learning techniques in the following sections.

31

6 ARTIFICIAL NEURAL NETWORK

6 Artificial Neural Network

In this chapter, we will present an introduction to deep learning and develop an
understanding of the properties of Neural networks and how they are trained. This
chapter is inspired of Deep Learning Lecture notes by Mikko Pakkanen (2020)[27],
"Artificial Neural Networks for SABR model calibration hedging” by Hugues Thorin
[33] and "Deep Learning: An Introduction for Applied Mathematicians” (2018)
[17]. Mlustrations in this chapter without mentioned sources are extracted from
Deep Learning Lectures Notes.

6.1 Introduction

Arfificial Machine Deep
Intelligence Learning Learning

Engineering of Ability to learn Learning based on
making Intelligent without being explicitly Deep Neural
Machines and Programs programmed Network

1950's 1960's 1970's 1980's 1990's 2000's 2006's 2010's 2012's 2017's

Figure 9: History of Deep Learning

In the last decades, deep learning was a topic of great interest to many researchers.
Today, deep learning has become extremely popular in a vast range of application
fields, from image recognition, speech recognition and natural language process-
ing to targeted advertising and drug discovery. Deep learning has achieved many
outstanding breakthroughs, perhaps the most notable of which has been the devel-
opment of AlphaGo [31], a computer program developed by Google DeepMind in
London in 2015. This program has been able to beat the best human players in the
classical Chinese board game Go, a game that was thought to be far too difficult to
learn and master by Artificial Intelligence. 2

2Image source : https://wuw.slideshare .net/linagora/deep-learning-in-practice-speech-recognition-a

32

6 ARTIFICIAL NEURAL NETWORK 6.2 History of Deep Learning

The financial industry has become increasingly interested in the new Deep Learning
methodology. In the past, different techniques of Machine Learning has been applied
in retail banking to detect fraud, machine read cheques and perform credit scoring.
Today, the industry focuses more in the automation of different tasks using Artificial
Intelligence, ranging from customer service in retail banking to trading and portfolio
construction in investment banking and asset management,respectively.

In very broad terms, the problem deep learning aims to solve is finding (creating) a
function, most often non-linear,

f:RN - RO

that turns I € IN inputs
XiseoonX]

into O € IN outputs
f](xl;---;xl);---;fo(x];---;xl)
in an optimal way.

6.2 History of Deep Learning

The history of Deep Learning can be traced back to 1943, when Walter Pitts and
Warren McCulloch [24] created a computer model based on the neural networks of
the human brain. Both researchers were working in neuroscience and they aimed
to develop a mathematical model of nervous activity, founded in logic. The artificial
neuron model they developed can be expressed in terms of real functions as

I
e b Zpmze

I
0, Y,4%x<a

where x = (xy,...,x;) € {0,1) is a vector of binary inputs and a € R is an activation
threshold parameter. This model is able to represent some basic logical operations
such as AND and OR. Although this McCulloch Pitts Neuron has very limited capa-
bility and has no learning mechanism, it will lay the foundation for Artificial Neural
Network Deep Learning.

In 1957, Frank Rosenblatt [28] refined the model of McCulloch and Pitts by intro-
ducing the concept of perceptrons in his paper: “The Perceptron: A Perceiving and
Recognizing Automaton”. This augmented the artifical euron model by implement-
ing weighting of inputs, which no longer had to be binary, as follows :

flx;w,b):=H(w'x +b)

where x € R! is the input vector, w € R is a vector of weights and b € R is a bias
term, mapped through the Heaviside function

0, x<0

HO:=101 10

33

6.3 Properties of neural networks 6 ARTIFICIAL NEURAL NETWORK

‘Perceptron’ had true learning capabilities to do binary classification and Frank Rosen-
blatt’s work inspired the revolution in research of shallow neural network for years
to come. However, in 1969, Marvin Minsky and Seymour Papert published the book
“Perceptrons” [25] in which they show that Rosenblatt’s perceptron cannot solve
complicated functions like XOR. For such function perceptrons should be placed in
multiple hidden layers which compromises perceptron learning algorithm. This set-
back triggers the so-called Al winter, a period of reduced funding of Al research in
the US and UK. The Al winter was also due to initial unrealistic expectations of what
Al could achieve and subsequent disappointments.

Nevertheless, research into neural networks did not die out completely during the Al
winter. In fact, in the 1970s key ideas behind backpropagation were discovered by
Seppo Linnainmaa . The researcher published general method for automatic differ-
entiation for backpropagation and also implemented backpropagation in computer
code. Althought research in backpropagation had come very far in the 1970s, yet
it would not be implemented in neural network till next decade. In 1986, Geoffrey
Hinton, Rumelhart, and Williams in their paper “Learning Representations by back-
propagating errors” [29] show the successful implementation of backpropagation
in the neural network. It opened gates for training complex deep neural network
easily which was the main obstacle in earlier days of research in this area. More
precisely, The conclusion of their paper is that backpropagation helps learn useful
internal representations of data — i.e., transformations of the data in the hidden
layers of the neural network, which facilitate the task the network is aiming to ac-
complish (classification for example). The idea of internal representations is central
to many developments in Deep Learning, this why the paper is often considered as
the foundation of current Deep Learning research.

Despite the several discoveries and important advances in Deep Learning, neural
networks were still not a popular research topic in the 1990s and it was until the late
2000s and early 2010s that Deep Learning entered a new era, after breakthroughs
in speech and image recognition (e.g., Hinton at al. (2012) and Krizhevsky at al.
(2012) [20], respectively) using deep neural networks.

