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Abstract

This thesis is a general study of the limit order book. In particular we analyse the detection and
prediction of iceberg orders and we study the limit order book dynamic using machine learning
methods. We start by a review of basic linear methods and machine learning methods related to
validation methods. We will give an overview of the limit order book and its mechanism, with
a particular attention to how iceberg orders work. After that, we will deseribe the data and the
algorithm used to detect iceberg orders, and we show that there are some complications due to the
data. Then we will introduce and use a model to compute the price impact of order book events
using a linear regression. The last part is a general application of machine learning methods, using

many features to predict targets related to the shape of the order book.
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1 Introduction

1.1 Motivation

The theory of Supply and Demand tries to explain how the relationship between the availability
of a particular product and the desire (or demand) for that product has on its price. Progress in
information technology and the increasing deregulation of exchanges have led to a wide adoption of
the limit order book for price formation (in simple words the list of prices at which one can transact
for a given security). Knowledge of forecasting methods and their application to the dynamic of

the limit order book, could vastly improve PnL (profit and loss) through optimized trading costs.

1.2 Limitation

The initial goal of this thesis was to detect and predict the volume of iceberg orders, but due to
issues with the data and the difficulty in obtaining results, the thesis became a general investigation
of the limit order book, nsing quotes of the limit order book in a high frequency setting. In order

to do this we use simple linear regression methods.

1.3 Approach

Due to the different vocabularies used to refer to the shape of the limit order book, we will first give
in the first section a fast overview of the most general terms used. The definition and mechanisms
of iceberg order, more specifically, vary from one exchange to another. For iceberg orders, we will
define them more carefully and explain how their mechanisms work as clearly as possible for the
exchanges of interest, as we will need a good understanding of their mechanisms in order to detect

them.

Even if we met lots of issues when doing our analysis of iceberg orders, we will still present in Section
3 the detection algorithm that we have implemented and the results we get from it, emphasizing

the issues encountered all along our analysis.

Linear regression is perhaps one of the most well-known and well understood algorithms in statistics
and machine learning : even if it is a simple algorithm, it often gives very good results on different
financial problems (which tend to include large and noisy data). This is why we will not use other
models in our thesis and try to show the variety of results we can get with such a model. We will
instead concentrate our attention on the data, the consistency of our features and the robustness
of our models through time and stocks. In our description of models in Section 4, we will start

out by reviewing OLS and its extensions Ridge and Lasso where L' and L? penalties are used to
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regularize the linear regression. We will consider these for both predictive modelling and feature

selection, as especially Lasso can give a quick estimate of feature importance.

In Section 5, we will deseribe and implement a model which links linearly, the price change and
the imbalance of the supply and demand in the order book during a specific time interval. We will

then see what could be the possible applications of this linear relationship.

Finally, the last section is a general application of Machine Learning methods, including feature

engineering and feature selection, to predict targets related to the order book.




2 Limit Order Book Description and Mechanism

In this section, we describe how trading takes place on LOB markets, and we will give some precise
definitions related to the limit order book. We will also have a precise look at how iceberg orders
work.

More details can be found in [1].

2.1 Preliminaries

Definition 2.1 (Limit order book). It is a device that the vast majority of organized electronic
markets (all equity, futures and other listed derivatives markets) use to store the list of all the
interests of market participants. It is essentially a database that contains all the orders sent to
the market, with their characteristics such as the sign of the order (buy or sell), the price, the
quantity, a timestamp giving the time the order was recorded by the exchange, and often, other

market-dependent information.

We call this kind of market in which buyers and sellers meet via a limit order book, as an order-
driven market.

Essentially, market participants can submit three types of orders to an order book:

Limit order: We specify a price and a size at which we want to buy or sell, at any point in
time in the future.

Market order: We specify a quantity that we want to immediately buy (or sell) at the best
available opposite quote.

Cancellation order: Cancel an existing limit order.

Buy and sell orders are matched as they arrive over time, subject to some priority rules. The
priority is always based on price first, and then for most of the markets on time.

Limit orders are stored in the order book, until they are either cancelled or executed against
an incoming market order. The ask price P4 is the price of the lowest limit sell order. Conversely,

the bid price P? is the price of the best limit buy order.
Definition 2.2 (Spread). The bid-ask spread at time t is s(t) := P4 — P5,
Remark 2.3. The spread is always positive

Definition 2.4 (Mid price). The mid price at time t is the average between the bid and ask

m(t) := (PA + PB)/2.
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Figure 1: An illustration of a limit order book

We can see from Figure 1 (taken from [3]) an example of the different orders presented just above.
On the right we can see the ask side, on the left the bid side. Buy limit orders and sell limit orders
are showing in purple and green. We can also see the market buy and sell orders which cross the

spread (here of size two ticks) in order to be executed.

Definition 2.5 (Tick size). The tick size is the minimum permitted price variation in a security

price.

The tick size for a particular stock depends on the exchange where it is traded, and on the stock
price. For example, on the NYSE the minimum price variation for all stocks over $1 is $.01. This
means that the NYSE will accept orders to trade at 10.00 or 10.01, but it will not at accept an
order priced at $10.001.

For example, Deutsche Boerse has adopted the following ticks for shares in its Xetra system:

Lower Price Limit (€) Upper Price Limit (€) Tick Size (€)
0 9.999 0.001

10 49.995 0.005

50 99.99 0.01

100 00 0.05

Table 1: Xetra tick-size regime

Definition 2.6 (NBBO). The National Best Bid and Offer (NBBO) is the lowest available ask
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price and the highest available bid price for investors buying and selling securities in U.S.

Remark 2.7. The European Best Bid and Offer (EBBO) is the European equivalent of the NBBO.

Last, we will define a measure that is often used as a benchmark by investor.

Definition 2.8 (Volume-weighted average price). In finance, volume-weighted average price (VWAP)
is the ratio of the value traded to total volume traded over a particular time horizon (usually one

day). It is a measure of the average price at which a stock is traded over the trading horizon.

VWAP = w
E j Q_-i
where:
P;j is the price of trade j;
Q; is quantity of trade j;

7 is each individual trade that takes place over the defined period of time.

We will now focus on iceberg order in the next section.

2.2 Iceberg Orders

We will now concentrate on a specific kind of order find on many exchanges, know as iceberg orders.
A trader seeking to execute a large trade faces the problem that signalling his trading intentions
to the market can both help and hurt the effective execution of his trade causing a negative price
impact.

A signal may help attract counter-parties to reduce the time it takes to complete the trade.
On the other hand, it may also attract opportunistic traders who make the completion less likely
or more costly. Traders’ solutions may include following dynamic order submission strategies or
trading off exchange because such strategies limit the amount of information that is revealed about
their trading intentions. Many exchanges provide their own solution by allowing a particular order

type known as an iceberg order.

Definition 2.9 (Iceberg Order). Aniceberg order is a special type of limit order, where in addition
to a price, side, and size, the user is required to specify a "max show value”. Max show is the
upper limit of the fraction of the total order size that is shown to the market, while the remainder

of the order volume remains hidden.




2.2 lceberg Orders 12

Bid [ Ask Bid sk
Volume
Wolume Hidden part
Displayed part
With leeberg
Orgers
b P
Bt bid L e o d Price

Buthid Bestuk

Figure 2: View of Limit Order Book without Iceberg Orders (left) and with

Ieeberg Orders (right)

In Figure 2 we can see two views of the limit order book, one with iceberg orders and one without.

We see that iceberg orders can sit on different levels.

On most exchanges, iceberg orders follow these rules:
e Displayed parts of orders take precedence over non-displayed parts at any price point.
e Non-display portions of icebergs taking precedence over fully Hidden Orders (where no
displayed-parts are shown).

e If the incoming order is sufficiently large then each peak at the same price point will be
executed against in time priority. However, once peak volume of all iceberg orders at a price
level has been fully executed then any remaining incoming volume is allocated to the hidden

volume of each iceberg order pro-rated on the remaining size of each iceberg order.

e The display (peak) quantity of an Iceberg Order is refreshed once the display quantity has
been fully executed.

