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Abstract

According to the margin requirements of BCBS (Basel Committee on Banking Supervision) and
I0SCO (International Organization of Securities Clommissions), the initial margin is the 99%
quantile of the net change in portfolio value over a time interval of (f,¢ + 5]_. taking into account
all market information up to time ¢. Calculating the future initial margin based on this definition
is a difficult problem to solve from a computing aspect because it needs the nse of a nested Monte
Carlo simulation. This paper focuses on the use of the polynomial regression, the kernel regression,
and the Dynamically Controlled Kernel Estimation methods to predict future initial margins. It
is also important to find a more accurate and effective method among these methods.




Contents

1 Benchmark and Brute-force Methods

1.1 Background . . . . .. e
1.1.1  Geometric Brownian Motion . . . . . . . .. . ...
1.1.2  The Black-Scholes Model . . . . .. ... ... ... .. . L

1.2 Parametric and Non-parametric Approaches . . . . . . .. .. ...
1.2.1  Parametric Approach . . . . .. ... L
1.2.2  Non-parametric Approach . . . . . . ... .. oL

1.3 Benchmark . . . . .. .. e

1.4 Nested Monte Carlo Method . . . . .. ... .. .. ... ... . ... ......

2 Polynomial Regression Method

2.1 Methodology . . . . . . . e e e
2.1.1 Regression Analysis . . . . ... .. L
2.1.2 Polynomial Regression . . . . . . .. . ... L

2.2 Implementation . . . . . . . ... e
221 Parametric Approach . . . ... .. L
2.2.2  Non-parametric Approach . . . . .. . ... L 0 L
2,23 CompariSon . . . . . .. e

3 Kernel Regression Method

3.1 Methodology . . . . . . e e e
3.1.1 Kernel Regression Estimation . . . . ... ... ... ... ... ... ...
3.1.2 Nadaraya—Watson Estimator . . . . . . ... ... .. ... ... ......
3.1.3 Local Linear Estimator . . . .. .. . .. ..

3.2 Implementation . . . . . . . ... e
3.2.1 Nadaraya-Watson Kernel Regression . . . . . ... .. ... ... .. ....
3.2.2 Local Linear Kernel Regression . . . . . . .. ... ... ... .. ......
3.23 Comparison . . . . . .. e e

4 Dynamically Controlled Kernel Estimation Method

4.1 Methodology . . . . . .
4.1.1 Gaussian Process Regression . . . . . .. ... .. .. ...
4.1.2 Control Variate . . . . . . . . .. . e
413 DCKE . . ..

4.2 Implementation . . . . .. L e
4.2.1  Parametric Approach . . . .. ..o
4.2.2  Non-parametric Approach . . . . ... ... L Lo
4.23 CompariSon . . . . . . . . e e e

5 Comparison

5.1 Preparation . . . . . . ... e

5.2 OVEIVIEW . . . L .

5.3 Discussion . . ..o oL

E=Ri=T (=]

o

10
10
10
12

15
15
15
15
15
16
19
19

]
W W W W

oo

BN NN DRI
=1 o J <

w oW W
J b b =1

(-]
[T I S

o
—

35
30
36




A Figures

51

A1l Chapter 5 Figures . . . . . o o 0 0 e e e e e 51
A.1.1 When The Initial Stock Price Changes . . . . . . . .. . .. ... ...... 51

A.1.2 When The Strike Price Changes . . . . . . . . .. .. . ... ... ..... 51
Bibliography 70




List of Figures

1.1
1.2
1.3

1.4

2.1
2.2

2.3

2.4

3.1
3.2
3.3
4.1
4.2
4.3
4.4

5.1

Al

A2

A3

A4

A5

Viw, t) vs. I M(w,t) using the benchmark method . . . . .. ... ... ... ... 11
A example of the nested Monte Carlo simulation . . . . . ... .. ... . ..... 12
IM(w,t) under the benchmark method and the nested Monte Carlo method over
different V/(w,t) when setting N = 1000 and M = 10,100, 1000, 10000. . . . .. .. 14
The mean squared error between the benchmark value and the predicted initial

margin at time ¢ using the nested Monte Carlo method over different V(w,t) when

setting N = 1000 and M = 10,100,1000,10000. . . . . .. .. ... ... ... .. 14
A simplification version when A(w,t;d) is assumed to follow a distribution . . . . . 16
Polynomial regression methods with degree = 1,2,...,20: X; = V(w,f) and Y; =
(Ve+8) = V() 18
Polynomial regression method with degree = 1,2,...,20: X; = V(w,t) and Y; =
IM(WE) o oo oo e 20
Polynomial regression method with degree = 1,2,...,20: Y, = (V(w,t +§) —

Viws )2 and Ve = IM(W,) « o oo 22
Kernel regression method with Nadaraya-Watson estimator: Y; = (V{w,t + §) —
V(w,t))? (top) and ¥; = IM(w,t) (bottom) . . . ... .. ... ... .. ...... 28
Kernel regression method with local linear estimator: Y; = (V(w,t +4) — V(w,1))?

(top) and Y; = IM(w,t) (bottom) . . . . . ... ... ... 29
Kernel regression method with ¥; = (V (w, t+4+6)—V(w,t))? and Y; = I M (w, t):Nadaraya-
Watson estimator (top) and local linear estimator (bottom) . . . . .. ... .. .. 30

DCKE with Nadaraya-Watson and local linear estimator: ¥, = (V(w,t+4)—V(w,1))? 35
DCKE with Nadaraya-Watson and local linear estimator: Yy = (V(w,t+8) —V{(w.))? 36
DCKE with Nadaraya-Watson and local linear estimator: Y; = (V(w,t+4) —V(w,t))? 37
DCKE with Nadaraya-Watson and local linear estimator for different ¥; . . . . . . 37

Viw, t) versus, IM(w,t): set Y; = (V(E+8) =V ())? (left) and Y; = IM (w, ) (right)
under different methods with K" = 100, Sy = 100, £ = 0.2, and ¢ = {0.01,0.02,0.027} 42
Vi(w, t) versus, IM(w,t): set Y; = (V(t+8) =V (¢))? (left) and Y; = I M (w, t) (right)
under different methods with K = 100, Sy = 100, £ = 0.5, and ¢ = {0.01,0.02,0.027} 43
Vi(w, t) versus, IM(w,t): set Y; = (V(t+8) =V (¢))? (left) and Y; = I M (w, t) (right)
under different methods with K = 100, Sy = 100, £ = 0.8, and ¢ = {0.01,0.02,0.027} 44
Vw, t) versus. TM(w,t): set Y; = (V(t+8) =V (£))? (left) and Y = IM (w, t) (right)
under different methods with K = 100, Sy = 100, £ = 0.9, and ¢ = {0.01,0.02,0.027} 45

V(w,t) versus. IM(w,t): set Y; = (V(t + 6) — V(¢))? under different methods with

K =100,8) =50, t = {0.2,0.5,0.8,0.9}, and 6 = {0.01,0.02,0.027} .. ... .. .. 52
Viw, t) versus. IM{w,t): set Y; = IM (w, 1) under different methods with & = 100,
Sy =50, t={0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . ... ... ... ... 53
V(w,t) versus. IM (w,t): set ¥; = (V(t +8) — V(¢))? under different methods with
K =100, Sy =80, = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . . .. .. .. 54
Viw, t) versus. TM(w,t): set Y; = IM (w,t) under different methods with & = 100,
Sy =80, %= 1{0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . ... ... ... ... 55
V(w,t) versus. M (w,t): set Y; = (V(t + &) — V(#))? under different methods with
K =100, Sy =120, t = {0.2,0.5,0.8,0.9}, and ¢ = {0.01,0.02,0.027} . . .. .. .. 56




A6 V(w,t) versus. IM(w,t): set ¥Y; = IM (w,t) under different methods with K = 100,
Sy =120, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . . .. ... ... ...
AT Viw,t) versus. IM (w,1): set Yy = (V(t+8) — V(¢))? under different methods with
K =100, 8y =150, t = {0.2,0.5,0.8,0.9}, and ¢ = {0.01,0.02,0.027} . . .. .. ..
AR V(w,t)versus. IM(w,t): set Y; = IM (w,t) under different methods with K = 100,
Sy =150, t = {0.2,0.5,0.8,0.9}, and & = {0.01,0.02,0.027} . . . . . ... .. ....
A9 V(w,f) versns. TM (w,1): set Y, = (V(t +4) — V(#))? under different methods with
So =100, K = 50, t = {0.2,0.5,0.8,0.9}, and & = {0.01,0.02,0.027} . . . .. .. ..
A0 V(w, t) versus., IM (w,t): set Y; = IM (w,t) under different methods with Sy = 100,
K =50, t={0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} .. . .. ... ......
A1l V(w, ) versus., TM (w.1): set Yy = (Vi +48) — V(1))? under different methods with
Sy =100, K =80, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . . .. .. ..
A2 V(w, t) versus., IM (w,t): set Y; = IM (w,t) under different methods with So = 100,
K =80, t ={0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . ... ... ......
A3 Viw, t) versus. IM (w,1): set Yi = (V (i +8) — V(¢))? under different methods with
Sy =100, K = 100, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . . . .. ..
A 14 Viw, t) versus. IM (w,t): set Y; = IM (w,t) under different methods with S, = 100,
K =100, t ={0.2,0.5,0.8,0.9}, and 6 = {0.01,0.02,0.027} . . . ... .. .. .
A15 V(w, ) versus., TM (w.t): set ¥V, = (V(t+8) — V(#))? under different methods with
Sp =100, K =120, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . .. .. .
A6 V(w,t) versus, TM (w,t): set Y; = IM(w,t) under different methods with Sy = 100,
K =120, t = {0.2,0.5,0.8,0.9}, and 6 = {0.01,0.02,0.027} . . .. .. . ... .
A7 V(w, t) versus. TM (w,t): set ¥V, = (V(t +48) — V(#))? under different methods with
Sy =100, K =150, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . .. .. .
A8 V(w, t) versus, TM (w,t): set Yy = IM(w,t) under different methods with Sy = 100,
K =150,t={0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027} . . . .. ... ... ...




List of Tables

1.1

b2
—

ko
[Sv]

[
)

3.1

4.1

5.1
5.2
5.3
h.4

The initial margin at time ¢ under the benchmark method and the brute-force
method at time . . . . . . ...

The mean squared errors between the benchmark method and the polynomial re-
gression methods with degree =1,2,...,20 . . . . . . ... L.
The mean squared errors between the benchmark method and the polynomial re-
gression methods with degree =1,2,...,20 . . . .. ... ... .. .. S
The comparison of the initial margins between ¥; = (V(t + d) — l”(f)}z and Y, =
I M (w,t) under the polynomial regression methods with degree=1,2,...,10 . . . .
The comparison of the initial margins between V; = (V{w,t +4) — V(w,))? and
G = IT'M{w,t) under the Nadaraya-Watson estimator and the local linear estimator
The comparison of the initial margins between V; = (V{w,t +4) — V(w,))? and
= ITM{w,t) under DCKE with Nadaraya-Watson and local linear estimator . . .

Parameters . . . . . . L. L e e e
All methods with S5 =100, =05, =001 . . . . . . .. .. . ... ... .....
All methods with Sy =100,t =05, =002 . . . .. . .. ... ... .. ... .

All methods with S5 =100, =05, =0.027 . . . . . . . .. . .. . ..

13

17

19

31

38

40
46
47
48




Introduction

When a bank trades with a counterparty, the counterparty has a certain degree of probability of
defanlt at some uncertain point in the future. The risk assumed by the bank in this investment
refers to the exposure, which represents the amount of money the bank may lose. To reduce the
risk, counterparties provide collateral, which includes variation margin and initial margin. The
variation margin is a type of margin payment that varies based on a number of factors. Unlike
the variation margin, which is focused on reducing current risk, the initial margin is concerned
with future close-out risk. The initial margin is calculated as the worst-case risk between the
counterparty default date and settlement. In addition, both variation margin and initial margin
need to be recalculated on a daily or periodic basis.

