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Abstract

In this thesis, we study a newly established unsupervised anomaly detection algorithm proposed by
Cochrane et al. (2020). Particularly, we theoretically prove the dependence of this approach on the
underlying parameters and applied it to financial streams of data for the anomaly detection tasks.
We first use the signature method to extract essential features of the time series data. Then based
on the Mahalanobis distance, the concept of conformance is introduced to measure the distance
among the signature of the data. Finally, we implement the Gaussian concentration inequality to
identify the conformance threshold for the corpus of data with different dimensions, corpus sizes
and error bounds.

The simulated Brownian motion data, which is usually used to approximate the stock behaviour,
is utilized to test the effectiveness of the conformance algorithm and propose suitable input pa-
rameters. Then, we further modify this algorithm and use it to identify the anomaly trading date
of the eryptocurrency order book data. It turned out that this conformance anomaly detection
method is effective for identifying anomaly market behaviour.
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Introduction

According to Goldstein and Uchida (2016) and Grubbs (1969), the anomaly observations are out-
liers that appear to be significantly different from the rest of the observations concerning their
features. Their appearance is also rare compare with the normal instances. The motivations of
anomaly detection tasks initially focus on removing the outliers before further analysis, as some
tasks like pattern recognition are sensitive to extreme behaviour. Nowadays, with more fast and
meticulous methods being proposed, the researchers are interested in studying the anomaly itself

like the cause and pattern of the particular instances. Therefore, various anomaly detection
applications have been proposed in different domains, including the fraud detection of financial
transactions, the intrusion detection of server applications, and illness identification based on med-
ical images or signals.

The general setup of the anomaly detection tasks is similar to the classifications problem, where
an anomaly classifier is first trained and then tested to check the algorithm’s performance. The
method could be supervised, semi-supervised, and unsupervised, depending on whether the train-
ing and test data are labelled. One example of the supervised anomaly detection is frand detection
for credit card payments logs, where labelled data is available for each transaction. The typical su-
pervised learning algorithms are Decision trees, Support Vector Machines (SVM). The training set
of the semi-supervised anomaly detection method only contains normal instances, so the anomaly
is identified if it deviated from the standard corpus. Methods like One-class SVMs and density
function modelling are designed to tackle this kind of problem.

Most anomaly detection tasks require using the unsupervised learning algorithm, as no previ-
ous knowledge of the data is known. Therefore, only intrinsic features of the data are available
during the identification process. In this thesis, we focus on studying the unlabelled multidimen-
sional time-series data (streamed data), so only unsupervised learning methods will be considered.

Traditional unsupervised anomaly detection methods usunally require metrics to measure the dis-
tances among the corpus of data and decide whether an event is an anomaly based on the distance.
Those methods’ performance relies on the arbitrary choice of the metric, which requires external
information that may be hard to interpret and define. To this end, Cochrane et al. (2020) proposed
a simple novel anomaly detection approach for streamed data. Based on the features of streams
specified through the signature method, the conformance threshold is calculated to distingnish the
anomaly instances from the normal observations. The focus of this thesis would be understanding
the dependence of this approach on the underlying parameters and then applied it to the anomaly
detection tasks for the simmlated Brownian motion and real-market financial streams of data.

The path signature, construct by iterated integral of the path, is an informative transform that
maps the multidimensional paths to the sequence of the iterated integrals (Gyurko et al., 2013).
The main reason we are interested in the signature is due to its practical interpretation of the
characteristic feature of the data. Besides, the analytic and geometric properties of the iterated
integral allow us to use few terms to interpret most key information of the data. That makes
the signature calculation a suitable method to prepare data for the anomaly detection algorithm.
Therefore, we will first transform the streamed data into paths then use the truncated signature
of the path as inputs for later training and testing steps. A detailed explanation of the signature
and its essential properties will be given in Chapter 1.

Then we move on to the study of the main algorithm in Chapter 2. A norm, variance norm,




is proposed to measure the distance for the vector in space V. We proved it coincides with the
Mahalanobis distance for data in R?. Then, the conformance threshold for identifying the anomaly
data is defined using the Mahalanobis distance. With the Gaussian concentration inequality, we
could calculate the exact relationship of the conformance threshold g, for Gaussian data with
some dimension d, corpus size n, and error bound e. Then, based on this result, we proposed the
conformance anomaly detection algorithm which use the empirical conformance threshold of the
signature of the streamed data to identify the anomaly instances. The confusion matrix is also
introduced for the evaluation of the algorithm.

In Chapter 3, the empirical test of the algorithm is implemented on Brownian motion data, a
stochastic process that is usually used to simulate the logarithm stock price. One, two, and
four-dimensional Brownian motion data contaminated by different drifts and variances are first
generated. Then, we test different input parameters for each data group through the algorithm
and evaluate the performance by calculating the confusion matrix. Based on the evaluation results
for the specificity { true negative rate), sensitivity(true positive rate), and overall accuracy, we find
that the conformance algorithm could effective identify the anomaly instances under proper input

parameters. Therefore, we propose the most suitable parameters for the data with a particular
contamination rate, which could be utilized in other empirical tests.

In Chapter 4, we modify the anomaly detection algorithm to identify the anomaly trading date for
cryptocurrency order book data in the eight-month period. The level one order book data after
certain transformations become a 3-dimensional data frame, and by assigning data within each
date as a path, we encode it into streamed data. After finding the snitable parameter based on the
conclusions in Chapter 3 and the training data’s evaluation results, we plot the identified anomaly
date against the logarithm mid-price and spread of the test data and find it could identify most of
the anomaly dates.




Chapter 1

Path Signature

The signature of a path is essentially a vector construct by iterated integral of the path. After
Chen (1958) first introduced the study of the signature for the piece-wise smooth paths, Hambly
and Lyons {2010) extended the method to the continuous paths with bounded variation. The
intuition of signature initially arises in the Taylor expansion of the controlled ordinary differential
equations (Lyons, 2014). It has been explained by Lyons (2014) and Chevyrev and Kormilitzin
(2016) that the signature determines the solution of the controlled differential equations.

Scholars have put forward varions applications of the signature method in different fields. Par-
ticularly, Levin et al. (2013) introduced the signature to the study of financial time series data.
Chevyrev and Kormilitzin (2016) explained the signature’s ability to extract characteristic fea-
tures from data and demonstrate it is suitable for various types of machine learning applications,
including both supervised and unsupervised learning algorithms. Moreover, Gyurkd et al. (2013)
provide a conerete example of utilizing the signature to extract underlying features of the order
book data and then perform the classification based on the linear regression model.

In this thesis, we focus on using the signature to extract essential features of the streamed data.
We will give a detailed explanation of the concepts and properties of the path signature in this
Chapter. An introduction of the basic definitions of the path signature is given in section 1.1. Then
we explain some crucial analytic and geometric properties of signature in section 1.2 and 1.3. The
last section explained how we calculated the signature for the streamed data and proposed some
effective transformation methods for the streamed data to reveal its specific properties. Those
concepts and properties provide a base for the anomaly detection algorithm that we will explain
in the next Chapter.

1.1 Definition of the Path Signature

A path X in R? is a continnous mapping from some interval [a, b] to R? , written as X : [e,b] — R%
We usually use X; = X(f) to denote the dependence on the parameter ¢ € [a,b]. Assume the path
is piece-wise differential and if the path has derivatives of all orders, then it is a smooth path. For
example , a two-dimensional smooth path with ¢ € [0,1] could be

Xy = {thrxtlz} = {frf2}
which could be plotted in figure 1.1. A two-dimensional non-smooth piece-wise linear path could

be
X, ={X}, X2} ={t. fF()}

where function [ represent a stock price as shown in figure 1.2.
To include both smooth and non-smooth paths, we suppose the path to be continuous and bounded
variation in the following chapter. We find this is a suitable assumption for data we will be dealing

with.

The definition of signature is based on the iterated integral of the path. For any path in d
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dimensional space X = (X},---

X at time ¢ € [a,b] as

L X3) ¢ [a,b) — B9, define the integral of i-th coordinate of path

suf);__::/ dX = X/ - X! (L1.1)
a<s<t

which S(X) , is a real valued path that mapping from [a, t| to R. Then follow this single integral,

ot

we can define the double-iterated integral for coordinate 7,7 € {1,2.--- ,d} of path X
S(X)E =/ S(X)E, dx! =[ dX: dxd (1.1.2)
' a<s<t ' a<r<s<t

Since S(X )% , and X7 are both real-valued paths, the S[X)f"'__"; is also a real value path that project

a,s

[a, t] to IR

Follow this intuition, we could define the k-fold iterated integral of path X for multi-indexes
iy, i €410 . d} as

S(X)f;;;"-*k:f dXii - dXGE (1.1.3)
! A<t <oty <h

which again is a real-value path. Define the set that contains all the combination of the coordinate
to be

W = {(h,- ++ _.]‘fj‘.) | ke Z 1_.1{1_.- . _.]‘fj‘. [ {1. + .d}}
and it is called the set of words on the alphabet A = {1,--- ,d} consisting of d letters.

Denote the k-fold tensor product space of B? as (R?)®k, it is the vector space generated by
{ea, @ @eg tin, o i = {1, ,d}}

where {e; : 7 = 1,-- ,d} is the standard basis of R?. We use the notation S{X)* to describe a
k-tensor over B%:

d

Sk, = > Sk g v,
iy, k=1 (1.1.4)
= (/ dX; - dx};)
a<ity <<t <h :

Then S(X)*, belongs to k-fold tensor product space (R%)®*,

a.b




Definition 1.1.1 (Signature). The signature of a path X : [a,b] — E?, denoted by S(X)ap, 18 the
sequence of tensors (infinite series of all iterated integrals of X). It could be write as:

S(X)ap = (1L,S(X)sps-- S(X)ip,--+) € [T R (1.15)

a,be abo’
k=0

We usually set the first term equal to 1 by convention and the signature can also be seen as a
sequence of real munbers with multi-indexes run along the set of all words W.

Definition 1.1.2. The the signature of path X : [a,8] — R? of level N € N is the truncate
signature of a path X:

V(X ),y = (1, S(X)) SN (1.1.6)

a,br’ ab

= (f dxi ... d){,":) (1.1.7)
a<t;<---<tp<b -L.zu.].kze{l..{f}

Therefore, the truncated signature SV (X), lives in the truncated tensor algebra which has di-

mension:
dyi=1+d+d vl
A

1.2 Analytical Properties of the Signature

In this chapter, we will explain three essential properties of the signature. Firstly, we introduced
the parameterisation invariant property that used to prove the invariant of signature for streamed
data after transform in section 1.4.

We [irst state the definition of the reparameterisation:

Definition 1.2.1 (Reparameterisation). Suppose a path X : [a,b] — R?. The reparameterisa-
tion of [c,d] onto [a,b] is the monotonically increasing function o : [e,d| — |a,b] and any path
Y =Xoa:[e,d — R? is called a reparameterisation of X.

