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Abstract

In this thesis we provide an exposition on the key concepts, motivations and mile-
stones underpinning machine learning models that combine Neural Networks with
the modelling paradigm of differential equations, with the aim of discussing the Neu-
ral Rough Differential Equation (RDE) model [1]. The Neural RDE model combines
the continuously updated dynamics and solution methods of differential equations
with the ability of Recurrent Neural Networks to capture sequential dynamics. Fur-
thermore, Neural RDEs utilise a mathematical concept from Rough Path Theory
called the (log-)signature to summarise the input signal to reduce the effective length
of a time series and a method called log-ODE to solve the differential equation that
drives the hidden state. The model is compared to benchmark models and shown
to offer superior performance in classifying longer time series of multivariate data
in which sequential dynamics contain orthogonal information important to the out-
come of the task. We provide an illustrative example of how the Neural RDE model
can be coded up [2] and used to classify longer time series. Finally, we propose
how the Neural RDE model could be used to classify default risk in a financial set-
ting by extending some very recent work on sequential deep learning for credit risk
classification undertaken at American Express, Al Research [3].
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Introduction

In this thesis we will discuss Neural Rough Differential Equations (RDE), an ex-
tension of Neural Controlled Differential Equations that uses the log-signature path
to summarise a (possibly) irregularly sampled time series. The Neural Controlled
Equation may bhe thought of as a continuous time equivalent of a Recurrent Neural
Network, a deep learning approach to capture the sequential dynamics of various
types of data.

Chapter by chapter, we construct an understanding of the key concepts that under-
pin Neural RDE and finally combine them to disuss the model and its suitability to
learn the sequential dynamics of a long time series.

We illustrate a working example on a time series of length 5,000 and discuss the
potential applications of the model, e.g., to classify credit default risk of a borrower.

Traditional Feedforward Neural Networks do not incorporate sequential dynamics.
Recurrent Neural Networks capture sequential dynamics but have drawbacks such
as being discrete time, requiring regularly sampled time series and incurring a vast
number of computations for modest time series leading to vanishing/exploding gra-
dients and reduced accuracy.

The Neural ODE model introduces a new family of deep neural network models [7]
by replacing the discrete sequence of hidden layers with appropriately constructed
ODEs. The Neural ODE model introduces continuous time transformations for the
hidden state of a Feedforward Neural Network and applies a vastly more memory
efficient method for backpropagation called the adjoint sensitivity method. The in-
troduction of the Neural ODE model allows Neural Networks to be viewed through
the lens of differential equation modelling. As a result, it becomes natural to input
data that is irregularly sampled, it becomes possible to trade precision for speed and
existing tools to handle differential equations become available.

[4] extend the Neural ODE model by incorporating a concept from Rough Path
Theory called a Controlled Differential Equation (CDE) to introduce the Neural
CDE model. A controlled differential equation is driven by a continuous path inter-
polated between the observables. The hidden state is dependent on this path and
so becomes continuously varying. The Neural CDE model may be thought of as the
continuous time equivalent of Recurrent Neural Networks as it captures sequential
dynamics in a dataset. Further to the abilities of the Neural ODE model, the Neural
CDE can process new information without interruption and thus capture sequential
dynamics. As the path that drives the differential equation that determines the
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hidden state is interpolated to be continuous, data may just as well be irregularly
sampled and partially observed. Much alike its discrete step equivalent the Recur-
rent Neural Network, the Neural CDE model only works well with relatively short
time series (max. low hundreds). The number of forward operations for each for-
ward pass becomes unmanageable, loss /accuracy suffers and training times become
prohibitively long. However, the Neural CDE model appears to be quite effective in
learning time series where the sequential dynamics of a dataset contain non-trivial
information and the data is irregularly sampled and or partially observed. Indeed,
it is particularly noteworthy how effective the Neural CDE model is in dealing with
missing data and [4] showed that the model remained remarkably accurate for time
series where 70% of the data had been dropped at random.

This motivated [1] to develop the Neural Rough Differential Equation model in
which the effective length of the input signal or time series is dramatically reduced
by summarising the input signal over small time intervals using a concept called the
log-signature. The log-signature is a compressed set of ordered statistics that de-
scribe how the input signal drives the controlled differential equation and therefore
the hidden state. By combining rough path theory, the log-signature and previously
existing methods for solving ODEs, [1] create the log-ODE method which allows
the differential equation that drives the hidden state to be solved with integration
steps much larger than the discretisation of the data where again accuracy may be
traded for speed. The rough approach allows the effectiveness of the Neural CDE
formulation to be applied to a much longer time series, shown by [1] to be effective
up to a length of ¢. 17k making the whole approach feasible for a much larger range
of applications.

We provide a simple illustrative example of how the Neural RDE method is
scripted into code and highlight the results.

Finally, we dissuss a potential application of the Neural RDE model in predicting
default risk by capturing the sequential dynamics of a long time series of irregularly
sampled data on borrowers to classify credit default risk. Our discussion of this
potential application builds upon the very recent work of researchers at American
Express Al Research [3] which shows that discrete time sequential models such
as RNNs offer measurable improvements over non-sequential models in predicting
default risk. Due to the nature of lending, small improvements in predicting default
risk can lead to large savings.




Chapter 1

Recurrent Neural Networks

A staple of deep learning is the Feedforward Neural Network (FNN) which operates
by taking a fixed and static input to produce a fixed and static ouput, i.e., there is
no inherent notion of sequence or time. The activations flow only in one direction
from input to output. As sequential data arises in many settings, e.g. financial
time series, machine translation, trajectories of moving objects etc. it is important
to have a model that can be used for learning sequential data. This is particularly
true when a whole time series is to be classified. Going from the static Neural
Network model to capture sequential dynamics can be done using Recurrent Neural
Networks (RNN), a type of Artificial Neural Network with feedback connections
allowing for sequential dynamics behaviour. In an RNN, the network output and its
computations are not only a function of the input at a particular time step but also
the past. The Neural Differential equation models [4, 1] that form the focal point
of this thesis can in some ways be thought of as a continuous time equivalent of
the RNN. Therefore we begin by giving a brief account of the concepts underlying
RNNs, following the outlines of [5, Chapter 14, pages 470-505] which provides a
more complete and practical description of RNNs than summarised here.

Yi-3) Yie2) Yie1) Yoy
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Figure 1.1: A single recurrent neuron (left), unrolled through time (right) [5, Figure
14-1, pg. 470]




1.1 Recurrent Neurons

The simplest example of an RNN would be a single neuron that is fed inputs, pro-
duces an output and then feeds that output back to itself along with a new input at
the subsequent time steps as is shown in figure 1.1 (left). If we unroll these individ-
ual time steps across time as shown in figure 1.1 (right) we can see the neuron/s can
be described via a recurrence relation. This means that at each time step (a.k.a. a
frame) the cell state depends on the current input z( and on the prior cell state
(output) y.

RNNs can otherwise be constructed in much the same way as FNNs, with varying
numbers of layers and neuron units. Figure 1.2 depicts a single layer of five recurrent
neurons. The input is now in vector format in order to specifiy the input for each
individual neuron in the layer. Therefore, at each indvidual time step, each individ-
ual neuron is simultaneously fed as input, a combination from the input vector z,
and the previous output vector y;,_;y. Weight vectors W, and W, are assigned to
each neuron to determine the combination of inputs from the input vector and the
output vector of the previous time step respectively.

(2)
= Time

Figure 1.2: A single layer of five neurons (left), unrolled through time (right) [5,
Figure 14-2, pg. 470]

Definition 1.1.1. The output of a single layer of recurrent neurons is given by
equation (1.1.1)

Yoy = ¢ (:1:%:) Cwy + ya,n Swy, + b) (1.1.1)

where b is the neuron’s bias term and ¢(.) is the activation function. Equation
(1.1.1) can be extended to vectorised form to calculate the output of a recurrent
layer for a number of instances, for example a mini-batch (see [5, Ch. 14]). This
gives the below equation for outputs of a layer of recurrent neurons for multiple
mstances,

Yy = (}'9 [X(L} . Xl -+ YY(L_ 1 Ir'Vy + b) (112)
. - , LW .
=o([X Y] W+b), W= [W } (1.1.3)
Uy
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1.2 Memory Cells

As seen above, the output of an RNN at a particular time step depends not only on
the input at that particular time step but on all of the inputs up until that time.
This sequential nature can be viewed as a form of memory. A memory cell or sim-
ply a cell is the part of an RNN that carries some state (information) between time
steps. So far we have looked at the two most basic cells that would constitute an
RNN, the single recurrent neuron and a single layer of recurrent neurons. However,
an RNN can be constructed with multiple layers and varying numbers of neurons
to give deep RNNs in much the same way as FNNs.

The cells in an RNN have a hidden state denoted by h(, that is updated at each time
step as a sequence is processed. The hidden state h(,, like the output, is a function
of the inputs at that time step and the hidden state at the previous time step,
h(t) = f(hy—1,zt)). For the simple cells discussed above, the output was simply
equal to the cell state, however this is often not the case and the RNN unrolled
through time takes the form seen in figure 1.3

y Yoo Yo Yo

N
S

o

X(1) X2)

f

X

Figure 1.3: An RNN where the cells output and hidden state are not the same [5,
Figure 14-3, pg. 471]

1.3 Input and Output Sequences

A benefit of RNNs is that they can have variable length sequences as both inputs
and outputs. This is in contrast to feedforward neural networks (FNN) that only
work with sequences of pre-determined length. Figure 1.4 shows four common com-
binations of inputs and outputs used with RNN models. The top left network is an
example of the type that could be used for time series prediction, e.g. stock prices.
The input would be the stock price at each of the last N time steps, and the output
could be the stock price at the next time steps. This would be an example of a
sequence of inputs to produce a sequence of outputs (many to many). The top right
network takes a sequence of inputs to produce only one output, i.e. a sequence (of
vectors) to vector network (many to one), used for example in sentiment classifica-
tion. The bottom left network takes in a single input vector and outputs a sequence
(one to many), an example use would be text generation or image captioning. Fi-
nally, the type of network seen in the bottom right is another example of a many
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Figure 1.4: Many to many (top left), many to one (top right), one to many (bottom
left) and encoder-decoder (bottom right) [5, Figure 14-4, pg. 473]

to many network that is composed first of a sequence-to-vector (encoder) and then
a vector-to-sequence (decoder). Machine translation is an example where this is
particularly useful. The original sentence is processed into a single vector represen-
tation by the encoder part of the network that is then processed into a sequence of
outputs, i.e. a translated sentence, by the decoder. This provides much improved
translations as the sequential nature of sentences means that the meaning of the
words within a sentence is highly dependant on the other words in a sentence and
their positioning.

1.4 Training RNNs

In Feedforward Neural Network (FNN) models, a backpropagation algorithm in-
volves first taking the derivative (gradient) of the cost or loss with respect to each
parameter and second, shifting the parameters until the loss is minimised. Similarly,
an RNN is trained using a method called backpropagation through time (BPTT).
This is done by unrolling the RNN through time and using backpropagation as in
FNN models. A schematic representation of BPTT is shown in figure 1.5. From
the figure, we can intuitively see the vast number of computations and the large
memory cost associated to this for even a modest number of time steps, a drawback
of RNN models.

1.4.1 Backpropagation through time

The training of an RNN model begins like backpropagation for an FNN with a first
forward pass through the unrolled network as represented by the dashed arrows in
figure 1.5. The error between predicted values and expected values in the output is
evaluated using some cost function,

C (Y*(me]: }/(Imxn+1): YYLmM) s (141)
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Figure 1.5: BPTT: Unrolling an RNN through time and minimise cost/loss w.r.t.
each parameter [5, Figure 14-5, pg. 480]

where Y, . is the first output that is not ignored and ¥}, ., is the last output.
The reason why the method is called backpropagation through time (BPTT) is that
now the gradients of the cost function are propagated backwards through each in-
dividual time step of the unrolled RNN all the way from where we currently are
in the sequence and back to the beginning. All the weights and biases (model pa-
rameters) are updated to minimise the cost function using the gradients computed
during BPTT.

