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Abstract

When trading financial markets with limit orders at high frequency, multiple antomated decisions
have to be made within seconds to exploit suitable data patterns. Theoretical approaches to place
limit orders in an optimal fashion oversimplify the market environment and hence fail to account
for a number of properties that limit order markets possess.

Temporal Difference Learning and Deep (3 Learning provide algorithms that are able to learn
optimal behaviour by interacting with their environment. The interaction can be based on histori-
cal data, such that real experience drives the learning progress of the agent. Both sets of methods
have previously been successfully applied in conjunction with limit orders in market making and
optimal execution.

Assuming that a combination of different signals describes the state of the limit order book
as well as the market order trading flow and price momentum, Temporal Difference Learning and
Deep (Q Learning may be able to transform the information into a profitable high frequency trading
strategy based on limit orders.

In the following work we will give a theoretical overview of tabular methods and Deep () Learn-
ing. Moreover, we focus on implementing numerous agents aiming at comparing their performance
based on simulated signals and historical limit order book data.
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Introduction

Due to the progress of technology and the immense amount of trades being initiated, a vast num-
ber of financial assets are traded electronically. This means that multiple (limit) orders can be
submitted within a very short time frame. As humans are not able to learn and make decisions
within nanoseconds based on higher dimensional input in a reliable way, automated systems can
be leveraged to use the possible speed of financial markets and to invest profitably. One approach
would be to formulate a mathematical problem, which aims at replicating the behaviour of the
financial asset as a continuous stochastic process. This setup would then be further used to de-
fine an optimisation problem, which aspires to maximise the profit of a mathematically defined
strategy. This has been done in [7] for numerous setups including market making and optimal
execution. These models make strong assumptions and may oversimplify the complex environment
of financial markets.

Contrary to stochastic control, (Deep) Reinforcement Learning is nsually model free. The idea
behind (Deep) Reinforcement Learning is to learn from experience by interacting with the envi-
ronment. The agent receives information (state), that can be compared to features in a Linear
Regression or Machine Learning problem. Unlike in Supervised Learning, the agent does not ap-
proximate a target variable but tries to maximise a numerical feedback that most likely varies
based on the current state and the action that the agent takes. After making a decision the agent
observes a new state, selects another action and receives another reward and a next state ... Fol-
lowing this scheme, the agent gradually explores its environment and adjusts its behaviour based
on the details of the learning algorithm.

The application of (Deep) Reinforcement Learning to various trading problems has already
been extensively researched. The paper by Kolm and Ritter [8] addresses the problem of how to
optimally hedge a portfolio of option derivatives. In the field of optimal execution research by Ning,
Lin and Jaimungal [9] and Schnaubelt |2] has been published. In detail, [9] demonstrates how to
use a variant of Deep Q Learning to optimally liquidate large orders. The agent makes use of a
fully connected neural network and Experience Replay. The paper by Schnaubelt focuses on the
optimal placement of eryptocurrency limit orders. According to (2] proximal policy optimisation
in combination with queue imbalances as part of the environment outperform several benchmarks.
Moreover, two papers by Spooner et al. [10],[11] connect Reinforcement Learning Agents to the
subject of market making. The findings in [10] mention that on-policy methods, in particular
SARSA, and averaging instead of a learning rate perform better and more stably. One of the
most recent papers from Cartea et al. [15] employs Double Deep ) Networks to trade in a Foreign
Exchange setup. More precisely, the agents interact with the limit order book of three currency
pairs (FX triplet), where the exchange rate of one pair is redundant due to arbitrage arguments.

In Chapter 1 we will discuss the foundations of Reinforcement Learning starting with Markowv
Decision Processes and Dynamic Programming. This is followed by an introduction to the actual
learning methods that the trading agents use. In detail, we address the workings and properties of
tabular agents such as Monte Carlo Methods and Temporal Difference Learning. Additionally, we
present Eligibility Traces which combine the two different concepts into an updating mechanism
that smoothly reduces the impact of future rewards on recently visited state—action pairs. Finally,
we briefly mention how neural networks are used in Deep Reinforcement Learning to approximate
(Q-values and hence derive an optimal policy. The next section will be dedicated to describing the
architecture, optimisation and training of feedforward neural networks. Lastly, we shed some light
on the market microstructure of limit order markets by explaining the two basic types of orders




and how the limit order book facilitates trade.

The main goal of Chapter 2 is to gain a first understanding of how () Learning and Deep @)
Learning are able to derive an optimal policy based on a simulated mean-reverting signal. The
signal is generated using an Ornstein—Uhlenbeck stochastic differential equation. We start with a
simple setting and extend it to account for additional actions and states in a more complicated
environment. In particular, we will pay attention to the convergence, aggressiveness and stability
of the agent’s performance.

Chapter 3 focuses on the application of tabular Reinforcement Learning agents to historical
limit order book data. First, we theoretically design the agent and explain the intricacies of the
backtesting environment. In order to use the valuable results from the second chapter, we em-
phasise mean-reverting signals. The intuition behind these signals is divided into four concepts:
price momentum, trading momentum from market orders, trading momentum from limit orders
and risk. The target is to find a combination of such features that enables one or more of the
agents with sufficient information to profitably invest in a gradually realistic scenario. We do so
by combining own ideas with promising research findings by Schaubelt [2] and Spooner et al. [10].

In the final section of the thesis we conclude our results and provide an outlook of what we
think could be promising next steps to even further sharpen the performance and stability of our
agents.




Chapter 1

Theory

1.1 Reinforcement Learning

We start with a famous quote from George Box:

All models are wrong, but some are useful.

Especially in mathematics, theoretical models aim at approximating real-world environments and
the interaction with them. Mostly, approaches to replicate processes with stochastic differential
equations or complex functions do not account for all features of the true environment, which
makes the model unrealistic and incorrect. Reinforcement Learning does not try to mirror the
behaviour of processes. More precisely, it is mainly based on the idea of evaluating an agent’s
decision making within its environment and the agent’s impact on its environment. In general,
given some information (state) the agent gradually learns to choose the optimal decision (action)
by maximising a numerical signal (reward). This signal may be designed in a way such that it
focuses on short term or long term success of the agent’s decision making. The exact setup of
actions, states and a reward function is very flexible and contributes to the versatile and powerful
application of Reinforcement Learning. Recent successes of this flexible set of learning methods
are the AlphaGo agent, which beat the European Champion at the game of Go in 2015 [5] and
the agent that learned to master different Atari games [4]. Furthermore, the most current paper
by DeepMind combines tree-based methods with a learned model. Schrittwieser et al. [17] claim
that their agents achieve superhuman performance in Atari, Go, Chess and Shogi without knowing
the underlying dynamics of the complex domains. The theoretical introduction to Reinforcement
Learning closely follows [1].

1.1.1 Markov Decision Processes

We start with Markov Decision Processes (MDP), as they model decision making in a discrete
time setting and in a stochastic environment. MDPs are able to choose different actions in various
scenarios (states) and then receive evaluative feedback (reward). Hence, the actions space A, the
state space § and the reward function R are the three main pillars of a MDP algorithm. We deal
with finite MDPs, which means that the state space, the action space and the reward space are
finite. The learning process is distinguished by a loop of state, action, reward, next state and next
action. This sequence is often referred to as SARSA or S, Ay, Ry jq, Sevrs A

How this theoretically endless sequence is translated into optimal decision making depends on
the design of approximating either the value hinction v(s), s € § or state—action values g(s,a),s € 8§
and a € A(s). In very general terms, the value function v(s) represents the (discounted) expected
future return of a state, whereas the state—action value g(s, a) identifies the (discounted) expected
future return of a state when selecting action a. MDPs are the foundation of so-called tabular
methods in Reinforcement Learning as they map values to states or state—action pairs that ulti-
mately control the agent’s decision making,.




When considering finite MDPs, R and 8 can be interpreted as random variables. Their discrete
probabilities merely depend on the action and the preceding state denoted by:
p(s',rls,a) :=P(S; ="\ Ry =7[S; 1 = 5,41 = a)

for all s',s € §,r € R,a € A(s). As p defines a probability measure the following equation has to
hold:

Z Zp(s’,ﬂs.a] =1.

sESreR
The probability function p completely characterises the dynamics of the MDP. We assume the
Markov property, meaning that the state s contains all the information that can make a difference

in the future [1, Chapter 3.1, Pages 47-49].
| Agent

sta‘te reward action

_ R,
_5.. | Environment

Figure 1.1: The agent—environment interaction in a Markov Decision Process as found in [1,
Chapter 3.1, Figure 3.1].

1.1.2 Expected return, value functions and policies

At some point we have to precisely define the value of visiting a state »(s) or even selecting an
action in a certain state (g(s,a)). We start by defining the expected return G, after time £. The
agent should be flexible enough to emphasise short term as well as long term behaviour. The
introduction of a discount rate v guarantees that:

T
Gt = Rip1 +79Gry1 = Z ‘ykﬁ'.1+&-+1

k=0
with 0 < 4 < 1 and R4, representing the numerical signal (reward) received after action A,.
If we deal with an episodic task T, which is potentially a random wvariable, determines the end
of each episode. If we have a continuous task at hand 7" is replaced by no. The discount rate +
represents the impact that future rewards have on the expected return at time ¢. If 4 = 0 the agent
learns based on immediate reward, where as if v = 1 future rewards heavily impact the agents
behaviour [1, Chapter 3.3, Pages 54-55].

As previously mentioned, the value function (state-action function respectively) identifies how
beneficial it is for an agent to be in a state (and choosing an action resp.). In detail, it is defined
as the expected return starting from state s (and choosing an action resp.). The expected return
Gy depends on future rewards Ry, ¢ < k£ < T, which are feedback-values of selecting actions in
different scenarios. Hence, the value function is influenced by the underlying probability distribu-
tions that define how likely it is for the agent to choose an action in a given state. This mapping
of probabilities from state to actions is called a policy w(als),s € S,a € A(s).

The value function starting in state s and following the policy 7 is defined as follows:

T
vn(s) = En[Gy[Sy = 5] =By |3 4 Ryips1|Se =5 , forall s € S.
k=0
If the agent reaches a state that can’t be left or the state always ends the current episode, it is called
a terminal state. The value of a terminal state is zero. Similarly, we can define the state-action
function under a policy n:




T
qr(s,a) = E [G|S; = s, 4, =a] = E; Z‘;A'RIH._‘_JS: =s, A =a|, foral se& ac As).
k=0

One of the most prominent features of the value/state—action function is its recursive nature which
leads us to the Bellman equation |1, Chapter 3.5, Pages 58-59:

a

n(8) 1= Ex[Rep1 + 7G| Se = 8] =Y wlals) Y pls' rls,a)[r + yve(s)] (1.1.1)

and

Gx (8, a) i= Eﬂ[-R!+1 +vGe41|S: =5, A = ﬂ] = ZF(-“FJ‘-?,G)?’ + ‘rZﬂ(a'IS’)q«(S’,a')‘ (1.1.2)

The main goal of each agent is to find the optimal policy. An optimal policy achieves greater
or equal expected return than all other policies in every state s € S.

wEa = upls) = v ls) (1.1.3)

If equation (1.1.3) holds for all policies 7', we have the optimal policy .. There could be several
optimal policies which all share the same optimal state—value and optimal action—value function:

e l8) 1= max, v (s),

gu(s,a) ;= maxy gx(s,a) for all s € §,a € A(s). (1.1.4)

The equations in (1.1.4) can be rearranged to the so called Bellman optimality equations:

v.(s) == max g (5,0) = max ) p(s'srlsa)lr +7u.(s)]

&

@ (s,0) = Y p(s'srls,a)[r + 7 maxq,(s', a')]

s

1.1.3 Dynamic Programming

Dynamic Programming (DP) assumes a perfect model of the environment as a finite Markov Deci-
sion Process including model dynamics p(s,r|s,a). Hence, DP provides an important theoretical
foundation for Reinforcement Learning, but is mostly not applicable due to its unrealistic assump-
tion of a known environment and its great computational costs. DP focuses on the search for good
policies by using value functions. As a first step we focus on policy evaluation, which computes
Un. 7 i8 an arbitrary policy. 1f we recall the Bellman equations ((1.1.2), (1.1.1)), we can see that
given a completely known model, the value function is a linear equation system with |S| equations.
Due to the normally high number of states, iterative policy evaluation is preferred [1, Chapter 4.1,
Pages T4-76|:

Vg1 = Eq[Rep1 + YUe(Seq1)]Se = 8]

= 3" n(als) 3 p(s rls @) [r + yor(s)).

It can be shown that v, converges to v, as k — oco.

Apart from deriving good estimates for the value function, we would also like to optimise our
policy. One way of doing that is to change to a deterministic action a #m(s) in a certain state
s with a € A(s) and observe if ¢, (s,a) = v,(s). If so, it is better to always select the action a
deterministically than sticking to the policy w. This is proven by the policy improvement theorem:

Theorem 1.1.1. Let w, 7" be any pair of deterministic policies such that, foralls € S, q, (s, 7'(s)) =
vx(s). Then w' must be as good as or better than w. This also means that vy (s) > va(s).

10




Now, we would like to change the policy 7 at all states such that ¢, (s, a) is maximised:

7'(s) : argmax g.(s, a)

@

argmax E[Ry.11 + 0, (Se41)]|S: = s, 4 = qf

1

argmaxz;p(.?', rls,a)[r + . (s')].

s’

This strategy is called greedy and selects the actions that look to be the best ones. Making
a policy greedy is called policy improvement, which is in line with the policy improvement theorem.

As a next step we can combine policy evaluation and policy improvement. First we evaluate a
starting policy 7y to get our first estimate of the value function v,,,. Then we make our strategy
greedy (m ) and use m; to derive the second estimate of the value function (v, ). This alternating
process of evaluation and improvement is called policy iteration [1, Chapter 4.3, Pages 80-81].

E I E I E I E
Mo —FVgy —F T —F Uy —F T —F -+ —> T —> Vs

Figure 1.2: The E stands for policy evaluation/prediction and I stands for policy improvement.
This graphic can be found in [1, Chapter 4.3, Page 80].

Algorithm 1: Policy iteration (using iterative policy evaluation) for estimating 7 = 7.

