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Abstract

This thesis focuses on the development and implementation of a one-factor Hull White model for
modelling Interest Rates (IR) and Foreign Exchange (I'X) with the overall aim of computing CVA
on portfolios of derivatives in multiple different currencies. Specifically, a one-factor model is as-
sumed for each stochastic factor considered, for example a foreign bond or an FX spot rate, with

non-zero correlation modelled between the factors.

We calibrate respective interest rates (foreign and domestic) to co-terminal swaptions and pro-
vide detail on the calibration procedure belore showcasing results. Due to time constraints, the
respective X rates are not calibrated to FX options but instead the volatility of each FX diffusion
is user specified. Following on from this, we implement the diffusion for each of the stochastic
factors to build the necessary curves required for the CVA calculation. Finally, we present results
obtained when calculating CVA for a portfolio of different flavours of Interest Rate Swaps (IRSs)

and analyse the structure of the Expected Positive Exposure (EPE).

The implementation was carried out in Python in an object-oriented framework, integrated within
the current pricing library developed by the Mazars Quantitative Solutions Team, which we refer
to as the Valuation Platform (hereafter, VP). Since this is a proprietary library, the code will not
be included in this report. We do however, outline some of the algorithms that the code is based

O11.
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Introduction

Credit Valuation Adjustments (hereafter C'VA) have become increasingly important since the fi-
nancial crisis as credit risk can no longer be considered to be negligible. CVA represents the
discount an investor obtains on a trade with a default-risky counterparty. Indeed, the higher the
perceived likelihood of default of the counterparty, the greater the discount the investor should

obtain.

As shown in [1, Slide 837], the calculation of CVA on a particular financial product adds an extra
level of optionality to the payoff; the impact of this increase in complexity is that products that
were once model independent become model dependent in the underlying market. The first sec-
tion of this thesis will establish the stochastic caleulus framework that determines the evolution
of the fundamental quantities. The scope of products in the portfolios that we wish to consider
include derivatives in multiple currencies for example interest rate swaps, cross currency swaps,
FX options, IR options ete., and therefore for full generality we will model foreign exchange (FX)

as well as interest rate (IR) risk drivers.

The framework we choose to model interest rate dynamics is a Hull White 1-factor model, so that,
when considering a portfolio of N currencies. As we will see, this will result in the diffusion of
(2N — 1) correlated stochastic factors; we have [N interest rate factors and (N — 1) FX spot
rates. The choice of such a model hinges on its tractability [1, Slide 274] as well as the fact that it
allows for negative interest rates, a desirable property in today’s financial climate. Such a model
is poorly adapted to price products which main risk factor is a spread between two tenors of the
curve such as CMS spread options due to the fact that it only allows for a parallel shift in the yield
curve |2, page 19]. This of course limits the scope of the products in the portfolio that we wish to
consider, however due to its simplicity in implementation and calibration, we still favour it over a

multi-factor approach.

The internal derivatives pricing library developed by Mazars’ Quant Team, the Valuation Platform
(VP) already has the ability to price simple vanilla products using market data downloaded from
Bloomberg, but it does not have a robust diffusion model implementation. A longer-term goal of
this project is the full integration of the diffusion model with the current VP Pricers, so that the
"Market Data” becomes the diffused market data simulated via our model. Due to the complex
structure of the library, this is a non-trivial task that will require more time to be properly im-
plemented. The calibration of the model to relevant market data needs to be implemented with
enough generality to cope with any currency, and any choice of market data. In particular, the
exact instruments that we calibrate to depends on the portfolio we wish to caleulate the CVA on.

The implementation will be carried out in Python using an object-oriented architecture.




Literature Review

The Hull White framework for modelling interest rates is a well studied one, with a wide range
of books and papers available dating back to 1990 when the model was first introduced by John
Hull and Alan White. Most frequently, we see papers defining the short rate r(f) as a stochastic
differential equation (SDE), with its corresponding mean reversion and volatility parameters, for
example in [1] and [3]. Since the short rate is not observable in the market, the framework we will
be developing in is proposing an SDE for the zero coupon bond in terms of the short rate. From a
practitioner’s point of view, working in a framework with market instruments (bonds) as opposed
to mathematical concepts (short rate) is favourable, although the two are completely equivalent,
see for example [4, page 2]. In fact, we could only find one or two papers, namely [4] that use
the Hull White model in a Heath-Jarrow-Morton (HJM) [ramework with the bond modelled by
an SDE. Thus, we derive formulas satisfied by the domestic and foreign bonds, and FX Spot rate,

from seratch.

Similarly, there is a wealth of articles describing the calibration process of the Hull White 1-factor
model. We found the most useful to be Gurrieri, Nakabayashi and Wong's paper Calibration
Methods of Hull White Model, which presented different parameterisations for the instantaneous
volatility and subsequent calibration results. From this, we gained inspiration for extending the
list of co-terminal swaptions used to calibrate on, when there are relatively few exact co-terminals
quoted in the market. Whilst we have not found in any literature details of the exact calibration
procedure for our setup, which assumes a piecewise linear instantaneous volatility for the bonds

and FX spot rate, this paper provided a strong base of the understanding of the basic concepts.

For more general mathematical finance tools, such as change of measure, [t6's Lemma, and for-
mulation of CVA, we relied heavily on Brigo and Mercurio’s comprehensive book entitled Interest
Rate Models - Theory and Practice. A lot of the understanding for the drift-freezing approximation

for pricing a swaption analytically was also obtained from here.

Whilst a simple and well-studied model, efficient and robust implementation is a lengthy and chal-
lenging task. In particular, I had to skip the calibration of the I'X model to I'X options which 1

will come back at a later phase beyond the internship.




Chapter 1

Defining the Model

1.1 Mathematical Preliminaries

1.1.1 Notation

Denote by By(t, u) the time—t price of a zero coupon bond (ZCB) in the domestic currency which
pays 1 at time u for (0 <¢ < u), and By(t,u) the corresponding bond in the foreign currency. As
is standard in the literature, we denote by f(-,-) the instantaneous forward rate function, r(-) the
short rate defined by f(z,z) = r(z). We also denote the FX Spot rate at time—¢ by X (¢). Further

notation such as instantaneous volatility and correlation will be defined at a later stage.

We state the change of numeraire formula which will be fundamental in the derivation of the
swaption price as well as the CVA calculation. For Ito's formula, the rigorous mathematical

results can be found in [5, Theorem 31.1], which we will use but not state.

1.1.2 Change of Numeraire

The discounted price of asset X is a martingale under the numeraire associated to the bond.
Explicitly, if we denote by X; the price of X at time # and E? the expected value under the

numeraire associated with the bond B, it follows that

X, =EP [B(r)—xm} . QB

B(T)
X(T
=E{ [B(rﬁ)m{;]} Q¥
X[ X@)
o B(D,H]_h [B[I’,H]] (1.1.1)

where in the second line we change numeraire from the one associated with the bond to the one
associated with the domestic H—forward measure B(t, H) as illustrated in [1, slide 256] and in the

final line we set £ = 0 and use the fact that B(tf, H) is Jy-measurable.
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1.2 Domestic Interest Rate Dynamics

Firstly, we define a framework for the interest rate dynamics. We will be modelling both "domestic”
and "foreign” interest rates, as well as the FX spot rate between each combination of two currencies.
We will use a one-factor model for each of the stochastic factors due to its simplicity. This is inline
with how most banks model interest rates for their CVA framework up to this date. It is also
outlined in [1, Slide 212] through principal component analysis of historical data that a one factor
explains up to 76% of the total variation, and as nmuch as 92% for the UK Market. Assuming of
course that we do not intend to price spread dependent products, where a multi-factor model is
required, the higher accuracy obtained by a 2-factor model is not significant enough to outweigh
a more technical implementation and calibration procedure, in particular the correlation between
the two factors. We therefore choose a Hull White 1-factor model expressed in an HJM framework,

which we will explicitly define in the following sections.

Traditionally when defining a Hull White model for interest rates, an SDE for the short rate is
chosen. Since we are working within an HJM framework, we will define an SDE for the bond in
terms of the short rate, ultimately leading to an expression for the bond price that will not include

explicit short rate dependence, but only implicit dependence through the other parameters.

It is important to note that our model will, overall, consist of (2N —1) factors if we have N currencies
including the domestic currency, as mentioned in the Introduction. For notational convenience,
this section will write a subscript f to denote the "foreign currency”, which in reality will be
fis-o., fn—1. The corresponding FX spot rates given by Xy, ¢ fori # j; 4,7 {1,...,N -1}
and Xy 4 for k€ {1,...,N — 1} for the rates between foreign currencies f; and f; and foreign
and domestic currencies f, and d respectively, will be denoted by "X". It will become clear on

the context which specific currency is being referred to at any one time.

Consequently, the measure change from the risk-neutral measure to the H—forward measure is in
fact a 2V — 1-dimensional measure change which uses the multi-dimensional version of Girsanov's
theorem, [6, Theorem 5.4.1]. This is equivalent to 2N — 1 one-dimensional measure changes, as long
as the correlation between the factors is correctly expressed. Since we are using a single subscript
f to denote the foreign currencies, we will simply illustrate 3 separate one-dimensional measure

changes; the domestic and foreign bonds and the FX Spot rate.

Proposition 1.2.1 (Price of the domestic bond). Consider a given probability space (2, F, Q%)
supporting e Brownian motion (H-"f],;,“. Let By(s,T) denote the value of a bond at time 5,0 <
s < T that matures at time T > s. Let rg: B = R and o4(-,T) : R = R be funections defining the
short rate and the instantaneous volatility corresponding to the domestic bond. Assuming the bond

price satisfies the SDE given by

d‘Bli['?.‘ T)

=rg(s)ds + a4(s, T)dW4, ) = - <t<T, Q¢ 2.
Ba(s. T) ra(s)ds +oy(s, T) AW, By(t,t)=1foral0<t<T, (1.2.1)

under the H-forward measure, we have the following dynamics:
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Bal0,T t i .
By(t.T) = ﬁoxp{ / (0a(s.T) — oa(s,1))dWEH
fi ] 0
[
- é/ (0a(s.T) = aa(s.1)) (0als, T) —2@(.«,&)—mf(s_.rnds} (1.2.2)
0
Proof.

