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Abstract

This thesis focuses on the financial application of the Algorithmic Differentiation method (AD)
to compute sensitivities of option prices and CVAs. The emphasis was put on Basket and Bermudan
options as there are no other fast methods to compute their Greeks and CVA sensitivities. All the

numerical results were obtained using an application built in C++ for the occasion.
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1 Introduction

Since the financial crisis, institutions can no longer neglect credit risk and as such, market
practices have considerably changed. Estimate first order derivatives of financial products’ prices
has become one of the biggest computational challenge. Therefore, discovering new ways to quan-
tify efficiently sensitivities of financial instruments has become the cornerstone of risk management

practices.

Additionally, institutions need to measure counterparty credit risk, leading to the notion of
Credit Valuation Adjustment (CVA). Pricing a derivative and quantifying a CVA are closely linked.
Indeed, CVA is obtained by pricing the counterparty risk of a deal using the same type of methods
as those used to price financial products [I]. As such, the notion of CVA’s sensitivities has emerged

and is also crucial for hedging purposes.

The most widespread pricing techniques on financial markets are undoubtedly Monte-Carlo
based methods as they are often the only way to price complex financial products. In parallel,
sensitivities are mostly estimated using finite-differences methods. Even though these methods can
be used where no other numerical methods would work, their main drawback is that they are very
computationally expensive. In addition to this, the more sensitivities one wants to compute the

longer the computation time will be.

In this context, the Algorithmic Differentiation (AD) method has become a hot topic in Fi-
nance as it enables to compute price and greeks of complex options saving computational time
and without any loss in precision. Indeed, with AD, results are computed with no theoretical
approximation: the only barrier is the machine precision level. The speed of this method is also
very impressive as it enables to compute the function value and all its first order derivatives
using only the time needed to compute 3 or 4 function values [I9]. This result is all the more in-

teresting that it is true no matter the number of derivatives computed (only one or ten thousands) !

However, the AD method is not free of drawbacks. Indeed, even if it enables to decrease im-
pressively the time of computation, the method is memory consuming. Indeed, the technique is
very expensive in terms of memory used as one needs to keep track of a lot of variables to com-

pute efficient adjoint differentiations. Therefore the coding part of this method is quite challenging.



We make the choice to perform all the coding part in C+4. While we could have used any
object oriented programming language, C++ has features very powerful when computing the AD
method. Indeed, C++ is known to be extremely fast and enables to manage memory allocation
manually (which is not the case of Java for example). As memory management is the main chal-
lenge while coding the AD method, we have chosen to use C++ for all the simulations. Moreover

the use of operator overloading often makes the AD coding part easier.

Again, as the price of financial products and their CVA are closely linked, the AD method
applies very similarly to options and CVAs. Nevertheless, credit valuation adjustments are more
complex instruments and thus require more simplifications and assumptions. This is why it is
essential to have a good understanding of the Algorithmic Differentiation framework on option’s

prices before being able to apply it on CVAs.

Finally, we organize this thesis along four axis. First, we will describe the mathematical frame-
work underlying the AD method. This step is crucial as the AD method is not only used in Finance
and can be applied to compute the derivatives of any function. Secondly, we will explain how the
AD method operates on financial products especially on European vanillas, Basket and Bermudan
options, and their CVAs. The numerical results obtained with this method will be provided as
well as relevant benchmarks. Then, we will highlight axis of research to apply the AD method
under less assumptions to cope with the reality observed on financial markets (to take into account
Wrong Way Risk on CVA for example). Finally, the last section will focus on the architecture of
the C++4 code. The design of this code was thought to be easily customizable so that new payoffs

and dynamics of underlyings can be added as time goes.



2 Literature review

This thesis relies on many papers and books which give very important insights to perform the
AD method on both derivatives and CVAs. It is important to note that what we call AD method
in this thesis is also referred as AAD method in the literature. However, the AAD denomination
is unclear and can both stand for Automatic Algorithmic Differentiation or Adjoint Algorithmic

Differentiation.

In principle, the two denominations are not equivalent and what is treated in this thesis (and
referenced as AD method) is closer to the Adjoint Algorithmic Differentiation definition. Indeed,
Automatic Algorithmic Differentiation should refer to algorithms where all intermediate deriva-
tives are also computed using AD while Adjoint Algorithmic Differentiation is more flexible and
authorizes to compute intermediary quantities using finite differences for example. Authors of-
ten do not specify what they call AAD method as the difference is very thin. Nevertheless, it is
worth noting that a proper Automatic Algorithmic Differentiation algorithm is extremely binding
and needs special "manual” treatments. Therefore, although faster, proper Automatic Algorithmic

Differentiation is rare in the literature.

Mark Henrard’s book entitled Algorithmic Differentiation in Finance explained [19] gives pre-
cious explanations regarding the AD method on simple financial instruments such as European call
options. Therefore this book has been of great help to understand the basic concepts underlying
the AD method. Moreover, this publication details good practices while coding the AD method
with an object oriented programming language. Hence, it was used as inspiration to write the
Mathematical Preliminaries (Section [3)) and many coding concepts developed in it were used in

the coding process of this thesis.

The work performed on Basket and Bermudan options in this thesis relies on Mr. Capriotti’s
publications (see [I1] and [I2]). In one of his paper [II], Mr. Capriotti gives a framework to
compute price and greeks of Bermudan options with the AD method using Monte-Carlo based
algorithms. Moreover, he explains in detail how to perform the AD method on CVA for Bermudan
options. This paper has been a great source of inspiration for this thesis and has been used to

write the sections [£.2] and [5.2

Finally, this thesis relies a lot on Mr Brigo’s guidance and lecture notes (see [I]). The vast
majority of concepts and notations used, especially regarding CVA, stem from Mr Brigo’s work.
These lecture notes give a recipe for the calculation of CVA and thus many concepts discussed in

it were used in this dissertation.
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Even if this thesis focuses mainly on the application of the AD method on options’ prices and
XVAs under strong assumptions (especially under independence between the time of default and
options’ payoff), we have undertaken further research. Indeed, the framework to quantify CVA’s
sensitivities is often too simplistic and one should take into account collateralization and Wrong

Way Risk (WWR).

The reference [4] should be cited as it explains what happens to CVA under full collateralization
but with instantaneous contagion at default, leading to sizeable gap risk CVA even in absence of

explicit jumps in the dynamics.

Moreover, previous works on WWR, should be cited as they were of great help to understand

this more realistic XVA framework. We give a short list here:

WWR on CDS without collateral: [§];

WWR on Credit products (CDS) with collateral and gap risk: [4];
e WWR on rates: [6];

e WWR on rates with collateral: [5];

e WWR on commodities (Oil): [7;

e WWR on equity: [2].



11

3 Mathematical preliminaries

At first, the Algorithmic Differentiation (AD) method was not created directly for financial
applications. Indeed, this is a very general method that can be applied on any function in order
to compute its partial derivatives. Therefore, it is crucial to understand how the method can
be applied on an arbitrary function in order be able to use it in more complex contexts such as

Finance.

3.1 Mathematical framework

The AD method is meant to provide the partial derivatives of any function and is based on a

very simple mathematical concept: the chain rule for the composition of functions.

Definition 3.1 (Chain rule). Let f: R — R and g:R — R be C! functions. Then,

(fog) = (f og)g -

There are two ways to apply the AD method, which only differ according to the manner the
chain rule is performed. We call these two versions of the Algorithmic Differentiation: forward

and backward/adjoint accumulations (or modes).

Definition 3.2 (Forward mode). Let n be an integer and f,, : R — R be C! functions.

Vn, fn(xn) = Tn+1-

The Algorithmic Differentiation’s forward mode describes the following recursive relation:

5.131' o 6$l 51‘,'_1 o (S,Ii 5$i—1 5$i—2 @5& (3 1)
Sty O0xi_1 O0xo  O0Ti_1 0Ti_o 0xi_3  Oxq 0xpo '

Definition 3.3 (Adjoint mode). Let n be an integer and f,, : R — R be C! functions.

vn, fn(xn) = Tn+41-

The Algorithmic Differentiation’s adjoint mode describes the following recursive relation:

Owi _ 0%i 0wy _ 0wi 0wy 0wy _ 0x; 03 0 0wy _ (3.2)
Sry  Ox10xy  Oxo dxq dxog  Oxs Oxe dxq Oy '

Remark 3.4 (Notations). Let f: R — R be a C! function and z in R.

In the following sections we will use the notations below:

;_of  __of
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3.2 Application of the forward and backward modes

The AD method is highly visual and therefore can be easily understood on a simple example.
Hence, this section highlights how the two modes would apply to a simple function. As they stem

from the same underlying concept (a.k.a chaine rule), the two versions are of course equivalent.

