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Introduction

"A good Portfolio is more than a long list of good stocks and bonds. It is a balanced whole,

providing the investor with protections and opportunities with respect to a wide range of

contingencies"

HarryMarkowitz

In 1952 Harry Markowitz introduced a new mathematical framework in order to build a smart
portfolio, called theModern Portfolio Theory (MPT) [8], for which he later was awarded the No-
bel Prize in economics. While PortfolioManagement is one of themost relevant part of the work
of a Bank or an asset Manager, theMPT is well adapted for systematic Portfolio Construction.

The goal is clear: an investor wants to have the highest return on his investment, but with the
lowest possible risk. Unfortunately, this two conditions are not compatible. Indeed we can not
imagine an economy in which one can invest in a product which gives almost surely the best
yield. In such an economy, everyone would buy this product, and it would become the only
available asset on the market. Obviously, the remaining possibility is to offer a way to manage
yield versus risk.

Let’s take a simple example to illustrate this idea. In a restaurant, imagine a dish (our product)
such that if one chooses it, hewouldneverbedisappointedneitherby thequality, norby the taste
(the asset is riskless). Imaginenow that this dish is the cheapest one in the restaurant (we cannot
find a better yield on the market). Then every single customer would choose this dish, and no
one would prefer to choose something else. Given that there are two possibilities for the owner
of the restaurant: either to specialize into this dish, or increase its price. As we can not imagine
a market with a single asset, the first solution is not applicable in the financial industry, and the
price of such a product would increase. Without a perfect product, investors, just as restaurant
customers, seek tomanage risk versus yield (quality - price ratio).

But what is risk and what is yield? The strongest contribution of Markowitz in his theory was
tomodel these two concepts with an accurate mathematical framework. As we will see in chap-
ter one, the yield of an investment on a stock is, for Markowitz, the mean of the returns on the
stock price; and the risk simply its variance. Then, the mathematical problem is easy to under-
stand, and just a bitmore difficult to implement. Weneed tomaximize the returns andminimize
thevarianceandfindanequilibriumbetween these twooptimizationproblems. Thisfirst kindof
optimization (problemSbecausewecandifferentiatedifferent goals) is described in chapter two.
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At first glance, one could think thatMarkowitz found the perfect pattern for asset allocation. Un-
fortunately, or rather, fortunately, it’s not the case, andwecouldquickly improve theMPTmodel.
Indeed, Markowitz’s optimization has many drawbacks, in particular, as soon as the size of the
portfolio increases. Adding constraints can overcome these drawbacks, but it penalizes the final
result. We will try to answer the following question for any situation:
Given a set of tradable assets and constraints, what is the best way to spread our money into these

assets ?

In order to answer in a relevant way this question, we will go across all the different kinds of
portfolio optimization we can find in the literature. Some of these optimization problems are
classical and well known. Most of themmust be adapted to some particularities in the data set.
Few of them are totally new. The aim of this paper is to give to the reader all the abilities to find
accurately the best available portfolio optimization, in function of the purpose. However, it will
not present any spectacular new optimization.

During all this project, I tried to develop for BOUSSARD GAVAUDAN Asset Management, the
best possible optimization, given a set of constraints which are specified by the company. The
reader should keep inmind that all the following had been developed for an industrial purpose,
and therefore, some details of the portfolio management will intentionally not be explored. For
instance, all the portfolios used in this work are long only, stocks only. We will not invest into a
riskless interest rate. Nevertheless, this thesis can be transposed in a more general framework.
This can lead tomore complicated calculus.

In a first chapter, wewill present all the usefulmathematical definitions for doing a Portfolio op-
timization. This includes both the mathematical theory around systematic asset management,
but also the various techniques for solving numerically anoptimizationproblem. Thefirst chap-
ter also dealswith some technical issues that canmake an optimization problemharder to solve.
Then, chapter two and three focus on all the optimization problems that have been explored
during this project, finishing with the most relevant one. And finally, in the last chapter, we will
present all the results we obtained with these optimization problems.
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1 Portfolio Management: context and useful tools

First, let us define the general scheme of a portfolio optimization problem.

1.1 Mathematical framework

1.1.1 Definitions

A portfolio is a collection of N assets (A1, ..., AN ), with a vector of weights (ω1, ..., ωN ). In all the
following, we will use the notation for a portfolio (A,Ω):
(A =: (A1, ...,AN );Ω =: (ω1, ..., ωN )),
or if it is not ambiguous: Ω

These assets can be stocks, bonds, derivatives..etc; but in all the following, because of the con-
text of this thesis, wewill focus our studyonportfolios that containonly stocks onequity. Indeed,
as the data we used were only times series on stocks, we did not try to transpose our results for
portfolios with other kinds of products.

Aweightsωi is the amountofwealth invested in assetAi in theportfolio (Ω;A). In order tobe able
to compare different portfolios, we will only study the "sum equals 1" portfolios. Each invest-
ment is in fact proportional to this standardized portfolio, which is characterized by

N∑
i=1

ωi = 1.

Each asset is characterized by its price in time, which is a stochastic process (Si(t))t. Using these
notations, we can analyze the behaviour of a portfolio by studying the following weighting sum
of stochastic processes (which is therefore itself a stochastic process):

St =

N∑
i=1

ωiSi(t)

Remark 1.1: If we study a long only (ie all weights are positive) standardized portfolio, the previ-
ous quantity is in fact a convex sum. That point will be very helpful, as the portfolios used in this
project are always long only.

However the quantitySt is not easy to interpret. Let us rather define the rate of return of a portfo-
lio. Assume at time t0 one invests x0 in a portfolio (Ω,A). The quality of this investment between
t0 and t1 is totally described by its return R, which is the rate such that the wealth at time t1 is
given by x1 = Rx0. One can also define the rate of returns of this investment, which is r = R-1,
such that one can write: x1 = (1 + r)x0, ie r = x1−x0

x0
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When we try to find the best investment, in fact we focus on optimizing the behaviour of the
return of this investment (or analogously, the rate of returns).

Define now the returnRi on asset i. x1 is therefore the sum of each profit for each asset:

x1 =

N∑
i=1

(ωix0)Ri = x0

N∑
i=1

ωiRi = x0R

By identification: R =
N∑
i=1

ωiRi

Hence:

r = R− 1 =

N∑
i=1

ωiRi −
N∑
i=1

ωi =

N∑
i=1

ωi(Ri − 1)

r =

N∑
i=1

ωiri

The previous has been obtained between time t0 and time t1, but we can do the same for each
t, and thereforeweobtain the following stochastic processwhich assess the quality of a portfolio:

Rt =

N∑
i=1

ωiR
t
i

rt =

N∑
i=1

ωir
t
i

With rti = Si(t+dt)−Si(t)
Si(t)

, anddt is the accuracywehave in our data setH,which consists inN time
series of prices of each stock. In BOUSSARD & GAVAUDAN’s database, dt = 1 day. For assessing
the quality of an investment on aportfolio, it is therefore essential tomodel the randombehavior
of the rate of return.

Fisher Black andMyron Scholes showed [1] that each process (Si(t))t is in a first approximation
lognormal. They imagined that, for each i, there exists non temporal µi and σi such that:

log(Si(t)) ∼ N (log(S0
i ) + (µi −

σ2
i

2
)t, σi

√
t)

Si(t) = S0
i e

(µi−
σ2i
2 )t+σiWt

i

St1i = St0i e
(µi−

σ2i
2 )(t1−t0)+σi(W

t1
i −W

t0
i )

dSi(t) = µiSi(t)dt+ σiSi(t)dWt
i
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Where (Wt
i )t is aWiener process, and the last StochasticDifferential Equationhas beenobtained

thanks to Ito’s formula.

Let us define now a new quantity Lt which is the weighting sum of the log prices:

Lt :=

N∑
i=1

ωiL
i
t, with:

Lit = log(Si(t))

Define now the infinitesimal log returns for asset iRt:

Rit := dLit

Rit = d(log(Si(t)))

Rit =
dSi(t)

Si(t)

Rit = µidt+ σidWt
i

Rit ∼ N (µidt, σi
√
dt)

Hence, the infinitesimal log returns are normal, with constant parameters. Moreover, asWi are
Brownianmotions, its increments are independent. Hence log returns are i.i.d normal laws.

If we only have daily time series on stocks price, one can assume that the previous result is still
true if we take the daily returnsRt:

Rit = ∆Lit

Rit '
∆Si(t)

Si(t)

Rit ∼ N (µi∆t, σi
√

∆t)

Where∆t = 1 day.

The rate of returns of a Portfolio, which is the weighted sum of its infinitesimal log returns, is
hence, a sum of normal laws:

Rt =

N∑
i=1

ωidL
i
t =

N∑
i=1

ωi[µidt+ σidWt
i ]
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In a first approximation, we will consider that this rate of returns is equal to daily rate of returns.
This quantity is easy to compute with daily time series on stocks price, :

rt =

N∑
i=1

ωi∆L
i
t

=

N∑
i=1

ωi[µi∆t+ σi∆Wt
i ]

This is assumed to be a sumof normal law, with constant parameters, which simplifies the prob-
lem.

Indeed, the mean function of the daily rate of returns can easily be computed using the vector
of mean (E[ri])1≤i≤N of each rate of returns on stock i (this vector of mean is by construction
independent of t):

E[rt] =

N∑
i=1

ωiE[rti ] '
N∑
i=1

ωiµi (1.1)

The variance of the process (rt)t is also independent of t:

V ar[rt] =

N∑
i=1

N∑
j=1

ωiωjCov[rti , r
t
j ] '

N∑
i=1

N∑
j=1

ωiωjσij , (1.2)

as σij = σiσjdWt
idWt

j is independent of t. If the price of the portfolio is lognormal as well, then
the two previous quantities are the logmean and the volatility of the portfolio.

Remark 1.2: From now on, as we can not access the true value of µi and σij , we will use this
notation when we refer to an estimator of this quantity.