The proof uses a simple application of [t6's Lemma to the logarithm of the bond price before
integrating and finally exponentiating. We then use the fact that By(t,t) = 1 to eliminate the

short rate dependence. Indeed,

1 1 -
d[log als, f)]] = Bals, f)db’,f[? T) - md[b’d(&f)]

= [m(s) - %rfﬁ(s,T]:I ds + oy(s, T)dW?

t
= log(By(t,T)) — log(B4(0, 7)) f [ a(s) — %0, (s, )} ds ff o4(s. T)dt"'"'.f (1.2.3)
0 0
t
= By(t,T) = By(0,T) exp {f [ als) — —rri(q f]} de—] (s, T)dW, ’1}
0
(1.2.4)

We now use the assumption that By(t,t) = 1. Substituting this into (1.2.4) yields:

t t
1 = By(t,t) = Ba(0,1) exp {/ [rd(x) — %rfﬁ(s,r]} d.q—/ rr,i(.q,r)du,.:f}
1 ! 0 L ! 0 |
= Bal0.7) = exp {A |:I"rg(.€) — Er}d(.e,f]] ds —f[} r,r,i[.?_.r)d'lvl-s} (1.2.5)

Using this along with some simple algebra in (1.2.5) enables us to write:

— t t
By(t,T) = %em {] (0als,T) = ouls, t)) AW — lf (o3(s.T) = 05(s,1)) d-ﬁ'}

0 0
Ba(0,7T) {]! . o 1 . .
= o ex (oals,T) —oals, 1)) AW — = [ (oa(s,T) —oals, 1) (ca(s,T) + oals,t))ds
Ba(0,t) P 0 20
(1.2.6)
Define the measure
Q1 (A4) = EY (2, (T)14)
where
‘ IR
Zy(t) := exp {] oals, H)ydwdH — 5/ rfj(.q_.h’)ds}
0 0
An application of Girsanov’s Theorem [6, Theorem 5.2.3] gives us that under Q4
t
wH = wy / oals, H)dsdt, Q*H (1.2.7)
0

is a Q% -Brownian motion. Substitution into (1.2.6) gives

12




B,(0,T)

Ba(t,T) Zm

t
exp{ / (0a(s,T) = aals, t))dWiH
]
3
—% [ (ad(s,r)—m(.«,rn(w,rj—2ad(s.HJ—ad(s_.mds}, QM (1.28)
0
]

Now, we need to be able to generate the whole bond curve, that is, the time—t bond price for
any maturity M > #. Since we are in a one-factor model, this should be possible via the generation
of only one Gaussian random variable. Indeed, we first notice that the expression derived in (1.2.8)
is lognormally distributed. Our assumption that o4 is a deterministic function means that we know
the distribution of the stochastic integral term inside the exponential; details of the calculation

can be found in [7, page 2]. Indeed,

t

I3
I :=/ (0a(s,T) — aa(s,t))dWHe ~ N(O.-[ (oals.T) — oa(s.1))ds)

h )
~ fld;t, T)N(0,1) (1.2.9)

where f(d:,T) := \/f[:(od(s, 1) —o4(s,t))?ds. Since the second integral inside the exponential
is entirely deterministic, the full term inside the exponential is normally distributed with mean
equal to the deterministic integral. Thus, we have lognormality. It is important to note that from
(1.2.9), the fact that the function f encapsulates the maturity means that the whole curve can be

generated using one draw from a N(0, 1) distribution.

1.3 Foreign Interest Rate and FX Dynamics

Having defined the framework for the domestic bond, we now consider the foreign IR dynamics
as well as the FX spot rate. Analogously to the domestic case, we will formulate the foreign IR
dynamics by explicitly writing an SDE for the foreign bond in terms of the foreign short rate ry.

Upon solving, as in the domestic case we eliminate the explicit dependence on the short rate.

Proposition 1.3.1 (FX Rate and Foreign IR Dynamics). Consider a given probability space
(Q, F, Q%) supporting a Brownian motion [H"!X)t;,[} and a probability space (0, F, Q1) support-
ing a Brownian motion (Tr-l-"!f)!;,[}. Denate the correlation between WX and 'H-"!f by px s, so that
(WX W = pxst. Let X¢ denote the price of the FX spol tute at time-t, ra as in Proposition
1.2.1, and r¢ : B — R be the function representing the foreign short rate. Finally, let 07 : R — R,
of(-,T): R — I be deterministic functions representing the instantaneous volatility of X and the
foreign bond respectively. Assume the following SDEs for the dynamics of the FX spot rate and
foreign bond.

% = (ra(t) —rp(t)) dt + ox ()dWS, QF (1.3.1)
[3

M = [ri(t) — px ros(t, T)ox (1) dt + a,(r,rjdu’j. Bit,t) =1 forallo<t<T, 0Qf
B (6.T) | N : .

(1.3.2)
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Then, the following equations hold under the H-forward measure

- t
X(t) = X(0)Bs(0,t) p {l

t
1 2 _ 2 _ 2 4
Ba(0.1) 2]{] (Urf(ﬁ.f] af(s,t) UX(S]) ds 'o'i"iﬁ aga(s, H)og(s. t)ds

t t
—px,__f] ff_f(-?~f]ffx(-?]d-‘f—ﬁx,_rt/ oals, H)o x(s)ds
] ]

t t
ff rrd(s.H]rrrt(.‘?,f)dsff ax(s)dw X

o 0

t t
—f a_,(.e,r)dt-t{f-“"—f m:(s,f)dbt-’fﬂ} (1.3.3)

0 0

~ By(0,T)

¢
Be(t,T) = chp { A pra(s)oa(s, H) [of(s,T) — as(s, t)]ds

t
—/ {ox ox(s)(of(s.T) —os(s, 1))} ds
1]

t
- lf _rr'fe(s. T) — rr'fr(.?.f]] ds
2y - '

t
ff (o(s,T) 7rrf[.?_.f))du-"lf'ﬂ} (1.3.4)

0

Proof.
Solving the second SDE in the system (1.3.2) by using Ito's Lemma (solution is analogous to the

steps involved in obtaining (1.2.4)). We obtain

t i
Bi(t,T) = B¢0,T)exp {f (r_r(.e) —px.fo(s.L)ox(s) — %afe(s. T)) d.e—f rr_r(.?_.T)d'L-i,.:‘;f}
0

0
(1.3.5)
Again using the fact that By(t,t) = 1, we have

t t
m:m{ / (f‘_r(-‘?)*Px.__rff_r(-‘?,f)ﬂx(-?)* %of«(e,r))dsf / o.r(-e..r)du-ﬁf} (13.6)

0

so that

B0, T t .
B(t.T) = —b{fm-__ﬂ] cxp{ - f {ox.s0x (5)(o5(5,T) — oy(s, 1)} ds
t

- lf _rf‘fe(s. T) — rr'fr(s.f]] ds
2 /)y " ’
t

f/ (rrf(s.'f)7rrf[.?_.f))du-"j} (1.3.7)
1]

Now we apply Girsanov’s theorem to derive an equation satisfied by the bond under the H-

forward measure. Define the measure
QM () = EY [Z,(T)14)
where

t 2 t
Zy(t) := exp {P_f-.ri/ U,g[.?_.H)d'L‘l-"lf — %] O’;i(.?_.ﬂ)d.ﬁ‘}
0 0
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An application of Girsanov's Theorem [6, Theorem 5.2.3] gives us that under Q¥

¢
WiH =W/ —pra / oa(s, H)dsdt, ©QFH (1.3.8)
0
is a Q@ #-Brownian motion. Expressed in differential notation, this is equivalent to
AW H =AWl — psa0q4(s, H)ds

So that substituting into (1.3.7), we obtain

. Bg(0,T) ¢ .
B¢(t,T) = mcxp { ﬂ pracda(s, H) [op(s,T) — or(s,t)]ds

t
—ﬁ {px.sox(s)(05(s,T) — o¢(s,£))} ds

1, .
- Eﬂ pf(s, T)— rff.(.?_.f)] ds
t
—] (rr_f(s.n—rr;(s..rndu-’.;."-“} (13.9)
8]

Similarly, we can solve the SDE for X (f) and obtain an equation under the H —forward proba-

bility measure. Applying It6's Lemma to log( X (t)), integrating and exponentiating gives

t t
1.
X(t) = X(0)exp {[ [rd(s) —r(s) — Eoi(s)] ds f[ rfx(s)dl-t-"f} (1.3.10)
0 0
So that, with a measure defined in a similar way to (1.3.8) with the px 4 replacing py 4, using
Girsanov’s theorem so that H"!X'-H = H-"!X — Px.d [: aq(s, H)dsdt is a Q¥ _Brownian motion,

under this measure,

i t t
X(f)zxm)vxp{/ [rd(ﬂ)—r_f(-“)_ﬂX._dU,i(-?,H)UX[-?J—/ ér&(x)} ds—f ox(x)du-’.f"-”}
1]

1] 1]
(1.3.11)

By combining (1.2.5) and ({1.3.6) re-written under the domestic H-forward measure, we can
remove the short rate dependence. Explicitly, we have

! By (0,t I . !
exp {ﬂ (ra(s) —r¢(s)) d.q} - B.;((O;f; exp {iﬁ (03(s.t) — oF(s,t)) ds + p_;__rfﬁ aals, H)or(s, t)ds

t t
—,Ox_r[ Or(-‘?sf]ffx(-‘?)dﬂ—f oq(s, H)og(s, t)ds
8

0

i i
—[ a,(.e.r)dwj-“*’—/ od(.e_.f]dt-t’f'-H}
o 8]

(1.3.12)
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And thus (1.3.11) becomes:

X(t) =

t t
- px._;/ U_J(-‘v‘..f)ffx(-‘f)d-‘i—.Ox.rt/ oqls, H)ox(s)ds
) ]

t t
—f Grf(S.H]ﬁrt(-?,f)ds_f rrx(s)dl-t"j(”

o

X(0)B;(0,t 1t . . -
XD e {5 [ (o30nt) = 036,00 = k(6D s+ s [

t

o

0

t t
ff rr;(s_.f]dl-t".fﬂff rm(s_.f)dl-t-’;"”}
8 )

gals, H)og(s. t)ds

(1.3.13)

To ease notation, we have referred to the previous time-step as "0". When it comes to diffusing the

curves and FX spots in practice, if we are diffusing at each point in the grid ¢;,i € {0,... , N}, :=

0.ty =T, the "0” will of course be replaced by the previous point in the grid.

As mentioned previously, in reality we will not have 3 factors, we will have precisely 2NV —1 factors,

with correlations deseribed in (3.1.2).
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Chapter 2

IR Calibration

We will calibrate the IR models to swaptions denominated in the currency of the IR model we are
calibrating. We use "co-terminal” swaptions, which are swaptions which have the same maturity,
but increasing expiries and thus decreasing tenor. The primary reason for this is that the CVA of

a single swap is a collection of multiple co-terminal swaptions as we will see later on.

In practice, the user should be able to specify the length of the maturity of the co-terminal swap-
tions, since the calibration will depend on the products within the portfolio considered. For
example, the CVA on a portfolio of FX forwards with the longest maturing contract in 30 years
should be calculated under a model whose interest rates are calibrated to co-terminal 30Yr swap-
tions. Here, we implement calibration to ATM swaptions, but with enough generality to adapt to
swaptions that are, for example, 5% out-of-the-money (OTM). This will be linked to an excel file

for which the user can specify precisely which swaptions to calibrate to.

Before we calibrate, we must first price a European swaption in the framework we developed in the

previous chapters, which we do hereafter. Following this, we will discuss the calibration approach.

2.1 Instantaneous Volatility Parameterisation

We first need to assume a form for the deterministic, instantaneous volatility function o! depending
on both the maturity 7" and the "diffusion lag” #. The parameterisation for & will be the integral of
a piecewise constant function (and therefore will be piecewise linear), which differs from [3, 6.4.1,
page 223] which assumes a piecewise constant volatility function. The former creates a continuous,
strictly increasing function for the volatility, since the piecewise constant parameters will be greater
than zero. For the numerical implementation and model calibration, we will assume a structure

for volatility as follows:
o(t,T) = A)(G(T) - G(i)) (2.1.1)

t
) = f g(s)ds
0

where A(-) is the (deterministic) mean reversion parameter, and g(-) is chosen to be piecewise

constant, which is defined as follows.

1n the following, "¢’ encapsulates both the foreign and domestic instantaneous volatility dynamics.
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Piecewise constant function g

Fix a set of swaptions of increasing expiries that are to be calibrated to. Without loss of generality,
let the current time be 0 and define a grid T := [Ty, 11, ..., Tn], where T is the expiry of the
shortest-expiring swaption, T is the (constant) maturity for each of the co-terminal swaptions,

and T; is the expiry of the i*" swaption.