From the basis financial definition of the initial margin, the initial margin is the expectation of
the initial margin at time ¢ on all random path w, conditional on all market information at time
t. According to the margin requirements of BCBS (Basel Committee on Banking Supervision)
and I0OSCO (International Organization of Securities Commissions), the initial margin is the 99%
quantile of the net change in portfolio value over a time interval of (¢, ¢+ 4], taking into account all
market information up to t. This period 4 is the period between the counterparty’s default date
and close-out, so it is called the close-out period. Usually ¢ is set to a period of 10 days. Define
V(w,t) to represent the value of the portfolio in case {, and the formula for the initial margin in
case f for w is

P(L”(u,f— §) — V(w, ) < IM(w,1) | ft) = 99%
=IM (w,t) = Qoo (L’(w. t+68) = Viwt) | 3'_1)

where (), (-) is a ¢% quantile function. Define A(w,#:d) = V(w,t +4d) — V(w, ) is the changes in
the netting set’s value on the scenario w, and then the formula of the initial margin at time ¢ on
scenario w is

TM(w,t) = Qgoy (V(‘*“sf— d) — Viw,t) |~'rt) = Qs}n‘}i.(-’—\(w‘sflﬂ |~F:) (0.0.1)

From the equation (0.0.1), there are two approaches to calculate the initial margin at time t.
Since the only unknown in the equation is the portfolio price at time ¢t + 4, the simplest method is
to generate a list of portfolio prices at time t +4 and then apply the quantile function to the change
of the portfolio prices to determine the value. The other approach is to assign a distribution to
the difference between the portfolio prices at times t and t + 4. The initial margin at time ¢ can
be calculated based on the characteristic of the specified distribution. In addition, we can choose
to use the historical data for the portfolio price at time ¢ and its corresponding initial margin to
estimate the initial margin at time ¢ for an unseen portfolio price.

This paper shows how to use different methods to calculate the initial margin at time ¢ and
investigate the strengths and limitations of these methods from the comparison. The purpose is
to find a method with a highly accurate rate and great efficiency among all these methods.

In the whole thesis, we assime that the portfolio price follows the Black-Scholes model, and
then the asset price follows a geometric Brownian motion (GBM). Due to the Black-Scholes model
and the geometric Brownian motion, the initial margin at time ¢ has a closed-form solution. This
solution is called the benchmark, and we use this value to verify the results from other methods.
It is the way to examine the accuracy of the methods. Chapter 1 focuses on the nested Monte
Carlo method, also known as the brute-force method. In chapters 2,3 and 4, we explore how to use
the polynomial regression, the kernel regression and the Dynamically Controlled Kernel Estimation




with parametric and non-parametric approaches to predict the initial margin at time t respectively.
The last chapter contains an overall comparison of all methods that are mentioned in the previous
chapters for calculating the initial margin at time f of a European Call option.




Chapter 1

Benchmark and Brute-force
Methods

Inn this chapter, we use the nested Monte Carlo method to calculate the initial margin on a European
Call option under the Black-Scholes model with the stock price follows a geometric Brownian
motion. Also, under this background, there is a closed-form solution for the initial margin at time
t.

1.1 Background

Before presenting the benchmark and nested Monte Carlo methods, it is necessary to describe
the methodology used to generate the portfolio prices. Consider that portfolio prices follow the
Black-Scholes model, while stock prices follow the geometric Brownian motion. In this section, we
explain in detail the geometric Brownian motion and the Black-Scholes model.

1.1.1 Geometric Brownian Motion

The geometric Brownian motion is the solution of a stochastic differential equation (SDE) with
linear drift and diffusion coefficients, and the formula is

dS; = pSydt + o5, dW;
where W; is a Wiener process or Browian motion, and drift p and the volatility o are constant.
The solution of the geometric Brownian motion using 1t6's interpretation is

2

a
S, = Sy, exp (p. — T)“2 — 1)+ ovita — t1f (1.1.1)

where # is random drawn from a standard Normal distribution.

1.1.2 The Black-Scholes Model

The Black-Scholes model is a mathematical method to calculate the option price. Consider the
stock price S(t) follows a geometric Brownian motion, r is the risk-free insterest rate, o is the
volatility, 7" is the time of maturity, K is the strike. As Black and Scholes [1] proved, the European
option prices at time ¢ € [0,T] under the Black-Scholes model are

CBS(S,, tir,0,T, K) = e 7(T—0) {ngb(dl) - A’rf""""“"@(dz)] (1.1.2)

PBS(S, t:r,0,T,K) = ¢ (T~1) {Kr—'""'T“th(dg) - st@(dl)] (1.1.3)
where
 log(Si/K) + (r+ 02/2)(T —t)
1T (T — 1)

dy =dy —ovT —t




1.2 Parametric and Non-parametric Approaches

There are two approaches to calculate the initial margin at time ¢.

1.2.1 Parametric Approach

According to Cipolina et al. [2], assume that the change on the portfolio price at times ¢t and t + &
follows a local Normal distribution with mean gy and variance ov, which is shown as

VIt +8) = VI(t) | Fy ~ N(py,ov)
Recall that the formula of initial margin
IM(w,t) = Quoy, (L',(wrf_ 0) = V(w.1) | fz)

, where A{w, ;) = V(w,t+0)—V(w,t). Since the quantile function of a distribution is the inverse
of the cumulative distribution function, fM (w, ) can be re-written as

IM(w,1) = Qoo (A(w, 1:6) | F1)
- [E[A(u,f;eij | fg] + VW x ® 1 (99%)
where
vm[mu,f;a) \fg] - [E[A(u,f;as)Q \ﬁ] - {[Ejmw,r;.a) |f-g]]2

Without loss of generalization, we assime that the expectation of this local Normal distribution is
zero. Then

[E[A(w,f;a) | }}] -0
War[A(u,f:&] |}'1] - [E[A(u,f:&]Q |}'1]

Define

olw, t) = v’\’ar[&(u},t;ﬁ) |J'_g] = \'/I[E[A(w,i;ﬁ)g |}_g]
. Thus, the equation {0.0.1) becomes
IM(w,t) = o(w, t) x ©1(99%) (1.2.1)
Since @‘1(99%} is a constant, the equation (1.2.1) shows that the initial margin at time t for

/ y
scenario w can be caleulated if o(w, t) = V'[E [A(u,rx §)? | }}] can be solved.

1.2.2 Non-parametric Approach

For a non-parametric method, we use the historical data or the given samples to interpolate the
result for the unseen data. More specifically, for every portfolio price at time ¢ on scenario w, we
can determine the corresponding initial margin IM (w,#). Then, using the model that is trained
based on this data to predict the unsampled data.

1.3 Benchmark

As discussed in the previous chapter, the initial margin is the 99% quantile of the net change in
the portfolio value over the time interval (¢, + ). In other words, we are calculating the value
of the portfolio at time ¢ and t + § as V(t) and V(t + §), respectively. Due to the Black-Scholes
model, when the strike price, volatility and interest rate are fixed, the option price depends on the

10




stock price and the time to expiration. Therefore, in order to measure the option prices V (f) and
V(t + d), the stock prices S(t) and S(t + J) need to be calculated first.

The equation (1.1.1) shows two important facts. First, the stock price S(t+4) depends entirely
on the previous stock price S(t) and the random number #. Second, # is a random number in a
normal distribution, which means that this value can be set on demand. The second fact contributes
significantly to the caleulation of the initial margin, which will be explained in detail later.

Based on the characteristics of the Black-Scholes model and the geometric Brownian motion,
there is a closed-form solution for the initial margin as a benchmark. Recall that the initial margin
is the 99% quantile of the change on the portfolio value over a period (t,t + d]. To be specific, for
the fixed portfolio value V'(t), the initial margin is the difference between the portfolio value V (¥)
and the portfolio value V (+ 4) on the 99% quantile. Since the stock price and the portfolio value
are in one-to-one correspondence, the portfolio value on the 99% quantile represents the stock value
on the 99% quantile. A stock price S(t+ d) on the 99% quantile can be calculated based on the
previous stock price S(t) and a 99% quantile of a standard Normal distribution #, which can be
expressed as

2
Sivs = St e:l.‘p((,u. - %)5— o3 tD‘l(D.QQJ) (1.3.1)

where @ is a cumulative density function of a standard Normal distribution. Then, the correspond-
ing option price V(¢ + §) can be calculated based on the stock price S(tf + §), and the stock price
S(t+ §) can be calculated based on the previous stock price S(t).

To swmmarize, the benchmark method is to calculate the stock price S{t + §) on the 99%
quantile and the corresponding option price V' (f+4) via the Black-Scholes pricing formmla for each
stock price S(t). Then, the initial margin at time ¢ for the stock price §(t) is the difference between
the option prices V(t) and V(t + §).

V(w, t)vs. IM(w, t)

benchmark .
14

12 -

10 -

IM(w, t)

0 20 40 60 80 100
Wiw, t)

Figure 1.1: V{w,t) vs. IM(w,t) using the benchmark method

Figure 1.1 shows the initial margin at time ¢ for every possible portfolio price V(w,t) via the
benchmark method. It exists a non-linear relationship between V(w,t) and /M (w,t) because the
line has a concave trend. Therefore, we can apply polynomial regression to predict the initial
margin at time t using the portfolio price as the regressor. This model will be explained in the
next chapter.
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1.4 Nested Monte Carlo Method

The most straightforward method is a nested Monte Carlo simulation method, also known as the
brute-force method. Recall that the initial margin at time ¢ is equal to the 99% quantile on the
probability density function (PDF) distribution of the difference between the option price at time
t and f+ 4. At the time f, the option price at time # + § can be generated using Monte Carlo
simulation with a given option price V(t). However, the option price at time f is based on the
previons option price. It means that the option price at time f is also generated via a Monte
Carlo simulation depending on the previous option price. Mostly, the option price at the time ¢ is
simulated depending on the initial option price because the option prices between the time t3 = 0
and t are unimportant in the process of the initial margin calculation. Thus, for calculating the
initial margin at time ¢, a nested Monte Carlo simulation is needed.

Usually, one option price at time ¢t can generate more than one possible price at time ¢t + d. For
the convergence of the value of the initial margin, the method needs to simulate a satisfactorily
large number of scenarios at the time t and ¢ + § respectively. Moreover, since the initial margin
focus on the value at the tail of the distribution of A(w, t;d5s), the scenarios at time ¢ + 4 should
be a satisfactorily large number, which is larger than the scenarios at time ¢.

Portfolio Price

V(g 0.t + )

- Vit o, t + &)

Ve Viwy st +8)

4 V(wzg,t+8)

B V(wyzt+8)

i V(wat+35)

t t t+§ Time

Figure 1.2: A example of the nested Monte Carlo simulation

Figure 1.2 shows a simple example of the brute-force method. For V(fy), simulating two
paths at time ¢, and then simulating three paths at time ¢ + § for each V{w,#). In this example,
TM(t) = Qgg%l(‘f’,(h}(‘:j,f +4)— V(w,,f)), where 4 = 1,2 and j = 1,2,3. Clearly, the value of the
initial margin at time ¢ maybe not converge because of the limitation of the scenarios.

The nested Monte Carlo method ought to generate an efficient result when the scenarios are
large enough at two Monte Carlo simulations. However, due to a large number of the simulation
at both times ¢ and { + §, the run-time of the method will be severely aflected.

There is one problem when implementing this method. The problem is that the current option
price does not depend on the past option price when the option price follows the Black-Scholes
model. Notice that this dependence relationship between the continnous option prices is really
important because the initial margin works on the diflerence between the option prices at two
continuous-time points ¢ and £ + 4. That is the two option prices need to be related. The solution
is to use the stock price efficiently. Based on the assiumption, the stock price follows a geometric
Brownian motion, which is a continuous-time stochastic process. From the equation (1.1.1), the
stock price at time ¢+ § completely depends on the stock price at time t and the period § when all
other parameters remain unchanged. In addition, the option price can be determined by a unique
combination of stock price S(t) and time ¢ with all other parameters are constant.

From the above analysis, instead of applying the Monte Carlo simulation for the option price at
time t and t+ § separately, the brute-force method is to use the solution of the geometric Brownian
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motion to generate several different stock prices at time ¢ and £+ § and to use the Black-Scholes
formula to calculate the corresponding option prices. Then, the initial margin is the 99% quantile
of the differences between the option price at time ¢ and t + 6. The detailed steps are:

1. Given Sy, t, t + 4, and the type of the option.

2. Using the formula S; = S, P;i.‘p((,u. - %)f + a1 9), where # is a random drawn from

a standard Normal distribution, to simulate N scenarios of stock prices S(w = i,t) where

3. Using the formula S; 5 = S; exp (,u. - "72)5 + o6 9). where # is a random drawn from

a standard Normal distribution, to simulate M scenarios of stock prices S{w = i.j,t) where
i=1,2,...,Nand j=1,2,..., M.

4. Caleulating the option price V(w = 4,t) and V(w = i.j,t) where i = 1,2,... N and j =
1,2,..., M using the equation (1.1.2) or (1.1.3) depending on the type of the option.