6.3 Properties of neural networks

6.3.1 General construction

Definition 1

Let I,O,r € N. A function f : R — R is a feedforward neural network (FNN) with

r—1€{0,1,...} hidden layers, where there are d; € N units in the i -th hidden layer for

anyi=1,...,r—1, and activation functions o; : R% — R%,i = 1,...,r, where d, := O, if
f:O'J..OLr.O'“OO']OLI, (22)

where L; : R%-1 — R%, for any i =1,...,r, is an affine function

Li(x):= Wix+b', xeR% (23)

34

6 ARTIFICIAL NEURAL NETWORK 6.3 Properties of neural networks

parameterised by weight matrix W' = € R4*4i-1 and bias vector

_ _ _ WN‘];’:1,...,d,,k=1,...,d,_]
b= (bi'---’sz,) € R%, with dg := 1. We shall denote the class of such functions f by

ﬂ/,'(I,dl,...,d,._],O;cr],...,cr,.} (24)

If o;(x) :(g(xl),...,g(xdi)),x :(xl,...,xdf) € R%, for some ¢:R— R we write g in
place of o;.

g
03
o
[o o3
o
[L
o L
[] <
[] ®
[® O=d3=3
I=dy=4 o
@ d»=5
dy =6

Figure 10: Graphical representation of a neural network withr =3, =dy=4,d, =6,
d2:5 and O:d3 = 3.

The architecture of a neural network is fully determined by :

* rand dy,...,d,_; which are called the hyper-parameters of the network.

» the weights W',..., W" and biases b!,...,b" which are the parameters of the
network

* the activation functions o'!,...,o"

35

6.3 Properties of neural networks 6 ARTIFICIAL NEURAL NETWORK

Building functions by composition is essential in Neural Networks to generate non-
linearities. By composing affine functions, it produces high-order polynomials expo-
nentially fast.

Proposition 1
The number of parameters that characterise f € 4, (I,dy,...,d,_,0;04,...,0,)is (as-
suming that oy,...,0, involve no additional parameters)

Y (@dia+1)d; (25)
i=1

6.3.2 Activation function

An activation function ¢, as introduced in the previous section, is a function that
is added into an artificial neural network, in order to add some kind of non-linear
property to the network and help the network learn complex patterns in the learn-
ing data. Without the activation functions, the neural network could perform only
linear mappings from inputs x to the outputs y. When comparing with a neuron-
based model in our brains, the activation function decides what is to be fired to the
next neuron. That is exactly what an activation function does in an artificial neural
network as well. It takes in the output signal from the previous cell and converts it
into some form that can be taken as input to the next cell [18]. The figure below
illustrates this comparison.

In wo
*@ synapse
axon from a neuron
woLo
impulses carried
toward cell body .
y P branches f()__u.x. t b]
dendrites [of axon - T /
SIJ \ J Ln‘,.r, +b 'fh -
\ \J' = P o . utput axon
'\uc.l('Lls—___." axon <, = ; activation
] — e terminals g
N unction

N ~=
. impulses carried \S
)

away from cell body

A cartoon draw ng ofa big logical neuron left) and its mathematical m

odel (right

Figure 11: Biological neuron and its mathematical model, Source: cs231n by Stanford

We can distinguish two types of activation functions used in Neural Networks : one-
dimensional activation functions, applied component wise and multi-dimensional
activation functions.

We join in the appendix examples of one-dimensional activation functions and multi-
dimensional activation functions and give their key properties.

36

6 ARTIFICIAL NEURAL NETWORK 6.3 Properties of neural networks

6.3.3 Universal Approximation Property

The use of Neural Networks to model complex functional relationships can be jus-
tified by the universal approximation theorem, that stipulates that any “reasonable”
function can be approximated by a suitable Neural Network.

To measure the precision of approximation by a neural network, we define two
norms for functions. Let K ¢ IR! be compact®. For any measurable f : Rl — R,
we introduce the sup norm

”f“sup K s=sup |f(x}|
xeK

and, for any p > 1, the LP norm

o= [reor dx)%

Moreover, we denote by LP(K,R) the class of measurable functions f : K — IR such
that ||f||z¢(x) < co. The following is a slight reformulation of Leshno et al.[21] (1993,
Theorem 1 and Proposition 1).

Theorem 1
(Universal approximation property)
Let g : R — IR be a measurable function such that :

* (a) g is not a polynomial function,
* (b) g is bounded on any finite interval,

* (c) the closure of the set of all discontinuity points of ¢ in R has zero Lebesgue
measure.

Moreover, let K C IR! be compact and ¢ > 0. We have :

* (i) For any u € C(K,R), there exist d € N and f € N,(I,d,1;g, Id) such that
”H 7f||sup K <&

* (ii) Let p = 1. For any v € LP(K,IR), there exist d’ e N and h € 4, (I,d’, 1;g, Id)
such that
lv—Hllpx) <&

While the previous theorom holds for networks with a single hidden layer, we usu-
ally extend the universal approximation property to deeper networks in practice.

However, the theorem doesn’t tell us how to construct f and h and how to choose the
architecture of the network and its parameters and hyper-parameters. The theorem
only guarantees the existence of a Neural Network.

3K ¢ R! is compact if it is both closed and bounded.

37

6.4 Training Neural Networks 6 ARTIFICIAL NEURAL NETWORK

6.4 Training Neural Networks
6.4.1 Loss function

A Deep Learning neural network learns to map a set of inputs to a set of outputs from
training data. In a Deep learning problem, we may seek to maximize or minimize
the objective function, i.e we look for a candidate solution that has the highest or
lowest score respectively.