Then the signature of reparameterisation invariant property is given as:

Lemma 1.2.2. For the path X : [a,b] — RY, suppose path Y : |e,d] — R? is the reparameterisation
of X by o : e, d] = [a,b], then
S(X)ap =8(Y)ea (1.2.1)

Proof. Adopting the prove given by Cass (2021), we use the mathematical induction to prove this
lemma. For 1-fold iterated integral, any t € [c,d]

SY), =Y(t)—Y(c)= X(o(t)) — X(o(c))
= X (o(t)) — X(a) = S(X),

a,o(t)

Suppose for any word w = iyiy - - iy, of length m < k with 4y, -4, € {1,--- ,d}, and any ¢t € [c, d]:

S(}r)triz!:u' — S(X)m:u' (122)

a,er(t)

Then for w' = i149 -+ ipi = wi where 1 = 1, -, d:

t
myﬁp*:i[suwmdﬂ

b
= [ sk axi

_ S(X)Hl;u-’

a,7(t)

As the signature is a sequence of iterated integral with multi-indexes run along the set of all words
w, the signature is therefore parameterisation invariance. O




Then we introduce the lemma that explains the amount of information that truncated signature
could preserve. The proof is also adopted from Cass (2021). Firstly, we introduce the collection of
norms on the space (R?)®*, When &k = 1 we use the Euclidean norm on B? and when k = 2,- -+,
based on the expression of the k-tensor in equation (1.1.4)

1

d 2

IsCOkall = 2 (st n) (12.3)

iy, yig=1

Lemma 1.2.3. Suppose a path X : [a,b] — B9, For the k-tensor S*(X),; over R? where t € [a, b]
we have

Sk Lty
1S(X)% 4l < (}_I (1.2.4)
where L is the length of the path:
t
L(t) :=f | X,| dt (1.2.5)
Proof. When k=1, Hfrf ngH = |f,f Xy dt| < f,f | X|dt = L .
&
For some arbitrary k, suppose for any I = 1,--- ,k, t € [a,b]:
. L(t)
IS, e < 2 (1.2.6)
holds. Then by equation (1.1.4) and the property of the tensor product!:
t
Isxeitll,,, = “f (/ X, ®@-- @ dXik) @dX,
a \Ja<t <<ty <s kbl
t
= ”[ S(X)k, @dX,
a ' k+1
t
< f ISCOE |, IldX. ]
t L(.‘i]k L(f]ﬁi'+l
< ( §) =
= f L) = G
Therefore, according to the mathematical induction, this lemma holds. O

As equation (1.2.4) shows, the norm of the S(‘y)f:__b is bounded by a constant value for each k and

the value decreased as k becomes larger enough. Therefore, we could conclude that most of the
signature information is contained by the first few terms of the signature. Typically, the signature
with level 5 is sufficient to represent the features of the path.

Finally, we introduce the important shuffle product identity that will be used to calculate the

signature’s conformance in the next Chapter. The property shows that the product of two iterated

integral with multi-indexes {éy,--- ,ix} and {j1, -, jm} could be expressed as the sum of higher

order iterated integral with multi-indexes only depend on {i1, -+ ,it, j1.-*+ . Jm }-

We first give the definition of shuffle, it is a certain way to permuted the sets:

Definition 1.2.4 {(n,m)-shuflle). Define a permutation o of the set {1,2,--- ,n+m} that satisfy
o(l)<o(2)<---<on)andeln+1) <on+2)<---<on+m)

as the set of (n, m)-shuffle denote by Sh{n,m).

For multi-indexes I = (é1,---4;) and .J = (f1, -, fm) where ¢1,- - 41, j1,- -, jm € {1,--- ,d}, we
could define the multi-index

(rlr"' s They Thep 1y :rlii'+m] = (?j]."" :iﬂi:jl"' :jm]

Then the shuffle product of I and J is defined as:

!The third line of the prove used a property and we states it in appendix A.1

10
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Definition 1.2.5 (Shuffle product). The finite set of multi-index with length k +m is the shuffle
product of I and J:
ITw.t= {(rﬂ{].]r T rrﬂ{f+1u) | S Sh(',m)} (12?)

Theorem 1.2.6 (Shuffle product identity for k-fold iterated integral). Suppose a path X : [a,b] —
R? and the multi-indezes I = (iy,---4)) and J = (1, - ,jm) where i1, 4, j1, - 1dm €
{1, ,d}:

SOLSX)T, = > SOR, (1.2.8)
KelwJ

The main step to prove this theorem is to apply Fubint's theorem to the product of two iterated
integrals. Then it could be written as the sum of higher older iterated integrals. One simple
example to illustrate this identity would be:

S(X)LS(X)2, = 8(X)u3 + S(X)2, (1.2.9)

Based on theorem 1.2.6, we could deduce that the product of terms of the signature can be write
as the sum of the linear combination of the higher order terms.

1.3 Geometric Interpretations of the Signature

There are some straightforward interpretations of the path that the signature could demonstrate,
like the imcrement and signed area of the path. We use two-dimensional paths to illustrate how
the lower level signature capture the character of the paths, and those conclusions could be put
forward to a higher signature level.

For example, as equation (1.1.1) shows, the signature of level one could only represent the in-
crement of the path, and cannot interpret the difference of the area that the path encloses. This
could be illustrated by comparing two-dimensional paths X = (X7, Xy) in figure 1.3. We could
easily see that the signature of order one is the same for two paths.

1.0 10
08 0.8
06 06
04 04
0z 02
00 00
0.0 02 04 08 08 1.0 0.0 02 04 06 08 10
X

Figure 1.3: Two-dimensional smooth path comparison

Some combination of 2-fold iterated integrals have the ability to represent the signed area enclosed
by the path and the chord (straight line connecting the path’s beginning and endpoint). It is called
levy area. For the two dimensional path, the levy area could be expressed as:

a=5(f axix - [ AXZXE) = S(S(XM3) — S(X3D) (131
a<ti<ta<b a<ti<ta<b '

The levy area for the above paths is shown in figure 1.4, We could see that paths with the counter
clockwise movement enclosed the positive levy area, and those with clockwise direction enclosed
the negative area.
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Figure 1.4: Two-dimensional smooth path Levy area

The higher level of signature could interpret other specific geometric characteristics for the paths.
Specifically, the signature with order three could identify the difference between paths with the
same levy areas. To sum up, those geometric interpretations demonstrate that the signature with
lower level could capture certain characteristics of the paths which valid the property in section
1.2 and ensure the viability of using the first few terms of the signature to lower the dimension of
the streamed data.

1.4 Streamed Data and its Transform

In financial fields, the data we obtained are usually streams of data.

Definition 1.4.1 (Streams of data). The space of streams of data in a set y is defined as
S(x)={z=(r1.,--.z.) 1 z; € x,n € N}

Therefore, to calculate the signature for those data, we need to map the discrete data stream
into continuous time series. The most straight forward transform is using the linear interpolation
to convert the discrete points into continuous paths. Cochrane et al. (2020) gives the following
definition for signature of streamed data:

Definition 1.4.2 (Signature for streams of data). Suppose streams of data in set ¢ C R?
= (x1, - ,2,) € 8(C)

Let

i
X =mx;4q fori={0,1,.-+ ., n—1
(n — 1) +1 {0,1,.--, t
and linear interpolation in between. Since ; € RY, the dimension for each time stamps is equal
to d. Therefore, we could denote X as X = (X, ,X;):[0,1] + R4 X is a continuous and
bounded variation path so we could further define the signature of order N for the streamed data

x:
SM(z)ay = (/ dXg - dXti,t) (14.1)
a<i < <iesh el

k=(

In the Chapterd and 4, we will calculate the signature for simulated and real market streamed data
based on definition 1.4.2.

The certain transformation that maps the streamed data to another streamed data could reveal
specific properties of the data. As we explain in section 1.2, the signature has the parameterisation
invariance property, which allows the data after reparameterisation to still has the same signature
value. Therefore, we could implement the transformation while ensuring the signature of streamed
data remains unchanged. We introduce three main transform methods that will be utilised in the
practical steps in Chapter 3. All transforms are tested effectively in preserving certain properties

12




of the paths in the work of Flint et al. (2016), and Cochrane et al. (2020).

Suppose a stream of data z; € R?

= (']-‘lr o r']-‘u]

Add Time Transform

The add time transform is simply adding an extra time dimension into the stream of data:
Xoddmtime = ((to, @), -+, (ti,72),++ , (tn, 7)) (1L42)

This transform could be effective for the financial data stream as the time stamp is usually a
essential information for financial time series data, and adding this time value allow the signature
to fetch more precise feature of the data.

Invisibility Transform

The invisibility transform given in Cochrane et al. (2020) is a transformation that maps the data
in B9 into R+

Finvis £
X :('1[h"'.~

[T

iyt s Tngl) (1.4.3)
Ip=(z;,0)and fori=1,--- ,n+1
Ti=(ri1,1)

The invisibility transform is used to preserve the absolute value of the streamed data after calcu-
lating the signature.

Lead-lag Transform

The evaluation of quadratic variation is an essential property for financial data. To capture the
quadratic variation for the paths, we need to perform the lead-lag transform which is similar to
the calculation of the Levy area. The lead-lag transform maps data in B? dimension into a R
dimension:

Xh-rui—fru: _ [.if[;, . _..’.'('_. . ,5.2“) (144)

fori=0,---,n

We use a simple example to illustrate how the lead-lag transform capture the quadratic varia-
tion of the path:

Remark 1.4.3. Suppose a one dimensional path X = {@q, x5, 23,24} = {1,3,2,4}, the lead-lag
transform result is:

Xleadlae — {(1,1),(1,3),(3,3),(3,2),(2,2),(2,4), (4,4)} (1.4.5)
We could plot the lead-lag result in figure 1.5:
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Figure 1.5: Lead-lag transform for the example Figure 1.6: Lead-lag transform for the stock path

The absolute value for the levy area of the path after lead-lag transform is:

|4 = é[(g -1+ (3-2%+ (4—2)

and it coincides with the quadratic variation of the data which is:

1 1< .
| Al = EQVU{) = §Z[Xi+l - X;)*

i=0

(1.4.6)

(1.4.7)

We also draw the lead-lag transform result for the entire stock price data, the result is shown in
figure 1.6.
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Chapter 2

Anomaly Detection using the
Conformance Distance

After calculating the signature of the streamed data, we now move on to study the anomaly de-
tection method for the transformed data in the vector space.

Various types of norms that aim to measure the distance among vectors have been proposed
to project a real or complex vector space to a non-negative real nmimber. Traditional normal like
the Euclidean norm only captures each element’s value and draws less attention to the interaction
among the data in higher dimension space. Inspired by the covariance, which measures the joint
ariability of two random variables, Cochrane et al. (2020) construct the variance norm for the
vector in space V. When V' = E?, we find this norm is the same as the Mahalanobis distance,
which has been widely used in the classification of high dimensional data.

Then we move forward to searching for methods that utilized distance to identify the anomaly
behaviour. Cochrane et al. (2020) proposed the use of Gaussian concentration inequality, a theory
that demonstrates how much a random variable deviates from its mean. The proof of another
lemma, Johnson-Lindenstranss lemma in infinite dimension case, also utilized the concentration
inequality. Inspired by its proving steps, we use the inequality to theoretically calculated a thresh-
old g, for identifying anomalies among data with underlying parameters sample size n , dimension
d and error bound e. Some empirical test of this threshold is also given, and we find there is a
discrepancy between the empirical and theoretical results that could cause by the approximation
steps during the proof. However, the dependence of the theoretical and empirical threshold on the
underlying parameters is consistent. Therefore, using the threshold to identify the anomalies is
still valid, and we could establish a detailed algorithm based on this conformance threshold.

