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1 Introduction

The Libor market model (LMM) seems to be the most promising model family among the interest

rate models [9]. Unlike the short rate models, it is able to capture the dynamics of the entire curve

of interest rates by using Libor forwards as its ingredients. However, a drawback of the LMM

model is that it is less flexible in modelling the essential characteristics of interest rate markets, in

particular, the volatility smile.

The Stochastic Alpha, Beta, Rho (SABR) model attempts to address this unsolved issue in the

classic LMM model by assuming the volatility itself as a stochastic process. The model has been

widely applied over the years since Hagan and his co-workers derived the analytical approximation

of the Black implied volatility [12]. It has gained its attention in the finance world due to the

simplicity of the model dynamics and the ability of fitting the subtle differences in the shape of the

implied volatility smile. A large number of studies on the SABR model extensions has also been

conducted to cope with different practical issues raised in the use of the model. In particular, the

λ-SABR model, which is the classic SABR model with a mean-reversion term seems to produce

a better approximation of the Black Scholes implied volatility [1]. In the latter paper, Labordère

derived the analytic approximation formula using the heat kernel expansion on a Riemannian

manifold. Several alternative methods were used in the literature to obtain such approximations:

singular perturbation analysis, Malliavin calculus [18] [6], and transition density [19].

Rebonato proposed the SABR extension on the Libor market model in order to take advantage

on the SABR model’s ability of fitting volatility smile [2] [11].

In this thesis, we aim to study the SABR model and its extension by carrying out theoretical

and empirical analysis. In the first part of the thesis, we conduct a brief introduction to the basics

of vanilla interest rate derivatives pricing for not familiar readers. The second part will devote

to the literature review on the theory and application of the mentioned models. Then, we shall

put the theories into practice to actually implement and calibrate the models with market data.

Finally, we draw conclusions according to our empirical analysis and results.
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2 Basic Concept

In this section, we briefly describe the instruments involved in this thesis. Some of the basic

fixed income derivatives such as interest rate swap, cap/floor, and swaption will be presented.

Term structures, valuation formulae and market practice on cap/floor and swaption pricing are

introduced to readers who are not familiar with the subject.

2.1 Interest Rate Swap

Swap is an over-the-counter agreement between two counter-parties to exchange cash flows in the

future. It is a very common and frequently traded fixed income derivative usually used to transform

a liability or an asset. Many financial institutions also perform market making on swaps. In this

thesis, we are interested in interest rate swap (IRS) and its valuation.

By signing a IRS contract, the issuer company agrees to pay a predetermined fixed rate on the

notional 1 amount for a predetermined time range in exchange of payments at a floating rate on

the same amount at the same time from receiver company. The floating rate agreed inter-bank is

typically the Libor rate. The discounted pay-off of an issuer IRS is:

PVIRS(t) =

β∑
i=α+1

D(t, Ti)τi(L(Ti−1, Ti)−K) (2.1)

= D(t, Tα)

β∑
i=α+1

D(Tα, Ti)τi(L(Ti−1, Ti)−K). (2.2)

In the above IRS, the issuer pays fixed rate K, receives Libor rate. D(t, Ti) is the discount factor,

L(Ti−1, Ti) is the Libor rate reset at Ti−1 paid at Ti, and τi = Ti − Ti−1 is the year fraction.

The agreement is reset at Tα, Tα+1, · · · , Tβ−1 the payments are made at Tα + 1, Tα+2, · · · , Tβ .

Taking the risk neutral expectation of the discounted IRS pay-off at time t with respect to Ft, the

filtration, we obtain the pricing formula of the above IRS:

PIRS = E[PVIRS(t)|Ft] =

β∑
i=α+1

P (t, Ti)τi(F (t;Ti−1, Ti)−K). (2.3)

Where P (t, Ti) the zero-coupon bond price at time t, and F (t;Ti−1, Ti) the forward Libor rate at

time t between Ti−1 and Ti. Mathematically it reads as as follows:

F (t;T, S) =
1

S − T

(
P (t, T )

P (t, S)
− 1

)
, S > T.

The value of fixed rate K such that the IRS has zero value is called forward swap rate which is

another important rate often used in swaption valuation. The formula reads

Sα,β(t) =
P (t, Tα)− P (t, Tβ)∑β

i=α+1 τP (t, Ti)
. (2.4)

1We assume unit notional amount in this thesis for clarification
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The derivation of the pricing formula and forward swap rate is straightforward and it is omitted

in this thesis. Notice that the yield curve is necessary for IRS valuation.

2.2 Caps/Floors

An interest rate cap is basically a payer interest rate swap where the payment is made only if it

has positive value. Clearly the discounted pay-off function reads

PVCAPS(t) =

β∑
i=α+1

D(t, Ti)τi (L(Ti−1, Ti)−K)+ . (2.5)

Similarly, a floor is equivalent to a receiver IRS in which the payment is made when the floating

rate is below a certain value. It is worth mention that a caps can be decomposed additively because

the summation is outside the convex function, ()+. Market quotes caps using the Black’s model

implied volatility [9]. Caps are consist by a series of caplets and their price can be evaluated

separately to derive the pricing formula below

PCaps(0,K, T , τ, σα,β) =

β∑
i=α+1

P (0, Ti)τiBl(K,F (0, Ti−1, Ti), vi). (2.6)

With Bl(K,F, v) the core of Black’s formula:

Bl(K,F, v) : = FN (d+(K,F, v))−KN (d−(K,F, v)) (2.7)

d±(K,F, v) : =
log(F/K)± v2/2

v
(2.8)

vi = σα,β
√
Ti−1. (2.9)

with the set of maturities: T = Tα, · · · , Tβ , and τ = τα+1, · · · , τβ . σα,β is the implied volatility

which can be retrieved from the market.

2.3 Swaption

Companies enter in an interest rate swap contract to lock in a profit by receiving a fixed rate

payment in exchange of paying a floating rate, or convert its fixed rate liability to an agreed

floating rate liability. They choose to enter a swaption contract to manage interest rate risk arising

from their core business. Swaption is the option on interest rate swap. It gives the owner the right

to enter in an IRS at a predetermined fixed rate in the future. Mathematically the discounted

pay-off function reads:

PVSwaption(t) = D(t, Tα)

(
β∑

i=α+1

P (Tα, Ti)τi(F (Tα;Ti−1, Ti)−K)

)
+

. (2.10)

Noticing the summation is inside the convex function, ()+. This implies the join distribution of

different forward rates need to be dealt with in order to price a swaption. Swaption valuation



2.3 Swaption 4

requires modelling the dynamics of interest rates which is different from caps valuation in 2.2. It

is market practice to price swaption with Black-like formula [9]:

PSwaption(0,K, T , τ, σα,β) = Bl(K,Sα,β(0), σα,β
√
Tα)

β∑
i=α+1

τiP (0, Ti). (2.11)

Where σα,β is retrieved from the market swaption volatility surface, and Sα,β(0) is known as the

ATM strike:

KATM := Sα,β(0) =
P (0, Tα)− P (0, Tβ)∑β

i=α+1 τiP (0, Ti)
. (2.12)
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3 Literature review

In this section, we will the existing models and frameworks on caps/floors and swaption pricing

and risk assessment such as the Libor market model, the SABR model, the λ-SABR model, the

SABR extension to the Libor market model, the connection between models and the actual portfolio

P&L calculation, the relation between P&L prediction technique and sensitivities, and the different

approaches to P&L attribution.

3.1 Libor Market Model

Different components such as short rate and forward rate can be modelled in interest rate derivatives

pricing. Short rate model, forward rate model and Libor market model (LMM) have been applied

and tested over the years by financial institutions. Among them LMM is considered one of the most

popular and promising family of interest rate model [9]. The advantage of Libor market model is

each forward rate is modelled by a log-normal process under its forward measure. Moreover, cap

prices are quoted in the market in terms of implied volatility which can be calculated using LMM.

[13] and [16] showed that Swaptions can be managed well in the model through approximations

like drift freezing. Brigo and Mercurio derived the Black’s formula under the LMM assumption

for caplets which turns out to match the classic market Black’s formula [9]. We discuss technical

detail on Libor market model in relation to the caps/floors pricing.

3.1.1 LFM

In the Log-normal Forward Libor model (LFM), forward rates are model as log-normal processes.

Therefore, under the respective Tk-forward measure Qk

dFk(t) = σk(t)Fk(t)dZk(t), t ≤ Tk−1. (3.1)

with the set E = T0, T1, · · · , TM the expiry-maturity dates, Fk(t) = F (t;Tk−1, Tk) the forward rate

at time t between Tk−1 and Tk, Zk the k-th element of the M -dimensional Brownian motion Z

under Qk measure, and instantaneous covariance ρ = (ρi,j)i,j=1,··· ,M

dZ(t)ᵀdZ(t) = ρdt.

3.1.2 Instantaneous Covariance Structure

Selecting appropriate instantaneous covariance structure is another topic in practice. Different

forms of volatilities structures have been proposed such as general piecewise constant, separable

piecewise constant, and parametric linear-exponential. The choice of the covariance structure mat-

ters the final calibration result in terms of calibration error, regular instantaneous correlation, regu-

lar terminal correlations and smoothness of the caplet volatilities’ evolution over time [13]. It seems
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the assumption that the volatility σk(t) is general piece wise constant generally performs better.

This will be also discussed in the calibration of the LFM model. We clarify the mathematical defi-

nition as follows: σk(t) = σk,β(t), where σk(0) = σk,1 and t ∈ (Tβ(t)−2, Tβ(t)−1]]. The instantaneous

volatility structures thus can be specified across all the forward rates: F1(t), F2(t), · · · , FM (t).

We will use another interesting structure, Parametric Linear-Exponential (LE), in the further

sections on the SABR model. The advantage of this setting is that the volatility for each forward

rate, Fi−1, can be modelled with only four parameters, and the structure satisfies that the volatility

is time homogeneous, i.e. the volatility depends on the time to maturity. Mathematically the

volatility σi(t) reads

σi(t)
2 =

∫ Ti−1

0

[(a+ bτi−1) exp(−cτi−1) + d]2dt , τi−1 = Ti−1 − t. (3.2)

3.1.3 Decorrelation

If we assume ρi,j = 1, then the correlations between forward rates are too correlated. Brigo [9] and

Joshi [3] gives some insights and empirical analysis to show how to reduce the correlations between

forward rates. It seems that the instantaneous correlations between forward-rates are not only

the source affecting the terminal correlation between different forward rates. The instantaneous

volatility specification also contributes.

Monte Carlo simulation has been suggested to study the terminal correlations of forward rates.

However, it seems an approximation approach is more preferable to check the model reliability in

practice. Two different versions of the approximation formula have been discussed in [13]:

Corr(Fi(Tα), Fj(Tα)) =
exp(

∫ Tα
0

σi(t)σj(t)ρi,jdt− 1√
exp(

∫ Tα
0

σ2
i (t)dt)− 1

√
exp(

∫ Tα
0

σ2
j (t)dt)− 1

(3.3)

CorrREB(Fi(Tα), Fj(Tα)) = ρi,j

∫ Tα
0

σi(t)σj(t)dt√∫ Tα
0

σ2
i (t)dt

√∫ Tα
0

σ2
j (t)dt

. (3.4)

Numerical tests against Monte Carlo simulation shows that both formulae work well in dealing

with correlation approximation [13].