The function g : [0,00) — R is defined as follows (note the flat extrapolation where ¢ < T}

and t > T_q:

o D<t<T)
9 =8g  Ti<t<Ti, ie{l...N-2) (21.2)

gyv-1 Iy =t

Furthermore, we choose a constant mean reversion parameter, that is, A(t) := A. Thus, (2.1.1)

becomes

T
o(t,T) = f o(s)ds
t
m—1

a(Tipr =)+ D gu(Togr = To) + gu(T = T,) (2.1.3)
s=I+1

= A

where | := maxg {1} : > T} and m = ming {Ty : T < Tp1}

2.2 Analytical Formula for a European Swaption

A (receiver) swaption is a contract giving the right to enter a (receiver) IRS. Since we have derived
formulas satisfied by the bond, it will be useful to formulate the swaption’s payofl in terms of
the bond, so that we have no dependency on the short rate. In the below, we use the notation
By.(s1,s2) to denote the value of a bond in currency k, k€ {d, fi,.... fy_1} at time s; maturing
at sy, and (-] the corresponding short rate function as seen in earlier sections. We will of course
be calibrating our model to swaptions of each currency; the notation chosen here allows enough

generality to show this.

Proposition 2.2.1 (European Receiver Swaption). Denote the current time by t. Consider an IRS
contract where the first reset date is T, maturing at time T, with legs indexed at T; = Zi:l e,
g =T — Ty 1, Ty :=Tr. As usual, let D(t,TF) := exp (— LT! rg.(s]ds). Then the time-t price

of a European receiver swaption can be written as:

Ty N +
S, = EF [exp (—f r;‘.(s)d.s') (Z w; B (Tr, T;) — a[;) (2.2.1)
t i=1

where a; = Koy, ay:=1+Kay, ag:=1
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Proof.
Using [1, Slide 109], we know that the discounted payoff of a receiver IRS is given by

N
3" BilTr. Ty (K — f‘(TF;Ti_l,Tin] (2.2.2)

i=1

’-{R-Sg{i:\?ﬂ";\_mﬂ = D[t? TF)

where K is the fixed rate, and F(Tp:7;_1,7;) is the forward Linear rate prevailing at time Tx
for the expiry Ty and maturity 7;. By definition, we have that [1, Slide 104] F(Tp;T;—1,T:) =
L (M - 1). Thus, substituting into (2.2.2), we get

oty Bi(Tr.Ti)
N Tp,1
Z}_—;&_(TF:T,‘]H{ (ff - (L (% - 1)))]
i=1 “ (it

N
=D(t,Tr) > (Ka;By(Tp,1;) — Bo(Tr, Ti1) + Bu(Lp. 1))

i=1

IJ?S%;::‘PK\_VUH = D(f. TF)

We now notice that summing over the first two terms leads to a telescoping sum, and so we have
Z):l By(Te.Ti) — Bi(Te,Tio1) = Br(Tr, Ty) — By (Tp, Ty). Finally, we obtain

‘{‘H“gg;::?r’i\\'{rff = DU‘" TF)

N
Y KaiBy(Ir.Ti) + Bu(Tr, Iy) - Bg-(rf..m] (22.3)
i=1

Now, by definition a swaption is an option on the IRS. Thus, taking the positive part of the payoff
(2.2.3) and using that D(#,TF) > 0 (so can be taken out of the positive part) before finally taking

the risk neutral expectation, we get:

_ Ty N +
S, =EF [(IRSES g) ] = EF |exp (—1 r (.q)d.q) (I\’ N By (Tp,T;) — a[})
=1

Finally, we note that By(Tr,Th) = Bi(Tr.Tr) = 1, and we can define a; := Kea; for 1 <i< N—1

and ap = l,ay = (1 + Kay) to get exactly (2.2.1). O

Two common practices to proceed from here are to decompose (2.2.1) using Jamshidian’s
decomposition coupled with a one-dimensional numerical root solver, or use a drift-freezing ap-
proximation. We will briefly outline the former, and give a detailed explanation of the latter since
this is the one we will implement. The reason we choose to implement the latter is mainly for
its speed; it was shown in [4] that in using an analytical approximation instead of Jamshidian's

decomposition, we can expect a performance reduction of around 20 times.

2.2.1 Jamshidian’s Decomposition

We give a short summary on how one can nse Jamshidian’s decomposition to express an option
on a portfolio of assets into a portfolio of options. This is only applicable in a 1-factor interest
rate model such as the one we have here. We first note that we can write the value of a bond
B(Tp,T;,r(+)) as a function of short rate with the short rate appearing with a negative sign in
the exponential. This can be achieved by writing the dynamics for the short rate r;(-) and using
that By (¢,T) := EF [exp{ff T‘k.(.ﬂd.‘?}], see for example, [3, Eq 3.39, page 75]. We follow the
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steps diseussed in [8]. The proof will hinge on the fact that the function By (#,7,-) can be written

as a monotonically decreasing function of the short rate ri.(-).

Firstly, we find a value 7} such that

N
N Ka;By(Tr, Tiii) = ag
i=1
via a numerical solver. The existence and uniqueness of the solution to the above comes from the
fact that By (Ir,T;: 7)) is monotonically decreasing, and thus the sum is, since all the weights Ka;
are positive. Set
ki = Bp(Tp, Tiir)) (2.2.4)

Then, rewriting the swaption payoff, the term inside the positive part in (2.2.1) becomes

N N +
(IRSEsyee)™ = | Y KaiBy(Tp, Tiiri(Tr)) — > Kan;
i=1 i=1
N +
= | D" Kau(Bi(Tp, Tisri(TF)) — i)
=1

Once again, the assumption of a monotonically decreasing bond price means that the expression
inside the positive part is non-negative if and only if 7, > rj, and the same is true for each term

in the sum again using (2.2.4). Consequently,

N
Ree 4+ - — y — + [4
(IRSEso) ™ = Kai(Bi(Tr, Tiiri(Tr)) — ki) (2.2.5)
i=1
Thus, we have reduced the swaption payofl to a sum of call options on the zero coupon bond, with
strikes k;. To caleulate the price (conditional expected value of the discounted payoff) one can

apply the usual Black formula.

Not only is this method slower, as previously highlighted, but the approximation yields very

accurate results, as will be demonstrated later in the calibration results.

2.2.2 Modified Black Formula for the Swaption

An alternative approach to Jamshidian's decomposition involves approximating the sum of lognor-
mals as a lognormal random variable, via a drift freezing procedure. This is a standard practice
and as detailed in [3, 8.7], in usual situations is a good approximation. From this, we obtain a

Black formula as an analytical approximation for the swaption price.

Proposition 2.2.2 (Swaption Price under the Tp-forward measure).
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Under the Tr-measure, we can write the swaption price (2.2.1) as the following:

S, = By(t, Tr)ES™ [(Hry — ag)t]
N -
By(t,T;)
H:=Y a0 (2.2.6)
‘ ; By(t,Tr)

Proof.
If we let B(s) := exp (fu

tation lli‘.'i then we can write (2.2.1) as

ri.(s)) be the numeraire associated with the standard risk nentral expec-

. +
. Bt N
S: = E; % (2 aiBi(Tr. Ti) — flu)

Changing the measure to the one associated with the numeraire By (¢, TF) (noting this is indeed a
numeraire since by definition it is the price of a zero coupon bond), and using [1, Slide 256], we

have, denoting by E*T# expectation under this measure,

N +
X Bi(t,TF) -
Sy =EPT By (Tr, T;) —
t B& Tr.Tr) (er'l k(TF, flt})
N 0
T By(1Tp, 1) ap
= -Blii' AT: L - r-
(¢, Z Bi(Tp.Tr)  By(Tp.Tr)
= By(t, Tr)EY "™ [(Hr, — ao)*] (2.2.7)

Where in the second line we used the fact that By (t, T'r) is F;-measurable and in the final line we

used the fact that By (Te, Tp) = 1 and hence we omit it as a multiplier of ay. O

Proposition 2.2.3 (H, is a Q*T*-martingale).

H, is a martingale under the Q%'% -measure, and satisfies the following SDE

Y _ s yaws T, QhT
H; '
N (T — G —
ity n [ Zires(GUT) = GUE) B (6. T) (225)
Sl aiBR(t,T3)

where we assume the volatility parameterisation in (2.1.1)
Proof.
Define Z(t) = gr‘{:_‘;{:ﬂ. Then [1, Slide 255] tells us that under the measure QFTr Zit) is a

martingale. Thus, we claim that it follows the following dynamics:
dZi(t) = Z'(t) [on (8. T}) — op(t. Tp)| AWS T, QRTF
Proving this begins with a simple application of Ité's lemma. Under the standard risk neutral
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measure QF,

—(' _ iy l
AZi(t) = d (Bk a IF)) Byt T) + dBy(tT,) s
- W) - 1 T
- ( JENCR )B"'“"r‘]_ Be(t.Tr) ((' R AR )
= (. )dt+Z [o; (t,T2) — on(t, Tr) AWP (2.2.9)

Since Z'(t) is a Q%Tr.martingale, the claim holds since the SDE must be driftless and the
diffusion coefficient is invariant to the change of measure by [1, Slide 39]. We now note that
H; = Z;l a;Z*(t) and so by linearity

dH, _ Y0, aidZ(t)

He ¥l wzi)
Z) 1 a(% [on(t, T3) — st Tp) dWTT
N B (t.T;)
D G Tr)
2N Bt T,) ) ok (t, T) — o (t, Tp)| dWrTr

B SN BT

Proposition 2.2.3 follows by substituting in the assumed model for the volatility. |

Now, the fact that By (f,7;) is a time dependent process means that the dynamics of Hy are not
lognormal. A good approximation to (2.2.8) is to freeze the time dependency to time u < ¢ where
the bond price is known (to remove the randomness in ¥ creating a deterministic function) to give

the following approximated dynamics for H;

% = i](f;u]d'i‘l‘f"n", Q~Tr
t
St u) = 2 (z ((’(. - f'(TFnB;.(u,m) (2.2.10)
Z( L 0B (u, T7)

Black’s formula

We now use this approximation to form an expression for the price of a swaption.

1 1
dllog Hy] = Edﬂ-* — md[H,H]s

1
= ——Lz(? 0)ds + X(s; 0)dwkTr

t t
= H, = Hyexp {—%j ﬁ(s;ﬂ)ds—f Z[.e;ﬂ]dt-t"f"-n} (2.2.11)
o o

Computing lEi"T"' [(Hr, — ao)"] becomes a straightforward task to give a Black formula for the
swaption. Firstly, we note that H; is indeed a lognormal random variable since 2(3; u) is determin-
istic due to the drift freezing. In the usnal manner, we derive the mean and variance of the term

inside the exponent, and following exactly the steps involved in [1, Slide 266], finally, we arrive at:
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Si(Tp:Ty) = By (t, Tp) [H:‘I’(dl) - a[,(b[dg)]

f—fk +1 !T!" $2(g: t)ds
dyp =L (2.2.12)

v f!TF Y2(g:f)ds

where @©(-) denotes the normal CDF. In the calibration procedure, we will set t = 0.