In the following sections, we will first introduce the definitions and properties of the variance
norm and conformance distance. Then we apply the Gaussian concentration method to define
the conformance threshold used to identify the outlying behaviours. After that, some effective
evaluation methods for the anomaly detection algorithm are discussed in the third section. In the
last section, we summarize the conformance algorithm and prepare for its implementation in the
next Chapter.

2.1 Measuring the Distance
We first introduce the basic definition relate to the vector space that we will be working on.

Definition 2.1.1 (Dual Space). Given a vector space V', the Dual space V* is defined as the set
of all linear maps @ : V' — F . The p is called a linear functional.

Remark 2.1.2. Suppose V = R? and the elements of its dual space V* to be ¢ : BY — K. Then

i represent linear maps that accept vectors v = (vy,--- ,v4) € E? as inputs and spits out real
mumbers, and the dual of V has the same dimension as V' which is RY in this case. The linear map
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@ e V" can be write as

d
plr) = {z,v) = Zi,‘iari (2.1.1)
i=1
where v; € R, Suppose |[v]|2 = v/ + -+ + 2 as the euclidean norm, an immediate corollary is

that by Canchy—Schwarz, we have
le(z)] < [(z,v)] < [[vll2llzll2 = ellz]|
where ¢ = ||v||2. Therefore, we proved that ¢(z) is bounded.

Let p be a probability measure that re-centred to have mean zero on a vector space V. Define a
covariance quadratic form on the dual of V', it could be written as:

cov (i, @) := ]t.-f'[-r)w(-rlﬂ-(d-r] = B[4 (z)p(x)]

If we suppose V = R9, by the equation (2.1.1) in the Remark 2.1.2, the covariance becomes,

cou(,¢) = EX[()p ()]

d d
= B[O wa) (> way))] (2.1.2)
i=1

4=1

=T Kw
where K = ll:'.“[a.'T.r] is the covariance matrix of z, and v = (vq,- -+ ,va), w = (wy, -+ ,wy) € B,

2.1.1 The Variance Norm and the Mahalanobis Distance

We first recall the definition of the norm and then state the variance norm defined by Cochrane
et al. (2020):

Definition 2.1.3 (Norm). Given a vector space V', a norm on V is a real-valued function
[[ -]+ V — R with the following properties:

e forall o € V., if ||z]| = 0 then x = 0.
o |[sz|| = |s|||z| for all z € V" and all scalars s. (|s| denotes the absolute value of a scalar s)
o ||z +yl < ||z + ||y for all z,y € V

Definition 2.1.4 (Variance norm). Let p be a probability measure (re-centred to have mean zero)
on the vector space V. Then covariance quadratic form cov (1), ) induces a dnal norm defined for
z eV by

llzllp = sap  p(x) (2.1.3)

cov{g,p) <l

According to equation (2.1.1) and (2.1.2), if V = R, the variance norm can be written as:

d
|z, = sup v"z= sup VT (2.1.4)
f TKve<1 Z

R vl K<l i—1
where K = E#[zTz] is the covariance matrix for centred z and v; € R for i =1, ,d

Equation (2.1.4) could be seen as maximizing a linear function over a ellipsoid centred at the
origin (Boyd et al., 2004). To solve this optimization problem, define new variables y = K *v and
= f\’%.].‘, then equation (2.1.4) equals to:

max Iy

(2.1.5)
st yy<l




By solving the optimization problem, we could deduce that the solution to equation (2.1.5) is
Yyt = = . In the following chapter, we suppose the K is positive definite where elements in x is

[l

linear independent nnless z = 0 (then ||z, = 0) '. Therefore, K is invertible and the solution for
origin problem is
K- 'z

[l 2|,

*

(2.1.6)

Insert this result in equation (2.1.4), the variance norm for z € B? becomes:

[[z]|, = VaT K1z (2.1.7)

This result corresponds to the definition of Mahalanobis distance ||z||s which represent the distance
between random vector = and its mean. Now we prove that the variance norm is actually a norm:

Proof. For the first property in definition 2.1.3, suppose there exists some & = (71, ,74) € RY,

that
[[z]|, = VaTKz =0 (2.1.8)

Since we suppose the K = E# [z 2] is positive definite unless # = 0. Therefore, the quadratic form
T K =0
and the equivalent ouly holds when = = 0.

For the second statement,

s2xTK-1r
|s|vVzTK -1z (2.1.9)

= lslll= /[

llszllu =

Now we prove the last property (adapted the prove given by Costa (2018)). By Cholesky decom-
position for the positive definite matrix K (when = # 0), there exist a unique triangular matrix U7
with positive diagonal entries such that

K=uuT
If we suppose 7 = Uz, y = U 'y and || - ||z to be the Euclidean norm, then:
=], = \/.rT({.f{.J’T)‘l.l.‘ = \/.er({.J’T)‘lf.f‘l.]:
(2.1.10)
=/ (U1} TU 1z = ||Z||2
Then replace = by y and = + y, we have
Iyl =17l o
|z + /|, = 1T + 7l
Since by the triangular inequality for the Euclidean norm we have :
17+ 7l < |7ll2 + 17l (2.1.12)
Then by equations (2.1.10) and (2.1.11), we have:
Iz + ylln < [l + yll (2.1.13)
|

1This assumption is plausible as we assume the data to follow i.i.d distribution in later analyze.
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Another important property that we will use is the Lipschitz continuity of the variance norm.
Zantedeschi et al. (2016) proved the Mahalanobis distance of a centred pair (z,,z,) € B? x R?
with some positive semi-definite matrix M

ez — 2], = /(@1 — 22)T M (21 — z2)

is k-Lipschitz continuous function. Adapting the proof, we first state the definition of multi-variate
Lipschitz continnity to prepare for the calculation of the Lipschitz constant for the variance norm.

Definition 2.1.5 (Multi-variate Lipschitz continuity). The function f : B x BT = R is k-

lipschitez with respect to a norm || - ||, for any zy, zq, 2}, 2}, € R%:
Iz v
P I | I
|[flz1.22) — flzy,23)| < k| (1‘2) - (r;l):: (2.1.14)
T zy /),

and if f is differential, then the best constant k,, could be estimated by:

. _ fly o
k, = sup |f(z1,m9) .f(-’ll'-lz” (2.1.15)
A.]_.Iz:z-’]_.l.-’ze[b‘rf s} _ €y
H\ zo T Il
= sup [[Vf(z1,22)|[n (2.1.16)
z,za R
Lemma 2.1.6. For z,, 1, € B?, the variance norm
[|z1 — 22| = V-f(.rl —x2) VK" Yz, — x2)
with K = UUT = EF|(z) — xy)(z) — x2)7] is k- Lipschitz function with respect to the norm || - ||
where
k=]
and V = (U"H)7T
Proof. By definition 2.1.5, k = sup,, ,,epa ||V f(x1, 22)[2, and since we have
A/ () — a0 )T K Yxy — x, 1 i
(\/(11 12). Ty — 3p) _ i .(—((.1‘1—.i‘g)TK_l(.Tl—.Tg)}
dry 2/ (w1 — 22)T K1 (11 — 1) 911

B 2K oy — 2K iy

N 2y/ (11 — 20)T K1 (w1 — )
KYx —x4)

Ve =2 TK g — )

and

v/ (w1 — x2)TK Ly —x2) -~ K Y ay — )

Oy ViEr — x)TK 1z — )

Suppose K = UUT and V := (U~1)7, then
Kt=whvt=whHvt=vvT
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Therefore, when f is the variance norm of a pair (r1,rs), the Lipschitz constant & equals to:

sup || 7 f(ay,w0)||2

xy,xacRe

[ 2 2
= sup | a\/(-lfl —xp) T K1y — xa) || d\/ xy — 1) TK Yy — 25 ||
£y.ea€RA \ I Ory I I O1y I

K-Ya, — 1) K-"Yzy —x)

= su I +1 I
1-1_1-22P"\ Vier —2)TK Yz — ) | 0z —22)TK "z — ra) |f,
2
— '_ K-Yxy —x2) i:
1-,,_1-,::Prf\ \/ Ty — Ta) Tf\ Yy — 12)
2
Il VVT (1) — 1) I
= sup 12 I
x]._zze_P"\ \/ r1 — o)L VV T (2 1— T2,
f T
| VT(z —
= sup 2l Bz |
&y, 2 ERA \/ i (r1 — -i-‘z)||2 o
|'I L”T[ T — 12) _,2

= sup
V2|Vl

(1—12”2'2

[FAY

Therefore, we have that rho variance norm of a pair (z;,75) € R x R? is a Lipschitz continuity
function where the k = O

2.1.2 The Variance Norm for the Signature

Now we are ready to apply the variance norm on the signature of streamed data. Let C C R be a
finite corpus of streams of data, X € C is an element with dimension R, Let SV be the signature
()flmol N € M. Define || ||, as the variance norm associated with the centred empirical measure p
of {SV(X) : X € C}. With the definition of variance norm equation (2.1.4), we have that for any
w e SV (X)

sup  @lw)?

cov{p, )<l

llwlli
o(w)? (2.1.17)
= s1 —_—
;:arf\p\ {0} cov(, )

Based on equation (2.1.7), the variance norm could be written as the Mahalanobis distance:

[[w]|, =V wl K—1w

or

||‘u.'||fl = <u.'_.h’_1u.'>
where K is the empirical covariance matrix & = E#[wTw]. By the shuffle product identity,
the product of terms of signature could be express as the sum of higher order signature terms.
Therefore, for terms with multi-index 7, .J, w; = /(X)) and w; =§ J(X) in signature w,

Ky = EAS' (087 (X)) =B D sM(x)]
MeluwJ

or Clochrane et al. (2020) write it as

b

Kij = (e; we;, E* [N (X)])

fori, 7 =1,....dxn.

19




2.1.3 The Definition of Conformance

Now we are ready to use the variance norm defined above to measure the distance between groups.
As we mainly work on the B? space, the Mahalanobis distance is used express the new measure
conformance.

Definition 2.1.7 (Conformance). Let p be a probability measure on a vector space R, Define
the conformance of a vector « to g as function f(z;p) : RY = R

flosp):=  inf |lz—y|,= inf sup Tz — y) = inf \/(‘1.‘ —y)TK 1z —y)

yEsupp(p) yeEsupplp) 4 T Ko<l yEsupplp)
(2.1.18)

Where K = E*[(z —y)T(z — y)]

2.2 Determine the Threshold for Anomaly Behaviours

In this part, we will be using the Gaussian concentration inequality theorems to find the largest
acceptable conformance distance for the data within the same Gaussian distribution group.

There are different versions of Gaussian concentration inequality and here we demonstrate the
definition given by Boucheron et al. (2013):

Definition 2.2.1 (Gaussian concentration inequality). Let X = (Xq,---,X,) be a vector of d
independent standard normal random variables. Let f : R? — R denote an L-Lipschitz function.
Then, for all ¢+ = 0,

PLS(X) — Bf(X) > 1} < e/ 22.)