3.1.4 Calibration

The calibration and pricing procedure of LFM can be done in two flavours: 1) calibrate LFM with

striped caps/floors volatilities from caps market quotes. 2) using the model to incorporate as many

the standard market swaptions prices as possible.

The calibration of caps market prices is automatic as the caps are quotes by Black’s model

implied volatility. However, market quotes prices of caps instead of caplets. The common approach

requires stripping caplet volatilities from cap price, and using caplet volatilities as model input [9].
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The caplet price can be evaluated as:

PCaplet(0, Ti−1, Ti) = P (0, Ti)τiBl(K,F (0, Ti−1, Ti),
√
Ti−1vTi−1−caplet). (3.5)

Where vTi−1−caplet is the termed Ti−1 caplet volatility, defined as the square root of the average

percentage variance of the forward rate Fi(t) for t ∈ [0, Ti−1):

v2
Ti−1−caplet :=

1

Ti−1

∫ Ti−1

0

σi(t)
2dt. (3.6)

In order to calibrate LFM using caplet volatilities, we need to apply a striping algorithm to produce

caplets volatilities from caps quotes and plug into the model. A stripping algorithm has been

mentioned in [9] and several common practical algorithms are discussed in [5] with associated

statistical analysis. Recall the termed Ti−1 caplet volatility 3.6 and apply the general piecewise

constant assumption in LFM, we have in general

v2
Ti−1−caplet :=

1

Ti−1

∫ Ti−1

0

σi(t)
2dt =

1

Ti−1

i∑
j=1

(Tj−1 − Tj−2)σ2
i,j . (3.7)

Assuming further that the piecewise constant volatility depends only on the time to matu-

rity, the only parameter left to be calibrated with the swaption price is the correlation ρ. Once

we approximate the forward rates correlation, the calibration process for LFM under the above

assumption is then complete. Two approximation formula were derived in [9] to compute the swap-

tions volatility under the LFM model. It seems the difference between both formulas is negligible

in non-pathological situations according to the Monte Carlo simulations test. Hence we state the

simpler formula for clarification:

Rebonato’s formula : The squared swaption volatility multiplied by Tα can be approximated

as:

(vLFMα,β )2 =

β∑
i,j=α+1

wi(0)wj(0)Fi(0)Fj(0)ρi,j
Sα,β(0)2

∫ Tα

0

σi(t)σj(t)dt. (3.8)

The above formula relies on the algebraic transformations of forward rates:

Sα,β(t) =

β∑
i=α+1

wi(t)Fi(t).

Assuming volatility is general piecewise constant and instantaneous correlations, ρ, are given

exogenously, we have ∫ Tα

0

σi(t)σj(t)dt =

α∑
h=0

(Th − Th−1)σi,h+1σj,h+1.

If we assume other structure such as SPC parametrisation or L-E formulation for instantaneous

volatilities, different parameters and calibration procedures need to be calibrated jointly with

swaptions prices.
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The above calibration processes manage to fit the market caps/floors or swaption data with

very small error [13]. However, as suggested in [10], the volatility smile implied by the LMM are

rather grid, and are not rich enough to fit the observed market caps/floors and swaptions. We

naturally attempt to incorporate LMM model with stochastic volatility model.

3.2 SABR Model

Market implied volatility always varies with both the strike and the time to maturity. The SABR

model attempts to capture the volatility smile structure by modelling a single forward rate with

an stochastic volatility dynamics. Hagan and his co-workers has derived asymptotic formulas for

the SABR model in [12]. The core result is close-form algebraic formulas for the implied volatility

as functions of today’s forward price and the strike.

In this section, we present the background information on the basic SABR model, and some

crucial steps in the derivations of approximation formulae. Then we introduce the LMM/SABR

model which combines the classic Libor market model with SABR model.

3.2.1 Model Dynamics

Based on martingale pricing theory, it is clear that the forward price F is a martingale under the

forward measure. By the martingale representation theorem, we can claims that the forward rate

process is defined as

dF (t) = C(t, ·)dW (t), F (0) = f. (3.9)

where the coefficient C(t, ·) is a deterministic or random process, and W is the standard Brow-

nian motion in the forward measure. The Black model assumes the forward rate process to be

a Geometric Brownian Motion: dF (t) = σF (t)dW (t). However, as we mentioned before, the as-

sumption that the volatility is constant is rather realistic. Instead of modelling the volatility as a

constant, SABR model models the volatility as a stochastic process. Mathematically the forward

rate dynamics as below:

dF (t) = σ(t)F β(t)dW1(t) F (0) = f (3.10)

dσ(t) = vσ(t)dW2(t) σ(0) = α. (3.11)

Where the diffusion coefficient C(t, ·) = σ(t)F β(t) is CEV type, the volatility σ is random, and

correlation exists between W1 and W2: dW1dW2 = ρdt. It worth mentioning that market smile

and skewness are usually managed by local volatility model (Dupire) before the SABR model has

attracted the attention. Hagan [12] claims that the local volatility model causes inaccurate and

unstable hedging as the model fail to predict the correct behaviour of the implied volatility curve.

Detailed illustration can be found in the mentioned paper. Therefore the local volatility model

will not be discussed in this thesis.
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3.2.2 Approximation

The probability distribution associated with the SABR model is complicated and very difficult to

be assessed analytically. One way to study the model’s behaviour and properties is using Monte

Carlo simulation. In regard to fast model implied volatility computation, Hagan and his co-workers

derived an approximation analytically formula presenting the implied volatility of European call

option as a function of strike and today’s forward price, i.e. σ(K, f), via singular perturbation

analysis [12]:

σ(K, f) =
α

(fK)(1−β)/2
[
1 + (1−β)2

24 log2 f/K + (1−β)2

1920 log4 f/K + · · ·
] · ( z

x(z)

)

·
{

1 +

[
(1− β)2

24

α2

(fK)(1− β)
+

1

4

ρβvα

(fK)(1− β)/2
+

2− 3ρ2

24
v2

]
τ + · · ·

}
. (3.12)

with

z =
v

α
(fK)(1−β)/2 log f/K

and x(z) is defined by

x(z) = log

{√
1− 2ρz + z2 + z − ρ

1− ρ

}
For the special case of at-the-money implied volatility, the 3.12 reduces to

σATM = σ(f, f) =
α

f (1− β)

{
1 +

[
(1− β)2

24

α2

f (2− 2β)
+

1

4

ρβαv

f1−β +
2− 3ρ2

24
v2

]
τ + · · ·

}
. (3.13)

Another more comprehensive version of this formula is stated in [9] to incorporate the caplet

pricing. The Ti-maturity caplet implied volatility can be written as

σ(K,Fi(0)) =
α

Fi(0)1−β

{
1− 1

2
(1− β − ρλ) log

K

Fi(0)

+
1

12

[
(1− β)2 + (2− 3ρ2)λ2

]
log2 K

Fi(0)
+ · · ·

}
. (3.14)

Where

λ =
v

α
f1−β .

3.2.3 Estimate β

Hagan, Kumar, Lesniewski and Woodward claim that the market smile can be fitted fairly well

with any specific value of β. Fitting market data to determine the exponent β is not a good practice

as it has the same effect as fitting the market noise [12]. They suggest to extract β from historical

observations of the "backbone", the curve that the at-the-money volatility (σATM ) traces. More

specifically, from 3.13, we have:

log σATM = logα− (1−β) log f + log

{
1 +

[
(1− β)2

24

α2

f (2− 2β)
+

1

4

ρβαv

f1−β +
2− 3ρ2

24
v2

]
τ + · · ·

}
.
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We notice that the β can be determined by linear regression with historical log σATM and log f

data pairs. The third term factored by time to maturity, τ , can be ignored as its value is typically

less than one or two percent [12]. Lesniewski suggested to fix one parameter among β and ρ to

calibrate the other three parameters as experience shows that redundancy between the parameter

β and ρ [10].

3.3 SABR-Libor Market Model

The SABR model is able to capture the volatility smile with stochastic volatility dynamics. It is

natural to attempt extending the classic Libor market model by integrating the stochastic volatility

model into the dynamics of Libor forward rates. Rebonato and his co-workers introduced a SABR

extension on the classic LMM model [16]. Hagan and Lesniewski have worked also on extending

the SABR model [10] subsequent to [12]. We highlight both of their work in this section. Different

specifications and approaches have been used to develop the model.

3.3.1 Rebonato’s SABR extension

Rebonato’s approach relies on a natural decomposition of the stochastic part of the forward rate

dynamics. This procedure breaks the stochastic term into one component only depends on the

volatilities, and another component only depends on the correlations.

The forward rate fi 2, i = 1, 2, · · · , N satisfies the following dynamics under the Ti-forward

measure [2]:

dfi(t) = σi(t)fi(t)
βdwi(t) (3.15)

dσi(t) = gi(t)dki(t) (3.16)
dki(t)

ki(t)
= uki(t)dt+ hi(t)dzi(t). (3.17)

The model requires the volatility and the volatility of volatility to be time homogeneous, i.e:

g(t, T ) = g(T − t) and h(t, T ) = h(T − t). The correlations are defined as:

dwi(t)dwj(t) = ρijdt (3.18)

dzi(t)dzj(t) = rijdt (3.19)

dzi(t)dwj(t) = φijdt. (3.20)

The drift term uki is generally not zero for an arbitrary numeraire and can be derived under no-

arbitrage principle. We will present the derivation starting from the general forward rate dynamics

(under any forward measure) in the following section. Lesniweski’s approximation method is based

on this general expression.
2We use lower-case f instead of upper-case F to denote forward rate process in SABR model for clarification.
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3.3.2 Approximation

The SABR/LMM model does not have explicit analytic closed form solution. By performing Monte

Carlo simulation, one can still price caps/floors or swaptions using the SABR model dynamics.

However, the procedure would be time consuming especially when dealing with large dimensional

interest rate derivatives portfolio.

Analytic formulas has been derived to approximate swaption price in [11] and [10]. We outline

the key derivations of Lesniewski in [10] as they help to determine the drift terms that left to be

defined in the previous section. The approach is to first integrate a general stochastic volatility

process on the LMM forward rates dynamics, and then apply the standard change of numeraire

technique in order to determine the drift for both forward rates and the volatility process of the

rates assuming SABR model’s dynamics. By construction, the single forward rate SABR model

has been extended to a M -dimensional forward rate model. Under a forward measure, namely

Tj-forward measure, the dynamics of the forward rate fi(t) can be written as:

dfi(t) = ∆i(t)dt+ Ci(t)dwi(t) (3.21)

Where the drift ∆i reads:

∆i(t) = Ci(t)×


−

k∑
i=j+1

ρjiτiσi(t)fi(t)
βi

1 + τifi(t)
, if j < k,

j∑
i=k+1

ρjiτiσi(t)fi(t)
βi

1 + τifi(t)
, if j > k,

(3.22)

Thus, Under the Tk-forward measure, we have

dfj(t) = σj(t)fj(t)
βj ×



−
k∑

i=j+1

ρjiτiσi(t)fi(t)
βi

1 + τifi(t)
dt+ dwj(t), if j < k,

dwj(t), if j = k,
j∑

i=k+1

ρjiτiσi(t)fi(t)
βi

1 + τifi(t)
dt+ dwj(t), if j > k.