Gradient Issues

If we look at how gradients flow across the unrolled RNN in figure 1.5, we can see
that between each time step a matrix multiplication is performed that involves the
weight matrix W, of h() as a parameter. Therefore, computing the gradient with
respect to the initial cell state h,, ) requires a large number of multiplications of
W, and an equal number of computations of the gradients with respect to the weight
matrix which can lead to either vanishing gradients (many factors smaller than 1)
and exploding gradients (many factors larger than 1). With exploding gradients,
training explicitly breaks down as the gradients become too large to handle and are
therefore easier to deal with, e.g. by pre-defining a threshold. On the other hand,
vanishing gradients are harder to handle as they are not as easily detected, training
takes too long and the results are incorrect. Therefore, we are more concerned with
the problem of vanishing gradients, that is, gradients that become so small that we
are not able to effictively train the network.

Memory cost with long time series

As the number of time steps grows, the number of computations that must be car-
ried out quickly becomes prohibitive and because all of the intermediate quantities
must be stored, training will incur a very large memory footprint. The memory cost
associated to training RNNs is often the bottleneck for the length of time series that
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can be processed.

The methods used to handle these problems are only so eflicient at dealing with
the issues posed by long time series and so even for modest time series, training
still takes disproportionately long and incurs huge memory costs and/or precision
suffers.

Truncated Backpropagation through time (TBPTT)

It is possible to perform truncated backpropagation through time where the RNN
is unrolled over a manageable number of time steps during training. As a result the
RNN will only learn patterns exhibited across those specific time steps excluding
longer-term patterns. Alternatively it is possible to unroll the RNN over a combi-
nation of time steps that are both near and further away in the sequence, e.g. using
frequent data points for recent time steps and sparse data points for time steps
further away. This can provide some improvement but still has the drawback of ex-
cluding potentially significant patterns from the more distant past that are revealed
only in frequent data.

1.5 LSTM(Long-short term memory)/LSTM Cell

) ®
f. “®
hey £2 hi DED
Xy xlt
(a) Forget (b) Store
Ve
€e—1 & & ¢
0t 30
hea e o hy
] T
(¢) Update (d) Output

Figure 1.6: A schematic representation of an LSTM cell. Forget irrelevant parts
of previous state (top left), Stores relevant new information into the cell state (top
right ), selectively updates the cell state (bottom left) and output gate controls what
information is sent to the next time step (bottom right) [6, Lecture 2]

Another issue with training RNNs on long time series is that the network eventually
"forgets” inputs from earlier time steps. The computations at each time step erode
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information from earlier time steps when taking in new inputs. At some point, the
effects of inputs from early time steps on the cell state of the RNN becomes negligi-
ble whilst effects of more recent inputs become dominant. For example, if a financial
time series contains cyclical periods of extreme volatility during its early time steps
followed by a period of low volatility, the RNN will predominantly predict continu-
ing low volatility even though it may be intuitive that high volatility will return.

To combat this, gated cells have been designed that can keep a certain amount of
information from previous (and more distant) time steps (long term memory) and
balance it with a certain amount of new information contained in each new time
step (short term memory). The most commonly used type of such cells is called long
short term memory (LSTM) cells originally proposed by [8] and have since replaced
the more basic cells described above for most practical purposes. There is also a
simplified version, the GRU cell, (see [5, Ch. 14] for an introduction). Figure 1.6,
shows how an LSTM cell gates the flow of information.




Chapter 2

Neural ODEs

In [7] a new family of deep neural network models is introduced, Neural Ordi-
nary Differential Equations (ODE). The Neural ODE model links together Machine
Learning’s Neural Networks with the modelling capabilities of differential equations.
To avoid confusion, note that although continuous in time, the Neural ODE model
does not capture sequential dynamics of data like an RNN. In traditional (non-
recurring) Neural Networks (such as ResNet) the hidden state of a cell undergoes
a discrete sequence of transformations. In contrast, the Neural ODE model of [7]
parameterises the continuous dynamics of these hidden states using an ordinary dif-
ferential equation (ODE) that is specified by a neural network [7]. Note that the
Neural ODE model, thanks to its continuous dynamics is able to use data sampled
at irregular times unlike recurrent neural networks that require data to be evenly
spaced in time (or pre processed in some way so as to be). Being able to naturally
incorporate data sampled at irregular times is a major contribution of these new
models involving Neural Differential Equations.

As the evolution of the hidden state is described by an ODE that in turn is sp-
eficified by a neural network, [7] were able to use black-box ODE solvers to compute
the output of the neural network that specifies the ODE that describes the dynamics
of the hidden state. Through the use of ODE solvers the Neural ODE model can
then be evaluted adaptively and allows accuracy to be traded for speed.

A key feature the Neural ODE model is its ability to train via the adjoint sensitity
method for backpropagation. This can reduce memory cost by an order of magnitude
compared to backpropagating directly through the ODE solver. Deep models tend
to require a prohibitively large memory footprint for a reasonably sized dataset as
the intermediate quantities of a forward pass must be stored.

2.1 From Discrete Transformations to ODE Dy-
namics
Consider as an example how the decoder of a Recurrent Neural Network shown in

figure 1.4 repeatedly computes a discrete sequence of transformations to a hidden
state,

IIEH_] = hg + f(hl:tql): (?ll)
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where ¢ € {0..7} and h, € RP. In [9] and [10] it is argued that these repeated
computations may be treated as a Euler discretisation of a continuous process [7].
Imagine that we increase the number of hidden layers in a Neural Network so that
each partition in the iterative procedure becomes smaller. As the size of the parti-
tion tends to zero, using the definition of the derivative and rearranging equation
(2.1.1) the dynamics of these hidden units can be described by the below ordinary
differential equation (ODE)

dh
— = (0(1).1,6), (2.12)
where f is a neural network. It is
now possible to set up an ODE initial Residual Network ODE Network
value problem by defining the out- 3 ' 5E

put layer h(7T) as the solution to the
above ODE at a time T with the ini-
tial condition given by the input layer
h(0). In [7], a black-box differential
equation solver is used to compute
the hidden unit dynamics f(h(t),t, )
from which it is possible to derive .
h(T). R 5 05

Fignr? 21 highlights the tran- Input/Hidden/Output Input/Hidden/Output

sition from a discrete sequence of
transformations such as those found
in a Residual Network (ResNet) to
the ODE network that continuously
transforms the state. We mention
ResNets [11] here as [7] consider their
Neural ODE model to be a continu-
ous time analogy to a ResNet but the details of the ResNet are not important beyond
the fact that it is a non-recurring feedforward neural network.

Figure 2.1: Left: Finite transformations in
a discrete sequence as defined by a Residual
Neural Network. Right: Continuous trans-
formations of the state by a vector field de-
fine by an ODE network [7, Figure 1, pg. 1]

2.1.1 Advantages of Modelling with Differential Equations

By describing the dynamics of the hidden state with an ODE, the Neural ODE
model introduced in [7] is able to incorporate black-box ODE solvers as a part of
the model and this carries forward into the Neural CDE and RDE models discussed
later. This use of ODE solvers has some significant advantages that are listed in [7]
and recounted here.

Memory Efficiency

[7] demonstrates that it is possible to construct a method for computing the gradients
of a scalar-valued loss function with respect to a hidden state z(¢) (or h(t)) at each
instant, without backpropagating through the computations of the black-box ODE
solver. This is achieved using the adjoint sensitivity method, described in section
2.12 below. This means that it is no longer necessary to store the intermediate
quantities computed at each step in the forward pass. As a result, it is possible to
train the ODE based model with constant memory cost as a function of depth [7].
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As the memory cost associated to storing intermediate quantities of the forward pass
quickly becomes prohibitively large it has been a limitation on the length of time
series that deep models such as Recurrent Neural Networks can be trained on. As a
result, using the adjoint method vastly broadens the scope of possible applications.

Adaptive Computation

The ODE solvers available today are able to change their evaluation strategy without
interrupting a run to provide a chosen level of accuracy, ie. they can readily trade
precision for speed. Such ODE solvers can give reliable information about how
approximation errors vary with other quantities. An example of a practical use
might be to train a model and evaluate with high numerical precision and then
lower the precision to achieve greater speed in a production version.

Easier to compute change of variables

Although not directly applicable to the Neural Rough Differential Equations we aim
to consider, it is worth mentioning that it is easier to compute the change of variable
formulas when the transformations are continuous as they are in the ODE model.
A more detailed discussion can be found in [7, pg. 4]

Continuous time series models

The ability to deal with missing data and data points at arbitrary times is of great
importance. Recurrent Neural Networks can not deal with irregularly sampled data
without some preprocessing. Either the data must be discretised such that is be-
comes regularly sampled or some generative time-series model must be used to create
a regular data sample. With continuously defined dynamics it is straightforward to
incorporate irregularly sampled data.

On [7, pg. 6] a generative approach to time-series modelling that is continuous
in time is presented. Each time series is represented as a trajectory beginning from
a local initial state z,, and described by a set of hidden dynamics that are common
to all of the time series. Now consider a chosen set of regularly spaced observation
times tg, {1, ...t 5y that may or may not have an associated hidden state and an initial
state z,,. From this the ODE solver will produce a set of hidden states z,,, ..., Z;,
corresponding to each observation time. This generative approach to modeling time
series can be described by the following sampling procedure,

2z, ~ p(zy,) (2.1.3)

Zyys oo 2y, = ODESolve(zy,, f. 87,0, ... tx) (2.1.4)

for each x,, ~ p(x|z,,,6,) (2.1.5)

and is visualised on the right hand side of figure 2.2. The function f maps the
values of the hidden state to the gradient, f(z(t).6;) = dzT(:) In [7], the function

[ is parameterised by a neural network. A result of f being time invariant is that
each latent time series is uniquely defined given an associated hidden z(t). The
unique definition of the latent time series allows for it to be extrapolated forwards
and backwards in time to make predictions as required. A schematic representation
that compares computations in an RNN encoder with that of the latent ODE model
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Figure 2.2: RNN encoder vs. generative latent ODE model [7, Fig 6, pg. €]

is given in figure 2.2. Note how the Neural ODE model is able to update the hidden
state at the times of the extrapolated observations (i.e. the predictions).

2.1.2 Adjoint Method for Memory Efficiency

For these continuous Neural ODE models, the equivalent of backpropagation through
time (BPTT) described in chapter 1 would be to perform reverse mode differentiation
through the operations of the ODE solver to compute the gradients of a loss func-
tion. Performing the reverse mode differentiation for each operation of the forward
pass also requires storing the intermediate quantities and so incurs a prohibitively
large memory cost that becomes unmanageable for longer time series as well as ex-
acerbating numerical errors analogous to the vanishing/exploding gradients problem
described above.

Originally developed by [12], the adjoint sensitivity method was introduced by
[7] as a method to compute the gradients of a scalar valued loss with respect to all
inputs of the black-box ODE solver without storing the intermediate quantities. A
simple contrast between the BPTT approach and the adjoint method can be seen
in figure 2.3. As the tools developed by [7] for Neural ODEs can also be used for
Neural CDEs and Neural RDEs and are paramount to memory efficiency we will
describe them here.

When using the adjoint sensitivity method, the gradients of a scalar value loss func-
tion are computed by solving another (augmented) ODE that describes the dynamics
of the adjoint. This ODE can also be used with most ODE solvers. The memory
requirements of the adjoint method are O(H), i.e. it varies linearly with the com-
plexity of evaluating each step whereas for a BPTT approach it would be of O(HT),
where H would be the memory cost of each computation and 7 is time. Furthermore
the adjoint sensitivity method is not numerically unstable like the BPTT approach
with its vanishing/exploding gradients. As the adjoint sensitivity method is also
making use of an ODE solver it too can provide information on the level of accu-
racy, adapt its approach and can trade accuracy for speed [7, pg. 2].

