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Abstract

This thesis focuses on applying Natural Language Processing (NLP) techniques to
classify chat messages exchanged amongst professionals working in financial institu-
tions. As messages are constantly being exchanged amongst organisations and their
stakeholders, analysing these messages will give organisations a better understand-

ing of current topics that are generating interest.

The message classifier used for the purposes of this research uses the Bidirectional
Encoder Representations from Transformers (BERT) model to encode the mes-
sages. A classification head consisting of a bi-directional Long Short-Term Memory
(LSTM) model and multiple Feedforward Neural Networks (FNN) is built on top
of BERT to classify the data. The various aspects which form part of the model
are described in detail. Techniques to improve model performance and speed up
training are presented. The model is tested on a dataset comprising of instances
obtained using two text sources. Results showed that the classifier performed well.
Moreover, the classifier is compared to a simpler model which uses Support Vector
Machines (SVM). Finally, context is added to the messages in the dataset to try

and improve the results.
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Introduction

The amount of unstructured data is rapidly increasing as a result of technological
advancement. Approximately 90% of new data generated daily is unstructured and
“unstructured data is growing at 55-65 percent each year” (Marr [26]). Text data
is one of the most abundant forms of unstructured data. To extract meaningful
information from text data as well as to keep up with the pace at which new data is
being generated, computer algorithms are needed. For this reason, multiple Natural
Language Processing (NLP) techniques have been developed and applied to different

tasks.

As messages are constantly being exchanged amongst organisations and their stake-
holders, analysing these messages will give organisations a better understanding of
current topics that are generating interest. For example, in the case of financial
institutions, these being the focus of this research, analysing these messages will

assist in identifying sales trends and in influencing trading decisions.

The model used to classify these messages is split into two parts; an encoder and
a classification head. To feed the messages into a classifier, the messages need to
be converted into vectors. These vectors are known as word embeddings, and the
algorithm used to construct these word embeddings is a crucial aspect of the model.
The Bidirectional Encoder Representations from Transformers (BERT) is used to
construct the embeddings. BERT is a pre-trained model which is fine-tuned to
specific downstream tasks. In our case the downstream task is multi-label classifica-
tion. The embeddings are the input to a classification head. The classification head
consists of a bi-directional Long Short-Term Memory (bi-LSTM) model. Using a

bi-LSTM model allows us to consider words in the forward direction as well as in the




reverse direction, providing a better understanding of the content of the message.
The output of the bi-LSTM is fed as input to Feedforward Neural Networks (FNN)

each FNN acting as a binary classifier for a particular label.

In chapter 1 we describe the main methods used for text classification as well as
the evolution of word embeddings. In chapter 2 we concentrate on the models used.
Namely, we focus on FNNs, Recurrent Neural Networks (RNN), Transformers, and
BERT. Chapter 3 addresses model training, regularization, the dataset, and the

results obtained.




Chapter 1

Introduction to Text Classification

and Word Embeddings

In order to perform text classification, the text data will need to be embedded into a
vector space. The method used to map a text sequence to vectors is a fundamental
aspect of most NLP models. A basic model used to construct embeddings is the
bag of words (BOW) model (Eisenstein [10, Chapter 2 Linear Text Classification,
pages 13-16]). In the BOW model, we first start by specifying a vocabulary (a list
of words). Each text instance is represented as the vector = (xy,+,zy) € RY
where z; is the number of times the #** word in the vocabulary appears in the current
text sequence and V is the vocabulary size. Using this representation, the vector
2 contains information on the count of each word. However, it does not contain
any other useful information, such as grammar, sentence boundaries, etc. Another
limitation of this encoding is its high dimensionality. Whenever a BOW model
is used, the embedding’s dimension is equal to the size of the vocabulary which
can be very large. Suppose we want to perform multiclass classification consisting
of the labels Y. For each label y € Y, we compute a score ® (z,y). This score
is a compatibility function between the text representation and the label y. It is
computed using a weights matrix @, where @, ; scores the compatibility between the

i*" word in the vocabulary and the j*® label. The label 7 is chosen such that

§ = argmax ® (x,y) .
yey




An extension of the BOW model is the n-gram model. An n-gram model takes into
account multi-words as features. For example “ref curve” and “bank of england” are
examples of a bigram (2-gram) and a trigram (3-gram) respectively. In the n-gram
model, each sequence of n words is taken as one word in the BOW model. Hence,
it n =1 we get the classical BOW model. As n increases, the text representation
dimension increases and generalisation decreases as new text passages will not have
many n-grams in common with the training data. This is an example of the classi-
cal bias-variance trade-off encountered in machine learning. Moreover, the n-gram
model suffers from the same drawbacks as the BOW model; high-dimensionality and

minimal information encoded into the representation (only frequency is encoded).