(3.23)

and

dσj(t) = αj(t)σj(t)×



−
k∑

i=j+1

rjiτiσi(t)Fi(t)
βi

1 + τiFi(t)
dt+ dzj(t), if j < k,

dzj(t), if j = k,
j∑

i=k+1

rjiτiσi(t)Fi(t)
βi

1 + τiFi(t)
dt+ dzj(t), if j > k.

(3.24)

The dynamics of swap rate is necessary for swaption pricing under SABR/LMM model. Recall the

definition of the forward swap rate:

Sa,b(t) =
p(t, Ta)− P (t, Tb)∑b

i=a+1 τiP (t, Ti)
=

∑b
i=a+1 τifi(t)P (t, Ti)∑b
i=a+1 τiP (t, Ti)

. (3.25)
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Fixing a measure Q and apply Itô lemma on the forward swap rate. Substitute the forward rate

dynamics with 3.23 and 3.24. And rewrite the swap rate dynamics into the form :

dS(t) = U(t)dt+

b∑
i=a+1

Vi(t)dWi(t) (3.26)

Where

U =

b∑
i=α+1

∂S

∂fi
∆i +

1

2

∑
a+1≤i,j≤b

∂2S

∂fi∂fj
CiCjρij

and

Vi =
∂S

∂fi
Ci

The key step of above transformation is to change the measure from Q to the equivalent martingale

measure Qab associated with the annuity under which the swap rate dynamics is:

dS(t) = σ(t)S(t)βdW (t). (3.27)

Square both 3.26 and 3.27, it is then straightforward to express the β-volatility process σ(t)as:

σ(t) =

√√√√ ∑
a+1≤i,j≤b

ρij
Vi(t)

S(t)β
Vi(t)

S(t)β
. (3.28)

From here, Lesniewski derived an analytic approximation formula for swaption volatility using a

low noise expansion approach and drift freezing technique [10]. The mentioned derivation will

be introduced in the construction of the λ-SABR/LMM model. In the following section on the

SABR/LMM calibration, we focus on Rebonato’s work in [11] due to the simplicity and complete-

ness of the model. Rebonato firstly proposed a curve labelled stochastic volatility approximation in

[2]. Then a different approximation technique has been presented later by Rebonato and White in

[11]. The new approach seems to be a better approximation according to the market case study in

the later paper. We will present Rebonato’s approximation technique jointly with the calibration

procedure.

3.3.3 Calibration with Caplets

It is known that a cap is a series of caplets and caplet price can be evaluated separately. Because

we are not dealing with correlations between forward rates, it is clear to see caps and floors price

in the SABR/LMM model is consistent with the classic SABR model for each time span. The

objective of calibrating LMM/SABR model with caplets is to recover the SABR caplet prices with

LMM/SABR dynamics as close as possible [16].

Rebonato’s approach to the approximation for caplet price relies on matching the SABR model

price with the LMM/SABR model price [11], i.e.

E

[∫ T

0

σ2
SABR(t)dt

]
= E

[∫ T

0

g(t)2k(t)2dt

]
. (3.29)



3.3 SABR-Libor Market Model 13

By doing transformations with Fubini’s theorem and Taylor expansion to match the first and second

order term, we have the approximation formula for SABR model volatility with LMM/SABR

volatility:

α2T = k(0)2

∫ T

0

g(t)2dt (3.30)

v =
k(0)

αT

∫ T

0

g(t)2ĥ(t)2dt. (3.31)

Where

ĥ(t) =

√
1

t

∫ t

0

h(s)2ds.

Providing the classical SABR model parameters, (αi, ρi, βi, vi), calibrated with caplets price

for all the maturities Ti, the calibration procedure is then reduced to choosing the appropriate

parameters for functions: g(·) and h(·) and the initial value of process k. Recall that function g(·)

and h(·) are time homogeneous. This implies function g(·) and h(·) depend on the time to maturity.

It is then logical to parametrize these two function using Parametric Linear-Exponential [9]. The

later parametrization will also reduce the number of variables to calibrate. It seems plausible to set

the expectation of SABR volatility E[σ(t)] = α to be as close as possible to the root-mean-squared

value of g(t) in practice [16]. The first step of the calibration is to minimize the sum of squared

discrepancies:

χ2 =

N∑
i=1

E[αi − ĝ(Ti)]
2. (3.32)

Where

ĝ(Ti) =

√
1

Ti

∫ Ti

0

[(a+ bτi) exp(−cτi) + d]2dτi.

And chose ki(0) such that:

αi = ki(0)ĝ(Ti)

The calibration with caplets price is completed by using the same principle with 3.31. Note that

the correlation between the Brownian motions in the forward rates, ρ, and the exponent parameter,

β, are set to the same values as in the SABR model to assure the above equality.

3.3.4 Calibration with Swaptions

The SABR/LMM model will only be fully specified once the parameters in 3.15 to 3.20 are de-

termined. The correlation structure is left to be calibrated providing the calibration with caplet

prices is done. It is clear to see that the correlations among the volatilities, rij , among non-diagonal

components, φij , could be potentially calibrated by contingents with more complex pay-off such

as swaptions. The full correlation structures is defined as:

P =

 ρ φ

φ′ r

 (3.33)
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Rebonato demonstrated two routes to approximate the initial value of the swap rate and to ap-

proximate the swap rate volatility which determines the swaption price. Intuitions and detailed

derivation can be found in [2], [11] and [16]. We simply state the key formulae used for model

calibration and valuation in this thesis.

The SABR dynamics of the swap rate are defined as:

dS(t) = ΣS(t)BdZ(t) (3.34)

dΣ(t) = V Σ(t)dW (t) (3.35)

〈dZ(t), dW (t)〉 = φdt. (3.36)

Recall the basic concepts on swaption, the forward swap rate spanned by forward rate fi to fN

can be expressed as:

S(t) =

N∑
i=1

wifi(t).

Where wi are the usual forward rate dependent weights. We can set

Wi(t) = wi
fi(t)

β

S(t)B

And apply drift freezing technique [9], [16] The initial value of the swap rate volatility Σ(0) reads:

Σ(0) =

√√√√ 1

T

∑
1≤i,j≤N

(
ρijWi(0)Wj(0)ki(0)kj(0)

∫ T

0

gi(t)gj(t)dt

)
. (3.37)

The volatility of volatility of swap rate, V , is:

V =
1

Σ(0)T

√√√√2
∑

1≤i,j≤N

(
ρijrijWi(0)Wj(0)ki(0)kj(0)

∫ T

0

gi(t)gj(t)ĥ(t)2tdt

)
. (3.38)

The correlation between a swap rate and its volatility, φ, is approximated as:

φ =
∑

1≤i,j≤N

Ωijφij

With the matrix Ω:

Ωij =
2ρijφijWi(0)Wj(0)ki(0)kj(0)

∫ T
0
gi(t)gj(t)ĥ(t)2tdt

(V Σ(0)T )2

The exponent B is simply set as: B =
∑N
i=1 wiβi.

3.4 λ-SABR Model

We have mentioned that the asymptotic expression is derived using singular perturbation technique

as no analytical solutions are available for the SABR model. The approximation of SABR extension

on Libor market model relies also on this approach. However, this seems not to be the only and the
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best approach. Labordère has been studied on the smile asymptotic from a different perspective

in [1]. Using the heat kernel expansion on a Riemannian manifold, he managed to derive an

asymptotic solutions for the implied volatility and conditional probability with general stochastic

volatility model. He also claimed that the volatility is not a tradable asset, it is appropriate to

model the drift under the risk neutral measure. A λ-SABR model thus has been introduced by him

in [1]. The topic is relatively new and seems to be less studied comparing to classic SABRmodel and

SABR/LMM model. Fahrner has formulated the derivation in detail using Labordère’s approach

[4]. In this section, we introduce the necessary definitions and state the plausible approximation

formulae.

3.4.1 Geometry

We start specifying Labordère’s approach by presenting the definitions structured by Fahrner in

[4]. These serve as geometric foundation for the Heat Kernel Expansion approach.

Definition 3.1. Given the n-dimensional SDE system for t ∈ [0,∞):

dxit = bi(t, xt)dt+ σi(t, xt)dW
i
t (3.39)

dW i
t dW

j
t = ρij(t)dt (3.40)

A metric G : [0,∞)× Rn → Rn×n, G = (gij) satisfies:

gij(t, x) = 2
ρij(t)

σi(t, x)σj(t, x)

and the inverse metric is defined as:

gij(t, x) =
1

2
ρij(t)σ

i(t, x)σj(t, x)

with (ρij) the symmetric matrix of (ρij)

Definition 3.2. The Christoffel symbols is : Γpij : [0.∞)× Rn → R satisfying

Γpij =
1

2
gpk(−∂kgij + ∂jgki + ∂igjk)

Definition 3.3. The connection A : [0,∞)× Rn → R satisfies

Ai(t, x) =
1

2
(bi − g−1/2∂j(g

1/2gij) (3.41)

Ai = gijAj (3.42)

A(t, x) = Aidxi (3.43)

define also function Q as a function of the drift bi

Q = gij(AiAj − bjAi − ∂jAi)
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The Riemann tensor

Rijkl = −∂lΓikj + ∂kΓilj + ΓikrΓ
r
lj − ΓilrΓ

r
kj

The Ricci tensor

Rjl = Rijil

and the scalar curvature

R = gijRij

Definition 3.4. Given a curve parametrization c(s) = (c1(s), · · · , cn(s)) with c(0) = x1 and

c(1) = x2, associated length:

l(x1, x2) =

∫ 1

0

√
gij(c(s))

dci(s)

ds

dcj(s)

ds
ds

The geodesics is the curve minimizing the associated length l(x1, x2), and the corresponding length

is called distance d(x1, x2). The geodesics curve c(s) satisfies the geodesics equation

d2xi

dss
+ Γijk

dxj

ds

dxk

ds
= 0 (3.44)

Note that a transformation T : Rn → Rn with t = T (x) transform a metric as

gxixj (x) = gtktl(t)
∂tk

∂xi
∂tl

∂xj

The transformed distance reads: dx(x1, x2) = dt(T (x1), T (x2))

3.4.2 Heat Kernel Expansion

The Heat Kernel Expansion is one of the main tool to study the asymptotic behaviours. It also

is the entry point of Labordère’s approach on the implied volatility approximation. We state the

main theorem used to derived the implied volatility approximation formula. Detailed proof can be

found in [1].

Theorem 3.5. Let M be a Riemannian manifold without a boundary. For every x ∈ M , there

exists a complete asymptotic expansion

p(x, y, τ) =

√
g(x)

(4πτ)n/2

√
∆(x, y)P(x, y) exp(−σ(x, y)/(2τ))

∞∑
n=1

an(x, y)τn , τ → 0 (3.45)

with

a0(x, y) = 1 (3.46)

a1(x, x) =
1

6
R+Q (3.47)

σ(x, y) =
1

2
d2(x, y) (3.48)

∆(x, y) = g(x)−1/2det(−∂
2σ(x, y)

∂x∂y
g(y)−1/2 (3.49)

g(x) = det [gij(x, x)] (3.50)

P(x, y) = exp(−
∫
C(x,y)

Aidxi) (3.51)
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The detailed explanation of each term and equation is presented in [1]. Here we simply present

the method to reader for understanding the approximation formulae in the next section.