In the adjoint sensitivity method the scalar valued loss function maps the output of
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the (augmented) ODE solver to a loss for a given hidden state z(t,) [7, pg. 2].

51
Lz(t)) = L (Z(tn) +/ I(Z(l)=£=9)fft) = L(ODESolve(z(ty), [, 1o, 1, 6))
Lo
(2.1.6)
To minimise L, we require gradients with respect to the dynamics parameters #. To
find gradients with respect to # it is necessary to begin by determining how the loss
L varies with the hidden state z(t) at any given time. This is the adjoint a(t)

oL
H=—, 2.1.
alt) = 50 (2.17)
the dynamics of which are described by the following ODE;,
da(t) r0f(z(t),t,8)
=—a(t) ——. 2.18
dt at) 02 (2.18)

The derivation of the above ODE relies on the chain rule applied to the gradient
between hidden layers and the definition of the derivative applied to the adjoint. A
detailed proof of equation (2.1.8) is given in 7, Appendix B, pg. 15-16].

In order to solve the above
ODE, the value of z(t) must
be fully known along each
. time series. This is achieved
by recomputing z(t) backwards

z(tw)

o ataan) in timel together with the

: State adjoint from its final value

LN Uty _Adjoint State  z(t,) [7].  That is, by call-

Py g ~~ 4 /// N ing the ODE solver again
' A . Faltgs) \e and running it backwards from
“ __// Af\ the final value of 8;‘1"1} all

1 I I i the way back to the initial

to ti b1 tn value % A schematic

representation of the back-
propagation of an ODE so-
lution can be seen in figure
2.3.

Figure 2.3: Using the adjoint sensitivity method
to backpropagate through the ODE solver involves
solving a modified ODE backwards in time. The
new modified ODE 2.1.8 depends on both the un-
derlying hidden state z(t) and the adjoint a(t).
The value of adjoint state a(t) moves in the direc-
tion of the sensitivity of the loss L with respect to
the underlying state z(t) at each observation time
for which the loss function is affected. [7, Fig. 2,
pg. 2]

A third integral that depends
on the adjoint a(t) and the hid-
den state z(¢) is then evaluated
to determine the gradients with
respect to the dynamics param-
eters 0.
dL fo r0f(z(t), t,9)
—_ = - a(t) ——=dt 219
df _/Ll ®) oo ( )
Computational differentiation can be used to evaluate the vector-Jacobian products
a(!.)T% and a(ﬂ)T% from equations (2.1.8) and (2.1.9) respectively. Doing so does
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not significantly add to the computational and memory cost associated to evaluating
f(z(t), t,6). 1t then becomes possible to evaluate all the integrals required to solve
for z, a and % with one call to an ODE solver. The ODE solver will then combine,
the original hidden state z(t), the adjoint a, and the partial derivatives from above

into a single vector.

The below algorithm is taken from [7, Appendix C, Page 16] and demonstrates in
pseudo code how the above described dynamics are constructed and subsequently
the ODE solver is called to determine the gradients with respect to each parameter
simult aneously.

Algorithm 2 Complete reverse-mode derivative of an ODE initial value problem

Input: dynamics parameters #, start time £, stop time ¢, final state z(t,), loss gradient 9L/az(1,)

ng; = Bf:;l)Tf(z[t,),tl .0) > Compute gradient w.r.t. ¢,
s0 = [z(t1), %, 04/, —3—{7] & Define initial augmented state
def aug_dynamics([z(t), a(t), -, -l, t,8): ) b Define dynamics on augmented state
return (f(z(t), ¢, 6), —a(t)T9L, —a(t)T 4L, —a(t)T %] > Compute vector-Jacobian products
[z(to), % oL, 3—1‘;] = ODESolve(sg, aug_dynamics, t,, ty, ) & Solve reverse-time ODE
return af(ﬁ'., 3 Sk, gk ok & Return all gradients

Pitfalls of adjoint backpropagation

Applying the adjoint sensitivity method for Neural Network models is not com-
pletely without faults and as an example [13] highlights the following pitfalls that
may be encountered:

Using the adjoint method may result in numerical instability for ReLu/non-ReLLU
activation functions and general convolutional operators.

Training may diverge because of the inconsistent gradients associated to small time
step sizes that can appear as a result of the optimise then discretise approach.
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Chapter 3

Neural CDEs

In [4], the Neural ODE model is extended by using a mathematical concept from
Rough Path Theory called Controlled Differential Equations (CDEs) to capture
sequential dynamics readily incorporate incoming data. [4] points out that as they
capture sequential dynamics, the Neural CDE may be thought of as the continuous
time analogue of the Recurrent Neural Networks.

In this chapter, we will discuss the key contributions of [4] to highlight how the
sequential nature of data can be captured through the use of CDEs which are driven
or controlled by a continuously updated approximation of an underlying process
or data process called the path X.

3.1 Temporal Dynamics vs. Sequential Dynamics

In order to fully appreciate the significance of going from the Neural ODE model to
the Neural CDE model, it is important to make note of the subtle difference between
temporal dynamics and sequential dynamics. Temporal dynamics do indeed
map variables to ohservation times or equivalent concepts such as the position of a
non-spatial observable etc. but it does so in a static manner dependent only on in-
titial conditions. That is, the temporal dynamics do not develop in continuous time
and do not capture the information inherent in the sequence of events. Sequential
dynamics on the other hand are continuously updated as if the data points arrrived
one by one on a conveyor belt and are dependent on the sequence of data that has
come before it and its relation to each new observation. Again, we may think of
the heuristic example of a ball thrown. The way yvou naturally watch and antici-
pate its trajectory is sequential modelling of sorts. In contrast temporal dynamics
would contain only observations of its spatial coordinates at given ohservation times
processed all at once after the ball had landed. For example, with only temporal
dynamics, there would be no way of knowing whether the ball flew in a curved tra-
jectory from A to B or was thrown vertically upwards at intermittent points in time.
The difference seems very subtle but is extremely important.

As discussed above, Neural ordinary differential equations (Neural ODEs) are effec-
tive at modelling temporal dynamics and bridge the gap between traditional neural
networks in machine learning and describing dynamical systems using differential
equations. However, the Neural ODE models described in the above chapter are
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not able to incorporate the sequential nature of data, e.g., a time series because the
solution of a given ODE depends only on its initial condition. Incoming information
cannot be incorporated as there is no mechanism to adjust the hidden state without
interruption. In a Neural ODE model, the observation times t; are set to certain
values which are passed to the ODE solver and thus become a static part of the
model. Recapping from the previous chapter, Neural ODE models [7] approximate
a map x +— y by learning a function f; and linear maps £}, #2 such that,

t
y~{5(zr), where 2z =z + / fo(zs)ds and zo = (3(x). (3.1.1)
0

Bear in mind, that in the Neural ODE model fy does not explicitly depend on time
s but rather on the hidden state z, which can include an extrapolated dependence
on time as an extra (artificial) dimension. [4] aimed to orientate the added time ¢
dimension with the natural ordering of the data by extending the z; = ¢2(x) condi-
tion in equation (3.1.1) to a condition along the lines of £(xq), ..., 2z, = €(z,) given
some sequential data (zq, ..., T,,).

Obviously equation, (3.1.1) is the solution to an ODE so as mentioned above, once
the parameters # have been learnt, the initial condition at z; determines the solution
or output of (3.1.1). In line with intuition, [14] rigorously establishes that it is not
possible to incorporate new incoming data without interrupting a run and updating
the initial conditions when using an ODE model.

[4] observed that the existing mathematics of Controlled Differential Equations
(CDEs), a concept from, Rough Path Theory offered well developed tools for in-
corporating incoming information. Specifically, Controlled Differential Equations
operate by driving differential equations with continuously updated rough signals

[15] in the form of a path X that approximates the underlying process.

3.2 The Path, the CDE and the Underlying Pro-
cess

Following the work of [15, 16] as presented in [4]: Let 7,7 € R with 7 < T, and let,
v,w e N. Let X : [7,7T] — R" be a continuous function of bounded variation. Let
¢ e RY and f:RY — R"*" be continuous.

Then a continous path z : [7, T] — R" with sensitivity to time given by %(!) =
S(z(t), X(t)) may be defined as the following Riemann-Stieltjes integral.

T
2=z +/ flz)dX, fort e (7,T] and =z, = (3.2.1)

The f(z,)dX, onthe RHS of equation (3.2.1) is a matrix-vector product since f(z,) €
Rw=v and X, € R". Please note that the subscript s refers to evaluating the function
X at s, a common notation in stochastic analysis.

According to [16, Theorem 1.3], equation (3.2.1) establishes global existence and
uniqueness given a global Lipschitz condition on f. Equation (3.2.1) is the solution to
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a Controlled Differential Equation, %(ﬂ) = f(z(t), X(¢)) which is controlled or driven
by the continuously updated process X. In practise, X is interpolated between data
points so as to be continuously updated.

3.3 Application of the Neural CDE model

Consider that we observe some time series x = ((tg, xg), (t1, 21). ..., ({5, 2,,)) and that
at each time ¢;, we observe a value z; which may or may not be missing. That is, the
time series is fully observed but may be irregularly sampled. We then interpolate
to produce the path X : [t,t,] — R*"' such that X, = (x;,¢;). Usually, the time
series is assumed to be a discretisation of a continuous underlying process observed
through x. The path X is then an approximation for that process. [4]

To interpolate between the observables, X is taken to be a Natural Cubic Spline,
which is a piece-wise cubic polynomial that is twice continuously differentiable.
Using a piece-wise low-degree polynomial works to reduce oscillations and mitigate
non-convergence when fitting a large number of data points [17]. According to [4],
Natural Cubic splines have the minimum required regularity to handle certain edge
cases but we will not discuss them here. Technical details may be found in [4,
Appendix A].

Time as a channel & Initial value networks

Equipped with the approximation X of the underlying process, we seek to learn a
map from the time series x to some object y by learning the functions (g, fy and
a linear map lp. Note that the initial condition depends on the first element of
the time series and z is modified continuously according to the following differential
equation presented in [4, 18]

(Initial condition) 2(0) = (p(to, o) (3.3.1)
(©E) %0 = pm) ) (332)

(Result) y = Le(2(T)) (3.3.3)

or (3.34)

y(t) = €o(2(1)). (3.3.5)

Bear in mind that the RHS of (3.3.2) is a matrix-vector product between fa(z(t))
and %(f) It follows that the hidden state z has a dependence on X because the
local dynamics of the system have a dependence on X. To obtain our result or ouput
y, we can project from a terminal time T if y is a fixed value and if y(¢) has time
dependence of its own, we can continuously apply the projection. Projecting a time
dependent y(t) gives a way of producing sequence to sequence models, analogous to
the one shown in figure 1.4.