5. For each scenario w, calculating the difference between the option prices at time t and ¢ + d,
and the initial margin I M (w,t) = Qggy (Alw, t;6)) where Afw, t;d) = V{w,t +6) — V(w,t).

The next step is to choose the number of N and M. For having a converged result of the
initial margin, the scenarios between the time t and ¢ + d need to be a sufficiently large number.
For example, if NV is fixed to be 1000, setting M = 10,100, 1000, 10000 separately to compare the
results in different fields. For ensuring the comparison under the fair environment, we generate
1000 different stock prices at time ¢, named S(w, ), and use these stock prices to estimate the initial
margin at the time ¢. Except for the initial margin, the intermediate results during the process
are also meaningful. For example, the initial margin at time ¢ corresponding to the different stock
prices at time ¢, the mean squared error between the initial margin at time  using the two methods,
and the run-time of the methods.

Method | MSE | Run-time
brute-force method with M=10 3.36491 2.1
brute-force method with M=100 0.43689 18.6
brute-force method with M=1000 | 0.05117 175.1
brute-force method with M=10000 | 0.00542 1908.6

Table 1.1: The initial margin at time ¢ under the benchmark method and the brute-force method
at time

Figure 1.3 shows that the comparison between the initial margin M (w,t) via the benchmark
method and the nested Monte Carlo methods wth N = 1000 and M = 10, 100, 1000, 10000. The
figure shows that the portfolio prices at time ¢ (V(w,t)) against the corresponding initial margin
({M(w,t)). The nested-Monte-Carlo-based initial margin JM{w,t) (orange dots) is closer to the
benchmark results (blue dots) with the larger M, and The distribution of orange dots shrinks as
M increases. Thus, In the bottom right corner of the graph, the nested Monte Carlo method’s
results almost completely cover the benchmark result.

Table 1.1 and Figure 1.4 show the mean squared error between the benchmark and nested
Monte Carlo methods with N = 1000 and M = 10,100, 1000, 10000 and the run-time for every
nested Monte Carlo method. Both table and figure show that the mean squared error decreases
steeply as M increases. Also, when M increases, the running time is much slower. It is clear that
the estimated initial marging at time t under M = 10000 is very close to the benchmark values,
but the run-time is extremely large. The better choice is M = 100 and M = 1000 because the
mean squared error is negligible and the run-time is acceptable.

All in all, for the nested Monte Carlo method, when N is a sufficiently large number and
M = N, the initial margin at time ¢ is very close to the benchmark result, but this method is quite
time-consuming.
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Figure 1.3: IM(w,t) under the benchmark method and the nested Monte Carlo method over
different V(w,t) when setting N' = 1000 and M = 10, 100, 1000, 10000.
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Chapter 2

Polynomial Regression Method

From the benchmark method, we find a non-linear relationship between the portfolio price at time
t and the corresponding initial margin. Therefore, this chapter focuses on the use of polynomial
regression methods to calculate future initial marging for both parametric and non-parametric
methods.

2.1 Methodology

Before applying polynomial regression to calculate the initial margin, we will introduce polynomial
regression and its underlying logistic regression analysis in this section.

2.1.1 Regression Analysis

Regression analysis is a method to estimate the relationship between a dependent variable and
at least one independent variable, and then use the unseen independent variables to predict the
corresponding dependent variable. The general formula can be shown as:

Y=f(X.8)+e

where ¥ is a vector with one column, X is a vector or matrix depending on the number of the
independent variables, 3 is the coeflicients, and € is the error term. The main purpose of the
regression analysis is to estimate 3, which can be used in the function f(X,3) for making a
prediction ¥ of the response X.

2.1.2 Polynomial Regression

Polynomial regression is a special form of regression analysis. In polynomial regression, the re-
lationship between the independent variable X and the dependent variable Y is described as a
polynomial of the n®* degree of X. To be precise, polynomial regression is used to fit the non-
linear relationship between the value of X and the associated Y. The model has the form

P
Y =3 it (X)

i=(

where 7 is the coefficient that we want to estimate, and ¢;(-) is the monomial function, Y is the
dependent variable and X is the independent variable.

2.2 Implementation

Next, we will see how to predict the initial margin at time f using polynomial regression with
parametric and non-parametric methods.
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Figure 2.1: A simplification version when A(w, t;4) is assumed to follow a distribution

2.2.1 Parametric Approach

As mentioned at the beginning, the initial margin at time ¢ is a 99% quantile of the changes in the
netting set’s value, also known as profit and loss (PnL), within a time interval (¢,f + 4] given all
information til the time . More specifically, the process of calculating the initial margin at time ¢
is to determine the changes in the option price between the time ¢ and f + ¢ for all scenarios and
take the 99% quantile on the values. So, we focus on estimate the initial margin at time ¢ for each
scenario, also written as M (w,t). In the nested Monte Carlo method, we apply the Monte Carlo
simulation on on V(ty) for generating a list of V(w,t) and on each V(w,t) for generating a list of
V(w,t+ 4d). This method predicts a relatively high accurate result with absolutely low efficiency.

For avoiding the nested Monte Carlo simulation, we assume a distribution for the changes
between the portfolio price at time t and ¢+ 4. In other words, only one Monte Carlo simulation is
needed to determine V' (w, ) and V(w,t+d) on each path, and then the initial margin is calculated
using the characteristics of the specified distribution. The visualization of the idea is shown in the
figure 2.1.

Recall that

IM(w,t) = o(w, 1) x ©71(99%) = /E[Alw,t:6)? | F]

when we assume the distribution of (V(u;_. t+46)—Viw, r)) | Fi follows a local Normal distribution
with zero-mean and variance o(w,t)? , which is presented as

(Viw,t+8) — Viw,t)) | Fr ~ N(0,0(w,t))

Clearly, the only unknown in the formula for initial margin is

. f 2
o(w,t) = JE[A(w,£:0)? | Fi] = v"[E[(L"(w,t— 5)— Viwt)) |f,]

Thus, we can choose (V (w,t+8) —V (w,t))? as the response variable. The next important step is to
determine the independent variable. As Cipolina et al. [2] mentioned, the regressor should satisfy
two criteria: the regressor should be selected from the given market information, and there exists
a relationship between the independent variable and the regressor. Since the initial margin for the
scenario w focuses on the change between the portfolio price at time ¢ and ¢+ 4, the portfolio price
V(w,-) is a better choice as the regressor. Moreover, the validity period of past information is a
key factor that needs to be considered. The portfolio price is only related to the stock price that
follows a Geometric Browain motion. Thus, the stock price depends on the most recent values, as
well ag the initial margin. As a result, the portfolio price at time t, V' (w, 1), is considered as the
regressor.
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Define the independent variable

, the dependent variable
- - v r 2 - N r 2 . - . T
c= [(Viwnt +0) = Vien D), (Viws t+6) = Viwa, D) (View t+6) = View,1)’]
and the basis function is ¢;(x) = zf. Thus, the form of the linear model is

P
Yo=Y B:di(X))
i=1

2

(Viwy, t+4) — V(wl..f))u 1 Vi, i)t Viw, £)F A

(V(ws t +8) = V{wn, 1)) 1 Vi) o Vi) | | B
= . = |. . . . X .

(V(wn,t+ 5)l — V(wn.1)” 1 Viey ) o Vien. )] |Bp

When training the model, the training data and the highest power P of the monomial function
are all needed. The response variable is easy to get, but the regressor needs to apply the monomial
function to generate new columns before the training starts. After training the model, we use this
model to predict (V{w,t+ 8) — V(w,))? for the test data. Before applying the formula (1.2.1) to
calculate the initial margin, the necessary step is to filter out the non-positive value in the predict
list. The reason for doing this step is that we use the squared root of the response variable in the
calculation, and the negative value cannot take the squared root. Finally, the initial margin at
time ¢ is the average of the initial margin at time t across all scenarios w. The results are shown
in the figure 2.2.

Method | MSE | Run-time | Method | MSE [ Run-time
degree=1 | 15.85158 0.32 degree=11 | 1.98217 0.35
degree=2 | 15.88178 0.26 degree=12 | 5.16246 0.28
degree=3 | 15.58592 0.28 degree=13 | 5.74650 0.33

degree=4 | 15.58349 0.29 degree=14 | 5.77333 0.30
degree=5 | 16.20285 0.26 degree=15 | 6.32643 0.30
degree=6 | 0.17891 0.29 degree=16 | 6.79775 0.29
degree=7 | 0.19323 0.28 degree=17 | 7.17434 0.29
degree=8 | 16.68235 0.26 degree=18 | 7.46913 0.28
degree=9 | 0.51906 0.36 degree=19 | 7.71721 0.30
degree=10 | 1.14603 0.31 degree=20 | 8.45358 0.29

Table 2.1: The mean squared errors between the benchmark method and the polynomial regression
methods with degree = 1,2,...,20

Figure 2.2 shows the initial margin at time ¢ on the scenario w via the polynomial regression
methods with degree = 1,2,...,20. The figure at the top represents degree = 1,2,...,10, and
the one at the bottom represents degree = 11,12,...,20. It is clear that when degree < 9, the
predicted values from the polynomial regression methods almost cover the benchmark values. In
other words, the shape of the predicted and baseline values are the same except for the tails of
the predicted values. However, when degree = 9, the shape of the predicted value is significantly
different from the benchmark value. Therefore, we cannot take the degree too large.

Table 2.1 shows the mean squared error between the predicted initial margin via the polynomial
regression methods with degree = 1,2,..., 20 and the benchmark values. The table indicates that
the polynomial regression method with degree = 6 performs the best because this method has
the smallest mean squared error and the shape of the predicted initial margin is closer to the
benchmark. Also, it proves that the mean squared error of the method increases as degree > 9,
which means the shape of the values does not match the benchmark.
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V(w, t) vs. IM(w, t) under palynomial regression methods with degree=1, 2, ...,10
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Figure 2.2: Polynomial regression methods with degree = 1,2,...,20: X; = V(w,f) and ¥; =
(V(t+8) - V(1)®

18




2.2.2 Non-parametric Approach

When calculating the initial margin, it actually calculates the change between the portfolio prices

at times ¢ and t + ¢ for every scenario. However, in the polynomial regression methods, the change

between the portfolio prices at time ¢ and t + § equal to the square root of the response variable

(V(t+4) - V[t))u. In other words, if the predicted (V (w,t+4d) — V(w,t))? is a negative number,

we cannot use the polynomial regression method to determine the corresponding initial margin.

For avoiding this problem, it is possible to define another response variable for the model.
Instead of defining

T
b= [(V[Wl-f_ 8) = Vi, t))*, (V{we, t+6) = Viwa. )% .., (Viwn.t+6) - V(wN.f]JQ]

we define ,
Y, — [I;U(wl,f]_.hu (W t), ... .nuw_.\-,f)]

When the stock price and the portfolio price at time ¢ are given, using the solution of the
geometric Brownian motion (1.3.1) to caleulate the stock price at time ¢ + 4, and then using the
Black-Scholes pricing formula (1.1.2) to calculate the corresponding portfolio price at time £ + 4.
Recall that the initial margin is the 99% quantile of the change between the portfolio price at
times ¢ and t + 4, conditional on all market information to time f. The initial margin at time ¢ on
each scenario w is determined using the portfolio price at time f and ¢ + 4, which is defined as the
response variable Y;. In addition, the independent variable X; is defined as usual. The model is
trained using X, and Y}, and then using the model to predict initial margin at time ¢ on scenario
w based on unseen V' (w,t).

Method | MSE [ run-time | Method | MSE | Run-time
degree=1 | 1.04910 0.00 degree=11 | 2.23336 0.01
degree=2 | 0.25512 0.00 degree=12 | 4.62008 0.01
degree=3 | 0.07207 0.00 degree=13 | 5.28046 0.01
degree=4 | 0.02499 0.01 degree=14 | 5.85550 0.01
degree=5 | 0.00987 0.00 degree=15 | 6.36633 0.01
degree=06 | 0.00434 0.00 degree=16 | 6.79780 0.01
degree=7 | 0.00230 0.00 degree=17 | 7.14080 0.02
degree=8 | 0.00129 0.00 degree=18 | 7.40615 0.01
degree=9 | 0.61584 0.01 degree=19 | 7.60341 0.01
degree=10 | 1.36411 0.01 degree=20 | 8.15970 0.01

Table 2.2: The mean squared errors between the benchmark method and the polynomial regression
methods with degree = 1,2,...,20

Figure 2.3 shows the predicted initial margin at time # on scenario w via the polynomial regres-
sion methods with degree = 1,2,...,20 and the benchmark values. The shape of the predicted
initial margin is closer and closer to the benchmark value as degree increases. However, the
shape of the predicted initial margin becomes increasingly inconsistent with the benchmark when
degree = 9.