3.4.3 Approximation

Recall the SDE system defined at 3.39. Denote x = (xi)i=1,2 = (f, a) where f is the asset, and

a is the volatility. Define the initial condition as f(0) = f0, a(0) = a0. 3.39 can be seen as

a general stochastic volatility model. By calculating the asymptotic probability using the Heat

Kernel Expansion method, Labordère derived the general asymptotic implied volatility at the

first-order [1] using the above stochastic volatility model specification.

σBS(K,τ) =
log(K/f0)∫K
f0

dx√
2gff (c)

(
1 + τ

gff (c)

12

( 1

f2
av

+
∂2
fg
ff (c)

gff (c)
− 3

4
(
∂fg

ff (c)

gff (c)
)2
)

+
τ

2S′′

[
(gff (c))′

gff (c)
[(log(g∆P2))′ − S′′′

S′′
] +

(gff (c))′′

gff (c)

])
. (3.52)

with c the volatility a minimizing the geodesic distance S(a) = d2((f, a), (f0, a0)) on the Riemann

surface. The above formula is very useful to approximate any stochastic volatility model. In order

to derive the approximation formula, we shall state several key theorems.

In particular, Labordère’s approximation seems to be better than the classic approximation

formula obtained by singular perturbation approach in SABR model [1]. We now introduce the

λ-SABR which has an mean reverting drift integrated in the stochastic volatility process. The

dynamics are written as

df(t) = a(t)C(t, f)dW (t) (3.53)

da(t) = λ(a(t)− λ̄)dt+ va(t)dZ(t) (3.54)

C(t, f) = fβ(t), a(0) = a0, f(0) = f0. (3.55)

The derivation requires computation of the metric and the connection associated to the λ-SABR

model with some substitution in the general formula 3.52. Detailed derivation is available both

in [1] and [4]. Here we sate the final approximation formula of the implied volatility of λ-SABR

model.

σBS(K, τ) =
log(f0/K)

vol(q)
(1 + σ1(fav)τ) (3.56)

with

q =
K1−β − f1−β

0

1− β
(β 6= 1) (3.57)

vol(q) =
1

v
log

(√
a2

0 + q2v2 + 2qa0vρ

a0(1− ρ)

)
(3.58)

am(q) =
√
a2

0 + 2a0vρq + v2q2 (3.59)
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and

σ1(f) =
a2
mC(f)2

24

(
1

f2
+

2∂ff (amC(f))

amC(f)
− (

∂f (amC(f))

amC(f)
)2

)
+
a0v

2T log(P)′(am)(1− ρ2)
√

cosh(d(am))2 − 1

2d(am)
(3.60)

Moreover we have log(P)′(am) = log(P/PSABR)′(am) + log(PSABR)′(am) Where

log(P/PSABR)′(am) =
λ

v2

(
G0(θ2(am), A0(am), B)θ′2(am)−G0(θ1(am), A0(am), B)θ′1(am)

+A′0(am)
(
G1(θ2(am), B)−G1(θ1(am), B)

))
(3.61)

and

log(PSABR)′(am) =
β

2(1− ρ2)(1− β)

(
F0(θ2(am), A(am), B)θ′2(am)

− F0(θ1(am), A(am), B)θ′1(am) +A′(am)
(
F1(θ2(am), A(am), B)− F1(θ1(am), A(am), B)

))
(3.62)

with

G1(x, b) = − csc(x) + bRe(log(tan(
x

2
))) (3.63)

G0(x, a, b) = cot(x) csc(x)(a+ sin(x))(1 + b tan(x)) (3.64)

A0(am) = − λ̄
√

1− ρ2

C(f)
(3.65)

A′0(am) =
λ̄
√

1− ρ2(a0ρ+ vq(f))

C(f)2 (ρ(a0 − C(f)) + vq(f))
(3.66)

F0(x, a, b) =
sin(x)

a+ cos(x) + b sin(x)
(3.67)

F1(x, a, b) =
−2b arctan(

b+(a−1) tan( x2√
a2−b2−1

)

(a2 − b2 − 1)
3
2

+
a2 + ab sin(x)− 1

(a2 − b2 − 1)(a+ cos(x) + b sin(x))
(3.68)

θ2(am) = π − arctan(

√
1− ρ2

ρ
) (3.69)

θ1(am) = − arctan

(
a0

√
1− ρ2

a0ρ+ vq(f)

)
+ π11a0ρ+vq(f)≥0 (3.70)

θ′1(am) =
a0(vq(f) + ρ(a0 + am))

v
√

1− ρ2q(f)(2a0ρ+ vq(f))am
(3.71)

A(am) = −

(
v(f0 − fβ0 (β − 1)q(f))

fβ0 (β − 1)am

)
(3.72)

A′(am) =
f0v(a0ρ+ vq(f)) + f0βa0(β − 1)(a0 + vρq(f))

f0β(β − 1)a2
m(vq(f) + ρ(a0 − am))

(3.73)

B =
ρ√

1− ρ2
(3.74)
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3.5 Portfolio Valuation

In order to understand how portfolio value is calculated empirically, we introduce the notations

formulated by Leif B.G. Anderson and Vladimir V. PiterBarg [7] and [8]. The objective here is

to identify the key steps to process information and define mathematically the calculations of the

gain and loss of a given portfolio from a modelling point of view.

Starting from collecting market observable information, define Θmkt(t) as a Nmkt-dimensional

market vector which contains the market data observed at time t, such as the swap and future

rates in the money market which are commonly used to construct yield curve. Once we have the

yield curve, it is straightforward to build zero coupon bond price function of different maturities,

P (t, T ), which is also often used as input to the model calibration process. While most of the data

used in model calibration can be observed in the market, some of the addition parameters can

not be seen directly, or at least the calculation of the parameters from market data is not trivial.

These additional parameters are usually parameters estimated directly from the historical data.

For example, the mean reversion speed κ for an asset in a stochastic volatility model, the power

parameter γ in Constant Elasticity Volatility (CEV) model. Define these addition parameters as

Θprm(t), and the calibrated process can be considered as a function C, satisfying:

Θmdl = C(Θmkt(t); Θprm(t))

Where Θmdl(t) is the Nmdl-dimensional pricing model parameters vector. It worth mentioning

that introducing additional information as market variable can eliminate parameters in Θprm(t)

by replacing them with model parameters and calibrating them from the market vector. However,

it is well known that the Θprm(t) is scarcely reduced to empty in practice as some of the parameters

are naturally not easy to deduced from the market data.

It is highly likely that numerical methods are applied to deal with instrument types when ana-

lytic pricing formula is not available. Therefore an additional parameters Θnum(t) is introduced to

incorporate the valuation process of a given portfolio. Parameters such as size of the discretization

of finite difference grids or SDE scheme are often included in the Θnum(t) vector. Denoting V (t)

as the portfolio value at time t with n assets and function M established from chosen model with

an arbitrage-free principal. The portfolio value can be evaluated as:

V (t) = M(Θmdl(t); Θnum(t))

The overall portfolio valuation process includes the model calibration from market data and valu-

ation using model parameters. It can be written as a function H satisfying:

V (t) = H(Θmkt(t); Θprm(t),Θnum(t))

The function H suggests that the portfolio value depends not only on market data but also un-

observable parameters in Θprm(t) or technical parameters in Θnum(t). However, these parameters
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are less likely to be updated dynamically comparing to the market vector. Moreover, as we are

performing analysis on sensitivities in the following sections and these computations are often done

intra-day, they are rather considered as static parameters than dynamic model parameters.

3.6 Risk Computation and Sensitivities

Taylor expansion is one of the fundamental risk computation methods that are applied widely in

practice. The idea is to shift the market vector by a deterministic vector value δ = (δ1, δ2, · · · , δn)ᵀ

and revalue the target portfolio. Then the difference of the portfolio value can be write using Taylor

expansion as:

V (t, δ) = H(Θmkt(t) + δ) ≈ H(Θmkt(t)) +∇H(t) · δ +
1

2
δᵀ ·AH(t) · δ (3.75)

where ∇H is the gradient of the transfer function H and AH the Hessian matrix. To illustrate

the method with a simple example, construct portfolio with a call option in it, the gradient ∇H

contains therefore the option delta and vega, AH contains the option gamma, volga and vanna.The

computation is more complicate with interest rate derivatives and it will be explained in the

following sections.

Noticing that the overall transfer function H consists of a model calibration function C and a

model valuation function M based on the calibrated model parameters, by applying chain rule, we

have:

∇Hi =
∂H

∂xi

∣∣∣
x=Θmkt(t)

=

Nmdl∑
j=1

∂M

∂yj

∂Cj(t)

∂xi

∣∣∣
y=Θmdl(t),x=Θmkt(t)

Where the gradient of function M with respect to the model parameters can be computed at

first independently with the model calibration process. The second term in the right hand side is

actually the Jacobian matrix for the map from market quotes to the chosen model parameters:

Jj,i =
∂Cj
∂xi

It is clear that, the sensitivities with respect to the market vector is evaluated at each risk com-

putation based on the market data while the sensitivities with respect to the model parameters is

evaluated at each portfolio rebalancing as they are independent of market quotes.

The above approach provides the ability of fast and stable derivatives computation when dealing

with high dimensional market vector and various fixed income instrument types in practice. This so

called Algorithmic Differentiation (AD) method is thus used systematically to compute numerically

first order deltas. More specifically, the Jacobian matrices are calculated during model calibration

process which will reduce the cost of market quotes sensitivities computation.
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3.7 P&L Predict

Providing the sensitivities specified in equation 3.75, ∇H and AH , one can approximate the portfo-

lio value after a short period of time h under the assumption that there is no new trades performed

during this period:

V (t+ h) ≈ V (t) +
∂V (t)

∂t
h+∇H(t) · δ +

1

2
δᵀ ·AH(t) · δ (3.76)

We observe that the second term at right hand side, ∂V (t)
∂t h is actually the time difference h

multiplied by the portfolio theta which measures the sensitivities of the portfolio value to the

passage of time, aka, the time decay. The formula is know as the second order P&L predict. If the

models are appropriate and hedging has be done properly, the approximation should be an accurate

prediction to the actual profit and loss. In order words, the difference between right hand side and

left hand side should be very small as it presents the unexplained P&L. A large unexplained P&L

implies that the currently model or hedging process did not capture the high order risks.

It worth mentioning that the computation of the portfolio theta term is not trivial. Recall

that the portfolio value is compute by: V (t) = H(Θmkt(t)). Without peeking in the future, the

expected market vector at time t+ h evaluated at time t can be written as:

ΘS
mkt(t) = E[Θmkt(t+ h)|Ft]

Using a finite difference approach, the portfolio theta reads:

∂V (t)

∂t
=
V (t+ h; ΘS

mkt(t))− V (t)

h

The empirical calculation of the term: V (t + h; ΘS
mkt(t)) is simply shift the market vector from

Θmkt(t) to ΘS
mkt(t), then reprice the portfolio after advancing the calender at time t + h. By

shifting the market, we actually change the expansion point from Θmkt(t) to ΘS
mkt(t). Thus the

P&L predict formula, 3.75 can be rewritten as:

V (t, δ) = H(Θmkt(t) + δ) ≈ H(ΘS
mkt(t)) +∇H(t) · (δ − δS) +

1

2
(δ − δS)ᵀ ·AH(t) · (δ − δS)

With δS defined as the expected market movement from time t to t+ h:

δS := ΘS
mkt(t)−Θmkt(t)

Substitute in 3.76, we have another version of P&L predict formula:

V (t+ h) ≈ V (t+ h; ΘS
mkt(t)) +∇H(t) · (δ − δS) +

1

2
(δ − δS)ᵀ ·AH(t) · (δ − δS) (3.77)

With:

δ − δS = Θmkt(t+ h)−Θmkt(t)− [ΘS
mkt(t)−Θmkt(t)] = Θmkt(t+ h)−ΘS

mkt(t)
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Generally, this version is preferable comparing to the predict formula 3.76 mentioned before for the

following reason. We advance the calender from t to t+ h in order to calculate the portfolio theta

using a finite difference scheme. In that case, the market vector is also expected to reflect some

changes. For example, while a future contract is settled with a fixed maturity, advancing h on the

calender cause the time to maturity to shrink h. However market quoted swaps is usually associated

with standardized time to maturities which won’t be shrunk as a future contract. Since market

quoted future and swap rates are often used mutually in the process of yield curve construction, the

assumption that the market vector Θmkt(t) will be held fixed is not compelling under the situation

mentioned above. Therefore, using expected market vector ΘS
mkt(t) to calculate portfolio value at

time t+ h is more appropriate.