1.1.2 Asset Selection

We can divide a portfolio construction in four or three different steps (the first and the second
one can be done at the same time).

Firstly, the portfolio Manager has to select an universe of assets. This universe is often as big
as possible. It contains all the assets that could enter into the portfolio. An asset A is selected if
and only if it satisfy the followings:

• The kind of product is part of the set of products that are traded by the portfolio manager;

• The asset can be traded (it still exists, it is quoted, it is not on the black list...);



1.1 Mathematical framework 11

As we will see later, this universe will be helpful for computing market signals. Practically, it is
relevant to be able to load a database of prices for all the assets of the universe.

Once the universe is built, Portfolio managers apply a filter on the universe in order to select
the relevant assets that theywant to put into the portfolio. A systematic strategy is a quantitative
filter, based on algorithms that select assets according to a decision rule. For instance, two fa-
mous decision rules are Trend Following and Mean Reversion. These two steps are called Asset
Selections. In this thesis we will not describe any trading strategy.

The next step of the portfolio construction is the optimization. Different PortfolioOptimizations
will be presented in the next chapter.

The sizing is the last step of the portfolio construction. It consists in the choice of the amount of
wealth that is invested into the portfolio.

The different steps of a portfolio construction are summarized in the following graph:

Figure 1: Steps of Portfolio Construction

1.1.3 Estimators

For many purposes, the quantities (1.1) and (1.2) need to be estimated. Indeed, as we will see in
thenext chapter, thesemetrics are directly linkedwith the objective functions inmanyoptimiza-
tion problems. However, as we can not access to the true value of the mean and the variance of
the rates of returns, weneed tobuild robust estimators. According to thefirst sectionDefinitions,
the rates of returns are i.i.d normally distributed, with constant parameters. Hence, for each i,
we can see each rate of returns for any t, as independent observation of a normal law. Using this
observation, we are able to build estimator of the classic metrics of a random variable, such as
themean, the variance, and the covariancematrix.
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As the complexity of the problem should not lie in the computation of the estimator, simple esti-
mator such as the sample onemust be good enough. Otherwise, we should change the previous
model for rate of returns. Recall that the sample mean and the sample covariance matrix, for n
variables, and T observation, are given by:

µi =

T∑
t=1

rti

Σ = (σij)1≤i,j≤n, with: σij =

T∑
t=1

(ri,t − µi)(rj,t − µj)

T − 1

However, even if themodel is acceptablewe can sometimes face a issue: the lack of data. Indeed,
imaginewe need to trade a stockwhichwas quoted firstly only a fewdays ago. Thenwewill need
to compute the covariance matrix of a data set with n stocks, but T<<n days of data. Therefore
the covariancematrix will probably be singular, and we need to compute amore robust estima-
tor for this case. The package sklearn.covariance of python is well adapted for this kind of issues.
Therefore, as soon as we will have less than 10 days of data, we will use Ledoit and Wolf or OAS
covariancematrix, which are shrunk estimator of the covariancesmatrix. See formore details [2]
and [3] .

Remark 1.3 : Bias on the sample estimator.
The stocks are not quoted every day. Indeed, Saturdays, Sundays, and bank holidays introduce
gaps into our time series. As week end are the same all over the world we can just skip those
days. However, bank holidays may be different, and consequently, sometimes stock prices are
the same two days in a row in our data set. For example imagine a portfolio with two stocks: a
French one and a English one: FP:FP and RBS:LN (Total and Royal Bank of Scotland). The first of
May is a bank holiday in France but not in England. Therefore, the price of one share of FP:FP is
the same the 30th of April 1985 and the 1st of May 1985, but not the price of RBS:LN:

Date FP:FP RBS:LN
1985-04-29 0.670294 1.099526
1985-04-30 0.674864 1.127212
1985-05-01 0.674864 1.146988
1985-05-02 0.672325 1.139077

Hence there is a rate of returns associated of 0 at this date, which is a mistakes:
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Rate of returns FP:FP Rate of returns RBS:LN
0.68% 2.51 %
0% 1.75%
... ...

However it isquite inconvenient to look forall the incoherence in thedata setwhilepandasallows
us to compute immediately the rateof returns. Therefore there is anbiasbetween the real sample
estimator and the one we use. Assume that there is 1 mistakes for 30 days of observed rate of
returns. Define µi,python, σ2

i,python the sample mean and the sample variance for rate of returns
of stock i obtainedwith python, and as previously, µi and σ2

i the true samplemean and variance,
and supposed that we have T days of data (ri,k)k.
then:

µi,python =

T∑
k=1

ri,k

T− 1
30T

= 30
29µi

σ2
i,python =

T∑
k=1

(ri,k−µi,python)2

29
30T−1

=

T∑
k=1

(ri,k−µi)2− 1
292

Tµ2
i

29
30T−1

=
(T−1)σ2

i
29
30T−1

− Tµ2
i

293

30 T−292

1.2 Structure of the code

1.2.1 Solving a Convex Program

Previously, we have seen that each investment in a portfolio is proportional to the associated
standardized portfolio. The rate of return of the standardized portfolio is therefore a sumof ran-
dom variables, where the sum of weights is equals to one. Assume that all the weights are posi-
tive. Then, this sum is a convex sum. There exists a very complete theory on convex optimization
which can be helpful in the construction of optimizer as we will see in the next chapter. Then,
there are a lot of advantages in using long only portfolio.

In this subsection, wewill sketch how to solve a convex optimization, especially in the quadratic
case.

Definition 1.1 : f : X → R is a convex function if and only if ∀x1, x2 ∈ X,∀t ∈ [0, 1]: f(tx1 +

(1− t)x2) ≤ tf(x1) + (1− t)f(x2).

Define, for a convex function f, the following program (P):

min f(ω)

s.t :

 gj(ω) ≤ 0 ∀j ≤ p

hi(ω) = 0 ∀i ≤ m



1.2 Structure of the code 14

Where gi and hi are the constraints, and convex functions.
We say that (P) is feasible if there exists ω which satisfies the constraints of the program.

According to Kuhn and Tucker [4], ω∗ is a solution of the program if and only if:

• Stationarity:∇(L)(ω∗) = 0;

• Primal feasibility: ω∗ is feasible;

• Dual feasibility: All the Lagrange multipliers for inequality constraints γi are positive or
null;

• Complementary slackness: γi.gi(ω∗) = 0;

With:
L(ω) = f(ω) +

p∑
i=1

γigi(ω) +
m∑
i=1

µihi(ω)

ThepackageCVXOPT [5] of pythonprovides anumerical solution for thepreviousprogramwhen
the constraints are linear, and the objective function f is quadratic, ie when the program can be
written:

min 1
2ω

T .P.ω + qT .ω

s.t :

 G.ω ≤ h

A.ω = b

Withω ∈RN ,G ∈RN∗m, h ∈Rm,A ∈Rp∗N and b ∈Rp, ie there arem inequality linear constraints,
and p equalities linear constraints.

Given this numerical solution easy and quick to implement, we will always try to transform our
problems into such a program. This numerical solutions are obtained with Cone Programming,
and especially Interior-point methods for large-scale cone programming. For more details, see
[5], and [6].

Sometimes we will face non quadratic problems (see Equal Risk Contribution). In such a case,
we will use for numerical solutions the package scipy.optimize from python. It calls Sequential
Quadratic Porgramming algorithms that are more general, but besides, slower to converge. For
more details, see [7].
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1.2.2 Oriented object Programming

The industrial aim of the project at BOUSSARD&GAVAUDAN is to build a solver that could then
beused for anypurpose and for anyportfolio. Given this issue,wewill try to sketch in this section
how the code can be engineered.

Because of the previous points, Python appears to be a good coding solution for Portfolio Op-
timization purposes. We chose to use an oriented object programmation.

Define a class Portfolio which contains all the useful tools for the characterization of a portfolio.
This object instantiate the current date, the list of assets in the Portfolio, the prices and rate of
returns data set, different estimators of themean, of the covariancematrix and of the correlation
matrix. While themain program compute the back test, an optimizer perform the optimization.
Finally an other function assesses the quality of the backtest by producing risk metrics from the
P&L.

2 Traditional Portfolio Optimizations

A portfolio optimization can occur inmany different contexts, and each optimization is unique.
As we can not define a perfect goal for the optimization, it is therefore very difficult to produce a
user guide of the construction of a portfolio given a set of assets. It is firstly hard to choosewhich
target function we want to optimize. We list in this section different possible targets, but the last
one, the diversification ratio, has been considered when using the optimizer as the best one.

Secondly, a portfolio optimization largely depends on the choice of the constraints. Except dur-
ing the confrontation between Markowitz Optimization and Most Diversified Portfolio, we will
use the constraints C that are described in the previous chapter. Recall C:

• All weights are positive; (constraints (1))

• The sum of the weights is 1; (constraints (2))

• The weights are not too far apart, ie the maximum weight does not exceed 10 times the
minimumweight; (constraints (3))

Consequently, in all the following, we will describe a way of building a portfolio optimization in
this particular context which is the set of constraints used at BOUSSARD & GAVAUDAN, but it
may vary a bit fromone assetmanager to another. Nevertheless, as we have seen in chapter one,
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this is a logical choice of set of constraints.

For each of the following optimization problems we use the same notations as previously:
Σ : Estimator of the covariancematrix of the returns ;
µ : Estimator of the vector mean of the returns ;
σ : Estimator of the standard deviation of the returns ;
ω : Vector weight of the portfolio ;

2.1 Classical Portfolio Optimization: Themodern Portfolio Theory

Aswe have seen in introduction,Markowitzwas the first one to build amathematical framework
in order to optimize a portfolio with more than two assets. This portfolio must satisfy a certain
yield while limiting the associated risk. In this section wewill develop themodern portfolio the-
ory as it is described by H.Markowitz in the article Portfolio Selection [8]

Markowitz measured the yield of its portfolio with an estimator of the expected return E[R] =
n∑
k=1

ωkE[rk], and the riskwithanestimatorof thevarianceof theportfolioV ar(R) =
n∑
i,j

ωiωjCov[ri, rj ].