1 1. Initialisation

2 V(s) € Rand w(s) € A(s) forall s€ &
3 A=00

4 Set # to a small positive number determining the accuracy of estimation
5 2. Policy Evaluation
G
7
8
9

while A > # do

A=10
for each s € § do
v=V(s)
10 V() = X, P75, 7 () + 1V (5)]
11 A = max(A, |v — V(s)])
12 end
13 end

14 3. Policy Improvement
15 policy-stable = True
16 for each s € § do

17 old-action = «(s)

18 m(s) =argmax, »_..  pls,rls,a)[r+~V(s')
19 if old-action # w(s) then
20 | policy-stable =False;
21 end

22 end

23 if policy-stable then

24 STOP

25 Return V' = vy, ™= m,;
26 end

27 if not policy-stable then

28 | Go to 2.

29 end

11




1.1.4 Monte Carlo Methods

So far we have introduced a theoretical foundation for Reinforcement Learning. This chapter
presents the first actual learning technique. Before that, let us discuss the difference between on-
and off-policy. An on-policy method only works with one policy that is responsible for sampling
and learning. The policy that makes decisions is also the one that has to be improved. Contrary
to that, ofl-policy methods separate evaluation and decision making. One policy explores the en-
vironment and makes decisions, whereas another one is optimised based on the experience coming
from the first policy.

In contrast to MDPs and Dynamic Programming we do not assume complete knowledge of the
model environment. In principle, Monte Carlo methods sample sequences of Sy, A, By 11, Si1, Ai
and use this experience to form value estimates by averaging sample returns for each state or state—
action pair. Value functions are updated only after an episode has terminated. The termination
of an episode can either be determined by visiting certain states or by the number of time steps
since the last update. Again, we start with the prediction (evaluation). Obviously, it is possible
that a state s is visited multiple times following a policy = within one episode. The first-visit MC
only takes the first visits per episode of a state into account, whereas the every-visit MC applies
the averaging of returns to all states that have been visited. Both methods converge to v, (s) for
all s € 8§ [1, Chapter 5 and 5.1, Pages 91-92].

Algorithm 2: MC prediction, for estimating V' = v,

1 Input: a policy 7 to be evaluated

2 Initialize:

3 V(sjeR, forallse S

4 Returns(s) = empty list for all s € 8

5 Decide if first-visit=True or first-visit=False for every visit MC
6 while True do

7 Generate an episode following 7 : Sy, Ag, f1, 51, A1, Ra. ..., S, Ap 1, Ry
8 G=0

9 for each step of episode, t=T-1, T-2, ..., 0 do

10 G =R, +79G

11 if S; not in Sy, S1....,Si—1 or not first visit then

12 Append G to Returns(S;)

13 V(S:) = Average( Returns(St))

14 end

15 end

16 end

In practice one would implement the updating rule in a different way. To store all the returns
in a state specific vector is memory-wise unnecessary and inefficient. A different way to do this
would be by online calculation:

., nVu(s)+ G
Vigi(s) = a1l
with Vj.(s) the estimated value function for state s using k experienced returns and G the current
return.

The same procedure is also applicable to state-action values. Especially when we do not have
knowledge of the model, the approximation of state-action values is useful in order to suggest a
policy. One problem ol estimating state-action values is that many state-action pairs may never
be wvisited. This issue can be attacked by letting the agent explore and not act greedy all the time
when sampling Sy, Ay, Ry 1, Sip1, Aep1. In episodal tasks exploring starts help the agent to visit
all state-action pairs multiple times by assigning non-zero probabilities to all state-action pairs
of being chosen to start an episode. In addition, when sampling the SARSA sequence, the agent
could follow an e-greedy strategy, which chooses the greedy action with probability 1 — e and a
random action with probability e:

12




argmax,c 4(s) ¢(8, ), with probability 1 —e + |A‘—§|
T(s) = - . - A
a # argmax, . 4. q(s, a), with probability AT

The so-called MC control works conceptually exactly as the policy iteration. Its an alternating
process of first visit/every visit MC prediction and making the policy greedy with respect to the
current value function [1, Chapter, 5.3, Pages 97-99].

When it comes to updating values there are two main concepts that may be followed. The first
one, as already introduced, is averaging. The second one is using an error term and a learning rate
a. The error term represents the difference between the new and the old estimate.This can also
be applied to Monte Carlo:

Vitil(s) = Val(s) + alG — Va(s)]

with n denoting how many updates have already been done and G the current expected return.

1.1.5 Temporal Difference Learning

Similar to Monte Carlo, Temporal Difference (TD) methods learn from experience. Again, for
this to be successful we do not need to have knowledge of our environment. In addition, TD
uses features of Dynamic Programming, as it makes use of bootstrapping: TD updates current
estimates based on other learned values and does not wait for the end of an episode to do so.
As in previous chapters, we first concentrate on predicting the value function. The one-step TD
updating rule (TD(0)) looks one step ahead into the future and uses a learning rate to adjust the
current estimate:

V(S:) = V(S,) + alRery + 24V (Sea1) — V(Sy))- (L15)

It has been proven that for a fixed policy 7 the TD{0) method converges to the value function
under the policy ;.

We have seen before that when the model is unknown it is very useful to approximate state—
action values as they contain more information about improving the policy. There are several
TD(0) updating rules regarding Q-values. Most of them closely follow (1.1.5). One example would

be

QIS A) = QS Ar) + o Ry +7Q(St41, Apr) — Q(Ss, Ay (1.1.6)

In episodic tasks all terminal states s have g(s,a) = 0. Formula (1.1.6) uses five values: S,
Ay, Rip1. Sipq, Aspq. Hence, it is called SARSA and is an on-policy TD Control method. It
uses only one policy that gradually develops thorough state action values. Policy improvement is
accomplished by making 7 greedy with respect to the learned Q-values [1, Chapter 6.1 and 6.4].

Algorithm 3: SARSA (on-policy TD control) for estimating () = ¢,

1 Algorithm Parameters: step size a € (0,1], small € > 0

2 Initialize Q(s,a), for all terminal states s € ST, a € A(s), Q(sT,a) =0
3 for each episode do

4 Initialize S

5 Choose A from S using policy derived from ) (e.g. e-greedy)

6 for each step of the episode do

T Take action A, observe R, S’

8 Choose A" from S’ using policy derived from @ (e.g., e-greedy)

9 Q(S~A) :Q(SEA)fa'[Rf-fQ(SrrAF) 7Q(S~A)]

10 S5=5
11 A=4
12 end

13 end
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The most common off-policy TD Control method, that is used in later stages of the thesis is )
Learning [1, Chapter 6.5, Pages 131-132].

CQ(Ss, Ag) = Q(Se, Ay ) + f-\'[R:H - mri‘-xQ(S!+l.~aJ - Q(stx‘lz)] (L1.7)

The approximated QQ-values are independent of the policy that generates the data. However, the
use of the maximum sometimes develops too optimistic state—action values. It can he shown that Q
Learning converges to ¢, with probability 1. The algorithm is the same as the SARSA one except
from replacing line 9 with the new updating rule shown in equation (1.1.7). Instead of nsing the
learning rate approach one could apply averaging of values. For SARSA:

Qnir (S Ay = n@Qn (St Ae) + Reyr + ‘IQ(S:+1.~A:+1)I (1.1.8)

n+1

1.1.6 TD()) — Eligibility Traces

So far we have seen two main concepts of how an agent can learn its state or state—action values.
Eligibility Traces (T) combine those two methods, which may lead to more efficient learning.
The ET-parameter A € [0,1] decides if the learning method is closer to Monte Carlo (A = 1) or
TD (A = 0). An Eligibility Trace E; can be interpreted as a vector that tracks a value for each
state or state-action pair. For TD(A) that value starts at 0 for all s € 8 and potentially a € A(s).
Ei(s) = Er-1(s)+1 (Ei(s,a) = Ey_1(s,a) + 1) if the agent is in the state s at time ¢ (and chooses
action a respectively). After each discrete time step, the whole Eligibility Trace is decayed by the
discount rate v and A : E:q = EiAy, meaning the value is high if the state (state-action pair) was
recently visited and decays exponentially if the state (state—action pair) has not been visited. The
TD error & = Rypq + W (Si1) — W(S;) impacts all states (state-action pairs) in the following
way

”r"’g_'_l = Hg =+ t'.'tEt Jg

with W representing a vector of state or state-action values. Thus, the current error is projected
backwards in time and modifies especially those state or state—action values which have recently
been visited.

Figure 1.3: The backward view of TD(A) as found in [1, Chapter 12.2, Figure 12.5]. Each update
depends on the current 6. However, the Eligibility Trace (z; in the picture) of past events decides
how large the impact of the current TD error is on the previously visited states.

This procedure is computationally efficient as only one value per state or state-action pair has
to be saved and the update at time t does not involve waiting for future rewards. This also reduces
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the complexity of the algorithm [1, Chapter 12.2, Pages 292-294].

Algorithm 4: SARSA (on-policy TD(A) Eligibility Trace) for estimating () = g,
1 Initialize ()(s,a) arbitrarily for all s € §,a € A(s)

2 E(s,a)=0,s€ 8,a c Als)

3 Initialize a,~ € [0,1], A € [0, 1] for each episode do

4 Initialize S

5 Choose A from S using policy derived from @ (e.g. e-greedy)
6 for each step of the episode do

7 Take action A, observe R, S"

8 Choose A’ from S’ using policy derived from () (e.g., e-greedy)
9 §=R+~Q(5,A") —Q(5,A)

10 E(S,A) = E(S, 4) + 1

11 RQ=0Q+alk

12 E=FEvyA

13 S§=5

14 A=A
15 end
16 end

To change the algorithm to the () Leaning Off policy TD(A) the error § would be defined as the
term in square brackets in equation (1.1.7).

1.1.7 Deep Q Learning

Until this point we have only considered tabular methods as states or state-action pairs were
mapped to a value. This also means we indirectly assumed a discrete and finite state space &
and action space A(s). What if we want to include continnous features in the environment? The
infinite number of possible states prevents us from using tabular methods: First we could not
implement a table that contains infinite values. In addition, tabular Reinforcement Learning relies
on the fact that states are visited multiple times and then form a rough estimate based on multiple
updates. With a continuous state space S that would hardly be possible.

The idea of Deep () Learning is to use a neural network to predict state-action values. The
input to the network is the state s, usually consisting of continious variables. Output is a vector
of state-action values (one for each action) that could have been chosen given the input state s.
Before we focus on the learning itself we introduce the concept of Ezxperience Replay. At each time
step ¢ the agent’s experience consisting of e, = (S;, Ay, By 11, Sip1. Aspq) 18 appended to a replay
buffer M of limited size. The replay buffer is normally a queue such that it follows the “First In
First Out” or “FIFO” principle. After a pre-defined nmumber of time steps a minibatch is randomly
sampled from the replay buffer M. This can be considered training data for the neural network. As
the experience sequence is likely to be correlated, random sampling reduces the risk of overfitting.
The last question to be solved is the determination of our target vector Y;. All actions that are
not selected are assumed to be correctly predicted. The state-action value belonging to the chosen
action A, is modified in the following way:

R;, for terminal S;

R; + vymax, (S;41,a,8;), for non-terminal S; (1.1.9)

Y (A,) ::{

with Q(St41,a,6:) representing the predicted state—action value of action a by the network taking
the state Sy, as input. The parameter #; identifies the weights of the network at time ¢. After the
determination of the target vector Y; the network is fitted to the new observation using stochastic
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gradient descent. This section is based on |20, Chapter 3, Pages 54-86].

Algorithm 5: Deep () Learning with Experience replay after each episode for estimating
Q=aq.

1 Initialize replay memory M with capacity N

2 Initialize ()(s,a) arbitrarily for all s € §,a € A(s)

3 for each episode do

4 Initialize S

5 Choose A from S using policy derived from @@ (e.g. e-greedy)
6

7

8

9

for each step of the episode do
Take action A, observe R, S"
Choose A’ from S using policy derived from () (e.g., e-greedy)
Store trausition (S, A, R, S, A") in replay buffer M

10 §=5

11 A=A

12 end

13 Sample random minibatch of transitions (S, A, R, 5", A"} from M
14 Determine target vector Y} for all transitions using equation (1.1.9)
15 Fit network to data via gradient descent using backpropagation

16 end

The formula to caleulate Y, could also be adjusted to the SARSA updating rule.

1.2 Feedforward Neural Networks

Neural networks are at the heart of Deep Learning algorithms, which are a subset of Machine
Learning techniques. In this chapter we will briefly introduce the structure of feedforward neural
networks (FNN) and emphasize how the training process works. The definitions and algorithms
are based on [6] and [13].

A neural network takes an I (I € N) dimensional input and leverages complex optimisation
techniques to approximate an O (O € N) dimensional output. A FNN consists of an input layer,
hidden layers and an output layer, which each consist of neurons (or units). In a fully connected
FNN all neurons from the n-th layer are only connected to each neuron of the n + 1-th layer. A
connection means that data multiplied by a weight w, w € R, is sent from one neuron to the other.
At each neuron itself the activation function modifies the data as well. There exists one activation
function per layer, but different layers may apply different activation functions. The weights (resp.
biases) belonging to each connection (resp. neuron) are represented via a weight matrix W (resp.
bias vector b). Formally we define a feedforward neural network in the following way:

Definition 1.2.1. Let 1,0,r € N. A function £: B! — R? is a feedforward neural network
(FNN) with » — 1 € 0,1,... hidden layers, where there are d; € I units in the :-th hidden layer
for any i = 1...,r—1, and activation functions o,: B% — R% foranyi=1,...,r whered, = O, if

f=o,0L,0-+-00, 0Ly,
where L;: B% — R% for any i = 1,...,7 is an affine function

L;=Wiz+b,zeRd1,

dik=1....d:_, and bias vector b* = (b,... b} ) €

parameterised by weight matrix W' = [W? ],;_,
R, with d = 1.

FNNs are applicable to regression and classification problems. Similar to a Linear Regression,
neural networks minimise a loss funetion, which measures the distance of the predicted values to
the true values. In contrast to a Linear Regression and due to the complex structure of networks,
there does not exist a closed-form solution of matrix multiplications.