3.2.1 Application of the forward accumulation

Consider the following function:
z = f(z,y) = log(cos(y) + exp(x + 1)).

We are interested in the partial derivative of f with respect to x. Hence, we apply the AD
method in forward mode to obtain it. First, we need to decompose the function in order to write
z = f(x,y) as the composition of several functions (step 1). Then, we can apply the Forward

Algorithmic Differentiation according to the recursive relation [3.1] as explained in step 2:

1) Function decomposition 2) Forward accumulation
a=z+1 a= g—g =1.0
b=y b= %: 0.0
. 0c_ dcda
¢ = exp(a) b= = Sasp=Gc=c
d = cos(b) d= (65_;1: %520.0
e=c+d é:%(g—; g—;%:é—i—d:c
. O0f e é c
f=log(e) f=5e5:=c=¢

Table 1: Forward Algorithmic Differentiation on a multivariate function

3.2.2 Application of the adjoint accumulation

Consider again the following function:
z = f(z,y) = log(cos(y) + exp(z + 1)).

The same way as before, we apply the AD method in adjoint mode on f to obtain %. Again,
we need to decompose the function and apply the Adjoint Algorithmic Differentiation on this

segmentation according to the recursive relation |3.2
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1) Function decomposition 2) Adjoint accumulation
a=z+1 f=10

_ s l_1
b=y €=e~e
¢ = exp(a) El:é:%

o1

d = cos(b) t=e=,
e=c+d b= —dsin(b)
| =1log(e) a=ct zg

Table 2: Adjoint Algorithmic Differentiation on a multivariate function

3.2.3 Equivalence between the two modes

The two previous computations give the same results, giving a good intuition of the equivalence

between the two modes. In both cases, the derivative of z with respect to x is given by:

6z exp(z + 1)
Sz exp(r + 1)+ cos(y)’

Remark 3.5 (Equivalence). Even if the two modes are mathematically equivalent, the adjoint
mode is often preferred in financial applications. Therefore, in what follows we only use the AD
method in its adjoint version. It explains why, on financial markets, this technique is often referred

as Adjoint Algorithmic Differentiation.

3.3 A simple financial application

Now that the general AD framework has been introduced for any multivariate function, we
present on a simple option how this method applies in finance. The main idea is simple: regard
payoffs (or directly prices if a closed-form exists) as multivariate functions of their parameters (e.g

their volatility, strike, time to maturity, etc ...)

The use of the AD method on a basic European Call option in Black-Scholes settings is likely
to be the simplest financial application of this technique. This example closely follows the work of
Marc Henrard in his book Algorithmic Differentiation in Finance explained [19]. European Call
option, as often, is the best way to familiarize with the AD method in a financial framework and

understand the mathematical concepts underlying Algorithmic Differentiation.



3.3 A simple financial application 14

3.3.1 Mathematical development

Definition 3.6 (Black-Scholes Model). Consider a probability space (2, F,P) and let (W:)i>0
be a Brownian motion. In the Black-Scholes model, the stock price process (S¢)i>0 is the unique

strong solution to the following stochastic differential equation:

% = rdt + odW4, So >0, (3.3)

t
where r > 0 denotes the instantaneous risk-free interest rate and ¢ > 0 the instantaneous volatility.
A European call price C¢(Sp, K,0) with maturity T > 0 and strike K > 0 pays at maturity
(ST — K)4+ = max(St — K,0). When the stock price follows the Black-Scholes SDE ([3.3)), there is

a closed form for the price of such option, given by:
CQ(S(), K, O’) = SoN(d+) - KeirTN(d_),

where

_log (So/K) + (r+ %5)T
- s 7

and where A denotes the cumulative distribution function of the Gaussian random variable.

dy : d_:=d, —oJ/T.

The AD method on a European call option under Black and Scholes dynamic consists in two
steps. First, we perform a forward sweep and decompose the closed form of the price of a call

option. Then, we work backward using the adjoint mode on this decomposition.

This example gives a very fast way to compute greeks and price of European options as we
do not work on the payoff but directly on the closed form of the price. Thus, no Monte Carlo

simulations are needed and the price and greeks are directly obtained after the backward sweep.

We denote by ¢ the probability density function of a Gaussian random variable and get a

pseudo-code close to the one given in Mark Henrard’s book [19, page 32-33]:

Price closed-form decomposition

Adjoint accumulation

periodV olatility = oy/T
_ log(So/K)+rT
T T periodV olatility

—&-%periodVolatility
d_ = d4 — periodVolatility

Ny = N(dy)

N_=N(d-)

price = SyN, — Ke "I N_

price = 1.0

N_ = —Ke " Tprice

Ny = 5o

d_ = ¢(d_)N_

dy = ¢(dy )Ny +d-

eV ety = (i 05 — 1

Table 3: Adjoint Algorithmic Differentiation on European call
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We can then access to the Greeks by computing the adjoint of model parameters using a scheme

similar to the one stated by Mr. Henrard [I9] page 34]:

Sensitivities AAD method result

8 (vega) & =V TperiodV olatility

55% (-theta) T =re "TKN_price + %periodVolatility + mdﬁ.
= K = —e"TN_price — gmavoranmig O+

% (rho) 7= KTe ™" N_price + m@

‘;%g (delta) So = N price + mcﬂ

Table 4: Greeks using AAD on European call

Remark 3.7 (optimised AD algorithm). An expert eye, would see (running the code) that d,
always equals 0 as highlighted in Algorithmic Differenciation in Finance Explained by M. Henrard
[19]. Therefore we can simplify the previous algorithm, setting d, = 0. Hence, we get an optimised

AD algorithm (see [19] page 34]).

3.3.2 Computation and results

All the previous mathematical development have been coded in C++. In addition to the im-
plementation of the simple and optimised AD method, we reused a previous algorithm to compute
price and greeks closed forms as well as Monte-Carlo and Likelihood Ratio methods (see Simulation
Methods for Finance coursework [14]). In the table below, we give the price and greeks obtained

with each methods and the computation time needed to estimate all these quantities.

Closed Form  AAD method Optimized AAD Likelihood Ratio Method
Price 19.9077 19.9077 19.9077 19.9009
Delta 0.702412 0.702412 0.702412 0.701676
Vega 48.9911 48.9911 48.9911 49.0197
Rho 100.667 100.667 100.667 100.697
Theta -3.56528 -3.56528 -3.56528 -3.6345
Computation Time (s) 0.002 0.003 0.002 3.254

Table 5: European Call Price and Greeks for Sp = 100, »r = 0.01, T = 2, 0 = 0.25, K = 90 and
Nure = 108 simulations for Likelihood Ratio Method

Even if there exist closed forms for the greeks in this case (and therefore there is no need to
use AD to have accurate and fast results), we can already see with this example the precision and
speed of such method. A more complex payoff would involve more work but the idea remains the
same: first decompose the payoff of the option, then compute the adjoint of each variable involved

in the decomposition to get estimates.
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4 AD method on financial derivatives

In most of the cases, there are no closed-form formulae for the price of an option. Therefore, the
AD procedure is slightly different and involves a Monte-Carlo simulation on the estimates that

stem from the application of the AD method on the option’s payoff.

4.1 AD method on basket option

In this section we consider a basket option as described in L. Capriotti’s paper [12, page 19].

Definition 4.1 (Simple basket call option). Let’s consider a basket of n stocks S*, ... , S™ with

respective weights wq, ... , w,. The payoff for a simple basket call option is given by:
n .
(> wiSh - K)*T.
i=1

4.1.1 Payoff decomposition and application of the AD method

In his paper, L. Capriotti provides a pseudo code to compute the AD method on a basket option
(2, page 20]). Nevertheless, this pseudo-code focuses on the payout function which, in general,
has no notion of how the underlyings have been derived (e.g. what SDE was used) and in particular

their possible dependence on interest rate, dividend yield and volatilities etc.

In our framework, whatever model one chooses, the drift will always be the risk free rate r, so
it is model independent to some extent. Hence, under the risk pricing measure, the underlyings
S% depend on r and therefore an additional term has to be added to the computation of 7 and T

performed in Mr. Capriotti’s paper [12].