Typically, with artificial neural networks, we seek to minimize the error. The objec-
tive function is often referred to as a cost function or a loss function and the value
calculated by the loss function is referred to as simply “loss”.

Definition 2
A loss function is
:ROxRY — R (26)

If x and y are the realisation of a joint random vector (X, Y), with X corresponding
to the random input vector and Y the random output vector, the goal is to find the
optimal function f that minimises the loss : £(f(X),Y). If the joint distribution of
(X,Y) is known, we seek optimal f by minimising:

E[£(f(X), Y)] (27)

Nevertheless, the joint distribution of (X, Y) is usually unknown in practice, and we
need to generate samples x!,...,xN of the input x and y',...,p" of the ouput y, and
minimise the the empirical risk :

N
1 i i
ﬁ(f;:ﬁ;qf(x),y) (28)
The minimisation problem is :
min E[((9, Y)] (29)
e

The choice of the loss function ¢ is important in deep learning and we shall study
briefly the different loss functions presented in the figure bellow:

* Absolute loss: The unique solution of the minimisation problem is the median
of Y. Thus training with absolute loss targets the median.

» Squared loss: The unique solution of the minimisation problem is the mean of
Y. Thus training with squared loss targets the mean. The major shortcoming
of the square loss is that, because of the quadratic growth, a prediction p far
from the true value y is more penalized than the one close to the true value,
which amplifies the impact of outliers on the training.

* Huber loss: To mitigate the shortcoming of the squared loss, we can use
the Hubert loss which keeps the quadratic behaviour of § — £(7,v) in a -
neighbouthood (for small 6 > 0) of v, and applying a linear extrapolation else-
where.

38

6 ARTIFICIAL NEURAL NETWORK

6.5 Minibactch

(a) Absolute loss

(3,

T i

y

Cy,y=I1y-yl, 7, veR

(c) Huber loss

o],y

<

y=0 y y+0

(b) Squared loss
{9, y)

v

}!
9, =F-y? 9 VeR

(d) Binary cross-entropy
€5,y

j‘;
y=0 y=1

3 (7= 2, y-yl=8 £(3,y)=-ylogy—(1-ylog(l-),

y€(0,1), ye{0,1}

(p,y) =
5U7=yl=38), 1y=yl>&

Figure 12: Loss functions examples

* Binary cross-entropy: It is the loss function used for binary classification

When the output is multidimensional, we can define the loss function as a weighted
sum of one-dimensional losses.

6.5 Minibactch

We introduce the new notion minibach in Deep learning, which is a primordial con-
cept in loss minimisation.

Let fg € N, (1,dy,...,d,_1,0,01,...,0,) be the function approximated by a Neural
Network with parameters 6 = (Wl,. L WRB b"). Instead of considering the em-

39

6.6 Epoch 6 ARTIFICIAL NEURAL NETWORK

pirical risk,
1 N
L) =5 ;f(f(x’),y')
we introduce the minibatch risk :

Ly(0)= %Zf(fg(xf)’y:’) (30)

i€l

where the error is the average over different subsets, minibatches: B € {1,...,N} of
samples. The size of a minibatch is called the batch size.

6.6 Epoch

This another important concept in deep learning. In order to train a neural network,
the same dataset goes through the network multiple times. We call an epoch the
passage of the whole data set through the Neural Network. Multiple epochs are
needed to train a network, each epoch is divided into smaller subsets (minibatches).
We must choose the number of epochs meticulously. Indeed, a small number of
epochs will produce under-fitting, a large number of epochs will produce over-fitting.
There is no rules to help us choose the right number of epochs or minibatches,
it depends on the dataset. We will dive in the tuning of these parameters in the
following chapter.

6.7 Stochastic Gradient Descent (SGD)

Neural Networks are trained by minimising empirical risk using a common method
called stochastic gradient descent (SGD).

6.7.1 Gradient Descent

"Gradient descent is a first-order iterative optimization algorithm for finding a local
minimum of a differentiable function. The idea is to take repeated steps in the oppo-
site direction of the gradient (or approximate gradient) of the function at the current
point, because this is the direction of steepest descent™. The speed it converges to
the minima is determined by the learning rate # in the context of deep learning.

Lets consider problem of minimising a generic differentiable objective function F :
R? — R. The usual approach would be to solve VF(x) = 0 for x € R4, where VF is
the gradient of F. However, VF may be hard to compute or VF(x) = 0 hard to solve
in practice. In this case, we consider the differential equation

dx(t)
dt

= —VF(x(t)), t>0 (31)

4Source : https://en.wikipedia.org/wiki/Gradient_descent

40

6 ARTIFICIAL NEURAL NETWORK 6.8 Backpropagation

with initial condition x(0) € R%. This equation, if solvable, defines the so-called gra-
dient flow (x(t));>¢ of F (see Gradient Flows: an overview, Santambrogio, 2016)[30].
Under certain assumptions on F, which guarantee the existence of a unique min-
imiser and are stronger than mere convexity, it can be shown that x(¢) tends to the
minimiser as — oo [30]. However, we need to discretise the previous equation by
doing the following approximation:

x(t+n)—x(t)

i ~ =VF(x(t))

with 1 the learning rate. The equation can be rewritten as :
x(t+n)=x(t)-nVF(x(t))

This Euler approximation motivates the gradient descent process, which is charac-
terised by the following iterative algorithm that progressively look for a minimiser
with gradient updates :

Xpew = Xold — FJVP(xGM)f

given some initial condition x.