Furthermore, table 2.2 demonstrates the similar result. Table 2.2 shows the mean squared error
between the benchmark values and the predicted initial margin from the polynomial regression
methods with degree = 1,2, ...,20. It is clear that initially the mean squared error decreases with

increasing degrees until degree = 8, and then the mean squared error increases with decreasing
degrees.

2.2.3 Comparison

From the above figures and tables, we conclude that it is meaningless to set the highest degree
of the basis function to a number greater than 9 in the polynomial regression method for both
parametric and non-parametric approaches. So, we compare the polynomial regression method
with degree = 1,2,..., 10 by setting ¥; = (V(w,t +d) — V(w,t))? and ¥; = IM(w,t).

Figure 2.4 shows the predicted initial margin at time ¢ from the polynomial regression method
with degree = 1,2, ...,10 and the benchmark values. The squared circle represents Y; = (V{w,t+
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Figure 2.3: Polynomial regression method with degree = 1,2,...,20: X; = V(w,t) and ¥; =
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Highest power of o¢;(x) Y: MSE Run-time

Yi=(V(t+4d) - 1:'(r)}2 15.85158 0.31
degree = 1

4 = IM (w, 1) 1.04910 0.00

Yi=(V(t+4d) - 1:'(r)}2 15.88178 0.22
degree =2

4 = IM (w, 1) 0.25512 0.00

Yi=(V(t+4d) - 1:'(r)}2 15.58592 0.27
degree = 3

Y = IM (w, 1) 0.07207 0.00

Y= (V(t+4d) - 1:'(r)}2 15.58349 0.27
degree = 4

Y = IM (w, 1) 0.02499 0.00

Yi=(V(t+4d) - 1:'(r)}2 16.20285 0.26
degree =5

= 1M (w, 1) 0.00987 0.00
Yi=(V(t+4d) - 1:'(r)}2 0.17891 0.29

degree = 6
= 1M (w, 1) 0.00434 0.01
Y= (V(t+6) - 1:’(r)}2 0.19323 0.34

degree =T
= 1M (w, 1) 0.00230 0.01

Yi=(V(E+4d) - 1"’(f)}2 16.68235 0.29
degree = 8

b =1IM(w,t) 0.00129 0.01
Yi=(V(E+4d) - Ty’(f)}2 0.51906 0.33

degree =9
b= 1M (w,t) 0.61584 0.01
Y= (V(t+6) - V(£)" | 1.14603 0.32

degree = 10
b= 1M (w,t) 1.36411 0.01

Table 2.3: The comparison of the initial margins between Y; = (V(f—d] —Tlf'(f]}2 and Y; = T M(w, 1)
under the polynomial regression methods with degree=1,2,...,10




V(w, t) vs. IM(w, t) under polynomial regression methods with degree=1, ..., 10
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Figure 2.4: Polynomial regression method with degree = 1,2,..., 20: Yy = (V(w t+48) = V(w, t)?
and Y; = I M(w,t)

d) —V(w,t))?, and the plus sign represents Y; = I M (w, t). Two lines that clearly do not match the
benchmark values are the polynomial regression method with degree = 1 and Y; = IM (w,t) and
the polynomial regression method with degree = 10 and Yy = 1M (w, ). The polynomial regression
methods with ¥; = (V(w,#4+8) =V (w,f))? look better overall. However, table 2.3 indicates different
result. Table 2.3 shows the mean squared error between the polynomial regression method with
degree = 1,2,...,10 and the benchmark values. Generally, the polynomial regression methods
with ¥; = I M(w,t) has smaller mean squared error.

I think there are two reasons why we can obtain different conclusions from the table and
the graph. The first reason is that non-parametric methods set the initial margin directly on
the response variable instead of taking some additional steps after the prediction as parametric
methods do. Thus, the mean squared error of the non-parametric method is smaller than that
of the parametric method. In addition, the parametric approach needs to filter out the nega-
tive value for (V(w,t +4) — V(w,?))? becanse the formula of the initial margin (1.2.1) obtains
VE[(V(w,+8) — V(w,))?]. This step takes out lots of values, so the shape of the predictions
from the parametric approach looks better overall.
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Chapter 3

Kernel Regression Method

Kernel regression is a non-parametric approach for estimating a random variable's conditional
expectation. The purpose is to investigate a non-linear relationship between two random variables.
We can use kernel regression to predict the future initial margin.

3.1 Methodology

Kernel regression estimates the conditional expectation of a random variable as a locally weighted
average. There are different ways to estimate the weight, and we focus on the Nadaraya-Watson
estimator and the local linear estimator in this section.

3.1.1 Kernel Regression Estimation

In a regression method, the form the function f({ X, 3) needs to be defined at the beginning based
on the guessing and experience. It is a comparatively strong and case-dependent assumption.
In other words, if the structure of the function is guessed correctly, the prediction will be very
accurate; otherwise, a bad model is generated. Thus, this method is theoretical and hard to
apply in some real-world scenarios. To avoid this specific model assumption, the non-parametric
regression method, which has least assumptions, is more practical.

The aim of the method is to estimate the response variable Y~ with the unknown X = z. This
problem can be seen as the estimation of the conditional expectation m(x) with the known density
function [y x=.(y). According to Portugués (3],

m(z) =EY | X =z| = /?J Syix—==(y) dy o
where
fyix=2(y) = fx(x)

The first step is to approximate fy(z). the density of X, by using the given sample data
Xi,..., X, that is normally distributed. Since the sample data is given, the simplest method to
get the density of X is to use the naive estimator. The idea is, for a given bandwidth h > 0, to
count the number of X's that fall into the interval (x —h, z+h], and then use the relative frequency
in (z — h,z+ h| to calculate the density at x. Thus, the naive estimator is a piece-wise constant,
and the formula of the naive estimator can be presented as

§ . Ple—h<X <z+h
oih) = F'(z)= 1 =
Flaih) = F) =l =5

R 1 n
= Inlzih) = 2nh ;ﬂ{z—mx,q-wt}

1 1
=i =T Y g eema)
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If define

and

K (2) = % K (!—:)

, the density changes to

n

) = op K55

=

= flz:h) = % ZH(.!.‘ - X;)

i=1

. which is called kernel density estimator (kde). From the above equations, Portugués [3] summa-
rized that the kernel K is a standardized density that satisfies the followings:

o K{—u)= Ku)
o [7 K(udu=1
¢ positive semi-definiteness: K (u) > 0 Yu

Since the bandwidth h acts like a tuning parameter in the formula of kernel density estimator, it
is necessary to consider how to choose the value of h. If the value of h is too large, the approximated
density _f(.r; h) has a small variance but a large bias; otherwise, _f(.r; h) has a small bias but a large
variance. It is important to determine the value of It to have a trade-off between variance and bias
of the approximation.

3.1.2 Nadaraya—Watson Estimator

Based on (3.1.1), m(z) can be re-written as

m(z) =E(Y

X =1
2/ v Syix—(y)dy

[y flz,y)dy
fx(z)

For estimating the non-parametric equation m(z) with the given sample data {(X,,Y;)},, the

solution is to use kernel density estimator to estimate the densities f(z,y) and fy(z). For the
joint probability density function f(z,y], consider it as a two-dimensional kde with the bandwidth

h=(h,, h,), so

. 1 n
oy h) = — Ky (x— X;) Ky - Y
flz,yih) n; i, (x ) K, (y — Vi)
Similarly, estimating fy (z) with bandwidth h, is

Fa:h) = =3 Ko (e — X2)
=1
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Thus, the estimation of m(x) is
J v flzy)dy
Ix(x)
Sy faydy
fx(x)
v (ST Kl - X0) Kyly — )] dy
% Z:;l -!(hJ.('T - X!)
Ly Kelr — Xi) Uuh’n(y - Yi]dy]
Lyt Ky (r—X)

Z K,(r—X;) Yi
Y Kae(r—X)

Therefore, based on the proposals by Nadaraya (4] and Watson [5], the Nadaraya—Watson
Estimator m(x; 0, L) is

mix) =

m(z:0,h) = wd(z) Y, (3.1.2)

where

- K, Xi)
v ZE“ K, 1—)1_-)

i=1

3.1.3 Local Linear Estimator

No matter which method is used to estimate m(x), the goal is to minimize the sum of squared

residuals (SSR), which is

ssr="3_(vi- ﬁ?.(){,-])z
i=1
The difference between parametric and non-parametric regression methods is that whether as-
suming the structure of m(x) or not. Usually, due to the structure of m(x) is pre-defined in the
parametric regression method, there exist some methods, such as Ordinary Least Squares (OLS),
can be used to determine the parameters in m(z). However, in the non-parametric regression
method, the structure of m(r) is unknown, another method is provided.
According to Portugués [3], for estimating m(X;), the alternative method is using the p'* Taylor
polynomial at a point x, which is

S (X =)+ ——(X = )P (3.1.3)

= (X —x)! (3.1.4)

Then, the SSR becomes

n P _|’ 2
SSR:Z [Y,- — (Zm,{”l(){i _,1_-).f)] (3.1.5)

4l
i=1 J=0 I

It is still impossible to minimize SSR. because the ('qlmtmn ('3 1.5) dopcndh on the unknown
function m(x) and its derivatives. However, by setting 3, :=

(3.1.5) changes to

mn

el 2
SSR=Y" {1; . (Zﬁ,(){( - .1:J-f)]
i=1 i=0

., which is a linear regression problem for estimating 8 = (3,...,8,). Once determining the

estimation of 3, the estimation of m/(z) is known as well.
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Consider the different contribution of each point (X;,Y;) because of the distance between X;
and z, the weight can be determined through the kernel. Thus, the estimation of 3; is

T P 2
3; = arg Eé‘fﬁl{iﬂ] |i}’, - (ziaj[xi - -ﬂ"’)] Kylrx — X;)

i=1 =0

where Kj(r — X;) is a kernel, also a density.

Define

1 X, —2 (X;,—x)¢ ... (X —=x)P Y,
X = Y =

1 X“*.l' (X“*.].'V (Xu*-]-‘]p }’u
w = diag (K (X1 = 2), ... K (X, — 7))
N W (2]
8= (mi),m'(@), "2

2 p!
, then

n

i(x:p, h) = o = Y wi(2)Y,
i=1
where w’(x) = P’l(X’WX_lX’WF(-)
Therefore,
e When taking p = 0, m(z:0, h) is a local constant estimator, also known as Nadaraya—Watson
Estimator.

e When taking p =1, m(x; 1, h) is a local linear estimator, and the equation is

miz:1,h) = “_Zw

where
1 Sz h) = s1(z h)(X; — )

T &l h)ag(xh) — &y (x h)? Kn(z = Xi)

and

n

e(z1h) :=% > (Xi— )" Kn(z— X))

i=1

3.2 Implementation

We can use both the Nadaraya-Watson estimator and the local linear estimator to calculate the
future initial margin in parametric and non-parametric approaches.

3.2.1 Nadaraya-Watson Kernel Regression

As mentioned in the last section, we use the Nadaraya-Watson estimator equation to estimate the
conditional expectation, where the formula is

n

. j\h T — (') r
m rise 0 h — Zm}x

7=1

where K (x) = fh’ ﬁ) K (-) is a Gaussian kernel, and h is the bandwidth. The bandwidth can be
determined via the Least-Square Cross-Validation, the Scott’s Rule of Thumb and the Silverman’s
Rule of Thumb methods.
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Figure 3.1 show the predicted initial margin at time ¢ against the portfolio prices under the
Nadaraya-Watson kernel regression method with three different bandwidths. The top figure shows
the predicted I M(w,#) under the Nadaraya-Watson kernel regression method with ¥: = (V(w,t +
d)—V(w.t))?, and the bottom figure shows the values under the Nadaraya-Watson kernel regression
method with ¥; = IM{w,t). Generally speaking, the regression method with Y, = IM{w.{)
generates better predictions of the initial margin at time ¢ on scenario w because the benchmark
value is almost covered by the other three lines in the figure 3.1(b). However, the predictions via
the regression method with ¥; = (V(w,t +d) — V(w,1))? are very close to the benchmark values
in the beginning, but they become worse as the portfolio price at time ¢ increases. Thus, we can
see from the figure 3.1(a) that the predicted values are disordered and chaotic in the tails.