Hence we suggest the following application of the AD method on a basket option:

Payoff decomposition AAD method

B=0.0 price = 1.0

B=3%" wSh D = max(z,0.0) * price
r=B-K :f:D*]l{,»O}*;W'ce
D=eT B=12

price = D x max(x,0.0) St = w;B

Table 6: Adjoint Algorithmic Differentiation on Basket option
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Then we get the following expression for rho, -thetha and vega:

i

7 =—TDD + Zwi—éfTE,
T
i=1

T=—rDD+Y w LB,
i=1

i=1
Remark 4.2 (Model dependence). In the previous application of the AAD method, %, %ﬁT and

% depend on the dynamics of the inherent underlying.
In our implementation, we assume that the risk free rate » and the volatility o are constant.
We consider only two possible dynamics for the underlying stocks (a basket can possibly contain

stocks in different models). The underlying can follow a Bachelier or a Black and Scholes model:

Bachelier model:

dSi = rdt + oy dWi,  Sh =St + 1T + oNTZ;, (4.1)

854 55k 0iZ; 55k
= = =VTZ;. 4.2
T . AR e (42)

Black and Scholes:
) ) ) ) ) ) o2
dS; = rSjdt +o:8j AWy, Sp = Sjexp((r — )T + o TZ;), (4.3)
=TS — =[(r— =2+ ; — =VTZ; — 0;T)S%. 4.4
57,_ ST? (ST [(T 2 + W)]STW 60’1 V» T o ]ST ( )
where 71, ... , Z,, are iid standard normal variables.

Remark 4.3 (Computation of delta). The decomposition of the payoff using the AD method

gives Si. = 52’?}“. We would like to have delta (i.e 5’;;? °) instead. To get it, we use the following
T 0

property: , _
dprice  dprice 08T - 0Sp

555~ oSk osi TS

5S%,
5S¢

We just have to replace the quantity (which is model dependent) by the relevant expression

given by: ”Z{ in the Black and Scholes model and 1.0 in the Bachelier model.
0
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Remark 4.4 (Monte-Carlo methodology). As we work on the option’s payoff and no longer on
the price as in we need to perform Monte-Carlo simulations on this previous decomposition to

have the price and greeks of the option.
e 1. Simulate the n underlying stocks Sk, ... , S% feeding the basket.
e 2. Decompose the payoff of the inherent basket option as explained before.
e 3. Repeat M times 1. and 2. and average the parameter obtained on these M simulations
i.e parameter = & "M parameter’.
4.1.2 Closed-form formulae in the normal case

As a benchmark, we compute the closed-form obtained for a basket option where all underlyings

follow independent Bachelier models (ie independent normal laws).

Let assume that underlyings S}, ... , SP* follow respectively independent normal laws with
mean Sy + rt and variance o2t under the pricing measure (see [4.1). Then, using the fact that the

sum of independent normals is a normal variable, we have:

Y = iwiSiT WN(iwi(TT-FSé),iW?U?T)-

i=1 i=1 i=1

We define the following quantities:

oy = gwi(rT +58), oy = 2027, T = K;y,uy
Then the price of the basket option is given by:
O = B T(> S — )]
i=1
=E%"T(Y - K)']
=ECfe " (0,Z — (K — u,))*], where Zis a standard normal random variable,
e [T e nea)

Ve
=e Toyp(—%) —e (K — p )N (—%),

where N denotes the cumulative distribution function of the Gaussian random variable and ¢

denotes the probability density function of the Gaussian random variable.
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4.1.3 Greeks using pathwise derivatives

Following the methodology given in Simulation Methods Lectures for Finance (SMF) [22], we have

a recipe to compute delta with respect to the i*" underlying:

— +
500 _ EQ[e—TT 5(Y K)

]

553 5Si
_ +
_ goperr 0 Z KT oY
Y oSk

= E9le""1{y~ kywi] under Bachelier's model.

We can also compute rho as follows:

500 _ mQ 7TT5(Y_K)+ Qr,—rT +
2 =E%e | - TECeT T (v — K)]
oY — K)t8Y _
_ wQ rT Y\ ) YE g Q rT o +
= ECe 5 5]~ TESe (Y - K)]
—r = 552 —r
— E%e TI{Y>K}Z“’%'TTT]_TEQ[6 (Y — K)7*]
i=1

=e "TE? iy~ k) Z w;T —T(Y — K)"| under Bachelier's model.

i=1
We can then apply Monte-Carlo framework to have a good benchmark for our greeks’ compu-

tations.

4.1.4 Numerical results

We performed Ny = 1.000.000 Monte-Carlo simulations to compute the price and greeks of a
basket option with expiry T" = 2.0 and strike price K = 88 built on 3 stocks following independent
Bachelier’s model under a constant risk free rate » = 0.01. We give the volatility and initial price

of each underlying stocks:

01 =0.25 0'2:().3 0'3:().1,

S;=100.0 S2=820 S3=097.0.

The results are presented in the table next page and highlight the strength of the AD method: no

loss in precision and a speed which does not depend on the number of Greeks computed !
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AAD method Closed Form
Price 478.453 478.455
Sensitivity wrt 1th stock in Basket | 2.9406 2.9406
Sensitivity wrt 2nd stock in Basket | 0.980199 0.980199
Sensitivity wrt 3rd stock in Basket | 1.9604 1.9604
Rho -945.143 -945.141
Theta 4.72615 not computed
Vega -0.00810242 not computed
Computation Time (s) 8.046 10.127

Table 7: Basket Price and Greeks

In this simulation we see that the AD method is very accurate and extremely fast. Indeed, to
compute the price and 6 Greeks, the AD method is faster than the Pathwise Derivative approach

to compute only 2 Greeks !

4.2 AD method on Bermudan option

Luca Capriotti ([I1]) gives a framework to understand the computation of the AD method on any
Bermudan option. We recall that a Bermudan option can be exercised at several fixed dates deter-
mined in the contract. The idea is similar to what we have done previously on basket options but
the optimality of the boundary makes the decomposition of the payoff and therefore the Monte-
Carlo computation far more complicated. The balance between computation time and memory

management is also very challenging and will be discussed.

Hence, this section follows Mr Capriotti’s work and we use mostly the notations introduced in
his paper [11] page 38-42]. Nevertheless, we try to highlight simplifications that can be performed
and particular choices that are made in our case.

As always, when using AD method, there are two steps: the payoff decomposition and then the

backward induction.

As in the previous section, the code inherent to this section enables to choose the dynamic
of the underlying. For sake of clarity, we only detail here the particular case of an underlying

following a Black-Scholes model.
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4.2.1 Forward sweep: pricing techniques

Let’s consider an arbitrary Bermudan option built on an underlying asset S; following a Geometric
Brownian motion

dSt = ’/’Stdt + O'Stth, XO =x>0.

We consider that this option expires at time 7. The option can be exercised at M discrete
times T4, ... , T which constitute our discretized time grid of [0, T.
In what follows, E,, denotes the payoff of the function at time T,,. We also denote by V. the

price of the Bermudan option at time 7}, for the n** Monte-Carlo simulation.

Remark 4.5. We work under a constant risk free rate r. Therefore the numeraire IV; at time T;

does not depend on the simulation nor the time grid i.e:

The main idea to price Bermudan option is simple (and is developed in greater details in the
literature [22]). One has to find the hold value at all times T}, i.e the continuation value if the
Bermudan option is not exercised at time 0. Then, the option is exercised at time T}, only if the
exercise value E,, is greater than the hold value H,,. Therefore, the price of the option at time

T, is only the maximum between the hold value H,, and the exercise value E,,.

Regression based algorithms are meant to estimate the hold value H,, at any time 7, rather
than finding its exact value. As stated in Capriotti’s paper [I1], the hold value is estimated
by a regression on a vector of basis functions ¢ (z). Therefore, 8 being the vector of regression

coefficients, the estimate of the hold value will be:

Hp(z) = ﬂTQ/’(x)
The main challenge of such method is to find basis functions giving accurate results on a large

range of assets. This topic will be discussed later in Below, we state the methodology to

price such Bermudan option, following Mr. Capriotti’s paper [IT].

1. We first simulate Nj;¢ independent paths of an underlying following a GBM [I1], step (R1)
page 38]. To do this, we use the Euler Method to generate paths i.e:

Ym € [0, M], St = S +7rS™h+ o SIWhZD,

where h = T/M, n is the n'" Monte-Carlo simulation, Z" are iid standard normal random vari-

ables.
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2. We then work backward for every simulated paths (ie for every n=1, ..., Na;¢) [1I} steps
(R2) and (R3) page 38].

o We first set Vy; = E};.

Then working backward for m = M — 1,..,1, we do the following:

Ny
()
U, NMC ;w (W)
*'T Nyve
O = 5 D UV,

i=1

where 1]’ denotes the value of the vector of basis functions used to perform the regression

evaluated at S™ i.e at time T}, and for the n'" simulation.

e We then compute the regression coefficients:

Bm = \Il;nl Qm

e And estimate the hold value:

= Bt

3. Finally, we have to choose one of the 3 following estimates of the option’s value [I1], step

(R4) page 38]):

e Longstaff and Schwartz [I1]:

o ) B if Er > H

m
n —rT .
V1€ otherwise.