On refresh, the peak will be prioritized after all existing, visible orders at that price point.

e Customers have the option to have the refreshed peak size randomized.
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Figure 3: Schematic of Iceberg Order Mechanics

These mechanics are now illustrated with an example In Figure 3. Suppose we are on the ask side

at the best price P, at t = 1 a limit order of size 10 is added.

e An iceberg order is specified at t = 2 with a total size V = 100 and a max show ¢» = 9. The
first 11 tranches of the iceberg are of size ) = 9 and the final tranche is size ¢y = 1, so N =

12 (where N is the number of tranches).

e At time step t = 3, there is a market order to buy S = 5 shares, the volume of the first limit

order changes to S = 5.

e At time step t = 4, a limit order of total size V = 3 is added and it is prioritized after the
displayed part of the existing iceberg order but before the hidden part.

e At time step t = 5, there is a cancellation of the limit order of size 5, now the displayed part

of the iceberg order is the first in time priority.

e At time step t = 6, there is a market order to buy S = 1 shares, the displayed volume of the
iceberg order changes to S = 8.

e At time step t = 7, there is a market order to buy S = 8 shares, the displayed volume of
the iceberg order has been completely removed. The limit order of size V = 3 now has time

priority and a displayed tranche of the iceberg order of size V = 9 has been refreshed.

We have talked about iceberg orders that are on the best bid or the best offer. But there is another

kind of iceberg orders, called Hidden Midpoint Order.
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Definition 2.10 (Hidden Midpoint Order). Firms may post their orders to the book as hidden
midpoint orders to access liquidity at the midpoint. Resting hidden midpoint orders are eligible to
execute against market orders, limit orders, non- displayed orders and other midpoint orders. No

matter the spread, the hidden midpoint order will always peg to the true midpoint of the NBBO.

Remark 2.11. For example if the NBBO is $10.02 to $10.04, a Hidden Midpoint buy order will
price at $10.03..

2.3 Form of the data

We will now present the different forms of data used for the analysis. Principally, I have used
quotes and trades data for different stocks on different exchanges. Most of the data comes from

Nebula, which is the data provided directly by the exchanges.

2.3.1 Data for the analysis of Iceberg Orders

For my analysis of the iceberg orders, I used the quotes and trades for 7 trading days of June
2019 of Microsoft. The quotes are all the updates of the limit order book for the different days of
trading, which for one trading day approximately a million rows of updates on average.

It is constructed with the following columns :

[date, venue, bid, ask, bidsz, asksz, bidno, askno, seq, xts).

L]

The venue corresponds to the exchange where the stock is traded. For instance XNYS
corresponds to the New York Stock Exchange. We have the data for thirteen different

exchanges.

e The columns bid, bidsz and bidno correspond respectively to the best bid price, size in

number of shares and the number of different limit orders on the best bid (same for the ask).

e The column seq corresponds to the sequence mumber of the update. For example if the quote
update is due to a market order execution, the market order sequence number will match the

one of the quote update.
e Finally, the column xts corresponds to the time of the exchanges with a millisecond precision.

e The trades are all the trades that happened for each trading day. The size is about one hun-

dred thousand rows for each day. It is constructed with the following columns : [date, venue, price, size, agrside, 1

e They are similar to the quotes columns, except for price, size which are the price, size of the

trade.

® The column agrside can take three values, "Sell” or "Buy” if it is a sell or buy market order,

or None if it is an iceberg order (we do not
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¢ The column trdype specify the type of the trade: it can take a value like "Open” or " Close”
if it is during the opening or closing anction, " Auto” if it is a regular trade , or "Hidden” if

it is a trade on an iceberg order or an hidden midpoint order.

Remark 2.12. We only keep the rows where trdtype takes the value " Auto” or "Hidden”.

2.3.2 Data for the analysis of the price impact

For my analysis of the price impact, I have the quotes of ten different stocks from the FTSE 100
stock index for the month of June 2019. There are about two hundred thousand rows for each day
of trading. The data corresponds to the price, size and number of limit orders of the five best bid

and ask levels of the quotes, associated with the time (precision of milliseconds) and the date.

2.3.3 Data for the analysis of the shape of the order book

For my analysis of the shape of the order book, I have a sample of the quotes and trades of twenty
three different stocks from the FTSE 100 for the month of June for each minute of the day. I have
two different sets of quotes: one where we take the last quotes for each minute bin, the other where
we have the means of the trades and quotes for each minute bin. We have for each set of quotes
and trades the medians of the prices and numbers of limit orders, and the means of the sizes for

each level and the means of the trade prices.
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3 Iceberg Orders

In this section we will explain how the data is used for prediction of iceberg order volume, how
my algorithm works to detect the iceberg orders and finally some results. It is on this part that
I have encounter the most issues, most of them with the data, and so through the different parts
I will explain what are the main problems that I have encountered and why they have prevented

me from obtaining good results.

Two papers have been of great used to understand iceberg orders, the first one is [4], where I take
inspiration from their detection algorithim. The other one is [5], which gives a clear understanding
of iceberg orders mechanisms and in which they introduce a Bivariate Gaussian Kernel to predict

the volume.

3.1 Data Cleaning

The data set consists of Microsoft quotes and trades of seven trading days. We have transformed
the trade column "trdtype” as Hidden with value 1 if the trade is on a hidden part and value 0
if it is on a displayed part. We will call a trade of type 1 a hidden trade and a trade of type 0 a
displayed trade.

To simplify the analysis, we have added together the trades that have the same sequence number
and same time of execution. Normally when a market order is executed against n different limit
orders, in the gquotes data we would see n different updates, now we see only one update.

The problem is that we are losing some information: for hidden trades we do not know on how
many iceberg orders they are executed against. So we will consider, iceberg orders on the same
level (best bid or best ask) as one. It distorts the analysis but it was necessary to make the analysis

feasible in the given time.

Remark 3.1. Notice also that the lot size of the quotes are rounded to the nearest hundred, in

consequence a bid size of 270 shares will appear as 300.

The gquotes and the trades have been merged using the sequence number column, the venue column
and the date column. There are more updates of the quotes than trades, so most of the time there
is not any trade sequence number associated with a quote. One of the first problem is that, on the
contrary, not all the sequences numbers of the trades match with a sequence number of the quotes,
e.g. the sequence of a trade at a hidden midpoint order will not match any quotes sequence. To
encounter this problem, the quotes and trades have been joined using a left outer join, dropping

all the trades for which the sequences nmmbers do not match any quotes.
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date wvenue bid ask bidsz asksz bidno askno xts Hidden price

seq

size

1882950 2019-07-01 ARCX 13643 13644 2000 2000 20 2.0 2019-07-01 13:41:32.480673 NaN  NaN
1883068 2019-07-01 ARCX 136.43 13644 200.0 1000 20 1.0 2019-07-01 13:41:32.501091 NaN  NaN
1883069 2019-07-01 ARCX 13643 13645 2000 2000 20 1.0 2019-07-01 13:41:32.501150 NaN  NaN
1883389 2019-07-01 ARCX 136.43 13645 100.0 2000 1.0 1.0 2019-07-01 13:41:32.586207 0.0 136.43
1883392 2019-07-01 ARCX 136.42 13645 100.0 200.0 20 1.0 2019-07-01 13:41:32.586222 0.0 136.43
1883392 2019-07-01 ARCX 13642 13645 1000 2000 20 1.0 2019-07-01 13:41:32.586222 1.0 13643
1883395 2019-07-01 ARCX 136.42 13644 100.0 100.0 20 1.0 2019-07-01 13:41:32.586238 NaN  NaN

Figure 4: Input data

As we can In Figure 4, there are hidden trades and displayed trades on ARCX (Archipelago
Exchange, a subsidiary of the NYSE) for which the sequences numbers match quotes sequences
numbers. There is a shift between the quotes and the trades : For a trade on the right of the table,

on the left we see the quotes update of the limit order book after the trade occurred.
Remark 3.2. The data has then been sorted by sequences then time.

Another problem is that for hidden trades, the side (buy or sell) is not specified. To find the side,
we look for each hidden trade, up to three quotes updates before to find if the price of the trade is
matching either the bid (so that it is a sell hidden trade) or the ask (a buy hidden trade). If there

is no match we drop the hidden trade.

Now that we have our data set eleaned and organized, we will try to compute some characteristics

for each iceberg order.

3.2 Detection Algorithm

In this section we will describe the algorithm used to compute some characteristics for each iceberg
order, using the data described above. We are not trying to detect the iceberg orders (it is already
done by the data with the flag Hidden), but assembling the different hidden trades to estimate the
volume of the iceberg orders. We will call a detection of an iceberg order the first time there is
a hidden trade on the best bid or best ask, because before we did not know there was an active

iceberg order at this time on this side.