Figure 3.1 gives a visual representation of how we begin with a fully observed (but
perhaps irregularly sampled) time series or data process. At each time ¢;, we ob-
serve a value x; and interpolate between them to produce the path X wich in
turn continuously affects the hidden state z. Please compare this to figure 2.3
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which depicts how for a Neural ODE the hidden state evolves continuously only
between observations but is discontinuously modified at each observation time.
As the Neural CDE model can

ﬂm ) be thought of as a continuous
s TAT’:‘T Ll ' ! ! TT Hidden state z  time analogue of a Recurrent Neu-
o B o X | ral Network (RNN), lets examine
H\;’:Jgi ! L v -————L'——: Path X the connection between the Neu-
},’\\: }‘q:—%"% = - ral CDE model and the discrete
e ST Y time RNNs described in chapter 1
1 T s Ty Data x and how CDEs can be applied to
o . . > Time neural network models.
t1 t2 ts 0 tn The functions to be learned in

) the above CDE model, fp : R —
Figure 3.1: In the Neural CDE model the path Rwx(+1) and Cp: R 5 R can

X continuously drives the differential equations
that updates the hidden state z. Therefore the
evolution of the hidden state is continuous. [4,
Fig. 1, pg. 3]

be taken to be any neural network
models with parameters #. w may
be taken to be a hyperparameter
whose value controls the number
of features of the hidden state for
an RNN. Applying the above description of CDEs to a neural network yields the
Neural Controlled Differential Equation model in which the hidden state z; is
given as the solution of a CDE,

t
2=z, + / Jo(zs)d X, for t € (to,t,] (3.3.6)
to

and the initial condition z,, = (y(xg, ty) as before [4]. Just as for conventional RNN
models, the output or hidden state of the model can be either a single value z,
at a terminal time ¢, or be a time dependent process z itself. The final results or
predictions are then typically given by linear maps applied to these hidden states
as seen in equation (3.3.5)

Note the similarity between equation (3.3.6) for Neural Controlled Differential Equa-
tions and equation (3.1.1) for Neural Ordinary Differential Equations. Indeed, equa-
tion (3.3.6) is also an ODE in some sense and so can be solved with the same tools
that were developed for Neural ODEs [4, 18]. The main difference being that equa-
tion (3.3.6) is driven or "controlled” by the continously updated path X whereas
the Neural ODE in equation (3.3.6) is not driven at all, i.e. the identity function
¢ : R — R takes the place of the process X. This is what allows Neural CDEs to
continuously incorporate new data, as changes in X change the local dynamics of
the system and so also the hidden state [4].

CDEs as Universal Approximation

It has been established that CDEs represent general functions on streams [19, Propo-
sition A.6], [20, Theorem 4.2]. Here " Streams” are simply sequences of data elements
that become available over time and can be thought of as observables arriving one
by one rather than being processed in larger batches of existing data. [4, Theorem
B.14, Appendix B] states and proves a Universal Approximation Theorem that Neu-
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ral CDEs are able to approximate any functional sequence which they summarise in
the following informal theorem [4, Pg. 3]

Theorem 3.3.1 (Informal). The action of a lincar map on the terminal value of a
Newral CDE is a universal approzimator from {sequences in R} to R.

3.3.1 Solving the Neural CDE

[4] formulate their problem in such a way that X is not only of bounded variation
but also (twice) differentiable making it possible to write

dX ~

%(s) = f,;(z(!.))%(sL to define, gp x(z,5) = f,}(Z)E(J:): (3.3.7)

so for t € (ty.t,] it is possible to use the derivative of the control path to write the
CDE in equation (3.3.6) in the form of an ODE,

t t dX.; t
2= 2y + / fﬁ(zs)de = Zig +/ fr?(zs)?(s) = Z1p +/ grlX(z-'i: ")d" (338)
to [4] to

Because, this takes the form of an ODE, [4] are able to solve it with excactly the
same tools as developed for Neural ODEs by [7] even using the same software and
code, namely the torchdiffeq package [21].

3.3.2 Generalises alternative ODE models
[4] points out that for those unfamiliar with CDEs, it could be tempting to replace

gox(z. s) with an ODE type model of the form,

ho(z, X,) = %(s) = fo(z(s), X (s)), (3.3.9)

in which h4(z, X,) is directly applied to and is possibly nonlinear in X,. [4, Thm.
C.1, App. (] states and proves that the Neural Control Differentiation model is
strictly more general than such models which is summarised in an informal statement
on [4, Pg. 4].

Theorem 3.3.2 (Informal). Any equation of the form,
t
2 =2zp + / ho(zs, X,)ds, (3.3.10)
o

may be represented excactly by a Neural CDE of the form,

t
2 = zn—l—/ Jo(z:)dX,. (3.3.11)
Ly

However the converse statement is not true

The gist of the theorem is that a Neural CDE can readily represent the identity
function between paths but the alternative ODE models cannot. In the experiments
of [4], Neural CDE models measurably outperformed a selection of ODE type models,
which according to [4] might be a consequence of this generality.
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3.3.3 Training CDEs via the adjoint method

In the previous chapter on Neural ODEs, we describe how Neural ODE models are
able to train using the memory efficient adjoint sensitivity method for backpropa-
gation (see figure 2.1.8) [7]. The advantage of the adjoint method is that if H is the
memory cost of evaluating one step of the model and T" = ¢, — 1, is the time hori-
zon, the memory cost of adjoint backpropagation is still only O(H) whilst typical
backpropagation uses O(HT') memory.

In an effort to apply Neural ODE models to time series, previous work such
as [22] has interrupted the ODE solver at each observation to update the initial
conditions to accommodate the new observation. Interrupting at each observation
requires a memory of Q(H) for each time step time, for a total memory cost of
O(HT). Because the adjoint method of backpropagation cannot be used across the
discontinuity at the observation it cannot be used for this setting.

This is yet another way in which the Neural CDEs ability to naturally adapt to
incoming data proves advantageous. The function,

9o.x(2.8) = fy(2) )s (3.3.12)

dX
7(&,‘
ds
incorporates new data continuously through the process X without having to inter-
rupt the ODE solver. Therefore it is possible to use the adjoint method of back-
propagation just as for the uninterrupted Neural ODE models.

As mentioned above the adjoint method of backpropagation in the Neural ODE
model has a memory cost of O(H) where H is the complexity of each step. Because
the Neural CDE is continuously updating through the time horizon of the time
series, it incurs an additional memory cost of @(T'). The combined memory cost of
training in the Neural CDE model is therefore only O(H + T) as opposed to the
typical O(HT) in alternative models such as Recurrent Neural Networks or ODE
models that interrupt the solver to incorporate new data.

3.3.4 Partially observed data

The first step in a Neural CDE model is to interpolate between potentially irreg-
ularly sampled and/or partially observed data x to construct X : [to,t,] — R""
such that, X;, = (z;,¢;). As a result the model is agnostic to whether the data is
irregularly sampled and /or partially observed. Furthermore the Neural CDE model
readily handles multivariate data where observations from the different dimensions
are missing at the same observation time.[18]

3.3.5 Batching

One of the challenges posed by irregularly sampled time series/data is how to split
the data into batches when the observation times ¢; may not line up between the
batches. Within the framework of the CDE model it is possible to process the
whole data set prior to feeding into the model to produce the continuous-time in-
terpolations (paths) X [18]. As described in section 3.3, we can construct a con-
tinuous path X from an irregularly sampled and or partially observed time series
x = ((to,z0), (t1,21), ..., (tn, 2n)) by interpolating between the x = (xq, ..., #,) such
that X;, = (#;,¢;). Since X is already an interpolation for irregularly sampled
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and or partially observed time series, it is possible to construct a path X for each
batch of training samples and an invidual path so constructed can be thought of as
representing each individual batch.

3.4 Experimental Results

We will not include a detailed discussion of the experiements carried out in [4] as
Neural CDEs are not the main focus of this paper but rather stepping stone towards
understanding Neural RDEs. However we highlight their results on a CharacterTra-
jectories dataset mainly to highlight how memory efficient the model is compared
to other sequential models and how powerful it is in dealing with missing data.

[4] compare their Neural CDE model to a few existing models so chosen as to
be representative of the class of ODE and RNN based models to which the Neural
CDE model belongs. [4] determined hyperparameters by performing a grid search
to optimise the performance of the benchmark ODE-RNN model and then used
equivalent hyperparameters when running the other models. Further results and
precise experimental details may be found in [4, Chapter 4 and Appendix D]

3.4.1 Character Trajectories

To illustrate the usefulness of Neural CDEs for acting on irregularly sampled time
series, [4] process the 'CharacterTrajectories’ dataset from the UEA time series
classification archive [23]. This data set captures the human hand writing letters of
the latin alphabet in a single stroke and consists of 2858 time series each of length
182 that record the x, y position and pen tip force. The task is to figure out which
of twenty different letters is represented by the time series.

To see the Neural CDEs model effectiveness in dealing with increasingly irreg-
ularly sample data [4] run three experiments, in which they (uniformly) randomly
drop 30%, 50% and 70% of the observations. To keep the randomly reduced datasets
irregularly sampled but fully observed, observations at a given time are removed
across channels (x, y position and pen tip foree). All of the models and all of the
runs use the same randomly reduced datasets.

The results can be seen in figure 3.2. The Neural CDE model outperforms
the other models chosen from its class. Note, that as the percentage of missing
observations increases, the performance of the Neural CDE model is remarkably

Test Accuracy Memory
Model ME)
30% dropped  50% dropped  70% dropped  USage (
GRU-ODE 92.6% + 1.6% 86.7% + 3.9% 89.9% + 3.7% 1.5
GRU-At 93.6% +2.0% 91.3%+2.1% 90.4% + 0.8% 15.8
GRU-D 942% +2.1% 90.2% + 4.8% 91.9% + 1.7% 17.0
ODE-RNN ~~~ 954% +06% 96.0%+03% 953%+06% 148
Neural CDE (ours) 98.7% + 0.8% 98.8% + 0.2% 98.6% + 0.4% 1.3

Figure 3.2: Test accuracy (mean + std, computed across five runs) and memory

usage on CharacterTrajectories.

amount of data dropped [4, Table 1:, pg. 6]
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constant compared to the other models, highlighting the strong adaptiveness to
missing data built into the formulation of the Neural CDE model. Furthermore, the
memory cost of the Neural CDE model is an order of magnitude less than for the
other models thanks to the adjoint method for backpropagation.

Last but not least, note that the table in figure 3.2 does not show the time
taken to train. As the path X is driven by a sequence of observations from a
time series and the hidden state z, is the solution of a CDE dependant on X, a
longer time series will incur a large number of forward computations that result in
long training times and reduced accuracy despite the memory efficiency. The next
chapter contains an example of such training times and accuracy. The large number
of forward computations for a longer time series required by the Neural CDE model
is what motivates the development of the Neural Rough Differential Equation model
(RDE) the key consideration of this paper.
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Chapter 4

Rough Path Theory & the Path
Signature

In [15, 16, 24], it is detailed how the dynamics of Controlled Differential Equations
are described by a mathematical concept called the signature transform or path
signature or simply the signature of the control process or path X. The signature
is a collection of real valued integrals that summarise a stream of data. The collection
of integrals form a series where each additional term corresponds to a higher order
approximation.

In [15, 16, 25] it is established that a CDE can be solved by using a compressed
version of the signature called the log-signature of the control path X. Each
log-signature summarises the path X only over a short time interval. A Rough
Differential Equation is a CDE where the path X is summarised with a log-
signature and it is solved with a numerical method called the log-ODE method.
This effectively reduces the length of the time series as the input signal is summarised
for a chosen length of the time intervals unlike in the Neural CDE model that requires
pointwise evaluation. The size of the time interval chosen becomes another way in
which accuracy may be traded for speed. Figure 4.1 provides a simplified visual
contrast between driving a differential equation with a rough path (left) and the
Neural CDE model from the previous chapter (right).

T Response \_‘____,J”"’—'——_\ Response

AAAAARAER R AR AR ARA bR AR AR dbbbaRbaal ] % % I

Neural CDE CDE Neural RDE RDE
Summaries
T T T S T R Y S T TN F YR E P Py T I
LA AN T A Path, X, LA N EAALN AL
LAl AL WA AN VLA | (smoothed) LA ‘. AWV L LA Path, X,
Time Time
to T to T

Figure 4.1: A simplified contrast between the pointwise Neural CDE model and
Rough Path solution theory: Left: The path is interpolated to be smooth (differ-
antiable) and pointwise evaluation is used to drive the CDE. Right: Rough path
solution theory where the path X is summarised with a (log-)signature thus effec-
tively reducing the number of evaluations required or shortening the time series [1,
Figure 1, pg. 2]
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A key consideration of the work on Neural Rough Differential Equations in [1]
is how to solve the problem of too many forward operations in the Neural CDE
model by applying Rough Path Theory and the log-Signature. We therefore discuss
Rough Path Theory and the log-ODE method here. Our discussion of Rough Path
Theory follows the outlines of how it is presented in [1, Section 2 & Appendix A]
as it contains a concise summary of the key concepts from rough path theory that
underpin their Neural RDE model. Key definitions are restated. This in turn relies
on material found in the following books on Rough Path Theory [25, Sections 7.10],
[24, Chapters 1-4 & 6-8 |, [16], and [1, Appendix A]. We would recommend [24] as an
introduction to the subject of Rough Path Theory or for a more concise introduction,
[16] by Terry Lyons who introduced the topic of driving differential equations by
rough signals in [15].