6.7.2 Stochastic Gradient Descent

Let fy be the function approximated by a Neural Network with parameters 8 =
(Wl,...,W';bl,...,b"). In practice, computing the gradient of the empirical risk
L(fg) may be computationally costly with large N (sample size). More, gradient
descent applied to £(fy) can also cause overfitting and lead to an overfitted network
fo. Hence, we apply stochastic gradient descent (SGD) to train neural networks.

In SGD, we first randomly split the training data into minibatches. The parameters
of the Neural Network are updated after each minibatch, and the outputs are inputs
to the following minibatch. This procedure is repeated on multiple epochs, with new
minibatches, while initialising & with the last value of the previous epoch.

6.8 Backpropagation

In the Stochastic gradient descent process, we need to be able to compute the gra-
dient Vg Lg5(0) of minibatch empirical risk £5(0). The idea is to use finite-difference
approximation to approximate the derivative :

F(x+1A)-F(x-1A)
- A

F'(x)

for small A > 0. We can use other alternative methods such as symbolic differentia-
tion or algorithmic differentiation, when F is highly non-linear since finite-difference
approximation gives bad results in this case.

41

6.8 Backpropagation 6 ARTIFICIAL NEURAL NETWORK

Backpropogation is a special case of algorithmic differentiation, which consists on
the the computation of the gradient of empirical risk for a Neural Network. We
study briefly the main ideas behind backpropagation.

We suppose that we are training a neural network f, € N, (I, dy,...,d,_;,0,04,....0,)
by SGD, , where we assume, for simplicity, that o; is the component-wise application
of a one-dimensional activation function g; : RY >R, for anyi=1,...,r.

We seek to minimise:
Voln(0)= 2 Y VE(fo(x).¥)
ichB

Therefore, we will only need to know how to compute :
Vi(fe(x').¥')
Following the notations in Deep Learning Lecture Notes, we introduce the recursive
notations. For x € R!
z'= (z{,...,z;f) = f(af’])= Wwig! +bf, i=1,...,r

a = (d,....a})= g, ('), i=1,...,r
a“::xe]RI,

hence: f 4(x) = a” and E(fe(x};y) ={(a",y). We define the adjoint by: &' :(6{,...,5;) €

R%
g dC
o=

1 9zt
]

j:l,...,d,‘, f:l,...,?‘

We recall the chain rule, which is the key idea in Backpropagation. For differentiable
G:R! > Rand F = (Fy,...,F;): RY - R? , define H(x) = G(y) withy = (3y,...,p4) =
F(x), thatis, H = Go F: R? — R9. Then

JH JdG IJF;
axj(x}=;a—%(m%(x), x= (X100 07)
=

Using the chain rule, we find the following results :
Proposition

5 =g(zNoVy@,y)
6:' :g;(zf)e(wiﬂ)é:}l’
P

r?b:;
dt
aw_;lk

_ &1 . _
-0}-, i=1,...,r—1

=0, i=1,...,rj=1,.,4d

where @ stands for the component-wise Hadamard product of vectors.

42

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL
TO CALCULATE THE CVA

7 Creating Deep Learning-Artificial Neural Networks(ANN)
model to calculate the CVA

In this chapter, we will build a feed-forward neural network to predict the WWR CVA
value of a call option, and will choose its architecture step by step.
The inputs (features) of the neural network are :

* ¢ : the volatilty of the stock price process S
* « : the speed of mean reversion of the stochastic intensity process y
* v : the volatility of the stochastic intensity process y

* p : the correlation between the stock price process and stochastic intensity
process

The output of the neural network is the CVA.

First, we center and scale the features of the data set generated previously (200.000
samples). We will train the neural network using 70% of the data and will test it on
the remaining data.

7.1 Architecture choice

There is no analytical formula or empirical rule to calculate the appropriate num-
ber of hidden layers and units to build the neural network. Tuning the parameters
of the model requires brute-force search. This tuning is sometimes called "black art”.

Choosing the number of units for the input layer and output is obvious : The input
layer has 4 units and the output layer has one unit. After testing several architec-
tures we choose to keep 2 hidden layers with 8 units each.

Layer (type) Output Shape Param #
dense_1 (Dense) (None, 8) 72
dense_2 (Dense) (None, 1) 9

Total params: 121
Trainable params: 121
Non-trainable params: ©

Figure 13: Total number of parameters of the NN

43

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL
7.2 Activation function TO CALCULATE THE CVA

input: | [(None, 4)]
output: | [(None, 4)]

dense_input: InputLayer

:

input: | (None, 4)

dense: Dense

output: | (None, 8)

l

input: | (None, 8)

dense 1: Dense
output: | (None, 8)

l

input: | (None, 8)

dense_2: Dense

output: | (None, 1)

Figure 14: NN Architecture

7.2 Activation function

In hidden layers, the activation function ReLU has become the default activation
function for many types of neural networks. This activation function was first in-
troduced by Hahnloser et al. in 2000 with biological motivations and mathematical
justifications, and popularised by Glorot et al. (2011)[12].

ReLU(x) = { g gl:ez 0
1if 0 (32)
, Irx =
ReLU’(x) = { 0 el‘je

The activation function ReLU is popular for many reasons. ReLU and its derivative
are mathematically very simple, making them numerically efficient. More, ReLU
speeds up the convergence, it is proven that convergence happens six times faster
using a ReLU activation function as compared to using a sigmoid or a Tanh activation
function.