While this approximation technique is widely applied in practice by support and control group

within financial institutions to compute the expected portfolio value or the expect variation of the

portfolio value, there are also critical studies on the performance of this classical method. Estrella

[15] discussed the limitation of using Taylor approximation in the context of risk management

especially when dealing with the tail distribution where the market movement is large. Fahrner

[14] also derived analytically the unexplained P&L in the context of delta gamma approximation,

under extreme market scenarios.

3.8 P&L Attribution

In the previous section, we’ve discussed several existing P$L predict technique and formula allowing

practitioners to compute the expected portfolio variation after a short period of time h which is

typically set to 1 business day. In practice, practitioners bump the market with different value in

vector δ, for example from 10dps to 2%, and check the gain and loss on portfolio providing the

sensitivities are pre-computed. This method is often used in conjunction with stress testing and

scenario analysis.

Practitioners also want to understand how much each element contributes the overall P&L

figures. The previous technique seems to capture this information by performing a Taylor ap-

proximation, the value of an element in δ is scaled by its contribution, the portfolio sensitivity

with respect to the item in market vector. This technique is known for its fast performance of

calculating expected gain and loss on portfolio using different market shift as the computation

of sensitivities has been done previously in the model calibration step. However, as the market

movement is known at time t+h, it is less logical to perform approximation using Taylor expansion

to analyse the P&L by different market component.

One method to address this problem is evaluating the change in portfolio value by brute-force

bumping the market with δ and revalue the positions within the portfolio. This revaluation method

has been widely applied in practice and two different schemes are implemented.
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3.8.1 Waterfall Explain

Starting from δ(0) = (0, 0, · · · , 0)ᵀ, adding one more component of δ at each computation, bump

the market vector with it to revalue portfolio, take the difference with last calculated portfolio

value, and the difference Ei will be the P&L attribution with respect to the i-th component in the

market movement:

Ei = V (t+ h; Θmkt(t) + δ(i))− V (t+ h; Θmkt(t) + δ(i− 1)) (3.78)

With

δ(i) = (δ1, δ2, · · · , δi, · · · , 0)ᵀ , i = 1, 2, · · · , Nmkt

We also notice that, taking the sum of Ei for all the components:

Nmkt∑
i=1

Ei = V (t+h; Θmkt(t)+δ(Nmkt))−V (t+h; Θmkt(t)+δ(0)) = V (t+h; Θmkt(t+h)−V (t+h; Θmkt(t))

Which is differ from the actual P&L: V (t+ h; Θmkt(t+ h))− V (t; Θmkt(t)). However, with a little

effort, we can adding a second term representing the time decay in to the sum to formulate the

attribution formula:

V (t+ h; Θmkt(t+ h))− V (t; Θmkt(t)) =

Nmkt∑
i=1

Ei + [V (t+ h; Θmkt(t))− V (t; Θmkt(t))] (3.79)

Recall the problem when calculating the sensitivity using unshifted market vector, it is preferable

to make the same adjustment on the market vector as in the section 3.7. Therefore, we have the

second version of waterfall explain formula:

V (t+ h; Θmkt(t+ h))− V (t; Θmkt(t)) =

Nmkt∑
i=1

ESi + [V (t+ h; ΘS
mkt(t))− V (t; Θmkt(t))] (3.80)

Where:

ESi = V (t+ h; ΘS
mkt(t) + δS(i))− V (t+ h; ΘS

mkt(t) + δS(i− 1))

and

δS(i) = (δS1 , δ
S
2 , · · · , δSi , · · · , 0)ᵀ , i = 1, 2, · · · , Nmkt

The waterfall technique is able to explain entirely the change in portfolio value as the market

shifts used are known and the expected market vector can also be calculated from models. However,

it is clear that the value of attribution Ei could be different depends on the correlation between

the market components and how the components are ordered in the market vector. The main

drawback of this method is the consistency problem caused by model construction.
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3.8.2 Bump and Reset

As an alternative approach, instead of calculating the attribution term by reusing the portfolio

value of the last iteration, one can reset the market shift to 0 before bumping the market with the

next component:

Ei = V (t+ h; Θmkt(t) + δ(i))− V (t+ h; Θmkt(t)) (3.81)

With

δ(i) = (0, 0, · · · , δi, · · · , 0)ᵀ , i = 1, 2, · · · , Nmkt

As a consequence, the attribution term Ei is purely generated by the market movement by the

i-th component and we thus solve the consistency problem caused by correlations and model

construction. However, it is also clear that a full explanation of the portfolio variation is analytically

not possible via this approach. Representing the unexplained part of the actual P&L by U , we

have:

V (t+ h; Θmkt(t+ h))− V (t; Θmkt(t)) =

Nmkt∑
i=1

Ei + [V (t+ h; Θmkt(t))− V (t; Θmkt(t))] +U (3.82)

We aim to explain the change in portfolio value by summing up all the components’ contribution

and also the portfolio value time decay. We can imagine the unexplained P&L is generated by

cross-convexity terms in the market movement of the type ∂2V/∂δiδj . Therefore, if the unexplained

part is large, one needs to explicitly perform the bump-and-reset technique on these components

in order to evaluate the attribution:

Eij = V (t+ h; Θmkt(t) + δ(i, j))− V (t+ h; Θmkt(t) + δ(i))− V (t+ h; Θmkt(t) + δ(j))

Where

δ(i, j) = (0, 0, · · · , δi, 0, · · · , 0, δj , 0, · · · , 0)ᵀ , i, j = 1, 2, · · · , Nmkt and i 6= j
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4 LMM/λ-SABR Model

We’ve reviewed the mathematical specification of the classic Libor market model, the SABR model,

the SABR extension to the Libor market model, their calibration procedures and the approximation

formulae for caplets and swaptions. These theories and applications have been studied broadly in

academia as well as in practice. We’ve also reviewed the λ-SABR model which extends the classic

SABR with a mean reverting dynamics. This particular model seems to be less studied jointly

with the Libor market model than the previous ones according to our research. The potential

explanation could be: the implied volatility asymptotic relies on the Heat Kernel Expansion on

Riemannian manifold which is a very technical topic and it is relatively new in quantitative finance,

the SABR extension to Libor market model performs very well in practice and there is no particular

reason to carrying out such heavy derivation for the new model. The first explanation is rather a

fact than hypothesis whilst the second explanation could be justified by performing some empirical

analysis. This part of the thesis will focus on constructing a new model combining the SABR/LMM

model with the λ-SABR model and providing a feasible calibration algorithm which will be assessed

in the last chapter of the thesis using actual market data.

4.1 Model Construction

Before constructing the model λ-SABR model dynamics, recall the λ-SABR dynamics with a single

maturity forward rate f

dft = σtdf
β
t dwt (4.1)

dσt = λ(σt − λ̄)dt+ vσtdzt (4.2)

dwtdzt = ρdt (4.3)

Clearly, the volatility process is mean reverting. We attempt to incorporate this model with forward

rates with different maturities. Assume that, under the Ti-forward measure, the full dynamics of

the forward is give by the stochastic system

df it = Citdw
i
t (4.4)

dσit = µitdt+ ωitdz
i
t (4.5)

where the drift and diffusion coefficients of volatility process are of the form

µit = µi(f it , σ
i
t, t) (4.6)

ωit = ωi(f it , σ
i
t, t) (4.7)
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Therefore, the λ-SABR/LMM model corresponds to the specification

Cit = σit(f
i
t )
βi (4.8)

µit = λi(σit − λ̄i) (4.9)

ωit = vitσ
i
t (4.10)

We reuse the definition of correlation structure for SABR/LMM model 3.33

P =

 ρ φ

φ′ r

 (4.11)

Let us now derive the full dynamics of the λ-SABR/LMM model, i.e. the model dynamics of

forward rate fi under a different forward measure, Qj . Notice that the only difference between

the λ-SABR/LMM model with SABR/LMM model is the volatility process. We shall determine

the drift and diffusion terms for σit. Assume under the Qj measure, the dynamics of the volatility

process σi reads

dσit = ∆i
tdt+ Θi

tdw
i
t (4.12)

Define the following bracket operation

{X,Y }t = 〈X, log Y 〉t

where 〈·, ·〉 denotes quadratic covariation. By Girsanov’s theorem, we change the measure from

Ti-forward measure to Tj-forward measure. Then for i < k we have

∆i
t = µit − d

{
σit,

P (·, Ti)
P (·, Tj)

}
(4.13)

= µit − d

σit, ∏
i≤k≤j

(1 + τkfk)

 (4.14)

= µit − d

〈
σit, log

∏
i≤k≤j

(1 + τkfk)

〉
(4.15)

= λi(σit − λ̄i)− σit(f it )β
i ∑
i≤k≤j

rikτkσ
k
t (fkt )βk

1 + τkfkt
(4.16)

Similarly, for i > k we have

∆i
t = λi(σit − λ̄i) + σit(f

i
t )
βi
∑
i≤k≤j

rikτkσ
k
t (fkt )βk

1 + τkfkt
(4.17)

Thus, the full dynamics of stochastic volatility process under Tj-forward measure can be written

as

σit = λi(σit − λ̄i)dt+ vitσ
i
t ×


−σit(f it )β

i∑
i≤k≤j

rikτkσ
k
t (fkt )βk

1+τkfkt
dt+ dzi(t), if j < k,

dzi(t), if j = k,

σit(f
i
t )
βi
∑
i≤k≤j

rikτkσ
k
t (fkt )βk

1+τkfkt
+ dzi(t), if j > k.

(4.18)
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4.2 Calibration with Caplets

Recall the calibration procedure on SABR/LMM model. Instead of minimizing the squared dis-

crepancies between the expectation of SABR volatility α and the value of ĝ(Ti), we simply attempt

to minimize the squared discrepancies between the expectation of λ−SABR volatility and the value

of ĝ(Ti), i.e.

χ2 =

N∑
i=1

[αλ−SABR
i − ĝ(Ti)]

2 (4.19)

Note that this calibration procedure does not address the correlations between forward rates.

We try to propose a calibration algorithm solely based on market caplets prices and provide some

empirical analysis rather then study the full correlation structure. The objective is to answer the

question that how the λ-SABR model performs with different forward maturities. Recall that the

first step of the calibration procedure of SABR/LMM model is to recover the SABR caplet prices

as close as possible with SABR/LMM dynamics. In our case, we simply replace the SABR implied

volatility approximation by λ-SABR model’s approximation.