4.1 Log-ODE method to approximate CDEs

In this section, we give a breakdown of the log-ODE method as presented in [1].
The log-ODE method is a numerical method constructed of various concepts from
stochastic analysis and rough path theory [16][25]. For the log-ODE method, a CDE
is converted to an ODE format using a concept called the log-signature to summarise
the control path. As aresult the control path no longer has to be differentiable. This
is in contrast to the method from the previous chapter on Neural CDEs that uses
the derivative of the control path X to convert the CDE to an ODE. The log-ODE
method is then used to give a high order approximation of the solution of that CDE
by the solution to an ODE.

The log-ODE method is applied by [1] to approximate Controlled Differential
Equations (CDEs) of the form:

dY, = f(Y,)dX,, Y,=¢, (4.1.1)

where the following equality holds for all ¢ € [0, T,

1:E+/n f(Y)dX.. (4.1.2)

The path X : [0,T] — R? is of finite length and bounded variation. The initial
condition ¢ € R™ is n-dimensional and the function f: R"™ — L(R% R") is assumed
sufficiently smooth for the CDE in equation (4.1.1) to be well formulated. Using
signatures or their compressed format log-signatures to drive differential equa-
tions, the solutions to corresponding CDEs can be accurately approximated with
the log-ODE method. In the following text, we aim to construct an understanding
how this rough path solution theory is constructed.

L(U,V) is a continuous linear map between the vector spaces U and V such that
it the path X; maps X : [0,7] — U, and the output ¥; maps Y : [0,7] — V. In
the above case [ is called the vector field of the CDE and assumed to have Lip(y)
regularity [25, definition 10.2]. (In a Neural model, f becomes the Neural Network).
[1] make one of the following assumptions on the vector field:

e [ is bounded and has N bounded derivatives
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e [ is linear

Following the presentation of key concepts found in [1] we begin by defining the
tensor algebra, a pre-requisite for the signature.

Definition 4.1.1 (Tensor Algebra). T(R?) .= R & R @& R®? & ... is said to be the
tensor algebra of R and T((R%)) := {a = (ag,ay,..) : ap € (R)®* vk > 0} is
the set of a formal series of tensors of RZ. Furthermore, T(R4) and T((R%)) can be

equipped with the operations of addition and multiplication, If a = (ag, a1, ...) and
b = (hg, b1, ...), then,

a+b: (ﬂ.n+bn=ﬂ.1+b1=...)= (‘-113)
a®b=(c,c,c,...), (4.1.4)
in which the n-th term ¢, € (R4)®" is given by,
Cp 1= Z ap @ b,— forn = 0. (4.1.5)
k=0

In equation 4.1.5, ® represents the usual tensor product. The ® symbol in
equation 4.1.4 is also called a " tensor product” but the equation is a generalisation.
If all but one a; and one b; are equal to zero, then 4.1.4 becomes the usual tensor
product.

Definition 4.1.2 (Signature Transform). If the path X = (X*, ..., X4) : [0,T] —
R? is continuous and piecewise differentiable then the signature of a finite length
path X : [0, T] — R over the interval [s, ] is defined as the following collection of
iterated (Riemann-Stieltjes) integrals:

Ser(X): (1,200,212 23 ) e T(RY)), (4.1.6)

where for n > 1,

X0 = // X, @ ... @ dX,, € (R)®" (4.1.7)

SCUL LU <L

It is possible to truncate this signature to define the depth-N signature of the
path X on [s, ] as,

S;'TL(X) = (L :ri& :Ifii}: :::i:‘?...:rif}) e TN((RY)) (4.1.8)

where TV (RY) := RERIGR®?2 @ ... @ (RY)®N is an N-truncated tensor algebra.

A simplified version of the definition of a depth-N signature is presented in [1] as
follows: If X = (X1 ..., X9):[0,7] — RY is continuous and piecewise differentiable
as before and,
k .
ik d X"
SVRIEIE R B | A (4.19)

a<ty <..<tp<b =1
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then the (simplified) depth-N signature transform of the path X can be written as

N i i d i d i d )
Slgu‘b(X) = ({SQL(X){ }}1:1: {‘S(u‘b(X) ig=11 ---{Su,u(X) :'1,,,,,:';\.=l) (4.1.10)
The simplified definition is independent of the choice of T and ¢; due to the change
of variables that is possible to make in equation (4.1.9).

The depth-N signature gives an ordered set of statistics that summarise how the path
X effects the dyvnamics of a system modelled by a controlled differential equation.
The same is also true of the more compact log-signature.

In [26] the depth-N signature is extended under mild conditions to show that
Sig™(X) completely describes the path X up to translation, provided time is in-
cluded as a channel in the path [1]. What this means here is that adding more terms
to the (log-Signature) alway equates to characterising the path in more detail, i.e.
higher order terms include more substep information.

Log-signature The log-signature can be thought of as a compressed format of the
path signature containing the same information. It is possible to remove certain
algebraic redundancies from the signature to derive the log-signature. Using inte-
gration by parts and some algebraic manipulation gives that,

t 3 L 5
//dX;dXﬂjL/deﬂdX::XfXj fori,j € {1,....d}, (4.1.11)
0 0 0 0
or in simplified form,
Sai(X) + Sip(X) = 5,,(X)52,(X). (4.1.12)

Therefore, in the above equation any one of the four quantities can be obtained by
knowing the other three and so it is possible to remove quantities whilst retaining
the full information contained in the signature.

We then compute the signature transform (up to depth-N), discard redundant terms
and obtain some (non-unique) minimal collection to produce the log-signature trans-
form. Lets examine how we may fix such set of redundancies (somewhat correspond-
ing to a choice of basis) to define a log-signature transform LogSig, ,(X). This is for-
mally constructed through the following three definitions which begins with the loga-
rithm map on the depth-N truncated tensor algebra TV (R?) := RQRY®- - @ (R)®V.

Definition 4.1.3 (The logarithm of a formal series). For a = (ap,01,...) €
T((R?)) with ag > 0, define log(a) to be the element of T((RY)) given by the
following series:

ba _ TL @n
log(a) :=log(ay) + Z (—1) (1 — ;;) . (4.1.13)
n=1 ) N

n

where 1 = (1,0,...) is the unit element of 7'((R?)) and log(ag) is viewed as log(ap)1.

33




Definition 4.1.4 (The logarithm of a truncated series ). Fora = (ap, a1 ...ax) €
T((R%)) with ag > 0, define log™(a) to be the element, of 7V (R?) defined from the
logarithm map (4.1.13) as

log™ (a) := Py(log(a)), (4.1.14)

where & := (ag,ar,....ax,0,...) € T((R?)) and Py denotes the standard projection
map from T((R%)) onto TV (RY).

Definition 4.1.5 (The log-signature). The log-signature of finite length path
X [0, 7] — R? over the interval [s,t] is defined as,

LogSig, ,(X) := log(S,(X)). (1.1.15)

where log(S.,(X)) denotes the path signature of X as given by definition 4.1.2.
Similarly to the truncated path signature the depth-N log-signature of the path X
is defined as,

LogSigl,(X) :=log"(SN(X)) for each N > 1. (4.1.16)

In an effort to simplify the definition of the log-ODE method, each log-signature,
LogSig, ,(X) := log(S.(X)) is taken to be an element of the truncated tensor
algebra TN (R?). This is equivalent to the definition that we will use in the next
chapter that defines the log-signature as a map from the finite length path X :
[0, 7] = R? to RAN) where 8(d, N) is the dimension of the log-signature and is
given by,

N
Bd,N)=>" % S (’;‘) d (4.1.17)

k=1 ik

where j is the Mobius function. From this we can see that the number of log-
signature channels, 3(d, N) grows exponentially with the number of input channels
d and so the log-ODE clearly becomes unusable for a large number of input chan-
nels. It is essentially by this mapping that the log-signature trades the length of the
input sequence for an increased number of input channels.

Terms of the (log-)Signature

The depth-N log-signature is composed of N terms, each corresponding to a certain
level of depth. The first two levels of the log-signature have intuitive geometric in-
terpretations that are shown in figure 4.2. The depth 1 terms can be thought of as a
length of sorts, measuring coordinate changes in each channel (variable) over a given
interval, shown as AX; and AX, in figure 4.2. The depth 2 terms correspond to
the signed area called Lévy area above A, and below A_ the straight line joining
the end points of the path over the interval shown in figure 4.2. In other words
the log signature contains summarised information about the path over the interval,
e.g. for a stock price this might be thought of as quantifying the price change and
a cumulative volatility of sorts (not volatility as normally defined though).
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Deeper levels (N > 2) are computed using a correspondingly larger collection of
integrals that are iterated areas in higher dimensional space (not volume ete.) and
contain increasingly detailed information about the path X but are perhaps less
intutitive to visualise. Depth-2 and depth-3 already characterise the path X to a
sufficient degree for many practical purposes. Even deeper levels bring with them
an increasingly higher computational cost that can be dealt with by parallelising.

X2 Data, x x? Path, X Log-signature
®-ax! .
| Depeh 1
o o N |
r o ° ] o & ®-2x |
o ° o A 44 @=4, -4 jDoa2
- — - o A: g
° [ [°) = '
- 1 - P AX? | Higher order
AX .
X! Xt

Figure 4.2: Visualisation of the depth-2 terms of a log-signature for a two-
dimensional path. Depth-1 terms are a length of sorts corresponding to directional
displacement in that channel, AX;. The depth-2 term(s) correspond to a Lévy area,
i.e, it is the signed area between the path X and a straight line joining its endpoints
on the interval [1, Figure 2, pg. 3]

Comparing the Taylor expansion of a CDE to the signature

Recall how Z : [a,b] — R" is the unique solution to the controlled differential
equation,

L
Zo=e. Zi=Z,+ / 1(Z)dX, fort € (a,b), (1.1.18)

where f(z,)dX, is a matrix vector product and dX, is a Riemann-Stieltjes integral.
Expanding the CDE as a first order Taylor Expansion, gives the below equations as
derived in [1, Page. 4].

t
Zo=Zy + / F(Z.)dX, (4.1.19)

xZu—Fl (f(Z) + Di(Z)(Zs — Za)) — —(s)ds (4.1.20)

~z [z S [ (v [ f(Zu)%(v)dv) X (s (4121

~ 7o+ f( u)/ O (s)is + D (2.)](Z )// )du—(')ds (4.1.22)
= Zy+ [(Z){S(X) Y+ Dy(Z,) f(Z){S(X “ﬂ}d (4.1.23)

where D; is the Jacobian of the vector field (and soon to be Neural Network) f.
Comparing the first and last equations shows that each term of the signature corre-
sponds to a term in the Taylor expansion of the CDE. This establishes they way in
which signatures are connected to the solutions of CDEs and verifies that signatures
may be used to approximate the solution to CDEs. Including higher order terms in
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the Taylor expansion would call for a correspondingly greater level of depth of sig-
nature terms [27]. A formal definition of the Taylor method to any order is as follows,

Definition 4.1.6. (The Taylor method) Given, a CDE of the form dY, =
f(Y)dX,, Yy = e, the path signature of X can be used to approximate the solution
Y on an interval [s, ¢] via its Truncated Taylor expansion,

N
Taylor(Y;, £.SN(X)) =Y fF(Y)me(SN(X)). (4.1.24)
k=0

The above Taylor expansion is an approximation for ¥; where each 7 : TV(R?) —
(R?)®* is the projection map (e.g. a Jacobian) onto (R9)®*,

Log-ODE method as an ordered approximation

‘We have seen how the terms in a Taylor expansion of a CDE are equivalent to the
terms in a signature. As the log-signature is simply a compressed format of the sig-
nature it follows that the terms of the log-signature can used to approximate a CDE.