2.2.1 Identify the Conformance Threshold

Corpus C contain vectors of data z; € BY where i = 1,.-- ,n, we are interested in studying how
large the conformance distance r need to be so that for a vector # € B? that independent from the
corpus C, the probability that the 2’s conformance to corpus C is greater than a error bound e.

We conld express this statement in the formula (2.2.2):

P{__iqfc |z =z, <r} =€ (2.2.2)

In the proof of the Johnson-Lindenstrauss lemma, Boucheron et al. (2013) introduce the use of
Gaussian concentration inequality. The proving steps inspired us of how to find the boundary of r
in our problem, so we will first look into the Johnson-Lindenstrauss lemma and its proof 2.

Lemma 2.2.2. Let A be a infinite subset of RY with cardinality n. Assume that for some v > 1,
X;; € Gv)® and let eg € (0,1), if d > 10002 2log(n/\/a), then the linear mapping W from
RP — RY with:

D
Wila) = o Xi; (2.2.3)

i=1

is a e-isometry on A which is for any a,a’ € A:
(1 =e)la—a'||* < |If(a) = f(@)|* < (1 +¢)a—a|*

According to the Boucheron et al. (2013) in section 2.9, W is a eisometry on A if and only if
the random variable sup,, . |||W{a)||? — 1| is highly concentrated around its mean. This could be
proved using Theorem 2.2.3:

?The complete proof of the Johnson-Lindenstrauss lemma is given in appendix A, we only explain the relevant
proving part in this section
3X; ; follow the sub-Gussian disturbution which is proposed by Buldygin and Kozachenko (1980)
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Theorem 2.2.3. For M = dsup,.7 ||W(a)|* and all t > 0:

P{M — EM > 2v2tEM + 2t} < et (2.2.4)
where
. a—a , ,
T= {—r.(a..a. JeEAx Aanda # a'}
[la—a’|]

Proof. We first assume the T is a finite set. Define function f : R4P — R

flz) = m}r%z:;le(z:_f’zln-j.x:i_j)f (2.2.5)

Then M = f(z). The equation (2.2.5) could be seen as maximizing a linear function over a ball.
We could deduce that +/f is 1-Lipschitz function, adopting the definition 2.2.1, we have for any
t =0

P{M > EM + 2V20EM + 2t} < P{M > (EVM + 2%
P{vM — EVM > 21}
—t

e

[FaN

P4

|

Similar approach could be adopted to find the boundary of r satisty equation (2.2.2) if we replace
the infimum in the conformance by the sum of all variance norm of = to z;. Note that for

{r:reA}c{r:re A’}

we have
Plre A) <PB(re A)

Therefore, since

{r: Z vf(.r — o) TK"Y o —z)<nxrycir: im‘:fC !v"j(.lf — o) TK-"Yo—z) <71} (2.2.6)

260

we could further write the equation (2.2.2) as

™ W — ™ Iff‘_-_T’—]_-_‘
l{i_l‘r}:fCHJ. .1.(||“<r}7l{1_1lr}:fcv(.1 o) TK-" Yo —x;) <r}

2.2.7
> P Z V-f(.r — ) TK-" Yz —a)<nxr} ( /

x;eC

and K = E[(z — z;)"(x — 2;)]. We have proved that the variance norm is a k-Lipschitz function,
and as the Lipschitz continuity preserve over sum, the Lipschitz constant for the sum of variance

norm:
Z vf(.r — ) TK-"Yx — ;)

z;C

nk =nv2||Vl|z = V2no,u. (V)

where ,,,, (V) is the largest singular value of V' = (U7 and U is the lower triangular matrix
where K = UUT

The expectation of the sum of variance norm is:

noe = E( Z V'/(.].‘ — i) T Yo —a)) = n.ll::(v'f(.lr — ) TK Yo —a:))

z€C
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then by Gaussian concentration inequality:

P{ Z V/(J: — ) TK Yz —z;) —na<nxr—na}

z;€C
=1-1 Z V-f(.r — o) TKYe—z))—a>nxr—a}l
z;&C
(r—a)?
>l—e 27 e

Solving the equation we get *, if r satisfy

r > n-—kv"an (2.2.8)

1—¢

then it satisfy equation (2.2.2)

2.2.2 The Conformance Threshold for Gaussian Variables

If we further suppose that z;, i = {1, ,n} follow i.i.d centred Gaussian distribution N (0, o?1,)
and x is a (fixed) Gaussian sample that independent from z;. Then

z— 1z ~ N(0,0°L4) (2.2.9)
Therefore, i = 0?1 and U = ol so the Lipschitz constant for the variance norm is:

V2

e = \/El Vi = — (2.2.10)
o
and we have
Y = (z— 270" ~ N(0,14) (2.2.11)
therefore,
(z—2) 'K Yo—x)=YYT ~ &3 (2.2.12)

and the square root of the chi-square distribution is chi-distribution, so the expectation for the
rariance norm is the expectation for a chi-distribution random variable, then we have

a1
o= E[Vf[z _ .]‘,-)Th'_l(.l‘ _ ‘1‘(-]] _ \/5[ Ef;lﬂ;)* 1))
Then,
VAR +1) 1 _
e I'(id) +k VZIH — (2.2.13)

Therefore, we deduce the lower bound of the conformance distant for identifying the anomalies,
we denote it as

(2.2.14)
1—€

If the conformance distance 7 of an independent Gaussian vector in R? to a Gaussian corpus C
is smaller than this threshold ¢., we regard it to be a normal element in that group (share same
distribution), otherwise we define it as an anomaly. In the next section, we will performing some
empirical test and propose how to utilize this result in anomaly detection tasks.

4 Two solutions could be deduce through the function but we only keep the one that gives us the lower bound of
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2.2.3 Empirical Test of the Conformance Threshold

We will test whether the empirical simulation could deduce the same threshold distance as g, in
this section.

To approximate the probability of the conformance distance of one Gaussian sample = € R?
to a group of Gaussian samples. We first use the conformance distance of 100 Gaussian samples
to a group of Gaussian samples to construct the empirical distribution. This process is repeated
ten times to eliminate the randomness.

Then the average of the e quantile ¢, for each empirical distribution (correspond to the theo-
retical threshold with error bound €) is ealenlated to compare with the theoretical result g.. The
empirical and theoretical results are compared for d = 2,3, 4,5, n = [500,2000] and e = 0.9. Part
of the results are shown in the chart 2.1:

dimension threshold type n=>500 | n==600| n="700 | n==800| n=900 | n=1000

2 dim empirical 2.227 2,474 2,181 2.146 2,187 2124
modified theoretical 4.288

3 dim empirical 2.701 | 2.594 | 2.758 | 2.631 | 2.839 | 2.664
modified theoretical 4.631

4 dim empirical 3.107 | 3.285 | 3.299 | 3.042 | 3.204 | 3.079
modified theoretical 4.915

5 dim empirical 3.594 | 3.446 | 3.411 | 3.337 | 3.516 | 3.626
modified theoretical 5.163

Table 2.1: Comparison of theoretical and empirical conformance threshold for Gaussian sample

We could see a discrepancy between the empirical and theoretical threshold for data with each
dimension. Several potential sources could induce this difference:

Firstly, there are several approximation steps during the proof (like equation (2.2.7)), which made
the theoretical threshold higher than the empirical one. We are confident that if a Gaussian sam-
ple’s conformance value is larger than the theoretical threshold, it must be an anomaly. However,
the actual boundary does not need to be that high as we could find a more precise one through the
empirical quantile of the data sample. Secondly, the numerical approximation for the empirical
test, like the inverse calculation of the cor-variance matrix, may not be accurate enough. Therefore,
we need to conduct more detailed research to find the exact source of this discrepancy in the future.

Although the discrepancy exists, we still find that the dependence of empirical conformance thresh-
old ¢, on dimension d and n is the same as the theoretical result in equation (2.2.14). By plotting
the empirical results in figure 2.1, we could see for both empirical and theoretical conformance
thresholds:

e As dimension d increased, the conformance threshold g, increased

e Por Gaussian data with fixed dimension d, the change of sample size n has negligible influence
on the value of conformance threshold g, as it is always around a certain value.

Therefore, we could identify the conformance threshold for the sample data with certain character-
istics despite the sample size, which means that it is feasible to utilize this method to distinguish
the anomaly instances from the normal corpus.
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Figure 2.1: The empirical conformance threshold for Gaunssian sample with different dimensions

Based on this result, we are ready to introduce the conformance algorithm for anomaly detection
tasks. Cochrane et al. (2020) proposed that we could first split the corpus into two halves then
identify the suitable conformance threshold for the data.

Let Z € B? be a finite corpus of Gaussian data with size 2n. If we split the corpus randomly
into two equal-size halves and denote the two parts by Z;,Z;. For each random point @ € 7y,
we could calculate its conformance distance r to subset Z,. Then based on the proportion that
the data has been contaminated, we could define the suitable threshold to identify the anomaly
instances by changing the error bound e. The detailed algorithm will be introduced in section 2.4.

2.3 The Evaluation Method for Anomaly Detection Algo-
rithms

After proposing the outline of how to using the conformance threshold to identify anomaly in-
stances, we also need to discuss how to evaluate the performance of this method. As a special
classification problem, the anomaly points usually have a low occurrence, so it is not sufficient to
evaluate the method only by the overall accuracy.

For example, in fraud detection tasks for credit card data, the focus is on correctly identifying
the anomaly transaction instead of correctly identifying the standard transaction, as missing any
fraud transaction could result in significant loss for the financial institution. Therefore, more evalu-
ation caleulations need to be considered to evaluate the anomaly detection algorithm’s performance.

The Confusion malriz as a special type of 2 x 2 evaluation matrix is designed to represent the
prediction result against the actual label. The value in each position of the matrix is listed in
figure 2.2.

Prediction Result

1 [}

False Negative
(FN)

Actual Label

False Positive
(FP)

Figure 2.2: Confusion matrix
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The True Positive (TR) represents the model correctly identify the anomaly points as anomalies.
The False positive (I'P) represents the model wrongly predict the normal points as anomaly points.
The False negative (FIN) represents when the model identifying the anomaly points as the normal
points while the True negative (TN) is an outcome where the model identify the normal points
correctly.

Several quantities that used the value in the confusion matrix are proposed to evaluate the perfor-
mance of the model:

Sensitivity or True positive rate (TPR) is the proportion that labelled anomaly data is test anomaly:
NG

TPR = —————— 2.3.1
TP TN (2.3.1)

Specificity or True negative rate (TINR) is the proportion that normal data are tested as normal:

TN
TNR = —— (2.3.2)
I'N +FP

Accuracy (ACC) is the proportion of correct predictions among all data:

TP + TN
ACC = 233
TP + FN + TN+ FP ( )

If we changed the conformance threshold and let the true positive increase, the true negative rate
would decrease. Therefore, there is a trade-off between the two values, and we hope to find the
most suitable threshold that yields the best result.

This trade-off could be visualized by the Receiwer Operating Characteristic (ROC) curve, which
measures the performance of the model at various threshold settings. It is created by assigning
the true positive rate on the x-axis and the false positive rate on the y-axis. The area under the
curve (AUC) measure the ability of the algorithm to identify the anomaly as the higher AUC, the
better the performance of the model.