What we are trying to find is first, the distribution of the displayed ratio of total volume for each

iceberg order:

Displayed

Ratio =
e Total

NaN
NaN
NaN
2000
100.0
100.0




3.2 Detection Algorithm 18

Then the goal is, to predict from the known size of an iceberg order, its total size. In order to do
this we need to compute for each iceberg order its displayed part. It is not that easy to compute
because, when an iceberg order is put on an exchange the displayed size can be randomized each
time there is a refresh of the displayed volume. Another thing that makes it difficult to evaluate
the displayed part is that we consider different iceberg orders as one, so if between two detections
of an iceberg order that contains multiple iceberg orders, one of them is cancelled or fully filled,

the two displayed parts will not be the same.

The solution found was to do at each detection, the mean of the previous estimated displayed
volumes. Each detection of an iceberg order (so each hidden trade) is preceded with a regular
trade on the displayed part (with the flag hidden =0). We are using this trade size to compute the
estimated displayed volume of the iceberg order EstDisp. We are then using the following formula

to compute the displayed mean.

DispVolMean[0] =0

(n— 1)DispVolMean[n — 1] + EstDisp

DispVolMean[n] =
n

for n > 0,

where:

EstDisp is the estimated displayed volume using the n'"

detection of an iceberg order;
DispVolMean[n] is the mean of the displayed volume after the n™ detection of the same iceberg

order, with n = 1 the first detection.

We are careful to not average all the estimated displayed volumes to avoid using future information
in the past. This allows the algorithm to be run in real time.

We will also compute at each quote updates, the known cumulative volume of active iceberg orders
at the bid and at the ask and the total volume of active iceberg orders at the bid and at the ask
(It will be our target), it takes 0 if there is not any iceberg order active at this level at this time.
Last we will also compute the number of first detections for an iceberg order, with value 0 if no

iceberg order is active.
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Algorithm 1: Detection Algorithm

initialization;

for cxc in venue do

for day in date do

end

end

end

for side in [bid,ask] do

Select the subset of the quotes;

Input: Quotes and Trades merged

if Hidden trade then
Look backward if there exists an iceberg order same price on the last 5

while Looping on the subset do

minutes still active;

Compute displayed part;

Look forward until move of price of the quotes;

end

end

Result: cumulativeVolume, totalVolume, volumeDisplayed, numberDetection

In algorithm 1 above the input corresponds to the data In Figure 4. Once we detect an hidden

trade when we are on the subset of interest (exchange, date and side ), the algorithm is decomposed

in three parts after. The first is to look backward in the quotes to see if there was an iceberg order

at the same price in the last five minutes, then to compute the estimated displayed part using

the equation ?77. Last we look forward and compute all the different volumes of interest until the

iceberg order is not active or there is a move of price.

date venue  bid  ask bidsz asksz bidwo askno seq Ms BB BO Hidden pice size m Lot Lbd nbb
B0 BATS 13126 13127 00 500 1 3 d24ee1  20PEOT 4393 13127 00 13126 1000 00OO0OD 000000 0OGODD O
A maTs iz BT 00 W0 4 ¢ rzassaz | FOOCTN 3135 13127 00 13128 000 0OGI0 040000 00000 O
X0 pats 12 T W @0 3 5 1zdeeaq o POOOET 43126 127 10 13125 1000 200000000 28400000 10000000 1
%-‘35 BATS 1328 13127 200 T0O 3 5 1248840 1430?91‘936%35 13128 13027 10 13126 830 283000000 235000000  DOOMOOO 2
B0 BATS 13128 13127 200 1100 3 5 t2ee881 o AUEIERT 4313 13127 maN NN MeN 0000000 000000 0000000 O

Figure 5:

Output data of Detection Algorithm
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In Figure 5, we can see the output of the algorithm for the bid side. BB and BO correspond to the
best bid and the best offer, computing by keeping track of all the best bids and asks on the different
exchanges. Lb corresponds to the cumulative hidden size found when an iceberg order is active on
the best bid, Lbt to the total hidden volume of the active iceberg order (so using information from
the future), Lbd to the estimated displayed size (positive only for the quotes where the iceberg
order is detected) and finally nbb the number of hidden trades on the active iceberg order on the
bid.

On the third line we see that there is a hidden trade of size 100 with an estimate displayed size
of 100 (using the last quotes where we find the bid at the price of the trades, here the first row),
so the cumulative hidden size is 200. Then on the row just after, there is another hidden trade of
size 88. There is a move of price on the best bid (from 131.26 to 131.25) so it is the end of the

iceberg order: the total size of the iceberg order is 288.

3.3 Results

Most of the iceberg orders disappear (there is a change of quote price) just after they are detected.
Many reasons can explain this, but the main theory is that exchanges are on purpose reporting
hidden trades later, to avoid people use the information in real time of the iceberg order, and
thus to cancel the goal of iceberg orders. Indeed, when looking at the data we see that lots of
hidden trades have time stamps that do not correspond to their sequences: their reporting times
are greater by some seconds to times of displayed trades that have sequences numbers just before

or just after them.

After having dropped the hidden trades for which sequences numbers do not match gquote sequences,
as well as hidden trades where we cannot find the side, we are left with 45 % of the hidden trades.
In consequence the total volume of the iceberg is not detected, and the total volume found does
not correspond to the real size of the iceberg order.

Nevertheless, with the data left we have found an estimate of the distribution of the ratio displayed

on total for the bid and the ask separately.
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Figure 6: Ratio Displayed on Total volume for the bid (left) and ask (right)

In Figure 6 we can see the density estimate of the ratio displayed on total size. The x coordinate

corresponds to the percentages of the ratio, the black line corresponds a fitted Gaussian and the

blue line to a kernel density estimation. We notice that the distribution is left skewed: those who

are using iceberg orders have an interest using them, only if the displayed size is much smaller

than the total size. We notice also that there are some spikes on the ratio of 10% ,33% and 50%,

which corresponds to the total size being 10 times, 3 times and 2 times bigger than the displayed

size. So clearly there is a human impact on the choice of the ratio.
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4 Background

In this section we provide an overview of the models used for my different predictions. The general
framework corresponds to a model that takes n variables as input, all the variables are real numbers

and our target variable is also a real number.

4.1 General Framework

For a given (x,y), we define first the idealized map F, which is the ground truth:

F:R*"—=R
F(z) v §,

We then define our model, which is the model used to fit the reality, it receives x and outputs i,

the prediction of y. We can rewrite it as:

MP:R* >R

MP(z) = 9,

with P the parameters of the model.

Definition 4.1 (Loss Function). Loss functions are used to determine the error (the loss) between
the output of our algorithms and the given target value. In other terms, the loss function expresses

how far off the mark our computed output is.
More explanations about loss functions can be found in [6].

Definition 4.2 (Objective Function). The function we want to minimize or maximize is called the

objective function, or eriterion. When we are minimizing it, we may also call it the cost function.

The loss function is for a single training example, while the cost function is over the entire training
set. Therefore, a loss function is a part of a cost function which is a type of an objective function.
For example, a probability of generating training set in maximum likelihood approach is a well-
defined objective function, but it is not a loss function (however you could define an equivalent
cost function).

Below, we can find an example of cost function that we will use for our analysis.
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Example 4.3 (Mean Squared Error). The MSE measures the average amount that the models
predictions vary from the correct values.

MSE(P) = ﬁ Z:\;l (y; — MP(x,;))* with N the number of training example.

We can think of it as a measure of the models performance on the training set. It penalizes more

the models predictions that are far from the correct values.

Definition 4.4 (Training/Test set). The training dataset is the actual dataset used to train the
model.

The test dataset is a dataset used to provide an unbiased evaluation of a final model fit on the
training dataset.

Suppose we have a set of observations (x;,y;) for 1 <1 < N, the set of which is denoted (X,Y) €
RN+ we want to find the set of parameters P which minimize the expected prediction error

(our objective function):

E[L(Y, MP(X))|X = 2],

with L a loss function.