Usually, the training of a neural network lasts multiple epochs. Each epoch e randomly samples
disjoint minibatches Bf. These minibatches are used to calculate the stochastic gradients. First let

16




Hidden
Layer 2
Hidden

Layer 1

npu .
:-;etr %@\ QOuput

_ l ‘s\." Y, /: X Layer
207 '.’06‘ 4

ALK AN
X AR S
KX AR 2%

",

.
o) 2%
o P
/ Qutput
Input [N,3]

(5,7

Figure 1.4: Graphical representation of a feedforward neural network with 2 hidden layers consist-
ing of 5 and 7 units. The input is 4 dimensional whereas the output is 3 dimensional [14]. f; and
fo denote the activation functions, N the number of observations the network is trained with and
W the weight matrices.

us imagine that the loss function is subject to a very high-dimensional input. This input consisting
of weights and biases represents the parameter set to be optimised such that the loss function is
minimised. The search for a global minimum is conducted by the Stochastic Gradient Descent

(SGD).
Algorithm 6: Stochastic Gradient Descent

1 Initialize minibatch size m € M such that N = km for some k€ I
2 Initialize learning rate e > 0, initial weights and biases # and number of epochs E
3 fore=1,...,F do

4 Sample disjoint By, ..., B} such that [Bf| =m,Vj=1,...,k
5 if e=1 then

6 | 6[‘} = 9[]

7 end

8 else

o | | t=60"
10 end
11 fori=1.....kdo

12 | 6 =6, —aVelp: (0 1)
13 end

14 end
E
15 return 6

with VeLg=(0_,) identifying the stochastic gradient of the loss function based on the i-th mini-
hatch within the e-th episode. The predictions for Bf are calenlated using the previous parameter
set (07 ;). The stochastic gradient in each direction is derived via backpropagation. As the name
indicates, this technique starts at the output layer of the network and sequentially calculates the
stochastic gradient (details can be found in [6]).

1.3 Limit Order Markets

In this chapter we introduce limit order markets and explain how different types of orders can be
used to buy and sell assets. As this section is based on Bouchaud et al. [21, Chapter 3, Pages 44-57]
we can recommend this book for a more advanced theoretical study of market microstructure and
limit order markets.
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A limit order market’s goal is to facilitate trade in an organised and secure way. The main
features of such a market are the limit order book and the matching algorithm. The limit order
book (LOB) is a discrete price grid. The distance between two prices is called ticksize. The relative
ticksize (ticksize/mid-price) may indirectly impact the shape of a LOB. At each price, traders can
submit a special type of order called limit order to fill up the LOB. There are two types of limit
orders: bid and ask limit orders. A bid (ask) limit order corresponds to the obligation to buy
(sell) an asset at a specified price and a specified quantity if the order is matched. A limit order
is uniquely defined by four features: direction d, time f, price p and quantity g. A limit order can
be interpreted as an offer to buy/sell and hence provides liquidity to the market. For this offer,
traders receive a slightly better price as bid limit orders are below the mid-price and ask limit
orders are above pyriq. Hence, a trader submitting a limit order has the chance to buy lower and
sell higher than pjs,;g. The mid-price is calculated in the following way:

Puialt) = M (1.3.1)

with ap(t) being the best (lowest) ask and by(f) the best (highest) bid price in the LOB at time ¢.
A bid (ask) limit order with a price higher (lower) than or equal to the lowest ask (highest bid) is
treated as a market order.

Normally, there is no gnarantee that a limit order is going to be executed as the incoming order
flow of market orders determines which orders in the LOB are going to be matched. A buy (sell)
market order is immediately matched with ask (bid) limit orders in the queue of the lowest ask
(highest bid) price. This means, that for the guarantee of execution a trader using market orders
pays a small premium, as he/she sells below and buys above the mid-price. A market order can
be identified by three features: direction d, time ¢ and quantity g. In contrast to limit orders the
price is automatically detected based on the shape of the limit order book.

Limit Order Book at tp Limit Order Book at t; Limit Order Book at t;
mid price ol mid price mid price
o Bid Limit Orders &0 . Sell Market Order 0 Bid Limit Orders
0 Ask Limlt Orders sol Bid Lmit Ordars 0 Ask Limit Orders
Ask Limit Orders
L 40 @ 40 | o 40
£ E | £
230 2 30! | 2 30
£ E 2
20 204 20
10 04 H 10
0 o 4
a7 98 9 100 10 102 97 98 99 100 101 102 97 98 9 w0 101 02
Price Price Price

Figure 1.5: Graphical representation of a limit order book at three times. Left: Initial LOB;
Center: Sell market order consuming liquidity; Right: LOB alfter executed trade.

Figure 1.5 illustrates the development of the limit order book following the price-time priority
algorithm, which is the most common to be responsible for matching orders at an exchange. The
algorithm automatically looks for the best price and matches limit orders according to the“First In
First Out” (FIFO) principle. Limit orders that have been submitted earlier will be executed before
limit orders that have been submitted at later times assuming they are quoted at the same price.
This means orders are queueing up. Thus, the volume at any price in the LOB is also referred to
as a quene.

The left graphic in Figure 1.5 represents the initial scenario (£3). At {; a relatively large sell
market order arrives at the exchange and consumes the whole liquidity at the best bid (by(t:) = 99)
and also about 70% of the volume at the second best bid price by (f;) = 98. The ask side remains
unchanged as no buy market orders or ask limit orders have been submitted or cancelled. At ¢, we
can observe that the mid-price has moved down and liquidity has been consumed on the bid-side
of the LOB. This example points out that buy market orders drive the mid-price up while sell
market orders decrease pasia.
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1.3.1 Stochastic Control and Market Making

In this section we briefly present the stochastic control setup for market making proposed in [9,
Chaper 10|, as it is the closest theoretical model to what we are trying to achieve in the model free
Reinforcement Learning setting. A market maker quotes limit orders on both sides of the LOB
and tries to maximise its profit by earning the spread ay(t) — by(t). The control of the market
maker is the depth at which he quotes prices. We define the following processes:

e S = {5;}4>0 denotes the mid-price, with Sy = Sy + oW,,0 > 0 and W = {Wi}izp is a
standard Brownian motion.

o i = {5?"_};:4} describes the distance to the mid-price S. Buy (sell) limit orders are
posted at Sy + 5?’ (5S¢ —d; ).

o M+t~ = {M;"" }4~¢ is the Poisson process with rates At~ counting the arrival of other
market participants buy (+) and sell (-) market orders.

o NOT = {i\"f‘+'_ }i>0 denote the counting of filled sell (+) and buy (-) limit orders.

—xt et

Conditional on market order arrival, the posted limit order is filled with probability e
with k't~ = 0.

e X9 ={XJ},~, defines the Market makers cash following :
dX® = (8- + 6, )N — (S — 6,7 )N

Finally, the agents inventory is the difference of the counting processes Q° = {Q?};5¢ with
QF = N> — NI

It should be mentioned that N4+~ are not Poisson processes, as they do not '1.1“"'1\«‘\ Jump

up whon m'trkot orders M, increase. The fill rate of limit orders can be written as A! =
- -
Ao Tem TR

As mentioned before the market maker’s strategy depends on §™~ and will be defined aver
an finite time horizon [0,7]. The terminal inventory Q% is liquidated with a worse price than

the mid-price. In general the inventory process moves within ¢ < QF < ¢;,q_ < 0 < ¢4. The
objective it to maximise the following expression:

T
He(t,7,8,q) = Frugs | X7+ Q5 (S5 — aQf) — .:.ﬁf (Qﬁ)Qdu]
t
with ¢, o > 0 constants. Hence, the value function is:
H{t,z,8,q) = Ho(t,z, S,
(£,z,5,q) ;= max H'(t, z, 5, q)
with .4 not denoting the discrete space of actions but the set of admissible strategies. Next, we
present the Hamilton-Jacobi-Bellmann (HJB) equation. More information about the theoretical
foundation of solving stochastic control problems can be found in [12].
: L o, s 2
0=a:H+ 39 desH — ¢g
A sup{e ™ (H(t,z+ (S +6%),q— 1.S) — H(t,2,4,5)Higaq_y
&t

+ AT séltp{g*"'_‘st_(ﬂ(f,;r - (S - oi)rq T lrs] - H(fr:]-‘rqrs]]}]l{rﬁ;q.'_}

corresponding to the terminal condition H(T,z,S5,q) = = + ¢(5 — aq). In order to simplify the
HIB we define the ansatz

H(T,x,54q) :=x+qS+h(t.q)
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which transforms the terminal condition into h(T, q) = —ag®. The HJIB reduces to
0= dh — aﬁq2
+ 2T supfe™ (@ + hitg = 1) = h(t, )My
4t

+ AT sup{e ™ (67 +hit,q+1) — hit,q) Migeq,)
i
It can be shown that the optimal depths result in

= »--1+ —hi(t,g— 1)+ hit,q),q # q-

5 =

—hit, g+ 1)+ hit,q),q # q..

K
The boundary conditions for the stochastic control § are d**(f,q;) = 6~ *(f,q—) = co. If we set
¢ =a =0,q4 = |g_| = oo the optimal depth is given by 67~ = ——. Hence, —h(t,q+—1)+h(t,q)
can be identified as the inventory cost. Moreover,with no inventory restrictions the function h
solving the H.JB can be shown to be

h(t) =e ! (i: + A—:) (T —1).

K

e

Hence, the market maker neglecting inventory boundaries and liquidating at the mid-price at T
simply maximises the probability of filling his/her limit orders at every time step independent of
time and inventory.




Chapter 2

Trading the Ornstein—Uhlenbeck
Process

We start the application of Reinforcement Learning with agents trading on a mean-reverting process
in a very simplified setting. The price or signal process is simulated with the following Ornstein
Uhlenbeck stochastic differential equation (SDE):

dX; = 0(p — Xe)di + oW (2.0.1)

with W} a Brownian Motion, the local standard deviation o, the mean-reverting speed ¢ and the
mean-reverting value p around which the process X; oscillates. The closed form of the SDE can
be shown to be

[
=
[

t
Xy = Xoe "+ (1 —ﬁ-'“)—o/ e~ maw,. (2.
0

From now on we interpret the simulated Ornstein—Uhlenbeck process as a stock price, which
the agent can instantly buy or sell. As the process described by (2.0.1) fluctuates around the
mean-reverting value p, the ultimate goal of the agents would be to simply buy low and sell high.
All simulated processes use the same parameter setup:

In order to simulate instances of the process we first divide the time interval [0, 10] into a partition
t = [to,t1, ..., tos, tag| with equally distanced time points and A =#; —#; = ... = tgy — tgg. The
following iterative equation based on (2.0.2) is used to determine a realisation of the Ornstein
Uhlenbeck process:

Xo =p
Xipy = Xp e 4 p(l— ) + TV -2 Z;
<i1<99,:eN

with Z; ~ A(0,1) independent and identically distributed standard normal random variables. In
order to simplify the notation, we refer to t; = i.

In this chapter we introduce 3 conceptually different agents, which either use () Learning or Deep
Reinforcement Learning. In addition, we consider two different inventory restrictions for the agents.
The simplest environment only allows an exposure of one stock in both directions (long/short) of
the market, whereas the more advanced setting allows a maximum long/short position of 5 stocks.
Apart from finding an optimal strategy each agent aims at performing better than the Bollinger
Band strategy. If X¢ > BOLU; the Bollinger Band strategy sells and if X; < BOLD; the strategy
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buys with

BOLU; := EWM A, + VEWMVAR,

BOLD, = EWMA, — VEWMV AR,

EWMA, :=a¥"_  Xi(1—a)! (2.0.3)
E"‘:"’J‘IAI_H_ = :"t'XH.]_ + [l — n]EHMA:

EWMVAR. 1= (1 - a)(EWMVAR, + a( X1 — EWMA))2

The main goal of the agents is to maximise the profits from trading (Profit and Loss, PnL) over a
number of 100 time steps. Accordingly, the problem is setup as an episodic task and 0 < t < 100,
t € N. In this chapter the agents action will not have a market impact on the price of the stock. All
agents act e-greedy, meaning that at each time step with probability € a random action and with
probability 1 — e the action corresponding to max, (s, a),s € 8,a € A(s) is chosen. The initial-e
is always 1. Thus, especially in the beginning the agents mainly explore. After each episode € is
decayed: €41 =¢€; -1, n € [0,1]. In the following, 5 is also called e-decay. The pseudo code looks
as follows:

Algorithm T: Reinforcement Learning Framework for all agents

1 Initialize agent () Learning or DQN) including the parameters +, e, 77, minimum-e,
Number Episodes, «/ learning rate, Q-tabular /Network architecture;

2 Episode=1

3 while Episode < Number Episodes do

4 Generate Ornstein—Uhlenbeck process X;
5 Initialize first state S,

6 PulL =0

7 done = FALSE:

8 t=0;

9 while TRUE do

10 e-greedy agent selects action A,

11 Determine next state Sy 1

12 Calculate reward Ryqq

13 Update PnlL;

14 if @ Learning agent then

15 | Update Q-values;

16 end

17 if DON agent then

18 | Append (5;, Ay, Ry i1, Sipq) to replay memory;
19 end

20 t+=1:

21 if t == 100 then

22 Save PnL :

23 break:

24 end

25 end

26 if DN agent then

27 Sample batch size from replay memory;
28 Determine target vector Y for batch size;
29 F'it network(s) of the DQN agent;

30 end

31 €441 = min(e; * 7, minimum-e)

32 Episode+=1
33 end

The implementation is done with the programming language Python. The code is publicly
available on https://github.com/arvidbertermann/RL_1ib. A mathematical analysis
and practical guidelines of how to optimally trade the Ornstein-Uhlenbeck process can be found
in [19].
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2.1 One Long/Short Agents

In this chapter we introduce the agents with the one long/short inventory restriction. A descrip-
tion of the general setup is followed by detailed information about the different agents including
first qualitative insights into the learning success of the agents. In the end a quantitative analysis
evaluates and compares the different agents.

When setting up a Reinforcement Learning algorithm one has to specify the state space S,
the action space A and the reward-function R. In this setting a single state consists of three
components S; = (S§},5%,57) € 8§ Depending on the Reinforcement Learning algorithm the
specific information/values delivered by a state vary. In general:

e S} gives information about the current value of the stock price.

e S§7 gives information about the value of the stock price at the last point of time when the
exposure was switched from either —1 to 1 (short to long) or 1 to —1 (long to short).

e S} e {-1,1}, with —1 (1) indicating the short (long) exposure of the agent.