However, ReLU has a serious limitation. The gradient is either 0 or 1, which can
cause the dying RelLU problem studied in ReLU and Initialization: Theory and Nu-
merical Examples (2019) [22]. The dying ReLU refers to the problem when ReLU
neurons become inactive and only output O for any input, which may freeze gradi-
ent based learning algorithms. Indeed, during training, if the output of a certain
ReLU neuron is 0 after an improper update of the parameters, then the gradient of
the neuron’s own parameters will always be 0, and it will never be activated in the

44

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL
TO CALCULATE THE CVA 7.2 Activation function

RelU and RELU denvative

301

25 1

20 1

15 A1

101

05 4

—— RelU
0.0 4 RelU derivative

T T T T T T

-3 -2 -1 0 1 2 3

Figure 15: Relu activation function

subsequent training process. The neuron can't improve and is considered as ’dead’.
If too many neurons are dead, the learning process will be very slow.

To alleviate the dying ReLU, Maas et al. (2013)[23] and He et al. (2015) [15]
proposed the leaky ReLU (LReLU) and parametric ReLU (PReLU), respectively. Both
of them have a slight slope in the negative range to prevent the dying ReLU issue,
letting them thereby “leak” through the function.

» Leaky ReLU (LReLU): makes the negative part really small but non zero by
multiplying by a close to zero constant

xifx>0

ax else (33)

LeakyRelu (x) = {

* Parametric ReLU (PReLU) is a type of leaky ReLU that, instead of having a
predetermined slope «, makes it a parameter for the neural network to figure
out itself: y = ax when x <0.

45

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL
7.2 Activation function TO CALCULATE THE CVA

08

— LRelU

06

0.4

0.2

0.0 1

-20 -15 -10 -05 00 05
Figure 16: LReLU activation function a = 0.01

However these two subtitute activation functions can lead to some issues. Clevert et
al in "Fast and accurate deep network learning by exponential linear units”, (2015)
[8] explains that even though these previous activation functions solve the dying
RelU problem, they have no "noise-robust deactivation state”. Therefore, Clevert et
al proposed a new substitute of ReLU, the exponential linear unit (ELU) :

xifx>0

a(e*—1) else (34)

Elu{x):{

10

v /

n 08

10 /
06

04

— eu 02 — elu derivative

o N & o @

00

—iﬂ —r5 6 _é. lEJ 1‘5 -10 =5 o 5 10 15

Figure 17: Elu activation function a = 1

This new activation function has several advantages :
* deletes the dying ReL.U problem
* has a quicker learning process

* it saturates to —«, making it robust to noise

46

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL
TO CALCULATE THE CVA 7.3 Loss function

Hence, We choose to use Elu as the activation function for the two hidden layers of
the neural network. We reached the following architecture for our neural network :

CVA € #;(4,8,8,1;Elu, Elu, Id)

7.3 Loss function

Because we are dealing with a regression problem, Mean Absolute Loss Function or
Mean Square Loss function are adequate loss functions to train the ANN. We choose
to work with the Mean Square Loss function though the two loss functions didn't
change our parameters and hyper-parameters calibration results.

Loss
0.06

— loss
0.05 1 val_loss

0.04 1

0.03 1

Error [CVA)

0.02 1

0.01 -

[

T T

0 2 4 6 8
Epoch

0.00

Figure 18: Training loss VS validation loss

7.4 Hyper-parameter tuning of ANN

Finding the best values for batch size and epoch is very important as it directly affects
the model performance. Bad values can lead to overfitting or underfitting. Again,
there is no thumb rule which can help decide the value of the hyper-parameters of
neurons. We will try different parameters and choose the combination which pro-
duces the lowest error. To do so, we use the manual grid search method. This is a
simple for loop based approach that calculates the training error for all the combi-
nation of the batch size and epoch. The table bellow displays the hyper-parameter
trial results for the ANN. We choose to take a batch size of 50 and 10 epochs.

47

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL

7.5 Optimisation Algorithm TO CALCULATE THE CVA
Epochs | Batch size Loss
5 5 0.00045
5 10 0.00029
5 20 0.00006
5 50 0.00018
5 100 0.00004
10 5 0.00037
10 10 0.00029
10 20 0.00006
10 50 0.00003
10 100 0.00005
15 5 0.00035
15 10 0.00017
15 20 0.00006
15 50 0.00006
15 100 0.00005
20 5 0.00056
20 10 0.00005
20 20 0.00004
20 50 0.00004
20 100 0.00006

Table 7: hyper-parameter trial results

7.5 Optimisation Algorithm

Before we can train the neural network, we need to specify our optimisation algo-
rithm. We choose to use the Adam optimizer which stands for ADAptive Moment
estimation.

Adam was introduced by Diederik Kingma from OpenAl and Jimmy Ba from the Uni-
versity of Toronto in their 2015 ICLR paper titled “Adam: A Method for Stochastic
Optimization“[19]. It is an optimization algorithm that can be used instead of the
classical stochastic gradient descent procedure to update network weights iterative
based in training data.

Adam combines the advantages of two other extensions of stochastic gradient de-
scent :

* Adaptive Gradient Algorithm (AdaGrad) that "maintains a per-parameter

learning rate that improves performance on problems with sparse gradients™.

* Root Mean Square Propagation (RMSProp) © that also "maintains per-parameter
learning rates that are adapted based on the average of recent magnitudes of

>Source : https://machinelearningmastery.com/adam-optimization-algorithn-for-deep-learning/
bhttps://keras.io/api/optimizers/rmsprop

48

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL
TO CALCULATE THE CVA 7.6 Learning rate

the gradients for the weight (e.g. how quickly it is changing). This means the

algorithm does well on online and non-stationary problems (e.g. noisy)”>.

Adam optimiser has several attractive advantages. We chose to work with it because
it requires little memory, is straightforward to implement and is computationally
efficient for small change in hyper-parameters.