In Cochrane et al. (2020)'s work, the ROC-AUC is plotted for each conformance anomaly de-
tection task (using the conformance distance as the scores) to compare the effectiveness of this
model to other models. However, in this thesis, we define the conformance threshold g, through
the error bound €, and we are interested in finding the suitable e that yields the best result. There-
fore, we will directly compare the sensitivity, specificity and accuracy results for different e instead
of plotting the ROC-AUC curve.

2.4 The Conformance Anomaly Detection Algorithm

In this section, we summarise the conformance method for unsupervised anomaly detection prob-
lems. From any given stream of data, we would first split it to train and test set where the train set
is used to define the conformance threshold, and the testing set is used to validate the effectiveness
of this detection algorithm. We assign the label for normal corpus to be y = 0 and anomaly as
y=1
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Algorithm 1 Identify the conformance threshold for the anomaly

Input: training data Xy.q;,, group index yigin
the transform method, signature levels k, error bounds e
Output: the anomaly threshold g,, predicted label for part of the training data 3}, ,;,.,
the evaluation parameters

begin
1. Applying certain transformation to the training data Xi;ein and calculate its signature as

S(Xirain) with level k. Then centred the S( X0, ) by applying Min-Max normalisation
2. Randomly split the S(X{.4in) and its correspond label y,.4:, into two equal size halves

S(Xfain) and S(XF00). Uhain and 05,

train

) to subset S(X?

train

3. Find the conformance distance of each elements = in S(X} ). Specit-

train

ically, calculate the variance norm (Mahalanobis distance) of = to each element in S(X? ;)

and then find the smallest result f(x, S(X2,:.)) to be the conformance value

4. Look at the right tail of the empirical distribution of the conformance value. For a given
error threshold e, find the conformance value correspond to the e quantile of the empirical
distribution and set it as the conformance threshold ¢, to identify the anomaly behaviour

If the conformance of = to S{X?

train

5. Predict label g}, for elements in X} ) larger than

train®

threshold ¢., we define it as the anomaly data

6. Check the accuracy of the algorithm for training data by calculating the sensitivity, speci-

ficity, and accuracy using the predicted label 44,,;, and original label ¥} ..,

end

In the next step, the conformance threshold g, is utilized to identify the anomaly streams in test
data X4, and check the performance of the method. Note that since we proved in section 2.2.2
that the sample size have negligible influence on the conformance threshold, the corpus size Nipain
of testing data could be different from the Nieg.

Algorithm 2 Identify anomaly data using the conformance threshold

2
train®

Input: Part of the training data X testing data X, and the correspond group index y;qin
the anomaly threshold g.
Output: The predict label for testing data giest, the evaluation parameters

begin
1. Applying same transformation as the training data on testing data X,.., calculating its

signature as S(X;.4) and applying the Min-Max normalisation to S( X ).

2. Calculating the conformance distance of each element in S(X;..¢) to S(X2 . ) similar to

train
the training process
3. For elements z' in S(X;esr) that the conformance score f(z', S(X2,;,)) is larger than the
anomaly threshold g,, we predict it to be an anomaly data and assign its label as f.. = 1.
The rest is labeled as 3., = 0

4. Comparing the accuracy of the algorithm for testing data by calculating the sensitivity,

specificity and accuracy using the predicted label .., and original label y;.q.

end

The algorithms 1 and 2 will be implemented in Chapter 3 on streamed data to study how inputs
in terms of the transform method, signature levels and error bound e influence the performance of
the model. Then, the most suitable input parameters combination will be selected to detect the
anomaly instances on the financial market data in Chapter 4.
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Chapter 3

Evaluation on Brownian Motion
Data

In the Chapter 2, we demonstrated the proof of using the conformance threshold to identify anoma-
lies among Gaussian data and then proposed a conformance anomaly detection algorithm based
on that theory. In this Chapter we will continue to test this method on anomaly detection tasks
for the streamed data.!

In the financial field, the log-normal moneyness of option price is usually model by Brownian
motion, a stochastic process with Gaunssian property. Therefore, the simulated Brownian motion
data would be an ideal example to test the conformance algorithm. By generating a group of
standard one-dimensional Brownian Motion paths, we find that this method could identify paths
with relatively extreme behaviour, namely the path with larger drift or variance compared to the
main corpus.

Then, we move on to study the performance of this conformance method. As states in the sec-
tion 2.4, the results could be affected by various underlying inputs parameters, in terms of the
corpus size n and dimension d, the transform method applied on the original data and the er-
ror bound e. We hope to understand how the conformance threshold and prediction performance
depend on those variables and suggest the most effective input parameters for different data groups.

Specifically, we generate 1-dimensional, 2-dimensional, and 4-dimensional data contaminated by a
small proportion of anomaly paths (either by drift or variance), partitioning it to obtain the train-
ing and testing corpus, and applied the conformance anomaly detection algorithm on those data.
Following the evaluation way mentioned in section 2.3, the sensitivity, specificity, and accuracy
are then calculated using the predicted label and the original label. As we focus on the anomaly
detection task, the sensitivity that represents how many anomaly instances have been correctly
identified should be high, so we will first consider this parameter during the evaluation.

For one-dimensional Brownian motion, we focus on studying how the error bound e and the trans-
form method influence the performance of the conformance model. The Isolation forest model,
one of the most popular unsupervised learning algorithms, is also applied to the one-dimensional
Brownian motion data as a comparison. We then selected the most suitable inputs based on the
evaluation result and applied them to the two and four-dimensional Brownian motion anomaly
detection tasks. We also tried different training and testing size to check whether sample size n
influence the performance of the model. The evaluation result shows that as long as we select
the suitable underlying parameters, this algorithm could effectively identify the anomalies among
Brownian motion data with different sizes and dimensions.

!The experiments are conducted on a Surface Pro 6 equipped with Intel Core i5-82500 CPU and 8 GB RAM.
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3.1 Anomaly Detection on One-Dimensional Brownian Mo-
tion Data

We first give the definition of the standard Brownian motion:

Definition 3.1.1 (Standard Brownian motion). A standard Brownian motion Wy also known as
the Wiener process, is a stochastic process that has following properties:

e Wy=0

e The increments of W is independent. For any ¢ > 0 and u > 0, Wiy, — W; are independent
from the W, where s < ¢

e The increment of W is Gaussian: Wiy, — Wi ~ N(0, u)
o [} is continuous in ¢

We could see that the Brownian motion is closely related to the Gaussian distribution. Therefore,
as we proved the feasibility of identifying the conformance threshold for the Gaussian sample in
section 2.2.2, the Brownian motion sample would be a suitable example to test our conformance
anomaly detection algorithm.

3.1.1 Identify the Anomaly Paths

We first generate the one dimensional standard Brownian motion sample to test our conformance
method. For each Brownian motion path, suppose the time span ¢ € [0, 1], we equally divide it into
ty, -+ ,tipp. Follow the definition 3.1.1, the sample W, for each time stamp t; could be generated
through equation:

Wy =W, ,+2 (3.1.1)
where Z ~ N (0, —ti—1)

We repeat this process to generate Nipain = 1000 sample paths in total (see figure 3.1).

0.1

02

0.3
a0 0z 04 06 [2:] 10

Figure 3.1: Simulation of 1000 standard Brownian motion paths

Some transformation methods mentioned in section 1.4 are first adopted on the data before the
signature calculation steps. Then following the algorithm 1 in section 2.4, we calculated the
threshold and labeled the anomaly paths. As the anomaly paths usunally take up a few amounts of
the total population, we set the errar bounds to be e = 0.9, 0.95 to approximate the actual scenario.

We calculate the results for signature level k € {1,---,5}. As the results for different signa-

ture levels are similar, we only present the result of k = 4 in figure 3.2 for illustration. The pink
paths identified anomaly paths and the normal instances are in blue.
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Figure 3.2: One-dimensional Brownian motion anomaly detection results

We conld conclude that the identified anomaly paths have two general behaviours:

e The anomaly paths fluctuated more frequently than the normal ones so their variances are
larger than the general corpus.

e The anomaly paths are generally spread outside the main streams and when e = 0.95, the
final points are usunally local outside the (—0.2,0.2).

Therefore, we could generate the anomaly path by relaxing some restrictions on the parameters of
the standard Brownian motion.

Definition 3.1.2 (Brownian motion with drift). A Brownian motion with drift parameter p € R
and variance o” € (0, 00) is a stochastic process that has following properties:

o Wy=10

e Independent increments: For any t > 0 and u < 0, Wiy, — W} are independent from the W
where s <

e The increment of W follow Gaussian distribution: Wiy — Wy ~ N (. 0%u)
e IV} is continuous in ¢

Follow the conclusion and definition 3.1.2, we set the drift for the anomaly paths to be p, = 0.4
and variance to be o2 = 1.5 while the normal corpus will still be the standard Brownian motion
with g, = 0 and ¢? = 1. The contamination rate (the proportion of anomalies in total) will
maintain low which is around 0.05. The generated Brownian paths are shown in figure 3.3.
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Figure 3.3: Contaminated one-dimensional Brownian paths

In the next section, we will use this contaminated data to evaluate the performance of our confor-
mance anomaly detection algorithm.

3.1.2 One-Dimensional Brownian Motion with Contamination

We first define the training data size to be Nyai, = 1000, Since in the conformance anomaly
detection algorithm, the conformance threshold is defined through the conformance distance of
hall of the whole dataset. Therefore, we set the test size to be hall of the training set, which is
Niest = 500, Then by algorithms 1 and 2 in section 2.4, the anomaly threshold is identified and
the performance of the model in terms of sensitivity, specificity and overall accuracy are calculated
for train and test data.

The input parameters we will be tested are:

e signature levels k € {1,2,3,4,5}

e error bounds e € {0.85,0.9,0.95,0.99}

e transform method: add time transform and lead-lag transtform
However, for € € {0.85,0.99}, the evaluation results in terms of the true positive rate are all be-
low 0.6 which are too lower to be accepted, therefore, we will only demonstrate the results for

e € {0.9,0.95}.

One famous anomaly detection algorithm, Isolation forest, is applied here as a benchmark method
to compare with the performance of our algorithm.

A Brief Introduction of the Isolation Forest

The Isolation forest algorithm is an unsupervised anomaly detection method that directly targets
anomalies. Based on the idea that anomaly instances usually have extreme behaviour, it is easier
to isolate them from the normal corpus by constructing decision trees.

For example, we could define a decision tree to identify the anomaly paths among the data contam-
inated by larger drift and variance. Suppose the normal data are the path with variance smaller
than 1.5 and drift smaller than 0.4. The XY, Z represent one-dimensional Brownian path where
the drift and variances ave: py = 0.5, py = 0.2, pz =02, 0y =2, 07 =1

The decision tree in figure 3.4 demonstrate how the Isolation forest identify the anomaly path.

We conld see that the anomaly data should be found close to the root of the tree which means it
is more easily to be separate from the norm corpus.
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Figure 3.4: Isolation forest example

Therefore, this method is suitable for detecting the anomaly Brownian motion paths with higher
ariance and drift. By implementing the method directly on the train and test Brownian motion
data, we could get the predicted label of the train and test set. Then we calculated the sensitivity
(true positive rate), specificity (true negative rate), accuracy of the test set and compared it with
the evaluation results of the conformance method.