The state space & can be divided into two different sub-spaces ST and 87, solely depending on
the third component 5P of the current state S;. In detail, 5} = -1 = S, €8, 5 =1 =
s; € 8T. The inventory of the agent directly impacts the action space .A4(s):

S}=—1 = Are{nb}, S5 =1 = A, €{s,n} (2.1.1)

with n (“nothing” ) meaning that the exposure does not change, b (“buy” / “short to long”) resulting
in neutralising the short position and buying another share and similarly s (“sell” / “long to short™)
resulting in neutralising the long position and selling another share. Thus, the exposure S} remains
either —1 or 1. The reward function is defined by the following map R @ & x X x X — R:

Ripr = 5P (Xegr — Xo). (2.1.2)

Interpreted from a financial market perspective, the reward is the current exposure times the stock
performance from time f to £ + 1. As an example, if the agent is long (Si; = 1) and the stock
price jumps from X; = 99 to X, = 100 the reward is 1. The PnL is defined as follows

i
PnLe =2 Xi(lia,—¢ — Lga,—p)) + Sy Xoo. (2.1.3)

t=1

At t =99 the agent neutralises its position.

2.1.1 Q Learning

The first, most simplified agent (@ agent), nses @ Learning to learn optimal investment decision
making. As mentioned in section 1.1.5 this algorithm adjusts its (}-values according to the following
update rule:

QS Ar) = Q(Se, Ar) + o (He + - max Q(Ser1,a) — Q(St, Ar)).

In the introduction to this chapter the action space A, the reward function R and the third
component of the state space & have already been explicitly defined. () Learning is a tabular
method, which lists all state-action pairs and keeps track ol Q(s,a) over time. Independent of
the exposure, we have two different actions for each state as explained in (2.1.1). The memory
needed to store the Q-values depends on the number of possible combinations of S} and S2. If
one would choose the first two components to be continnous values, () Learning would not be a
suitable method to train an agent, because a single state would most likely be visited at most once
due to the infinite number of possible combinations. Hence, we discretise the state space in the
following way: We instantiate a process-memory ﬂft)_ﬁ_.. which contains the last 1000 observations
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of the price process across episodes e at time f. Based on a vector b; . of barriers, which represent
quantile-values of M¥,, the bucket numbers of S} and 57 are determined. In detail,

soagX MMM MY M M
bre := [min Mg, gy 1" 0.2 Go.a" G0 0.8 "> Goe 00 0 <t <100 tEN (2.1.4)

S} =i+ 1, such that X; € [by o[i], b o[i + 1]) with b [0] = minﬂ:’t)“; L0<t<100,teN (2.1.5)

S%:= S, such that mjzaxﬂf’ £82 0<k<t<100,kteN (2.1.6)

x
e

where qﬂf"' represents the p- 100% quantile value of M’i‘;.

In summary, S} and S7 take integer values from 1 to 7 resulting in 49 possible combinations
with two different exposure values (—1,1) and two different actions (b/n, s/n). Hence, this setup
consists of |§| = 98 states and |Q(s, a)| = 196 Q-tabular values with s € &, a € A(s). All Q-values
are initialised to 0. The first state Sy of each episode always starts with (S}, S7) = (4,4) and
SE=Y, Ve {11} with P(Y = —1) = B(Y = 1) = 0.5.

As mentioned before, in this section, we would like to emphasise the learning progress of the
agent from a qualitative perspective. At later stages, the PnL of several agents and properties of
their convergence will be investigated quantitatively. All results shown regarding the @ agent were
generated with the following parameter setup:

a=01,v=10.9, episodes = 2500 ,

initial-e = 1 , minimum-e = 0.01 , e-decay = 0.998

Figure 2.1 illustrates that in the beginning the exposure-changing actions have similar distribu-
tions with respect to the value of the process. This is due to the high initial exploration of the agent.
The upper right graph shows, that the agent starts to learn a strategy as the action-histograms
move away from each other. The lower left graph confirms that the agent clearly develops a ten-
dency to “buy low and sell high” after 1400 episodes by separating the values of the stock price
into a “buy” and “sell” dominated region. To further evaluate the agent, Figure 2.2 displays the
detailed investment process of the first and last episode including the PuL development over time.
Matching the initial observations from Figure 2.1, the decisions taken by the agent in the left graph
are mixed, whereas the right plot shows a clear distinction between “long to short” and “short to
long”. The learned strategy unsurprisingly results in a higher profit.

Action Splitting of Q Learning Agent Action Splitting of Q Learning Agent
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Figure 2.1: Action splitting of @ agent demonstrated by histograms of long to short/short to long
investment decisions.

Finally Figure 2.3 reveals the state-action values @(s,a). The number on the x-axis can be

interpreted as follows: The sign determines the exposure, meaning that - /+ indicates a short/long
position. The first/second digit represents S}/S7 of the state S¢. For instance, Sy = —57 means
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Figure 2.2: Profit and Loss (2.1.3) including investment decisions of () agent for the first and last
episode.

that at time ¢ the value of the process is in bucket number 5 and that the last “long to short”
action was taken in bucket mumber 7. The upper plot shows that given a long exposure, the agent
prefers doing “nothing” for low values (11 — 37) of S;, whereas for high values (50 — 77) the agent
decides to change its exposure. These observations are independent of the second digit. The lower
plot displays similar patterns : The agent holds its position for low states ((—77) — (—51)) and
changes its exposure for high S; ((—37) — (—11)) given an inventory of —1.

The middle bucket 4 is unsurprisingly the only one, where the action of the agent depends
on the last exposure change. Most likely all values of the process X; represented by the middle
bucket are close to the mean-reverting value . Thus, it is the most unpredictable value-region
of the process. This might be the reason for the mixed strategy of the agent and the dependence
on the second digit. In addition, there are large differences between (Q-values given the first digit
and the exposure of the state. In detail, high (low) values of S7 and S? = 1, (S} = —1) result in
significantly lower (Q(s,a), which intuitively makes sense as the agent bought (sold) the stock at a
relatively high (low) price.

Q-values for all State-Action pairs
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Figure 2.3: Q-values for all state—action pairs after 2500 episodes of training.

In conclusion, the bucket representing the current value of X; and the exposure dominate the
strategy of the agent. However, S? clearly affects the expected return of a state-action pair but
mostly not to the extent that it would change the agents decision given S}. The second component
of the state only impacts the decision making for the most unpredictable part of the price process.
Hence, the agent might learn as successfully without the 7 information. This would simplify the
task even more to only |§| = 14 states and |Q(s,a)| = 28. In summary, the agent:

e Changes its exposure from “long to short” given high stock prices and positive exposure.
e Changes its exposure from “short to long” given low stock prices and negative exposure.

e Holds its position given high stock prices and negative exposure.
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e Holds its position given low stock prices and positive exposure.

2.1.2 Deep Q Network

Inn the last chapter we discretised the Ornstein—Uhlenbeck process into 7 buckets and used a tabular
method to keep track of the (Q-values. In this chapter we use Deep () Learning. Hence, the agent
(DQN agent) uses a neural network to approximate state-action values. As a neural network is
able to work with continuous values, the first and second component of the state are defined as
follows:

Sl=X,,0<t<100,tcN

57 = 5}, such that mj‘axS;’ £8P, 0<k<t<100, k,teN.

The input to the network is the state S; and output is a vector of predicted Q(s,a)-values,
s € 8,a € A(s). Each tuple of (S, A¢, i1, St41) (state, action, reward and next state) is saved
into a replay memory containing 2000 observations. After every episode (100 time steps) a batch
of 32 observations is randomly sampled from the replay memory. A neural network optimises its
predictions by minimising a loss function, which compares predictions ¥, with the target values
Y. In our case the target values are determined by:

Yi(As) := Re + (v - maxae () @(St41.a)) - Lircoo)
Yi(a) :=Yila) , a # 4

The loss function used is the mean squared error:

(2.1.7)

. 1+ o

MSE(Y,Y):= =S (Y - V)2
The neural network itself consists of the 3-dimensional input layer, 3 hidden layers with 48
neurons using the tanh activation function and a three dimensional ontput layer using the linear
activation function. The dimension of the output layer equals the munber of actions. It is crucial
to remember that only two of these three actions will be taken into account in the algorithm itself
depending on the exposure S7 of the state Sy (see (2.1.1)). For example, if S; = (2.2,6.1, 1),
the action to be selected is either “buy” or “nothing”. Lets assume the DOQN agent decides to
change its exposure from short to long (buy), A; = b, which results in Siy1 = (5.4,2.2,1). The
determination of the target value Y; as shown in (2.1.7) uses the max, Q(S;11,a),a € A(S;1)

function over all “activated” actions. In this particular example a € A(Si41) = {s.n}.

All results shown below use the following parameter setup:

learning rate = 0.001 , v = 0.9 , episodes = 2500 ,

initial-e = 1 , minimum-e = 0.01 , e-decay = 0.998

Figure 2.4 confirms again that the DQN agent learns to buy low and sell high. In comparison
to the ) agent, the neural network seems to need more time to detect the buy and sell region of
the Ornstein—Uhlenbeck process. The peaks of the histograms between episode 2400 — 2500 have
moved further away from each other than in the @ Learning setup (Figure 2.1). This results most
likely in fewer investments as extreme values arve less frequently visited. In addition, the range
of values covered by the “long to short” /“short to long” histograms after 2500 episodes is larger.
This could lead to smaller profits from trading as buying/selling at relatively high/low values of
the process is on average not profitable.

Figure 2.5 reveals that the DQN Agent seems to be more “passive” than the @ agent. The
left plot clearly indicates that doing nothing dominates the exposure changing actions. Moreover,
by comparing episode 2485 and 2500, the DQN agent seems to follow a different strategy. An
optimal agent is expected to find the optimal strategy and stop changing its investing approach.
The memory replay, which is responsible for fitting the neural network after each episode, appears
to constantly change the approximation of the Q-values, such that the agent follows a significantly
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Figure 2.4: Action splitting of DQN agent demonstrated by histograms of long to short/short to
long investment decisions.
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Figure 2.5: Profit and Loss (2.1.3) including investment decisions of DQN agent for the 2485-th
and last episode.

different policy. Both simmlations of the mean-reverting process offer a higher investment potential
than the DQN agent is able to exploit. A possible reason, why the DQN struggles to trade more
actively, might be the ignoring of the third action depending on the current exposure of the state.
Given 8¢ = 1 (8% = —1) the approximated Q(S;, “buy”) (Q(S,, “sell™)) is always assumed to be
correctly predicted but will never be used at any point of time. Hence, one third of the networks
approximations of ()(Sy, a) are not taken care of but are implicitly assumed to agree with the target
value. In the next section we attack this point of neglect by slightly changing the architecture of
the DQN agent.

2.1.3 Interactive Deep QQ Networks

This chapter presents an experimental approach to avoid the aforementioned problem of approx-
imating the vector of (X(s,a) values, s € S,a € A(s) of which not all actions are “activated”.
Before, we set up an agent consisting of a single neural network responsible for all decisions inde-
pendent of the exposure. In this chapter the i:DQN agent is defined by two sub agents, the Buy
iDQN and Sell iDQN agent, each using a neural network. As the name suggests, the Buy iDQN
agent is activated when the exposure S¢ = —1. It is able to hold or to change the exposure to
S%,1 =1 by neutralising the short position and buying another share of the stock. Vice versa, the
Sell iDON agent is activated when the exposure §7 = 1. It is able to hold or to change the expo-
sure to S¥,; = —1 by nentralising the long position and selling another share of the stock. Both
sub-agents have their own replay memory with up to 2000 observations and are trained after each
episode with one batch of size 32. Obviously, the Buy iDQN /Sell iDQN agents replay memory
only consists only of states S; with S7 = —1/S? = 1. In order to determine the target values Y;
the exposure of the next state S7,; is crucial:
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) N ]l[zcm .

Yi(4,) = R+ (’T : amax QBuy(Str1,a)

£(n.b} Sh,=—1}
© max Siy1.a) -1 3 _
(’T ae{s‘n}Qseu( t+1 ]) {t<09 53, =1}

and

Yi(a):=Yi(a) ,a #A,
with Qpguy/Qseu indicating that the neural network of the Buy iDQN/Sell iDQN sub-agent is
used to approximate the state—action values. As both sub-agents are responsible for the invest-
ment process and due to the collaboration we name this approach Interactive DQN (iDQN). The
structure of the neural networks as well as the parameter setup is exactly the same as in the DQN
approach.
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Figure 2.6: Action splitting of tDQN agent demonstrated by histograms of long to short /short to
long investment decisions.

Figure 2.6 displays that the iDQN agent develops the “buy low sell high” strategy quicker than
the DQN agent. Moreover, the shape and positioning of the histograms looks similar to the @
agent in Figure 2.1. Figure 2.7 again shows two examples of how the algorithm traded. After 250
episodes the iDQN agent was still selling the stock at relatively low values, which partially might
be caused by exploration. The right graph proves that the :DQN agent optimised its decision
making and also realises the majority of the investment opportunities.
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Figure 2.7: Profit and Loss (2.1.3) including investment decisions of iéDQN agent for the 250-th
and last episode.

2.1.4 Evaluation and Comparison

After investigating the learning progress of the agents from a qualitative perspective, we now in-
spect the quantitative progress. Figure 2.8 shows the rolling mean and standard deviation of the
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episodic PnL with a window of 100 observations for the three agents and the deterministic Bollinger
Bands strategy as a benchmark. The left graph illustrates that the ) as well as the :tDQN agent
beat the benchmark after approximately 750 episodes, whereas the normal DQN agent matches
the Bollinger Bands performance after 2000 episodes. The right graph indicates that the rolling
standard deviation of episodic PnLs is similarly decreasing for the @ and the {DQN agent. In
contrast, the fluctuation of episodic PnLs increases for the DQN agent. As the Bollinger Bands
is a deterministic strategy it does not surprise that its standard deviation is lower than the one of
the Reinforcement Learning agents.