3.2.2 Local Linear Kernel Regression

The local linear estimator is

rih) — & (zh) (X — 1) v,

@i 1, k) = T h)so(m h) — s (aih)2

where 5,.(z;h) = %Z;':l(){i —x)" K (r—X;), K (x) = %I\(;—‘) K{-) is a Gaussian kernel, and
h is the bandwidth. The bandwidth can be determined via the Least-Square Cross-Validation, the
Scott’s Rule of Thumb and the Silverman’s Rule of Thumb methods.

Figure 3.2 shows the predicted initial margin via the kernel regression method with the local
linea estimator and different bandwidths for both parametric and non-parametric approaches. For
the kernel regression method with ¥; = (V{w,f +6) — V(w,#))?, the predictions almost cover the
benchmark values at the beginning, but the tail does not perform as well. Compared to the method
with ¥y = (V(w,t+6) — V(w,#))?, the method with Y; = IM (w, t) predits good estimations overall.

3.2.3 Comparison

Figure 3.3 shows a comparison between the parametric and non-parametric approaches under the
kernel regression method with the Nadaraya-Watson estimator and the local linear estimator. The
kernel regression with ¥; = IM(w,t) makes a better prediction of the initial margin at time ¢
due to the predicted values are at the top of the benchmark values in both the Nadaraya-Watson
estimator and the local linear estimator. For the kernel regression with Y; = IM(w, t), its predicted
value is increasingly different from the benchmark value.

Table 3.1 shows the same conclusion. The table shows the mean squared error between the
benchmark and the predicted values from the kernel regression methods. Generally, the mean
squared errors of the kernel regression methods with Y; = fM(w,t) is smaller than other methods.
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Figure 3.1: Kernel regression method with Nadaraya-Watson estimator: Y; = (V{(w,t + 4) —

Viw,t))? (top) and Y; = IM (w,t) (bottom)
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V(w, t) vs. IM(w, t) with Y; = (V(w, t + 8) — V(w, t))? and Y= IM(w, t) under Nadaraya-Watson Estimator
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Figure 3.3: Kernel regression method with ¥; = (V(w,t + §) — V(w,t))? and YV, =

IM(w, t):Nadaraya-Watson estimator (top) and local linear estimator (bottom)
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Method Y; MSE Run-time
Vi = (V(w, t+8) — V(w,£))* | 0.36260 1.04
NW with silverman
Yy = IM(w,t) 0.05199 0.70
Vi = (V(w, t+8) — V(w,£)* | 0.36992 1.19
NW with scott
Yy = IM(w,t) 0.07401 0.70
Vi = (V(w, t+8) — V(w,£))* | 0.58075 129.54
NW with cv_ls
G =TM(w,t) 0.00011 200.48
Vi = (V(w, t +8) — V(w, 1)) | 16.31334 0.87
LL with silverman
G =TM(w,t) 0.00254 0.76
Vi = (V(w, t +8) — V(w,1))?* | 16.24863 0.82
LL with scott
=T M{w,t) 0.00380 0.74
Y, = (V(w, t +8) — V(w, 1)) | 16.14926 144.15
LL with ev_1s
=T M{w,t) 0.00047 172.91
Table 3.1: The comparison of the initial margins between ¥; = (V(w,t + §) — V(w,#))? and

Y: = IT'M(w,t) under the Nadaraya-Watson estimator and the local linear estimator
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Chapter 4

Dynamically Controlled Kernel
Estimation Method

Dynamically Control Kernel Estimation (DCKE) is a model-free data-driven method to estimate
conditional expectation according to Kienitz, Nowaczyk and Geng [6]. The main goal of this
method is to generate an accurate estimation with a high level of speed.

4.1 Methodology

For having a better understanding of DCKE, we introduce the Gaussian Process Regression and
control variate first.

4.1.1 Gaussian Process Regression

Gaussian Process Regression, also known as Kriging, is a non-parametric Bayesian method to
interpolate the unseen data based on the given/historical sample data (X,Y) = {(X,,Y;)}L, and
the Bayes’ Rule. The formula of the Bayes’ Rule is
i likelihood x prior
posterior = —MM———
marginal likelihood
Specifically, for using the predictive posterior distribution to predict y with the corresponding new
x, it is necessary to calculate the posterior based on the Bayes' Rule and a designated prior.
Usually, assume the prior, f(z), lollows a Ganssian Process, which means

flz) ~ GP(m(z), k(z, ")

, and the noise € follows an independently, identically distributed (i.i.d) Gaussian distribution,
which means e ~ N(0,0%). The mean function m(z) can be a constant (e.g. m(z) = 0) or the mean
of the training data, and the covariance kernel function k(x, z') needs to follow the properties of a
kernel, which is semi-positive definite and symmetric. The common kernel functions are constant,
linear, square exponential, and radial basis function (RBI') and Matern kernels. The covariance
kernel functions sometimes contain the hyperparameters, which can be used to control the learning
processes. For example, the radial basis function (RBF) kernel

. 1 .
ooy 2 o L2
klz,2')=0o mp( E{QHJ' z'|| )

contains two hyperparameters: variance o2 and lengthscale [. After every variables are setted up,

Crepey and Dixon 7] stated that the predictive posterior distribution for the test point z* is
fa) | X, Y 2" ~ N(E(f(2") | X, Y, 2"),var(f*(2") | X, Y, 2"))

where

E(f*(z") | X,Y.2") = m(z") + k(z*, X)[k(X, X) —021]_1)/

Var(f*(z*) | X,Y.,2%)) = k(z*,2%) — k(z*,2)[K(X, X) + 0*I] 'Y




To conclude, the target of the Gaussian Process Regression is to determine the posterior dis-
tribution based on the given prior distribution. The posterior distribution is a Gaussian process,
and the mean and the covariance of this distribution are calculated using the given samples and
the prior distribution. Then, we can use this posterior distribution to estimate the value for the
unseen data. This idea is used in DCKE.

4.1.2 Control Variate

The control variate method is a standard technigue for reducing variance. In other words, the
purpose of using this method is to improve the efficiency of the convergence.

Let ¥ be a random variable, and assume that Z is also a random variable with pz = E[Z] and
[ € R. Then, define a new random variable Y™* as

V' =Y +3(Z—p.)
The mean of Y* is
E[Y*]=E[Y + 3(Z — )]
=E[Y] +E[3(Z — p.)]
= [E:}’] + 8 [Ed] - ,u.z]
=L[Y]
The variance of Y* is
Var [Y*] = Var[Y + 3(Z — )]
= VYar :Y + 87 —-43- Iu.z)}
=Var[Y] + 8% Var[Z] +2 8 Cov[Y, Z]
For minimizing the variance of Y*, we want to determine a optimal coefficient 3 to minimize
3% Var J] +24Cov :Y. Z]. Ideally,
B Var[Z] +2 8 Colv.Z] =0 = p=-002] 7]
Var _ﬁ]
Thus,
Var [Y*] = Var[Y] + 3% Var[Z] +2 3 Cov Y, Z]

o 2 .
= Var[Y] + (— M) Var[Z] +2 (— M) CovlY, Z]

Var:Z} Yar d]
- 2 _ 2
] (C’m.l Y, z]) (Cm) y, z]]
= Var[Y] + -2
- Var _d] Yar _d]
i 2
] (C’m.l Y, z])
= War l’r] — -7-_
- Var _d]
Based on the formula of correlation coefficient of ¥ and &
CovlY,Z] € -11]
pyz=—F——=r——=¢€|-L
‘xWar_Y] ‘fVar_Z]
we have )
(Cm,' iY_. Z] )
Var:Z} =Py z Varl} ]
Then,

) 2
(Cm,‘ Y, A])
Var_Z]
Since the mean does not change and the variance decrease, we can replace Y with ¥* to obtain
a faster convergence. This method is used in DCKE to improve the speed of the estimation.

Var [Y*] = Var[Y] — = (1 - p%rz)\’ar Y] < Var [Y]

33




4.1.3 DCKE

The basic idea of the DCKE method is to use Gaussian Process Regression to predict the conditional
expectation for the given unsampled data. Since the given data usually has a large size, the speed
of the Gaussian Process Regression is relatively slow. For improving the speed of the method
and maintaining accuracy, we choose to decrease the size of the training data and add a control
variate. Rather than running the Gaunssian Process Regression with the whole sample data, we
select the training data from the given samples to do the modelling. In other words, we create a
mesh grid for the given samples. However, because the points on the mesh grid may not appear
in the given samples, we prefer to use the local regression to estimate the conditional expectation
for these points. The next step is to use the selected points and their corresponding conditional
expectation that are estimated via the local regression to do a Gaussian Process Regression. To
ensure the conditional expectation converges to the same value faster, we add a control variate
to the local regression. In addition, this control variate should also be a conditional expectation,
which has the same condition as the target conditional expectation. Under this requirement, we
can apply local regression again to estimate the control variate. Meanwhile, we need to determine
the optimal coefficient for reducing the variance.
To summarize, the whole process contains five steps:

1. Creating a mesh grid {z;,,...,z;_} for the given samples.
2. Estimating g, ~ E[Y | X = z; ] for every z;, in the mesh grid via the local regression.

3. Estimating %; ~ E|Z | X = z; | for every x;, in the mesh grid via the local regression, and
calculating the optimal coefficient j3;,.

4. Define ;== @;, + 3%5(%, — pz(x;,)). Using the results form the previous steps to caleulate
i, for every z;, in the mesh grid.

5. Training the Gaussian Process Regression based on the mesh grid {z; ..., z; } and the
corresponding {gi,, ..., Ji. |-

Next, we will explain how to use this method to estimate the initial margin at time ¢.

4.2 Implementation

For using the Dynamically Controlled Kernel Estimation to calenlate the initial margin at time f,
few parameters need to be determined:

e The response variable Y¥; and the independent variable X;:
— For parametric approach, define
T
Xp = [Viwn 0, Vi@ ), Ve, 0]
T

Y, = [(‘/(wl..f—ﬁ) = V(wn, 8))?, (Vi(ws, t +6) = Vi, £))% ..., (Ve t +6) — V(w..v..f))?]

— For non-parametric approach, define
T
Xy = [Vien ). Viwnt),.... Viox.t)]

T
Y, = [IM (wr, ), I M (wat), .. IM [u)N,f)]

e Training data (X,Y) = {(X(u;,-]. Y(w,-]]}‘_w and test data X*:
For the training data, using the solution E)flthc' geometric Brownian motion and the Black-
Scholes pricing formula to generate the stock prices at times f and 446 and the corresponding
portfolio prices. On each path w, the portfolio price at time ¢ and the change on the portfolio
price at times ¢ and t + ¢ are determined. These are the training data. The test data only
contains the portfolio price at time ¢.
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e A mesh grid {;ril_. o ,;r(-k}:
We select several points between 1% and 99% quantile of the independent variable X, with
equal distance.

e Local regression:
Based on the discussion in chapter 5, we can use the Nadaraya-Watson estimator and local
linear estimator to interpolate the conditional expectation.

Kernel function:

The kernel function needs to be specified for the local regression and the Gaussian Process
regression. In this chapter, we choose the radial basis function (RBEF) kernel.

¢ control variate Z:
We choose the portfolio price at time ¢ as the control variate Z.

4.2.1 Parametric Approach
When define
_ T
X = [Viwn ),V t), . Vion,t)]

T
G = [(vaul.f—a) — V(wr, )%, (Viwe,t +6) — Viws, 1), ..., (V{wn,t +6) — V(w,r)f]

, the initial margin at time ¢ on the scenario w can be calculated in two steps. The first step is to

2
use DCKE to estimate (V(u,'(-. t+48) — Viws, f]) . and then use the formula (1.2.1) to calculate the
initial margin.

V{w, t) vs. (V(t+ 6) — V(t))? with NW and LL

benchmark
150 local_regreesion=NW
local_regreesion=LL
125
100
=
|
5]
+ 715
o
=
50
25 #
-f o
0 /
0 20 40 60 80 100
Viw, t)

Figure 4.1: DCKE with Nadaraya-Watson and local linear estimator: Yy = (V{(w,t+68) =V (w, t))?

Figure 4.1 shows a comparison of (V(w,t +4d) — V(w,t))? that are generated from the Black-
Scholes pricing formula and DCKE with Nadaraya-Watson and local linear estimators. The grey
dots, which is the value from the Black-Sholes pricing formula, are scattered in the bottom left of
the graph. The estimated values, which are the blue and orange dots, are shown as a line in the
graph through the grey dots. Thus, the mean squared error of (V(wi.t— §) — V(wg.f]) between
the Black-Scholes pricing formula and DCKE is 78.60, which is a comparatively large value.
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V(w, t) vs. IM(w, t) with Nadaraya-Watson and local linear estimator

14 « benchmark .
local_regreesion=NW -

12 local_regreesion=LL R Lt

10 ]

IM(w, t)

Viw, t)

Figure 4.2: DCKE with Nadaraya-Watson and local linear estimator: Y; = (V{w,t+d) =V (w,t))?