2.3 Multi-curve Framework

2.3.1 General Setting

The classical approach to interest rate modelling assumes the Libor rate is "risk-free” meaning that
defanlt events are so unlikely that they are considered irrelevant. The crisis of 2008 has redefined
how banks and other institutions value products; banks are now considered "risky” and the risk-

free Libor assumption is flawed, and so a new approach is needed to take this into account.

The modern multi-curve framework as the name suggests uses a single discounting curve, typically
built from the Owvernight Index Swap (OIS) rate as the "risk-free” discounting curve. Then,
depending on the underlying, a rate is built out of liquid vanilla IR products with varying maturities

to get the full curve which is used as the forward rate.

The VP uses a multi-curve setup, and so we will want to incorporate this into our diffusion model
framework. For swaption pricing, we demonstrate the approach below. Again, we were unable to
find verifications for the formulas to follow in the literature for approximate swaption prices in the

multi-curve framework; as such we will derive them explicitly.

It is also important to note that, as Libor decomissioning is approaching at least for some currencies,
this post-crisis Libor framework can be easily adapted to cope with the new risk free rate, without
the need to redevelop a whole new swaption pricing framework. Therefore, the below will still be

a useful basis for when the new risk free rate is used.

Denote by the superseript "disc” the discounting curve, and by "fix" the forward curve in the
following. We must first specify the dynamics of the two curves, which are in (2.3.1) and (2.3.2)
below, under the common risk neutral measure. We deliberately choose the instantaneous volatility

to be equal, with the drifts equal to the corresponding short rate.

dbr}‘li.-u: (f. T)

; = rlSe()dt + o (8, T)AWF 2.3.1
BTy kDA okt TN, (23.1)
dBi(t,T) . 3 o
BT~ Od o T)aw (2.3.2)
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Following exactly the same calculations used to obtain (1.2.6), we obtain:

) ] s t t
BL(t,T) = woxp{/ (ok(s.T) — o (s,1)) AW — %f (rrf(s_.rJ—rrf(s_.rJ)dx},

B;.(0,1) i} 0
J € {disc, fix} (2.3.3)

The fact that we model both curves with the same instantaneous volatility means that we can
write a simple formula for the ratio of the two. Since the exponential term is the same for both the
discount and forward curve (note there is no j appearing in (2.3.3)), some simple algebra yields

the following important ratio:

BEX(t.T) _ BiX0.7)B=(0.1)
BIS(1.T) _ B&(0,T)B™(0,1)

(2.3.4)

Now we use the expressions obtained when using the fact that Bf_(f, t)=1and B{(T,T) =1 for
Jj € {disc, fix}, i.e. (1.2.5), in order to find expressions for B}f((},f) and B,f_(ﬂ.'f). Thus, we obtain

the following expression for (2.3.4):

oxp{f[} (ridise(s) —%Uf_(s_.f) f“ oy (s, T)dW “}03\ { 5 ﬁrff_(.q_.r))ds—f[: o;,(.e,f]di-l-"lf}
exp{f[} (ri*(s) — Jof(s,T)) ds fu or(s,T) dlt"}o}xp{f ( disc(s) — Soi(s,t)) ds f[: 0;-(3,f]d1‘1"§'}

T
= exp {—f [riix(s) — r#i“"‘(ﬁ)] d.q}
t
T
=: exp {—/ ,u.(.e)d.q} . pls) = r{“‘(s) — r‘;l_i“'“(s) (2.3.5)
t

2.3.2 Multi-curve swaption price

We now derive a formula for the price of a swaption in this setup. Denote by Fﬁx(TF; T 1,T;) the
forward Linear rate prevailing at time T'r for the expiry 7i—, and maturity 1i, but here, derived

under the forward curve with dynamics (2.3.2). Let D(¢#,,t,) := exp {7 f:lz ‘l’“( )de}

Proposition 2.3.1 (Swaption Price in multi-curve framework). Let SMC denote the price of a
European receiver swaption in the multi-curve framework. Assuming the dynamics in (2.3.1) and
(2.3.2), the following equation is satisfied by SMC.

T N +
SMC _ g fexp (_[ e ) (Z b B (T ) — b) (2.3.6)
t i

b =1+ Koy —oxp(

bN =14+ .ff:‘.'t‘N

(3
by := exp ([ u.(s)ds)
ﬂl
Proof.

Since discounting is done with the discounting curve in the multi-curve framework, we have that

24




the discounted payoft of the swaption is

N +
Sbisepayort = D(6.Tr) | Y Bif (Tr, Ti)ai(K — f”"(TF;E_l,m] (23.7)

i=1
We need to first find an expression for the forward linear rate F™(#; T, 8). The spot-Linear rate
using the forward curve dynamics [1, Slide 91] is L8*(t,T) = < (m ) where 7 := . We
now use this to find an expression for the price of a Forward Rate Agreement (FRA) with strike

K as follows.

FRA™(t,T,5,K) = E, [D(t,8)rK — D(t,S)7L™(T, S)]
= TKBR*(t,5) — E, :D(f_. T)D(T, S)rL™(T, 5)]

= rKBEse(t, ) — B, [D(t, T)r L™(T, §)BI(T, )]
= KB, 8) [D T (h; - 1) Bilise(r, S)]
BI(1,T)

B\lin-c T8
—Tf\b“h“ t, g [D k ( ) J

A T — disc ¢
m} +E, [D(t, T)B™ (T, S)]

=
= rKB{*(t,8) — exp {—/ u(.ﬁ‘)d?} Bfse(t,T) + Bi*(t, 5) (2.3.8)
T

Finding the strike K such that (2.3.8) is null will give an expression for the forward linear rate.

Doing so gives, fori € {1,... . N},

. 1 T; Bdise(, T
Fo(Tpi Ty, Ti) = — |exp f u(eyas $ B Tm Ty (2:3.9)
a; T, B (1w, T3)

Using this we can derive an equivalent expression for the multi-curve version of (2.2.1)

N ‘I“ \hu +
ZB#E"’C(TF:T(')&(' K — L exp B T pdisep_ Ty IF ) -1
i=1 o B IF 1)

—

Slléiligi?r’i\\'uff = D( rTF]

N " T dm (T, Ti1) *
= D(LT, B (T, T [ 1+ Koy — ex
(_F);g (Tr. )( o mp{ } BI(Ty. 1 ])]
N
- U(r,rp)[zgg‘ﬁ“(rp,n) (1 + Kay —exp{ })
=1
N T
+y (exp{—f ,u.(.?]d.?} (BE*(Tp, T:) — BE=*(Tp,Ti-1) ))]
i=1 Tia

(2.3.10)

Now that we have a telescoping sum with the final term in (2.3.7), we can simplify

N T; ) )
> (oxp {—/ u(-ﬂds} (BY*“(Tp, T;) — B#"""(TF,TH)))

i=1 Tie
T . T .

= exp —f pls)ds » BEC(Te, Ty) — exp —/ pu(s)ds » BEse(Te, Ty) (2.3.11)
Tw-1 o
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So that, on substitution into (2.3.7), noting that B#i""’(TF. T4) = 1 and taking expectation under
the corresponding measure to get the price, defining b;, ¢ € {0,..., N} as in the proposition

statement, we get precisely (2.3.6). O

Since (2.3.6) is analogous to (2.2.1) with coefficients b; rather than a; (note that r, = r}}_i“’“
and B}P“"“(tl,m) = By(t1,t2)), following an identical drift-freezing procedure to the single curve
swaption price and using Black’s formula gives the following formula for the price of a swaption

expiring at time—TF and maturing at time—T

S!I\IC,' — Bi“""c(f,:ﬁ:‘] :H!I\ICJq,(dll\IC) _ b[}@[d.lz\lcj]

HMC 1 pTr M 2
. L b s:1)|"ds
dI\I( — b ;f!ﬂ [ (s:9)] (2.3.12)
\/Jr; " [SMC(g; ¢)]2ds

where

N

bnh-,\ t. f]
I\I(
b; 2.3.13

Z Blh‘zl ff ) ( )

Al disciy 7
SMC (g ]_/\(z L bi(C(T,) — G(Tr))Bf (r..m) (2.3.14)

S bi Bt 1))

2.3.3 Algorithm for determining optimal parameters

In order to optimally calculate the g;s, we can use a sequential " bootstrapping” approach, starting
with the swaption with expiry T to calculate gy _q, using this optimal gy_1 to calculate gy _o
and 8o on. Whilst a typical bootstrapping algorithm in the literature iterates forward in time,
the presence of the G(T;) — G(TF) in our swaption formula (2.2.1) means that starting with the
earliest expiring swaption depends on all the parameters g;, rather than just one. Thus we must
start from the end and iterate backwards in order to obtain a series of equations increasing in the

number of unknowns.

We first present a generic algorithm outlining the overall approach and the objective function to
minimise in Algorithm 1, before providing finer details in Algorithm 2. We refer to the analytical
swaption price with expiry 7} and maturity T; as §4(T;,T;), and SM (7}, T;) as the corresponding
market price. To simplify notation in the following, recall the grid T [rom section 2.1, where
where each point on the grid is the expiry of the chosen swaptions. The algorithms below will refer
the T} in this grid, rather than the payment times of each individual swaption as this section has

used so far.
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Algorithm 1: Volatility Calibration
Result: g, dictionary of g; parameters
g« {h
gIN = 1] = argmingy 1) (SM(Ty 1, Ty) — SHTn 1, s g[N —1]))%;
for i=N-2,...,2,1 do
| gli]  argmin g (SM (T, T) — ST Tyi gIN — 1], gfi + 1]))?:

gl

end
g[0] « g[1):
g[N] < g|[N —1]:

A more detailed algorithm is presented in the below.

Algorithm 2: Volatility Calibration in detail
Result: Dictionary of volatility parameters
gk
for i = N-1, ..., 2,1 do
| gli] + argming (B.(0,T:)[Ho ()@ (d1 (i) — 2(da(i))] — SM (T3, Tw))*
end
9[0} « g[1] ;
g[N] < g|[N —1]:

The parameters used in Algorithm 2 are described as follows. In the simpler single curve framework,
recall that we have that the time zero price of a swaption expiring at T;, and maturing at time Tx

and freezing the drift at time zero, from (2.2.12),

Ho(i) = 17 132
ST Tw) = Bu(0,T) [Ho®(ds (1)) — B(doi))].  dhali) = 2ol 2212 ()

T;-132(i)
\ ind(i) M
N(i) = e | Ginacy D, Aag(t; — T BR(0,1) + Y ai(G(t) — G(Tx-nmm..r_n]
Z;:u a; Bi(0,15) i=0 j=ind(i)
M
, By(0,1; ) .
Hy (1) ::Zai%. ag = 1, aj:= Kaj, an =1+ Koy
i=1 o

where £;, j€{0,..., M}, is the swaption’s payment schedule. Since this clearly depends on the
swaption, it would be more correct to write t; =: t; however we omit the superscript for the sake
of clarity. For each swaption in the loop, t; is the expiry of the swaption; by construction will be
equal to one of the Ts, and ty; := Ty is (approximately) constant across the swaptions. The func-
tion ind(i) returns the index on the grid T% such that ind(i) = {i : ty = T;}. Note that we have
split $2 to two functions; the first where the g parameter is unknown, and the second containing
the known g parameters. We also note that having a constant, rather than time-dependent mean
reversion parameter A results 3 is constant in s, so that the integral term in (2.2.12) is simply the

length of the integral multiplied by 3.
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The procedure for the implementation is described below.

e Observe swaption implied volatilities in the market for all maturities, tenors and strikes. In
general, ATM swaptions are the most liquid and hence make the most sense to calibrate to.
However for full generality we will keep the "money-ness” of the swaption as a user input for

example, swaptions that are 1% OTM.