Then the Monte-carlo estimate of the option price is given by:

Ny

D Ve

n=1

N MC
e Classic Regression based Monte-Carlo [I1]:

V" =max(E}, H).

m

Then the Monte-carlo estimate of the option price is given by:

Nyvce

D Ve

n=1

NMC
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e Lower bound algorithm for Bermudan-style options [11]:

Compute the path-wise estimator for the discounted cashflows of the option:

m—
E H ]lHn>En ]lHn <Ene ]M En]

m=1 m=

Then the Monte-carlo estimate of the option price is given by:

1 Nuvce
Vo= pP".
7 Nuc nz::l

4.2.2 Choice of basis functions

We use regression based methods in order to price Bermudan-style options. The first issue trig-
gered by such methods is the choice of the basis functions denoted by the vector ¥. One needs to

take an orthogonal polynomial basis in order to be able to price complicated options.

An Hermite polynomials basis was chosen as it fulfills all requirements. We constructed the

basis as follows:
Hy(z) =1.0 Hy(z) =2z Hy(r) =2zH,_1(z) —2(n — 1)H,—1(x)

One needs to be careful when choosing the number of basis functions to find the best fit. On
the one hand, a lack of basis function triggers underfitting issues and therefore lead to inaccurate
regression results. On the other hand, too many basis functions brings overfitting problems. More-

over, the more basis functions the slower the algorithm will be.

Therefore, an analysis had been performed separately on every options treated in order to find
the right balance between goodness of fit and reasonable computation time. In the Bermudan
vanilla case, the best trade-off is obtained with 3 basis functions while for the best of two assets

case 13 basis functions are needed.
Results which led us to the choice of 3 basis functions are given in the table below for the
Bermudan Put case using a Binomial tree as benchmark [14]:

‘ 2 basis 3 basis 5 basis 10 basis Binomial Tree
Price ‘ 12.3294 13.0096 11.5158 11.3083 13.0676

Table 8: Bermudan Put price for Sy = 100.0, » = 0.05, T'= 1.0, 0 = 0.4, K = 100.0
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4.2.3 Comparison of the different pricing techniques on Bermudan put

We consider the previous framework and work on a Bermudan put option with payoff E)! =

(K — S+,

We have implemented the 3 methods explained previously [11] for this option and compared the
results. We have chosen 3 basis functions as it appeared to be the best balance between accuracy

and computation time.

In our simulations, the expiry date is three years (" = 3.0) and we can exercise the option
every 3 months (M = 12). We consider also that Sy = 1.0, 0 = 0.2, r = 0.15.
We then run simulations for K = 0.9, K = 1.0, K = 1.1 and for Ny;c = 500.000 Monte Carlo

simulations.
‘ Option Value Computation Time Option Value Computation Time
K =0.9 | 0.0195459 50.721 seconds K =0.9 | 0.0159796 50.531 seconds
K =1.0 | 0.0434925 51.521 seconds K =1.0 | 0.0410524 51.611 seconds
K =1.1 | 0.0907178 52.862 seconds K =1.1 | 0.0894568 52.141 seconds
Table 9: Classic Regression Based-Monte Carlo Table 10: Longstaff and Schwartz
Option Value Computation Time Option Value
K =10.9 | 0.0162559 51.81 seconds K =09 | 0.0157926
K =1.0 | 0.0410968 53.767 seconds K =1.0 | 0.0421816
K =1.1 | 0.0893994 54.998 seconds K=111|01
Table 11: Lower-bound algorithm Table 12: Binomial tree

We used the implementation of the Binomial Tree method from the coursework submitted in
SMF [14] in order to benchmark our results. If the number of nodes is not too important, the
Binomial Tree method is of course faster than Monte-Carlo based methods. Therefore on this
example with 12 exercise dates, comparing the computation time of Monte-Carlo methods to the

Binomial Tree is totally irrelevant.

The previous tables highlight that Longstaff and Schwartz estimate seems to give slightly more
accurate results than the other methods. Therefore we use this technique in our implementation

of the forward sweep in the AD method.
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4.2.4 Backward sweep

Even if all the previous pricing techniques can be used in the AD method (and have been imple-
mented), as the Longstaff and Schwartz is the most accurate method, we will only develop in this

section the backward sweep on this estimate of the option value to obtain the Greeks.

To have further details regarding the methodology underlying the use of the two other esti-
mates in the backward sweep of the AD method (especially using the Lower-Bound algorithm),
please refer to Mr. Capriotti’s paper [I1, pages 42-44]. The three resulting AD methods have been

implemented and the code architecture enables to choose which method the user wants to use.

The following steps have been also largely inspired by Capriotti’s paper [I1] page 44] and give

the methodology to obtain the adjoint of models parameters.

e First, we initialize the adjoint of the option value, models parameters and regression coeffi-
cients. Their values are given by: Vy = 1.0, =0, S =0 and §3,, =0 for m =1, ..., M — 1.
[T1, step (R4) page 44]

We then set for n = 1,..., Ny

vn - Vo 5F
Vl Nuc ©

no_ VO _2rT
N = NMCV1 e~ ™M,

e For m=1,...,M — 1, we compute [11} step (R3) page 44]:

vn. By, = Vil smy,
IT;}L = T%IIE;:KH;;,
57 = 2bm
m oS
Remark 4.6. The quantity gg; depends on the payoff of the option considered. In the

numerical examples, we will explain how we obtain this quantity using the AD method on

the payoft E} .

e We then compute, as in [I1, (R3) page 44], the adjoint the basis functions 47 and update
the adjoint of 8 as follows:

B Nuc L

n=1
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Finally we compute the adjoint of the variables €, and ¥,, setting:
O =9, By U= —Qnf3y,.

e Forn=1,..., Ny, as in [I1, (R3) page 44] compute or update:

Vit =

Vo=
+1
mn Ny

L — Ty, ,n
oV,
n U, .
St = Umgn

Remark 4.7. Computing efficiently the quantity ‘;\g;'? is quite challenging if we want to save

memory. We decided to compute it as follow:

50, 0 6Vimy1 6Emi1 6Smis

5Sm  0Vini1 0Ems1 0Sme1 0Sm

6Vm+1 1
= AEnt1>Hmt1
6Em+1

5\117771 1 —=rT
= e ™ va
WVmy1  Nuc
6S7n+1
0Sm

Again the quantlty ’"“ + depends on the payoff of the option and is treated in numerical

=1.0+1rh + oVhZm 1.

examples. Note that the quantity 5;””“ will in general depend on the dynamic of the

underlying (and therefore of the Euler Path expression).

e Finally, as in [T1, (R3) page 44] we compute:

SEY,
S7y —VJ;;(SS%

e We then get the greeks [T, (R1) page 44], by differentiating the Euler path with respect to

the desired parameter as follows:

vm € [|0, M[], St+ =S% 1 [1.0+rh+oV/hZ0).

Then,
. 1 Nwme
= ‘S’/rl/7
Me 25 %
Similarly,
Nuvce

vm € [|0, M},

Z S7n+1 VSn Zn

NMC
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4.2.5 Example of a Bermudan put

We coded carefully the general steps developed above, the only step ”specific” to the option’s

0Fm41

payoff being the computation of 5z o We computed this quantity using the AD method on the

payoff (to cope with the rules of Automatic Algorithmic Differentiation) as follows:

Payoff decomposition AAD method
uw=8" p=10
v=K-—u v =1{>0P

p = max(v,0) ﬂz%::z—@

Table 13: Adjoint Algorithmic Differentiation on Put payoff

In our simulations, the expiry date is 3 years (T' = 3.0) and we can exercise the option every
three months (M = 12). We consider also that Sy = 1.0, o = 0.2, r = 0.15, K=0.9. Moreover we

have used an extended binomial tree as a benchmark of our results [14]:

AD method Extended binomial tree
Price | 0.0159705 0.0157926
Delta | -0.191629 -0.195008
Vega 0.285818 0.293983

Table 14: AD method on Bermudan Put with 50.000 Monte-Carlo simulations

4.2.6 Example of a Bermudan best of two assets (put/call)

We also considered a Bermudan call best of two assets option [11, page 44] built on two underlyings

S1 and S5. The payoff of this option at exercise date T, is given by:
(max(S1(Tp), S2(T)) — K,0.0)T.

The method previously detailed is very general and therefore can be applied to such payoff.
Only two steps should be modified to take into account the fact that this payoff implies the use of

two underlyings.