Figure 4.2 shows a comparison of /M (w,t) between the benchmark and DCKE methods. When
the portfolio value at time ¢ is less than 35, the estimated IM (w,t) is very close to the benchmark
value. However, when V{w,t) > 35, the predicted values float around the benchmark values. In
the tail of the grey line, the predicted values have a large difference from the benchmark values.

4.2.2 Non-parametric Approach
When define

T
X, = [1”(u1,f),1’(wg,fj,..._.V(wN_.f]]
T
Y, = [Iﬂf(ul,ﬂ,!ﬂj (Wart),. .. .IM(u:_.\;_.f)]

, the initial margin at the time ¢ on scenario w is directly estimated from DCKE.

Figure 4.3 shows a comparison of 1M (w, t) between the benchmark and DCKE methods. From
figure 4.3, we can find out that the estimated /M (w,t) from DCKE is almost on the top of the
benchmark values, except the tail of the line. When V{w,.t) > 70, the differences between the
benchmarks and the predictions are large.

4.2.3 Comparison

Figure 4.4 shows the predicted initial margin from the Dynamically Controlled Kernel Estimation
Method with Y; = (V(w,t +4) — V(w,t))? and ¥; = IM (w, ) compared to the benchmark values.
Generally, the Dynamically Controlled Kernel Estimation Method with Y; = IM (w, {) performs
better. It is clear that the predictions form the method with Y¥; = IM(w,#) almost cover the
benchmark values. However, the difference between the predictions of the method with Y; =
(V(w,t+46) — V(w,t))? and the benchmark values becomes larger and larger as 1/ (w,#) increases.
We can get the same conclusion form table 4.1 as well. Table 4.1 shows the mean squared error
between the predicted initial marging from the Dynamically Controlled Kernel Estimation Method
with different Y; and the benchmark values. There is a enormous difference between the mean
squared error from the parametric and non-parametric approaches. The mean squared error for
the parametric approach is greater than 16, but for the non-parametric approach is around 1.
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V(w, t) vs. IM{w, t) with Nadaraya-Watson and local linear estimator

14 «  benchmark .
local_regreesion=NW .

12 local_regreesion=LL

10

IMiw, t)

0 20 40 60 80 100
Viw, t)

Figure 4.3: DCKE with Nadaraya-Watson and local linear estimator: Yy = (V{w,t+4d) —V(w,t))?

V(w, t) vs. IM(w, t) with Y, = (V(t + &) = V(1))? and newY = IM(w, t)
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Figure 4.4: DCKE with Nadaraya-Watson and local linear estimator for different Y;
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Method Vi MSE Run-time
Y, = (V(w, t +8) — V(w, ) | 16.15105 0.48
Nadaraya-Watson Estimator
b =1M(w,t) 1.09570 0.18
Vi = (Viw,t +6) — V(w,1))? | 16.15105 0.48
Local Linear Estimator
Yi = IM{w.t) 1.09570 0.22

Table 4.1: The comparison of the initial margins between Y; =

(V(w,t +8) — Viw1))?

Y; = IM(w,t) under DCKE with Nadaraya-Watson and local linear estimator
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Chapter 5

Comparison

In this chapter, we provide a comprehensive comparison of the benchmark, the brute force, the
polynomial regression, the kernel regression, and the Dynamic Control Kernel Estimation methods
for the European Call option.

5.1 Preparation

Since the main purpose is to compare different methods to see which method performs more
accurate and effective results, there is a need to ensure a fair environment.

The most important preparation is to generate train and test data. Whatever the method we
use, the stock prices and the option prices at time t and t + § are always needed. Therefore, at
time points ¢ and t = 4, the analytical solution of the geometric Brownian motion (1.1.1) is used
to generate several different stock prices and then the Black-Scholes pricing formula (1.1.2) is used
to determine the corresponding portfolio prices. This data is split into training data and test data.
When the methods use the same data as the training data, this setup avoids the situation where
a method outputs a better model because the input data is different. After training the model,
the next step is to use the sample-based model to predict the values of the same test data. The
comparison results in this setup are reliable.

In addition, it is necessary to set the time t, which is the point in time ¢ and the time period
¢ for calculating the initial margin. Note that the initial margin is calculated based on a small
period, so the value of § should be relatively small. Thus, there are four important time point
need to be determined before the program: the start time (f; = 0), the time for the initial margin
t, the time at the end of the period ¢ + 4§, and the time of maturity 7".

Now, consider a European Call option with the parameter settings in Table 5.1. The initial stock
price takes from 50 to 150, and the time point ¢ takes four different values, which are 0.2,0.5,0.8
and 0.9. For close-out period 4, we set it to 0.01, 0.02 and 5t 2 0.027. Assume there are 10,000
asset price paths from time t; = 0 to time t. We split the entire data into two subsets, i.e., training
data and test data. The training data contains 8,000 paths and the test data contains 2,000 paths.

The comparison is between the following methods:

e The benchmark method (abbreviation: benchmark):
The initial margin is calculated based on the formula of the Black-Scholes model and the
geometric Brownian motion. All comparisons are between the benchmark and other methods.

e The tested Monte Carlo method:
The initial margin is predicted using the nested Monte Carlo method. Since the paths
between two different time points can be placed, we set the number of paths to 100 and 1000
respectively. Thus,

the nested Monte Carlo method with the number of paths M = 100 (abbreviation:
b{100),
the nested Monte Carlo method with the number of paths M = 1000 (abbreviation:
bfL000).

e The polynomial regression method:
In the polynomial regression, we consider the highest degree is 1,2,...,10. Thus,
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Type Parameter number
type of option call
the interest rate r 1%
Fixed the volatility o 3%
the time of maturity T 1 year
the number of paths at #; 10,000
the number of training data 8,000
the mumber of test data 2,000
initial stock price Sy 50/80/100/120/150
the strike price K 50/80/100/120/150
changeable the number of paths at ¢ l.ﬂﬂfl., 000
i time ¢ 0.2/0.5/0.8/0.9
the close-out period 0.01/0.02,/0.027
the highest power of basis function deg 1/2/3/4/5/6/7/8/9/10
the bandwidth methods cv_ls/scott /silverman
the local estimators Nadaraya-Watson/Local linear

Table 5.1: Parameters

the polynomial regression method with the highest degree = 1,2,..., 10 (abbreviation:
regl, reg2, ... ., regl0).

e The kernel regression method:
The estimators of the kernel regression method are the Nadaraya-Watson estimator and the
local linear estimator. Also, the bandwidths can be selected between the Silverman’s Rule of
Thumb, the Scott’s Rule of Thumb and the Least-Square Cross-Validation. Thus, the kernel
regression method contains six methods:

the kernel regression with the Nadaraya-Watson estimator and bandwidth is the Silver-
man’s Rule of Thumb (abbreviation: NW silverman),

the kernel regression with the Nadaraya-Watson estimator and bandwidth is the Scott’s
Rule of Thumb (abbreviation: NW scott),

the kernel regression with the Nadaraya-Watson estimator and bandwidth is the Least-
Square Cross-Validation (abbreviation: NW cvls),
the kernel regression with the local linear estimator and bandwidth is the Silverman’s

Rule of Thumb (abbreviation: LL silverman),

the kernel regression with the local linear estimator and bandwidth is the Scott’s Rule
of Thumb (abbreviation: LL scott),

the kernel regression with the local linear estimator and bandwidth is the Least-Square
Cross-Validation (abbreviation: LL cvls).

e The Dynamically Controlled Kernel Estimation method:
In the Dynamically Controlled Kernel Estimation method, the mesh grid of X is 100. Similar
to the kernel regression method, the estimators of the local regression are the Nadaraya-
Watson estimator and the local linear estimator. Thus,

the Dynamically Controlled Kernel Estimation method with the Nadaraya-Watson es-
timator (abbreviation: DCKE NW),

the Dynamically Controlled Kernel Estimation method with the local linear estimator
(abbreviation: DCKE LL).
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5.2 Overview

For having a general view of the performance of all methods, we use different combinations of
parameters to see the results. We decide that the initial stock price Sy, the strike price K, the
time t and the position period are changed and all other parameters are fixed.

In this section, we show the performance of all methods when setting K = 100, Sy = 100,
t ={0.2,0.5,0.8,0.9} and § = {0.01,0.02,0.027}. The results for K = 50,80,120,150 and S, =
50, 80,120, 150 are shown in the appendix A.1.

The following figures show the predicted initial margin via all methods compared with the
benchmark values when Sy = 100 and K = 100. Figure 5.1, figure 5.2, figure 5.3 and figure 5.4
show the results when t = 0.2, = 0.5,;t = (1.8 and ¢ = 0.9 separately. In each figure, the close-out
period 4 is set from top to bottom to 0.01, 0.02 and 0.027. Since the definition of ¥; is different for
parametric and non-parametric approach, the left side of the figure sets Y; = (V(t + &) — V (¢))?
and the right side of the figure sets ¥; = IM(w, ).

In all scenarios, all methods converge universally to the benchmark, except the tail. More
specifically, the predicted initial margin is far away {rom the benchmark value as the portfolio
price V{w,{) increases.

5.3 Discussion

Since the purpose of initial margin is to avoid the future close-out risk, we expect the true initial
margin at time t to be less than the predicted initial margin in any case. In other words, the real
worse case scenario is better than we expected and losses are under control.

The main purpoese of estimating the initial margin at time ¢ is to know how much money we
will lose in the worst case scenario. Therefore, if the predicted initial margin is greater than the
actual initial margin, this means that the forecast is valid. In addition, it is useful to know the
percentage excess of incorrect forecasts. Tables 5.2, 5.3 and 5.4 shows

o IM(w,t) < IM(w,t): Count how many valid forecasts from the method
e Invalid (%): Percentage of invalid predictions out of all predictions.

e Excess (%)
IM(w, t) — TM(w, )
EXCESS = —
IM(w,t)

In the table, we only keep the maximum value of excess.

e Mean squared error (MSE): Calculate the mean of the squares of the error between every
actual value and the predict value, and sum all the results.

e Run-time: The running time for the method

In general, the mean squared error should be small, which means that the model's prediction
is a good estimate. In detail, the prediction should be valid, which means that the percentage of
invalidity should be small. Ewven in the worse case where the prediction is invalid, we want the
actual value to not exceed the predicted value by too much. In other words, the excess should be
small.

For Yy = (V(t+4) =V (1))?, table 5.2 shows that the nested Monte Carlo method with M = 100,
the nested Monte Carlo method with M = 1000, the polynomial regression method with the
highest degree = 3, the polynomial regression method with the highest degree = 7, the polyno-
mial regression method with the highest degree = 9, the kernel regression with the Nadaraya-
Watson estimator and bandwidth is the Silverman’s Rule of Thumb, the kernel regression with the
Nadaraya-Watson estimator and bandwidth is the Scott’s Rule of Thumb, and the kernel regres-
sion with the Nadaraya-Watson estimator and bandwidth is the Least-Square Cross-Validation all
have MSE < 1, which is very small. Within these methods, the nested Monte Carlo method with
M = 1000 and the polynomial regression method with the highest degree = 3 have the lowest
excess percentage. However, since the run-time of the nested Monte Carlo method with A = 1000
is too large. Therelore, the polynomial regression method with the highest degree = 3 performs
better. For Y; = 1M (w, t), table 5.2 shows that the polynomial regression method with the highest
degree = 8 because it has a comparatively smaller MSE, excess percentage and the run-time.
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(a) t = 0.2 and § = 0.01: ¥ = (V(t +6) — V(1))? (b) ¢ =0.2 and § = 0.01: Yi = IM(w, )

(e) £ =0.2and § = 0.02: ¥; = (V(E+8) — V(1)) (d) £ = 0.2 and § = 0.02: ¥; = TM(w, t)

g’

!