Table 2.1 summarises the trends seen in Figure 2.8 but also gives some information about the
aggressiveness and efficiency of the agents. In the beginning all three agents average roughly 50
investments per episode. An investment is considered to be any exposure changing action (long
to short, short to long). After 2500 episodes the DQN agent averages 21 investment decisions,
whereas the ) and :DQN agent changes its exposure almost 40 times per 100 time steps. Hence,
the probability of observing an exposure changing action when investing with the @ and iDQN
agent is almost twice as high. The profitability per exposure changing action of the DQN agent is
significantly higher than the one for the @ Learning and iDQN agent.

Q Learning PnL opnr,  Investments/Episode  Profit/Investment
Episodes 0-100 01671 0.4839 49.46 0.0034
Episodes 400-500 1.2840 0.4183 46.51 0.0276
Episodes 1400-1500  2.0687 0.4418 39.61 0.0522
Episodes 2000-2100  2.1129  0.3542 39.09 0.0541
Episodes 2400-2500 2.1381  0.3956 38.64 0.0553
DQN PnL opnr  Investments/Episode  Profit/Investment
Episodes 0-100 -0.0061 0.4916 49.15 -0.0001
Episodes 400-500 0.6417  0.5354 38.74 0.0166
Episodes 1400-1500  1.1383  0.7223 21.89 0.0520
Episodes 2000-2100  1.4255  0.6826 21.79 .0654
Episodes 2400-2500  1.5758  0.6206 20.98 0.0751

Interactive DQN PnlL opnr  Investments/Episode  Profit/lnvestment

Episodes 0-100 0.1909  0.5203 49.08 0.0039
Episodes 400-500 1.1925  0.4364 45.28 0.0263
Episodes 1400-1500 1.9681 0.4131 37.51 0.0525
Episodes 2000-2100  2.1081  0.4566 39.53 0.0533
Episodes 2400-2500 2.1227 0.3341 38.37 0.0553

Table 2.1: Statistics Table for the three Agents : Pnl is the average PuL (2.1.3) and op,,, is the
standard deviation of the episodic PnLs considering the range of episodes in the first column. An
investment is considered to be an exposure changing action.

In summary,

e Convergence: The @ and the :DQN agent learn faster than the DQN agent and seem to
have converged after 2500 episodes. The DQN agent still changes its investment strategy
after 2500 episodes but temporarily finds a comparable optimal strategy (Figure 2.5).

e PnL: The @ and the iDQN agent beat the Bollinger Bands but their Pnls have a higher
standard deviation. The DQN agent matches the benchmarks performance on average but
the PnL has a significantly higher standard deviation.

o Aggressiveness: The () and the (DQN agent invest twice as much on average compared to
the DN agent, which partially explains the better PnL performance.
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Figure 2.8: Left: Comparison of the three agent’s moving average PnL (2.1.3). Right: In order to
get a feeling for the convergence/stability of the learned strategy, the rolling standard deviation of
episodic PnLs is shown. Both statistics use a rolling window of 100 observations. The Bollinger
Bands (2.0.3) are used as a benchmark.

e Profitability per trade: The profit per exposure changing action for the DQN agent is = 35%
higher when compared to the @ and iDQN agent.

As a conclusion, for the first restriction setup of one long/short the more sophisticated Deep Q)
Networks are not performing better than the simple tabular method.

2.2 Inventory Agents

In this chapter we increase the complexity of the learning task by allowing the agent to build up an
inventory of up to 5 shares in either direction of the market. The first two components of a state
s € & remain unchanged. The third component S} can now take values i € [—5,5],i € Z. The
action space 4 consists of five actions. In the previous setup we allowed the agent to double buy,
double sell and do nothing. We add the actions single buy and single sell. The third component
of a state determines which actions are going to be activated. If |S7| < 3 all actions are available
as the agent will stay within the inventory restrictions independent of the action. If S§7 = 4
(S} = —4), holding the exposure, single buy, single sell and double sell (buy) will he activated. 1f
the inventory reached the upper (lower] boundary it is not longer allowed to buy (sell) resulting
in three available actions with holding the exposure, single sell (buy) and double sell (buy). When
updating Q(S;, 4;), one cautiously needs to look at the exposure of the next state 57, as it

determines .Aﬂl(SH_l) with max, Q(S;41.a),a € ./-{(SH_l]:

ISP 1] <4 = a e {ds s ,n,bdb},

Sa:f:—l—l =-5 = ac {n,bdb},

SP,=—-4 = ae€{s,nbdb}, (2.2.1)
Si,=4 = ac{dss.n,b},

S}1=5 = ac{dss,n},

with s = sell, b = buy, d = double and n = nothing.

The reward function is the same as in (2.1.2). Every episode starts with an exposure S3 =
and with S} = §7 = 4 for the ) Learning and S} = S7 = 0 for the deep Reinforcement Learning
agents. All other structural aspects of the Reinforcement Learning algorithm are set up as in the
previons learning task in section 2.1. As a consequence the reward function does not measure the
change in PnL but the isolated immediate return of the action. The PnL in this task differs slightly
from (2.1.3):

99 99

PnL, = QZX: (L, =dst — Lpa,=dpy) + ZX:U{A,:.,} — 14, —43) + Sy Xoo- (2.2.2)

t=1 t=1
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2.2.1 Q Learning

We start with the tabular method () Learning in the more complex setting. The first two compo-
nents of a state s are computed as shown in (2.1.4) - (2.1.6). Due to the larger action space and
the new inventory restrictions we have |S| = 539 states and |()(s,a)| = 2401 state-action values.
Hence, more than 10 times memory is required when compared to the previous learning task.

In Figure 2.9 histograms for a range of episodes of the four exposure changing actions are shown.
In comparison to the simple ) agent, the peaks of the double sell and double buy histograms are
further away from each other, meaning that the agent only buys (sells) when the price is extremely
low (high). The space between the extreme actions is filled with the single buy and single sell
actions. Hence, for the unpredictable region of the process the ) Inv agent invests more carefully.
Interestingly, one can observe a fat left (right) tail of the single buy (sell) action, which could be
due to the inventory restrictions. Imagine the exposure is 4 and the process is in bucket 2. The
right decision would be to buy but as the maximum exposure is 5, only the single buy action is
activated. Figure 2.10 confirms the previously mentioned patterns.

In summary, the @ fnv agent learns to double buy low and to double sell high. The single buy
and single sell options seem to be used in order to optimise the inventory and staying within the
inventory restrictions but also to invest in more uncertain situations.

Action Splitting of Q Learning Inventory Agent Action Splitting of Q Learning Inventory Agent
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Figure 2.9: Action splitting of ) Inv agent demonstrated by histograms of exposure changing
actions.
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Figure 2.10: Profit and Loss (2.2.2) including investment decisions of () Inv agent for the first and
last episode.

2.2.2 Deep Q Network

The next algorithin to investigate is the DQN Inv agent. As the learning task is more complex we
increase the number of neurons to 64 in the first, 128 in the second and 64 in the third fully con-
nected layer of the network. The input layer, all activation functions and the loss function remain
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unchanged. The output layer consists of a 5 dimensional vector approximating the QQ-values. In
order to determine the target vector for each observation in the memory replay equations (2.1.7)
and (2.2.1) are used.

Comparable to the simple learning task, the DQN Inv agent needs longer to separate the ac-
tions than the @ Inv agent (Figure 2.9,2.11) . Furthermore, after 1500 episodes the algorithm
seems to not distinguish between double and single buy as the histograms look almost identical
(Figure 2.11). After 2500 episodes, similar to the () Inv, double buy and double sell have a similar
shape and seem to be mirrored at X; = (0. However, the histograms of the single buy and single sell
action have a completely different location and shape. The right plot in Figure 2.12 confirms that
the DN Inv agent prefers to single sell around the mean-reverting value p, whereas the single
buy action is hardly used. To build up a positive exposure the double buy action appears to be
clearly dominating,.

As a result, the DQN Inv agent recognises the buy low and sell high pattern but seems to learn
an asymmetric investing behaviour for the single buy and sell actions.

Action Splitting of DQN Inventory Agent ) Action Splitting of DQMN Inventory Agent
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Figure 2.11: Action splitting of DQN Inv agent demonstrated by histograms of exposure changing
actions.
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Figure 2.12: Profit and Loss (2.2.2) including investment decisions of DQN Inv agent for episode
500 and 2500.

2.2.3 Interactive Deep QQ Networks

The :DQN Inv agent consists again of a Buy iDQN Inv and Sell iDQN Inv sub-agent. Apart from
the output layer each of their networks has the same structure as the one for the DQN Inv agent.
The output layer for the interactive sub-agents is three-dimensional. The Buy :DQN Inv network
can hold the exposure, buy one and buy two shares and the Sell iDQN Inv network can also hold
the exposure, sell one and sell two shares given that the action would result in a new state that
does not violate the inventory restrictions. Apart from states where the maximum exposure is
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reached, the buy and the sell sub-agent are going to be activated. 1f the agent acts greedily, the
maximum of all Q-values will be chosen to be the next action:

A= agmax(Quuy(Ska). Qsu(Sr )
a1 €A guy (Se )02 € Azer (5)

where Apy, and Asgey are derived from the same logic as in (2.2.1) and the maximum set of pos-

sible actions for each sub-agent.

Both sub-agents have their own replay memory. If a state S, is followed by A, € {b, db}/A, €
{ds, s} the tuple (S;, A¢, Ryi1,Se41) is appended to the buy/sell replay memory. If A, = n and
Si| < 5 the tuple is added to both replay memories. Otherwise the data will be added to the agent
that is the only one active. Remember that when the overall interactive agent holds the maximum
exposure of 5/ —5 only the Sell iDQN Inv /Buy iDQN Inv agent is activated in order to stay within
the inventory restrictions. During the memory replay the target vector ¥; is determined as follows:

Yi(4o) = Ret (v max (Q5us (Ser1:0), Qseu(Sis1:02)) ) - Lacos)

a1EABuy(Sit1)a2€ Az (Siv1)

Yi(a) :=Yi(a) , a # Ay

Figure 2.13 illustrates once more the action splitting. The agent seems to learn symmetrically
to distinguish between the double buy (sell) and single buy (sell) action. Similar to the  Inv
agent, around the mean-reverting value p the most popular exposure changing actions are the
single buy and sell. Both single action histograms have a fat tail, which could be due to maximise
the exposure potential when S3 = 4/S5¢ = —4.
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Figure 2.13: Action splitting of iDQN Inv agent demonstrated by histograms of exposure changing
actions.

Figure 2.14 indicates that the agent may change its strategy over time. After 1500 episodes
the double buy and sell actions are the only exposure changing actions the agent makes use of.
Contrary to that, after 2500 episodes regarding exposure reducing decisions, the single sell action is
approximately chosen as often as the double sell action. Interestingly, the single buy action seems
to be very unpopular at both stages of the learning process.

The agent successfully manages to buy low and sell high. Especially because of Figure 2.14
the agents behaviour might be dominated by both double actions. This seems to be a repeating
phenomena as we have seen similar behaviour in the DQN Inv example.

2.2.4 Evaluation and Comparison

Finally, we proceed with the quantitative evaluation. From the individual analysis of the agents, it
seems that the only one that has certainly converged to a not longer changing strategy is the @ Inv
agent. The almost constant PnL performance and standard deviation after 1000 episodes in Figure
2.15 confirm that. In contrast, both DQN agents are still improving their average performance
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Figure 2.14: Profit and Loss (2.2.2) including investment decisions of iDQN Inv agent for episode
1500 and 2500.

after 2500 episodes and beat the tabular method after = 1750 episodes. However, the standard
deviation of the agents using neural networks is still higher even though it starts to decreases after
1000 episodes. Clearly, all agents beat the Bollinger Bands performance but the episodic PnL
fluctuates more heavily. In comparison to the simple learning task (One L/S), the opportunity for
the agent to build up inventory results in a PnL that is twice as high.

Moving Average of PnlL for Inventory Agents  Moving Standard Deviation of PnL for Inventory Agents
5
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Figure 2.15: Left: Comparison of the three inventory agent’s moving average performance. Right:
In order to get a feeling for the convergence/stability of the learned strategy, the rolling standard
deviation of episodic PnLs (2.2.2) is shown. Both statistics use a rolling window of 100 observations.
The Bollinger Bands (2.0.3) are used as a benchmark.

If an agent has converged it can be assumed that over multiple episodes the action probabilities
remain relatively constant (in a simulated environment). In addition, due to the previously made
observation that the DQN agents hardly and asymmetrically use the single buy and single sell
actions we investigate the development of action probabilities:

e ]
B Dice0a Zj:[}]l{/l}:u}
= Za
with A7 the #-th action of episode e and #a = Total number of actions = Episodes * Actions
per episode = 100%. Let us interpret P.(a) as a random, continuous process following a classical
drift-diffusion stochastic differential equation.

P:r(a) :

dP(a); == plt)dt + o(t)dW,;

with Wi a standard Brownian Motion. In order to confirm that an action probability has con-
verged, we would like to find a time to such that the local standard deviation is constant and
optimally small, e.g. o(f) = C,C € R, ¥t >t and there is no drift, p(t) = 0, = t-.

Figure 2.16 reveals that for both actions (double sell, single buy) after =~ 1250 episodes @@ Inv
agent has converged. The action probabilities of the DQN Inv agent still show a trend and high,
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non-constant local standard deviation. Between the strong and stable convergence of the tabular
method and the heavily fluctuating DQN Inv metrics, the behaviour of the interactive agent has
to be classified. After 2000 episodes both actions show zero-drift and a constant standard devi-
ation. However, especially PP.(SingleBuy) fluctuates between =~ 0.05 — 0.12. Another important
key result is that the double actions dominate the single actions as the developments of double
buy and single sell are similar to double sell and single buy (see A.1).

Rolling Empirical Probabilities of Actions
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Figure 2.16: Development of action probabilities P, (a) for the double sell and single buy action
for the three inventory agents.