7.6 Learning rate

During the training process, we should give an important attention to the learning
rate 5 because it determines the speed of convergence. A low learning rate will
calibrate precisely but the training will progress very slowly. A high learning rate
calibrates quickly but risk to cause drastic updates that lead to divergent behaviours.
To solve this issue and find a compromise, the idea is to have a dynamic learning
rate’, starting from a high and decreasing it progressively.

7.7 Dropout layer

To avoid overfitting, we can apply a regularisation method. One widely used reg-
ularisation method is "dropout”, introduced by Srivastava at al. (2014) [32]. The
idea behind dropout is to add a dropout layer after a hidden layer, where each input
gets randomly replaced during the training process of the neural network by zero
value with fixed probability p € [0,1].

In the neural network we built, we introduce a dropout layer with p = 0.2 after each
hidden layer, and we train the new neural network other settings unchanged. We
notice that the validation loss ends up being close to training loss, which is a sign
that the overfitting problem has been mitigated.

| | Training Loss | Validation Loss |

without dropout layers 0.00001 0.000033
with dropout layers 0.00002 0.000031

Table 8: Training and validation Loss

7.8 Neural Network implementation using Keras

We will now dive into to the process of implementing a neural network on Python.
TensorFlow is arguably the most popular deep learning software library at the mo-
ment (alongside PyTorch). The library was developed by Google Brain for internal
use at Google initially, then was released to the public as open source in 2015.

Keras, developed by Google engineer Francois Chollet [7], is a high-level deep learn-
ing library that makes the implementation and training of neural networks easy and

"https://keras.io/api/callbacks/reduce_lr_on_plateau/

49

7 CREATING DEEP LEARNING-ARTIFICIAL NEURAL NETWORKS(ANN) MODEL
7.8 Neural Network implementation using Keras TO CALCULATE THE CVA

fast. It is part of the TensorFlow core library. A detailed introduction to Keras is given
in Chollet (2018) [7]. We will use this library to implement our neural network

Similarly to the numerical simulation of the CVA, we need to fix the randomness of
the neural network in order to get the same results at each training. To do that, we
fix the seed in keras® in order to have the same result every time.

8https://www.tensorflow.org/api_docs/python/tf/random/set_seed

50

8 RESULTS

8 Results

We use the neural network built in the previous chapter to compute CVA for different
parameters. The figures bellow gives the CVA results with Deep Learning.

he=-05.k=04

mo=03 k=04

tho=08, k=04

0z 04 0 ae 1a 0z 04 o5 a8 10 02 [T} Y3
spma wgrma sgma
rho=-09, k=04 tho=05.k=08
10 12
10
08
08
06 =
g E
06
04
0
02
02
02 04 06 o8 10 0z o4 06 08 10
sgma sgma
rho =03, k=01 tho=-0.8, k=06
10
08
06
-
o]
04
02
02 04 06 08 10 02 04 06 08 10
sSgma sgma
tho=02,k=06
tho =09, k=06
14
10
12
08 10
k-4
< 06 < 08
c
06
04
04
02 0z
02 04 06 08 10
sigma 02 04 06 08 10

Figure 19: CVA(sigma)

51

8 RESULTS

sigma = 0.3, rho = -0.5 . nu = 0.04

ssgma = 0.2, tho = -05, nu =008

sigma =08, o = -0.5, nu = 0,02

nz332s e
- 021300
asse
02378
03810 - asss
<
5 & a
023200 0953
e (RN ausz
23795 a1se 981
0z o4 13 1] 10 oz o4 [13 (1] 10 02 o4 aE o8 10
« k «
sigma = 0.2, the = 0.3 , nu = 0.08 - = =
sigma = 0.3, rho = 0.3, nu = 0.04 - sgma=08.tho =03, =002
0280
ases
o4 | o2 09630
nseas
bl ozm8
E § £ avean
oot | ozr? 09618
09610
il | 0276 09605
09600
s - o P . o 02 [[[10 0z 03 [1] 10
" K [
Figure 20: CVA(x)
a=02. k=032 sigma = 0.2 .k = 05 sigma = 0.2, k= 0.8
an 031 LEN
- 030 030
039 023 [
028 028 oz
oz §ow §or
036 026 025
. — =002 028 — me=0m a8 — =002
=004 N =004 ny =004
024 — =006 024 ny =006 024 = nu =006
— - — nus008 — nu =008
023 e [EH] %3}
100 =075 -050 =035 Q00 0I5 0S50 @15 100 =100 -0.7% -050 -025 000 025 @S0 Q75 100 =100 =075 =050 =025 000 025 050 075 100
ha ha he
sigma = 0.5, k = 0.2 sigma =05, k=05 sigma = 0.5, k= 0.8
ars ars
amn ore
faes % o
— =002 — = D0F
aen P e = 0.04
— m=006 — um006
055 — Ll 058 = =008
CHER COTS C0se 0m gpe pamopeno 07 aon 100 015 -050 -025 800 0% 0% 075 100 -100 -075 -050 -035 000 035 050 075 100
ha [
sigma = 0.8. k=02 sigma = 0.8.k=05 sigma=08.k=08
. 115 118
11 e e
105 105 105
Lo g\w PRt
o 95 S oss
. 0%
s o — nu-002 — m=00
ans 0ss = 0.04 oes - 004
— nu=00% — =006
am s — =008 e — =008

-100 -075 <050 -025 000 0I5 050 075 100
e

=100 <075 <050 <025 000 025 050 075 1M
the

Figure 21: CVA(rho)