Building on the formal definition for the Taylor expansion above, the Log-ODE
method may then be defined

Definition 4.1.7 (The Log-ODE method). Begin by defining a function,
[R" = L(TY(RY),R") as f(z): Taylor(z, f,-). (4.1.25)

By applying fto the truncated log-signature of the path X over an interval [s, t],
[1] could define the following ODE on [0, 1],

dz .
2(0) = Y., f — F(2)LogSig",(X) (1.1.26)
L1 !

It follows that if Y, and LogSig:l are known, the ordered log-ODE approximation
of Y, can be defined as,

LogODE(Y,, f, LogSig™

(=N

(X)) = 2(1). (4.1.27)

The ODE is then solved on [0, 1] to given an approximation to the output, ¥; := z(1)
[1, Appendix A] and [16, Section 2].

Log-ODE method for the Neural RDE model

[1] found that the log-ODE method was especially useful for long time series be-
cause the log-ODE method is able to trade the length of the input sequence for an
increased number of channels. The log-ODE method facilitates the training of the
model by allowing the black box ODE-solver to take integration steps larger than
the discretisation of the data but allowing us to recover a chosen amount from the
substep information with higher order approximations.
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Action of f on
signature of X

Yo, X : [s,t] — R4 nﬁy]m =Y, + f(Ys)Sga(X)

Action of f on ZZ
log-signature of X

A Log-ODE method

5 = f(z)LogSigé\ft(X) ] Solve ODE on [0, 1]
z(0) =Y,

Figure 4.3: A comparison between applying [ on the signature of X and using the
Talyor method and applying f to the log-signature of X and solving the ODE on
[0,1] [1, Figure 6, Appendix A]

Reverting back to the form of the CDE as defined in equation (4.1.18) above, the
log-ODE method implies that Z, can be approximated with Z, = Z, such that,

= = “ .~ LogSig)y(X) ,
=Z, +/ ——————ds, foru e (a,bl, (4.1.28)

Zu f(Z‘i) b_ a

and ZL = Z, [1]. What this means is that the log-ODE method can provide a high
order approximation of a CDE by the solution to an ODE. As mentioned hefore,
obtaining an ODE format is important as a wealth of previously existing methods
to handle ODEs become available.

In [1], the interval [a,b] is partitioned into smaller more manageable intervals
such that a =ry <ry < -+ <r,, = b. The solution to the CDE in equation 4.1.18
is then split into an integral over each [r;, r;,4] in order to apply the log-ODE method
to each interval seperately and the results added up. In [1] a CDE whose solution
is approximated using the above log-ODE method is called a Rough Differential
Equation. Hence the name Neural Rough Differential Equations when extended to
Neural Network machine learning.
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Chapter 5

Neural Rough Differential
Equations

In [1], the rough path theory described in chapter 4 is used to extend the Neural
CDE model to introduce their Neural Rough Differential Equation (RDE) model.
The central contribution of [1] is to extend the Neural CDE model of [4] by ef-
fectively reducing the length of the time series by summarising the path X, over
appropriately chosen intervals using the log-signature. As a result the hidden sate
Z, is only updated once for each interval [t;,; + 1] rather than at each data point.

As described in chapter 3, previously established methods for computing the for-
ward pass of a Neural CDE, e.g. [4] summarised the possibly irregular input signal
as an interpolated path X : [t,t,] — R""'. [1] uses rough path theory to extend the
CDE model to represent the input signal over small partitions of the time interval
through its log-signature, which is composed of real valued terms that approximate
how the input signal drives the CDE. This approach then uses the log-ODE method
for solving Rough Differential Equations as described in the previous chapter. This
approach is termed Neural Rough Differential Equations by [1].

In the Neural CDE model, the path X is a pointwise interpolation hetween the
observations and the hidden state is the solution of a CDE dependant on X'. Due
to these pointwise evaluations, a longer time series will incur a prohibitive number
of forward computations resulting in long training times and reduced accuracy. By
generalising the Neural CDE model to work with a broader class of driving signals,
[1] is able to mitigate these performance issues by summarising the path X with its
log-signature over appropriately chosen time intervals. This effectively reduces the
length of the time series and thus reduces the number of integration steps required to
solve the CDE. This allows longer time series to be handled effectively and [1] were
able to show efficacy for time series with up to 17,000 observations. [1] also observed
considerably reduced training times, increased accuracy and lowered memory costs.

Discussing the work found in Newral Rough Differential Equations for Long Time
Series[1], building the pre-requisite understanding of its key concepts and applying
their Neural RDE model and finding a potential use for the model in a financial
setting is the key objective of this thesis.
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5.1 Pointwise evaluation of the CDE vs. log-signature
& RDE

From the field of Rough Path Theory [15],[16] [25], it was already known that it
is possible to summarise the path X with the log-signature to drive the CDE and
then solve the CDE via the log-ODE method. Indeed, this solution theory for CDEs
was developed in the 90's by one of the authors of [1] and [4], Terry Lyons. The
rough path solution theory for CDEs is in contrast to other methods that require a
pointwise evaluation of the control path such as in the Neural CDE model. A CDE
driven using the rough path solution theory is thus a rough differential equation,
and the log-ODE method is used to solve it numerically. Figure 4.1 on page 32
provided a simplified visual representation of the RDE (log-ODE method) vs CDE
(pointwise)

5.2 Neural Rough Differential Equation

Now that we have built the required understanding of the Rough Path solution the-
ory for CDEs and discussed its relevance to solving CDEs, we discuss the method
developed by [1] to apply Rough Differential Equations with a neural network.

By piecewise linear interpolation, we have constructed an approximation, X : [ty t,] —
R* for a continuous underlying process that is observed through some potentially
irregularly sampled time series x = (({g, 2), (1, 21), ., (tn, 2y,)), with 2, € R*=! and
so X, = (t;,x;).

[1] introduces as hyperparameters for the Neural RDE model, the step size (length
of the time interval) and truncation depth-N. As described in chapter 4 we choose
points r; to split the time horizon into smaller intervals, to =ry <ry < -+ <1y =
t,. In [1] these are equally spaced but it is possible to have intervals of differing
length. We would be interested in seeing how varying the interval size so that
each interval contained a similar number of actual obervations might affect model
performance. Next, the truncation depth N > 1 is chosen for the depth-N log-
signature LogSig) . (X) € R7®N) introduced in chapter 4. For X : [to,t,] — R®
and o < r; < riy < t,, the log-signature of X over the interval [r;, riiq] is a
collection of integral terms each returning a real value to form an N term sequence
of statistics that characterise how the path X drives the CDE over the interval

[‘ﬁ'; ‘f’f+1|

5.2.1 Neural RDE Formulation

[1] builds the following analogy with CDEs: Let Z be the hidden state and Y be
the output of a Neural CDE driven by X. Then the Neural CDE formulation,

L
ZL=Z£U+/ fo(Z,)dX,, (5.2.1)
lo
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where Z,, = €y(ty, zo) and Y, = €4(4,;) for t € (tp.t,] can be solved by assuming X
to be differentiable and rewriting the above CDE as an ODE of the form,

L

Zy = Zy + / go.x(Zs, s)ds, (5.2.2)
o

where gy x(Zs, 8) = fo( Z )Xg. Obtaining the above equation in the form of an ODE

allowed the use of the existing tools developed for ODEs such as black box solvers

and the adjoint method for backpropagation to be used.

The path X that approximates the data process has been embedded in the new
vector field gpx(Zs,s) as before. Applying the Rough Path solution theory, we
replace gy x(Zs, s) with the below piecewise approximation as justified by definition
4.1.7 in chapter 4

LogSig" . (X)

Ori,Tigl

Gox(Z.s) = fo(2) for s € [y, risq) (5.2.3)

Tivl1 — T3
where fp : RN ig an arbitrary neural network. The RHS is a matrix-vector
product, between the neural network fy and the log-signature LogSigf_\; iy (X
It then becomes possible to write an ODE in the same form as equation 5.2.2 for
the rough path approach,

i
ZL = Zﬁ[] + / EG,X (Zs: "“)ds, (:}24)

tn
which also allows the existing tools for Neural ODEs to be used.
Figure 5.1 from [1] visualises this process and contrasts it to the pointwise eval-
uation required for CDEs.

Hidden state Z,
o - . -0 o o ] ::;f”“""
Hidden state Z; : N Log-signature path
— s . o +
: o . -
COOCOOCTO0CO000000T +COOCO0D0C00C | !"l:;fam" . H ? E E LDgSlgr‘.r, 1 (X)
Path X Path X
) . < . ’
o  og o 004 of %0 o 004
o0 o e 0 Data x o0 o o 0 Data x
@ oo g L7 el 0702, ) o0 g% oy o) %00,
: 0% %oy ig Time -— o . 3 e gc 3 Time
0 s e T 1 T2 g --- Tm-3 Tm-1 T'm

Figure 5.1: Left: The Neural CDE approach of pointwise evaluation leads to a
high number of integration steps. Right: The Neural RDE approach summarises
the input signal with the log-signature path leading to much fewer integration steps
that updates the hidden state Z, only for each interval [1, Figure 4, pg. 5]

Neural RDEs Generalise Neural CDEs

[1] notes that the Neural RDE may be reduced to a Neural CDE model and as such
generalises the Neural CDE approach: Consider a log-signature term,

tiv1 — 4

(5.2.5)
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where the time intervals have been chosen such that r; = ¢; and r;.; = t;.7. We
explained in chapter 4 how the depth-1 log signature is the change in coordinates
(c.g. distance) over the interval. That is, LogSigf_l (X) = AXy, .., and so we
have,

Titl

AX fitis d‘Xiin.eu.r ‘ .
££+1[ - ﬁ;'l] T (s) fors € [ti tisa). (5.2.6)
This is the same as it would be for the Neural CDE model if using linear interpo-
lation. However, previous work such as [4] used a cubic spline for integration for

reasons of differentiability so strictly speaking this is not the same.

5.3 Implementation

We highlight a few advantages noted by [1] regarding the implementation of the
Neural RDE model

Source of speed-ups

If the time horizon [ty,t,] has been split into an m << n number of intervals, we
have a sequence of m log-signatures rather than n observation points. Therefore the
Log-signature path is slowly varying compared to the input data. A differential equa-
tion driven by the log-signature path is therefore only updated at larger intervals
allowing a reduction in the number of integration steps required. This correspond-
ingly reduces the number of forward operations required in a forward pass and is the
source of up to 10z speed ups in training times. Furthermore, even greater speed
can be achieved by increasing step size and thus reducing accuracy

Adjoint Method for Backpropagation

As previously dicussed in section 2.1.2, using the memory efficient adjoint method
for backpropagation dramatically reduces the memory cost of training a model. As
for Neural CDEs and ODEs, it is possible to use the adjoint method for backprop-
agation with the log-ODE method. As described in section 3.3.3 on training CDEs
with the adjoint method, if H is the memory cost of evaluating a single step for the
vector field fz and T is the time horizon the adjoint method for backpropagation
requires Q(H +T'). This is in contrast to the typical O(HT) required to backprop-
agate through the ODE solver [4].

Computing the Log-signatures upfront

Because the (log-)signatures are summaries of the input data (rather than a re-
sponse) they only have to be computed once for a given choice of interval size
[r;. rii1] and can be computed as part of a data preprocessing step. This also allows
(log-)signatures to be computed on cloud based software and could essentially be
made to be a part of a data-set.

Implementation Tools [1] use Signatory [2] to compute the log-signature trans-
form but there are other standard libraries. [21] developed the 'torchdiffeq’ tool to
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solve the Neural ODEs introduced in [7]. As equation (5.2.4) has been written in
the form of an ODE 'torchdiffeq” can be used to solve it.