Q Learning Inv PnL opnr  Investments/Episode Profit/Investment
Episodes 0-100 0.3741 0.6114 77.32 0.0048
Episodes 400-500 2.6842  0.5286 78.4 0.0342
Episodes 1400-1500 4.0114  0.6404 T4.37 0.0539
Episodes 2000-2100  3.9185  0.5810 74.1 0.0529
Episodes 2400-2500 4.0185 0.5818 74.63 0.0538
DQN Inv PnlL Opnr,  Investments/Episode  Profit/Investment
Episodes 0-100 -0.0301  0.6246 T7.79 -0.0003
Episodes 400-500 1.7701  0.8684 76.62 0.0231
Episodes 1400-1500  3.5457  0.9775 82.18 0.0431
Episodes 2000-2100  4.5491  0.7968 55.91 (0.0529
Episodes 2400-2500 4.8312  0.8232 88.08 0.0545

Interactive DQN Inv  PnlL opnt  Investments/Episode  Profit/Investment

Episodes 0-100 0.4734  0.6941 75.95 0.0062
Episodes 400-500 27844 1.1791 69.37 0.0401
Episodes 1400-1500 4.0997  0.7988 50.06 0.0512
Episodes 2000-2100 4.5318  0.9991 82.78 0.0547
Episodes 2400-2500 4.6422  0.7538 76.66 0.0606

Table 2.2: Statistics Table for the three inventory agents : PnlL is the average PnL and op,p
is the standard deviation of the PnLs considering the range of episodes in the first column. An
investment is considered to be an exposure changing action.

Table 2.2 underlines the PnL related observations from Figure 2.15 and also sheds some light
on the aggressiveness and efficiency/profit per investment of the inventory agents. In contrast to
the previous learning task in section 2.1, the DQN Inv agent is the most aggressive agent as the
probability of an exposure changing action P(a # n) = 88.68% is over 10% higher when compared
to the other two inventory agents. Although the @ Inv agent is the only one that has converged
after 2500 episodes its average PnL as well as the efficiency/profit per investment are lower than
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the metrics of the agents using neural networks. In line with the finding that the :DQN Inv agent
shows more promising convergence patterns is its higher profit per investment among the two deep
Reinforcement Learning agents.

In summary,

e Action preference: The double actions dominate the single actions. If the agent detects a
sub-space of § in which buying/selling is profitable on average, it make sense to choose the
more extreme action as it results in twice as much return.

e Convergence: The @ Inv and the iDQN Inv agent learn faster than the DQN Inv agent. The
() Inv agent converges after 1500 episodes, iDQN Inv shows first signs of convergence after
2000 episodes and DQN Inv still changes its policy after 2500 episodes.

e PnlL: The agents using neural networks beat the @) Inv performance after 1750 episodes.
o Aggressiveness: The DQN Inv agent invests most aggressively.

e Profitability per trade: The profit per exposure changing action for the iDQN Inv agent is
the highest when compared to the ) Inv and DQN Inv agent.

One of the main findings of this chapter is that in the more complex setting Deep Reinforcement
Learning may result in a performance advantage but does not converge as stably as () Learning
does. That includes the policy/investment strategy as well as a higher standard deviation of
episodic PnLs for all (interactive) DQN agents. Apart from pushing the current inventory to the
maximum exposure, the single actions seem to be redundant. In the next chapter, we start to
use noisy, real world data. Given the instability of the DQN agents and the small advantage of
extending the actions space, we use tabular methods such as () Learning and focus on 3 actions
(buy, sell, nothing). Additionally, as we experienced at later stages, the training and testing of
Deep ) Networks on millions of observations requires immense computational power, which makes
the task even more demanding.
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Chapter 3

Trading on historical Limit Order
Book Data

Before starting to construct Reinforcement Learning agents that trade on high frequency signals,
we recommend studying the book by Bilokon et al. [18] to develop a profound understanding of
Machine and Reinforcement Learning applications to finance.

Aflter using a simulated mean-reverting signal to train agents, we start focusing on historical
high frequency limit order book data. First, we explain the backtesting and agent setup. Then
we introduce the main features that are going to form the state space and the intuition why these
features might be able to help the agent invest profitably. Finally, we will look at the performance
and behaviour of the agents. The findings in the previous chapter will play a vital role when
it comes to generating (mean-reverting) features and designing the agents. During the course of
this chapter, particularly when evaluating our agents, we aim at comparing the methodology and
results to known research in similar areas from Schnaubelt [2] and Spooner et al. [10].

3.1 Agent Design

The design of the agents is very similar to the one in the previous chapter. We will solely focus on
tabular methods including () Learning, SARSA and Eligibility Traces.

3.1.1 Actions, state space and reward

We have seen before that in a rather simple setup with simulated data the agent was not able
to identify the difference between selling (buying) and double selling (buying). Hence, we only
implement three actions: placing a bid “b” or an ask “s” limit order and doing nothing “n”. The
quantity of the limit order is 1 for inventory agents and 2 for the agent that is only able to have an
exposure of 1 or —1. As all agents start with an inventory of 0, the first investment decision of the
“One” agents is of size 1. The main idea behind using limit orders is that if executed we receive
a better price and they create less market impact. In addition, investing with limit orders can
quickly be transformed into market making and is sometimes rewarded by exchanges with rebates.

The state space S can be divided into two different sets of information: Market and agent
features. The only agent feature that we use is the current position/exposure of the agent. All
other features come from LOB data. As before we discretise continuous variables based on their
historical distribution into buckets. We choose 7 buckets with the following quantile values, defining
the intervals that determine the buckets:

o [ arss MIUOMITOMTMTTOMIT M
by = [mm*”:'.-"i’u_f o2 2904 0.6 Qo8 o0 QC] el

Si = j + 1, such that S} € [b [i].b{ [§ + 1]) with b} [0] = min M; and t € T

a7




with the memory M{' of the i-th state variable at time ¢ and ¢! the 100 * 2% quantile of vec-
tor/memory V. We set the maximum number of values stored in one memory to 5000. T represents
the set of times at which there exist observations in the data frame. Learning from the results of
the previous chapter, we do not include the bucket-value of a state variable at the last time the
exposure changed its sign.

The exposure e, at time ¢ of the agent is not treated as a continuons variable but the trans-
formation from actual exposure to state-variable is very similar. The agent that only allows one
long/ one short indicates its current position by multiplying the state with the sign of the exposure
(1 for long, —1 for short). When the state is < 0 (> 0) only the actions n and b (s) are available
(see (2.1.1)). For example the state Sy = —117 means that at time ¢ the agent is short one stock,
the first and second LOB features are in bucket 1 whereas the third state variable is in bucket 7.
For the inventory agent we define a maximum long/short position of 3 units. The buckets of the
exposure variable are equal to the exposure itself:

5%(es) :=

If the exposure is equal to the (negative of ) maximum exposure only actions n and (b) s are avail-
able. Otherwise all actions can be chosen. For the inventory agents, instead of the sign we add the
position itself to the identifier of a state. Hence, the previously mentioned state of §; = —117 for
the one long/short agent, would be transformed into S; = —1117.

The main goal of the agent is to end up with a positive PnL:

PnL(t) :Zl{jn,:.,}ALO (Toao(7),q:) — Lpa, =y BLO (7, bo(7). ¢ )
=t (3.1.1)

€ (1{1.-,>u}b[}(f] - ]l{g.-zw}ﬂ[}(f])

with A; as usual the decision of the agent at time 7. ALO (7, a0(7), g-) represents an executed ask
limit order with price ay(7), quantity ¢, that was submitted to the exchange at time 7.

The most naive way of designing the reward function R is to use the change in PnL. In order
to only trade when the agent is very confident to make a profit, we can also introduce a trading
penalty. When the agent takes an action, we measure the change in PnL z seconds (z € {1,10}
depending on the setup) after the limit order submission. This delayed change in Pnl better
extracts the impact of the action as usually there is a significant time gap between limit order
submission and execution.

Ri(A:) = PnL(t + 1) — PnL(t) (3.1.2)

or

Ri(A;) = PnL(t + 1) — PnL(t) = Lja,cqany) * P

with p denoting a fixed or dynamic trading penalty. One problem that may oceur is that the PnL
reflects the whole exposure and not only the isolated decision of the agent. Hence, we introduce
another reward function:

0,if 4, =n

by(t + x) — by(t), if executed within x seconds ; 4, = b
agl(t) — ag(t + z), it executed within x seconds ; A, = s
b(t) — an(t), else

Re(Ay) = (3.1.3)

with by(t + x)/ag(t + =) the best bid/ask price at time ¢ plus = seconds. If the limit order is
not executed, a penalty (minus the spread s = ag(t) — by (t)) is returned. If an agent with the
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isolation reward function (3.1.3) generates a positive reward on average, we automatically know
that the agent is profitable. If an order is submitted and executed the reward function simulates
the immediate neutralisation of the executed limit order by a market order of the other side.

3.1.2 Backtesting Algorithm

When training Reinforcement Learning agents on high frequency data, the implementation is es-
sential. On the one hand we would like to have a flexible data pipeline, that guarantees the access,
storage and manipulation of all the data. On the other hand we deeply care about the efficiency
and the short run time of our code.

The backtester that we used first derives a vector of positions, that is then passed on to the
execution, that places the orders, figures out the execution and calculates the PnL. The partition
of computing the position and execution results in quicker code but is not able to directly feedback
the execution information to the agent. The “theoretical” exposure of the agent can differ from the
actual inventory due to the uncertainty of being matched when using limit orders. This problem
leads to a partially not transparent flow of information that is fed to the agent and might result
in inefficient learning.

Algorithm 8: Reinforcement Learning Framework for all agents learning on LOB data

1 Load limit order book and perform feature extraction

2 Select features to form state space &

3 Slice remaining data into y-hourly batches by, ... b,y € N
4 Initialize tabular agent including the parameters =, e, minimume-e, 7, «, tabular
5 Set deactivation d = x seconds, x € {1,10}

6 for batch in by,....b, do

7 i=0

8 Initialize state Sy,

9 for observation Oy, in batch do

10 Determine action A;, based on (soft) greedy policy
11 if A4;, ==b or A;, == s then

12 Deactivate agent for d seconds

13 end

14 Observe next state Sy, ,

15 Save triple (S;, A, Sy, ) to memory M

16 if i modulo 100 == () then

17T | € = min(e # 77, minimume-¢)

18 end

19 it=1

20 end

21 Convert vector of actions into position vector

22 Plug position vector into execution handler

23 Use execution data and PnL to calculate reward vector R
24 i=0

25 for observation Oy, in batch do

26 Take triple (S¢,, A¢, . St ) from M, Ry, , from R
27 Load A, _, from next triple

28 Update Q(S:,, Ay, ) given update rule (€ Learning, SARSA using learning rate,

averaging or Eligibility Traces)

20 i+=1

30 end
31 end

During testing the for loop starting at line 25 is neglected, as the learning of the policy /be-
haviour will happen during training.
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3.1.3 Execution

To develop a better understanding of the agents, this chapter explains the execution. As men-
tioned before, we use limit orders, which are always submitted at the best bid or ask. All agents
automatically cancel orders that have been longer in the LOB than 10 seconds. Additionally, the
execution only allows one order in the limit order book. For instance, if an ask limit order is not
executed until the next limit order is submitted by the agent, the first ask order is immediately
cancelled and replaced by the second order. We will try to avoid this effect by deactivating the
agent for r seconds. The execution is flexible with respect to where in the queue of the best bid or
ask price the order is placed. In a realistic scenario the order will be appended to the end of the
quene. However, in the beginning we will start with a simplified, unrealistic setting and “jump”
the queue.

3.2 Feature Extraction from Limit Order Book Data

We use LOB data from the Chicago Mercantile Exchange (CME) of the commodity future W11
Crude Oil with physical delivery in April 2021. We have one observation of bid/ask prices and
volume every time a market order has entered the exchange or the LOB has changed due to can-
cellations or new submissions. Theoretically, we can access the first 12 bid and ask prices. Most
of our signals will use only the first and second layers of prices and volumes per market side.

Especially for tabular methods there exists the trade-off between adding new features to the
environment to give the agent additional information and the curse of dimensionality. For instance,
imagine we have 4 market variables with 7 buckets each and the agents exposure with 7 different
exposure buckets. This multiplies to 7° = 16, 807 states and 7° 3 = 50,421 state-action pairs
for the agent to learn. Imagine we add another feature to the environment. Then we end up with
78 = 117,649 states and 7% * 3 = 352, 947 state-action pairs.

In the case of simulated data in Chapter 2, we saw that the agents converged after 2500 episodes.
Each episode had 100 observations. In total the agents received 250,000 states. Taking into ac-
count that the agents consist of = 200 state-action pairs, each state was visited on average 1250
times. Continuing the example from above, we would expect the agent with 4 market and one
agent variable(s) to converge after 63 Million observations, whereas the agent using 5 market and
one agent variable(s) is expected to receive 441 Million states before convergence. Assuming that
we receive 1 million observations per week, we would need over one year of high frequency data
for the “smaller” agent and 8 and a half years for the “larger” agent to converge on expectation.

Given that these calculations are based on a noise-free, simulated environment and assume that
every observation is used, it becomes clear that the agents trading the limit order book might need
even more data to succeed. Hence, feature extraction and selection is critical.

In order to leverage the success from the chapter before, we mainly use mean-reverting signals.
However, this time the reward function will not be the signal reward but first and foremost con-
nected to the change in PnL or the isolated reward function from (3.1.3). We group the signals into
four different groups: price momentum signals, trade momentum signals from market orders, trade
momentum signals from limit orders and risk signals. These four groups of features can mostly be
even further decomposed into long, mid and short term signals.

In the following we will denote a;(t)/b;(t) as the i-th best ask/bid price and v, (¢) /vy, (1) as the
volume at the i-th best ask/bid price. The mid-price at time ¢ is defined as shown in (1.3.1). In
order to measure price momentum, we apply a simple moving average to the mid-price over two dif-
ferent backward looking time windows. One long and one short time window. Finally, we substract
the short term from the long term moving average. We denote this feature as M AV GD(x,y,t) for
z(y) denoting the long (short) time window in ¢ time units.