Read in the swaption implied volatility surface from Bloomberg

Select the specific swaptions that the user wishes to calibrate to. The choice should

depend on the portfolio for which the user wants to caleulate CVA

Reconstruct the swaption prices using the implied volatilities, the expiry, tenor and

strike of the swaption

e Read in a user-specified mean reversion, typically of the order of 1%. Doing so ensures that

we are, at each stage of the calibration, solving an equation for one? unknown, which will be

a constant g;, as outlined in Algorithm 2.

Implement Algorithm 2.

It is also worth noting that the bootstrapping algorithm described can be unstable [9]. To remediate

this, we also perform simultaneous calibration to minimise the following objective function:

min > (9%(go, ... gn 13 Exp,Ten) — SV (Exp, Ten))?
! Exp,Ten

Since in either case, overall we have the same number of unknowns as equations, we expect the

optimal solutions to coincide.

2.3.4 FX Options

In this section, we demonstrate the calibration procedure in order to calibrate the piecewise-
constant ox(-). As in the calibration of the IR volatility for the foreign and domestic bonds,
we assume a piecewise-constant volatility over a grid determined by the calibration instruments.
Firstly, we need to derive an analytical price for an FX Option in our framework. Ultimately, we
will have a formula for the analytical FX Option price in terms of o4, 0¢ and ox. At this stage, we
have already calibrated our model to swaptions of corresponding currencies to determine functions
oy and o4, so that calibration of oy again entails solving for one unknown at each maturity. Thus,

it makes sense to use a bootstrapping algorithm, as in the previous calibrations.

Implementing an efficient F'X Option Pricer would require more time, and so we do not carry out
the calibration. Nevertheless, we give the full procedure and note that this will be completed in

the short term.

?Indeed, calibrating the mean reversion parameter would involve using another product, for example caplets,
otherwise the model would overfit since it would be solving a single equation in two unknowns. For simplicity, we
keep it fixed, but include enough generality to specily a different parameter per currency.
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It can be shown [10, 2.1¥, page 5] that under the T—forward measure, the numeraire of which is

the domestic bond maturing at time—7", Ba(t,T), the FX Forward rate is

X({@)B¢(t,T)

FOD) =g 0.1)

Now, since is a tradeable asset, under the T-forward measure in the domestic currency

X
B (1)
(with associated Brownian motion Q%7), F(1,T) is a martingale [1, ‘Fact One’, Slide 255], since

4T i3 associated.

Ba(+,T) is the numeraire with which the measure )
We can now use It6’s Lemma to derive the SDE satisfied by F'(¢,7") under this measure. Since
we know that the process will have zero drift as it’s a martingale so we only need to consider it's

diffusion coeflicient. Indeed,

AF(t.T) = d [%] (2.3.15)
rl
[ (*) ]B,rr d[B_;(f,T)]LQ—d[X,;,}
Ba(t, T Balt,T) Bal-,T) t

Another application of It6's rule in the first term in (2.3.15) gives

d[_X“} }:d[){(f)] L —d[ L ]X(n—d[xe%] (23.16)
Balt.T) Ba(t.T) Ba(t,T) Ba(T) ],

Now, the quadratic covariation terms in (2.3.15) and (2.3.16) contribute solely to the drift of

the process, which we know to be zero and hence we can ignore them. We have dynamics for each
of the processes above, except for the "d [m] term, the dynamies for which can be easily
derived using [t6’s Lemma. Before substituting in the dynamics for the relevant processes, we first
make sure that all of the processes are written in terms of the T—fwd measure and it's respective
Brownian motions. Since the diffusion coefficient is unchanged in a change of measure, and we
can ignore the drift component, changing to the T—fwd measure here simply becomes substituting
the Brownian motions to the corresponding T—fwd Brownian motion. As an example, in the
dynamics of By(tf,T) (written explicitly in (1.2.1)), changing the measure from the standard risk
neutral measure (J% to the T—fwd measure defined by (1.2.7) (with H := T, (1.2.1) becomes

dBi(s,T)

_ P " 7 1oT,d d, T
Bls.T) = (ra(s) — o3(s,T))ds + oa(s, T)dW*  Q*

and we see that the only change with respect to the diffusion component is the change of Brownian
motion.

Indeed, from (2.3.15) we obtain

vy e X(E)Bf(t,T) XT oy q0grd T
AF(1,T) = =gl ((. LA+ ox (OAWXT — oyt T)AW, ) (2.3.17)
X(t)By(t,T) P
R (. dt + ot AW/ ™)
dF(t,T
— ¥wI) _ ox (AW ST £ ap (8, T)AWST — oy(t, TYAW AT, QT
Fit,T)
Now, if X1,..., Xy are N correlated random normal variables, with correlation between X; and
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Xj ford,j € {1,...,N},i # j equal to p;j, then X := Z,\‘:1 X; is normally distributed with
E[X] =YY, E[X] and Var[X] = >N Var[X,] + 3N, Z}\;&( Cov(X;, X;). Thus, we can represent
(2.3.17) as:

= (oﬁf (1) + 0 (t.T) + 04(t, T) + 2px jox (t)os (t,T)

2
+ 2px.40x (H)oa(t, T) — 2p_f._m_f(f.rm(r.ﬂ) aw/, q”
= Spwp(t, T)dWE, Q7

Now, solving this is simply another application of 1t6’s Lemma on the logarithm of F(t,77), to

yield:
1 7t t
F(t,T)=F(0,T)exp {—5[ Y2 an (s Tds —] E}:‘\\"D(S,T}d”ﬁfﬂ} (2.3.18)
0 0

Calibration of the model consists of fitting to FX Options of a fixed strike and varying matu-
rities. We first need to derive the price of an FX Option in this model. An FX Option with strike
K, FX Spot rate X (t) and maturity T has the following price at time—t

FXP = Ba(t, T)EST [(F(T,T) — K)*) (2.3.19)

where E®T denotes expectation under the T—forward measure. Using (2.3.18), we compute an
explicit formula for the X Option price in terms of Xpwp. Indeed, we follow the procedure outlined
in [1, Slide 266]. Denote the term inside the exponent in (2.3.18) by (£, 7). The distribution of
I(t,T) is Gaussian, since it is the stochastic integral of a deterministic function against a Brownian

motion, and so its distribution is fully determined by its mean and variance. It is clear that

1t
E*T([1(t,T)) = _Ef Siwp (5, T)ds := Mpwn((,T) (2.3.20)
1]

t
Var® T [I(¢,T)] = Var [ f Spwn (s, T)AW]
0
t
:/ Siwp(s, T)ds := Vidyp(t.T)
0
by It6's Isometry in the calculation of the variance. Thus,
F(t,T) = F(0,T) exp {Mpwn(t,T) + Vrwn(t, T)Z }

where Z ~ N(0,1). Thus after calculating the expectation in (2.3.19) explicitly, we finally arrive

at:

FX{P (Strike = K, X, T) = By(t.T) [F(t,T)®(dy ) — K®(dy)]

F(t.T T q
dyy = {;c' L+ 3 Je Yiwpls T)ds

(2.3.21)
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Now we have the necessary ingredients to begin the calibration procedure. As per the previous
case, we first assume that ¢ = 0, we fix a particular strike to calibrate on (usually this will be ATM

options), and we consider options with varying maturities.

We assume that the volatility function satisfies

oxls) = )\X(.e)f gx[u)du
0
for some piecewise-constant function g% : [0,00) = [0,00), and mean reversion MY () which again
will be chosen to be constant, A% (+) = A*. We follow exactly the same steps detailed in Algorithm 1
to obtain the optimal ¢¥ parameters. Similarly to the previous case, choosing the parameterisation

of oy in this way gives a strictly increasing, continuous function for the volatility.

As mentioned previously, we will not implement this calibration methodology; this will be done at
a later date. Instead, we will assume a function for g and simulate the FX spot as per (1.3.13).
In particular, given the calibration results in the following section, we will assume the user input
for g parameterisation is

gx(u) =01, u=>=0

Using this rather than simply specifying a fixed value for oy means that the correct infrastructure
is already in the code, so that when it comes to writing the FX Option calibrator, the diffusion is

automatic.

2.4 Calibration Results

In this section, we present the results obtained from the calibration. The algorithms were all written
in Python, integrated within the VP. Hereafter, we consider 4 currencies; USD, EUR, GBP and
CHF, so we will present a total of four calibration results. All market data is downloaded from
Bloomberg as of 30" June 2021, which includes, for each currency,

e Swaption volatilities for ATM swaptions, and

e Zero Coupon Bonds for all maturities

We also note that for simplicity, we only implement a "single curve” calibration. To adopt a
multi-curve approach, one would require market data for the additional curve at the relevant time.
Then, using (2.3.4), calculate exp {— thT Iu.(s]d.e}. Once this is obtained, the calibration follows an

identical procedure as Algorithm 1, but with formulas (2.3.12).

Denote Sg for the expiry of swaption § and Sy for the tenor. We also choose to calibrate to
"20%1" co-terminal swaptions. In practice, calibrating to swaptions that are "exactly” co-terminal,
meaning that the expiry and tenor add up to precisely 20 years in this case, doesn't result in enough
data points. For example, for USD Swaptions where typically the whole surface is quoted (which
is not the case with CHF for example), precisely 4 swaptions satisfy Sg+ St = 20¥Yr. As shown in
[9, Table 1, page 17], a simple solution is to choose swaptions such that this condition is satisfied

to within a specified tolerance, i.e. such that
|SE + St — 20Yr| < Tolerance (2.4.1)
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‘ Tenor

Expiry ‘ 1Yr 2¥r 3Yr 4YT 5Yr 6YT 8YT 9Yr 10YT 12Yr 15Yr 20YT
1Mo 80.71 76.86 62.75 60.85 60.02 54.20 4845 46.90 45.73 43.06 40.82 39.34
2Mo 90.30 82.04 67.34 64.55 60.77 55.60 49.79 48.06 46.78 43.43 41.12 40.26
3Mo 100.74 8815 T1.62 64.86 60.88 55.69 50.27 48.66 47.44 44.70 42.31 40.49
6Mo 100.63  84.50 70.22 62.86 58.05 5345 4838 46.84 45.49 43.06 40.88  39.25
9Mo 101.32  T76.36  66.48 60.05 54.96 5142 46.94 45.30 43.87 41.69 39.69 38.09
LYr 94.06  71.85 37.53 5248 49.05 4496 43.72 42.66 40.69 38.83 37.30
18Mo 70.72  59.49 5107  48.00 4559 4254 41.50 40.59 39.02 37.50 36.18
2¥r 60.39 54.61 50.27 46.95 44.67 4291 40.56 39.66 38.96 37.61 36.21 35.23
YT 51.06 47.25 44.39 4235 40.84 39.80 38.13 37.53 37.04 36.03 34.97 34.14
4YT 45.46 4294 41.03 39.65 38.51 37.85 36.57 36.13 35.74 3493 33.93 33.35
YT 4117  39.67  38.61 37.78 37.01 36.29 3543  35.06 34.72 34.09 33.21 32.59
6YT 38.56  38.01 37.37 36.54 35.76 3522 3447 3412 33.83 33.23 32.52 32.03
YT 37.05  36.95 36.33 3556 3498 3457 33.73 3542 3312 32.55 32.03 3L.57
8Yr 36.11  35.74  35.04 3457 3422 33.68 3298 3271 32,46 31.87 3148 31.09
9YT 34.85 3427 3396 33.69 3345 3298 3238 3213 31.88 31.55 31.14 30.71
10YT 33.28  33.29  33.16 3299 3284 3248 31.90 31.65 31.40 31.25 30.79 30.29
L5YT 31.01 31.06 30.77 30.50 30.29 3041 3045 3041 30.35 30.08 29.46 29.90
20YT 32,10 31.81 3143 31.21 3105 3099 30.80 30.72 30.61 30.93 30.77 30.87
25YT 3148 3224 3172 3134 3118 3191 33.65 34.11 34.40 33.81 33.61 35.43
30YT 44.85 4527 4391 43.14 41.95 4145 40.10 40.15 40.18 41.15 42.10 43.48