Evaluation Result for Data Contaminated by the Drift

Suppose the drift for normal sample paths is g, = 0, define the contamination percentage to be 5%
of the total numbers of the corpus and let the anomaly’s drift to be g, = 0.4. The evaluation results
for the testing group regrading the sensitivity and specificity for different underlying parameters
are shown in figure 3.5 and 3.6, and the overall accuracy is shown in the table 3.1

| Signature level [ 1 [ 23] 475 ]

e = 0.9 ; Add-time Transform | 0.92 | 0.92 | 0.92 | 0.93 | 0.95

e = 0.95 ; Add-time Transform | 0.97 | 0.97 | 0.97 | 0.97 | 0.97

€ = (0.9 ; Lead-lag Transform | 0.94 | 0.94 | 0.95 | 0.95 | 0.97

€ = 0.95 ; Lead-lag Transform | 0.97 | 0.96 | 0.97 | 0.97 | 0.98
Isolation forest 0.94

Table 3.1: Accuracy for one-dimensional paths contaminated by different drift
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0.8 0.8 T
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02 —— Speificty for conformance method 02 — Specificity for conformance mathod
Sensitivity for IsolationForest Sensitivity for IsolationForast
=== Specificity for IsclationForest ==~ Specificity for IsolationForest
00 oo
1 2 3 4 5 1 2 3 4 5
Signature Level Signature Level

Figure 3.5: Evaluation result of drift contaminated BM paths with add time transform

As the figure 3.5, 3.6 and table 3.1 show, setting the error bound as 0.9 sacrificed a little accuracy in
overall accuracy and specificity (the percentage of correctly identify the normal paths) but largely
improve the sensitivity (the percentage of correctly identifying the anomaly points). As our goal
is to identify the anomaly data from the normal corpus, it is extremely important to increase the
sensitivity of the algorithm. Therefore, we conclude that the anomaly detection method has the
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Figure 3.6: Evaluation result of drift contaminated BM paths with lead-lag transform

better performance when choosing € = (0.9.

Comparing the performance of the two transformation methods, we could see the lead-lag trans-
form sightly outperforms the add time transform for signature level larger or equal than 3.

The Isolation Forest method’s performance on identifying the anomaly paths is showing by the
dashed line. We could see the conformance method’s sensitivity and specificity are similar to
(slightly better than) the Isolation Forest when data transform by lead-lag and signature level
larger than 3. Also, the overall accuracy of the conformance method is higher than the Isolation
Forest as demonstrated in the table 3.1. Therefore, we conclude that the conformance algorithm
with underlying parameters: error bound e = 0.9, signature level larger than two and lead-lag
transform, has better performance in detecting the one dimension Brownian motion paths contam-
inated by drift compared to the Isolation Forest method.

Evaluation Result for Data Contaminated by the Variance

Suppose the variance for normal sample paths to be g, = 1 and anomaly to be g, = 1.5. The
contamination rate is again 5%. The performance results of the model are shown in figure 3.7, 3.8
and table 3.2

epsilon 0.9 addtime epsilon 0.95 addtime
1.0 10
__ N N . e ——
0.8 08
2 —— Sensitivity for conformance method g —— Sensitivity for conformance mathod
206 —— Specificity for conformance method 208 —— Specificity for conformance mathod
8 Sensitivity for IsolationForest 8 Sensitivity for IsolationFarest
g ===~ Spacificity for |solationForest & ===~ Spacificity for IsolationFarest

o
=
a
=

_l___,,———f"—‘—__——i

0z

=
[

00 4 0.0

Signature Level Signature Level

Figure 3.7: Evaluation result of variance contaminated BM paths with time transform
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Figure 3.8: Evaluation result of variance contaminated BM paths with lead-lag transform

| Signature level [ 1 [ 2 [ 3] 475 ]
e = 0.9 : Add-time Transform | 0.87 | 0.85 | 0.86 | 0.87 | 0.88
e =0.95 : Add-time Transform | 0.90 | 0.91 | 0.91 | 0.92 | 0.92
€ = 0.9 ; Lead-lag Transform | 0.88 | 0.93 | 0.94 | 0.92 | 0.94
e = 0.95 ; Lead-lag Transform | 0.91 | 0.95 | 0.96 | 0.97 | 0.97
Isolation forest 0.9

Table 3.2: Accuracy for one-dimensional paths contaminated by different variance

For the error bound €, we could see that setting it as (.9 again result in much higher sensitivity on
identifying the anomaly paths.

As we introduced in section 1.4, the lead-lag transform could interpret the quadratic variance of
the path. The evaluation results demonstrate that this interpretation is preserved in our anomaly
detection algorithm as the sensitivity for data with lead-lag transform is significantly better than
the add time transform. Particularly, the sensitivity for data with lead-lag transform reaches higher
than 90% for all the train and test groups (when signature level larger than 3).

While for the Isolation Forest method, the sensitivity is only 40% and the accuracy is 90% which
are all worse than the conformance method with lead-lag transformation.

Conclusion for One Dimensional Brownian Motion data

Based on the above analysis, for data with 5% contamination, setting the error bound € as 0.9
render the best evaluation results compare with other values in {0.85,0.9,0.95,0.99}. Our confor-
mance anomaly detection method out-performance the Isolation forest when applying the lead-lag
transformation and signature level higher than three especially for the data contaminated by dil-
ferent variance. The add time transform is also effective when identifying the anomaly among drift
contaminated data, but it is not suitable for identifying the anomaly for data contaminated by
different variances.

3.2 Higher Dimensional Brownian Motion Data
As we proved in the section 2.2, this conformance method is effective for data with various di-
mensions and corpus size. Therefore, we continue to evaluate the model's performance on the

2-dimensional and 4-dimensional Brownian motion data.

As demonstrated in the section 3.1.2, the lead-lag transform and e = 0.9 work effectively for data
with 5% contamination. Therefore, we will stick with the above parameters and study whether
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Percentage

the different corpus sizes would influence the conformance threshold and prediction performance.

3.2.1

We select four different train and test sample sizes in terms of 250 and 125
1000 and 250. The sensitivity, specificity of both train and test group are shown in figure 3.9
and the overall accuracy is shown in table 3.3.
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Two-Dimensional Brownian Motion with Different Sample Size

: 500 and 250; 750 and

| Signaturelevel [ 1 | 2 [ 3 [ 4 [ 5 |
group 1 Nirain = 250 0.91 091|093 | 094 | 0,94
Niest = 125 0.92 | 0.94 | 0,94 | 0.93 | 0.94
group 2 Nirain = 500 0.94 | 0.94 | 0,94 | 0.94 | 0.95
Niest = 280 0.91 093|093 | 094 | 0.94
group 3 Nirain = 750 0.91 093] 093 | 093 | 0,94
Niest = 375 0.9 0.9 109210921 093
2roup 4 | Noam = 1000 | 0.92 | 0.04 | 0.95 | 0.95 | 0.05
Niest = 500 0.89 | 0.90 | 0.91 | 0.92 | 0.95

Table 3.3: Accuracy for two-dimensional paths contaminated by different drift
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Figure 3.9: Evaluation result of drift contaminated two-dim BM paths with different group size
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Signature level 1 2 3 4 5
Nigain = 200 5 Niesr = 125 | 0.42 | 2,51 | 8.52 | 117.26 | 97.77
Nirain = 500 1 Niese = 250 | 0.28 | 2,13 | 7.13 | 32.03 | 234.63
Nivain = 700 Ny =375 | 0.26 | 2.13 | 6.80 | 21.63 | 657.53
Niyain = 1000 : Niypye =500 | 0.18 | 2.11 | 5.63 | 20.51 | 157.26

Table 3.4: Conformance thresholds for two-dimensional paths contaminated by different dritt

We could see that the specificity of data with two dimensions is similar to one dimension, while the
sensitivity and accuracy slightly decreased but still higher than 80% and 92% when signature level
equal to 3, 4, 5 and sample size larger than 250. Therefore, we believe the conformance algorithm
work effectively in identifying two-dimensional Brownian motion data with extreme drift if sample
size larger than 250.

The conformance thresholds result in table 3.4 shows that as the sample size increase, the thresh-
old tends to stabilize at a certain level for signature level smaller than 4. This correspond to the
theoretical prove in the section 2.2.2 that the corpus size have little influence on the conformance
threshold. The unstable conformance thresholds value for signature equal to 5 shows that we don't
need too high signature level to capture the features of the data. Therefore, together with the
evaluation results, signature of level 3 and 4 would be suitable for capturing the feature of high
dimensional Brownian motion data.

When the sample size is equal to 250, the conformance threshold is slightly larger, which might
cause by the randomness of the empirical sample. This further results in low sensitivity and speci-
ficity as the figure 3.9 shown. Therefore, the sample size should be larger than 250 to avoid the
inaccurate result.

For the two-dimensional Brownian motion data contaminated by different variance, we also test 4
different corpus size and demonstrate the performance result in 3.10 and table 3.5:

Signaturelevel [ 1 [ 2 [ 3 [ 4 | 5 |
210tp 1 | Neran — 250 | 0.84 | 0.01 | 0.93 | 0.92 | 0.90

Niest = 125 0.86 | 0.91 | 0.93 | 0.94 | 0.91

group 2 /. 0.87 1092 | 095 | 0.94 | 0.93
0.91 ] 0.96 | 0.98 | 0.96 | 0.94

group 3 0.89 1094 | 094 | 0,94 | 0.94

Niest = 375 0.86 | 0.94 | 0.93 | 0.92 | 0.94
group 4 | Niain = 1000 0.87 1 0.92 | 094 | 094 | 0.94
Niest = 500 0.86 | 0.92 | 0.94 | 0.92 | 0.92

Table 3.5: Accuracy of two-dimensional paths contaminated by different variance

epsilon 0.9 leadlag epsilon 0.9 leadlag
1.0 1.0
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Figure 3.10: Evaluation result of variance contaminated two-dim BM paths with different group
size

| Signature level [ 1 [ 2] 3 [ 4 [ 5 |
Nivain = 250 ; Niest = 125 | 0.36 | 2.20 | 10.84 | 185.85 | 158.60
Nipain = 900 1 Nypge = 250 | 0.29 | 2,50 | 8.42 27.91 | 200.11
Niain = 750 5 Ny =375 | 0.24 | 243 | 8.35 22.80 | 613.22
Nirain = 1000 ; Niese = 500 | 0.22 | 1.92 | 5.75 22.07 | 158.88

Table 3.6: Conformance thresholds for two-dimensional paths contaminated by different variance

The conformance method with the lead-lag transform again demonstrate its excellent ability in
identify the data with abnormal variances for group size larger than N,,,;,, = 250. The sensitivity
and overall accuracy slightly went down when the group size equal to Niyain = 250. Therefore,
similar to the two dimension data with drift contamination, the sample size needs to be larger to
ensure the stable performance of this conformance method on variance contamination data.

For the conformance threshold in table 3.6,we could again see the converge tendency for sig-
nature value smaller to equal to 4 as the sample size growth larger. This again correspond to the
conclusion between the threshold and underlying parameters in section 2.2.2.