Figure 3.1 shows two differences of moving averages. The left plot is based on time windows

of multiple hours and the right plot is based on time windows of multiple minutes. Clearly, both
signals luctuate around 0. However, their mean-reverting speed is quite different. Unsurprisingly,
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the signal based on short term windows reverts at a much higher speed. This also gnarantees that
all state combinations of buckets are going to be explored as the correlation seems to be close to
0. Generally speaking, one assumes positive momentum when the signal changes from positive to
negative as the short term average jumps above the long term average.
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Figure 3.1: Price momentum long and short term mean-reverting signals using the difference of
two moving averages based on different time windows. Left: 3 hours - 1 hour. The graphic presents
data from 1% to 6-th February 2021. Right: 3 minutes - 1 minute. The graphic presents data from
1% February 2021 from = 8 : 30am — 10 : 00am.
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Figure 3.2: Trading momentum signals based on the LOB : Left: Quene imbalance using only
the volume at the best bid and ask price. Rightf: Queue imbalance using the first five quenes of
limit order volume of bid and ask prices. Both plots presents data from 1%* February 2021 from
A 8020 35am — 8@ 26 : H0am.

Next, we focus on trading momentum signals that use information of submitted limit orders
to the LOB. The probably most famous example would be the queue imbalance, which focuses on
cumulative volume of bid and ask prices up to the i-th best bid/ask price. We define the metric
as done by [2]:

Z;i:[} Vaj () — Uy (f)
E;:[} vuj (t) L i'rb‘,' (f)

The intuition for i = 0 would be that values close to —1 (1 respectively) indicate that the
mid-price shifts up (resp. down) as the best ask moves up (resp. best bid moves down) due to a
small volume in the queue. Over multiple layers of limit order volume the metric focuses on the
depth of the LOB and emphasises the price movement in the longer run. Figure 3.2 illustrates the
quene imbalance at the best bid and ask prices (left) and up to the 6-th layer (right). Interestingly,
both signals are distinguished by large spikes. Although both signals are calculated based on the

QLi(t) =
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same data, they oscillate in different regions of the value spectrum. Whereas ()1 is mostly positive
(stronger ask queue), Q15 < 0 almost the whole 15 seconds, which represents more liquidity on the
bid side of the LOB. In addition, the signals including several layers of volume seems to be more
stable in terms of fluctuation.

After extracting information using limit orders, we now focus on market orders. In order to
measure trading momentum from a market order perspective, we compute trade count and trade
volume imbalances as shown in [2]. Trade count imbalances focuse on the number of buy and sell
trades during a backward looking time window and trade volume imbalances utilise the cumulative
buy and sell volume over the last seconds, minutes or hours. The trade count imbalance at time ¢
looking back x minutes is defined as:

_ #SMO(z,t) — #BMO(x,1)

TCH.t) = e 0(e.t) + #BMO(. 1)

with #BMO(z,t) (#SMO(z,t)) denoting the number of buy (sell) market orders during the
last r minutes looking back from time £. Similarly, vprroa, ) (Vsaro(e,n) describes the aggregated
buy (sell) market order volume looking back  minutes from time . Using the exact same operation
(difference divided by sum) we define the trade volume imbalance at time ¢ looking back = minutes:

USMO(x,t) — VUBMO(x,t)

TVI(z,t):=
VaMo (e t) T VRMO(2.t)
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Figure 3.3: Trading momentum signals based on market order trading flow: Left: Trade count
imbalance of last minute. Right: Trade volume imbalance of last minute. Both plots use data from
the 1% February 2021 from = 8 : 35am — 9 : 05am.

If the market is dominated by buyers (sellers), the metrics are close to —1 (1), whereas a bal-
anced market with vpiyo( ) = Vsiro(e,n would result in values close to 0. Figure 3.3 depicts
TC(1,t) and TC(1,t) with ¢ ranging from 8:25 a.m.- 9:10 am. on the 1** February 2021. Both
signals look mean-reverting and are hard to separate. One would assume that the correlation be-
tween these features is close to one. It can be assumed that both signals provide the agent with the
same information. Due to the curse of dimensionality as pointed out earlier we will only include
one of those variables.

Lastly, we demonstrate a risk signal and a combination of price and trading momentum com-
ponent called Kyle's A. We compute the volatility as the standard deviation of mid-price returns
during the last minute. The returns are calculated with two consecutive observations from the
LOB data frame. The volatility measures the oscillation of returns from its mean. If this is large,
prices have been fluctuating a lot, which can be identified with more uncertainty but also more
opportunities when it comes to trading. The formula for Kyle's A at time ¢ with window W is

defined in [3]:

Pt — Pi-w

A(Wit) = 7
Zi::—w b,- Vi
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with ps the mid-price at time £, V; the traded volume at time ¢ and b; = sign(p: — pr—1).
Kyle's A is harder to interpret as there are two different factors at play. The numerator measures
price momentum over a lookback time window W in seconds. The denominator focuses on trading
momentum from markets orders. The larger the denominator, the more price changes and trades
have been taking place simultaneously into the same direction. Hence, values close to 0 indicate
a buy/sell dominated market whereas larger values suggest a balanced market environment. Fur-
thermore, Kyle's A is an indicator for the depth of the LOB. Both signals in Figure 3.4 demonstrate
mean-reverting behaviour at different speed.

Volatility(A Mid-price, 1 minute) Kyle's A(20 seconds)
0.012
0.0
0.011 4
0.010 002
2 0.008 3 o000
£ 0.008 £ 002
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Figure 3.4: Left: Volatility of mid-price returns using the last minute of observations. The graphic
presents data starting on the 31°7 January 2021 at 23:30 to 1°¢ of February 1 : 00am. Right: Kyle's
A. The graphic presents data from 1%' February 2021 from = 8 : 35am — 9 : 05am.

Finally, lets have a look at the correlation of the variables shown so far. As mentioned before,
we want to avoid a high positive or negative correlation between variables as the agent will effec-
tively explore less states and learn less situations to optimally overcome. Figure 3.5 shows that all
features have a correlation close to () apart from the trade count and trade volume imbalance.

Apart from Kyle's A, all previously introduced signals are constructed in a very simple fashion.
By looking into recent literature (e.g. [3]) we find that also Rolls’ Measure has been used to extract
information from LOB data:

R, :=2y/|cov(AP;, P,_|

with Ap, being the change in mid-price p; —p;—1 and W a lookback window. Rell’s impact a time
t further scales by p; * Vi, where V; is defined as the cumulative volume executed during a short
time interval.

3.3 Agent Evaluation

In this chapter we will present details and results regarding the setup and performance of the
numerous agents. First, we have a superficial look at the data that all agents will train and test
on. As previously mentioned, we use high frequency limit order book data from a WTI Crude Oil
future. The future is traded in units of 1000 barrels, whereas the price reflects the price of one
barrel. This means that all our results are actually in thousand of £. Moreover, in the execution
we do not assume costs or rebates for submitting limit orders.

Unfortunately we only have one month (February 2021) of data available. This results in

roughly =2 3.8 million observations. This is a significant difference to other research in this area:
Schnaubelt (2] uses 18 month of crypto-currency limit order book data and Spooner et al. [10] feed

43




Correlation Matrix of Mean-Reverting Signals
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Figure 3.5: Correlation matrix of features based on data from the 1% February 2021 of the WT1
Crude Oil future.

8 month of LOB data to the agents. As a consequence, it is much more likely that their agents
have converged, whereas in the following work we hope for first indications that optimal behaviour
has started to be learned. The training and testing periods are defined as follows:

Type Start End

Training 01.02.2021 19.02.2021
Testing  22.02.2021  26.02.2021

Table 3.1: Training and Testing period.

As one can observe from Figure 3.6, during the first two weeks of the training data, the traded
volume as well as the volatility was much lower than in the third week. Unfortunately, it seems
that the 3 weeks of data mostly contain an npward trend. For the agent it is important to explore
all different kinds of scenarios to develop a robust policy. From a trading volume point of view,
the test data is very similar to the last week of the training data.

During training the exploration parameter e starts at 1(100%) and decays to a minimum of
0.2(20%). Every 100 states that the agent receives, € decays to 0.999 - €. The learning rate is set
to o = 0.01. If the agents are exposed to out of sample test data, they act greedily. The greedy
policy is defined by m(s) := argmax,c a(s) @«(s5,a) for every state s € S that the agent receives.
Let us define two parameter sets that are going to appear repeatedly.

The idea behind both selection of features and the discount factor + is that the Pnl setup (see
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Mid-price and Hourly Trading Volume of Training Data
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Figure 3.6: Mid-price process and executed hourly trading volume of the WTI Crude Oil future.
Upper: Training data ranging from 15* to 19-th of February 2021. Lower: Out of sample test data
ranging from 22nd to 26-th of Febrnary 2021.

Reward function &' 52 i st 1
PnlL 1z TVI(1 minute) MAVGD(3, 1, minutes) MAVGD(3, 1, hours) 0.95
Iso QRIy  TVI(1 minute) MAVGD(3, 1, minutes)  Volatility (1 minute) 0.1

Table 3.2: Parameter sets for agents

equation (3.1.2)) focuses on a long-sighted return and parameters, whereas the Iso setting (see
equation {3.1.3)) tries to extract short term opportunities combined with signals that describe a
more immediate, quickly evolving picture of the trading environment.

In order to extract the isolated effect of an investment decision on the PnL, we deactivate the
agent for 1 second after each submitted limit order. The orders are cancelled after 10 seconds.

3.3.1 Jump the queue

The fist ) Learning agents are able to jump the quene. This means that submitted limit orders
are allocated to the front and not to the end of the volume queue at the best bid or ask price. This
unrealistic modification simplifies the trading environment and hence the task at hand to learn for
the agent. We do this based on previous experience, that small steps towards a realistic setting
provide a lot of useful findings regarding which information or setup fits the agent best. The @
agents are only allowed to be long or short one unit of the financial asset, whereas the suflix Inv
(e.g. Q Inv) means that the inventory process of the agent moves within [—3,3]. In general, with
training we reler to learning and updating Q-values, which are transformed into a greedy policy in
the out of sample test.

Figure 3.7 shows the training and testing performance of 4 agents that jump the queue. Clearly,
all agents need roughly two weeks to learn a strategy that is profitable depsite the minimum ex-
ploration of 20%. The out of sample testing performance is consistently profitable.
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Figure 3.7: Training and testing performance (3.1.1) of () agents with and without inventory. All
submitted limit orders jump the queue at the best bid or ask price.

Table 3.3 and 3.4 indicate that the Iso agents are less aggressive, meaning they submit less
orders. They are also better at timing their limit order submission, as the filling probability is
higher in training and testing. This is not a surprise as the reward function punishes not executed
limit orders, which is completely neglected in the PnlL setup. Moreover, the aggressive behaviour
of the PnL agents leads to a lower number of visited states, as order submission deactivates the
agent for 1 second, which antomatically skips observations that could have been fed to the agent.

Especially for the inventory agents, the number of state action pairs that have never been
visited is very high (more than 10% of all (s, a)). In addition, not a single state-action pair has
been visited more than 500 times. In summay, apart from the stable performance, the convergence
metrics are not satisfying.

Agent  Set #V #V/#states #No V. P(>500) P(invest) P(Fill)
Q Iso 1,045,621 108.87 4 1.9% 1757 %  23.68 %
Q PnlL AHT0,847 59.44 131 0.74% 52.14 % 18.76 %
QInv  Iso 868,430 17.22 8590 0.0% 2591 % 25.81%
QInv  PnL 546,724 10.84 9437 0.0% 56.00 % 21.76%

Table 3.3: Training evaluation for () Learning agents with and without inventory taking into
account two parameter sets. All submitted limit orders jump the quene at the best bid or ask
price. #V denotes the total number of visits aggregated over all states. # No V is the number
of state—action pairs that have not been visited during training. IP(> 500) is the number of state—
action pairs that have been visited more than 500 times divided by the total number of state—action
pairs. P(Invest) reflects the number of “buy” and “sell” decisions divided by the total number of
states that the agent received (# V). P(F1ill) is computed by dividing the number of executed by
the number of submitted limit orders.
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Agent Set  Avg profit/day (+- std. deviation) P{Invest) P(Fill)

Q PnL 4.21 (+-1.70) 16.35% 26.44 %
Q Iso 10.69 (+-3.04) 51.23% 24.87T%
Q Inv  PnL 11.88 (+-2.74) 24.66 % 29.90%
Q v Iso 7.34 (+-2.51) 55.24% 27.01%

Table 3.4: Test evaluation for () Learning agents with and without inventory taking into account
two parameter sets. All submitted limit orders jump the queue at the best bid or ask price. For
P() explanation see Table 3.3.

3.3.2 Middle of the queue

Next, we modify the queue parameter from 0 to 0.5. This means that the agents place the order
in the middle of the volume queue. Taking into account that orders of other market participants
are frequently cancelled, this setting is still optimistic but certainly closer to reality. Due to a
worse position in the quene, we would like to allow a longer deactivation time for the agents when
submitting limit orders. This will better extract the isolated impact of the decision on the prof-
itability of the agent. Unfortunately, deactivating for a longer time means that more observations
in the data frame are going to be skipped. This results in less exploration. We decided to set the
deactivation time to 10 seconds.

We start with the () agent allowing an exposure of 1 and —1, which has 9604 state-action pairs.
This is a significant difference to the Inv agents, which need to explore a2 50.000 states—action pairs.
As a results, all  Learning agents showed only little signs of optimal behaviour and non-positive
out of sample performance. One problem of (} Learning is known to be its optimistic estimation of
the @) function by using the maximum @-value of the next state. To reduce the overestimation of
(s, a), Moskovitz et al. [16] suggests to use a pessimistic updating rule by replacing the maxinum
with the minimum.

Q[Sg,.r‘].g] = Q[Sg,Ag) + Ct‘[.fi'H_l + le}nQ[.91+1,a) - Q[Sg,x‘lg)]

This will probably lead to a pessimistic estimation of (J(s,a). In our work we will follow the
findings from Spooner et al. [10]. They claim that on-policy methods, such as SARSA, develop a
more realistic approximation of the ¢ function.

Agent Set #V #V /#states  #No V. P(>500) P(Invest) P(Fill)

Q Iso 506,502 52.74 T0 0.0% 13.05% 20.17%
SARSA  Iso 477,519 49.72 38 0.0% 14.21% 21.61 %
Q Pnl. 176,462 18.37 404 0.0% 48.87% 2041 %
SARSA PnL 177,279 18.46 389 0.0% 48.71% 20.20%

Table 3.5: Training evaluation for () Learning and SARSA agents without inventory taking into
account two parameter sets. All submitted limit orders are placed in the middle of the queune at
the best bid or ask price. For FP()/ #V explanations see Table 3.3.