However, [1] developed another method by noting that (5.2.3) is of the same form
as gg x(Zs, 8) = fo(Z )X, with the pointwise control path X, replaced by a piecewise
linear log-signature path. This formulation allows the log-signatures to be computed
as a pre-processing step as described above. Once the log-signature control path has
been constructed as a pre-processing step, existing tools for Neural CDEs (that also
build on ODE-solvers) developed by [4] can be applied. The authors of [1] make the
tools to implement this available at: https://github.com/jambo6/neuralRDEs

5.4 Applications

The Neural RDE model was formulated by [1] to address the Neural CDEs [4]
shortcomings in coping with longer times series. As the Neural RDE model is a
generalisation of the Neural CDE model it can in theory be applied to solve the same
problems as a Neural CDE. In comparing the models, [1] saw little upside to using
the Neural RDE model on short time series as the Neural CDE model performed
"well enough” with little room for improvement in either speed or accuracy.

For longer time series this is an all together different story. As with RNNs, their
continuous time equivalent, the Neural CDE model begins to break down as the
length of the time series increases and the number of forward operations becomes
prohibitively large resulting in unmanageable training times and reduced accuracy.

For the longer time series, pre-processing the input data to effectively reduce the
length of a time series over the time horizon [y, {,,] from n to m << n is instrumental
and a major contribution of [1]. Another source of efficiency is that by removing
redundancies from the signature, the log-signature represents the same information
in a compressed format. [1] maintains that closely sampled points will typically be
strongly correlated and therefore little is lost by summarising over small intervals.
Many times this is true, however, there might be significant cases where it is not
e.g. in the advent of financial crashes.

Both the Neural CDE and RDE models are able to utilise the adjoint method for
backpropagation, which dramatically reduces memory cost compared to backprop-
agating through an ODE solver. This is helpful to deal with longer time series as
memory requirements would otherwise become prohibitively large. As an example
of this, [1] highlight an experiment where the memory footprint is reduced from
3.6GB to 47MB by using the adjoint method of backpropagation.

Continuous time models such as the Neural CDE and RDE allow the number
of steps used for the ODE solver to be chosen so as to obtain the desired level of
accuracy vs speed. This step size can be chosen irrespective of the sampling rate of
the data summary rate of the log-signature. Rather, the steps may be chosen so that
they reflect the complexity of the data. For example, a large step size can be chosen
for a slowly-varying but densely sampled path whereas when the path becomes more
fast-varying the step size of the ODE solve must be closer to the sampling rate of
the data to reflect the changes.
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5.5 Experiments using the Neural RDE model

[1] experiemented with the Neural RDE on four datasets, one of which describes the
movement of round worms and is named the Eigenworm dataset. We will discuss the
Eigenworm experiment to illustrate the efficiency of the Neural RDE model applied
to longer time series of multivariate data. The other three datasets were medical
type data which we will not discuss for the sake of brevity and focus on discussing
the Eigenworm classification as it offers a more intuitive and concise illustration of
the application of the Neural RDE model presented in [1, Section 4 & Appendix D]

To examine model performance with respect to the choice of the two new hyper-
parameters, [1] ran the Neural RDE model for log signature depths N = 2, 3 and all
step sizes (riey — 1) in 2,4,8,16,32, 64,128,256, 512, 1024. As discussed in section
5.2.1, a Neural RDE model with depth-1 and step size 1 reduces to a Neural CDE
with a piecewise liner interpolation for the path.

5.5.1 Classifying EigenWorms

In this experiment the goal was to classify each roundworm as either a wild-type or
one of four mutant types using the EigenWorms dataset from the UEA archive
[28]. Each time series corresponds to the movement of a single roundworm as
measured in relation to one of the six base shapes (i.e. the Eigenworms) of a
roundworm on an agar plate. The time series are regularly sampled, are all of
length 17,984 with 6 channels (including time). The Eigenworm dataset is regu-
larly sampled and so [1] used ¢; = ¢, i.e. a time corresponding to each observation
In figure 5.2, the results of [1] in

applying the Neural RDE model Model  Step Accuracy (%) Time (Hrs) Mem (Mb)

to the EigenWorm classification ] - - -
task are shown. The Neural RDE ~ ODE-RNN 4 350+15 0.8 3629.3

1.l e T Jeeg . (folded) 32 325+ 1.5 0.1 532.2
model is benchmarked a.gg.lllht Lwto {298 479 £53 00 008
models:  As the work In [1] is =777 T T T Teai121 2o 1965
an extension of the Neural CDE NCDE 342 22‘15 i };g gg 4:?66
model from [4], a comparison with 128 487426 01 19
'the NE‘-I'.II'a-l CDE 1'110(19:1 is 'most NRDE 1 $38+30° 24 150.0
interesting. Also included is an 32 675121 0.7 28.1

\ : (epth2)  12g 761 +59 0.2 7.8

ODE-RNN model introduced by --------- PR Siry it S ey
[22] that generalises RNNs to have (gi';g'g) 2 752+3.0 06 134.7
continuous-time hidden dynamics 128 684 +8.2 0.1 533

defined by ordinary differential
equations (and so serves as a base- Figure 5.2: Eigenworms dataset [1, Table 1, pg.
line of sorts) but does not use the 7]
adjoint method for backpropaga-
tion as seen in its very large memory footprint.

In the Neural CDE model, using a step size of 1 equates to "normal” use, i.e.
a pointwise evaluation of the whole time series which took 22 hours to train. In-
creasing the step size for the Neural CDE model equates to naively subsampling the
time series at every 4, 32, 128 etc. steps. Increasing the step size to 4 in the Neural
CDE model reduces the training time to 5.5 hours without reducing the accuracy,
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perhaps highlighting how correlated adjacent observations are.

If we apply the Neural RDE model with the same step size of 4, the accuracy in-
creases (from 66.7%) to 83.8%, standard deviation of the test reults is much lower
and the training time is reduced to only 2.4 hours. As step size is increased the
difference in model performance between Neural CDEs and Neural RDEs becomes
accentuated, highlighting the superiority of the Neural RDE model in learning from
long time series.

As expected, the ODE-RNN model incurs a huge memory cost and for this reason
couldn’t be trained for a step size of 1. Training times are modest compared to both
the Neural CDE and Neural RDE model because there are much fewer forward op-
erations to compute within each training epoch but accuracy is significantly lower,
most likely due to the same reason.

Results for even higher step sizes than those shown, show a reduction in all of
accuracy, training time and memory cost in a predictable manner. These are not
all shown here but can be seen in [1, Appendix D]|. Furthermore, the process for
hyperparameter selection, optimiser, normalisation, architecture, etc. is given in [1
Appendix C].
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Chapter 6

A Simple Implementation and
Potential Financial Applications

In this chapter, we present a simple implementation of the Neural RDE method.
The full code is made available at, https://github.com/patrick-kidger/torchedeby
by two of the authors of [4] and [1], Patrick Kidger and James Morrill. The code
we used can be found in the form of a Jupyter Python notebook in A.1. The imple-
mentation summarises the input signal with a log-signature to drive a Neural CDE
and then solves it with the log-ODE method to make it a Neural RDE model.

The implementation uses randomly generated data that is transformed into spirals
that either rotate clockwise or anti-clockwise through time using a combination of
a Uniform and Gaussian distribution. The vertical coordinates and horizontal co-
ordinates are a channel each and time is included as a channel, so three channels
in total. The experiment is run for log-signatures of depth-1. -2, -3 which results
in a log-signature path of dimensions (channels) 3, 6 and 14 respectively. The log-
signature summarises the input signal or path X, thus effectively reducing the time
series but has higher dimensionality (more channels) than the underlying data. Each
channel can be computed in parallel so reducing the length of a signal to introduce
more channels increases possible parallelism, one of the key benefits of using the
log-signature to summarise data.

A time series capturing the sequential dynamics of spirals rotating in two dimen-
sions through time is perhaps a little too simplistic to showcase the full potential of
Neural RDE models. However, the task of classifying the rotating spirals provides
a very intuitive and easily understood example of how the Neural RDE model can
be used to classify longer time series. Furthermore a rotating spiral is the kind of
visual and intuitive example often used to showcase the (log-)signatures effectiveness
at capturing a data trajectory.

A time series of length 5,000 is used as it is long enough to be computed with relative
ease but long enough so that without the log-signature and the log-ODE method,
the Neural CDE model would struggle to train and disregard early observations.
Furthermore a rotating spiral is the kind of visual and intuitive example often used
to showcase the (log-)signatures effectiveness at capturing a data trajectory.




‘We are particularly interested in applications of how the Neural RDE model could
be used to classify a long time series of multivariate (and potentially irregularly
sample) data relating to whether a positive or negative outcome was likely to occur
in a financial setting. In particularly, we think it would be interesting to apply the
Neural RDE model to long historical sequences of data relating to credit risk with a
view to classify whether a debtor is likely to default or not. This could be particular
useful in the setting of various lending arrangements such as Private Credit Funds,
Leveraged Finance Teams, Credit Ratings, Mortgages, Credit Cards etc.

As the data for such an effort is not readily available but rather the guarded prop-
erty of various types of lenders it has not been possible to use such data. However,
the model is agnostic to the nature of the underlying data and the rotating spirals
provide a good enough illustration of how the Neural RDE model can used to cap-
ture the sequential dynamics in a longer time series and classify it as one or the other.

In the table below, we present the main results of the experiment. The full
results with losses and training times for each training epoch can be found at the
end of appendix A.1

Final results
Log-signature depth-1  Accuracy on test set: 93.0
Time per epoch: 11.7s

Log-signature depth-2 Accuracy on test set: 100.0%
Time per epoch: 10.3s

Log-signature depth-3 Accuracy on test set: 100.0%
Time per epoch: 13.5s

Table 6.1: Accuracy on test set for each of log-signature depths [1, 2, 3] and the
time taken for each training epoch

The depth-1 log-signature is already quite accurate at 93% accuracy. As the rotat-
ing spirals are quite a simple geometric structure, the depth-1 log-signature already
captures most of it and is therefore quite accurate in its classifications.

We can see that both the depth-2 and depth-3 log-signatures are 100% correct in
classifying whether a spiral is rotating clockwise or anti-clockwise. However training
losses are measurably smaller for the depth-3 log-signature. Note that all the log-
signature depths take a similar time to train. As there are only three input channels
and therefore only [3, 6, 14] channels in the log-signature, the parallelism mentioned
above is not exhausted and so using a deeper log-signature does not measurably
affect the time taken to train. In general, this parallelism can be taken of advantage
of by summarising input signals with a deeper log-signature and dealing with the
increased computations with a larger number of CPUs/GPUs.
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6.1 Application in Finance

Machine learning is already widely used in the financial services industry and a body
of work (some of which is publicly available) exists examining the use of machine
learning methods to quantify or classify credit risk. In particular some research has
gone into using Deep Learning and Convolutional Neural Networks for credit scoring
[29]. However very little has been done so far in applying Machine Learning methods
to capture the sequential dynamics of a time series relating to credit risk. As the
data on various types of borrowers usually exists over a very long time window, some
observations are missing and the sequence of events is highly informative, it feels
intuitive that a model such as the Neural RDE model would offer improvement on
previous approaches.

A recent paper [3] by researchers at American Express Al Research and Rutgers
University dives into the topic of using sequential deep learning, namely RNNs
with LSTM cells for credit default risk. In the paper they consider credit risk as
a binary classification task of whether default (non-payment) occurs on credit card
debt within a certain time frame. [3] find that the sequential models outperform
non-sequential models, stating,

...suggesting that historical information provides orthogonal in-
formation that is predictive of risky financial behavior. While
these performance improvements may seem modest, it is important to
keep in mind the large volume of card members that exists in the dataset,
implying that small improvements lead to significant savings (in our case,
an annual savings of tens of millions of US dollars).

which is in line with intuition and solidifies the notion that modelling sequential
dynamics is a superior approach for classifying default risk.