3.2.2 Four-Dimensional Brownian Motion Evaluation Result

Based on the conclusion we derived for one and two dimensional Brownian motion data, we have
that the group size larger than Ny, = 250, signature level of 3, 4 and ¢ = 0.9 generally render
better results.

Therefore, we repeated the steps in section 3.2 by assigning the group size to be Ny, = 750
and Neese = 375, € = (1.9, transforming the data using the lead-lag and calculating the signature
level up to 3. The sensitivity and specificity results for drift and variance contaminated data with
lead-lag transform are shown in figure 3.11.

The results shows that the sensitivity and specificity for data calculates through signature level
equal to 3 are all larger than 80%. Therefore, we conclude that the conformance threshold anomaly
detection method functions well for the four-dimensional Brownian motion data either with drift
or variance contamination.
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Figure 3.11: Evaluation result of four-dimensional Brownian motion paths

3.2.3 Conclusion for Higher Dimensional Brownian Motion Data

For 2-dimensional Brownian motion data, the evaluation results for different sample sizes n show
that it does not influence the performance as long as the size exceeds 250. This corresponds to the
proof in section 2.2.2. Although for data with different sample size (n = 500), the sensitivity all
slightly decreased compared to the one-dimensional case, the sensitivity and accuracy are higher
than 90% when the signature level larger than 2 which is still a satisfactory result.

As the dimension increased to four-dimensional, the performance of this algorithm again decreased
particularly for data contaminated by different drift. However, as the sensitivity and accuracy are
still higher than 80% for both training and testing sets, we could conclude that this conformance
model can identify various sources of anomalies among Brownian motion data with different di-
mensions if we select the proper input parameters. Therefore, based on the above result, we are
ready to apply this method to more general data set for the anomaly detection tasks in Chapter 4.




Chapter 4

Anomaly Detection on Financial
Streamed Data

With the development of computer-based trading in the financial market, the frequency of order
placement and order cancellation has increased significantly. Therefore, the task of capturing the
characteristics of the market becomes a challenging topic. In the work of Gyurkd et al. (2013), the
signature method is adopted on streamed data (the crude oil future order book data) for classifi-
cation problems. Follow this intuition, we hope to implement the conformance anomaly detection
method on the order book data to identifying the atypical market behaviour across the different
trading dates.

It has been shown by Baur and Dimpfl (2021) that the volatility of the cryptocurrency’s price,
like the Bitcoin price, is almost ten times the major exchange rate. Therefore, as the conformance
algorithm is good at detecting the anomaly variance in the streamed data, we would like to test
whether it is suitable to detect the anomaly behaviour for the cryptocurrency data.

We aim to use the historical market limit orders for bids and asks of four cryptocurrencies in
terms of Bitcoin, Zcash, Ethereum, and Litecoin to detect the anomaly behaviour daily. Follow
the order book processing steps suggest by Gyurkd et al. (2013), alfter having the level one order
book data with the best bid and ask price and their corresponding amount, we calculated the
mid-price, spread, and imbalance, which are more suitable to represent the characteristics of the
data. Then the data is grouped by date and transform into streams of data. The train and test
data is further defined according to the month of the order.

Then we modified the conformance algorithm proposed in section 2.4 and selected the suitable
input parameters based on the conclusion in section 3.2 and prediction results on the training
data. Then we test the algorithm’s performance on the test data set and visualized the result
by highlighting the anomaly date on the mid-price and the spread curve. We could see that
the algorithm identified most of the data with extreme order, which demonstrates this method’s
effectiveness.

4.1 Input Data

The original data we obtain is historical market limit orders for both bid and ask {every 10 minutes)
from 2020-01-01 to 2020-08-30'. Four popular cryptocurrencies available on Gemini are selected
for evaluation. The level one order book data, a four-dimensional time-series data (d = 4), is
generated using the original transaction data. In particular, it could be written as:

. i b oyra qprawN
Xo= (B, B VLV )ise
where:

e I’ best ask price : the lowest quoted offer price among sellers at some time stamps t;

!The order book data of cryptocurrencies is obtain from https:/ /www.cryptodatadownload.com/data/gemini/
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. P;f best bid price : the highest quoted offer price among buyers at some time stamps #;
e V2 the outstanding orders amount at the best ask price at some time stamps t;

. l/’l“l’ the outstanding orders amount at the best bid price at some time stamps t;

To capture the character of the order through the ask and bid price and order, we could transform
the streams of order book data into

X = (pry o1, i, )
where:
e the logarithm of mid-price shows the average of the current bid and ask prices being quoted

I s1]
P+ Py

pr, =ln——

e the spread is the different between the ask and bid price:

_ pa_ pb
s, = P -1

e the imbalance represent the relatively difference of buy and sell orders amount:

Ve —vb

d!. — Jra 4, /b
Vi + L’taf

The extreme change of the mid-price, the spread or the imbalance could all be the sign of the
anomaly market behaviour, so the X is a suitable transformation of the original order transaction
data.

4.2 Modify the Conformance Anomaly Detection Algorithm

Before applying the conformance anomaly detection algorithm on X, we first need to clarify the
selection of the input parameters. Follow the conclusion in section 3.2, the lead-lag transform and
signature of level 3 demonstrate excellent performance in identifying the anomaly paths of the
4-dimensional Brownian motion contaminated data, so we will continue applying those parameters
while calculating the signature of the input data.

The selection of suitable € in section 3.2 is based on the evaluation results. However, we do
not have the actual label for the cryptocurrencies data. Therefore, we decided to identify the suit-
able € by plotting the anomaly detection result ? for the training set and checking whether dates
with extreme behaviour have all been identified. As in the original algorithm, we only provide the
label for one half of the training set, so the algorithm need to be modified to make sure all the
training data are labelled.

The first four steps are the same, and we only need to add one extra step that repeat the cal-
culation of the conformance threshold for another group of training data:

2The imbalance cannot be clearly visualized by 2-dimensional plot, and we hope to include a more sophisticated
method to demonstrate the effectiveness of the anomaly detection method on the order book data in the future.
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Algorithm 3 Identify the conformance threshold for the anomaly of all training data

Input: training data X, group index ¥4, . the error bounds €

Output: the anomaly threshold g,, predicted label for the training data ¢}, ..., ¥..in

begin

1. Applying lead-lag transformation to the training data Xy,..:, and then calculate the signa-
ture of level 3 as S(Xtrain), Then centred the S{X¢rein) by applying Min-Max normalization
2. Randomly split the S(Xtrain) and its correspond label yirqin into two equal size halves

Sx}

. r2 1 . 2
truin) and S(‘Xiuu'u]? Yirain and Yirain

to subset S(X?

3. Find the conformance distance of each elements z in S(X} ain)

trrn'u]
Specifically, calculate the variance norm (Mahalanobis distance) of x to each element in

S(X? . ) and then find the smallest value f(z, S(X?

train train

J) to be the conformance result

4. Look at the right tail of the empirical distribution of the conformance result. For a given
error bound e, find the conformance score correspond to the € quantile of the empirical distri-
bution and set it as the conformance anomaly threshold g.

5. Repeat the step 3 and 4 by flipping the position of X} and X}

train frnin and get the confor-

mance anomaly threshold ¢/. Then, define the overall threshold as
9+ 4.
— ‘ 3
qe = T
6. If the conformance scores larger than g. or q;, we define it as the anomaly data. Then we

and @2 - i -2
and 43,.,;, for elements in S(X

train ) '

get the predict label g, for elements in §(X}..,)

7. Check the results by plotting the spread, logarithm mid-price and highlighting the anomaly
date.

end

We first set the € to be 0.95, which could be further adjusted based on the plot of the training
set. After selecting the suitable €, the algorithm of the test data X,..; also need to be adopted as:

Algorithm 4 Identify anomaly data using modified conformance threshold
Input: training date Xqin, testing data Xy. g, group index yrqin the anomaly threshold g,

Output: The predicted label for the testing data g ..

begin

1. Applying lead-lag transformation on testing data Xiesr, calculating the signature of level 3
as S(X;. ) and apply Min-Max normalisation to S{X ). .-

2. Calculating the conformance distance of each element in S{X;..;) to S( X}, ) similar to
the training process

3. For elements x' in S(X,..) that have larger conformance score f(z',S(X;.0in)) than
the anomaly threshold ¢,, we predict it to be an anomaly data and set the label g;..; = 1.
The rest is labeled as gtesr = 0. Then we demonstrate the results by plotting the spread,

logarithm mid-price and highlighting the predicted anomaly date.

end

Note that to reduce the randomness of the data splitting process, we could repeat steps 3, 4, 5
in algorithm 3 for m times. Then the conformance threshold could be assigned as the average of

the m values : .
Zm —i
i—0 de

m
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However, in the numerical test, we find the algorithm 3 is sufficient to identify the anomaly in-
stances, so we leave the test of this repeat experiment in the future analysis of other data set.

4.3 Numerical Test Results

In this section, we discuss the anomaly detection results on four types of cryptocurrencies order
book data. We select the January to May data as the training set and June to August as the
testing set.

4.3.1 Anomaly Detection Results for Bitcoin

Bitcoin is one of the earliest cryptocurrency designed by Satoshi Nakamoto. It is a decentralized
digital currency that can be sent directly from user to user without intermediaries. Therefore, its
order behaviour is less relevant to the macroeconomic or financial development and is suitable for
using only the historical data to identify the anomaly instances.

Through the modified conformance algorithm 3, the anomaly date is identified and highlighted
by the pink line plot against the log mid-price and spread in figure 4.1 and 4.2.

For the logarithm of mid-price, the most significant drop that happened on March 12th have
been identified. The extremely high differences between ask and bid in Febrnary and May have
been marked as anomalies. Therefore, we believe that this conformance threshold is suitable for
identifying the anomaly behaviours of the Bitcoin prices.
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Figure 4.1: Anomaly detection result for BTC train data against the Log Mid price
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Figure 4.2: Anomaly detection result for BTC train data against the spread
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Applying that conformance threshold into the algorithm 4, we plot the result for both the training
(blue) and testing (vellow) data in figure 4.3 and 4.4. We find that the algorithm successfully
identified the most significant increases of the Bitcoin mid-price on July 27th and the dates with
high spread are also marked as anomalies. This result demonstrates the effectiveness of this method
on identifying the anomaly behaviour of Bitcoin order book data.
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Figure 4.3: Anomaly detection result for BTC against the Log Mid price
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Figure 4.4: Anomaly detection result for BTC against the spread

4.3.2 Anomaly Detection Results for Ethereum

Ether, similar to Bitcoin, is the native cryptocurrency of the Ethereum platform. The Ethereum
platform is also a decentralized, open-source block-chain. Therefore, it is suitable to use the con-
formance threshold of the historical order data to identify the anomaly behaviour.

Applying the algorithm 3 on the training data, the detecting results are shown in figure 4.5 and
4.6. The dates (March 13th to 18th) with the notable mid-price drop and large spread have been
identified. As no other part has the significant changes in a short period, we believe this threshold
is a good boundary to separate the anomaly instances from the normal group.
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Figure 4.6: Anomaly detection result for ETH train data against the spread

For the testing data from June to August, we find the mid-price continually increased and there

is no extreme change in the mid-price.