Agent Set  Awvg. profit/day (+- std. deviation) P(Invest) P(Fill)

Q Iso -0.2 (+-1.83) 0.13% 21.07 %
SARSA  Iso 0.28 (+-0.92) 0.95% 24.26%
Q PnL -2.23 (+-0.87) 37.98% 23.17%
SARSA PuL -2.13 (+-1.63) 35.98% 22.93%

Table 3.6: Test evaluation for ) Learning agents with and without inventory taking into account
two parameter sets. All submitted limit orders are placed in the middle of the queune at the best
bid or ask price. For IP() explanation see Table 3.3.
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Figure 3.8: Training and testing performance (3.1.1) of () and SARSA agents without inventory.
All submitted limit orders enter the queune in the middle.

Figure 3.8 shows that during training all agents fail to derive a profit at any time. Interest-
ingly, the out of sample test reveals a performance gap between the agents using the Iso and PnL
setup. Apart from different information that is fed to the agents, this may be explained by the
number of states, that each agent has explored. In general, all agents explored less than before
due to the longer deactivation time (Table 3.5). It is reasonable to assume that this slows down
the convergence ol the agents. As before, the Pnl agents are more aggressive and visit even less
state-action pairs. Moreover, the change in the queue parameter significantly reduces the limit
order submission of the [so agents (Table 3.6). This may be due to the increased uncertainty about
execution (as we are further behind in the queue) and the penalty for non-execution. In contrast
to the Pnl setup, the Iso agents show first signs of optimal behaviour. Especially the SARSA
Iso agent invests profitably, which confirms the findings of Spooner et al. [10]. Furthermore,
we tried averaging rewards instead of using the error term and learning rate (see (1.1.7),(1.1.8)).
That has also been suggested in [10]. The key metrics and performance did not significantly change.

At this point we try to evaluate, how the so far most successful SARSA Iso agent in the more
realistic scenario {(quene = 0.5) transforms the information into a decision. Figure 3.9 illustrates
the distribution per decision given either the quene order imbalance (left) or the moving average
difference (right). Clearly, by also considering the distributions of the other variables in Figure
A2 (see Appendix), we come to the conclusion that ()1 dominates the agents decision making. In
detail, the agent submits buy limit orders when the queue imbalance is close to —1 and prefers to
submit ask limit orders for QI close to 1. This corresponds to the intuitive interpretation of the
queue order imbalance at the best bid and ask prices. Additionally, this aligns with Schuaubelt’s [2]
findings. He highlights the predictive power of queue order imbalances. For MAVGD(3, 1, min-
utes), TVI(1 minute) and Volatility (1 minute), the violin plots of “Nothing”,“Buy” and “Sell” look
very similar. It appears that the discretised bucket value of these variables do not contain enough
information to drive the agent’s decision making.

Recalling the visualisation of QI in Figure 3.2, one can observe that the signal spikes rapidly
and jumps around its mean multiple times within seconds. This quick reaction to the market
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Distribution of Qly per decision Distribution of MAVGD(3, 1, minutes) per decision
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Figure 3.9: Distribution for quene order imbalance (21, ) and moving average difference (3 minutes
-1 minute) per decision based on the SARSA [so agent’s test run.

environment significantly separates (JIy from other signals, which behave in a more controlled way.
As this seems to be the powerful type of indicator, we try to extract other signals with similar

properties.
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Figure 3.10: Price momentum, short term mean-reverting signal using the difference of the mid-
price and an exponentially weighted moving average with & = 0.1. The graphic presents data from
1% February 2021 from = 8 : 34 : 50am — 8 : 36 : 10am.

Figure 3.10 shows the difference of the mid-price and an exponentially weighted moving average
of the mid-price, which depends on the parameter a = (0.1. Given a time series Xy, X1, Xa,.... the
exponential moving average is given by:

t
EWMA(X,0) =ay Xi(1—a)'"".

=M

Due to the previous findings we will change the setup in the following way: We include the signal
shown in Figure 3.10 and exchange it with the moving average difference parameter MAVGD(3, 1,
minute). In order to be less attracted to large orders, we change from TVI(1 minute) to TCI(2
minutes). As we would like achieve better convergence metrics with the same data, we neglect the
risk parameter and use only 3 LODB features. Additionally, previous [so agents have shown very
careful submission behaviour. This might be due to the pure punishment of not executed orders,
which automatically reduces the state-action values for the investment decisions. As we aim for
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agents, which quote on a more frequent basis, we slightly modify the reward function:

lf gy =1
b[}[r + x) — bo(t), if executed within x seconds ; 4; = b
Ri(Ay) := ¢ aplt) — a[}(t + x), if executed within x seconds ; A; = s (3.3.1)
,(r + x) — ap(t), if not executed within x seconds ; A; = b
by(t) — ay(t + z), if not executed within x seconds ; 4; = s.
Instead of purely punishing non-executed limit orders after 10 seconds, we first calculate the same

reward as if it would have been executed and then subtract the spread at time f. This results in
the simplified expressions shown in (3.3.1). We call this reward function Adjusted Iso.

Reward function — s* 82 &% 7y
Adjusted Iso @RIy  TCIL2 minute) Mid-price - EWMA(Mid-price, a = 0.1) 0.1
Complete Iso Qly  TCI2 minute) Mid-price - EWMA(Mid-price, « = 0.1) 0.1

Table 3.7: Adjusted Iso (3.3.1) and Complete Iso (3.3.2) parameter sets using the Adjusted Iso
and Conplete [so reward functions and 3 LOB features.

Agent Set #V #V /#states #No V. P(> 500) P(Invest) P(Fill)
Q Adj. Iso 515,232 375.53 0 27.4% 12.66% 21.99%
SARSA Adj. Iso 515,609 375.80 0 26.89% 12.66% 21.68%
Q Inv Adj. Iso 415,685 57.71 70 0.71% 17.14% 26.75%
SARSA Inv  Adj. Iso 408,352 56.69 2 0.65% 17.55% 27.22%
Q Inv ET Comp. Iso 220,848 30.66 28 0.53% 38.24% 23.34%

Table 3.8: Training evaluation for () Learning (ET) and SARSA agents with and without inventory
using the Adjusted [so and the Complete [so parameter set. All submitted limit orders are placed
in the middle of the queue at the best bid or ask price. For IP()/ #V explanations see Table 3.3.

Agent Set Avg. profit/day (+- std. deviation) P(invest) P(Fill)
Q Adj. Iso 3.02 (+-0.41) L.76% 22.55%
SARSA Adj. Iso 1.46 (+-1.18) 1.29% 21.74%
Q) Inv Adj. Iso -1.95(+-1.04) 3.73% 28.94%
SARSA Inv Adj. Iso 1.70 (+-4.40) 3.08% 31.23%
Q Inv ET Comp. Iso 0.84(+-4.11) 6.49% 24.50%

Table 3.9: Test evaluation for () Learning (ET) and SARSA agents with and without inventory
using the Adjusted [so and the Complete Iso parameter set. All submitted limit orders are placed
in the middle of the queue at the best bid or ask price. For IP() explanation see Table 3.3.

Table 3.8 and Table 3.9 show that both agents with two inventory states (—1,1) show promis-
ing signs of convergence in training and testing. Figure 3.12 in section 3.3.3 is the corresponding
performance plot. Due to the reduced dimension in the state space, each state is visited more
frequently. This leads to more robust Q-values. Contrary to the previous setup (3.6), the @ agent
performs more profitably and more stably than the SARSA agent. The change in reward func-
tion caused the agent to act more aggressively as we hoped to incentivise. A look at Figure 3.11
illustrates a clear decision pattern for Iy and Mid-price - EWMA({ Mid-price, a=0.1). Hence,
the modified information appears to help the agent to exploit data patterns in a more reliable and
cousistent fashion. Interestingly, extremely positive (negative) values of the queue order imbalance
are combined with slightly positive (negative) values of the new price momentum parameter. The
distributions of the trade count imbalance for buying and selling look almost identical (A.3). How-
ever, there is a visible difference between the distributions of holding and changing the exposure.

Due to the larger amount of states, the inventory agents show weaker signs of convergence
in all parameters and also do not convince with reliable positive performance (Table 3.8, Table
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Figure 3.11: Distribution for queue imbalance ((Q1y) and the new price momentum signal (Mid-
price - EWMA(Mid-price, ee = 0.1) per decision based on the @) Adjusted Iso agent’s test run.

3.9). However, the inventory agents develop an eflicient order submitting behaviour as their filling
probability is higher.

So far we assign a value of 0 to all actions “n”, independent of the state or LOB development.
As the inventory agents react more sensible to changes in prices and need longer to revert their
position, we specify a new reward function called Complete Iso with 1, denoting the exposure at
time . The parameter 7; can be interpreted as a risk indicator as it may reward but also punish
high exposures.

(t+z) — by(t), if executed within x seconds ; Ay = b
ap(t) — ag(t + x), if executed within x seconds ; 4, = s
t+x) — ap(t), if not executed within x seconds ; A; = b
t) — ap(t + x), if not executed within x seconds ; A; = s (3.3.2)
b

0, otherwise

with ¢ + dt indicating the next observation in the data frame after ¢ and ao(t + ) the best ask
price x seconds after time f.

The goal is to use this reward function in combination with Eligibility Traces (ET') to stabilise
the performance. The strength of ETs is the backward impact of future rewards on recently visited
state-action pairs. To leverage this property even more, we select a high discount factor 4 = 0.95
and ET-parameter A = 0.95.

The @ Inv ET agent using the Complete Iso reward function acts more aggressively than the
@ Inv agent (Table 3.9). Again, due to the deactivation time this leads to less exploration. Nev-
ertheless, with half of the exploration the performance of @ Inv ET is positive but very unstable.
This indicates that the agent has started to learn optimal behaviour but requires more training to
reduce PnL oscillations.

3.3.3 End of the queue

In order to investigate the robustness of the so far most promising strategy, we test the learned
tabular of (Q-values from the () Adj. Iso agent with a quene parameter of 1.0. This means we enter
the LOB at the end of the queue. Considering limit order cancellations, this scenario is realistic
if not even more difficult to master than reality would be. Waiting further behind in the queue
also means longer waiting times until execution. Hence, we expect worse filling probabilities. We
intentionally do not increase the deactivation or limit order cancellation time. As the state of
the LOB constantly changes, we assume that increased deactivation could result in non-optimal
investment decisions.

Table 3.10 shows that when further increasing the quene parameter there is a performance drop,
but impressively the behaviour learned in the “easier” trading environment is still successful in a
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more complicated setup. As expected, the filling probability and the number of executed trades
decrease with increasing queue parameter. The average number of matched limit orders per day
decreases from =2 550 to 475. This means that by increasing the quene parameter from 0.5 to 1.0,
72 85% of the previously executed limit orders were still executed. This emphasises the timing
ability of the agent. In 3.12 we compare the performance curves of three previously mentioned
agents, that demonstrate promising results considering the amount of data they trained on.

Agent Set Quene  Avg. profit/day (+- std. deviation) P(Invest) P(Fill) #E

Q Adj. so 0.5 3.02 (1-0.41) L76%  22.55% 2,782
Q Adj. so 1.0 0.92 (+-0.46) L76%  19.28% 2,378

Table 3.10: Test evaluation for ) Learning without inventory using the Adjusted Iso parameter
set. All submitted limit orders are placed at the best bid or ask price. For PP() explanation see
Table 3.3. #E denoting the number of executions.
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Figure 3.12: Testing performance (3.1.1) of ) and SARSA agents without inventory.
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Conclusion

The noticeable recent success of Reinforcement Learning in different fields, naturally suggests its
application to financial problems. Chapter 2 shows that tabular methods as well as Deep () Net-
works are able to learn optimal behaviour in a simulated environment, given that the reward
function transparently reflects the agent’s objective. Especially (3 Learning agents demonstrated
fast convergence and consistent performance when trained and tested on the Ornstein—Uhlenbeck
process.

Despite the small number high frequency LOB observations, we were able to design profitable
Reinforcement Learning trading agents, that are solely based on submitting limit orders. By taking
small steps towards a realistic trading scenario, we gradually optimised the state space and the
reward function. As a result, rapidly fluctuating signals seem to convey the most precious infor-
mation for the agents. Surprisingly, our findings indicate that the change in PnL is not a suitable
candidate for the reward function. Other concepts, such as isolating the impact of specific actions
and deactivating the agent showed a larger impact on the learning process. The introduction of
inventory significantly increases the complexity of the learning task. The higher munber of states
and the risk of higher exposures require more training and more robust methodologies. Eligibility
Traces seem to be a suitable candidate. Our findings partially agree with those mentioned by
Spooner et al. [10]. In detail, the application of on-policy methods and risk adjusted reward func-
tions has proven to be a potential improvement, whereas averaging (Q-values instead ol applying
the gradient did not enhance the agent’s performance. It should be emphasised that our results
were derived from only one financial asset and one month of high-frequency data.

Due to the computational challenges of training and predicting with deep neural networks, in
Chapter 3 we were only able to focus on tabular methods. Especially the promising results of
the Interactive Deep () Networks in the simulated environment should be applied to real-world
financial data in the future to robustly measure its potential. In general, the implementation of
Reinforcement Learning agents turned out to be a complex task, that requires not only sufficient
knowledge of software (such as Python), but also a solid hardware setup.

While we concentrated on sharpening the reward function and selecting only a few tradition-
ally extracted signals, there are many directions that can be explored. For example, the combined
usage of limit and market orders or the application of antoencoders to reflect the state of the LOB
are possible avenues that are open to explore. Furthermore, based on our findings and the research
shown in [10], the design of a Multiagent that leverages a combination different agents to form the
final QQ-values, seems a real prospect.

Lastly, taking into account the flexibility and recent successes of Reinforcement Learning in
finance but also in other areas, the use of such methods seems highly promising.
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Appendix A

Supplementary Figures

Rolling Empirical Probabilities of Actions
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Figure A.1: Development of action probabilities F.(a) for the double buy and single sell action for
the three inventory agents.
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(Volatility(1 minute)) per decision based on the SARSA Iso agent's test run.
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