Using the notation of chapter 1, these estimators can be written with estimators of the means
vector and the covariancematrix . Respectively: ωT .µ and ωT .Σ.ω.

2.1.1 MinimumVariance

Let’s first assume that we are only trying to minimize the risk associated to the portfolio. Given
the constraints, the construction comes down to the following problem:

min V ar(R)

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin

Using estimators instead of the real value of the variance, this is equivalent to:

min ωT .Σ.ω

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin
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and can be reduced by adding two variables s1 and s2 corresponding to ωmax and ωmin to the
following convex problem:

min ωT .Σ.ω

s.t :



n∑
i=1

ωi = 1

ωi ≥ 0

ωi ≥ s1

ωi ≤ s2

s2 ≤ 10.s1

Ie, with a writing adapted to the numerical resolution of convex problemwith linear constraints
(via CVXOPT, as we have seen in the previous chapter):

(With x = [ω1 ... ωN s1 s2]T ,Σ′ =


Σ 0 0

0 0 0

0 0 0

 )

min xT .Σ′.x

s.t :



[
1TN 0 0

]
.x = [1]

[
−IN 0 0

]
.x ≤ [0]

−IN 1 0

IN 0 −1

 .x ≤
0

0


[
0N −10 1

]
.x ≤ [0]

2.1.2 Maximum returns

On the other hand, if we only focus on themaximize returns condition, then the problem iswrit-
ten:
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maxE[R]

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin

which is mathematically equivalent to:

max ωT .µ

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin

and can be reduced by adding two variables s1 and s2 corresponding to ωmax and ωmin to the
following convex problem:

max ωT .µ

s.t :



n∑
i=1

ωi = 1

ωi ≥ 0

ωi ≥ s1

ωi ≤ s2

s2 ≤ 10.s1

Hence:
(With x = [ω1 ... ωN s1 s2]T , µ′ =

[
µ 0 0

]
)
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max xT .µ′

s.t :



[
1TN 0 0

]
.x = [1]

[
−IN 0 0

]
.x ≤ [0]

−IN 1 0

IN 0 −1

 .x ≤
0

0


[
0N −10 1

]
.x ≤ [0]

2.1.3 Mean - Variance

The modern portfolio theory of H.Markowitz is based on the combination of these two condi-
tions. A reasonable investor does not just want tomaximize the return on his portfolio (because
he is exposed to too much risk) or just minimize the associated risk (because he may have too
much poor performance). There are two main techniques for combining these conditions, as
stated by Markowitz. The first idea is to optimize a combination of the two conditions. When
one wants to maximize a function f1 and to minimize another f2, one can reduce the problem
to the minimization of a weighted difference between f2 and f1. The weighting factor is used to
control the optimization strategy (if we focusmore on limiting the risk, ormaximizing the yield).
We obtain then a parametric optimization.

The problem is then:

min V ar(R)− λ.E[R]

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin

Or:

min ωT .Σ.ω − λ.ωT .µ
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s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin

and can be reduced by adding two variables s1 and s2 corresponding to ωmax and ωmin to the
following convex problem:

min ωT .Σ.ω − λ.ωT .µ

s.t :



n∑
i=1

ωi = 1

ωi ≥ 0

ωi ≥ s1

ωi ≤ s2

s2 ≤ 10.s1

Hence:

(With x = [ω1 ... ωN s1 s2]T , µ′ =
[
µ 0 0

]
, andΣ′ =


Σ 0 0

0 0 0

0 0 0

 )

min xT .Σ′.x− λ.xT .µ′

s.t :



[
1TN 0 0

]
.x = [1]

[
−IN 0 0

]
.x ≤ [0]

−IN 1 0

IN 0 −1

 .x ≤
0

0


[
0N −10 1

]
.x ≤ [0]

This parametric technique is very close to the next one and it has a very powerful geometric in-
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terpretation. If you plot on a graph all possible combinations of Mean / Variance for a given
portfolio, then there will be a limit when risk decreases and yield increases. This limit is called
Efficient Frontier. Each point on this boundary is a risk minimization for a given yield level.

Figure 2: Theoretical Efficient Frontier, returns reduced normal centered law. 50,000 random
portfolios

Figure 3: Efficient Frontier. CAC 40 stocks textit Advanced Topics in Operations Research
Scenario-Based Portfolio Optimization by Edouard BERTHE [9]
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Figure 4: Portfolio of 4 assets from the CAC40 ; 50,000 random portfolios

A parametric equation of this frontier so-called "Efficient Frontier" is the previous optimiza-
tion. However there exists a more explicit way to characterize this frontier. We can rewrite the
previous optimization as follow: minimizing the risk for a given level of expected returns.

Let us write an equivalent way of leading amean variance optimisation:

min V ar(R)

s.t :



n∑
i=1

ωi = 1

ωT .µ = R

ωi ≥ 0

ωmax ≤ 10.ωmin

which is mathematically equivalent to:

min ωT .Σ.ω
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s.t :



n∑
i=1

ωi = 1

ωT .µ = R

ωi ≥ 0

ωmax ≤ 10.ωmin

and can be reduced by adding two variables s1 and s2 corresponding to ωmax and ωmin to the
following convex problem:

min ωT .Σ.ω − λ.ωT .µ

s.t :



n∑
i=1

ωi = 1

ωT .µ = R

ωi ≥ 0

ωi ≥ s1

ωi ≤ s2

s2 ≤ 10.s1

Hence, we obtain the following convex problem. If we release all the constraints C, the solu-
tion is the plot of the Efficient frontier with R in ordinate.

(With x = [ω1 ... ωN s1 s2]T , andΣ′ =


Σ 0 0

0 0 0

0 0 0

 )
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min xT .Σ′.x

s.t :



[
1TN 0 0

]
.x = [1]

[
µ 0 0

]
.x = [R]

[
−IN 0 0

]
.x ≤ [0]

−IN 1 0

IN 0 −1

 .x ≤
0

0


[
0N −10 1

]
.x ≤ [0]

3 Non-Traditional Portfolio Optimizations

3.1 SomeUseful optimization problems

Although elegant and easy to implement, previous optimization problems suffer many disad-
vantages. First, we quickly realized that if we release the constraint between ωmax and ωmin, the
result is absolutely not the same. Markowitz’s unconstrained optimisations tend to put almost
all allocations on a small subset of assets. This subset is all themore limitedwhen the number of
assets increases (see [10], which shows that the combination of constraints (1) and (3) is impos-
sible if youwant to conduct an effective optimization, as soon as the number of assets N>> 50).

For instance, see below the plot of the allocations of the portfolio for a mean - variance opti-
mization, long only, convex (assets has been taken randomly in an universe of size 5,000), which
can be summed up in the following sentence: Mean Variance optimization for portfolios with
many assets kills the diversification of the portfolio, which is always been a strength of a success-
ful portfolio management.
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Figure 5: Portfolio of 250 random assets

Figure 6: Portfolio of 300 random assets



3.1 Some Useful optimization problems 26

3.1.1 Equal Risk Contributions

To remove this trend, a first idea is to go closer to the portfolio Equally Weighted (EWP), but it
does not take into account the risk associated with each allocation. The following solution had
been established first by SebastienMaillard, Thierry Roncalli and Jerome Teiletche [11].

The Equal Risk Contribution Portfolio (ERC) is an alternative to the EWP, which seeks to match
not the weights, but the risk associated to each weight. If we assume that the standard devia-
tion of the portfolio is an homogeneous function of the weights ω, then, the Euler’s theorem for
homogeneous functions states that:

σ(ω) =
n∑
i=1

ωi
∂σ(ω)
∂ωi

=
n∑
i=1

σi(ω)

Ie each asset i, weighted ωi, whose returns are ri, makes a contribution to the risk:

σi(ω) = ωi
∂σ(ω)
∂ωi

= ωi
ωiσii+Σj 6=iωjσij

σ(ω)

σi(ω) is called the ith risk contribution for a portfolio Ω : ω = (ωi)1≤i≤n. The goal of this opti-
mization is to find the vector ω such that for all i 6= j σi(ω) = σj(ω). One can find by calculation
a closed-form solution in some particular cases (n = 2 or when the correlation between the as-
sets is constant). On the other hand, for any number of assets n > 2, the solutions can only be
expressed via endogenous formulas, ie function of the solution.

We are looking for: ω∗ = {ωk ∈ [0; 1]n :
n∑
i=1

ωi = 1, ωi
∂σ(ω)
ωi

= ωj
∂σ(ω)
ωj

∀i, j }

σ(ω) =
√
ωT .Σ.ω

∂σ

∂ω
=

1

2
√
ωT .Σ.ω

.2Σ.ω =
Σ.ω√
ωT .Σ.ω

=
1

σ(ω)
(Σ.ω)

σi(ω) = ωi
∂σ

∂ωi
=

ωi
σ(ω)

n∑
j=1

ωjσij =

n∑
j=1

ωiωjσij

σ(ω)

Remark 3.1: (Σω)i ∝ ∂σ
∂ωi

.