For our analysis we will take the loss function associated with the MSE, L(y, x) = %(!f — MP(z))%

Generally we split our model in two part, one is the training or learning set and the other is the
test set. We minimize the expected prediction error on the training set in order to find the best
parameters for our model. We do not use the test set to find the best parameters of the model in

order to evaluate our model, and avoid over-fitting.

Definition 4.5 (Over-fitting). The production of an analysis that corresponds too closely or
exactly to a particular set of data, and may therefore fail to fit additional data or predict future

observations.

Remark 4.6. We want our model to be general and to give good results on new data. Different
techniques exist in order to prevent over-fitting, in our case we will use Walk-Forward optimization.

More details about it is given in Section 4.8.

In the different prediction problems encountered, we will set 75% of our data for the training set

and 25% for the test set.

Remark 4.7. [13] determines a general formula for the validation-set and training-set size ratio.
The result of the paper for the ratio is the square root of two complexity parameters. In our
different cases we will simply use a general ratio used in Machine Learning (even if the most

common one is 80/20 ratio known as the Pareto principle).
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4.2 Assessing Goodness-of-Fit

Different metrics can be used to evaluate our predictions depending of the problem. For regression

problems we will use R-Squared (R?) metrics:

R?-score is the percentage of the dependent variable variation that a regression model explains.
Its values can be between —co and 1, with 1 meaning that we can perfectly predict our target. So

our goal is to maximize the R2-score.

R2-score does not indicate if a regression model provides an adequate fit to your data. A good
model can have a low R? value. On the other hand, a biased model can have a high R? value. In
[7], more explanations can be found on why in some fields of study your R? values are bound to

be lower (studies related to human behaviour for example).
Despite that R%-score has limitations, we will use it for our different studies to assess the goodness
of our fits.

Remark 4.8. We have not done that in our studies, but we could also have computed the Root
Mean Square Error (RMSE) in order to have an idea of the sample standard deviation of the

differences between predicted and observed values.

RMSE =

Contrary to the R?-score, we want to maximize the RMSE.

4.3 Bias-Variance Trade-off

We would like to reason about the expected loss (Prediction Risk) over (a;, ;) for 1 <i < N our

training set [, and a test point (z.,¥.). We will consider the MSE for this explanation

Theorem 4.9 (Bias-Variance decomposition). We will decompose the expected loss into:
Ep (e y )[4 — M(2.D))?] = Noise + Bias® + Variance

Proof. Define the true model h (unobserved): y. = h(z,) + €., we will note h(z,) = h,.
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We are using

Ep,@.yollys = f""{(i'*|D))2] = Ep (2. y ) (e = hu + hu = ﬂ-’[(x*|D))2]
= Ee.[(y+ — h)?] + Ep|(h. — M(x.|D))?

+2Ep (o, y ) [Wshs — yu My — hiho + ho M,
where we used a trick by adding and subtracting the true model h,, and then developing the square
using the linearity of the expectation.
Using that y. = h(z.) + €. and E[f_,] =0 ., we have:

Ep (. gy Walte = yuMy = hihy + B M) = hihy + Ele )b, — E[M,)h. — M E[e.] — hohe + h E[M,]
=0

So we end with,
Ep a.yllye = M(2:|D))’] = Ec.[(3s — ha)?] + Epl(he — M (24| D))’] (4.1)
B [(y+ — hs)?] is the noise term, we cannot control it.
Ep[(h. — M(z.|D))?] is the model estimation error, it is what we want to minimize.
We will denote E[M(z.|D)] = M., the expectation of our model.
We have,

Ep|(he — M(z.|D))?] = E[(h. — M. + M. — M(z.|D))?
= E[(hy — M,)?] + E[(M(z,|D) — M,)?]
+ 2E[h M, — h, M, — M, M, + M?]

where we used the same trick as before with this time our M,, and then developing the square

using the linearity of the expectation.
As before we have E[h, M, — h M, — M, M, + M?] = 0.

E((h. — M.)?] = (h. — E[M.))? = (Bias)?
E[(M(z.|D) = M.)?] = Variance

Moreover we have

Getting finally,

Ep (e ) (4 — M(2.|D))?] = Noise + Bias® + Variance
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When we choose a model and fit its parameters, we want to minimize the expected loss, which will
be a trade-oft between the bias and variance. For simple models we have high bias and low variance
and for most complex models we have low bias and high variance. Over-fitting corresponds to the

case where the variance is too high, whereas under-fitting is when the bias is too high.

Total Error

Variance

Oplimum Model Complexily

Error

Bi352

.

Model Complexity
Figure 7: Bias-Variance Trade-off (from Bias Versus Variance 2019 [11])

Figure 7 shows the trade-off between the bias and the variance, with Model Complexity in x-axis
which corresponds to the number of parameters for a model. When the Variance is low we have
an high Bias® and inversely when Variance is high we have a low Bias®. The optimum model

complexity is when the total Error (Variance + Bias®) is minimized.

We will next give an overview of different basic linear methods, and then explain techniques that
we will use for feature selection. (X,Y) will denote our dataset with X our input variables and
Y the corresponding target variables. All the code and models are in Pyvthon and the different

libraries used will be mentioned.

4.4 Ordinary Least Squares

Ordinary least squares (OLS) is a basic model of regression. It fits a linear model with coefficients
w = (w,....wpy) to minimize the residual sum of squares between the observed targets in the
dataset, and the targets predicted by the linear approximation. Mathematically it solves a problem

of the form:

min ||y — X-u,'llg.
w
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where ||.||§ is the squared L%-norm.

Theorem 4.10. The solution of the OLS is given by:
= (XTX)"1xTy.

Proof. The normal equations can be derived directly from a matrix representation of the problem
as follows. The objective is to minimize

S{w):"y - Km"2 =(y—Xw) "y - Xw) =yTy —w'XTy - yTXw + wTXTXw.

Here (w™XTy)T = y"Xw has the dimension 1x1 (the number of columns of y) , so it is a scalar
and equal to its own transpose, hence wTXTy = yTXw and the quantity to minimize becomes

S(w)=yTy —2wTXTy + wTXTXw.

Differentiating this with respect to w and equating to zero to satisfy the first-order conditions
gives

“XTy + (X™X)w =0,,

which is equivalent to the above-given normal equations. A sufficient condition for satisfaction of
the second-order conditions for a minimum is that X have full column rank, in which case XX
is positive definite.

]

There are six classical OLS assumptions for linear regression to produce the best estimates. Below

are these assumptions:

The regression model is linear in the coefficients and the error term.
e The error term has a population mean of zero.
e All independent variables are uncorrelated with the error term.

Observations of the error term are uncorrelated with each other.

.

e The error term has a constant variance.
e No independent variable is a perfect linear function of other explanatory variables.

When your linear regression model satisfies those assumptions, the procedure generates unbiased
coefficient estimates that tend to be relatively close to the true population values (minimum vari-
ance). In fact, the Ganss-Markov theorem states that OLS produces estimates that are better than
estimates from all other linear model estimation methods when the assumptions hold true. In [8],

we can find a proof of the Gauss-Markov theorem and some further interpretations about it.
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Remark 4.11. Statistical tests can be perform to evaluate the significance of the coefficients.

The two main advantages of this model are its low computation time and that it does not have
parameters to tune, making it very practical for parameters selection or features selection when

constructing a model.

When features are correlated and the columns of the design matrix X have an approximate linear
dependence, the design matrix becomes close to singular and as a result, the least-squares estimate

becomes highly sensitive to random errors in the observed target, producing a large variance.

This situation of multicollinearity can arise, for example, when data are collected without an

experimental design.
To solve this problem we will consider other models where we add a regularization term to the

minimization problem.

We are using the Python’s OLS implementation sklearn.linear_models.LinearRegression.

4.5 Ridge

Ridge regression addresses some of the problems of Ordinary Least Squares by imposing a penalty

on the size of the coefficients. The ridge coefficients minimize a penalized residual sum of squares:

min || Xw — ?,-'Hé + a||'m||g..
w

The complexity parameter o > () controls the amount of shrinkage: the larger the value of «v |, the

greater the amount of shrinkage and thus the coefficients become more robust to collinearity.

Theorem 4.12. The solution of Ridge is given by:
= (XTX +aly) ' XTY,
with N the number of variables used for the model and Iy the N-dimensional identity matriz.

Proof. The result can be obtained as before using matrix calculus. O

Remark 4.13. The assumptions are the same as those used in OLS: linearity, constant variance

(no outliers), and independence.