(e) t =02 and § = 0.027: Y, = (V (£ + &) — V(1))2 (1) £ =0.2and § = 0.027: ¥; = IM(w, )

Figure 5.1: V{w,t) versus. IM(w,t): set Y; = (V(t +8) — V(1))? (left) and Y; = IM(w,t) (right)
under different methods with K = 100, S, = 100, t = 0.2, and § = {0.01,0.02,0.027}
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(a) t = 0.5 and § = 0.01: ¥ = (V(t +6) — V(1))? (b) ¢ = 0.5 and § = 0.00: Yi = IM(w, t)

(e) £ =05 and § = 0.02: ¥; = (V(E+8) — V(1)) (d) £ =05 and § = 0.02: ¥; = TM(w, t)

(e) t =05 and § = 0.027: Y, = (V (£ + &) — V(1))2 (1) £ =0.5and § = 0.027: ¥; = IM(w, t)

Figure 5.2: V{w,t) versus. IM(w,t): set Y; = (V(t+8) — V(1))? (left) and Y; = IM(w,t) (right)
under different methods with K = 100, S, = 100, t = 0.5, and § = {0.01,0.02,0.027}
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(a) t = 0.8 and 6 = 0.01: ¥ = (V(t +6) — V(1))? (b) ¢ = 0.8 and § = 0.00: Yi = IM(w, )

. »
i ; el : l’. K
ili
Bt
T i
(e} t =08 and 6 = 0.02: Y, = (V (1 +4d) — V(£))2 (d) £ =08 and § = 0.02: Y, = IM{w, t)
b
st U
-
() £ =0.8 and § = 0.027: ¥, = (V(t + &) — V(1))2 (f) £ = 0.8 and § = 0.027: ¥ = I M(w, 1)

Figure 5.3: V{w,t) versus. IM(w,t): set Y; = (V(t +8) — V(1))? (left) and Y; = IM(w,t) (right)
under different methods with K = 100, S, = 100, t = 0.8, and § = {0.01,0.02,0.027}
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(a) t = 0.9 and § = 0.01: ¥ = (V(t +6) — V(1))? (b) ¢ = 0.9 and § = 0.00: Yi = IM(w, )

(e) £ =09 and § = 0.02: ¥; = (V(E+8) — V(1)) (d) £ = 0.9 and § = 0.02: ¥; = TM(w, t)

B »
. . . i
ey
_ i £ratty
. e ,
(e) £ =09 and § = 0.027: ¥; = (V (£ + ) — V(1))* (I}t =09and § =0.027: ¥; = IM{w,t)

Figure 5.4: V{w,t) versus. IM(w,t): set Y, = (V(t+8) — V(1))? (left) and Y; = IM(w,t) (right)
under different methods with K = 100, S, = 100, t = 0.9, and § = {0.01,0.02,0.027}




Y, Method ITM(w,t) invalid(%) | excess(%) MSE Run-time
< IM(w,t)
bt100 1565 0.78 0.60 0.40933 31.44
bf1000 1212 0.61 0.16 0.04901 307.75
regl 721 0.44 36.77 14.73415 0.30
reg2 769 0.46 27.74 15.01386 0.27
reg3 1361 0.68 0.17 0.28119 0.28
regd 785 0.46 29.81 14.86567 0.21
regh 855 0.49 115.13 15.66387 0.23
regh 1222 0.61 191.42 12.80693 0.24
reg’ 1809 0.90 0.35 0.21047 0.26
Y = regl 854 0.47 40.67 14.59653 0.28
(V(t+48) = V() regd 1458 0.73 0.32 0.62846 0.30
regll) 1336 0.67 0.40 1.15621 0.27
NW silverman 1627 0.81 0.39 0.34685 0.76
LL silverman 989 0.52 153.46 15.41267 0.83
NW scott 1618 0.81 0.32 0.35880 0.81
LL scott 969 0.51 309.61 14.91912 0.86
NW evls 1341 0.67 0.23 0.75678 105.97
LL cvls 200 0.47 62.82 14.52293 164.95
DCKE NW 950 0.51 2.96 x 101 | 15.01247 0.59
DCKE LL 950 0.51 2.96 x 101 | 15.01247 0.48
bf100 1565 0.78 0.60 0.40933 3144
bt1000 1212 0.61 0.16 0.04901 307.75
regl 1185 0.59 0.23 0.97496 0.00
reg2 1152 0.58 0.68 0.25501 0.00
reg3 1123 0.56 0.09 0.06222 0.00
regd 1059 0.53 0.07 0.01915 0.01
regh 1039 0.52 0.06 0.00761 0.01
regfh 1040 0.52 0.05 0.00362 0.00
reg’ 1026 0.51 0.05 0.00185 0.00
Yy = reg® 1064 0.53 0.04 0.00103 0.00
IM (w,t) regd 1087 0.54 0.43 0.53244 0.00
regl( 1069 0.53 0.49 1.21797 0.00
NW silverman 1665 0.83 0.12 0.04646 0.51
LL silverman 1874 0.94 0.08 0.00239 0.66
NW scott 1629 0.81 0.13 0.06726 0.50
LL scott 1860 0.93 0.08 0.00357 0.56
NW cvls 1100 0.55 0.06 0.00001 269.36
LL evls 1964 0.98 0.05 0.00003 264.83
DCKE NW 1908 0.95 2.33 x 102 | 0.52365 0.16
DCKE LL 1908 0.95 2.33 x 102 | 0.52365 0.25

Table 5.2: All methods with S; = 100,¢ = 0.5, = 0.01
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Y, Method ITM(w,t) invalid(%) | excess(%) MSE Run-time
< IM(w,t)
bt100 1587 0.79 0.63 1.01340 34.98
bf1000 1176 0.59 0.19 0.11869 329.78
regl 796 0.47 37.09 34.36317 0.28
reg2 944 0.51 40.34 33.46812 0.29
reg3 719 0.45 125.71 31.91374 0.22
regd 954 0.52 177.72 34.99639 0.27
regh 880 0.49 305.20 33.57734 0.27
regh 1142 0.58 248.74 35.53057 0.30
reg’ 1854 0.93 0.28 0.62886 0.30
Y = regl 869 0.48 142.04 33.34409 0.30
(V(t+48) = V() regd 1473 0.74 0.42 1.73343 0.34
regll) 1361 0.68 0.48 2.74920 0.32
NW silverman 1720 0.86 0.41 0.94525 0.86
LL silverman 1002 0.53 104.79 32.45831 1.05
NW scott 1670 0.83 0.34 0.96626 0.88
LL scott 994 0.53 02.83 33.73500 1.00
NW evls 1413 0.71 0.30 1.74813 111.12
LL cvls 934 0.51 174.65 33.10329 118.12
DCKE NW 905 0.50 T8.60 33.89703 0.39
DCKE LL 905 0.50 T8.60 33.89703 0.41
bf100 1587 0.79 0.63 1.01340 34.98
bt1000 1176 0.59 0.19 0.11869 329.78
regl 1121 0.56 0.23 2.26615 0.01
reg2 1101 0.55 0.43 0.55436 0.00
reg3 1097 0.55 0.10 0.14779 0.01
regd 1087 0.54 0.08 0.05327 0.00
regh 1071 0.54 0.06 0.02248 0.00
regfh 1057 0.53 0.06 0.01031 0.02
reg’ 1048 0.52 0.05 0.00552 0.01
Yy = reg® 1043 0.52 0.05 0.00299 0.00
IM (w,t) regd 1057 0.53 0.36 1.18832 0.01
regl( 1033 0.52 0.47 2.62298 0.00
NW silverman 1658 0.83 0.13 0.11312 0.53
LL silverman 1870 0.94 0.08 0.00632 0.70
NW scott 1621 0.81 0.14 0.15948 0.53
LL scott 1854 0.93 0.08 0.00940 0.64
NW cvls 1492 0.75 0.05 0.00120 239.78
LL evls 1892 0.95 0.07 0.00392 209.10
DCKE NW 1873 0.94 8.01 x 10" | 1.93878 0.34
DCKE LL 1873 0.94 8.01 x 10" | 1.93878 0.28
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Y, Method ITM(w,t) invalid(%) | excess(%) MSE Run-time
< IM(w,t)
bt100 1588 0.79 0.78 1.41800 34.31
bf1000 1212 0.61 0.21 0.16015 329.64
regl 811 0.48 5840 41.85233 0.31
reg2 825 0.48 37.29 42.86726 0.27
reg3 903 0.51 42.36 43.81887 0.25
regd 822 0.48 65.18 43.86661 0.31
regh 876 0.50 41.01 42.40864 0.26
regh 1004 0.53 140.77 45.58682 0.33
reg’ 1768 0.88 0.47 1.30679 0.31
Y = regl 1779 0.89 0.41 1.24283 0.31
(V(t+48) = V() regd 1619 0.81 2.43 1.95848 0.34
regll) 1243 0.62 5.10 25.25425 0.33
NW silverman 1718 0.86 1.09 1.82585 0.84
LL silverman 1004 0.53 128.42 47.04700 0.83
NW scott 1690 0.84 0.97 1.80085 0.80
LL scott 990 0.53 54.13 44.83982 0.94
NW evls 1508 0.75 0.33 2.33108 107.05
LL cvls 916 0.50 66.47 43.37862 133.47
DCKE NW 909 0.51 490.61 45.36411 0.45
DCKE LL 909 0.51 490.68 45.36409 0.45
bf100 1588 0.79 0.78 1.41800 34.31
bt1000 1212 0.61 0.21 0.16015 329.64
regl 1141 0.57 0.23 3.22885 0.00
reg2 1150 0.57 1.87 0.98724 0.00
reg3 1131 0.57 0.10 0.29125 0.00
regd 1113 0.56 0.16 0.09605 0.00
regh 1099 0.55 0.07 0.04057 0.00
regfh 1077 0.54 0.06 0.02074 0.00
reg’ 1067 0.53 0.09 0.01215 0.00
Y= reg8 1039 0.52 0.05 0.00815 0.01
IM (w,t) regd 1099 0.55 0.36 2.86014 0.00
regl( 1029 0.51 0.46 7.79051 0.00
NWsilverman 1672 0.54 0.12 0.16601 0.53
LLsilverman 1872 0.94 0.08 0.01011 0.59
NWscott 1647 0.82 0.13 0.23320 0.52
LLscott 1861 0.93 0.09 0.01502 0.66
NWevls 1694 0.85 0.08 0.00575 218.05
LLevls 1872 0.94 0.08 0.00995 145.67
DCKENW 1874 0.94 7.84 x 1032 | 3.10955 0.17
DCKELL 1874 0.94 7.88 x 1092 | 3.10056 0.30

Table 5.4: All methods with Sy = 100,t = 0.5, = 0.027
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For ¥y = (V(£4+4)—V(1))?, table 5.3 shows that the nested Monte Carlo method with M = 100,
the nested Monte Carlo method with M = 1000, the polynomial regression method with the
highest degree = 7, the polynomial regression method with the highest degree = 9, the kernel
regression with the Nadaraya-Watson estimator and bandwidth is the Scott’'s Rule of Thumb,
and the kernel regression with the Nadaraya- Watson estimator and bandwidth is the Least-Square
Cross-Validation all have very small MSE. Within these methods, the nested Monte Carlo method
with M = 1000 and the polynomial regression method with the highest degree = 7 have the lowest
excess percentage, which is less than 1. However, since the run-time of the nested Monte Carlo
method with M = 1000 is too large. Therefore, the polynomial regression method with the highest
degree = 7 performs better. For ¥; = IM(w,t), table 5.3 shows that the polynomial regression
method with the highest degree = 8 because it has a comparatively smaller MSE, excess percentage
and the run-time.

For Yy = (V(t+4)—V(1))?, table 5.4 shows that the nested Monte Carlo method with M = 100,
the nested Monte Carlo method with A = 1000, the polynomial regression method with the highest
degree = T, the polynomial regression method with the highest degree = 8, the polynomial regres-
sion method with the highest degree = 9, the kernel regression with Nadaraya-Watson estimator
and bandwidth is the Scott’s Rule of Thumb, and the kernel regression with the Nadaraya-Watson
estimator and bandwidth is the Silverman’s Rule of Thumb all have very small MSE. Within these
methods, the nested Monte Carlo method with M = 1000 and the polynomial regression method
with the highest degree = 8 have the lowest excess percentage, which is less than 1. However,
since the run-time of the nested Monte Carlo method with M = 1000 is too large. Therefore, the
polynomial regression method with the highest degree = 8 performs better. For Y; = I'M{w,f),
table 5.4 shows that the polynomial regression method with the highest degree = 8 because it has
a comparatively smaller MSE, excess percentage and the run-time.