Hence ω∗ = {ωk ∈ [0; 1]n :
n∑
i=1

ωi = 1, ωi(Σω)i = ωj(Σω)j ∀i, j }

CASE n = 2:

Ω : ω = (λ, 1− λ)
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σ1(ω)

σ2(ω)

 ∝
 λ(Σω)1

(1− λ)(Σω)2



(Σω)1 = (Σω)2

σ2
1ω + σ12(1− λ) = σ12ω + σ2

2(1− λ)

σ2
1λ

2 = (1− λ)2σ2
2

σ1λ = (1− λ)σ2

λ =
σ2

σ1 + σ2

ω∗ = (
σ2

σ1 + σ2
,

σ1

σ1 + σ2
) (3.1)

CASE CONSTANT CORRELATION:

Assumenowthat thecorrelationbetweeneveryasset in thePortfolio is constantequals toρ. Then
∀ (i, k):

(Σω)i = (Σω)k
n∑
j=1

ωiωjσij =

n∑
p=1

ωkωpσkp

ω2
i σ

2
i +

n∑
j 6=i

ρωiωjσiσj = ω2
kσ

2
k +

n∑
j 6=k

ρωkωjσkσj

ω2
i σ

2
i + ρωiωkσiσk = ω2

kσ
2
k + ρωiωkσiσk

ωiσi = ωkσk

ωi = ωk
σk
σi

1 = ωkσk

n∑
i=1

1

σi

ωk =
σ−1
k

n∑
i=1

σ−1
i

ω∗ =

(
σ−1
k

n∑
i=1

σ−1
i

, k ∈ [0, n]

)
(3.2)

CASE CONSTANT VARIANCE:
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Assume now that the variance of each asset in the Portfolio is constant equals to a > 0. Then ∀
(i, k):

(Σω)i = (Σω)k
n∑
j=1

ωiωjρija =

n∑
p=1

ωpωkρpka

wi =

n∑
p=1

ωpωkρpk

n∑
j=1

ωjρij

1 =

n∑
i=1

ωk
n∑
p=1

ωpρpk

n∑
j=1

ωjρij

ωk =

(
n∑
p=1

ωpρpk)−1

j∑
i=1

(
n∑
j=1

ωjρij)−1

ω∗ =

 (
n∑
p=1

ωpρpk)−1

n∑
i=1

(
n∑
j=1

ωjρij)−1
, k ∈ [0, n]

 (3.3)

Remark 3.2: We note that this formula for the weights of the portfolio is endogenous, and so
cannot be directly used for the optimization.

GENERAL CASE:

In the general case, wewill see that the formulawe obtain is once again endogenous, and so con-
not be used. Nevertheless, let us define first:
σiω = Cov(ri,

n∑
j=1

ωjrj) =
n∑
j=1

ωjσij

βi = σiω
σ2(ω) Beta of stock i against the portfolio.

As all risk contributions are the same, then we have:

σi(ω) =
σ(ω)

n

=
ωiσiω
σ(ω)

= σ(ω)ωiβi =
σ(ω)

n

ωi =
β−1
i

n

ω∗ =
(
β−1
i

n , i ∈ [0, n]
)

(3.4)
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This two endogenous formulas are useful if and only if we are able to estimate the betas against
the portfolio or theweighted sumof the correlations. In any other case, we need to develop a nu-
merical solution. SebastienMaillard, Thierry Roncalli and Jerome Teiletche showed [11] that the
equal risk contribution portfolio exists for allmatrixH of data, and hence used theminimization
of the following quartic function:

f(ω) =
n∑
i=1

n∑
j=1

(ωi(Σω)i − ωj(Σω)j)
2

This problem is then:

min
n∑
i=1

n∑
j=1

(ωi(Σω)i − ωj(Σω)j)
2

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin

This form is the most adapted to study this quartic system. That will be done with the package
scipy.optimize of python, as CVXOPT is not usable for quartic problems.

3.1.2 Diversemetrics to optimize: Tracking Error, Alpha/Beta approach, Max Drawdown

Tracking Error:

Suppose that we have data on a benchmark, a reference signal, as it is the case for example in
contexts of overcome an index. Define the Rf signal of returns of this benchmark. The tracking
error captures the proximity of the portfolio’s returns signal to the benchmark. It is the mean
quadratic distance of the two signals:

TE =

√
T∑
t=0

(Rft −Rt)2

With T the data period considered, Rt the returns at time t, so Rt = ωT .rt, with rt = (rit)i the
vector of returns of the assets of the portfolio at time t.
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TE =

√√√√ T∑
t=0

(Rft −Rt)2

TE2 =

T∑
t=0

(Rft −Rt)2

=

T∑
t=0

(Rft − ωT .rt).(RTft − r
T
t ω)

DefineA = (rt)t = ω.H ,B = (Rft)t, with H the temporal matrix of returns.
Then:

TE2 = (AT −BT ).(A−B)

= (ωT .HT −BT ).(H.ω − b)

= ωT .HT .H.ω − ωT .HT .B −BT .H.ω

= ωT .(HT .H).ω − 2ωT .(HT .B)

Suppose we want to replicate the performance of the benchmark. So our optimization can be
written:

min ωT .(HT .H).ω − 2ωT .(HT .B) s.t: C

which, under mathematical writing, is a convex problem adapted to CVXOPT:

min xT .(HT .H).x− 2xT .(HT .B)

s.t :



[
1TN 0 0

]
.x = [1]

[
−IN 0 0

]
.x ≤ [0]

−IN 1 0

IN 0 −1

 .x ≤
0

0


[
0N −10 1

]
.x ≤ [0]
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Alpha/Beta Approach:

Suppose once again that we have the returns signal of the benchmark, and that the latter has a
generally positive return. Finally, suppose that this benchmark is sufficiently correlatedwith the
assets of our portfolio, so that we can perform a relevant linear regression between the two sig-
nals of returns. Then in theseparticular conditions, ifwemaximize the slope (β) of the regression

Figure 7: Linear Regression: Benchmark / Portfolio, CAC40 assets

and the intercept (α), we almost surely outperform the benchmark.
The problem becomes:

max α+ β

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin

Max Drawdown:

Finally, min max Drawdown optimization is a more qualitative alternative to min variance. In-
deed the max drawdown is a good indicator of the downward volatility. We can minimize this
max drawdown. So we avoidminimizing the volatility upwards.

Definition 1.2: For a signal, the drawdown corresponds to the amplitude of the decline after
a major peak.

Themax drawdown of a (St) signal can be calculated numerically with the following algorithm:
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. maw drawdown = 0

. peak=S0

. For all t:

. If St >peak:

. peak = St

. drawdown = peak−St
peak

. maw drawdown =max(drawdown, max drawdown)

3.2 Most Diversified Portfolio

3.2.1 Definitions

In 2008 Yves Choueifaty and Yves Coignard introduced a new kind of Portfolio Construction.
They tried to find an elegant alternative to the MPT. The starting point of their article Toward
Maximum diversification [12] deals with the estimation of Markowitz’s Parameters. According
to them, while it seems relevant to use the sample covariancematrix to capture the risk, it is too
ambitious to assume that mean returns are constant. Therefore, model it with the samplemean
is unsuitable. They wanted to free the mean dependence of a portfolio optimization. Knowing
that, they quantified an other characteristic of a portfolio, the diversification, with a metric that
depends only on a covariancematrix estimator.

A quantitative diversification metric should capture how much a portfolio is built with "very
different kind of" assets. Yves Choueifaty proposed in TOWARDMAXIMUMDIVERSIFICATION

[12] that the diversification of a portfolio is all the more important as the volatility is far from
the volatility if all the assets were uncorrelated. Hence, this metrics can be written (with S =
(σi)1≤i≤n):

DR(ω) =
ωT .S√
ωT .Σ.ω

The strategy followedwhen doingMost Diversified Portfolio (MDP) optimization is tomaximize
this ratio.
ie:

max ωT .S√
ωT .Σ.ω

s.t :


n∑
i=1

ωi = 1

ωi ≥ 0 ∀i

ωmax ≤ 10.ωmin
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Unfortunately, this problem is not quadratic convex, and as it is, we can not solve it quickly
thanks to CVXOPT as we did earlier in the MPT context. In Toward Maximum Diversification,
Yves Choueifaty and Yves Coignard choose to use the analytical solution. Indeed the diversifica-
tion ratio is easily differentiable, and the maximization is reduced to a simple matrix equation.
However this analytical solution is not adapted to the constraints C, and to the structure of the
data. First, the anlytic solution constantly violates the constraint (3). In addition, since there is
no large data window, it is impossible to use the majority of the covariance matrix estimators.
Indeed, the latter are regularly non-invertible, whereas the analytical solution involves only this
inverse.
However, with some calculus, we can make this problem quadratic convex, and therefore nu-
merically solvable in all cases.

Indeed, define: y = ω
k , with k ≥ 0 such that ωTk .σ = 1.

Then:

DR(ω) =
ωT .S√
ωT .Σ.ω

=
k

k
.

ωT .S√
ωT .Σ.ω

=
ωT .S
k√

ωT

k .Σ.
ω
k

=
1√

yT .Σ.y

and so:
max{ ωT .S√

ωT .Σ.ω
;ω ∈ C} =min{

√
yT .Σ.y; k ≥ 0, yT .S = 1, yk ∈ C}

argmax{ ωT .S√
ωT .Σ.ω

;ω ∈ C} ∝ argmin{yT .Σ.y; k ≥ 0, yT .S = 1, yk ∈ C},

with C the set of constraints.

It is therefore sufficient to add a variable k to obtain the following convex problem:

min yT .Σ.y

s.t :



ω = y
k

k ≥ 0

yT .S = 1
n∑
i=1

ωi = 1

ωi ≥ 0

ωmax ≤ 10.ωmin
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which is equivalent to:

min yT .Σ.y

s.t :



ω = y
k

k ≥ 0
n∑
i=1

yi = k

yT .S = 1

s1 = ymin ≥ 0

s2 = ymax ≤ 10.ymin

So finally:

(With x = [y1 ... yN k s1 s2]T = [k.ω1 ... k.ωN k s1 s2]T , andΣ′ =


Σ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 )

min xT .Σ′.x

s.t :



[
ST 0 0 0

]
.x = [1]

[
1TN −1 0 0

]
.x = [0]

[
0N −1 0 0

]
.x ≤ [0]

[
0N 0 −1 0

]
.x ≤ [0]

−IN 0 1 0

IN 0 0 −1

 .x ≤
0

0


[
0N 0 −10 1

]
.x ≤ [0]

In addition to Choueifaty and Coignard’s approach, we will propose an explanation of why even
in aMarkowitz approach, theMostDiversified Portfolio (MDP) canbe seen as the bestMean ver-
sus Variance Portfolio.