[3] examined the use of both an RNN model with LSTM cells and a Temporal
Convolutional Network (TCN) to capture the sequential dynamics. As the data
looks at a long time window, has dimensionality and is highly irregularly sampled,
[3] run into all of the issues these sequential models have with long time series and
irregularly sampled data as deseribed throughout earlier chapters of this thesis. The
methods they use to circumvent these issues such as generative sampling ete. are
naive mathematically in comparison with the Neural RDE model. It is our believe
that the Neural RDE model could have a highly valuable use in this setting as even
the slightest improvements in the accuracy of predicting default can save lenders
large amounts of capital.
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Conclusion

This thesis provided an exposition on the theory underlying Neural Rough Differ-
ential Equations (Neural RDEs). The mathematical components are broken down
and discussed both with the aim of highlighting what motivates the existence of the
field of research, higlights its milestones and ultimately bringing the reader to an
understanding the Neural RDE model.

‘We provide a simple illustrative example of how the Neural RDE method is scripted
into code and highlight the results.

Finally, we dissuss a potential application of the Neural RDE model in predicting
default risk that builds upon the very recent work of researchers at American Ex-

press Al Research [3].

Future work on this topic might focus on carryving out a similar classification task
as in [3] with the Neural RDE model from [1].
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Appendix A

Implementation

A.1 Code for Classifying Rotating Spirals

The full code along with more detailed documentation on the proprietary libraries
is made available at, https://github.com/patrick-kidger /torchedeby by two of the
authors of [4] and [1], Patrick Kidger and James Morrill. The code from Kidger and
Morrill was developed first to showease the Neural CDE model and then the Neural
RDE model and is spread across a number of python files containing the respective
models, classes and functions. We have singled out the parts of their code neccessary
to our example and pieced it together to form a Jupyter notebook. Aside from edits
for the code to work in a Jupyter notebook and further annotations, the code helow
is the same as that presented by Kidger and Morrill. Below, we present the code we
ran as a Jupyter Python notebook on Google Colab. The code should run without
any editing on a Linux-based machine. The code summarises the input signal with
a log-signature to drive a Neural CDE and then solves it with the log-ODE method
to make it a Neural RDE model.

Please be careful to run each install before the next.

We begin by installing PyTorch which is an optimised tensor library used for various
applications with Neural Networks

pip install terch==1.7.1 torchvisicn . 8.2 torchaudic

The package torchede is made available by one of the authors of [1], Patrick Kidger
and can be used to construct a path by interpolation, parameterises the CDE and
solves it.

pip install torchcde

The 'signatory’ package is also made available by Patrick Kidger at the above github
site. The signatory package can construct both signatures and log-signatures of
paths with parameters such as size of time intervals ¢;, ;11
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pip install signatory 1 no-cache-dir force-reinstall

Import the neccessary packages

import math
import signatory
import time
import torch

import torchcde

A Controlled Differential Equation (CDE) takes the form, z, = 25 + f(: Jo(zs)d X,
Where X is the path and the function fy is a neural network as described in the
main body of the paper.

The below class defines a neural network f; with a single hidden layer of width 128,

class CDEFunc (torch.nn.Module) :

def __ =1f, input_channels, hidden_channels):

super (COEFunc, self). init__ ({}

self.input_channels input_channels

self.hidden_channels hidden_channels

self.linearl torch.nn. Linear (hidden_channels, 8)

self.linear2 torch.nn.Linear (128, input_channels + hidden_channels}

def forward(self, t, z):

z self.linearl (z)
z z.relu(}
z self.linear? (z)
z z.tanh (}

z z.view(z.size( , self.hidden_channels, self.input_channels)

return =z

The below class constructs a Neural CDE model with the class 'CDEFunc’ above
defining the neural network (fy(z4)).




class NeuralCDE (torch.nn.Module) :

def _ init_ (self, input_channels,

super (NeuralCDE, self).__init_ (}

self. func CDEFunc (input_channels,

self.initial torch.nn.Linear (input_channels,

self. readout

self.interpelaticn interpoclaticn

def forward(self, coeffs):

if self.interpoclaticn > :
by torchode.CubicSpline({coeffs)

elif self.interpelaticn 'linear':

X torchede.LinearInterpolation{coeffs)
else:
raise ValueError("Only 'linear' and 'c
. { be

X0 ¥.evaluate(¥X.interval [0]}
z0 self.initial (X0)

torchede. cdeint (X=X,
z0=z0,
func=self. func,

t=¥.interval)

z_ T z_T[:, 1]
pred_y self.readout (z_T}

return pred_y

hidden_channels,

terch.nn. Linear (hidden_channels,

cutput_channels, interpolaticn

hidden_channels})

hidden_channels)

cutput_channels)

interpeclation methods are implemented.")

The below function generates spirals that rotate
time.
Here initiated at 100 but later changed to 5, 000.

clockwise and anti clockwise in

The argument num_timepoints is effectively the length of the time series.

def get_data(num_timepoints=1

t torch.linspace (0., + math.pi, num_timepocints)
start torch.rand(128) + 2 + math.pi
nput, this forms the x coordinates
X_pos torch.cos (start .unsqueeze (1} + t.unsqueeze(0)) / (1

®x_pos[:ed] = 1
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rdinafres generatred

y_pos torch.sin(start.unsqueeze (1} + t.unsqueeze(0)) / (1 + 0.5 « t}

X_pos * torch.randn_like(x_pos)

y_pos

+ torch.randn_like(y_pocs)

torch.stack {[t.unsgueeze (0} .repeat (128, 1), =x_pos, v_pos], dim=2}

torch.zeros (128)

y[:64]

perm torch.randperm(128)
b4 ¥[perm]

y = ylperm]

return X, v

In the following code, the input signal is turned into a log-signature, a Neural CDE
driven by the log-signature is constructed (using the above classes) and becomes a
Neural RDE. The Neural RDE is solved and the model trained and tested on a time
series of length 5000 so chosen as to be manageable to compute but long enough so
as to be unmanageable for the Neural CDE model.

Documentation on the torchede library that is used in the code below may be found
at https://github.com /patrick-kidger/torchede.

import signatory
import time
import torch
import torchcde

def _train(train X, train_y, test_X, test_y, depth, num _epocchs, window_length):

start_time time.time{}

I vede ! and 'signatory'! libraries .
train_logsig torchede.logsig_windows{train_X, depth, window_length-window_length})
print ("Logsignature shape: {}".format({train_logsig.size()})

model MNeuralCDE {
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20
21
22
23
24

26
a7

T2
T3
T4
k)
76
7

input_channels=train_lcgsig.size{-1}, hidden_channels=8, cutput_channels=1, interpclaticn="linear"

)
optimizer toerch.optim.Adam (medel . .parameters(), lr=0.1}
train_coeffs torchede.linear_interpclation_coeffs(train_logsig)

train_dataset torch.utils.data. TenscrDataset (train_ceceffs, train_y)

train_datalocader torch.utils.data.Dataloader(train_dataset, batch_size=32)
for epoch in range(num_epcchs) :
for batch in train_datalcader:
batch_ceoeffs, batch_y batch
pred_y model (batch_coeffs).squeeze(-1)
less torch.nn.functicnal .binary_cross_entropy_with_logits (pred_y, batch_vy)

loss . backward()
cptimizer.step()
cptimizer.zerc_grad(}

print ("Epocch: {1} Training less: {[}".format (epocch, less.item()}}

# Comy = the ’ O 3

test_logsig torchede. legsig _windows (test_X, depth, window_length=window_length)
test_coeffs torchede. linear_interpolation_coeffs (test_logsig)

pred_y model (test_coeffs).squeeze(-1)

binary_predicticn (torch.sigmeid{pred_y) > 0.5).tc(test_y.dtype)
prediction_matches {binary_predicticn test_y) .to(test_y.dtvpe)

proportion correct predicticn_matches.sum({) / test_y.size(J)

print ("Test Rccuracy: {}".feormat(proporticn_correct))

# Time

elapsed

return proportion_correct, elapsed

def print_heading(message) :

¥ ir
string_sep "§" o« 50
print{"\n" + string_sep + "\n{l\n".format (message) + string_sep)

def main {num_epcchs=15):
FHAFFAFFAFFFFFFFFFFEFH

rhe

FHAFHFH
num_timepoints
train_ X, train_y get_data{num_timepcints=num_timepocints})
test_X, test_y get_data(num_timepoints=num_timepcints}

FAFFAFAASFFAAFFFFAFF

FAFFFFF RS FFFFFFFFFFFHH




FAddAFA AR AAEA AT

FAFFAFRAFFFFFEFFFFFFH

depths [1, 2z, 2]
window_length 50
accuracies [1
training times [1
for depth in depths:
print_heading ('Running for logsignature depth: {}'.format (depth)}
acc, elapsed _train(
train_X, train_y, test_X, test_y, depth, num_epochs, window_length
)
training times.append(elapsed}

accuracies.append{acc)

# Fi 1

print_heading("Final r 1t=s")

for acc, elapsed, depth in zip{accuracies, training_times, depths}):

print (
"Depth: {}\n\t? set: {:.1£}%\n\tTime per epoch: {:.1f}s".format (
depth, acc num_epochs
)
)
if _ name_ Y __main__":
main {}

The full results for all training epochs for log-signature depths-1, -2, and -3 may be
seen below.

FHFFFFAAASS
Running for legsignature depth: 1
FRAFAARAATAAFAFAAIITAEAATAATIITAEFAAAATIAIAEEAASS

Logsignature shape: torch.Size([128, 101, 21)
-

Epoch: 0O Training less: 1.570180177
Epoch: 1 Training leoss: 1.8E 440
Epoch: 2 Training loss:
Epoch: 3 Training loss:
Epoch: 4 Training loss:
Epoch: & Training loss:
Epoch: & Training loss:
Epoch: 7 Training loss:
Epoch: & Training leoss:
Epoch: o Training loss:

Epoch: 10 Training less:
Epoch: 11 Training less:
Epoch: 12 Training leoss:

Epoch: 13 Training less:

Epoch: 14 Training less:

Test Accuracy: 0.85Z2

FHAFFFRSFFIFFFFFFFFFFFFFFFFFFIFHFFFFF T FFFF S

Running for legsignature depth: 2
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FRFFFAR AT AAFAFFATIITAEFFFAATIITFEFAA AT IIEFAAISS

£1)

Logsignature shape: torch.Size([12

Epoch: 0O Training leoss:
Epoch: 1 Training loss:
Epoch: 2 Training leoss:
Epoch: 3 Training loss:
Epoch: 4 Training loss:
Epoch: & Training loss:
Epoch: & Training leoss:
Epoch: 7 Training loss:
Epoch: & Training leoss:
Epoch: o Training loss:
Epoch: 10 Training less:
Epoch: 11 Training less:
Epoch: 12 Training leoss:

Epoch: 13 Training less:
Epoch: 14 Training less:

Test Accuracy: 1.0

FHAFFFRSFFIFFFFFFFFFFFFFFFFFFIFHFFFFF T FFFF S

Running for logsignature depth:
IEE s S R RS R RS AR AR R R SR s R R R R iR R R i i ddiddiEidRiA R

Logsignature shape: torch.Size([128, 101, 14])

Epoch: 0O Training loss:
Epoch: 1 Training loss:
Epoch: 2 Training leoss:
Epoch: 3 Training loss:
Epoch: Training loss:
Epoch: Training leoss:
Epoch: Training loss:
Epoch: 7 Training loss:
Epoch: & Training leoss:
Epoch: 9 Training loss:
Epoch: 10 Training less:
Epoch: 11 Training less:

Epoch: 12 Training less:

Epoch: 13 Training loss:

Epoch: 14 Training less:

Test Accuracy: 1.0

FHFFFFFAAS

Final results
FHAAFFFAAFFFFFFSFF IS HFFSS G FI SIS FFS S
Depth: 1

Accuracy on test set:

Time per epoch: 11.7s
Depth: 2
Accuracy on test set: 100.0%
Time per epoch: 10.3s
Depth: 3
Accuracy on test set: 100.0%

Time per epoch: 13.
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