First, Hermite polynomials cannot be used anymore as basis for the regression, therefore, we

decided to use the following polynomial basis as in [T} page 45]:

17 Sla 523 51523 Sf? 5227 Sfa S§7 Slsga SQS%
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And we added to this basis the following polynomial functions of the payoft [11l page 45]:

(maz(S1,S9) — K,0.0), ((maz(Sy, Se) — K,0.0)7)?, ((max(S;,S2) — K,0.0)")3.

Finally, we needed to adapt the computation of ‘;g—f” using AD as follows:

Payoff decomposition Adjoint method
u= S, p=10

v=>57 y=1y50p

w = maz(u,v) W=7y

y=w-—K U= ggé: =15 W
p = mazx(y,0) u = ‘E;I;:}n =lys0} ¥

Table 15: Adjoint Algorithmic Differentiation on Put payoff

Similar work (modulo a change of basis and of sign in the computation of gg—;”) has been
performed on the Bermudan put best of two assets option. We performed our simulations with the
following parameters: S§ = 90, Sg = 100, K = 100, r = 0.04, T =1, 0 = 0.4, M = 50 and 13 basis
functions. The results obtained with these two options after 100.000 Monte-Carlo simulations are

given in the tables below:

AD method Monte-Carlo/FD AD method Monte-Carlo/FD
Price 7.98615 8.04129 Price 26.1643 26.1464
ofrice | -0.207099 -0.202373 oBrice | 0.155386 0.158404
0 0
Vega 18.0393 18.18032 Vega 47.3297 47.1026
Table 16: Bermudan Best of two Put Table 17: Bermudan Best of two Call

To benchmark our results, we also simulate the Bermudan best of two assets put with S} =
S2 = 1.0, and using the same random numbers to simulate both paths. Hence, the paths generated
for S' and S? are identical. Therefore, in this settings we get a Bermudan put option built on S*

for example. The following table gives the results obtained:

Best of two Assets Put Bermudan Put Extended Binomial Tree
Price 0.0157612 0.0157905 0.0157926
Delta -0.188449 -0.191629 -0.195008
Vega 0.300706 0.285818 0.293983

Table 18: Comparison of the different methods with S} = 1.0, S = 1.0, K = 0.9, r = 0.15,
T =3.0,0=0.2, M =12 and 13 basis functions.
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Results are accurate and stable. The computation time needed to compute the price and the
greeks is approximatively equivalent to 3 times the time needed to just price the option. This fact
remains true if we increase the number of greeks computed as the only limit is the memory of your
computer ! Therefore, AD is extremely powerful when one wants to compute more than 10 greeks:

the computation time involved remains the same when computing one or ten thousands greeks.

We worked on Bermudan vanilla options in one or two dimensions. One should notice that
the framework created would remain the same for more complex Bermudan options and the AD
method would become the only reasonable way to price and quantify sensitivities of such options

as Finite Difference algorithms would involve hours of computations.

We extend our work on options’ prices in the next sections, using similar AD framework on
Credit Valuation Adjustments (CVA). To be able to perform AD computations under such financial

instrument, we will work on strong assumptions namely:

e Unilateral counterparty risk: only one counterparty is risky, the other is default-free.

e Independence between the time of default and the equity payoff.

Even if one could argue that this framework is not realistic while applied to ”real” financial

markets, it enables to obtain interesting theoretical results and convincing numerical computations.
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5 AD method on CVA

The AD method can be applied very similarly to CVA. However, the complex structure of this
financial instrument makes the decomposition of the CVA expression for the forward sweep more
challenging than for options’ payoff. Therefore, we first begin with the simplest case of a non-
Bermudan option with a positive payoff giving birth to many simplifications in our calculations.
Then, we will treat the general Bermudan case. In this section, we always consider a unilateral

CVA setting.

5.1 CVA of non-Bermudan options with positive payoff
5.1.1 Hypothesis and notations

The notations used in this section stem from D. Brigo lectures notes [I]. As in the latter, we will
call the ”default-free” inverstor ”B” and ”C” the risky counterparty who may default. Therefore,

we decide to work in an unilateral counterparty risk setting.

mp(t,T) will denote the discounted payoff without default risk seen by ”B”. Therefore it will

be the sum of all future cashflows between ¢ and T discounted back to ¢ (see [I]).

In what follows, we consider European call or Basket options with maturity 7" so that 7 > 0.

Indeed,

mp(t,T) =e " 0(Sp —K)t  or  7p(t,T)=e TS - K)T.

i=1

Hence we write mp(t, T) = e "(T=Y) Payof f+.

We model the default time of ”C” using a stochastic intensity model (without jumps) and
assume independence between the counterparty default time and the contract underlying.
5.1.2 Intensity model used

We make the assumption that the default time 7 is exponentially distributed. We denote the
default intensity at time ¢ by A; and the associated cumulated intensity by A; = f(f Asds.

Then, as defined in [I} slide 666], 7 is the inverse of the cumulated intensity on an exponential

random variable £ with mean 1 and independent of .

= A7),
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We also recall that:

Q>xz)=e"" and Qé<z)=1—¢e"" (5.1)

5.1.3 Useful property

The following property will be of great help in our computations and stem from [ slide 669]:

Q(r>1) =QAT(€) > 1)
= Q> A1)
=E[Q(& > A(t)|A(t)] using Tower and independence properties
= E[e" )]

= Ele~ Jo X+ds].

5.1.4 Default intensity SDE

We assume that A follows a CIR process without jumps (to ensure positiveness of A\; as it can be

seen as the local probability of defaulting around t).
AN\ = k(e — No)dt + w/Nedw;  with 2kp > V2. (5.2)

Therefore, we discretize [0, T] and, using Euler scheme to simulate paths on the discrete time grid

Ti, ... , Ty, we simulate the intensity process as follows:

/\ti+1 = A, + k(:u - Atz)h Ty Atri\/EZi’
where h = % and Z; are iid standard normal variables.

5.1.5 Default Bucketing approximation

The default bucketing technique will enable to benchmark our CVA results. Again, this technique
relies on our discretization of the interval [0,7] into M segments of equal length determined by the

following times: T1, ... , Tay = T. Then we proceed following Mr. Brigo’s guidance [, slide 860]:

CVA(0) = LepEo[lrcre™ ™ (B, [ (7, T))) "]
M
= LGDEO [Z ]I_Te(rj_th]e_rTE-,— [7'('(7', T)]] ,as 7T(T, T) 2 0

Jj=1

M
~Lap Y Eollreir,_, 1, 1¢” 7B, [n(T}, T)]]
j=1

M
=Lop Y BolEr, lee(r,_, 1yje” " Payof f]]

Jj=1
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M
CVA(0) = Lap Y Eollre(r,_, 1ye” " Payof 7]

j=1
M
= Lap Y Eollre(r,_, 1, /Bole™ " Payof f*], 71 Payof f*

j=1

M
= Lgp Z Q(1 € (Tj—1,T;])PriceOptiony.

j=1
Therefore we just need to estimate Q(7 € (Tj_1,T;]) = Q(t > T;_1) — Q(7 > T}). This is
straightforward as,
Vm <M, Q(1>T,)=Ele” Ja Asds)

~ Eqle™ PDUIPY (Ti+1=T5))

Nuve )
~ 1 E o 17 A (T =Ty)
Nue i

Hence using the relevant value for PriceOptiony we get easily the CVA of Call, Basket or other

options with positive payout.

5.1.6 Application on the CVA of an European call option

We start with the following expression obtained while computing CVA using default bucketing

method:
M

CVA(0) = Eo[Lap ere(Tj_l,Tj]e_TT(ST - K)*].
j=1
Before being able to perform the AD method on this expectation, we need a little bit of work
to obtain an adequate form to perform the forward decomposition (first step of the AD method).

First, we need to exhibit the dependence of L.¢(r,_, 1, to A in order to compute ‘%;KA.

First note that,

Yoermy = Yesto i<ty

Moreover,

Loty = la—1e)>miy
=Lesnni1)y
oo jrir nas

st oay = Hesey
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Similarly,
Lirer) = e<ar)
with a; = 32, (T = Tj-1)X and bi = Y501 (T) — Ty—1)Ay.
Remark 5.1 (Simulation of exponential variable). We simulate the exponential variable £ using

the inverse transform method. First, we simulate a uniform random variable on [0,1] called U.

Then,

£=F1(U) = ~log(U).
Hence we can estimate 1¢sp, and le<q, for every i.

The idea behind this decomposition of the indicator function is to exhibit its dependence to

A. Then, we will be able to calculate the adjoint of a; and b; in order to get the adjoint of A and

therefore 5%‘;‘4 .