Table 2.1: USD ATM swaption volatilities as of June 30" 2021

We choose the tolerance to be 2Yr, which adds several points as illustrated in Table 2.1. As
mentioned previously, the first stage in the calibration is to calculate the market price, given the
implied volatility drawn from the market since our derived analytical formulas are for the swaption
price not the volatility. Luplied volatilities collected from Bloomberg can be either "Normal” or
"Black™ wvolatilities based on whether the model chosen for the swaptions in the Swap Market
Model used by Bloomberg is normal or lognormal. We implement functionality for both cases for
full generality. Figures 2.1 and 2.2 show the results for the USD case, using the data from Table
2.1. Highlighted in yellow in Table 2.1 are the swaptions used in the calibration for USD. Of course,
we will only be using a portion of the data; in particular points roughly along the counter-diagonal
due to the co-terminal requirement. We also note the lack of available data for some currencies;
Figures 2.4 and 2.3 show that quotes are only available along the counter-diagonal. This is an
added benefit of calibrating to co-terminal swaptions, since typically these are more liquid and

more quotes are observable.
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ATM USD Iimplied swaption prices as a function of expiry and tenor, Notional = 1000
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Figure 2.2: ATM USD swaption implied prices obtained from the implied volatilities in Table 2.1

ATM USD swaption volatilities as a function of expiry and tenor

100
100
ap 20
g . 80
= 70
=
< 60
& s0
40
)
25Yr
10¥r
™ ™
5
2

«—:’J
Of

Z
9 <%

2 Tenof

Figure 2.1: ATM USD swaption implied volatilities across observed tenors and expiries
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ATM CHF implied swaption prices as a function of expiry and tenor, Notional = 1000
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Figure 2.4: ATM CHI swaption implied prices across observed tenors and expiries

ATM CHF swaption volatilities as a function of expiry and tenor

Figure 2.3: ATM CHF swaption implied volatilities across observed tenors and expiries
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Figure 2.5: Swaption calibration results for CHEF
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Figure 2.6: Swaption calibration results for EUR
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Figure 2.7: Swaption calibration results for GBP
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Figure 2.8: Swaption calibration results for USD

36




Price

USD ATM 20Yr Co-Terminal Swaption Calibration Results, Notional = 1000

Market Implied Price vs Analytical Price

Absolute Error

+ Implied Market Price

500
cal Price
-
2 1m0 —=— Absolute Error
q = 0
400 o of . wi — Optimised ‘g
O
2
i =
300 L
w
o
S
200
- N oW v ey ® oY o= = - N oW o@ — v ~ 0
z 2 2 I35 353 g a3 8 & & = B -
® = o= ror L r s o= x  x ox  ox s ornor o =
YR o M M - BOROR M L N ) o o~
2 2 3 2252523 $ 2223y %22z ¥ 2z
Expiry x Tenor . . - Expiry x Tenor
piry Optimised piecewise-constant function g(.) for currency USD piry
50
40
20
10
2022 2024 2026 2028 2030 2032 2034
Date

Figure 2.9: Swaption calibration results for USD before

instrument selection.




In general, we were able to achieve almost perfect fit for each currency, given the chosen
swaptions. We would expect this, since by design, we are iteratively solving for one g; per swaption,
or in the simultaneous calibration case solving for N parameters with N equations, if we have N
swaptions. To illustrate the fit, we plot the absolute error function, |S§__T—S;§}_{T| for (E,T) € (£, T),
the set of chosen expiries and tenors, where Sg__T, S ave the analytical and market implied prices
respectively, for expiry £ and tenor 7. Errors for 3 of the currencies were of the order 1077, with
USD errors of the order 107*. The total time for calibration was approximately 2.59s on a machine
running a 1.7GHz CPU, giving an average of around 0.65s per currency. Note also that the mean

reversion is assumed fixed at 1% for each currency.

Using all the swaptions available that satisfy (2.4.1) can result in, at times, a poor fit. As a
reference, Figure 2.9 illustrates this; the calibration error is much higher for multiple swaptions
with small expiries. A possible reason for this is that swaptions with very short expiries are much
less liquid [9, page 17|, so it may be the case that there exists arbitrage within the market that
would require negative piecewise-constant parameters g; for our model to fit with zero error. In
order to remediate this, a careful selection of swaptions was chosen through trial and error until

the calibration error was sufficiently small®.

Each function g(-) is displayed as the bottom graph in each of the above figures. We observe that
this is in general a decreasing function, with more frequent "jumps” near the beginning due to
the gaps in swaption expiries being smaller. The one exception to this is the GBP calibration
results, whereby the optimised parameter for the final swaption expiry is indeed larger than the
penultimate parameter, shown in Figure 2.7. This is likely due to the inclusion of the 20Yr x 1¥r
swaption, which is not present in the other calibrations in order to rednce the error as discussed

in the paragraph above.

Ultimately, we need to use the calibrated g; parameters for the diffusion stage. By design, each
currency has its own grid for which the piecewise-constant parameters are defined. Thus, for each
currency we will need to store the g; parameters as well as the corresponding grid. Note that for
times larger than the latest expiry and for times smaller than the first expiry, we will extrapolate
the last and first g; parameters accordingly. For the implementation of the integrals that define the
F'X spot rate in equation (1.3.13), in particular the integral of the product of two sigma functions,
special care needs to be taken. By construction, each op(-,-). & € {d, fi..... fy} is a piecewise-
linear function, and so it’s integral can be easily implemented as the sum of trapeziums, the height
of each being the corresponding difference in time on the grid. The integration is exact, and will
result in a large time-improvement over a numerical method. However, the product of two sigmas
of different currencies is still piecewise-linear, but only over the grid specified by the union of the
two individual grids. Thus, the union of all the time grids must first be calculated and a mapping

defined between the union and each individual grid before the integration step.

*.e. errors which have an approximate order of magnitude of no greater than 10—
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Chapter 3

Diffusion

The purpose of this report is to create an efficient platform in which one can value CVA for
cross currency products. The most challenging part of this is the implementation of the diffused
curves under the common H—forward measure using the formulas developed in Chapter 2, once
the models are calibrated to market data. Upon creating the diffused curves, we will illustrate
how one calculates the Expected Positive Exposure for a vanilla IRS contract, before presenting
numerical results for the EPE of a small portfolio of 4 vanilla IRS contracts, each denominated in

a different currency.

3.1 Correlated Gaussian Generation

In this section we describe how to generate the correlated Gaussian random variates. In previous
sections, we derived bond prices and F'X spot rates all under the H—forward measure. In practice,
this enables us to simply generate the correlated Brownian motions at each diffusion lag, and use
them without the need to implement a "change of measure” function that would adjust the drift
according to the measure in which the generated random variate is indeed normally distributed. We
choose H in the following way, denoting by P the portfolio of instruments for which our diffusion
model is used, and P, the i*" instrument in the portfolio, and mat(.) the maturity function of the
instrument:

H = max{mat(F;)}

i€
The reason for using this measure is outlined in (3, 2.5, page 38]; primarily it is used for convenience

in deriving analytical prices.

Correlation

Having set up our measure for which WXH, WHH and WaH are Brownian motions, we outline
the procedure for creating a "cube” of random wvariates to be used in the diffusion. First, recall
that WX is the Brownian motion under the H—forward measure corresponding to the FX Spot
rate, W/ and WoH are the Brownian motions corresponding to the foreign and domestic bonds

under the same measure. Define the instantaneous correlation hetween the Brownian motions as
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1R,
1

in (3.1.1).

dW - H () dwdH (1) = pg, adt

AW S OdAW (1) = ppy (g, a),adt

AW (AW (1) = prx (s, p,dt

AW F AW (1) = prx o, pxcr, ot (3.1.1)

where the subseript 7 on f denotes the i

foreign currency. For N — 1 foreign currencies, we
represent this correlation structure as a (2N — 1) square matrix which will be useful from an
implementation perspective, which is illustrated below. Clearly, the diagonals are one, and the

matrix is symmetric.

IRy, IRy, .o IRj, FXpa FXfa = FXf v
Pfi.d Pfad o Pivo1d PFX(f1,d),d PFX(fa,d).d ce PFRX(fry_1.d)d
1 Pfafi o0 Pfn-1fa PEX(f.d).f1 PF X{ fa.d), f2 e PFEX(fx_1.d).f1
1 s Pfr_1.fa PEX(f1,d). f2 PFX( fa.d), fz s PEX(fx_1.d).fz
1 PEX(f1.d), fa—1 PEX( fad) fo—1 s PEX(fx-1.d),fx-1
1 PEX(f2.d) FX(f1.d) -+ PFX{(fy_1.d),FX(f1.d)
Sym. 1 oo PFX(fuord) FX(foud)
1 J
(3.1.2)

In the implementation, we will treat this matrix as given, set to some arbitrary values by the user
such that p is positive definite. By [11, Exercise 8, page 11], there exists a lower diagonal matrix
L such that p = LLT. Ideally, these correlations would be estimated from historical data based
on a time series of zero coupon bonds and FX rates. In such case, one would then transform the
matrix using for example, [12] so that a Cholesky decomposition is always possible. Specifying
constant correlations between the FX factors does not necessarily guarantee that options on cross
currency products will be correctly repriced [13, page 4]. To remediate this, a time-dependent
instantaneous correlation structure will need to be implemented in order to get the extra degrees
of freedom needed, for example by parameterising the instantaneous correlation between each FX

factor as a pilecewise constant function.

Cholesky Decomposition

Since we are in a l-factor model, for each IR factor we will generate the whole curve using one
Gaussian random variate, which will be the random variate corresponding to the particular factor.
Thus, we must first generate, at each diffusion lag, a random vector of correlated standard normal
variates. The algorithm defined in [11, page 11| demonstrates how to generate a single vector of
correlated Gaussian random variables. Using Python’s numpy package, we can easily and efficiently
generate M vectors to form a (2N — 1) x M matrix. The linalg package of numpy will find
the Cholesky decomposition of the correlation matrix which is what the Cholesky function in

Algorithm 3 refers to.
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Algorithm 3: Correlated Gaussian generation

Result: X, (2N — 1) X M, M := number of simulations

Input CorrelationMatriz  p;

L+ Cholesky(p):

Dif fusionCube + {}:

for lag in DiffusionLags do
Z +— Normal(size = (2N — 1) X M, mean = 0, variance = 1);
Dif fusionCubellag) = L - Z;

end

3.2 Creating the diffused curves

Suppose we have a portfolio of IRS for which we wish to calculate the expected positive and
negative exposure (EPE/ ENE) to ultimately calculate CVA and DVA. In order to do so, The goal
is to calculate EPE and ENE over various points in time which we will refer to as diffusion lags.
In order to have the necessary inputs to do so, we need simulated values for each factor at each

lag.