3.2 Most Diversified Portfolio 35

*
* *

Fromnow and in all the rest of this section, let us consider themost diversified portfolio only
in the unconstrained case, ie we reduce the problem to the case where the only constraint is
n∑
i=1

ωi = 1

In this general case, let us now derive the solution to theMDP problem
Recall thatDR(ω) = ωTS√

ωTΣω
.

∂DR

∂ω
=

√
ωT .Σ.ω.S − ωT .S 2Σ.ω

2
√
ωT .Σ.ω

ωT .Σ.ω
√
ωT .Σ.ωS =

ωT .S√
ωT .Σ.ω

Σ.ω

(ωT .Σ.ω).S = (ωT .E).Σ.ω

ω =
ωT .Σ.ω

ωT .S
Σ−1.S = α(ω)Σ−1.S

With:

α(ω) =
ωT .Σ.ω

ωT .S

ST .Σ−1.1TN .α(ω) =
ST .ω

ωT .S
= 1

α(ω) =
1

1TN .Σ
−1.s

ω =
σ−1.S

1TN .Σ
−1.S

(3.5)

3.2.2 MDP vsMPT

Weare now going to prove that theMDP is not only an efficient alternative to theMPT approach.
Indeed, if one puts it into the mean versus variance mathematical framework, then, the MDP
appears to give a good solution to the following problem:
What is the best E such that my Portfolio satisfies the program (P):

min 1
2σ

2 = 1
2ω

T .Σ.ω

s.t :

{
n∑
i=1

ωiµi = E

The problem (P) is a characterization of the efficient frontier. RobertMerton [13] first proved the
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following.

Assume first that we have a matrix of returns H, which is a n×mmatrix H = (rij)1≤i≤n,1≤j≤m,
where rij is the returns of asset i at times j. Assume also that we have functions f1 and f2 of only
H that build an estimator Σ invertible (the real covariance matrix is always invertible) of the co-
variance matrix Σ = (σij)1≤i≤n,1≤j≤n = f1(H) and an estimator µ of the mean of returns vector
µ = (µi)1≤i≤n = f2(H), with the same notation as in the previous sections. Then, there is no
randomness in the followingworks as everything is deterministic, and depends only on the data
set H, and the accuracy of the estimator function f1 and f2.

Derivation of the efficient Frontier:

For a data set H, define the Portfolio Mean versus Variance space (Mean, Variance), where each
existing point (E, σ2) is a portfolio Ω with mean E, and variance σ2, ie E =

n∑
i=1

ωiµi, and σ2 =

ωT .Σ.ω =
n∑
j=1

n∑
i=1

ωiωjσij . For Mean versus Variance Portfolio analysis, people often use the (σ2,

E) space, but using (E, σ2) is better in this case.

Al the points (E, σ2) of the efficient frontier satisfy the following problem:

min
σ,ω

1
2σ

2

s.t :


σ2 = 1

2ω
T .Σ.ω

n∑
i=1

ωiµi = E

n∑
i=1

ωi = 1

Which is equivalent to solving the following (P) for each E:

minω
1
2

n∑
j=1

n∑
i=1

ωiωjσij

s.t :


E −

n∑
i=1

ωiµi = 0

1−
n∑
i=1

ωi = 0

and then plug ω into
n∑
j=1

n∑
i=1

ωiωjσij in order to obtain σ2.

As we saw in chapter 1, if ω satisfies (P), then, the K.K.T condition give:

• ∇(L)(ω) = 0;

• ω is feasible;
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• All the Lagrangemultipliers for inegality constraints γi are positive;

• γi.gi(ω) = 0, where gi are the inequality constraints;

Hence, for (P), ω is a solution if:

• Condition 1: ∀i,∇(L)(ω)i =
n∑
j=1

(ωjσij)− γ1ωiµi − γ2 = 0; (a)

• Condition 2: E =
n∑
i=1

ωiµi and 1 =
n∑
i=1

ωi; (b1), (b2)

• Condition 3: None;

• Condition 4: None;

With L(ω) = 1
2

n∑
j=1

n∑
i=1

ωiωjσij + γ1(E −
n∑
i=1

ωiµi) + γ2(1−
n∑
i=1

ωi).
(a) ⇐⇒ Σ.ω − γ1µ− γ21N = 0

(a) ⇐⇒ ω = γ1Σ−1.µ+ γ2Σ−1.1N

Define (vij)ij := Σ−1

∀k, ωk = γ1

n∑
j=1

vkjµj + γ1

n∑
j=1

vkj (3.6)

And then bymultiplying by µk and summing:
(b) ⇐⇒ E =

n∑
k=1

ωkµk = γ1

n∑
k=1

n∑
j=1

vkjµjµk + γ2

n∑
k=1

n∑
j=1

vkjµk

(b) ⇐⇒ 1 =
n∑
k=1

ωk = γ1

n∑
k=1

n∑
j=1

vkjµj + γ2

n∑
k=1

n∑
j=1

vkj

Define:
A :=

n∑
k=1

n∑
j=1

vkjµj = 1TN .Σ
T .µ

B :=
n∑
k=1

n∑
j=1

vkjµjµk = µT .ΣT .µ

C :=
n∑
k=1

n∑
j=1

vkj = 1TN .Σ
T .1N

Then:
 E = γ1B + γ2A

1 = γ1A+ γ2C
(3.7)
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γ1 =
1

B
(E − γ2A)

1 =
A

B
(E − γ2A) + γ2C

γ2(C − A2

B
) = 1− A

B
E

γ2 =
1− A

BE

C − A2

B

=
B −AE
BC −A2

Define D := BC -A2

γ2 =
B −AE

D
(3.8)

γ1 =
1

B
(E − AB −A2E

D
)

=
ED −AB +A2E

BD

=
E(D +A2 −AB

BD

=
EBC −AB

BD

γ1 =
EC −A

D
(3.9)

Hence, the Lagrangemultipliers, and the weights ω are given by:

γ1 = EC−A
D

γ2 = B−AE
D

ω = EC−A
D Σ−1.µ+ B−AE

D .Σ−1.1N

Using (2.1):

ωk =

n∑
j=1

(EC −A)vkjµj +
n∑
j=1

vkj(B −AE)

D

=
1

D
(

n∑
j=1

(ECµj −Aµj +B −AE))

ωk =
1

D
(E

n∑
j=1

vkj(Cµj −A) +

n∑
j=1

vkj(B −Aµj)) (3.10)



3.2 Most Diversified Portfolio 39

Then, using (a):
n∑
j=1

ωjσij = γ1µ1 + γ2

n∑
i=1

n∑
j=1

ωiωjσij = γ1

n∑
i=1

µiωi + γ2

n∑
i=1

ωi

σ2 = γ1E + γ2

=
E2C −AE +B −AE

D

σ2 =
CE2 − 2AE +B

D

σ2 = f(E), such that f is a parabola (3.11)

It is a convex parabola, hence it has aminimum. Indeed:
∂2f
∂2E = 2.CD ≥ 0, hence f is convex.
∂f
∂E = 2CE−2A

D = 2CE−AD = 0 ⇐⇒ E = A
C

By the way, we can note that:
f(AC ) = 1

C = 1
n∑
k=1

n∑
j=1

vkj

= 1
1TN .Σ

T .1N

And with (2.5), it corresponds to:

ωk =

n∑
j=1

vkj

C
=

Σ−1.1N
1TN .Σ

T .1N
(3.12)

Then, thefinalMerton’s result is the following. The efficient frontier is characterizedby the equa-
tions:

E =
A

C
± 1

C

√
DC(σ2 − 1

C
) (3.13)

And finally, the useful equation of theMean versus Variance efficient frontier is :

σ2
MPT (E) =

1TN .Σ
−1.1N .E

2 − 2.1TN .Σ
−1.µ.E + µT .Σ−1.µ

µT .Σ−1.µ.1TN .Σ
−1.1TN − (1TN .Σ

−1.µ)2
(3.14)

*
* *

Choueifaty andCoignard did not try to see theMDPas a particular case of theMPT.However,
the following is a tentative to derive in a sameway asMerton did, the different existing curves in
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theMDP problem.

Unfortunately, the solutions usemany different constants, and so it is not really pleasant to read.

Once again, let us first assume that Σ and µ are known matrix and vector, functions only of the
data set H. Define now S = (

√
σii = σi)1≤i≤n, the vector of standard deviation of H. Hence σ is

also a function of only the data set H. There is still no randomness in this problem.

Equation of theMDP frontiers:

We will define in this section, two frontiers for the MDP. The first one, analogously to the MPT
efficient frontier, is characterize by the equation σ2

MDP
= f(EMDP ), where EMDP and σ2

MDP
are

the mean and the variance of any portfolio which maximize the diversification ratio (DR) for a
given level of mean E = EMDP . The second frontier is characterized by all the portfolios which
maximize the diversification ratio for a given level ofmeanE = EMDP , in the (E,DR(E)) space.
One can generate 5,000 randomportfolios and plot the second frontier as we did for the efficient
frontier. See the graph below.