: SCVA.
The AD method applies as follows to compute *55=:

’LL:ST
v=u—K

w = maz(v,0.0)

a; = Z(T] - 7}'_1)>\j VZ

j=1
i—1

b= (T; = Tj—1)A; Vi
j=1
M

z = lecaless,
=1

y= Lepxp

7=10

T = Lappy

Feca, @ if bi €[ —6,6+ 0]

0 otherwise

. {2161§>qu if a; € [5*5,§+5]

0 otherwise
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with § the regularization parameter to approximate the indicator function by the following:
Ly>e = %—i—c if aiE[f—(S,f—i-(S]
1 dif a;>&+96

and similar work have been done for 15, ¢

5.1.7 CVA closed-form

Limitation of the method previously used

To compute @; and b; we had to smoothen the indicator function so that it becomes continuous

and we can somehow differentiate it.

The main concern with this approach is that we have to choose the regularization parameter §
so that the function is ” continuous enough” but choices of ”big §” would not represent an indicator
function anymore. Therefore the result is very dependent on the choice of § and thus not really

satisfactory.

Even though the AD method is very fast compared to the use of the finite difference method

to compute 5%‘;’4, it is very dependent on the choice of the regularization parameter § and a good

choice of § seems purely qualitative.

To get rid of this dependence on the regularization factor, one could suggest to approximate
the Dirac function by a gaussian with very little variance but again the results are very dependent

on the variance chosen and therefore results are not satisfactory.

The idea is to change the filtration under which we compute the CVA in order to get rid of the

indicator function in the expression of the CVA.

Change of filtration and closed-form computation

Let’s denote the filtration of default-free market variables by F; and assume:
Gt =F U (Uio(1; <u,u<t)

with ¢ indexing the default times of the system [, slide 837].
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Hence, following the notations from Mr. Brigo’s lecture notes [I] and using the same type of

intensity model we get the following expression for the CVA by using the tower property:

CVA(0) = LapEo[Lrcre™ (B 7 (T, T)])*]
= LopEo[ly<re ™ (E,[e T~ Payof f]) 7]
= LapEo[E-[Lcre ™ e ") Payof £ 1]

= LepEo[l,<re” " Payof f1].

We then use the immersion hypothesis meaning that we switch from filtration G to filtration

F. Indeed switching to the filtration F will transform 1, into its F expectation e =) as explain

in 513 1.

CVA(0) = LgpEo[E[lr<re™"" Payof f*|Fr]]
= LapBo[E[L <7|Frle™" Payof f]
= LapBo[(1 — e AT T Payof 1]
= LapEol(1 — e~ 0 2+%)e™ T Payof /7]

~ LapEo[(1 — e ZiZo M(Ti=Tim0))o=rT Py f 1]

We can then apply the AD method on this new form (in the case of a European Call to fix

ideas) and get the following pseudo code:

u =39S
v=u—K

w = maz(v,0.0)
P=e¢"Ty

r=1—¢" SN (Ti—Ti1)

y:LGDP:E
y=1.0
T=LgpyP

)TO = (T1 — T())e_ Zfio )\i(Ti_Tifl)i‘.

Again, this formulation is not good enough as the result for the sensitivity with respect to Ag

would be dependent on the discretization step while approximating the integral.
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Nevertheless, as the default intensity is independent of the option’s discounted payoff and

follows a CIR process, we can obtain the following closed-form solution:

CVA(0) = LapEo[(1 — e Jo 245)e=T payof f1]

= LapEo[(1 — e~ I A A By e Payof f+],as A I St

We then use the fact that Eg[e™ Jo Aeds) — A(0,T)eBOTIAo with:

2he(k+h)% 2kp Qh(ehT - 1)
A0, T) = iz B(0,T) = = 24202 2
O =G rmrner—n) " BOD=grgiper—y "ovEF2S

Finally we obtain the following closed-form expression:
CVA(0) = LapEo[(1 — e~ Jo 24%)] Priceg
= Lep(1 — A(0, T)ef/\OB(O’T))PTiceo.

This expression enables to compute ‘5%‘)‘3 4 and all other sensitivities using the relevant decom-

position of Priceg to perform the AD method on it as detailed in[3.3]for European vanilla options or
[41] for Basket options. Therefore we get a proper Automatic Algorithmic Differentiation algorithm
for CVAs on options with positive payoffs, given by the following pseudo code:

u=1-A(0,T)e BODo

p = LGD Priceyu
p=1.0
u = LGDPricegp

Ao = A(0,T)B(0, T)efB(OvT)Aoa.

5.1.8 Numerical results

We compare the two approaches on an European Call option using the following parameters for

the underlying stock: Sy = 100.0, » = 0.01, T'= 2.0, 0 = 0.25 and K = 90.0.

In our simulations we use the following intensity model parameters (using notations) for

the time of default: A\g = 1.0, k =0.5, u =1.0, » =0.25 and a Lgp = 0.6.
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To benchmark our results, we calculate CVA values using default bucketing method and CVA’s
sensitivities using a finite difference approach (FD). We also use a regularization parameter for the

inherent method which value is given by § = 0.001. Hence, we get the following table:

AD with reg.  AD with change of filt. =~ Default bucketing/FD FD on closed-form

CVA 10.24 10.2608 10.2734 10.2608
oA 1.8278 2.07621 1.976 2.07626
Computation Time | 405 seconds 0.001 seconds > 45 minutes 398 seconds

Table 19: AD method on European Call CVA with 500.000 Monte-Carlo simulations

Even optimizing "manually” the choice of the best regularization parameter § for the first

method, we obtain poor results for 5?;\2 4 However, with the closed-form obtained under the im-

mersion hypothesis we get perfectly accurate and instantaneous results (less than one second to
get all the sensitivities !). Indeed, the fact that we apply AD on a closed form enables to have a

computation time below 0.001 seconds.

To highlight the power of this change of filtration, we present further computations using the
AD method on this CVA closed-form for options with positive payoff. This time, we only use a

finite difference approach (FD) to benchmark our results for 5%}2 4 (as in the 4" column of Table

19). We start with the same parameters as those used above. We only specify the value of the

parameter which has changed compared to Table 19.

FD on the closed form  AD with change of filtration
CVA (S = 100) 10.2608 10.2608
0EYA (S = 100) 2.07626 2.07621
CVA (S = 110) 14.113 14.113
0EYA (S = 110) 2.85566 2.85574
CVA(S, = 90) 6.91399 6.91399
04 (S0 = 90) 1.399 1.39903
CVA(K = 100) 7.68221 7.68221
04 (K =100) 1.55444 1.55448
CVA(o = 0.4) 14.0955 14.0955
034 (0 =0.4) 2.8522 2.85212
CVA(T = 1.0) 5.97897 5.97897
034 (T = 1.0) 2.74747 2.74744

Table 20: AD method on European Call CVA with 500.000 Monte-Carlo simulations
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5.2 AD method on CVA of Bermudan options

In this section we follow carefully the work made by Luca Capriotti and use his notations [11]
page 40-43]. As in section we only work in a unilateral counterparty risk framework, assuming

that the default time 7 of the risky counterparty is independent of the portfolio values V(7).

5.2.1 Forward sweep: CVA computation using Least-Square Monte-Carlo

We start from the following well-known form of CVA under default-bucketing assumption and with

the same notations introduced in 4.2 and [5.1] [11], page 38]:

M
CV A(0) = Eg[Lep Z(Q(T >Ti 1) — Q(r > Ty))e " (V(Ti) ™) (5.3)

The computation of CVA values using regression based algorithm is very similar to the method
introduced to price Bermudan options. Here we consider that the option can be exercised p times
at time 71, ... , T), and its payoff is given by Er,, at time T5,.

One has to be careful as many indices are involved. Indeed, using the default bucketing as-
sumption we discretize [0, 7] according to the discretization time-grid T3, ..., Tay where T; is not
necessarily one of the exercise dates 17, ... , T),. Thus, the two discrete time grids can be different
and this fact needs to be taken into account while performing the computations.

The following steps stem from Luca Capriotti’s paper [11 page 43] and enable to compute CVA
values. They constitute the forward sweep of the AD method. We use the index n =1, ... ; Ny

to denote each Monte-Carlo simulations and proceed as follows:

1. We first simulate the paths S of the underlying asset (respectively A?, of the counterparty
default intensity) for all time horizon Ty, ... Ty, ... , Tas - Note that the code created enables to
choose the dynamic of the underlying and therefore to choose between the normal or lognormal
dynamic for the underlying stock while using Euler paths approximation. However, for the sake of
clarity (and without loss of generality), we here discuss the lognormal case (where the underlying

follows a Black Scholes model).
Ym € [0,M —1], S% ., = S +7S"h + oSIVhZD,

Vm € [0,M = 1], Xy = Apy + k(= An)h + /X Z,

with obvious notations [I1, (X1) page 40].