4.3 Simulation Scheme

The best approach to verify the calibration result it to compare the model price with Monte Carlo

simulation result which could be considered as the "true" value. We attempt to derive a simulation

scheme for this purpose. Consider the process xt = e−λtσt

dxt = −λe−λtσtdt+ e−λtdσt (4.20)

= −λe−λtσtdt+ e−λt[λ(σt − λ̄)dt+ vσtdzt] (4.21)

= −λλ̄e−λtdt+ ve−λtσtdzt (4.22)

= −λλ̄e−λtdt+ vxtdzt (4.23)

The transformed process x is reduced to a linear SDE which is solvable. Let φ(t) satisfies

Φ(t) = exp

(∫ t

0

−v
2

2
ds+

∫ t

0

vdzs

)
= exp(−v

2

2
t+ vzt)

Then the solution to x reads

xt =
Φ(t)

Φ(s)

(
xs +

∫ t

s

−λ̄λe−λt Φ(s)

Φ(x)
dx

)
(4.24)

Approximate
∫ t
s
−λ̄λe−λt Φ(s)

Φ(x)dx by −λ̄λe−λs(t− s) we have the simulation scheme

φ = exp(v∆z − 1

2
v2∆t) (4.25)

xi+1 = φ(xi − λ̄λe−λti∆t) (4.26)

σi+1 = eλ(ti+∆t)xi+1 (4.27)
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5 Result

We now consider some examples of calibrations specified in the literature review on SABR and

LMM model. Technical details will also be presented in this section as well as the calibration result

and analysis.

5.1 Data

The main financial instruments used in our calibration and analysis are interest rate caplets and

swaptions. We have mentioned in the previous sections that caplets are not quoted on the money

market as swaptions. Stripping algorithms are needed to retrieve caplets volatility. It is common

that fixed income desks perform such algorithms to obtain caplets volatility and use it to calibrate

interest rate models. These algorithms are also discussed in [5]. However, the stripping algorithms

are not our main focus. Our workaround is to use cleaned caplets data from [13] and from [2] for

caplets volatilities. Similarly, the entire interest rate derivatives market model calibration proce-

dure relies on the rebuilt forward rate framework. It worth mentioning that the curve construction

is also a very large topic and it is not our focus neither. Thus, we take advantage on the existing

function curve analysis in Bloomberg Terminal. The tools allow user to retrieve Libor forward

rate for give expiry time and tenor via various advanced interpolation technique. While collecting

live and historical data, we also notice that Black implied volatilities are missing for certain expiry,

tenor combinations on the EUR market during 2015 and 2016. The potential explanation for this

issue is that the EUR market liquidity is poor in general comparing with the USD market, and

it is known that the volatility structure has been changed immensely since 2015 [17]. In order to

carry out consistent analysis on the SABR model and Libor market model, we select the historical

USD swaptions data on 8 August 2007 which seems to be relatively mild and appropriate to study

the model behaviour in general.

5.2 Market Case: LFM

As discussed in Section 3.1.4, the calibration of LFMmodel is done in two flavours: caplets volatility

calibration and swaptions volatility matrix calibration. Model parameters can easily be calibrated

with caplets volatility, however the swaption volatility is necessary to capture the correlations

between forward rates between various expiry and tenor data pairs.

5.2.1 Calibration with Caplets

The calibration to caplets for LFM model is straightforward as one can use the market implied

volatility as input, and the parametrization is done by minimizing the difference discrepancies

between model volatility output and market volatility. Here, we carry out the LE parametrization
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calibration with caplets volatilities using the formula 3.6. Empirically, the model parameter Θ =

(a, b, c, d) can be expressed as follows

Θ = arg min
a,b,c,d

M∑
i=0

[σ2
BSTi − σ(Ti; a, b, c, d)]2, (5.1)

where σ(·) the L-E parametrization function of volatility depends on the expiry, and parametrized

by Θ. To clarify, in this particular market case, we also want to tight the parametrization by

setting the constraint on θ, the correlation angle

−π/3 < θi − θi−1 < π/3, 0 < θi < π,

This chosen values are obtained by experimenting different possibilities to fit market data with less

correlation between forward rates. The full correlation calibration is discussed further in the next

step on swaption calibration. The caplets implied volatilities used in the following calibration are

listed as in the Table 1.

F0 σBS

0.050114 0.180253

0.055973 0.191478

0.058387 0.186154

0.060027 0.177294

0.061315 0.167887

0.062779 0.158123

0.062747 0.152688

0.062926 0.148709

0.062286 0.144703

0.063009 0.141259

0.063554 0.137982

0.064257 0.134708

0.064784 0.131428

0.065312 0.128148

0.063976 0.127100

0.062997 0.126822

0.061840 0.126539

0.060682 0.126257

0.059360 0.125970

Table 1: Stripped caplets volatility

Our calibration results seem to be plausible. We obtain 0.0003142 as error with a = 0.26017369, b =

0.90896012, c = 0.10348463, d = 0.0046227 as model parameters. In order to assess the goodness

of fit of model parameters, we examine the evolution of the term structure of volatility implied

by such parametrization. The term structure of volatility at time Ti is actually the plot of expiry

times Tj−1 against the average volatility V (Ti, Tj−1) of the forward rates Fj up to the expiry time.

Mathematically, it is defined as follows

V 2(Ti, Tj−1) =
1

Ti − Tj−1

∫ Tj−1

Ti

σ2
j (t)dt,
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where σj is specified by the LFM model for expiry Tj . One should expect a smooth evolution of

the model volatility over time.

Figure 1: Evolution of the term structure of caplets volatilities

We observed in Figure 1 the "head" (between 0 and the first expiry) of each volatility term

structure. This is expected as the volatility term structure suppose to remain the same between

time 0 and the first expiry point. It is expected to be shorter as the time passed as the number of

possible expiries has decreased by one.

5.2.2 Calibration with Swaption

We now proceed to the calibration with swaption volatility matrix. Table 2 includes the swpation

volatilities quoted by expiry (row), and tenor (column) both in year. We observed firstly the value

of maturities and tenors match exactly with each other. However, it is generally not the case

in most of the market data provider. For example, in Bloomberg Terminal/SWAP Manager, the

expiry time spans are typically 3 months, 6 months, 9 months, one year, etc, where the tenors

are generally presented in year. The data used in this section is actually after preprocessing [9].

The reason is that we can present the volatility matrix in squared matrix in order to match the

correlation matrix dimension to study the correlations between forward rates.
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 0.180 0.167 0.154 0.145 0.138 0.134 0.130 0.126 0.124 0.122

2y 0.181 0.162 0.145 0.135 0.127 0.123 0.120 0.117 0.115 0.113

3y 0.178 0.155 0.137 0.125 0.117 0.114 0.111 0.108 0.106 0.104

4y 0.167 0.143 0.126 0.115 0.108 0.105 0.103 0.100 0.098 0.096

5y 0.154 0.132 0.118 0.109 0.104 0.104 0.099 0.096 0.094 0.092

6y 0.147 0.127 0.113 0.104 0.098 0.098 0.094 0.092 0.090 0.089

7y 0.140 0.121 0.107 0.098 0.092 0.091 0.089 0.087 0.086 0.085

8y 0.137 0.117 0.103 0.095 0.089 0.088 0.086 0.084 0.083 0.082

9y 0.133 0.114 0.100 0.091 0.086 0.085 0.083 0.082 0.081 0.080

10y 0.130 0.110 0.096 0.088 0.083 0.082 0.080 0.079 0.078 0.077

Table 2: Swaption volatility matrix

The LFM model calibration with swaption volatilities is fairly simple once we understand the

theory. As discussed in the literature review, the correlation structure between forward rates seem

to be complex, and it implies that swaption volatilities of different tenor can not be calibrated

together for each maturities. However, leveraging on the "drift freezing" technique, the formula

proposed by Rebonato [2] makes the calibration simpler and handy. The practice is to minimize

the squared error between the model implied volatility by approximation and the market quoted

volatility. In this section, we shall go through several calibration key steps rather than perform

the actual swaption calibration. The detail of swaption calibration will be presented and results

will be analysed in the following section on SABR model calibration.

We mentioned in the literature review on the LFM model, the full calibration of LFM model

requires the correlation structure between forward rates to be calibrated. To address this issue,

decorrelation procedure also has been discussed. To incorporate the decorrelation with the model

calibration, it is market practice to consider the constraint on the correlation angle [2]. The idea

is to specify the correlation between two forward rates by a M rank matrix B, i.e.

dW (t) = BdZ(t),

where W and Z are both m-dimensional standard Brownian motion which are used in the forward

rates dynamics. Therefore we can parametrize the M ranked matrix B by a set of correlation

angles. For example, for m = 2, we have

bi,1 = cos θi (5.2)

bi,2 = sin θi (5.3)

ρi,j = bi,1bj,1 + bi,2bj,2 = cos(θi − θj), (5.4)

Rebonato’s terminal-correlation formula 3.4 is used to construct the optimization problem for

model calibration. We first apply the formula to compute the target correlation matrix, Table 3.
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 1.0000 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352 0.8188

2y 0.9756 1.0000 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523 0.8352

3y 0.9524 0.9756 1.0000 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704 0.8523

4y 0.9304 0.9524 0.9756 1.0000 0.9756 0.9524 0.9304 0.9094 0.8894 0.8704

5y 0.9094 0.9304 0.9524 0.9756 1.0000 0.9756 0.9524 0.9304 0.9094 0.8894

6y 0.8894 0.9094 0.9304 0.9524 0.9756 1.0000 0.9756 0.9524 0.9304 0.9094

7y 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1.0000 0.9756 0.9524 0.9304

8y 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1.0000 0.9756 0.9524

9y 0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1.0000 0.9756

10y 0.8188 0.8352 0.8523 0.8704 0.8894 0.9094 0.9304 0.9524 0.9756 1.0000

Table 3: Target correlation matrix computed by Rebonato’s formula

Table 4 presents the fitting error using Rebonato’s formula. We observe that the error is less

than 2% in absolute value which is expected in general. The full correlation structure is now

specified by the matrix ρ and its parameters θ, thus complete the LFM model calibration.

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 0.00% -0.16% -0.54% -1.13% -1.67% -1.87% -1.54% -0.96% -0.34% 0.09%

2y -0.16% 0.00% -0.12% -0.56% -1.18% -1.83% -1.86% -1.53% -0.95% -0.33%

3y -0.54% -0.12% 0.00% -0.16% -0.67% -1.52% -1.86% -1.84% -1.46% -0.86%

4y -1.13% -0.56% -0.16% 0.00% -0.19% -0.96% -1.52% -1.86% -1.84% -1.46%

5y -1.67% -1.18% -0.67% -0.19% -0.00% -0.37% -0.92% -1.49% -1.85% -1.85%

6y -1.87% -1.83% -1.52% -0.96% -0.37% -0.00% -0.16% -0.63% -1.23% -1.71%

7y -1.54% -1.86% -1.86% -1.52% -0.92% -0.16% 0.00% -0.16% -0.63% -1.23%

8y -0.96% -1.53% -1.84% -1.86% -1.49% -0.63% -0.16% 0.00% -0.16% -0.63%

9y -0.34% -0.95% -1.46% -1.84% -1.85% -1.23% -0.63% -0.16% 0.00% -0.16%

10y 0.09% -0.33% -0.86% -1.46% -1.85% -1.71% -1.23% -0.63% -0.16% 0.00%

Table 4: Percentage error of correlation calibration

By carrying out the swaption calibration on different tenors, Brigo [9] also claimed that the

calibration shows several negative signs in instantaneous volatilities. This is due to the "temporal

misalignments" caused by illiquidity in the swaption matrix. We shall also examine this issue

in-line with the SABR model calibration in the next empirical study. Here, we present a matrix

smoothness technique to address this issue. Fit the swaption volatility surface into the following

parametric form [13]

σBS(S, T ) = γ(S) +

(
exp(f · log T )

e · S
+D(S)

)
· exp(−β · exp(p · log T )) (5.5)

γ(S) = c+ (exp(h · logS) · a+ d) · exp(−b · exp(m logS)) (5.6)

D(S) = (exp(g · log(S)) · q + r) · exp(−s · exp(t · logS)) + δ, (5.7)

where S is the tenor and T is the expiry time. By carrying out such smooth parametrization, the
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negative instantaneous volatilities issue seems to be resolved during the volatility surface calibra-

tion.