Increasing a will increase the bias of our prediction by reducing the impact of the coefficients but

decrease the variance. So in order to find a good trade-off between our bias and variance, we have
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to select a good « , which can be done by cross-validation.
We have that lim, .. w(a) = 0, but the coefficients will rarely reach exactly zero, so ridge
does not perform any feature selection. Other models can be used to perform selection as we will

see in the next section.

We are using the Python’s Ridge implementation sklearn.linear_model.Ridge.

4.6 Lasso

The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to
its tendency to prefer solutions with fewer non-zero coefficients, effectively reducing the number
of features upon which the given solution is dependent. For this reason Lasso and its variants are

fundamental to the field of compressed sensing.
Mathematically, it consists of a linear model with an added regularization term. The objective

function to minimize is:

min || Xw —y |§ + o,
i

The lasso estimate thus solves the minimization of the least-squares penalty with «f|wl||, added,
where e is a constant and is a constant and |[w||; is the [;-norm of the coefficient vector. This
latter constraint makes the solutions nonlinear in the y;, and there is no closed form expression
as in OLS or Ridge regression. In [16] more details can be found about it, and on how to get the

Lasso estimate.

We will see in the next part how Lasso can be used to do features selection.

We are using the Python’s Lasso implementation sklearn.linear_model.Lasso.

4.7 Feature Selection

One of the most important parts when carrying out machine learning is the feature selection. The
features that we use in our machine learning models have a huge impact on the performance. Using
irrelevant features can negatively impact the performance so it has to be done carefully. Different
methods exist and in general to get the best results we have to use a combination of those methods.

We will describe below some methods that we use.

Correlation Matrix: Correlation allows us to see how features are related to each other or the

target variable. Correlation can be positive (an increase in one variable return to increase in the
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other) or negative (increase in one variable decreases the other).

When comparing the correlation of one feature to another, the idea is to choose a threshold
(depending of the problem we are working on) and drop one of the features if the absolute value
of the correlation is above the threshold (if the features are too correlated).

When comparing the correlation of the features to the target, the idea is to choose a second
threshold and keep the features for which the absolute values of their correlations with the target

is above the threshold.
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Figure 8: Correlation Matrix with Heatmap

In Figure 8 we see the Heatmap of the features used for the shape of the order book. The number
of features here is important, so instead of doing the selection described above manually, we have
implemented an algorithm that does the selection automatically.

We are using the Python’s Heatmap implementation seaborn.heatmap.

Lasso: To have a fast overview of the features that are relevant, we can apply Lasso on our data
without doing any features selection and return the list of coeflicients. he features for which the
coeflicients are non-zero are then relevant. The problem with this method is that Lasso is in
general to hard and penalize the features to much, so some features that are relevant can have for
coefficients zero.

Lasso alone is not enough to give the best results and so it needs to be used in conjunction with

—08

a4

04
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other methods.

See [10] for an alternative solution to feature selection using Lasso. Satoshi Hara and Takanori
Maehara propose an algorithm for enumerating solutions to the Lasso regression problem, not only
the one global optimum. The algorithm outputs many possible feature sets for human inspection,

possibly including relevant features not selected by the Lasso.

maximizing the score: We create a subset of features and add the features that give the best scores

for the OLS. We add features as long as the score (f%-score) is improving,

Algorithm 2: Features selection algorithm by maximization
Input: Features, InitialSet, X, Y

Result: BestFeatures

initialization;

R1, Features, SelectFeatures = BestOLS(InitialSet,Features, X,Y);
R2 = -o0;

while R1 - R2 > 0 do
R2 =R1

R1, Features, SelectFeatures = BestOLS([SelectFeatures],Features, X,Y);

end

In the algorithm above, Features is the list of all the features, InitialSet is an initial set of features
already selected for our model, X are the values of the features and Y of the target.

The score used here is not specified but in 6.3 we will use the R?-score.

BestOLS takes as input a subset L of features already selected, a list of features I' we want to test
and X and Y.

It returns a subset Features where we add to L the feature of F' which maximize (or minimize) the

score when using an OLS, with the associated score R1 and the updated list of features F.

The scheme that we use when doing features selection is to use the correlation matrix to do a
first selection of the features, then use Lasso to create the initial subset of features in the features

selection algorithm and finally used the algorithm to complete the initial subset of features.

All the above methods are used on the training set, or a subset of the training set in order to
avoid over-fitting. We will see in the next section some methods very useful when doing features

selection and that help to avoid over-fitting,.
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4.8 Cross-Validation

Cross-validation (CV) is a popular technique for tuning hyperparameters and producing robust
measurements of model performance. Hyperparameters for our models are the alpha from Ridge
and Lasso. First, we split the dataset into a subset called the training set, and another subset
called the test set. If any parameters need to be tuned, we split the training set into a training
subset and a validation set. The model is trained on the training subset and the parameters that
minimize error on the validation set are chosen. Finally, the model is trained on the full training

set using the chosen parameters, and the error on the test set is recorded.
Two of the most common types of cross-validation are k-fold cross-validation and Nested cross-

validation. K-fold cross-validation has a single parameter called k that refers to the number of

groups that a given data sample is to be split into.

Iteration 1 Test | Train | Train | Train ‘ Train

Iteration 2 Train Test | Train | Train ‘ Train
Iteration 3 Train Train | Test | Train ‘ Train
Iteration 4 Train Train | Train | Test ‘ Train
Iteration 5 Train Train | Train | Train ’ Test

Figure 9: K-fold eross-validation (from Cross Validation Explained: Evaluating

estimator performance 2018 [12])

In Figure 9 we see the data is split when using K-fold cross-validation. All the steps are as follow :

1. Shuffle the dataset randomly (Optional).
2. Split the dataset into k groups
3. For each unique group:
1. Take the group as a hold out or test data set
2. Take the remaining groups as a training data set
3. Fit a model on the training set and evaluate it on the test set
4. Retain the evaluation score and discard the model

4. Summarize the skill of the model using the sample of model evaluation scores
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The problem with time series data is that we need to take care of how we are splitting the data
becaunse, we have to avoid using the future to predict the past, to simulate the real world forecasting
environment. So we have to exclude k-fold cross-validation. Instead, we use a technique similar to

Nested cross-validation, walk-forward optimization.

Walk-Forward Optimization for Time-Series

Training #1

Training #2 Test #2

Training #3

Projected Perfermance

Figure 10: Walk-Forward Optimization

Walk-forward optimization contains an outer loop for error estimation and an inner loop for pa-
rameter tuning. The concept for walk-forward testing is similar to using "in-sample” and "out-of-
sample” testing periods. Suppose we have twenty years of data, instead of optimizing on sixteen
vears of data and using the last four years of data for testing, the optimization is done across eight
years and the system is tested on the ninth. Once this test is completed, the whole time window
is moved forward one year and run the test again. The optimum set of parameters for each of
the 8-year windows and is used as the set of parameters for the next yvear. The time window is
moved forward one year and the test is run on the next year until all the years in the data series
have been tested. When the system performance is evaluated, all the one-vear windows are consol-
idated to compose the out-of-sample periods for each of the optimal windows. The out-of-sample

performance is used to judge how good the system is.
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5 Price impact of order book events

High-frequency records of trades and quotes stimulated and allowed the research of correlation
between the order flow and the price movements in order-driven-markets. Impact of orders on
prices is of particular importance, which is why we conduct a study of the instantaneous impact

of order book events (market orders, limit orders and cancellations) on different stock prices.

See also the pioneering work on the optimal execution problem from Bertsimas and Lo [18], they
provide an intuitive optimal strategy to minimize the purchasing cost. See also Almgren and Chriss
[19], where the performance criterion of the execution consists not only of the expected revenue
but also a penalty for the uncertainty of the revenue. In these papers, the market impact is defined

by two components: the temporary impact and the permanent impact.

5.1 Context

Rama Cont, Arseniy Kukanov and Sasha Stoikov [2] have shown that instantaneous effects on
prices may be modelled through the order flow imbalance (OFI). OFI represents the net order flow

at the best bid and ask and tracks changes in the size of the bid and ask queues by:

e increasing every time the bid size increases, the ask size decreases or the bid/ask prices

increase,

e decreases every time the bid size decreases, the ask size increases or the bid/ask prices

The model used is a linear regression between the price change and the OFI, with a single coefficient
that we will call the impact coefficient. For our analysis we are using the quotes of ten different
stocks from the FTSE 100 stock index for the month of June 2019.