100 -075 =050 =035 000 025 050 075 100
o

52

8 RESULTS

sigma =03, rha= 05, k=04 sigma = 0.2. rho = -0.5. k = 0.8 sigma =08, rho =05, k=02
295 o365 {
w0 o
o - i
90 1
380
= Y =
s] S oss |
ars 5 =8
o) ose
0365 “
™ o
360 ME o84
oz oo oo o8 1w 002 004 006 008 ol0 00z 004 006 008 P31
i L
sigma =03, rtha=08.k=04 ~ N
2 sgma =02, tho=03.k=08 sigma = 08, ho =03, k=02
046 102
= 10
044 108
d
043
ose
042
a9
o 0.96
02 oo 06 = 1] o 004 006 08 oW 02 a4 (19 (] [}
.L

Figure 22: CVA(v)

We notice that, with Deep Learning, CVA results are given instantaneously. The
neural network was able to map well the CVA values. We have similar shapes and
values as in the graphs given by simulation. However, we can see a slight difference
between the shape of the plots of CVA(x) for the simulation and for the neural
network. This is because x has a low impact on the CVA values when the maturity is
small. Finally, CVA values and errors given by the neural network are very stable on
the out-of sample data.

53

9 CONCLUSION

9 Conclusion

In this thesis, we investigated the computation of Credit Value Adjustment, when
taking into account the correlation between credit and market risk. This calculation
requires a model as counterparty risk adds a level of optionality to the payoff. To de-
rive a CVA formula, we used intensity models. We focused our study on computing
the CVA of at the money call options. In order to keep the computation tractable,
we considered a square root diffusion model driving the intensity of the investor
and counterparty. More, we modelled the underlying stock using the Black-Scholes
framework. Wrong Way Risk (WWR) is embedded in the correlation between the
stock price and default intensity.

Secondly, we simulated CVA values of call options using Monte Carle Simulation. We
chose to fix the following parameters : the time to maturity of the call option T (1
year), the initial underlying stock price Sy and strike price K (100), the initial value
of the intensity process y, (0.01), the mean reversion level of the intensity process
p (0.03), the implied hazard functions Mkt (0.03). In order to improve the Monte
Carlo Simulation, we used two common variance reduction methods : antithetic
variate method and control variate method. Finally, we simulated 200.000 samples
of CVA under intensity models for in the money call options using the control variate
method.

We then studied the impact of the four parameters we haven’t fixed, on the CVA
value: the correlation p, the volatility of the stock price process o, the volatility of
the intensity process v and the speed of mean reversion of the intensity process .
We noticed that the CVA is an increasing function of ¢ and p. More, we saw that the
parameters x and v fight each other. For negative correlations, the CVA is increasing
with x and decreasing with v . On the other hand, for positive correlations, the CVA
is increasing with v and decreasing with «.

Afterwards, we tried to apply Deep Learning techniques to compute CVA values
faster. To do so, we built a feed-forward neural network and trained it using the
200.000 samples generated via the Monte Carlo simulation. The trained neural net-
work tried to map the CVA value for different correlations, volatilities and speed of
mean reversion of the stochastic intensity process. The results showed that Deep
Learning was able to accelerate the computation of CVA. We conclude that it is plau-
sible to think that neural networks could be used in CVA computation to accelerate
the calculation of Wrong way risk, which if done with simulation would take a very
long time.

As an extension to this work, we could study the interpretability of the neural net-
work. A future goal of this thesis would also be to use longer maturities of the call
options and learn their impact on CVA. We could also use Deep Learning approach
to compute WWR CVA of other financial products (swaptions, caps ...)

54

A APPENDIX

A Appendix

Activation Definition Derivative Range Smoothness
— Identity (Id) glx)=x gx=1 R coe
Sigmoid 1 s
—_T x)= =g(x)(1— gl 0,1 c=
(Logistic, o) g(x) 5o g(x)=g(x)(1-gx) (0,1)
I . 0, x<0
— Heaviside (H) glx) = gx)=0,x#0 0,1} none
1, x=0
p
/ Hyperbolic -t / 2 0
— E 7 (x) = S (x)=1—g(x)? ~1,1 c®
. / tangent (tanh) 8 e +e ¥ g(x) 8% ()
4 Rectified ' ID, <0
linear unit £(x) = max{x,0} glx)= i [0,00) C
(ReLU) Lox=0
Parametric rec- ax, x<0 [
. . glx)= , a, x<0
= tified linear x, x=0 gx)= { R C
unit (PReLU) @>0 Lox=0
Ex ial t-1), x<0
] “ponentia glx) = ale’~1), x< , glx)+a, x<0 cla=1
—— — linear unit X, x=0 glx= (—a,00) Coatl
(ELU) 250 1, x>0 ’
S/
—— Softplus glx)=log(l+e%) glx)= TTaF (0,00) c=
A
AN Gaussian glxy=e* g'(x)=-2xg(x) ©,1] c>

Figure 23: Common one-dimensional activation functions and their properties. Adapted

from Wikipedia (2019).

Activation Definition Derivative Range Smoothness
R () (1=gi(x)), i=j
Softmax gilx)= =, i=1,....d %: o 8) f (0,14 [
“j=1 - —gilx)g;lx), 1#]
. I, x;>maxjs;x;
Maxout glx) =max{xy,..., x4l 95,‘;—?} = ! = R C
! 0, X;<maxjzx;

Figure 24: Common multi-dimensional activation functions and their properties.
Adapted from Wikipedia (2019).