Figure 8: MDPDR frontier andMPT efficient frontier. Standard Normal returns. 5,000 Portfolios

The points of this second frontier are those who satisfy for a given E:
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ω∗ = argmaxω
ω.S√
ωT .Σ.ω

s.t :


E −

n∑
i=1

ωiµi = 0

1−
n∑
i=1

ωi = 0

withDR(E) = ω∗.S√
ω∗T .Σ.ω∗

As we have seen previously, this is equivalent to (P):

y∗ = argminy,k
1
2y
T .Σ.y = 1

2

n∑
i=1

n∑
j=1

yiyjσij

s.t :


Ek −

n∑
i=1

yiµi = 0

k −
n∑
i=1

yi = 0

−k ≤ 0

with:
ω∗i =

y∗i
k

DR(E) = ω∗.S√
ω∗T .Σ.ω∗

If (y, k) is a solution of (P), then it satisfies the K.K.T conditions:

• L(y, k) = 1
2

n∑
j=1

n∑
i=1

yiyjσij + γ1(k −
n∑
i=1

yi) + γ2(Ek −
n∑
i=1

yiµi) + γ3(1−
n∑
i=1

yiσi)− γ4k ;

• Condition 1:

– ∀i,
n∑
j=1

(yjσij)− γ1 − γ2µi − γ3σi = 0 ; (a1)

– γ1 + Eγ2 − γ4 = 0 ; (a2)

• Condition 2:

– k =
n∑
i=1

yi (b1)

– E.k =
n∑
i=1

yiµi (b2)

– 1 =
n∑
i=1

yiσi (b3)

– −k ≤ 0 (b4)

• Condition 3: γ1 ≥ 0 , γ2 ≥ 0, γ3 ≥ 0 and γ4 ≥ 0 ; (d)

• Condition 4: −k.γ4 = 0 ; (e)
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(e) gives us immediately that either k = 0 or γ4 = 0. But as k > 0 as k =
N∑
i=1

yi, hence, γ4 = 0. So
with (a2):

γ1 = − 1

E
γ2 (3.15)

(a1) gives us:

Σ.y = γ11N + γ2µ+ γ3S

y = γ2Σ−1µ+ γ1Σ−11N + γ3Σ−1S

∀k, yk = γ2

n∑
j=1

vkjµj + γ1

n∑
j=1

vkj + γ3

n∑
j=1

vkjσj (3.16)

By summing over k, then multiplying by µk and summing over k, and finally multiplying by σk
and summing over k:

k =

n∑
k=1

yk

= γ2

n∑
k=1

n∑
j=1

vkjµj + γ1

n∑
k=1

n∑
j=1

vkj + γ3

n∑
k=1

n∑
j=1

vkjσj

E.k =

n∑
k=1

ykµk

= γ2

n∑
k=1

n∑
j=1

vkjµjµk + γ1

n∑
k=1

n∑
j=1

µkvkj + γ3

n∑
k=1

n∑
j=1

vkjσjµk

1 =

n∑
k=1

ykσk

= γ2

n∑
k=1

n∑
j=1

vkjµjσk + γ1

n∑
k=1

n∑
j=1

vkjσk + γ3

n∑
k=1

n∑
j=1

vkjσjσk

Define and recall:
A :=

n∑
k=1

n∑
j=1

vkjµj = 1TN .Σ
−1.µ

B :=
n∑
k=1

n∑
j=1

vkjµjµk = µT .Σ−1.µ

C :=
n∑
k=1

n∑
j=1

vkj = 1TN .Σ
−1.1N

D :=BC −A2

F :=
n∑
k=1

n∑
j=1

vkjσj = 1TN .Σ
−1.S
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G :=
n∑
k=1

n∑
j=1

vkjσjµk = µT .Σ−1.S

H :=
n∑
k=1

n∑
j=1

vkjσjσk = σT .Σ−1.S

k = γ2A+ γ1C + γ3F = γ2(A− C

E
) + γ3F

E.k = γ2B + γ1A+ γ3G = γ2(B − A

E
) + γ3G

1 = γ2G+ γ1F + γ3H = γ2(G− F

E
) + γ3H

These three equations can be written as the followingmatrix single equation:


1 C
E −A −F

E A
E −B −G

0 F
E −G −H

 .

k

γ2

γ3

 =


0

0

−1



Q.


k

γ2

γ3

 =


0

0

−1

 (3.17)


k

γ2

γ3

 = Q−1.


0

0

−1

 =


a b c

d e f

g h i

 .


0

0

−1



k

γ2

γ3

 =


−c

−f

−i


Using the Cramer’s Formula:
c = 1

|Q| (AG−
GC
E + AF

E − FB)

f = 1
|Q| (G− EF )

i = 1
|Q| (

A
E −B − C +AE)

k = 1
|Q| (

GC−AF+FBE−AGE
E )

γ2 = 1
|Q| (EF −G)

γ3 = 1
|Q| (

BE+CE−AE−A
E )
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|Q| = BH − HA

E
− FFE(

F

E
−G) +HE(

C

E
−A) +G(

F

E
−G)

= BH − HA

E
− F 2 + FGE +HC −AHE +

GF

E
−G2

=
BHE −HA− F 2E + FGE2 +HCE −AHE2 +GF −G2E

E

=
1

E
[(FG−AH)E2 + (BH + CH − F 2 −G2)E +GF −HA]

|Q| = 1

E
P1(E)

Finally, we can compute the three Lagrangemultipliers, and the value of k:

k =
(FB −AG)E +GC −AF

P1(E)
(3.18)

γ1 =
G− FE
P1(E)

(3.19)

γ2 =
FE2 −GE
P1(E)

(3.20)

γ3 =
(B + C −A)E −A

P1(E)
(3.21)

Recall thatDR(E) = 1
yTΣy

. With (a1):

Σ.y = γ1.1N + γ2.µ+ γ3.S

= γ2(µ− 1N
E

+ γ3S)

yT .Σ.y = γ2(yTµ− yT 1N
E

) + γ3y
TS

= γ2(E.k − k

E
) + γ3

= γ2k
E2 − 1

E
+ γ3

=
1

P1(E)2
[(FB −AG)E + (GC −AF )][EF −G][E2 − 1] +

1

P1(E)
[(B + C −A)E −A]

Define:
α := (FB −AG)F (B + C −A)

α1 := GC−AF
FB−AG

α2 := G
F
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α3 := A
B+C−A

And we obtain:

yTΣy = α[
1

P1(E)2
((E + α1)(E − α2)(E2 − 1)) +

1

P1(E)
(E − α3)]

=
α

P1(E)2
[(E + α1)(E − α2)(E2 − 1) + P1(E)(E − α3)]

Finally, the equation of theMDP diversification ratio frontier is:

DR(E) =
P1(E)√

α
.

1√
(E + α1)(E − α2)(E2 − 1) + P1(E)(E − α3)

(3.22)

Then, for a givenmean target E, maximizing the diversification ratio leads to the followingMDP
variance frontier equation:

σ2
DR =

yTΣy

k2
= γ2

1

k
(E − 1

E
) +

γ3

E

σ2
DR =

α

[(FB −AG)E + (GC −AF )]2
[(E + α1)(E − α2)(E2 − 1) + P1(E)(E − α3)] (3.23)

From now on, the following results depend on three hypothesis and one lemma, that are very
consistent with the simulated results.

Lemma 3.1: P1 has no root.
Hypothesis 3.1: Define g1 such that ∀E, g1(E) = σ2

DR(E), and g2(E) = σ2
MPT (E) Theminimum

of g1 is "close" to the minimum of g2. One can even conjecture that the two minimum are the
same.
Hypothesis 3.2: In this neighborhood, in most cases k ≤ 1, so 1

k ≥ 1.In the other cases, k is very
close to 1. Hence, given the formula of k, we can assume that 1

k is almost linear in this neighbor-
hood. 1

k ' β.E

Hypothesis 3.3: The variance of themost diversified portfolio is close to theminimumof g1, but
not the same. We can assume then that the variance of themost diversified portfolio satisfies the
equation (2.9).

Proof of lemma .11: P1 has no root is equivalent to |Q| is never equals to zero, which is equiva-
lent to Q is always invertible, ie for every E, there exists Lagrangemultipliers and k such that the
diversification ratio has amaximum. Finally, "P1 has no root" is equivalent to "for a givenmean
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E, the Diversification Ratio has a maximum". And we have shown with (2.17), that the maxi-
mization of DRwith a target E has a solution for every E ifΣ is invertible, which is one of our first
assumptions. Hence, P1 has no root.

Unfortunately, the three hypothesis are tough to prove, mainly because the derivation of the
minimum of g1 involves the derivation of a ratio of high degree polynomial. So, the exact so-
lutionmust be impossible to derivewithout a numerical approach. However, we can find results
that are very consistent with these hypothesis. For example the following graphs of k and 1

k show
that k seems to have no pole and only one zero, and given (2.13), this means that P1 has no root.

Figure 9: k and 1
k ; 10 random assets with Normal returns

The following graph highlights both hypothesis 1 and hypothesis 2. Indeed we can see that
The Variance of the MPT frontier is close to the MDP variance frontier, and especially when the
Diversification Ratio ismaximized. Moreover, the plot of 1

k in function of E shows that k<1 when
we are in the neighborhood of the maximum diversification portfolio. This graph has been ob-
tained with 10 random asset from the CAC 40.

Finally, this third graphs shows that it is relevant to assume hypothesis 3, and especially that
themaximum diversification portfolio is not the same as theminimum variance portfolio.
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Figure 10: Variances, k, 1
k and -DR; 10 random assets with Normal returns

Figure 11: Variance1/8
MPT and Diversification ratio ; 10 random assets with Normal returns

Conclusions:

There are many conclusions that follow the previous equation, this lemma and these three hy-
pothesis. Firstly, the lemma implies that the diversification ratio has no root. Moreover, it is
seemingly always positive.
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Given (2.18), we see that σDR has one pole of degree two. Moreover, when E tense to infinity,
σDR ∼ E4

E2 = E2 and σMPT ∼ E2. Hence in the two problems, the variances have the same
features when themean tense to infinity. This point can be highlighted by a plot such as the fol-
lowing, where we see that the ratio is constant when E tense to infinity:

Figure 12: Ratio of variances ; 10 random assets with Normal returns

Recall that the diversification ratio is maximized when ω = Σ−1.S
1TN .Σ

−1.S
. This correspond then to a

mean E = G
F . In order to compare the mean in the MPT framework and the mean in the MDP

framework, onecancompare themeanwhenminimizing the variance, and themeanwhenmax-
imizing the diversification ratio, ie compare G

F and A
C . However, hypothesis 3 says that 1

k ' β.E,
and hypothesis 1, allows us to use the dynamic of σMPT for σDR in the neighborhood of the solu-
tion. So in the neighborhood of it maximum, which is also a neighborhood of theMPT variance,
the diversification ratio can be written(withEMPT = A

C ):
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DR(E) =
βE√
σ2
DR

=
βE√

C
D (E − EMPT )2 + 1

C )

DR′(E) =
β
√

C
D (E − EMPT )2 + 1

C − βE
2CD (E−EMPT )

2
√

C
D (E−EMPT )2+ 1

C

C
D (E − EMPT )2 + 1

C

= 0

β(
C

D
(E − EMPT )2 +

1

C
) = βE

C

D
(E − EMPT )

C

D
(E − EMPT )(E − EMPT − E) = − 1

C

Given the three hypothesis, themean of themost diversified portfolio is:

E = EMPT +
D

C2EMPT
> EMPT (3.24)

Themost diversified portfolio has a higher expectedmean of returns.