For simulation, we want to be able to generate the bond price exactly in the sense that there
will be no discretisation. This is possible since we know that the bond is lognormally distributed;
removing discretisation will greatly speed up the diffusion process and removes the need for an

Euler or Milstein scheme.

3.2.1 Bond and FX Spot distribution

We firstly need to derive the distribution of the domestic bond, the foreign bonds and the F'X spot
rate in order to use the already-generated correlated Gaussian random variables. Here, we will
use the same notation as in Chapter 1 and only consider one foreign currency. In practice, we will
have the structure as detailed in Section 3.1, with N — 1 foreign currencies and the corresponding

correlation structure. Indeed, suppose we have drawn Ny, Ny, Ny such that

Na 0 1 Prd  Px.d
N[ ~N@©®), 0=]o0|. S:=|pa 1 pxy
Ny 0 Pxd Pxj 1L

Consider the term inside the exponential of {1.2.2), which is Gaussian by the discussion in (3.2.1).
Since a Gaussian distribution is fully characterised by its first two moments, by calculating the
mean and variance, we automatically have the whole distribution. Indeed, suppose we are at
time f;. Consider the value of a domestic bond at time #; > t;, that matures at time m > .
Denoting I9(t,,¢;,m; H) L oa(s,m) —og(s,t;))dWwaH lf! oals,m)—og(s,1;))(oa(s,m)—
204(s, H) + ()'d(.‘?_.f?”d.‘? and working under the H—forward measure

T 1
By [19(ti,ty,m: H)| = —§f (ca(s,m) — oa(s,t;))(oa(s, m) — 25a(s, H) + oa(s.1,))ds =: My
s

t;
Ve (14t t,m H)| = f (0a(s,m) — oa(s,1;))*ds =: Vi (3.2.1)
B t

i

Where the mean calculation uses the fact that the expectation of a deterministic function
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against a stochastic integral is zero, and the variance calculation uses lto's isometry. Thus,
A . L
1’1(f(-_.f3;_.m:HJ = Mi + ViNg. Analogously, we can calculate the distribution of the exponent of

the foreign bond under the H—forward measure:
f . A SN
It t;, m; HY2 M,y + ViNy (3.2.2)

t
My ::[ pracals,H) |os(s,m) —a¢(s,t;)|ds

1

iy
—ft {ex.pox(s)of(s,m) —af(s,t;)) }ds

i

!J - v
— %f [o7(s,m) — o7(s,t;)] ds
t

i

t; .
V7 ;:Z (os(s.m) —op(s,t;)) ds

Finally, we calculate the distribution of the exponent in the FX Spot:

I7X(6;T) & Mpx — Vix,Na+ Vex, Ny + Vex, Nx (3.2.3)
L, 2 2 &
Mpx = 5[ (oals.tj) —ay(s.tj) —ox(s))ds + ﬂ.f..rf/! aa(s, H)aj(s,1;)ds
‘ t; 1 ‘ t
— px___f/ a_;(s,f_,-]ax(.e)ds—px_rjf aq(s, H)ox(s)ds —/ aqls. H)og(s, t;)ds
t; - t; - !‘z_,-
VEx, ::Z o7(s,t;)ds, VJEXI ::l of(s,t;)ds, "'ljl-éxf_d ::1 o3 (s)ds

Using numpy arrays, in practice Ng, Ny, Nx are vectors, the length of each being the number of
Monte Carlo simulations, specified by the user. This greatly increases the speed since transfor-
mations of numpy arrays are in general very efficient. The following algorithm describes how to
simulate the full IR curve (i.e. for each maturity) and each FX Spot, for each diffusion lag. Factors
is a list of factors that are to be diffused, Lags is the list of diffusion lag in years, TimeZeroData
is the data corresponding to curves at time (), Cube is the cube of correlated standard Gaussian

random variables described in Section 3.1.

It is also important to note that for each factor, in order to calculate the value of at the (i + 1)™
diffusion lag, we use the value of the factor derived at the i** diffusion lag as the "time-0" curve.
Therefore we have tractability across the diffusion lags. An alternative would be to simply start
from time-0 when diffusing at each scenario, with longer scenarios nusing more Brownian motion

components. Since both methods follow the same distribution, on average they are equivalent.

Algorithm 4 refers to descriptive functions such as GetFacMean. The purpose of this to see a
more holistic view of the algorithm. In reality, these are comprised of several smaller functions to
incorporate the various piecewise integrals observed in (3.2.1), (3.2.2) and (3.2.3). The condition
if not expired refers to the fact that the maturity of the bond must be greater than or equal to the
diffusion lag for the bond to exist. We will therefore have a reducing number of maturities for the
bonds at each diffusion lag. We interpolate each bond curve linearly if a requested maturity is not

in the set of available maturities.
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Algorithm 4: Curve diffusion

Input: Factors, Lags, TimeZeroData, Cube;

Result: DiffusedFactors, nested dictionary of simulations with 3 levels:
e Level 1: Diffusion Lag
e Level 2: Diffused factor
e Level 3: Maturity (only applies to IR factors)

for i, lag in length(Lags), Lags do
LagDiff « Lags[i+1] - Lagsli] ;
for fac in Factors do

if "IR" in fac then

means ¢ |[GetFacMean(LagDiff, m) for m in maturities if not ezpired);

vols + [GetFacVol(LagDiff, m) for m in maturities if not expired|;

for m in maturities do
BondRatio + GetBondRatio(Lags[i-1], Lags[i], m, fac);
X + means[m| + volsjm| * Cube|lag|[fac];
Diffused Factors|lag][fac][m] + BondRatio * e*;
end
end
else
FXRatio + GetFXRatio(Lags[i-1], Lags[i], fac);
mean + GetFXMean(LagDiff) ;
dvol, fvol, fxvol + GetFXVol(d), GetFXVol(IRfac), GetFXVol(FXfac);

X + mean + dvol * Cube[lag][d|+ fvol * Cube[lag][IRfac]+ fxvol *
Cube|lag|[FXfac] :

DiffusedFactors|lag] [fac][m] + FXRatio * eX

end

end

end

3.2.2 Unit Testing

Having implemented the diffusion, we will need to make sure that our results are reliable and as
we expect. For this, we will calculate the empirical standard deviation (as the square root of the
variance) using our simulations and compare to the "theoretical” standard deviation for both the
foreign and domestic bonds and the FX Spot rates. Due to log-normality, the casiest way to do
so is consider the logarithm of the bonds and the spot rates, rather than deriving complicated
expressions for the variance of the bond directly. As an example, consider (1.2.3). It is clear that,

denoting the standard deviation by Std,

t
std®™H [log(B,(t,T))] = fo oa(s,T)2ds (3.2.4)
]

43




Similar formulas can be obtained for the foreign bond as well as the FX spot rate standard devi-
ation. This is known exactly via the parameters obtained through calibration (hence is labelled
theoretical results), and so we can compare to the empirical calculations. We will do so at the
1-year diffusion lag which is sufficient time to allow for substantial variance, and we will only con-
sider one maturity per bond. This was chosen at random and we expect that the proportionate
differences between the empirical and theoretical results should be similar across maturities. The
results shown in Table 3.1 were obtained in approximately 6.85 seconds, using 50,000 iterations of

58 diffusion lags, with seven factors considered.

Factor Theoretical Empirical Absolute Error
log-std (%) log-std (%) (%)
USDig (dom.) 8.2070 8.2103 0.0303
GBPm 3.6236 3.6341 0.0105
EUR 3.6346 3.6425 0.0079
CHI'Ygp 2.1641 21718 0.0077
USD — GBPgy 31.4783 31.4992 0.0209
USD — EURpyx 31.4915 31.5017 0.0102
USD — CHFpx 32,4194 32.2863 0.1331

Table 3.1: Empirical versus theoretical standard deviations for each factor diffused at 1 year

We see very large variation across the FX components; this is becanse the model was not calibrated
to FX Options and the "default” values of parameters g¥ chosen are clearly much larger than what
each corresponding optimised value would be had the model been calibrated. In general, we see the
empirical results are very close to the theoretical results over 50,000 iterations, with a maxinum
absolute error of the order 10™* (107% %). Given that the drift component is simply a function of

the volatility since we are in an H.JM framework, this also gives us confidence that the corresponding

drifts are accurate.

Whilst increasing the number of iterations is one way to reduce the variance (by the Strong Law
of Large Numbers), we could also consider using a control variate method or antithetic sampling,
detailed in [11, Chapter 4]. This would reduce the empirical variance without the additional

memory consumption required when further increasing the number of simulations.
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Chapter 4

CVA Calculation

We conclude this report with an illustration of how to calculate the CVA of a given portfolio
using our diffusion model. We will introduce the theory behind the CVA calculation, including
the stripping of default probabilities from CDS curves, before presenting numerical results for the

CVA of 4 vanilla Interest Rate Swaps, each denominated in different currencies.

4.1 CVA under Default Bucketing

Let R be the recovery rate, 7 be the default time of the counterparty and denote by V; the residual
net present value (NPV) of the contract at time ¢, ie. if [I{£,7) is the discounted payoff at
time-t for maturity 7, then V; := E; [II(¢,T)]. As usual, denote the stochastic discount factor,
exp {— _LTr‘(s]ds}, by D(t,T). The time-t unilateral CVA (UCVA;) can be written [1, slide 833]
as:

UCVA; = (1 — R)E; [1rery DIt 7) (Vi) T] (4.1.1)

where expectation is under the standard risk neutral measure. For numerical application, we will
divide the interval [0,7] into n sub-intervals with grid points T3, i € {0,1,..., n —1}. In practice
this grid will coincide with the grid of diffusion lags as seen in the previous section. Since the
intervals are disjoint by construction, the time of default 7 must fall in precisely one interval. This

allows us to write (4.1.1) as the following, using |1, slide 880]

n—1
UCVA, = (1 - R)E, |3 e,z D0 7)(Va)*
i=0
n—1 )
= (1= R) Y By [lreqr, my D(ET) (V)]
i=()
n—1 .
~ (1= RSB U einm, DT (Ve
i=()
n—1 )
=(1-R)Y_[Qr > T) - Qr > Tipn)) E: [D(LT)(Vir) ]
i=()
n—1
= (1-R) Y [Q(r > T) = Q(r > Ti11)] - EPE(T}) (4.1.2)
i=l
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where EPE,;(T;) denotes the time-T; "Expected Positive Exposure” given we are at time—t . The
"approximation” step assumes defaunlts can only happen at the end of the intervals which is reason-
able with a fine enough grid spacing. This approximation allows us to decouple the m-dependence
of the discounted payoff with the indicator function, so that we can write the expectation of a
product as the product of expectations to get (4.1.2). The other big assumption is that we assume
that the various risk factors (IR, F'X) and the credit component are independent. In some instances
this is not a good approximation in which case the wrong way risk and right way risk element needs
to be modelled.

4.2 Calculating Default Probability

As demonstrated in (4.1.2), there are two main components to calculating the CVA of a portlolio;
the EPE and the defanlt probabilities. In this section we show how to obtain the latter in a model-
independent way from the counterparty’s CDS curve. In this section, we will remove the currency
dependence on the bond and short rate. In practice, this will be in the same cwrrency as the CDS

is denominated, with the exact same calculations since the formulas is model independent.