In conclusion, regardless of the definition of Y7, the polynomial regression performs better based
on accuracy and efficiency. From the figures 5.1, 5.2, 5.3 and 5.4, we can find that as V() increases,
IM(t) first increases rapidly and then increases slowly. This indicates that there is a kind of non-
linear relationship between V{w,t) and IM({w,t), so it is reasonable that polynomial regression
predicts more accurate /M (w,t) at a faster rate.
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Conclusion

In this paper, we focus on the calculate of the initial margin at time ¢. The initial margin is
a 99% quantile of the change on the net change in the portfolio price within the period (¢,t + 4]
based on the definition of BCBS and IOSCO. There are parametric and non-parametric approaches
for caleulating the future initial margin, depending on whether the assumption of portfolio price
changes is taken into account. Both methods take V(w,t) as the independent variable, but the
difference lies in the definition of Y;. Specially, we define ¥, = (V(t +6) — V(#))? for parametric
approach and Y, = IM(w,t) as non-parametric approach. In addition, for each approach, we
can apply polynomial regression, kernel regression, and Dynamically Controlled KernelEstimation
methods.

First of all, we assume the portfolio price follows a Black-Scholes model and the stock price
follows a geometric Brownian motion. We determine the benchmark method according to the
characteristic of the Black-Scholes model and the geometric Brownian motion. Moreover, we have
a nested Monte Carlo method because the initial margin is calenlated as the difference between
the two portfolio prices. When we generate more paths from time t to ¢ + 4, the predicted initial
margin at time ¢ is closer to the benchmark value. However, the run-time is much longer as well.

The second method is the polynomial regression method. In this method, we set V{w,t) as
the regressor and the monomial function as the basis function. In both methods, as the highest
degree increases, the prediction gets closer to the benchmark until the degree is greater than
10. Furthermore, the run-time for the polynomial regression is fast, especially in the parametric
approach.

The next method is the kernel regression method, which contains the Nadaraya-Watson esti-
mator and the local linear estimator. Also, the bandwidth of the method can be chosen among
the Least-Square Cross-Validation method, Scott’s rule of thumb, and Silverman’s rule of thumb.
Local linear estimators do a better prediction than the Nadaraya-Watson estimators regardless of
the choice of the bandwidth. The kernel regression with the local linear estimator and the band-
width is the Least-Square Cross-Validation method performs the best estimation, but the run-time
is much slower.

The last method is the Dynamically Controlled Kernel Estimation method. The basis of this
method is Gaussian Process regression, and this method uses local regression with control variate
to determine the training data. Under these techniques, the predictions via the Dynamically
Controlled Kernel Estimation has a relatively small difference with a faster speed.

For the European Call option, the polynomial method performs better compared with other
methods. The reason is that there is a non-linear relationship between the portfolio price V{w,{)
and the initial margin I M(w,t) when the portfolio price follows the Black-Scholes model and the
stock price follows the geometric Brownian motion.

50




Appendix A

Figures

A.1 Chapter 5 Figures

For having a general view of the performance of all methods, we use different combinations of
parameters to see the results.

A.1.1 When The Initial Stock Price Changes

When the initial stock price Sy, the time ¢ and the close-out period change and all other parameters
are fixed, the following figures show how all the methods perform in general.

Figure A.1 and figure A.2 show when Sy = 50 and all other parameters are held constant, all
methods converge universally to the benchmark for ¢t = 0.2 and ¢ = 0.5 regardless of the definition
of ¥; and the values of 4. However, when t = 0.8 and ¢t = 0.9, the methods have a similar trend
but they are not close to the benchmark.

Figure A.3 and figure A.4 show when Sy = 80 and all other parameters are held constant, most
of the methods converge universally to the benchmark regardless of the definition of ¥;, the values
of t and the values of §. However, the predictions via few methods are not close to the benchmark
values in all scenarios.

Figure A.5 and figure A.6 show when Sy = 50 and all other parameters are held constant,
all methods converge universally to the benchmark for variations in time # and close-out period
d regardless of the definition ol Y;. However, for every time ¢, the methods still converges to the
benchmark at the beginning, but not at the end.

Figure A.7 and figure A.8 shows when Sy = 50 and all other parameters are held constant,
all methods converge universally to the benchmark for variations in time ¢ and close-out period &
regardless of the definition of Y;. Moreover, there appears to be a non-linear relationship between
Viw, t) and M (w,t).

A.1.2 When The Strike Price Changes

In this section, we change the setting of the parameters. Consider the strike price K, the time ¢
and the close-out period change and all other parameters are fixed.

Figure A.9 and figure A.10 show when Sy = 50 and all other parameters are held constant, all
methods converge universally to the benchmark regardless of the definition of Y; and the values of
4. However, the predicted results by all methods are not near the benchmark values at either end.

Figure A.11 and figure A.12 show when S; = 80 and all other parameters are held constant,
most of the methods converge universally to the benchmark regardless of the definition of Y;, the
values of t and the values of 4.

Figure A.13 and figure A.14 show when Sy = 50 and all other parameters are held constant,
all methods converge universally to the benchmark for variations in time ¢ and close-out period
4 regardless of the definition of Y;. However, for every time f, the methods still converges to the
benchmark at the beginning, but not at the end.

Figure A.15 and figure A.16 show when 53 = 50 and all other parameters are held constant,
all methods converge universally to the benchmark regardless of the definition of ¥, the values of
t and the values of 4. However, the predictions via few methods are not close to the benchmark
values in all scenarios.
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Figure A.1: V{(w,t) versus. IM(w,t): set Y, = (V(t +46) — V(1))? under different methods with
K =100,5;, =50, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027}
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Figure A.2: V(w,t) versus. [M(w,t): set Y, = IM(w,t) under different methods with K = 100,
Sy =50, t=10.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027}
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Figure A.3: V(w,t) versus. IM(w,t): set ¥; = (V(t +6) — V(¢))? under different methods with
K =100, S =80, t = {0.2,0.5,0.8,0.9}, and 4 = {0.01,0.02,0.027}
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Figure A4: V(w,t) versus. [M(w,t): set Y, = IM(w,t) under different methods with K = 100,
Sy =80, t={0.2,0.5,0.8,0.9}, and J = {0.01,0.02,0.027}
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Figure A.5: V(w,t) versus. IM(w,t): set ¥; = (V(t +6) — V(¢))? under different methods with
K =100, § =120, t = {0.2,0.5,0.8,0.9}, and ¢ = {0.01,0.02,0.027}




(a) t =0.2 =001 (b) ¢ =0.28 =0.02 (e) ¢ =024 =0.027

(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027

(g) t=08d=001 (h) £ =088 =0.02 (i) £ =088 =0.027

() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.G: V(w,t) versus. [M(w,t): set Y, = IM(w,t) under different methods with K = 100,
Sp =120, t=1{0.2,0.5,0.8,0.9}, and ¢ = {0.01,0.02,0.027}




(a) t =0.2 6 =0.01 (b) ¢ =0.26 =0.02 (¢) ¢ =024 =0.027

(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027

(g) t=086=001 (h) £ =0.88 =0.02 (i) £ = 0.8 & = 0.027
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() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.7: V(w,t) versus. IM (w,t): set ¥; = (V(t +4) — V(1))? under different methods with
K =100, § =150, t = {0.2,0.5,0.8,0.9}, and ¢ = {0.01,0.02,0.027}




(a) t =0.2 =001 (b) ¢ =0.28 =0.02 (e) ¢ =024 =0.027

(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027

(g) t=08d=001 (i) £ =088 =0.027

() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A8 V(w,t) versus. [M(w,t): set Y, = IM(w,t) under different methods with K = 100,
Sy = 150, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027}




Figure A.17 and figure A.18 shows when Sy = 50 and all other parameters are held constant, all
methods converge universally to the benchmark for £ = 0.2 and ¢ = 0.5 regardless of the definition
of ¥; and the values of §. However, when t = 0.8 and ¢t = 0.9, the methods have a similar trend
but they are not close to the benchmark.

(a) t=026=001 (b) £ =028 =002 (c) t =024 =0.027
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(d) t=05 6 = 0.01 () t =05 6=0.02 (1) t =058 = 0.027

(g) t =08 d=0.01 (h) ¢ =0.88 = 0.02

T Ly

() t=096 =001 (k) £= 096 =0.02 (1) £ =096 =0.027

Figure A.9: V(w,t) versus. IM(w,t): set ¥; = (V{(t +4d) — V(¢))? under different methods with
So =100, K =50, t = {0.2,0.5,0.8,0.9}, and 4 = {0.01,0.02,0.027}
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(a) t =0.2 =001 (b) ¢ =0.28 =0.02 (e) ¢ =024 =0.027

(1) £ =056 = 0.027

(g) t=08d=001 (h) £ =088 =0.02 (i) £ =088 =0.027

e

() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.10: V{w, ) versus. [M(w,t): set Yy = IM{w,t) under different methods with S, = 100,
K =50, t=1{02,0.5,08,0.9}, and § = {0.01,0.02,0.027}
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(a) t =0.2 6 =0.01 (b) ¢ =0.26 =0.02 (¢) ¢ =024 =0.027
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(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027

e

(g) t=086=001 (h) £ =0.88 =0.02 (i) £ = 0.8 & = 0.027

() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.11: V(w,t) versus. IM(w,t): set Y; = (V(t +4) — V(t))? under different methods with
Sy =100, K =80, t ={0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027}
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(a) t =0.2 =001 (b) ¢ =0.28 =0.02 (e) ¢ =024 =0.027

PRy '

(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027

(g) t=08d=001 (i) £ =088 =0.027

() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.12: V{w,t) versus. [M(w,t): set Y; = IM{w,t) under different methods with S, = 100,
K =180,t={02,0.5,0.8,0.9}, and § = {0.01,0.02,0.027}

63




"“:p'-—-"-“-"'\‘_"”’s v )

(a) t =0.2 6 =0.01 (b) ¢ =0.26 =0.02 (¢) ¢ =024 =0.027

(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027
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(g) t=086=001 (h) £ =0.88 =0.02 (i) £ = 0.8 & = 0.027
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() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.13: V(w,t) versus. IM(w,t): set Y; = (V(t +4) — V(t))? under different methods with
Sp =100, K =100, ¢t = {0.2,0.5,0.8,0.9}, and d = {0.01, 0.02,0.027}

G4




(a) t =0.24=0.01 (b) t =0.24 =0.02 (e}t =024 =0.027

(d) =056 =0.01 (e} t =0.5 8 =0.02 (f) t =056 =0.027

(g) t=086=001 (h) ¢ =0.8 8 =0.02 (i) £ =088 =0.027

() t=094 =001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.14: V{w,t) versus. [M(w,t): set Yy = IM{w,t) under different methods with S, = 100,
K =100, t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027}




(a) t =0.2 6 =0.01 (b) ¢ =0.26 =0.02 (¢) ¢ =024 =0.027

' it i !

(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027

(h) £ =0.88 =0.02 (i) £ = 0.8 & = 0.027
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() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.15: V(w,t) versus. IM(w,t): set Y; = (V(t +4) — V(t))? under different methods with
Sy =100, K =120, ¢t = {0.2,0.5,0.8,0.9}, and § = {0.01,0.02,0.027}
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(a) t =0.2 =001 (b) ¢ =0.28 =0.02 (e) ¢ =024 =0.027

(d) t=056 = 0.01 () t =05 6=0.02 (1) £ =056 = 0.027

(h) £ =088 =0.02
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() t=1094=001 (k) L= 006 =0.02 (1) £ =0.9d=0.027

Figure A.16: V{w, ) versus. [M(w,t): set Yy = IM{w,t) under different methods with S, = 100,
K =120, t={0.2,0.5,0.8,0.9}, and é = {0.01,0.02,0.027}
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(a) t =0.24=10.01 (b) t =0.24 =0.02 (e}t =0.2 4 =0.027

o

(d) =056 =0.01 (e} t =0.5 8 =0.02 (f) t =056 =0.027

(g) t=086=001 (h) £ =0.88 =0.02 (i) £ = 0.8 & = 0.027
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() t=1094d =001 (k) t =096 =0.02 ()t =0.94d=0.027

Figure A.17: V(w,t) versus. IM(w,t): set Y; = (V(t +4) — V(¢))? under different methods with
Sp =100, K =150, ¢t = {0.2,0.5,0.8,0.9}, and d = {0.01, 0.02,0.027}

68




(a) t =0.24=0.01 (b) t =0.24 =0.02 (e}t =024 =0.027
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(d) =056 =0.01 (e} t =0.5 8 =0.02 (f) t =056 =0.027

(h} t =0.846 =0.02 (i) t =088 =0.027

(j) t=1084=0.01 (k) t =094 =0.02 (1) ¢ =094 =0.027

Figure A.18: V{w,t) versus. [M(w,t): set Yy = IM{w,t) under different methods with S, = 100,
K =150, t = {0.2,0.5,0.8,0.9}, and é = {0.01,0.02,0.027}
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