We will see that the average R?-score between the different stocks are very similar but with a lot
of variation intraday due to some events, such as the mid-day auction. Overall when dropping those
kinds of events, the R%-score are robust. Order flows deeper in the order book do not contribute
as much to prices changes as we may have thought.

We will also see that the variability of the impact coefficient can be explained by the market

depth, and more precisely that there exists an inverse relation between the two variables.

5.2 Price impact model

Consider a time interval [fr_1,f:] and denote by L?c, Ci{ the total size of limit orders that arrive
to, and are cancelled from, the current best bid during that time interval. Also denote by ﬂ-'[,'j the

total size of market buy orders that arrive to the current best ask, and by P} the bid price at time
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t.

Li, CF, M and L are defined analogously for sell orders.

. . . . . . PP e - . .
We consider mid-price changes normalized by tick size: ";; £ where § is the tick size.

The OF1I}, is then defined by:

OFI, =L}, — Cp — Mj — L + Cj + M} (5.1)

In Equation (5.1), OF1}, can be seen as the imbalance between the supply and demand. If there are
more buy limit and marketable orders than sell ones (without taking cancellations into account),
then the OF [} is positive and the price of the stock is more susceptible to increase. We see that

there is a positive correlation between the OF I} and the share price change.

We assume that there is a noisy relation between price changes and OFI which holds locally for

short intervals of time [ty—1,tx] C [Ti—1,T;] where [T;—1, Ti] are longer intervals.

APp; = BiOFI; + €

where:
3; is a price impact coefficient for an i-th time interval;
€. 15 a noise term summarizing influences of other factors (e.g. deeper levels of the order

book).

Remark 5.1. We fit a different coefficient 3; for each index i because of intraday seasonality

effects.

5.3 Data

Our data set consists of one calendar month of trades and quotes for 10 stocks of the FTSE 100.
Every observation consists of the prices and sizes of the five first levels. We will denote for the first
level by P* and ¢” the best bid price and size respectively, P* and ¢* for the best ask price and

size.

We use two uniform time grids {1y, ..., 77} and {to0,....t7 x } with time steps T; — T;_y = M in
minutes and #; x — t; -1 = 5 in seconds. We will try different values for M and S as part of an
optimization procedure, but the ones that seem to give the best results are M = 30 minutes and
S = 10 seconds. We enumerate the n-th observations of the quotes for each day by n. Using only

the quotes, we can compute the OFI define by (5.1) in the following way :
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First, compute the difference between each consecutive observation:

en = q?nl{pu>pr, 3 q:‘: _Ll{pu<pb o} = q;l{pa <P:_} + q:: —LI{P,’;ZP"_ ! (52]

n="n- n="p— n="n "

In Equation (5.2), the variables e,, are contributions of order book events to supply and demand.
This relation allows the computation of OF'[;, using only the quotes and not the marketable orders
and cancellation orders. When a buy limit order arrives, ¢° increases but P? remains the same,
leading to e, = ¢% — ¢),_, which corresponds to the size of that order. IF ¢ decreases, we have
ep = qf; - q,‘;_l representing the size of a marketable sell order or buy order cancellation. Now if
PY changes, then e, = g% or e, = —q¢’_, representing respectively the size of a price-improving

order or the last order in the queue that was removed.

Within each [t; x—1 —t; ], we compute the price changes and order flow imbalances index by k and

-
Py, . +P§ X + P},
AP, J\['!.R] ‘\“J.k) N[’:.k—l‘ J\”!.R—l]
ki = = - -
! 20 20
N, o
OFI;.-__E' = €n
n:;'\"““k_lj+1
with:

Nit, ) + 1 and N, ) are the index of the first and the last order book event in the interval
[tig—1 —tix]:

PK,( tor_y and PK’(:-..U (similarly Py, yand Py, ) are the bid (ask) price at the beginning

(i k-

and at the end of the interval [t; 1 — #; 1.

Finally, in order to compare our impact coefficients with the depth, we will estimate for each
interval [T;—; — T3] the depth by averaging the bid/ask queue sizes right before or right after a

price change.

Ny b b Nz
> ('i‘“nl{.v,';<.v,';_,} +Galyprapr }) 2 (@rlepg>py_y +dn-alipz<py_,})
D 1 ,1:.\{[1,,‘_1)_'.1 ":N(T,_ﬂ-‘}l
i 9 Niryy Nery
1{‘;,::#‘9::_'} E I{Pf. #P;_ 1}
n:N[T‘_lj-i-l 7":"\|'('1",._|)+l

(5.3)
In equation 5.3, we compute, for each time interval i, the average of the bid/ask queue sizes after
a price change. If there is no price-move on the bid and on the ask during all the time interval we
have D; = 0. Otherwise if there is a cancellation order or a marketable sell order (so that the best

bid price decreases), we will take the mean over the new best bid size ¢%. Conversely if there is a
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best bid price increase due to a buy limit order, we will take the mean over the old best bid size

b
In—1-

To avoid perturbations due to the different auctions of the day, we drop the quotes three minutes
after and before the opening and closing auction respectively, and five minutes around the mid-day

auction (from 12:00 to 12:05).
5.4 Results
In this section, we are only using Ridge when doing linear regression.

5.4.1 Estimation Results

First, we have to determine which time intervals for the first and second grid give the best results.
In order to find this we compute the mean of the R%-scores on five different stocks across all the

days, for five different time intervals.

s
or
1)
o
e
| . . I I
o2
a1
00 m Taee

F3So0m

0
10 sz 050 Ton
Dota-Time.

Figure 11: Average R*-score across time for different At on five stocks

Here we are computing the average R%-score across stocks for five different values of bins interval.

In Figure 11, we see the R2-score for five different values of S. For each S, we have taken a different
value of M in order to make the computations feasible. For example for S = 0.5 seconds we have
taken M = 2 minutes, whereas for S = 10 seconds we have taken M = 30 minutes.

We see that S = 10 seconds and M = 30 minutes give the best results, so for the rest of the analysis

we will keep these two values.

First, we perform our estimations using only the first level of the limit order book. We are using

30 minutes time intervals for the first grid and 10 seconds for the second one.
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na

Figure 12: R%-score for AAL.L (top) and AZN.L (bottom) every half hour
using only the first level of the LOB

In Figure 12, we have the R2-score of our price-change estimations for each thirty-minute interval,
for AAL.L (Anglo American public limited company) and AZL.L (AstraZeneca public limited
company) using only the first level of the order book. We see that the R*-score is more or less
constant over the different time intervals, except for AAL.L at 15:00. After some research, it was
found that the closing auction of the Johannesburg Stock Exchange, as Anglo American ple is

based in Johannesburg, has an impact on the estimation of the price changes.

Figure 13: R?-score by stocks using only the first level
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In Figure 13, we can see for each stock, the mean R?-score for the different time intervals. There

are some variations through the different stocks, which can be due to the lack of data, but we see

that the model is consistent across stocks.

—

Ticker (stock sym- B; % R?
bol)

AAL.L 3.51e ™M 5.53e %4 0.71
ANL.L 3.21e™% 7.10e7%4 0.83
BP.L 2.08¢ 9 4.78¢705 0.79
BT.L 4.22¢=05 7.42¢~05 0.69
GSK.L 8.54e~15 2.37¢~M 0.76
LLOY.L 9.05¢ %6 1.01e 9 0.80
MKS.L 8.96e~99 5.19¢79 0.70
RIO.L 9.01e~% 1.03¢793 0.61
ULVR.L 4.91¢—% 5.58¢04 0.75
VOD.L 1.10e~9 3.15¢79% 0.76

Table 2: Relation between price changes and order flow imbalance

i is the mean of the 3 across time for each stock and, 55~ is the mean of 7 across time for each stock.

20, D,

Table 2 presents a cross-section of results (averaged across time) for regressions:

APy ; = BiOF i + €k

using only the first level of the order book.