Under the (standard) assumption that the stochastic discount factors (¢, T') are independent of
the defanlt time 7 for all possible 0 < t < T, pricing a CDS simply involves static no-arbitrage
arguments for each of the two legs. We state without proof the formula for the price of a CDS; a

detailed proof can be found in [3, 21.3.5].

Briefly setting up the notation for the components of a CDS as in [3, 21.3.5], we denote the
protection buyer by A, the protection seller by B, and the risky counterparty by C. Supposing C
defanlts at time 7 € |14, T3], T» > Tu, B pays A the loss given default, LGD, multiplied by the
notional. As compensation for this insurance in the event of default, A pays to B a protection
premium rate R at times 7),,q,...,T), or until default occurs. Denoting «; := T; — T: 1, the

running CDS discounted payoff to B at time 0 < T}, is

[
l[[ﬂa.b) = .U(O_.T)(T—I}j{rJ_]_Jif]l{ﬂl\;rQﬂj}— Z U(U,Ti):‘}'ifﬂl{,—>]"‘}—l{ﬂlgr<ﬂj}U(U,T)LGU
i=a+1

where Tj-y is the first T} following 7.

Proposition 4.2.1 (CDS Price).

The price of a CDS contract as seen from "B’ al time 0 is given by
E [I1{0:a,b)] = PremLeg, ,(R: B(0,-),Q(7 > -)) — ProtLeg, ,(LGD: B(0,-),Q(r > -))

where

Ty
PremLeg, ,(R: B(0,),Q(r > )) := RU BO,t)(Ty-1 - DAQ(r = 1) + 3 B(0, T Q
o i=a+1

Tw
ProtLeg,(LGD; B(0,.),Q(r = )) := LGD] B(0,t)d,Q(r = 1)
; -
This is a model independent formula, since no assumption was made regarding the IR dynam-
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ics. Note here, that price of the bond at time zero B(0,-) the bond in the currency that the
CDS is quoted in. Before outlining the algorithm we use to strip the curve, we first make the
simplifying assumption that the protection leg pays at the end of each accrual period, and that
for the premium leg, defaults occur midway during each payment period with the accrual payment
made at the end of the period. This known as the JP Morgan method, and is detailed in [14, page
8]. These assumptions reduce the integrals in Proposition 4.2.1 to summations forming a basis for
the bootstrapping algorithm which we will briefly outline. Under these assumptions, we can write
the value of each leg as the following. Details of the calculations are in [14, pages 8-9], so we just

present the main results.
b
ProtLeg, ,(LGD; B(0,-),Q(r >-)) = LGD Y B(0,T:)(Q(r > Ti-1) = Q(r > Th))  (4.2.1)
i=a+l

and similarly, the present value of the premium leg as

Qr >T:4)+0Qr > T7))
2

b
PremLeg, ,(R: B(0,-),Q(r >)) =R ) a-(-B(O,T(-J(
i=a+1l

(4.2.2)

Now, assuming 7, = 0, we observe in the market at time 0, the fair value of R = R} MID jq
the value such that the corresponding CDS contract has no value, i.e. the PV of the premium
and default legs are identical. Given that the time-0 bhond prices B(0,-) can he easily obtained
from market data as well as the time-0 default probabilities, with a standard assumption on

LGD = 60% =1 — Rec, the algorithm becomes clear and is as follows,

Algorithm 5: Stripping Default Probabilities from the CDS Curve
Result: PD, list of default probabilities; PD[i] := Q(r > T;)
PD « {}
for i=a+1,...,b do

if i=a+1 then

Py« 0
Qi1 0
else

v 1 .
C+ B0, T)2LGD T Ray)*

Py e CLGD Yk, B(O,T;)(PD[j — 1) — PDj));

Qi1 < 05R-CY 70 a;B(0,T;)(PD[j — 1] — PD[j]);

5 1 _ ) o [2LGD—Ra; PDi—1]
PD[i] = Py - Qi 2LC D Ron

end

In Algorithm 5, we take R := R.;;__‘,'j" MID “and PD[a| is known as an input from the market. The
algorithm was derived simply by splitting up the sum around the *" point in (4.2.1) and (4.2.2)

and rearranging in terms of the one unknown at each step.

The Valuation Platform to which the algorithms present here are being implemented already has
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functionality to strip default probabilities from CDS curves, so we do not need to build our own.
We now finalise the report by presenting results for the EPE and corresponding CVA for a small
portfolio consisting of 4 IRS contracts, each with the same counterparty and payment schedule

properties but denominated in different currencies.

4.3 Numerical Results

The goal is to calculate CVA on a portfolio level containing products of multiple currencies. We will
not, however, be able to benchmark this analytically since the EPE and hence CVA is a complex
FX-IR hybrid. However, a simple unit test we can do is check that we are indeed able to reproduce
the EPE for each swap at a product-level, since this reduces to pricing a swaption. We have not
had time to do this as of yet; this will be done in the near future. Before the code is able to be

put in production, we would need to develop several other unit tests.

The only remaining unknown in the CVA calculation (4.1.2) is the EPE at each time 7; in the
grid of diffusion lags, given that we have the algorithm for calculating Q(7 > 7;) for all 4. In the
case of a single IRS contract, the EPLE is exactly the value of the corresponding swaption due to
the added optionality. In this case, we would leverage the analytical swaption pricer implemented
during the calibration section. Since we want to calculate the EPE over the whole portfolio, the

added FX component means that we resort to Monte Carlo to do so.

We now consider calculating the CVA on a portfolio of receiver Interest Rate Swaps, the details of

which are shown below in Table 4.1.

Product Fixed Float Payment A
Start Date Maturity
type currency currency frequency
IRS (Rec.) UsD Ush Quarterly 30,/06/2021 20
IRS (Rec.) GBP GBP Quarterly 30/06,/2021 20Yr
IRS (Rec.) EUR EUR Quarterly 30/06/2021 20Yr
IRS (Rec.) CHF CHF Quarterly 30/06/2021 20Yr

Table 4.1: Portfolio used in EPE and CVA computations

We assume a notional of 100,000 for each contract, denominated in each local currency. We take
the counterparty to be JP Morgan (JPM), arbitrarily. Define the ” Valuation Date” to be 30 June
2021, since this was the date used in the calibration of the IR models. We choose the diffusion
lags to be quarterly up until 10 years from the Valuation Date, rom which they will be every 6
months up to 15 years, and finally from 15 years to 20 years, they will be annual. This gives a
total number of 55 points in the grid. Note that we use this grid for both the diffusion and the
CVA default bucketing grid, as mentioned previously.

4.3.1 Default Probabilities

Here we show the calculated default probabilities for JPM, stripped from the CDS curve as of the

Valuation Date. We were able to utilise the CDS curve stripping algorithm already implemented
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Cumulative Probability of Default

in the pricing library and so we just illustrate the results. We present the cumulative probabilities
to outline the general shape; interval probabilities of default are easily caleulated from this and it

is the interval probabilities that will be needed in the CVA calculation.

Cumulative Default Probability for counterparty JP Morgan

—s— JPM Cumulative DP
0.25

0.15
0.1
0.05
0

2020 2022 2024 2026 2028 2030 2032 2034 2036 2038 2040 2042
Date

Figure 4.1: Cumulative default probabilities for counterparty JPM

4.3.2 Expected Positive Exposure

Expected Positive Exposure for a portfolio of 4 vanilla IRS contracts of different currencies
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Figure 4.2: Expected positive exposure for the portfolio of IRS contracts.

The shape observed in Figure 4.2 is as we would expect for the EPE of a portfolio of IRS contracts.
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Firstly, consider a single swap. The swap starts at the money, so the EPE will be zero. Then, as
rates move stochastically it is more likely that the optionality on the swap in the EPE calculation
is to be exercised, resulting in a higher EPE. Finally, we would expect to see it reducing towards
the maturity of the swap as the number of remaining cash flows reduces to zero. On a portfolio
of 4 vanilla swaps, we expect the overall shape of the EPE to be very similar, with more variation

due to the FX component as each swap is in a different currency.

4.3.3 Numerical CVA Calculation

Once we have calculated the EPE for the portfolio, caleulating the CVA becomes a straightforward

application of the formula derived in (4.1.2):

H CVA (USD) ‘ 0.9052

Table 4.2: CVA Calculation for the portfolio considered above

In simple products such as an IRS where the stochastic factors that we are able to diffuse
(namely foreign and domestic zero-conpon bonds and FX Spot) are all that is needed to compute
the CVA, the model developed is sufficient. In more complex products where there are other factors
that would ideally be stochastic, such as spreads (tenor basis or cross currency basis) and credit
(to account for wrong/ right way risk), care needs to be taken as to how these factors would evolve

(stochastically) over time.
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Conclusion

The aim of this paper was to design and implement an IR-FX Hull-White diffusion model that
can be used to calculate the exposure profile of various portfolios of cross-currency products. The
primary objective has therefore been reached; we have showcased results in the simple case where
the portfolio consists of simple vanilla IRSs in different currencies, and attained a profile for the
EPE with a shape as we would roughly expect. We also completed some basic unit-testing to
ensure that the model is correctly implemented, althongh further robust testing is required for

example by comparing prices obtained with another model.

Having first established the stochastic environment, we provided a detailed section on the calibra-
tion procedure including results. It was extremely useful to be able to use genuine market data
from Bloomberg; for this I am grateful to the Mazars Quant Team. This also highlighted some
of the difficulties in practice, a prime example being the lack of data for some currencies. Before
finally implementing the diffusion and disenssing CVA calculation, we derived distributions for
the diffused factors, and discussed correlated (Gaussian generation. We are still in the stage of
fully integrating parts of the project within the current pricing library to utilise analytical pricing

formulas where possible, to be used for CVA.

There are several areas where this project can be developed further in a greater time frame. The
two most notable are implementing an I'X Option pricer to complete the calibration process, and
historical calibration of the correlation matrix between factors. The program has been designed
to accommodate these extensions without significant refactoring. One could also generalise the
calibration to allow for an optimal time-dependent mean reversion parameter, by additionally cal-
ibrating to caps. The CVA model should also account for collateral to capture the margin period
of risk. Finally, this framework can be leveraged to account for other common xVAs, in particular
DVA and FVA.




Appendix A

Code Flowchart

. Class CPSwaption

Market Data -Store relevant - Creates swaption
For each ccy: parameters _ object with parameters
- Swaption vols (ccy, vol, ten, defined by market

- Generates swaption
-Yield curve exp etc.) on PHo
price and stores price

as attribute

[ DiffusionParameters.xml ]

-User inputs parameters required for
diffusion, e.g. number of simulations,
diffusion lags, domestic currency etc.

L

Class Hullwhite Class HullWhiteCalibration

-Takes a dictionary of
CPSwaption objects split by
currency

-Performs calibration for each
currency based on inputted
co-terminality

-Outputs optimised parameters
and time grids into .csv file

Class UniLateralCVA

-Takes optimised
parameters, and time
grids as input
-Performs correlated
Gaussian generation,
integral calculations
and diffusions

Class DiffusionModel

-Superclass of HullWhite
-Virtual interface that
provides flexibility for
the implementation of
various models

-Uses the diffused curves to
compute CVA for a given
portfolio of cross currency
instruments

Figure A.1: Flowchart describing the overall structure of the code. Arrows in grey represent input/

output direction, arrows in red represent class inheritance. The direction is such that A — B =

" A inherits from B”
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