And finally, given the formulas of σMPT andDR, the variance around themost diversified port-
folio decreases asE2 + cstwith E<1, while the diversification decreases as 1√

E+cst
with E<1. The

the diversification ratio declines much faster.

*
* *

As a conclusion on themost diversified portfolio, we can say that:

• When onemaximizes the diversification ratio:

– The portfolio is well diversified, muchmore than almost everywhere else ;

– The variance is low, close to theminimum possible variance ;

– The expected returns is bigger than the one obtain whenminimizing the variance ;

• While when oneminimize the variance:

– The diversification is low ;

– The variance is just a bit lower;

We couldminimize the variance with a chosen targetmean, but it could lead to a very low diver-
sification. Maximizing the diversification make it possible to get away from dependence on the
estimation of themean. It acts in fact like a tiny pointers on the best portfolio with respect to the
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variance, themean and the diversification.

In the applications that we will see in the chapter 4, we will always try to use first the Most di-
versified portfolio. We will see that it (almost always) leads to a good result.

4 Applications

The previous optimizers can be helpful inmany purposes. They find their utility in the third step
of the portfolio construction defined in chapter one. In order to assess the quality of the solu-
tions, we will put it into practice in two different contexts. The first application was the only one
that was engineered for real goals at BOUSSARD & GAVAUDAN. We will introduce in this goal
some additional constraints in order to build a very robust portfolio.

In all the following applications of the previous optimizers, each covariance matrix estimator
andmean estimators are obtained through the sample estimator if we havemore than 100 days
of data, with the OASmethod otherwise.

4.1 Trading Strategy

Assume we get two filters. The first one select between 80 and 200 assets based on trend follow-
ing strategies. The rebalancing (ie the date of activation of a filter on the universe) is done every
three months. Assume we get filters that select assets based on trend following strategies. This
gives us between 300 and 600 stocks in which we have to invest a wealth of 1. The filters are ap-
plied each 15 days, hence we need to recompute the optimization each 15 days.

As we saw in chapter 3, the Markowitz’s optimization does not give satisfying results when the
number of assets increases. We then choose to use theMostDiversified Portfolio, andwewill see
that this optimizer gives better results.

Recall that themost diversified portfolio consists inmaximizing the following ratio:

ω.S√
ωT .Σ.ω

Recall also the given Boussard and Gavaudan’s constraints C :

• All weights are positive;
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• The sum of the weigths is equal to one;

• the ratio between the lowest weight and the highest is not higher than 10;

As we saw previously, this optimization is equivalent to solving the following convex (quadratic)
problemwith linear constraints:

y∗ = argminy,k
1
2y
T .Σ.y = 1

2

n∑
i=1

n∑
j=1

yiyjσij

s.t :



k −
n∑
i=1

yi

Ek −
n∑
i=1

yiµi = 0

k −
n∑
i=1

yi = 0

−k ≤ 0

with:
ω∗i =

y∗i
k

DR(E) = ω∗.S√
ω∗T .Σ.ω∗

This optimization gives us a vector of weights Ω, which allow us to build a real portfolio. Each
15 days, date (tk)k, there is a rebalancing, ie the filters are reapplied in order to update the lists
of assets which satisfies the willing behaviour. If we build such a portfolio, then the P&L (Pt)t,
which is a stochastic process, is given by:

Pt = Ptk .

n∑
i=1

wi.
Si(t)

Si(tk)

Indeed if we want to invest ωi% of 1 in assetAi at time tk then we need to buy wi
S
tk
i

.
This P&L, called "new P&L" in the next graphs, is however not acceptable. Such a position is
much too sensitive to the market. Indeed, by building this portfolio, we hope that the selected
assetswill have abetter behaviour than themarket, but imagine there is a general fall of all stocks
prices, thenwe risk to loosemoney. We need to hedge our position. For this purpose, wewant to
be long our optimized portfolio, and short the market. With such a strategy, in the general case,
as our portfolio is supposed to be higher than themarket, wewinmoney, and if there is a general
fall, aswe are short themarket, we limit the loss. The only casewhenwe loosemoney iswhen the
P&L falls quicker than the market. This case shall not occur if the filters select many diversified
assets, ie if there is no bias in a particular factor. This point will be discussed later.

How to be long or short the market ? As we will see in the next section, there exist funds that
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replicate the behaviour of the well known stock market index, as CAC 40 or FTSE. Our hedg-
ing strategy is simply hedging pounds against pounds with future on the associated index. This
means that each time we buy 1 of a stock, we short sell 1 of a future on the stock market index
where this asset is quoted. For example, imaginewe buy 1 of a stock of a french firm, thenwewill
short sell 1 of future on index that replicates the CAC 40 (CF1). The portfolio can be summarized
in the following table:

(A, ω) Ai Hedge (DAX, CAC40, FTSE...)
ωi -ωi

And the strategy is characterized by the followingP&L stochastic process (Hi(t) is hedge associ-
ated to Si(t))

Pt = Ptk + Ptk .

n∑
i=1

wi.(
Si(t)

Si(tk)
− Hi(t)

Hi(tk)
)

Using this optimization, we obtain the following backtest on 10 years of data, using 300 days look
back windows for computing the estimator of the covariancematrix (and therefore the vector of
standarddeviation). TheoldP&L is obtainedwith anEquallyWeightedPortfolio (ie sameweight
for each asset), the new with the Most Diversified Portfolio. The exact details of the stocks can
not be given to the reader, for industrial reasons.
However, the net asset value of the portfolio is not enough to asses the quality of the optimiza-

Figure 13: P&Ls before (orange) and after (blue) optimization. Portfolio with 300 to 600 assets,
rebalancing each 15 days
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tion. Therefore we compute few risk metrics for the two P&Ls and compare them. We decided
to use the followingmetrics:

• Themax drawdown;

• The volatility;

• The Sharpe Ratio: the sharpe ratio had been introduced by William Sharpe Sharpe, [14].
Mathematically, the sharpe ratio isS =

E[rp−rb
σb

], where rp, rb and σb are respectively the an-
nual rate of returns of our portfolio, the annual rate of returns of themarket (ie the hedge),
and the volatility of the market. Qualitatively, it examines if an investment have a suffi-
ciently higher returns than the market compare to the additional risk we take. For a good
investment, the sharpe ratio should be close to 1 (the higher the sharpe ratio is, the best
the investment is). If we assume that each realized rate of returns is an observation of a
normally ditributed law N (µ.t, σ.

√
∆t), for computing the sharpe ratio, we take the mean

and the standard deviation of rate of returns on the realized P&L of the hedge and of the
portfolio, divided by square root of the number of years;

• The drawdown: The value "drawdown" at each step, in the algorithmwe show in part 3.1.2;

• The time to recovery: Duration between two zeros of the previous value;

• Ratio new hedged P&L versus new hedged P&L

For the previous Portfolio, the risk metrics, the drawdown and the ratio are the following:

Risk metrics Equally weighted portfolio MDP
Max Drawdown 0,1195642631 0,122335565
Starting date max drawdown 2009-07-08 00:00:00 2009-07-08 00:00:00
Endingmax drawdown 2010-02-08 00:00:00 2009-10-02 00:00:00
Sharpe Ratio 0,6864942773 0,7147881804
Time to recovery maximum 385 384
Time to recovery mean 32,05555556 30,14545455
Volatility 0,05705023047 0,06736278115

Given thepreviousback test results, theMDP is reliable, andwe can implement it in real time.
The previous portfolio was re balanced every 15 days, but each time, only a small number of as-
sets was removed from the portfolio, and a small number of names enter into the portfolio. And
the portfolio contains a very high number of assets. But we can do exactly the opposite, ie make
an optimization problem on portfolios with between 80 and 300 stocks, which is re balanced
each 3months, with a big number of change.
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Figure 14: Drawdowns 10 years of realized P&Ls; before optimization (bleu) and after (orange)

Figure 15: Ratio new hedged P&L versus new hedged P&L

An other strategy from Boussard and Gavaudan, based on mean reversion, applies filters such
that this kind of portfolio is obtained. This Portfolio is muchmore sensitive to the optimization.
Firstly, we applied theMost Diversified Portfolio Optimizer, with the constraints C on a backtest
period of 10 years, with a look back windows of 300 days for computing the estimators:
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Once again, to assess the quality of the optimization we can examine the realized P&Ls with

Figure 16: P&Ls before (orange) and after (blue) optimization. Portfolio with 80 to 300 assets,
rebalancing each 3months

risk metrics:

Risk metrics Equally weighted portfolio MDP
Max Drawdown 0,1723112529 0,1698323082
Starting date max drawdown 2009-01-09 00:00:00 2009-01-08 00:00:00
Endingmax drawdown 2009-04-07 00:00:00 2009-04-07 00:00:00
Sharpe Ratio 0,8401890185 1,199580859
Time to recovery maximum 304 298
Time to recovery mean 34,68421053 30,19277108
Volatility 0,1017409651 0,1053957081
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Figure 17: Drawdowns 10 years of realized P&Ls; before optimization (blue) and after (orange)

Figure 18: Ratio new hedged P&L versus new hedged P&L
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As this portfolio seems much more sensitive to the optimization, we will now compare the
results with the two other optimization problems we have seen: the ERC and the Min Variance
portfolio:
The risks metrics for these two optimization problems can be found in appendix.