(a) Swaption volatility surface (b) Smoothed volatility matrix

Figure 2: Swaption volatility matrix smoothing

However, we notice in the Figure 2 and also in the fitting error Table 5, the edge part where

the volatility surface has irregular shape is also be smoothed along with the parametrization. For

example, the smooth procedure has increased the volatility of a 1-year swaption with one year

tenor by 6.26%. The consequence of such behaviour is worth discussing. Intuitively, it is normal

that the implied volatility at the edge of the surface is low as we are approaching the expiry.

The smoothness procedure somehow adjust the volatility surface in the opposite direction which

potentially causes loss of precision in pricing.

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y

1y 6.26% 0.45% 0.77% 1.51% 2.69% 2.90% 3.99% 5.81% 6.53% 7.69%

2y -3.58% -6.77% -4.49% -3.34% -1.56% -1.47% -1.25% -0.31% 0.36% 1.50%

3y -7.44% -8.85% -6.03% -3.40% -1.46% -2.23% -2.01% -1.01% -0.30% 0.92%

4y -5.48% -6.02% -3.29% -1.00% 0.37% -0.41% -1.09% 0.01% 0.81% 2.15%

5y -0.97% -2.24% -1.26% -0.44% -0.90% -4.59% -2.49% -1.38% -0.58% 0.79%

6y 0.77% -1.82% -0.75% 0.15% 0.72% -3.19% -1.94% -1.83% -1.00% -0.70%

7y 3.18% 0.00% 1.37% 2.53% 3.29% 0.21% -0.56% -0.41% -0.68% -0.36%

8y 3.11% 0.70% 2.22% 2.41% 3.19% 0.01% -0.80% -0.65% -0.92% -0.60%

9y 4.10% 0.88% 2.48% 3.83% 3.52% 0.24% -0.59% -1.65% -1.94% -1.62%

10y 4.56% 2.27% 4.13% 4.52% 4.24% 0.84% -0.00% -1.09% -1.39% -1.04%

Table 5: Percentage error of volatility matrix smoothing

Readers familiar with equity option may also detect that the structure of the swaption volatility

surface is different from the traditional volatility surface in the equity world, i.e. the volatility

surface plotted as function of option strike and time to maturity. Instead of option strike, the

at-the-money (ATM) interest rate swaption volatility surface is presented a function depending on
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the tenor. Actually, the swaptions volatility is a function of the expiry time, the tenor and the

strike. Thus, it can be seen as a volatility cube. The above volatility surface is the slice where

the swaption strike is equal to the current forward rate. It is then clear that the LFM model

calibration which relies on the ATM swaption matrix does not address the issue of volatility smile

where the option strikes are involved.

5.3 Market Case: SABR Model

We have introduced the SABR model which is designated to capture the volatility smile in the first

part of the thesis. Before carrying out the SABR model calibration on the real market data, we

devote this section to study the impact of each model parameter for the sake of preparation. The

analysis will based on the plots produced by bumping gradually each of the model parameters.

The parameter values used in this section are retrieved from [2]. They correspond a set of US

market input on 6th April 2006.

5.3.1 Dependence on α

As seen in Figure 3, by increasing α, the Black implied volatility has also been shifted upward.

This result is not surprising as we recall that the parameter α corresponds the expectation at time

0 of the stochastic volatility process σ.

Figure 3: Black implied volatility

We also notice that as a small effect, the shift in parameter α produced more change in value

on the ATM volatility than the variation at wings.



5.3 Market Case: SABR Model 35

5.3.2 Dependence on β

We observe in the Figure 4 that decreasing the value of β will produce mainly a progressive

steepening of the volatility smile. As the β decreases, the volatility level has raises. We recall the

SABR model dynamics on the forward rate dft = σt(ft)
βdwt. Intuitively, if we consider the term

σt(f)β as the "total" volatility of the forward rate process, it is then easy to see that by decreasing

the value of β, the volatility will generally magnified. We also want to mention the below figure is

produced with the constraint that the value of σt(ft)β remains the same in order to maintain the

overall volatility level.

Figure 4: Black implied volatility

It is market practice to chose 0.5 as the value for β. We have also provided background

information on a linear regression approach derived from the approximation formula proposed by

Hagan [12] in the literature review. To be more rigorous on the choice of β, Rebonato [2] have

refitted the swaptions market prices setting β = 0 and compared with the result setting β = 0.5.

According to the plots of the evolution of the fitted parameter, ρ, the choice of β = 0 causes ρ to

become less stable than setting β to 0.5. This choice of the β value is not optimal as SABR model

assume the four parameters to be constant over time. We shall see in the following section that

the change in parameter ρ has similar effect on the volatility smile. It is then logical to fix the β

value to 0.5 at calibration to avoid fitting similar parameters at the same time.

Another impact on the volatility smile caused by changing β value can be observed at the

lower strike, the volatility fall more rapidly than the higher strike increase. This is known as the

curvature effect.
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5.3.3 Dependence on ρ

ρ is the only parameter that allows to be fitted at negative value. We thus plot the dependence

graphs separately for the positive correlation case and negative correlation case.

Figure 5: Black implied volatility

As seen in Figure 4 and 5, changing ρ produces similar effect on the volatility smile to β.

Increasing ρ increases the steepness of the volatility smile in the positive correlation case while

the opposite effect will be produced in the negative correlation case. We notice specially in the

negative correlation case, Figure 6, the volatility smile becomes more and more negatively sloped.

Figure 6: Black implied volatility
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5.3.4 Dependence on v

Figure 7 shows that changing in v will mainly cause the curvature impact other than the steepness

or the level of the volatility smile. The smile tends to be more convex when v becomes larger.

Figure 7: Black implied volatility

To sum up, the interaction between these four parameters manages to model different volatility

shapes fairly well in terms of the smile level, steepness and curvature. Particularly, as changing

in β and ρ produces very similar effect, and the historical data analysis shows that 0.5 seems to

be an appropriate choice of the β value, we shall proceed our SABR model calibration by setting

β = 0.5.

The classic SABR model does not address the join distribution of the forward rates. Similar

to the LFM model, the calibration of the SABR model also requires minimization procedure for

each maturity and tenor pairs. That is to say, the calibration of the whole swaption matrix will

generally produce m × n × 3 parameters where m is the dimension of the forward rates, and n is

the number of different tenors. In the following section, we also apply another practice using the

at-the-money implied volatility as input to compute the parameter α on the fly. By doing this,

only ρ and v are left to be calibrated.

5.3.5 SABR calibration with swaption

The minimization problem to be solved by SABR model calibration is matching the market implied

volatility with the SABR volatility evaluated for a given strike set and current forward rate for

each maturity and each tenor. Empirically, the model parameter Θ = (ρ, v) satisfies

Θ = argmin
ρ,v

Nk∑
i=0

[σBS − σSABR(f, σATM, ki, T ; ρ, v)]2, (5.8)
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The index for the expiry and tenor have been omitted for the sake of clarification. The at-the-

money implied volatility has been used as input to calculate the α parameter on the fly by solving

the formula 3.13 for α to speed up the calibration process. Table 6 includes the strike value for

each expiry time and each tenor. Notice that the strike value for a given expiry time and tenor

matches the current forward price. To be more clear, we only need one cell within the matrix to

calibrate a volatility smile, one column is enough to calibrate the entire volatility surface 3.

1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 12y 15y 20y 25y 30y

1m 0.052 0.052 0.052 0.053 0.053 0.054 0.054 0.055 0.055 0.056 0.056 0.057 0.057 0.057 0.057

3m 0.051 0.051 0.052 0.053 0.053 0.054 0.054 0.055 0.055 0.056 0.056 0.057 0.057 0.057 0.057

6m 0.050 0.051 0.052 0.053 0.053 0.054 0.054 0.055 0.055 0.056 0.056 0.057 0.057 0.057 0.058

9y 0.050 0.051 0.052 0.053 0.054 0.054 0.055 0.055 0.056 0.056 0.057 0.057 0.058 0.058 0.058

1y 0.051 0.052 0.053 0.053 0.054 0.055 0.055 0.056 0.056 0.056 0.057 0.057 0.058 0.058 0.058

2y 0.053 0.054 0.054 0.055 0.056 0.056 0.056 0.057 0.057 0.057 0.058 0.058 0.058 0.058 0.058

3y 0.055 0.055 0.056 0.056 0.057 0.057 0.057 0.058 0.058 0.058 0.058 0.059 0.059 0.059 0.059

4y 0.056 0.057 0.057 0.057 0.058 0.058 0.058 0.058 0.059 0.059 0.059 0.059 0.059 0.059 0.059

5y 0.057 0.058 0.058 0.058 0.058 0.059 0.059 0.059 0.059 0.059 0.060 0.060 0.059 0.059 0.059

6y 0.058 0.058 0.059 0.059 0.059 0.059 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.059 0.059

7y 0.059 0.059 0.059 0.059 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.059

8y 0.059 0.059 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.059

9y 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.060 0.059

10y 0.060 0.060 0.061 0.061 0.060 0.061 0.061 0.061 0.060 0.060 0.060 0.060 0.060 0.059 0.059

12y 0.061 0.061 0.060 0.061 0.061 0.061 0.061 0.060 0.060 0.060 0.060 0.060 0.059 0.059 0.059

15y 0.062 0.062 0.061 0.061 0.060 0.060 0.060 0.060 0.060 0.059 0.059 0.059 0.059 0.058 0.060

20y 0.060 0.060 0.059 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.058 0.057 0.059 0.060

25y 0.060 0.060 0.059 0.058 0.058 0.058 0.059 0.059 0.058 0.058 0.058 0.057 0.060 0.060 0.057

30y 0.062 0.061 0.060 0.060 0.059 0.058 0.058 0.057 0.057 0.056 0.059 0.061 0.062 0.057 0.053

Table 6: Swaption strike matrix

In our case study, we use the one year tenor swaption volatility matrix, Table 7, for calibration.