Also, the spread is constantly low during this period.

Therefore, we believe that all the behaviour is normal during the testing period. This correspond

to the anomaly detection results showing in figure 4.7 and 4.8, as there is no anomaly date identified

for the training

uso

set.
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Figure 4.7: Anomaly detection result for ETH against the Log Mid price
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Figure 4.8: Anomaly detection result for ETH against the spread

4.3.3 Anomaly Detection Results for Litcoin

The Litcoin is an alternative eryptocurrency based on the model of Bitcoin. Therefore, its be-
haviour and price fluctuation is similar to the bitcoin.

The spread of the Litcoin is extremely high in the middle of January and March and those sudden
up and down have been successfully identified through our conformance algorithm as the figure 4.9
and 4.10 show.
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Figure 4.9: Anomaly detection result for LTC train data against the Log Mid price
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Figure 4.10: Anomaly detection result for LTC train data against the spread
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Based on the threshold identified through the testing data, our conformance anomaly detection
method shows that there is no anomaly date from June to August. We could see that in figure 4.11
and 4.12, the mid-price from June to August is relatively stable, and the spread is continually low.
Therefore, we believe the detection result is valid as there is no anomaly date during this period
that.
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Figure 4.11: Anomaly detection result for LTC against the Log Mid price
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Figure 4.12: Anomaly detection result for LTC against the spread

4.3.4 Anomaly Detection Results for Zcash

Zcash is also a cryptocurrency based on Bitcoin. It uses eryptography to provide enhanced privacy
for users. Therefore, the order and price changing pattern is also similar to the Bitcoin.

The logarithm mid-price of the Zcash fluctnate remarkably during the first three months as the
figure 4.13 shows. Also, the spread of those dates is extremely high as demonstrated in figure 4.14.
Since those dates with extreme behaviour have all been identified by the conformance algorithim
as the figures show, we believe the conformance threshold is suitable for identifying the anomaly
behaviour of the Zcash.
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Figure 4.13: Anomaly detection result for ZEC train data against the Log Mid price
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Figure 4.14: Anomaly detection result for ZEC train data against the spread

Using the conformance threshold to identify the anomaly instance in the test data (From June to
August), the result shows one anomaly date — July 27th. The mid-price increase and the spread
of that date are high, which could be regarded as anomaly behaviour. However, the dates around
July 27th also demonstrate similar extreme behaviour and one date in mid-July experiences a
sudden increase of both variables. Those dates have not been identified as the anomaly by the
conformance algorithm.

By looking at the conformance threshold comparison shown in table 4.1, we could see that since
the fluctuation of Zeash and Litcoin is more extreme than the Bitcoin, the conformance thresholds
of those two are mmch higher than the Bitcoin. This high threshold made the detection not so
sensitive to the anomaly as the boundary is too high. We could change the conformance threshold
by lower the e. However, that would result in too many anomalies identified for the training test,
which is also an inaccurate result. Therefore, we consider including more data in future studies to
ensure we capture the suitable threshold for the anomaly data.

coin name Bitcoin | Etherenm | Litcoin | Zcash
conformance threshold 2740 3563 453896 | 146595

Table 4.1: Conformance threshold comparison for the eryptocurrencies order book data
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Figure 4.15: Anomaly detection result for ZEC against the Log Mid price
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Figure 4.16: Anomaly detection result for ZEC against the spread
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Conclusion

In this thesis, we study the conformance anomaly detection method proposed by Cochrane et al.
(2020). Both theoretical proof and empirical experiments are implemented to understand this
algorithm’s dependence on the underlying parameters. We also proved that this algorithm could
effectively identily anomalies among Brownian motion and real market financial datasets as long
as we select suitable input parameters.

In Chapter 2, the conformance threshold for the Gaussian sample is proved and tested empiri-
cally. The exact relationship of the threshold g, to other parameters (the dimension d, error bound
e and variance o2 of the data) is theoretically deduced using the Gaussian concentration inequality.
We also find that the corpus size n does not influence the threshold so that a constant threshold
would be identified regardless of the sample size. One problem arises during the empirical test that
the empirical conformance threshold of the simulated Gaunssian data is generally smaller than the
theoretical threshold. The potential canuse of this diserepancy could be the approximation during
the theoretical proving steps and the less accurate numerical approximation during the practical
implementation. More works need to be conducted in the future to determine the exact sources
of the discrepancy. Nevertheless, the conformance threshold’s dependence on data dimension and
corpus size is consistent for the theoretical and empirical result, making the empirical application
of using the conformance distant to identify the anomaly behaviour still valid.

In Chapter 3, the evaluation result for the one-dimensional Brownian motion data shows that
the conformance method with the lead-lag transformation demonstrates better performance than
the Isolation Forest when identifying the data contaminated by different variances and drifts. The
result also indicates that the error bound e should be slightly smaller than one minus the con-
tamination rate. Adopting the above parameter into the two-dimensional Brownian motion data
analysis, we proved that the sample size n has negligible influence on the accuracy. Besides, the
sample size should be larger than 250 as too small datasets may result in unsatisfied sensitivity (true
positive rate). Therefore, we conclude that the conformance algorithm could effectively identify
the anomaly path of different dimension Brownian motion data for the sample size larger than 250.

To apply this conformance algorithm to real-market order book data analysis, we further modify
the algorithm to make sure all the training data will be labelled. Then, applying this modified al-
gorithm to the training data, we could identily the suitable conformance threshold by changing the
e and used the threshold to identify the dates with anomaly behaviour in the test data. The results
of the modified algorithm on the order book for four eryptocurrencies demonstrate its satisfactory
ability to identify the anomaly date with extreme behaviour. However, we only demonstrate this
by highlighting the anomaly date in the logarithm mid-price and spread plot. More sophisticated
methods need to be proposed in future works to validate the effectiveness of this anomaly detection
method. Also, some anomaly dates have not been identified for the Zcash testing data set, which
might be induced by the training set’s high volatility. A possible solution could he enlarging the
sample size, but we leave it for further exploration due to the limitation of acquiring the order
book data.
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Appendix A

Additional Proofs

A.1 Property of the Tensor Product

For a vector a, b € (R4)®k:

i
a= Z a’t e, @ ) €4y,
i1 i =
d
b= Z btitee, @ ) €5,
iy, ig=1
Then we have that
lla @ bll;q = llally 18]I,
where ]
d 2
fall = {30 (aeey
i1, k=1

A.2 Proof of Johnson-Lindenstrauss Lemma for the Infinite
Case

Follow the first part of proof given in section 2.2, define M’ = dinf,c7 ||W (a)||? and adopt similar
approach as theorem 2.2.3, we have for all £ > 0,

P{M — EM > 2VZHEM + 2t} < e~ (A.2.1)
and for all £ > %
P{M —EM < —2VUEM} < ¢ * (A.2.2)
Then we have »
Vi=sup ([[W(a)]?-1) = = -1 (A.2.3)
aeT d
and v
Vi=sup (—|W(a)|? +1) = —— + (A.2.4)
acT d
Then for any ¢ > 0.5, with a double application of theorem 2.2.3 and above result, we could obtain
with probability at least 1 — 2™,
. (200 +EV)e 2t
sup |[[|W(a)||? = 1|| = maz(V, V') < max(EV,EV’) + ?.\I." (71’] 7 (A.2.5)
o€ ‘ d d
Define quantity A = d max(EV,EV’)?, the equation (A.2.5) can be written as:
[a 2t
up [||W(a)||? = 1]| = max(V. V') <24/ = 424/ = + = 2.
sup | ||W(a)|| 1 max(V, V') < V‘ y \.-'J i p (A.2.6)

acT
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This holds with probability at least 1—2e~*. This then proved the random variable sup, 7 |||W (a)||* — 1|
is highly concentrated around its mean which therefore shows that W is a e-isometry on A.

A.3 Another Approach to Identify the Conformance Thresh-
old for Gaussian Data

In this section, we will use the Gaussian Isoperimetric inequality to identify the conformance
threshold of the anomalies. We could deduce the same result as in section 2.2 Chapter 2.

We first clarify some notations. For x € R", the probability density function of the standard
Gaussian distribution ,,(x) is:

alr) = ‘/g—ﬂcxp(—\larll2/2) (A3.1)

where || - || is the Euclidean norm.
The cumulative distribution function of one dimensional Gaussian distribution is:

Let A € R" be a Borel set, then its n-dimensional Gaussian measure is:

() = [ pu(eyde (A3.2)
A

Definition A.3.1 (Gaussian Isoperimetric Inequality). Let A € R™ be a Borel set, then for any
h =0
(9 (AM) 2 @7 (v (A) + b

where A" = {z € R?: ||z — al|, < h for some a € A}
Following this definition, we could further deduce a lemma as follow:

Lemma A.3.2. The Gaussian Isoperimetric inequality is equivalent to the following statement:
let A € R" be a Borel set, and H € R" be a half-space, such that v,(A) = ~v.(H), then for any
h =10,

Y (A") = 7 (HY) (A.3.3)

Now we apply this lemma to introduce an important corollary. Let Z € V' be a finite corpus of
vector data. Here we assume our data to be Gaussian. We could then split the corpus randomly
into two equal size halves and denote them as 7, 7.

Suppose we want to study the elements x € Z,’s conformance distant to Z,. In section 2.2,
we transform the problem of finding the conformance threshold into the gquantile of the sum of the
Mahalanobis distance. To simplify the notation, we define sum of the Mahalanobis distance as:

flz, 1)) = Z \f(.i: — ) TK-"Yx —x;)

w;€Ty

where K = E[(z — )T (x — z;)]. We have proved that the Mahalanobis distance is a k-Lipschitz
function, and as the Lipschitz continuity preserve over sum, the Lipschitz constant for the sum of
Mahalanobis distance is

L= nk = n\2||U||s = V200, (U)

where a,,,,(U7) is the largest singular value of I/ in K = UUT
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Then we find the conformance distance K so that the probability of z’s sum of Mahalanobis

distance to Z; smaller than R is % we could write it as:

| —

P(f(z.,) < R) = -z € I (A.3.4)

wv]

5

The R could be seen as a medium of the sum of Mahalanobis distance.

Let A ={x € l,: flz,];) < R} then for any y € A", there exists anx € A, such that |y—z| < r. As
the sum of the Mahalanobis is L-Lipschitz function, |f(y, 1) — f(z, [1)| < rL. Then f{z, 1) < R
is equivalent to f(y, ;) < r + R, so we have:

P(fly, h)—R<rL) =

N,
i

1.1 (A.3.5)
= ¢ l(g] +r)
= &(r)
Similarly we have
P(fly,f1) —R>—rL) = ®(r) (A.3.6)
Therefore, _
P(|fly, i) = R| = L) <2(1 - ®(r)) < 2T (A3.7)
and we could have )
P(fly. 1) = R+rlL) SPXD(—%) <l-—e¢ (A.3.8)

If we calculated the R+rL, and replace the medium R by the mean «, we could find it is the same
as the result in section 2.2 equation (2.2.8): 1

—

n—LVEIHﬁ

r (A.3.9)

I

n

Therefore, we validate the theoretical result of using the conformance threshold to identify the
anomaly behavior.

r is divided by n to be consistent with the result in section 2.2
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