2. Then, we compute the paths of the survival probabilities [I1], (X2) page 40] for m € [0, M].

Q" (r > Tyn) = o= T30 N (Ta=Ty),
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3. Following exactly the same steps as in[£.2.1] we get the following estimate of the hold value:
Vme [1,M—1], H" = L,  Hy =0.
Then, we get the estimate of the value of the option [1I, (X3) page 40] as follows:

max(E", H) if T, is an exercise date
Vm e [1,M], V! =

n .
H!  otherwise,

with ET the exercise value of the value for the n!* MC simulation at T},,.

4. The estimator of the CVA value for the n** simulation [T1, (X4) page 40] is then given by:

M
CVA™(0) = ) Lap(Q(r > Tn1) = Q7 > Tpn))e™ ™ (V)

5. Finally, we get the MC estimate as follows:

1 Nue

> cvA(0).

CVAO) = 57—

5.2.2 Backward sweep: Computation of CVA’s sensitivities
Exactly as in the backward sweep enables to compute CVA sensitivities with respect to model

parameters and especially with respect to Ao, ... , Aps.

In what follows, we denote model parameters by 6 and are interested in computing 5(’(;XA. As

always, the backward sweep consists in the adjoint of the steps involved in the forward sweep. This

methodology fully relies on Mr. Capriotti’s paper [I1} page 43].

1. First, the initialization step [I1, (X5) page 43] states CVA = 1 and 6; = 0, and finally sets:

2. Then for m = M, ..., 1, we proceed backward and get:

Vi =CVA" " [Lep(Q™(7 > Trn — 1) — Q™(1 > Trn) v >0l

N = OVA"e > T Lap(@"(r > Tn1) = Q (7 > o)) (Vi) ),

Q1 > Ty) = CVA™ [Viie ™™ (1 = yn0) — Vinae 4 lynso,
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with d,,,0 the Kronecker symbol, N} = e "Tm the nominal at time T},, and using the conven-

tion Vi, = 0 [I1I, (X4) page 43].
3. Next, we compute adjoints of the hold and exercise values for m = M, ..., 1 [T}, (X 3) page 43]:

If T}, is an exercise date we get:
HE = Vyﬁ,]ngpE;;lv

n — /n
By = Vilan <z,

Otherwise, we set H, = V" and E? = 0.

4. Then, we initialize the adjoint of the underlying by:
oE

S = Frsgn

We also initialize the adjoints of the regression coefficients S and of basis functions ;) as in
and and we get the following update of the underlying adjoint:

_ _ P
Sn 4 — (yn )T XZm
5. We can therefore update the adjoint of the discretized default intensities as follows [11, (X2)
page 43]:
PR M —
Nt =T = Tm) Y QU7 >Tn)Q (1 > Tp).
Jj=m+1
6. Finally, we again update the adjoint of the discretized default intensities and get the adjoint

of the model parameters.

- 96

m+1m(Tm7 )‘:}m 0)’

S ¢! .
0+ = X 5 (T M, 6).

with G the function generating the paths of the default intensity process [I1, (X1) page 43].

In our case, A follows a CIR process which enables the simplifications below:

e wZh
T, AP 0) = 1.0 — my 4
(wn( ms Ay 0) = 1.0 — kh + 2/ (5.4)
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5.2.3 Numerical results

We present our numerical results on both Bermudan put and Bermudan best of two put. For
clarity and in order to have a simple benchmark, we again will display results for a Bermudan
best of two put where the two underlyings are simulated using the same random numbers start-

ing from S§ = S2. Hence, we get an option equivalent to a simple Bermudan put built on one stock.

It is worth noting that while we still use 13 basis functions for our regression on Best of two
Bermudan put as in[4:2] due to the more complex structure of the CVA, we need 7 Hermite poly-

nomials in our regression basis to have accurate results on Bermudan put CVA.

In our simulations, the expiry date is 3 years (T = 3.0) and we can exercise the option ev-
ery 3 months (M = 12). We consider also that Sy = 1.0, 0 = 0.2, »r = 0.15, K = 0.9. We
use as benchmarks an extended binomial tree [14], a default bucketing computation for the CVA
and finite differences algorithms for the CVA sensitivities. Finally, we use the following intensity

model parameters[5.2|for the time of default: \g = 1.0, k = 0.5, u = 1.0, v = 0.25 and a Lgp = 0.6.

The table below displays the results obtained:

Price CVA % Computation Time
AD method on Bermudan Put | 0.0157905  0.00252039 -0.00256843 249 seconds
AD method on Best of two Put | 0.00157121 0.00254705 -0.00266047 328 seconds
Benchmarks 0.0157926  0.00253147 -0.00259147 > 45 minutes

Table 21: AD method on Bermudan Put CVA with 500.000 Monte-Carlo simulations

The time of computation is again quite impressive as one obtains the price, CVA and CVA
greeks in a time equivalent to 3 times the time needed to only price the option (and this remains
true no matter the number of greeks !). More than 45 minutes are needed to perform finite difference
with this number of Monte-Carlo simulation while the computation time involved using AD is only
few seconds ! Again, as we increase the number of sensitivities, the computation time increases

dramatically in the case of finite difference while it remains the same with the AD method.
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6 Further research on CVA

Our approach regarding CVAs was mainly based on strong assumptions which led to interesting
results but often not in line with the ”reality” observed on financial markets. It is worth-noting

that we worked under the following simplifications:

e Independence between the default’s intensity, the interest rate and the option’s underlying.

e Unilateral counterparty risk: we only worked in a framework where one counterparty was

default-free i.e without the notion of DVA for example.

These hypothesis enabled to obtain good results with the AD methods both on equities with
positive payoff and Bermudan options. In the case of options with positive payoff we also obtained

a closed form (assuming a CIR dynamic for the intensity of default).

Nevertheless, on financial markets one should introduce Wrong Way Risk (WWR) and collat-
eralization to have a more realistic framework. Therefore, we decided to perform further research
on their influence especially regarding the closed form obtained in when changing filtration

on options with positive payoff.

First, introducing correlation between the intensity of default A and the equity payoff makes
computations far more complicated and the existence of a closed-from is not guaranteed. Fur-
thermore, if the intensity of default does not follow a CIR or any other chi-squared dynamic, the
closed-form is not applicable anymore. Therefore, even if theoretically the result is extremely in-

teresting, under a more realistic framework, things become more complicated.

One should however notice that under the framework created in [5.1.7, we have a closed-form

not only for CVA but also for 5%‘)‘\/‘; 4 Hence, we can access to second order sensitivities, such as

SCVA
OX00Sp *

the very important quantity Therefore, the application of the AD method on this second

closed-form is again extremely powerful and leads to interesting theoretical calculations.

Lastly, WWR should be introduced and constitutes a very interesting axis to go beyond the
work performed on CVAs in this thesis. Most of the computations performed on Bermudan options’
CVA will remain the same but the simulation of default’s intensity and underlying assets will involve

correlation and hence, modeling and programming difficulties.
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7 C++ code architecture

The purpose of this thesis was also to create an application where the user would be able to choose
all the parameters of the option of interest i.e to choose the option payoff, the dynamics of the
underlyings involved. Therefore, the user is able to fully design the option and then get its price,

Greeks, CVA and CVA sensitivities (computed using the AD method).

The goal was to create a code easy to customize by adding more and more modules over time
(ie more underlying dynamics or options’ payoff). Indeed, the main challenge with the AD method
was the coding part: this method was memory consuming and we often needed some manual
treatments on the payoff. Therefore, a strong emphasis was placed on the coding part during this

thesis and thus, will be detailed in this section.

7.1 Simulation of the behaviour of the options underlyings

The application should enable the user to choose the dynamic of the underlying(s) of the option of
interest in order to be able to apply the AD method on options built on any kind of underlyings.
As it was impossible to code all the models an underlying could follow, the code needed to be easy

to customize.

Therefore, we created an interface called ModelPathGenerator meant to be a template that
gives all the functions that a class (used to simulate a special type of underlyings model) needs to
have. Then, we created two abstract classes which implement this interface: SVMPathGenerator

and NonSVMPathGenerator.

SVMPathGenerator is meant to simulate the dynamic of an underlying following a stochastic
volatility model (such as Heston, SABR or CEV) but these models are not treated in this thesis so
no implementations have been done. However, the interface has been created in order to provide

a recipe for future implementations of such models.