55

REFERENCES REFERENCES

References

(1]

(2]

(3]

(4]

[5]

(6]

[7]
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Aurélien Alfonsi. “On the discretization schemes for the CIR (and Bessel squared)
processes”. In: (2005).

BIS Basel Committee on Banking Supervision. “Basel Committee finalises cap-
ital treatment for bilateral counterparty credit risk”. In: (2011).

Damiano Brigo. “Interest Rate Models with Credit Risk, Collateral,Funding
Liquidity Risk and Multiple Curves lecture notes”. In: (2020).

Damiano Brigo and Aurélien Alfonsi. “Credit default swap calibration and
derivatives pricing with the SSRD stochastic intensity model”. In: Finance and
stochastics 9.1 (2005), pp. 29-42.

Damiano Brigo, Agostino Capponi, and Andrea Pallavicini. “Arbitrage-free bi-
lateral counterparty risk valuation under collateralization and application to
credit default swaps”. In: Mathematical Finance: An International Journal of
Mathematics, Statistics and Financial Economics 24.1 (2014), pp. 125-146.

Damiano Brigo, Massimo Morini, and Andrea Pallavicini. Counterparty credit
risk, collateral and funding: with pricing cases for all asset classes. Vol. 478.
John Wiley & Sons, 2013.

Francois Chollet. Deep learning with Python. Simon and Schuster, 2017.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and ac-
curate deep network learning by exponential linear units (elus)”. In: arXiv
preprint arXiv:1511.07289 (2015).

Griselda Deelstra, Freddy Delbaen, et al. “Convergence of discretized stochas-
tic (interest rate) processes with stochastic drift term”. In: Applied stochastic
models and data analysis 14.1 (1998), pp. 77-84.

Awa Diop. “Sur la discrétisation et le comportement a petit bruit ’EDS uni-
dimensionnelles dont les coefficients sont a dérivées singuliéres”. PhD thesis.
Nice, 2003.

Samim Ghamami and Lisa R Goldberg. “Stochastic intensity models of wrong
way risk: wrong way CVA need not exceed independent CVA”. In: The Journal
of Derivatives 21.3 (2014), pp. 24-35.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep sparse rectifier neu-
ral networks”. In: Proceedings of the fourteenth international conference on arti-
ficial intelligence and statistics. JMLR Workshop and Conference Proceedings.
2011, pp. 315-323.

Jon Gregory. Counterparty credit risk and credit value adjustment: A continuing
challenge for global financial markets. John Wiley & Sons, 2012.

Jon Gregory. Counterparty credit risk and credit value adjustment: A continuing
challenge for global financial markets. John Wiley & Sons, 2012.

Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1026-1034.

56

REFERENCES REFERENCES

[16] Martin Hellander. Credit Value Adjustment: The Aspects of Pricing Counterparty
Credit Risk on Interest Rate Swaps. 2015.

[17] Catherine F Higham and Desmond J Higham. “Deep learning: An introduction
for applied mathematicians”. In: Siam review 61.4 (2019), pp. 860-891.

[18] Vandit Jain. “Everything you need to know about ‘“Activation Functions” in
Deep learning models”. In: (Dec. 2019). URL: https://towardsdatascience.
com/everything-you-need-to-know-about-activation-functions-in-
deep-learning-models-84ba9f82c253.

[19] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet classifica-
tion with deep convolutional neural networks”. In: Advances in neural infor-
mation processing systems 25 (2012), pp. 1097-1105.

[21] Moshe Leshno et al. “Multilayer feed forward networks with a nonpolynomial
activation function can approximate any function”. In: Neural networks 6.6
(1993), pp. 861-867.

[22] Lu Lu et al. “Dying relu and initialization: Theory and numerical examples”.
In: arXiv preprint arXiv:1903.06733 (2019).

[23] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. “Rectifier nonlinearities
improve neural network acoustic models”. In: Proc. icml. Vol. 30. 1. Citeseer.
2013, p. 3.

[24] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115-133.

[25] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to compu-
tational geometry. MIT press, 2017.

[26] Marianne Jocelyn Toscano Montoya. “Deep intensity-based CVA with Wrong
Way Risk”. In: (2021).
[27] Mikko Pakkanen. “Deep learning lecture notes”. In: (2020).

[28] Frank Rosenblatt. “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[29] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning rep-
resentations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533—
536.

[30] Filippo Santambrogio. “{Euclidean, metric, and Wasserstein} gradient flows:
an overview”. In: Bulletin of Mathematical Sciences 7.1 (2017), pp. 87-154.

[31] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search”. In: nature 529.7587 (2016), pp. 484-489.

[32] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929-1958.

57

REFERENCES REFERENCES

[33] Hugues Thorin. “Artificial Neural Networks for SABR model calibration hedg-
ing”. In: (2019).

58

EL_MOUDEN_Wiam_01948802

GRADEMARK REPORT

FINAL GRADE GENERAL COMMENTS

/O Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

PAGE 17

PAGE 18

PAGE 19

PAGE 20

PAGE 21

PAGE 22

PAGE 23

PAGE 24

PAGE 25

PAGE 26

PAGE 27

PAGE 28

PAGE 29

PAGE 30

PAGE 31

PAGE 32

PAGE 33

PAGE 34

PAGE 35

PAGE 36

PAGE 37

PAGE 38

PAGE 39

PAGE 40

PAGE 41

PAGE 42

PAGE 43

PAGE 44

PAGE 45

PAGE 46

PAGE 47

PAGE 48

PAGE 49

PAGE 50

PAGE 51

PAGE 52

PAGE 53

PAGE 54

PAGE 55

PAGE 56

PAGE 57

PAGE 58