Our objective is to calibrate the volatility surface for one year tenor swaption only. To calibrate the

whole volatility cube requires carrying out n times the same procedure which is not our interest.
3Here the volatility surface is the transitional volatility surface as a function of the expiry and strike
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1y 2y 3y 4y 5y 6y 7y 8y 9y 10y 11y 12y 13y 14y 15y 16y 17y 18y

1m 0.150 0.224 0.201 0.187 0.177 0.170 0.164 0.159 0.151 0.146 0.141 0.137 0.134 0.131 0.129 0.127 0.125 0.123

3m 0.161 0.239 0.216 0.201 0.190 0.182 0.175 0.170 0.162 0.156 0.151 0.147 0.143 0.141 0.138 0.136 0.134 0.132

6m 0.169 0.249 0.224 0.209 0.198 0.190 0.183 0.178 0.169 0.163 0.158 0.154 0.151 0.148 0.145 0.143 0.141 0.139

9y 0.174 0.256 0.231 0.215 0.204 0.195 0.188 0.183 0.174 0.168 0.163 0.159 0.155 0.152 0.150 0.147 0.145 0.143

1y 0.181 0.461 0.379 0.324 0.283 0.252 0.228 0.208 0.182 0.169 0.164 0.164 0.166 0.168 0.171 0.174 0.176 0.179

2y 0.177 0.461 0.379 0.324 0.284 0.253 0.229 0.209 0.182 0.168 0.162 0.161 0.163 0.165 0.168 0.170 0.173 0.176

3y 0.171 0.468 0.384 0.327 0.286 0.254 0.229 0.208 0.180 0.164 0.159 0.158 0.160 0.163 0.167 0.170 0.173 0.176

4y 0.164 0.451 0.370 0.316 0.276 0.246 0.221 0.202 0.174 0.159 0.152 0.151 0.152 0.155 0.158 0.161 0.164 0.166

5y 0.163 0.446 0.366 0.314 0.275 0.245 0.222 0.203 0.175 0.160 0.153 0.151 0.152 0.155 0.158 0.161 0.164 0.166

6y 0.156 0.426 0.350 0.300 0.264 0.235 0.213 0.195 0.169 0.153 0.146 0.144 0.145 0.147 0.149 0.152 0.155 0.157

7y 0.154 0.429 0.352 0.301 0.264 0.236 0.213 0.195 0.168 0.153 0.145 0.143 0.143 0.145 0.148 0.150 0.153 0.156

8y 0.146 0.420 0.343 0.293 0.257 0.228 0.206 0.188 0.161 0.146 0.138 0.135 0.136 0.138 0.140 0.143 0.145 0.148

9y 0.141 0.404 0.330 0.282 0.247 0.220 0.199 0.181 0.156 0.141 0.133 0.130 0.130 0.132 0.133 0.136 0.138 0.140

10y 0.141 0.393 0.322 0.276 0.242 0.217 0.196 0.179 0.155 0.141 0.133 0.131 0.131 0.133 0.135 0.137 0.139 0.142

12y 0.137 0.388 0.318 0.272 0.239 0.214 0.193 0.177 0.153 0.138 0.131 0.128 0.128 0.129 0.131 0.134 0.136 0.138

15y 0.135 0.385 0.314 0.269 0.236 0.211 0.191 0.175 0.151 0.137 0.129 0.125 0.125 0.126 0.128 0.130 0.132 0.134

20y 0.134 0.381 0.308 0.262 0.230 0.205 0.186 0.171 0.148 0.134 0.127 0.123 0.122 0.123 0.124 0.126 0.128 0.130

25y 0.132 0.379 0.304 0.258 0.226 0.202 0.183 0.168 0.146 0.133 0.125 0.122 0.122 0.123 0.124 0.126 0.128 0.130

30y 0.132 0.401 0.316 0.266 0.232 0.207 0.187 0.171 0.148 0.134 0.124 0.119 0.117 0.116 0.116 0.117 0.118 0.119

Table 7: Volatility matrix of swaptions with one year tenor

We obtain the following values for the model parameters in Table 8, along with the plots of

implied volatility surface and the SABR fitted surface in Figure 8. Let us look at the first column

of the model parameters α. The variation on α is small across different expiry time. This is also

explainable by the flatness of the volatility surface especially at the large expiry part. Overall

the SABR parameters capture fairly well the left side of the volatility where the expiry time is

relatively small.

Expiry α β rho v

1m 0.034 0.500 0.119 0.060

3m 0.036 0.500 0.117 0.065

6m 0.038 0.500 0.150 0.068

9y 0.039 0.500 0.154 0.070

1y 0.041 0.500 -0.369 0.371

2y 0.041 0.500 -0.362 0.362

3y 0.040 0.500 -0.349 0.373

4y 0.039 0.500 -0.353 0.350

5y 0.039 0.500 -0.328 0.338

6y 0.037 0.500 -0.137 0.315

7y 0.037 0.500 -0.005 0.246

8y 0.036 0.500 -0.354 0.309

9y 0.034 0.500 -0.367 0.293

10y 0.034 0.500 -0.328 0.281

12y 0.034 0.500 -0.327 0.270

15y 0.033 0.500 -0.346 0.260

20y 0.033 0.500 -0.382 0.247

25y 0.032 0.500 -0.373 0.238

30y 0.033 0.500 -0.472 0.247

Table 8: SABR parameters
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(a) Black implied volatility surface (b) Fitted volatility surface (SABR)

Figure 8: Volatility surface of swaptions with one year tenor

Let us now examine more closely the goodness of fit of SABR model, i.e. the volatility smile.

We plot the volatility smile for four different expiry time: one year, 4 years, 7 years, and 30 years.

Clearly, as seen in Figure 9a and 9b, the SABR model fits the swaption implied volatility fairly

well.

(a) one-year swaption (b) 4-year swaption

Figure 9: Volatility smile for one-year and 4-year swaptions

However, it seems the SABR fitted volatility smile does not quite match with the market implied

volatility for the longer expiry time: 7 years and 30 years, especially at lower strike according to

Figure 10a and 10b. This result seems to be disappointing at first sight, however the potential

explanation is actually reasonably intuitive. Using an analogy in the equity world, the in-the-money

call option are generally less traded than at-the-money or out-the-money option thus less liquid.
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It is known that the data included in a swaption matrix and corresponding forward rates are not

updated at the same frequency, i.e. ’temporal misalignments’. This would cause the inconsistency

among the model input thus bad results might be produced.

(a) 7-year swaption (b) 10-year swaption

Figure 10: Volatility smile for 7-year and 30-year swaptions

We have examined empirically the calibration and the performance of the classic SABR model.

The main issue raised in our analysis is the high dimension of the model parameters. Volatility

smiles are required to be fitted separately, and the output parameter is in three dimension form

(in case of fitting swaption volatility cube). Therefore, one can expect the calibration time to

be increase exponentially by adding one more strike, expiry or tenor into the current calibration

framework.

5.4 Market Case: SABR Extension to LMM

In the literature review, we have seen the SABR extension on Libor market model which address

directly the issue of high dimensionality of the SABR model parameters by model the forward

rates jointly inspired by the Libor market model under SABR volatility process assumption. The

model attempts to capture the dynamics of all forward rates by calibrating two time homogeneous

functions, g(·) and h(·), depending on four parameters each for a given tenor. This means the

dimension of model parameters to be calibrated is then reduced to two. The calibration algorithm

proposed by Rebonato in [2] requires to calibrate the classic SABR model in advance to match The

prerequisite of the SABR/LMM model calibration is providing the SABR model has already been

calibrated. This implies that the calibration time is actually not being improved by the extension.

However, once the model is calibrated, the computation time on swaption prices, especially in

the context of evaluation of a large portfolio’s position, the model definitely requires much less

than the classic SABR model which relies on evaluating swaption price for each expiry, tenor pair



5.4 Market Case: SABR Extension to LMM 42

separately.

In this section, we shall assess the performance of the SABR/LMM model by fitting separately

the classic SABR model and the SABR/LMM model with two caplets with different expiries.

We use Monte Carlo simulation to simulate caplets price following the SABR model dynamics.

These are then input into Black’s model in order to determine the "true" Black implied volatilities

which are considered as our benchmark. The pre-fitted classic SABR model parameters value

are extracted from [2]. The next step of the comparison is to calibrate the SABR/LMM model

parameters using the Black implied volatilities as model input to determine the function g(·) and

h(·). The final step is simply plotting the three data sets for both caplets and compare the goodness

of fit. In practice, we carried out multiprocessing programming to perform Monte Carlo simulation

in parallel to speed up the simulation process.

Figure 11: Model fitting for a 5-year caplet. α = .035, β = .5, ρ = −.45, v = .335, f0 = .0519

in Figure 12, we observe that both model fit fairly well the in-the-money 5 year caplets implied

volatility. However, both model show bad quality of approximation against a Monte Carlo simu-

lation. Overall, the agreement between the SABR model and the SABR/LMM model can be seen

to be relatively good especially for in-the-money caplets.
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Figure 12: Model fitting for a 10-year caplet. α = .0305, β = .5, ρ = −.395, v = .2825, f0 = .056

Similarly, both model fit well the left side of the wing. However the model does not fit quite

well the right side of the volatility smile. The result is even Worse comparing to the previous

experiment.

We could attribute the imperfectness of the parameters fitting to several root causes. Firstly

the simulation scheme we used is the base scheme without adding the high order terms into the

simulation path. This could cause the simulation results to be less ideal then expected. Secondly,

we did not perform any of the variance control techniques to reduce the simulation variance which

also generates discrepancies and oscillation of data points. This would also increase the difficulty

of the minimization. Thirdly, the approach of using Monte Carlo simulation on the classic SABR

model dynamics to produce the benchmark implied volatilities is somehow bias especially when

we compare the results with SABR model itself. Lastly, the assessment of the SABR/LMM model

requires more complete empirical tests rather than fitting the simulated implied volatility of two

arbitrary caplets.
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6 Conclusion

In this thesis, we have introduced the mathematical tools and the market practice on the valuation

of vanilla interest rate derivatives such as interest rate swaps, caps and floors, and swaptions.

These background knowledges also help reader to realise the key role played by the Black’s implied

volatility in vanilla interest rate derivatives pricing. We introduced gradually different theories on

the implied volatility approximation under the Libor market model, the classic SABR model and

the SABR extension of the Libor market model assumptions leveraging on the work of Hagan,

Brigo, Rebonato, and their co-workers. These models have been widely studied and implemented.

At the end of the literature review, we explained the method used in practice to compute portfolio

P&L and sensitivities with respect to the model parameters. It suggests that one can break down

the variation of portfolio positions by model parameters in order to assess the model quality. As

dived into the technical detail on the calibration procedure of each existing model, we reproduced

the problematic revealed in theory, as well in empirical study. For example, the Libor model fail to

capture the volatility smile which cannot be neglected in risk management, and the SABR model

does not address the correlation between the forward rates. We have also carried out numerical

analysis on the SABR/LMM model which attempts to model the joint distribution among the

forward rates under the assumption of stochastic volatility. By going through Labordère’s approach

of the asymptotic analysis on the λ-SABR model implied volatility, we advocate an extension

combining the λ-SABR model with the Libor market model for the purpose of improving the

existing SABR/LMM model. In this work, we derived the full dynamics of the forward rates under

mean-reverting SABR model assumption, proposed a calibration algorithm, and a Monte Carlo

simulation scheme to assess numerically the calibration results.

Future work would include the implementation and numerical result on the calibration of the λ-

SABR/LMM model, calibration of the SABR/LMM model with latest market caps and swaptions

data in order to examine the performance on modelling the joint distribution of the Libor forward

rates, and studies of the interest rate derivative sensitivities and hedging strategies in relation to

the SABR model.
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