NonSVMPathGenerator is meant to simulate (using for example Euler or Milstein Schemes)
the dynamic of an underlying which has constant volatility o and constant risk free rate r. We
implemented two subclasses of it called LognormalModel and NormalModel which respectively
simulate underlyings following lognormal and normal model. Both can whether simulate the entire
path of the underlying using a Euler scheme or give directly the value of the underlying at maturity

using the closed form for St as a function of Sy (which is of course faster).
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Figure 1: Interface to simulate the behaviour of an underlying

Interface: ModelPathGenerator
Description
No object of this type can be created.

This interface only provides methods
that subclasses should possess.

Class: NonSVMPathGenerator
Description

Simulates (using for example Euler
Scheme) the dynamic of an under-
lying which has constant volatility
and constant risk free rate.

Class: LognormalModel
Description
Simulates an underlying following

a Lognormal model (i.e Black-
Scholes)

Class: NormalModel
Description

Simulates an underlying following
a Normal model (i.e Bachelier)

7.2 Choice of the option’s payoff

Class: SVMPathGenerator
Description
Simulates the dynamic of an under-
lying following a stochastic volatility

model.

Not implemented in this thesis

The application should enable to compute the AD method on any payoff. Again, we had to restrict

ourselves to some option types as it is impossible to code "every” existing payoffs. However, the

framework to easily add new payoffs exists and enables to customize very quickly the application.

Indeed, the interface OptionType is meant to be the contract that every class (used to compute

AD method on a particular type of option) needs to fill. As part of this thesis, three types of options

have been implemented: European and Bermudan vanilla options (in one and two dimensions) as

well as Basket options. Hence, three subclasses inherit Option Type.
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First, Furopean Vanilla provides the framework for Furopean vanilla options. It is a class which
contains lot of modules: first it possesses all functions required to compute the closed form for
vanilla options (greeks and price). It also contains a module to compute every Greeks using the
likelihood ratio method (basically a Monte Carlo on path-wise derivative). Finally, based on the
book of Marc Henrard [I9], it holds modules to compute Price and Greeks using the AD method
and an optimized AD method.

Then, Basket is a class which enables to compute price and greeks of a basket option with
stocks following NormalModel or LognormalModel dynamics (the user can create mixed basket).
The AD method originally [12] gives the sensitivity with respect to St (final value of each stocks
in the basket) so we implemented functions to have the derivative with respect to Sy instead of St

(delta). These functions differ according to which underlying model we are using.

Figure 2: Interface to choose the option on which the AD is applied

Interface: OptionType
Description
No object of this type can be created.

This interface only provides methods
that subclasses should possess.

/'/' T~
//// \\\‘
/// \\
Cless Bealen Class: EuropeanVanilla Class: BermudanOptions
Description Description Description
This class contains all the methods Detailed below

This class contains all the methods
needed to compute the price and
greeks of a basket option using
AD. Closed Form in the normal
case is also implemented.

needed to compute the price

and greeks of a European Vanilla
option using AD, optimised AD,
Closed Forms and Likelihood Ratio
method.
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Finally, the interface BermudanOptions gives the framework (parameters and methods) that
every type of Bermudan options share. This interface is implemented by two abstract classes
BermudanOptions1D and BermudanOptions2D which provide all methods to compute the AD
methods on any Bermudan Option (i.e on an abstract payoff E) built respectively on 1 or 2 un-

derlyings.

The subclasses BermudanCall, BermudanPut, BestOfTwoCall, BestOfTwoPut then define the
payoff of their associated option and how the AD method applies on this payoff. Therefore, it is
very easy to add new Bermudan options to the application. Indeed, one just needs to redefine
2 functions: GetPayoff() (which returns the option payoff) and AD_on_payoff() (which computes
the AD method on the associated payoff function by performing a ”manual” decomposition of the

latter).

Figure 3: Interface to apply AD on Bermudan Option

Interface: BermudanOptions
Description
No object of this type can be created.

This interface only provides methods
that subclasses should possess.

Class: BermudanCall Class: BermudanPut Class: BestofTwoCall Class: BestofTwoPut
Description Description Description Description

Defines payoff + how AD applies Defines payoff + how AD applies Defines payoff + how AD applies Defines payoff + how AD applies
on it onit onit on it
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7.3 CVA computation

The architecture of the code regarding CVA computation is similar to the one used to price op-
tions. Again, everything has been thought so that the code is easily customizable (in order to add
more features over time). The diagram explaining the design of the inherent code can be found in

Appendix A but we briefly describe here the role of every classes.

First, the interface CVAcomputer is the recipe which provides all the functions needed to apply
the AD method on CVA built on any kind of payoff. Two classes implement this interface, respec-
tively Option WithPositivePayoff and BermudanPayoff. Option WithPositivePayoff again defines
the framework to apply AD method on non-Bermudan options with a positive payoff (such as Euro-

pean vanilla or Basket options) while BermudanPayoff does the same job but for Bermudan Payoff.

Then, BasketCVA and FuropeanVanillaCVA derive from Option WithPositivePayoff and only
specify the payoff to be considered while applying Option WithPositivePayoff functions to perform
AD.

Similarly, BermudanPayoff is implemented by two subclasses which specify the number of
underlyings to be considered in our AD computations (namely BermudanlDPayoff and Bermu-
dan2DPayoff). Again, these two interfaces are implemented by classes specifying the exact payoff
on which the AD is applied (i.e Bermudan Put, Call, Best of two Call, Best of two Put, etc ...).

7.4 Additional helpful modules

In this section, we detail quickly the additional modules used in the application. Some other mod-
ules were implemented to benchmark our results (such as Finite Differences algorithms or Binomial

Trees) but are not part of the final application created and hence are not cited here.

To have an efficient C++ code, it is necessary to stock in memory many quantities and therefore
we used the open source C++ library Eigen [I8] to keep track of relevant values in vectors and ma-
trix. We also reused a library called RandomNumbersGeneration created for the SMF coursework

[22]. This module enables to generate random variables (gaussian, exponential, etc...).
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Finally, we created some helpful modules that provided objects needed in our AD computations.

The main classes are:

e Polynomials: This class enables creating polynomials to be used as basis functions for our

regressions.

e Hermite: This class enables to create an orthogonal basis of a given number n of Hermite

polynomials.

e IntensityModel: This class enables simulating the time of default from an intensity model

where the intensity of default follows a CIR model (useful while computing CVAs).

e ComputationTime: This class enables to estimate the computation time.

e AadDerivatives: This class creates objects which contains the output of the AD method

I19].

Class: RandomNumberGeneration
Description

This class computes standard nor-
mal random variables.

Created in SMF lectures.

Figure 4: Additional Modules

Class: AadDerivatives
Description

This class creates object which will
contain the output of the AD me-
thod

It contains two attributes: the price
of the option and a table with all
the greeks.

Class: ComputationTime
Description

This class enables to estimate the
computation time.

Class: Polynomials
Description

This class enables creating polyno-
mials to be used as basis functions

Class: Hermite
Description
This class enables to create an

orthogonal basis of a number n of
Hermite polynomials

Class: IntensityDefault
Description

This class enables simulating the
time of default from an intensity

model where the intensity of de-
fault follows a CIR models (useful
while computing CVAs)
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Conclusion

The AD method gives a very powerful way to price options, obtain their greeks, quantify their
CVAs and CVAs sensitivities. One can easily verify that this method gives accurate and very fast
results. Indeed, the computation time needed to estimate all the sensitivities of a function (price

or CVA) is only 3 times the duration required to evaluate this function.

While Monte-Carlo simulations and Finite Difference algorithms are often the only alterna-
tives to the AD method on complex products (such as Bermudan options), these techniques are
extremely time-consuming to obtain precise results. However, the AD method has the drawback
to require a clever memory management as the decrease of the computation time necessitates to

keep in memory lot of variables.

On simple instruments sush as Basket options, results are already impressive but the real power
of the AD method can be observed on Bermudan options and CVA sensitivities computations. In-
deed, these financial products imply to take into account the optimality of the exercise boundary
and therefore Finite Difference algorithms are the most widespread frameworks to evaluate their
sensitivities. Nevertheless, the complexity of such products often triggers unreasonable computa-

tion times.

In this context, the AD method seems to be one of the best solution to access sensitivities of
complex financial instruments. In this thesis, very strong assumptions were made especially re-
garding CVA computations and therefore the results obtained here are not meant to overthrow the
established order on financial markets. One should consider more complex underlying dynamics
with SVM models for example, bilateral counterparty risk in CVA computations, Wrong Way Risk,
collateralization, etc ... In a more realistic context, AD method is likely to trigger more modeling

and programing problems.

However, no matter the simplifications made in this dissertation, the AD method appears to be
one good research axis in a financial world where a precise and fast estimation of the sensitivities

of financial instruments is becoming a priority.
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8 Appendix A

Interface to apply AD on CVA

Figure 5
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