Figure 19: MDP (blue) versusMin Variance (orange)

Obviously, there is a clear advantage in performing the third step of the portfolio construction,
as there is a huge increase of the net asset value (NAV) which does not come with any damage
of the risks metrics,. Moreover the most diversified portfolio, with constraints C seems to be the
best solution to this problem.
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Figure 20: MDP (blue) versus ERC (orange)

*
* *

The convex structure of theMDP optimizer with linear constraints allows us to add new con-
straints that have not been taken into account until now. However, as we increase the number
of constraints, we reduce the size of the feasible set (which is the set of weights which satisfy the
constraints), and the feasible set can finally be far away from the optimal unconstrained value.
Nevertheless, a good optimization is not only a good objective function, it is also a smart choice
of constraints. There are three additional constraints which can be added to theMDP optimizer
These constraints are often useless, but ignoring them can be lethal in extrem cases.

The lack of liquidity:

When one applies the previous optimization in the reality one can faces a major problem: the
lack of liquidity. Indeed the filters could select stocks which are not easily purchased in themar-
ket. If theoptimizationasks tobuy x of stockA, but only k < x is on sale, then theportfolio cannot
be launched. Moreover, buying toomuch shares of stockA can affect the other trading strategies.

We made the choice to not trade more than 10% of the daily volume. The daily volume is the
quantity of asset i traded each day. It can be estimated by taking themedian of the realized daily
volume over the past 3 months. Therefore, the new constraint is:
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ωi ≤ Li, with L = (Li)1≤i≤N the vector of daily volume.

In theMDP framework, the previous constraint become:

yi
k
≤ Li

yi − Lik ≤ 0

[ IN − L 0 0 ].x ≤ 0

Bias:

As we said previously, with our hedging strategy, the only way to loose money is being long a
portfolio with a decreasing P&Lwhile themarket increases.

This could occur as soon as there exists a bias in the portfolio, ie being long the portfolio is in
fact equivalent to being long a certain factor. This factor can be:

• A country: The portfolio is very sensitive to themarket of a particular country

• A sector: The portfolio is very sensitive to a particular industry

A perfect portfolio would have no bias to a particular factor.

For calculating these bias, we retained the following solution. The reader must be aware that
this solution is an idea, and there exists no strong theory around it.

First of all we calculate (estimate) the covariance matrix of all the assets in the universe. Then
we do a PCA (Principal Components analysis) over this covariancematrix, and take the first vec-
tor of the PCA.
Definition 4.1:Wikipedia: Principal component analysis [15]
Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated variables into a set of values of
linearly uncorrelated variables called principal components. If there are n observations with p
variables, then thenumberof distinct principal components ismin(n−1, p). This transformation
is defined in such away that the first principal component has the largest possible variance (that
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is, accounts for as much of the variability in the data as possible), and each succeeding compo-
nent in turn has the highest variance possible under the constraint that it is orthogonal to the
preceding components. The resulting vectors are an uncorrelated orthogonal basis set.

Our idea is to consider that the normalized first vector ω∗ of the PCA gives a portfolio (Ω′,A′)

that explains themarket, whereA′ is the universe.

The portfolio has no bias for a particular factor f if the sum of the stocks which belongs to this
factor f does not exceed 1.5 times the sum in the market portfolio. For example the constraints
for the factor UK can be written:

∑
Ai∈UK

ωi ≤ 1.5
∑

A′i∈UK

ω′i

All of this constraints are linear as they can be written:

Eω ≤ 1.5Bias

Bias = (
∑

A′i∈factorf

ω′i)f

Eif = δstock i∈factor f

In theMDP framework, it becomes:

Eω ≤ 1.5Bias

E
y

k
≤ 1.5Bias

E.y − 1.5Bias.k ≤ 0

[ E − 1.5Bias 0 0 ]x ≤ 0

We implemented this method for the previous portfolio with the MDP optimizer. Fortunately,
it deteriorates not the NAV, and add a security in case of huge fall of any factor. See below for
example the bias in countries:
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Figure 21: Bias in the portfolio withMDP (blue) versusMarket bias (orange)

Beta:

Finally, as we do not want the portfolio to be highly correlated to the hedge, we want to fix its
beta smaller than one. We compute the beta to its hedge for each stock thanks to the formula
βi =

Cov(ri,rhedge)
V ar(rhedge)

(or by doing a linear regression), with r the temporal vector of rate of returns.
The nex constraints is then:

N∑
i=2

ωi(βi − 1) ≤ 0

(β − 1)ω ≤ 0

(β − 1)y ≤ 0

[ β − 1 0 0 0 ]x ≤ 0

With β = (βi)1≤i≤N

The three previous linear constraints do not deteriorate the NAV and add a security. See below
the P&Lswith and without these three constraints:
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Figure 22: MDPwith additional constraints (blue) versusMDPwithout additional constraints
(orange)

Remarks 4.1: In all the previous graphs we added trading costs a posteriori. Each trade im-
plies trading costs. Especially if the stocks is not really liquid and we trade a huge quantity, then
there is a high price impact. Wemodel this impact by adding a penalty of 20 bps, ie the trueP&L

is given by the following stochastic process:

Pt = Ptk + Ptk

N∑
i=1

ωi(
Si(t)

Si(tk)
− Hi(t)

Hi(tk)
)− 0.20T

T =

N∑
i=1

|ωi − ωoldi |

With ωold and ω the weights before and after each rebalancing.
Unfortunately all our tempatives to include trading costs in the optimizers failed, therefore we
will not go in depth in trading costs in this thesis. But hopefully trading costs seems to never
affect P&L.
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4.2 Robust strategies for Smart Beta

Since the financial crisis, investor have had an increasing confidence in simple products, and a
decreasing willing to invest into highly sophisticated products. This explains the development
of ETF fund.
Definition 4.2: From Investopedia.com

An ETF, or exchange-traded fund, is a marketable security that tracks an index, a commodity,
bonds, or abasket of assets like an index fund. Unlikemutual funds, anETF trades like a common
stock on a stock exchange. ETFs experience price changes throughout the day as they are bought
and sold. ETFs typically have higher daily liquidity and lower fees thanmutual fund shares,mak-
ing them an attractive alternative for individual investors.

The idea behind smart beta is to track an index as an ETF fund does, and then optimize the al-
location of weights into the new product. The goal is simply do to build a more profitable index
than the original one. This aim seems to be well adapted to our optimizer, and as we did previ-
ously, starting from the list of stocks in the DAX index GX1, we obtain the followingMDP index:
With the risk metrics:

Figure 23: MDPDAX in blue versus GX1 index (DAX) in orange
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Riskmetrics Equally weighted portfolio MDP
Max Drawdown 0,512008891 0,524153448
Starting date max drawdown 2008-01-08 00:00:00 2008-01-08 00:00:00
Endingmax drawdown 2009-03-06 00:00:00 2009-03-09 00:00:00
Sharpe Ratio 0,1819538599 0,3868824587
Time to recovery maximum 733 578
Time to recovery mean 74,03030303 58,92682927
Volatility 0,2303282692 0,206753243

Figure 24: MDPDAX drawdown in orange versus GX1 index drawdown (DAX) in blue

Of course theprevious analysis canbedone for other index, and leads each time to the samekind
of satisfying result.
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Conclusion
In the complex path which leads to the construction of a portfolio, we focused in this thesis in
the third one: the portfolio optimization. We have seen that this step can produce very different
P&Ls. Hence it is useful to study in depth the solutions that are already available in the liter-
ature, and then improve it. Hopefully, the convex optimization theory offers us powerful tools,
such that we can easily build optimizer that are adaptable, and ease the decision.

We have built many optimizers in this thesis, but we studied in depth the most diversified port-
folio (MDP), the Equal Risk Contribution (ERC), and theMarkowitz Optimization (MPT), under
the Boussard&Gavaudan’s constraints . Both theoretically and in practice, theMost Diversified
Portfolio appears to be thebest solution to the issue of this thesis (recall the problematic in intro-
duction: Given a set of tradable assets and constraints, what is the best way to spread our money
into these assets? ).

The final optimizer, which is currently used at Boussard & Gavaudan is mainly based on the
Most diversified Portfolio theory. Once the result of optimization problem seems stable, we add
further constraints, which are just safeties against extrem events. We obtained finally a robust
optimizer, adaptable tomany purposes.
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A Appendix

Appendix A.1: ERC andMin Variance Risks Metrics

For the second portfolio, if we analyse the P&Lwith an ERC versus a MDP optimization for ten
years, we obtain the following risk metrics:

Risk metrics ERC MDP
Max Drawdown 0,1899758564 0,2029667151
Starting date max drawdown 2009-01-07 00:00:00 2009-01-08 00:00:00
Endingmax drawdown 2009-07-07 00:00:00 2009-04-07 00:00:00
Sharpe Ratio 0,7473438023 1,000278229
Time to recovery maximum 392 326
Time to recovery mean 44,13114754 34,61333333
Volatility 0,09444328992 0,1118017278

Figure 11: DrawdownMDP (orange) versus ERC (blue)
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Riskmetrics MinimumVariance MDP
Max Drawdown 0,2014053906 0,2029667151
Starting date max drawdown 2009-01-09 00:00:00 2009-01-08 00:00:0000
Endingmax drawdown 2009-04-07 00:00:00 2009-04-07 00:00:00
Sharpe Ratio 0,8720384494 1,000278229
Time to recovery maximum 409 326
Time to recovery mean 40,93939394 34,61333333
Volatility 0,1125295415 0,11180172788

Figure 11: DrawdownMDP (orange) versusMinimumVariance (blue)
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