Now, we repeat our estimations using the first two levels of the limit order book. We are still using

30 minutes time intervals for the first grid and 10 seconds for the second one. It is 10 % better

than before when using only one level, but as we will see it also has the advantage of being more

stable.
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Figure 14: R*-score for AAL.L (first one) and AZN.L (second one) every half

hour using the first two levels of the LOB

In Figure 14, we have the R%-score of our price change estimations for each thirty minutes interval,
for AAL.L (Anglo American plc) and AZL.L (AstraZeneca ple) using the first two levels of the
order book. We see that the R%-score is a little bit higher, and far more stable than when we
use only one level of the order hook. The drop of R?-score at 15:00 for AAL.L is not present any
more, showing that a two level model captures in a better way the price changes during disturbing

events,

5.4.2 Link between Impact coefficients and depths

Recall that we denote by 3; the price impact coefficient of the i-th time interval and by D; the

1
2D;

corresponding depth. Using discussions and results from [2], we will interpret as an implied
impact coefficient.

It can be viewed instinetively that the impact coefficient is inversely proportional to the depth
of the order book: the higher the depth is, the lower is the impact of the order flow imbalance on

the price change. In [2], this relation is shown more concretely using a stylized order book.
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Figure 15: Comparison of impact coefficients and depth for AAL.L

In Figure 15, the red curve corresponds to the mean of all the impact coefficients on the different

days, whereas the blue curve corresponds to the mean of the theoretical coefficients, that is to say,

1
D,

the mean of the (this is all for AAL.L). The two curves are not exactly equal but are close and
have the same shape. We can also see that between 08:30 and 09:00 the impact coefficient is two
times higher than on average, indicating that the market is relatively shallow. In a shallow market,
incoming orders can easily affect the mid-price. Moreover, price impact coefficients between 08:30

and 09:00 are five times higher than between 16:00 and 16:30.

5.5 Applications

For the moment, we do not predict the price changes on each interval, indeed to estimate the price
change on an interval [t;,_1 — #;], we are using all the available information until #; ;. So the
interest of the previous analysis is not to predict the price changes, but to see that the short term

price changes are almost entirely governed by the order flow imbalances.

One of the first applications of this relationship could be to predict the adverse selection engendered
by a market order, for example to try to predict the change between the price just before the market
order and some milliseconds after it. We can be tempted to use this relationship to predict the
future price changes. However, a simple approach, where we used the actual order low imbalance
to predict the price changes of the next time interval gave bad results (negative R?-score). We can
see in Figure 16 below that the R2-score is around zero across the day. Another approach could
be to reduce the time horizon of the prediction, and use a longer time interval for the computation

of the order flow imbalance.
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Figure 16: R%-score by stocks of price changes prediction

In Figure 16, we can see the R*-score for our simple approach to predict future price changes. We

see that the R*-score is negative and near zero.

Aot

Figure 17: ACF of the mid-price changes AP, ; for AAL.L

As shown in Figure 17, the autocorrelation of the mid-price changes AP, ; at a timescale of 10
seconds is small and quickly vanishes. We get the same results for the autocorrelation of the OFI
(can deduce this due to the linear relation between AP, ; and OFI): it explains the bad results of

our simple approach above.
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6 Shape of the order book

In this section we study the shape of the order book, and we try to predict some characteristics
related to the order book, such as the ratio of the first level size, that are relevant to know when
buying or selling. Indeed, before trading an asset, it can be useful to predict the future shape of
the order book. For instance to know whether the limit orders will be more on the bid side or the
ask side, or are more on the first levels or lower levels, can be very relevant to determine when and

how to trade.

In general, if not specified when using linear regression, Ridge is used to predict our targets, Lasso

is used for the feature selection and OLS is used to find the optimal parameters.

6.1 Data

For my analysis of the shape of the order book, I have a sample of the quotes and trades of twenty-
three different stocks from the FTSE 100 for the month of June for each minute of the day. The
sizes and number for quotes columns correspond to the median of the sizes during the last minute.
For instance, the column corresponding to the size of the first level of the bid, is the median of
the first level of the bid during the last minute. We have decided to use the median instead of the
mean to keep prices rounded to the nearest tick.

The prices columns for both the quotes and the trades for each minute correspond to the VWAP
of each column during the last minute.

The sizes column of the trades correspond to the total number of stocks traded during the
minute.

We could have kept the last quotes update for each minute, but when we tried to do predictions
on this dataset, it gave very bad results due to the fact that the last quotes update is too random.
For example if the quotes update is just after a buy trade, the size of the first ask level will not

accurately reflect the shape of the order book during the minute.

Remark 6.1. In Chapter 2 of [14], more details can be found about information-driven bars.
Different ways to sample data are presented with justifications of their uses. We have chosen to
simply sample by minute bins, but more sophisticated methods exist, as for instance sampling

using the volume traded.

The data has been split up as 75% for the training set and 25% for the test set.
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6.2 Choice of targets

Before trying to predict anything, it is important to choose a good target. A good one will involve
a trade-off between its practicability and the feasibility of the prediction.
Our first goal is to determine how the order book shape affects the future order book shape. First

it is important to see what it looks like.

bd3 bidé bidd Wd2 bdl askl askZ ask3 askd  askS

025

000

Figure 18: Limit order book shape distribution for the first five levels

In Figure 18, we can see the distribution of the first five levels of the limit order book for the month
of June for AAL.L, with Bid, and Ask, corresponding to the first level of the bid and the ask. We
have computed for each level ¢ of the bid, the ratio of the volume of level i to the total volume of
the bid, and we have done the same for the ask. For other stocks, the shape of the order book is

very similar.

To have a good view of the order book, two important features are the skew and the depth (both
for the bid and the ask) of the order book.

We first focus on the skew. As we can see on the figure 18, the ask side is naturally left skewed
whereas the bid side is right skewed. Therefore, it is important to define a target that takes this

into account. A way to do it is is to compute the deviation of the distribution from the mean.

We want to have something positive when it is right skewed and negative otherwise. We define:

(1{i<=2} - l{i>=4}) Z?:l(Bidf - m)z

SkewBid = .
Bid,

where:
Bid; is the ratio of the level i of the bid to the total volume of the bid;

Bid; is the mean of the ratio over the last N minutes (N to be determined).
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The term 1g; -2y —L;~—4y is here in order to have a positive term when this is right skew; for the

ask it will be 1j;= 4y — Ljc—0).

This definition of the skew is very natural and easily understandable as it is only a one parameter
skew, but the results of the prediction are very bad (the R2-score is near zero).

Instead we choose to predict each Bid; and Ask; separately, so we end up with a five parameters
skew. In practice to know the ratio of the first level is enough as it is the one that has the most
impact on the stock price return.

For the next section, we will consider our skew targets as the ratio of the first level of the bid and

the ask. But the work down below can also be done for the next level of the order book.

Now we have to define the depth, which has to be complementary to the skew. Our definition of
the skew allows only to know if the liquidity is more on the first levels or on the last, so we need
something that allows to know if there is more liquidity available than usual on each side.

We want to define different categories of depth in order to use classification algorithms, this is why

we use the following definition of the depth.

5

DepthBid =1+ Z(l{ cimFize sy mrdss:e,})"

i=1
where:
CumSize is the total size in notional traded during the last bin;
CumSize is the rolling mean of CumSize on N bins;

bidSize; is the total size in notional on level i of the bid.

With this definition we end with 6 categories of depths, 1 if there is a lot of liquidity on the first

level, through 6 if we need to go deeper in the order book to find liguidity.

6.3 Feature Selection

Here we present the results of our selection using the methods described in section 4.7 (combining
correlation matrix, Lasso and our algorithm maximizing the score). The selection of the features

below has been done on the training set, keeping the test set to evaluate for the back-testing.

First we define the main features derived from the original features that we will use. In order to
compare the stocks between them, we convert the size in number of shares into size in notional
(price x size).

Below we detail the features for the ask side, but we have done similar computation for the bid

side.
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Remark 6.2. The parameters N and Nb below, which give the number of rows where we compute

the mean and variance, are determined using grid-search.

askSize;: Size for level i of the ask in notional.
askSize: Total size of the ask in notional.
askProp: Ratio of the total sizes of the ask to the total size of the bid and ask, askProp =

askSize
bidSizetaskSize

Note that to compute bidProp = 1 - askProp.

askNo;: Number of limit orders for level i of the ask.

askSizePery: ratio of askSize; to the total ask size, askSizePer; = —2skSize.
Y-, askSize;
askSizePerMean;: Mean of the last N askSizePer;.

askSizePerVar;: Variance of the last N askSizePer;.

midPoint : The midpoint.
midPointRet: log-return return of the mid-point mid Point Ret = log(mid Point)—log(mid Point.shift).
vol Price : The volatility of the mid-point return, we compute it using the standard deviation

of the mid-point return on the Nb last rows.

askSkew: log(askSizePery).
askSkewMean: Mean of the last N askSkew.

askSkewlInter : Mean of the ask skew for all the stocks over the last five minutes.

And finally the target is :

askSkewTarget: askSkew shifted by one row.

We take the logarithm of bidSizePer; and askSizePer; in order to make our targets stationary.

bidSizePery; and askSizePery will be dropped as they are strongly correlated to their logarithms.

For each stock we have done a selection of features, so each stock has its own features.
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Figure 19: Frequencies of the features selected for the prediction of the ask

skew

In Figure 19 we can see the frequencies of the features selected for the ask skew prediction, for
23 stocks. We see that askSkew is selected for all the stocks so the last skew size is of particular
importance, askSkewMean appears also to be very important. We see that the ratio of the second
level is also selected around half the time, so it plays an important role in the next minute first

level ratio. In the end only three features seems to play an important role in the prediction.

Remark 6.3. askSkewlnter seems also to play an important role for eight stocks, so for those

stocks the moves of the skews on the other stocks have an impact on their skews.

The problem with doing a selection of features for each stock, is that features that are relevant for
all the stocks may not be selected for some stocks due to over-fitting of the data on the training
set. An alternative method of selection is to "freeze” some features that seems relevant for all the
stocks in our model, that is to say to force our model to take some features. Here the features that

seems to be relevant from the Figure 19 are askSkewMean, askSkew and askSizePer2.
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Figure 20: Frequencies of the features selected for the prediction of the ask

skew, freezing some features

In Figure 20 we can see the frequencies of the features selected for the ask skew prediction for 23
stocks, this time freezing three features askSkewMean, askSkew and askSizePer2. We see that

now more features are considered than before (14 against 10 when no freezing).

For the first method when no features were frozen, we get a test-set R2-score on average through
all the stocks of 0.181. When doing the second method, freezing askSkewMean, askSkew and
askSizePer2, we get an R%-score of 0.179. The difference in R?-scores is very low between the
two methods, and (not as expected) the first method gives slightly better results.

As the difference is very low it is hard to draw any conclusion, but we can say that for this
set of features and stocks, the method described in 4.7 already avoids over-fitting, and that there
is a difference of relevant features for each stock: askSizePer2 is important for some stocks and
not for others. Maybe if the set of features and of stocks was bigger the difference would be more

significant.

In the next section, we will describe our results using the features created and selected in this

section.

6.4 Results

Here we will see the the results of our R?-score for the bid skew predictions. For a benchmark to
compare our model against, we just use the current askSkewMean as the prediction of the next
skew. The number of rows on which we compute the mean is optimized using a grid search on the
training set data.

The scores below have been computed on the test set and we are using Ridge to predict our targets.
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We will first fit only one model for all the hours of the days for each stock (one set of parameters

for each stock),
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Figure 21: R%-score for the prediction of the bid skew for 23 different stocks

for the benchmark (blue) and our model (red).

then we will fit multiple models for the different intervals of hours of the days.

In Figure 21 we can see the different R%-scores, when only one regression is performed for each

of the 23 stocks. The R%-scores for our models (in red) is quite stable and its R*-score is around

twice as much as the benchmark R2-score.
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Figure 22: R2%-score for the prediction of the bid skew with one model by stock

In Figure 22 we can see the different R2-scores for each hour interval, when only one regression is
performed for each of the 23 stocks. The numbers of the x-axis correspond to the next hour range
interval, so 8 corresponds to the time interval 08:00 to 09:00 and 16 to the time interval 16:00 to
16:30. We see that there is an intraday difference for the R*-scores: it is easier to prediet the skew
after 12:00 than before.

The mean of R*-scores on all the stocks and hours is 0.181.

Remark 6.4. We are not computing the average of the R2-scores by time intervals, since there
is not the same number of events for each interval (due to the drop of some rows for example).
Instead we are putting a weight in front of each R2-score :

Ninterval pr . I
interva Number EventsInterval;
Mean =

p Total Number Events
The differences of R*-scores during the day can make us believe that our predictions are working

differently in function of the hours of the day, this is why we will try to fit a model for each hours

interval.




6.4 Results 51

- . -
L] o T ¥
CI . i : . [ E—
—+————+—— 1 1 !
w ! i :
]
|
i
g s
.
— ey oo
.
. » M 0 “ ] L]

Figure 23: R%-score for the prediction of the bid skew with multiple regressions

are performed for each stock

In Figure 23 we can see the different R%-scores for each interval of hours, when regressions are
performed for each of the 23 stocks (9 in total). We see that there R*-scores are more constant
during the day than in figure 22, except for 16:00 to 16:30 where there is a big drop. This drop
can be explained by the lack of data for this particular interval as it is only half an hour.

The mean of R?-scores on all the stocks and hours is 0.140, when giving the same weights for each
hours interval. So it is less than when we are doing one regression for each stock, this is maybe

also due to a lack of data as we are now splitting our dataset in nine.




6.5 Further Research 52

& e .

! [ ]

- - "

. e

w "

L] [ ]

i
v
X

=T
Secord haf of Fw day

Figure 24: R?-score for the prediction of the bid skew

In Figure 24 we can see the different R?-scores for each interval of hours, when we are splitting the
days in two: before and after 12:00, so now we are fitting two models. We see that the R*-score of
the second half of the day is bigger than the first one.

The mean of 22-scores on all the stocks and hours is 0.174.

6.5 Further Research

Further things can be done in order to improve the results. First when computing askSkewInter
and bidSkewInter, instead of considering the average of the last skews through all the stocks, we
could do it by groups of stocks where the skews are correlated. This can be relevant if the changes
of some stocks skews drive the changes of the skews on other stocks (if they are correlated), but

twenty-three stocks is not enough to find correlations so we will need more data.

Getting more data for the same stock could be very helpful, in order to complete our analysis on
doing different regressions across the day as we are not able to draw any conclusion at the moment.
We can also get data with different bins size, e.g. 5, 10 or 30 seconds, as one minute bin size has
been chosen somewhat arbitrarily. We can expect the targets to be less predictable, as the means

over shorter intervals will be more noisy.

Also other targets could be found to complete the analysis of the shape of the order book, as for
example we could try to predict the ratio of the bid and the ask (the features askProp shifted by
one). It will be a good complement to the prediction of the skew, but we will have to create some

new features more relevant for this target.
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The uses of these predictions are multiple. For the skew, knowing the ratio of the first level for the
next minute can be helpful when deciding where and when putting an order and to choose what
kind of order is the best: if 1 put a limit order, will my order be executed before there is a price

change, or is it better to cross the spread 7
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Conclusion

Throughout Section 3, we saw the difficulties we can encounter when working with high frequency
data, in particular iceberg orders data which is already a hard problem. In spite of that, we were
able to obtain the distribution of displayed on total volume ratio, where we saw that there is still

an important human impact when choosing it.

In Section 5, we have introduced order flow imbalance, a variable that cumulates the sizes of

order book events, and studied its impact on the mid-price price changes. Moreover, we have
provided empirical evidence for a linear relation between price changes and order flow imbalance
for individual stocks. We saw that using only the quotes to compute the OFI explains the price
changes with an average R%-score of 85% for bins intervals of 10 seconds. The impact coefficients
which are the coeflicients of the linear regression are inversely proportional to the depth of the

order book, with an impact five time bigger in the morning than at the end of the day.

In the last section, we have seen a general application of different Machine Learning methods where
we predict the skew of the order book, which is defined as the proportion of the first level of the
bid and of the ask. We have seen in particular how important can be the choice of targets and
the feature selection on our results. We also saw the importance of the choice of the number of
regressions a day for each stock, seeing that one regression a day gave the best results, but multiple

regressions a day could give better ones with more data available.

In general, we have seen how difficult it can be to use financial data and that we should not expect
all the time to get results. Moreover, we have seen that there is no need to use complex Machine
Learning methods to get results and that in particular linear regression (including OLS, Ridge and

Lasso) can be very helpful for finding the relationship between complex financial features.
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