To address some of the drawbacks associated with the above models (and variants
thereof), representational learning is adopted to construct word embeddings. Rep-
resentational learning involves building models which learn a representation of the
instances in the text dataset. One of the most popular models is the Word2Vec
model (Mikolov et al. [27]). There are two models associated with Word2Vec; Con-
tinuous Bag of Words (CBOW) and Skip-gram. Both models learn an embedding
for words in the vocabulary in an unsupervised way. They differ in the way they
tackle the unsupervised learning. The CBOW model uses neural networks to predict
a centre word given the 2h surrounding words. If the centre word is x,,,, the inputs to
the model are @y, , Tyt Tpers + y Tipen. 10 learn the centre word x,,, context
is being taken into account. On the other hand, in the skip-gram model the objec-
tive is to learn the words z,, ., Tm_1, Tme1,* **, Tman given the centre word .
This trains the model to predict the context from the centre word. The Word2Vec
model captures local information in its embeddings as it learns from the surround-
ing words. An embedding which captures global and local information is the Global

Vector (GloVe) embeddings (Pennington et al. [30]). Word co-occurrences in the

training data are used to encapsulate local and global statistics in the embeddings.

After using a model to construct word embeddings, these embeddings are then fed

into another model used to perform classification. An inherent feature of text data is




its sequential nature. Therefore, models which are capable of extracting meaningful
relationships between sequential data as input and labels are ideal for text classifica-
tion. RNNs provide this functionality and hence are prominent in the field of NLP.
In a RNN, the output from the previous state is fed back into the system as input
to the current state, along with additional input. In terms of text data, RNNs are
advantageous as they can condition on previous words in the sequence. Moreover,
bi-directional RNNs condition on past as well as future words. This is generally
preferred whenever the whole text sequence is known in advance. A drawback of
RNNs is that they encounter difficulties in capturing long-term dependencies. This
could affect model performance, especially when needing to condition on previous
words in a text sequence spanning multiple sentences. To alleviate this, the Gated

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) are used.

Recently, most advancements in NLP have been in the area of pre-trained language
models. A pre-trained model is a model trained using general tasks and is then
fine-tuned to a downstream task. ELMo (Peters et al. [31]) is a deep contextualized
word representation model which captures syntax, semantics, as well as polysemy in
its word embeddings. This is achieved by pre-training bi-LSTMs. Another break-
through in NLP is the Transformer (Vaswani et al. [38]). The Transformer is a model
which does not use recurrence and relies on attention mechanisms. The Transformer
consists of two main sections; an encoder and a decoder. The encoder constructs
the word embeddings and the decoder retrieves words from their embeddings. A
modified version of the Transformer’s decoder is used in the OpenAl Generative
Pre-Trained Transformer (GPT) (Radford and Narasimhan [33]). Another model
based on the Transformer is BERT (Devlin et al. [8]). BERT uses the encoder sec-
tion of the Transformer and it is a pre-trained deep bi-directional representational
model which jointly conditions on both the left and right context in all layers to

construct word embeddings.




Chapter 2

Message Classifier

2.1 Feedforward Neural Networks

The objective of most machine learning tasks is to construct a function f: R/ — RV
which maps inputs to outputs in an optimal way. Classical machine learning algo-
rithms are suitable for capturing linear and certain non-linear relationships between
inputs and outputs, however they struggle in capturing very complex relationships.
FNNSs are a class of non-linear functions which can represent most types of functional
relationships between a set of inputs and a set of outputs. FNNs are an integral
part of the word embeddings model incorporated in the message classifier used for
the purposes of this research. In this section we describe FNNs and how to train

them.

Definition 1. Let I, N,r € N. Also, let d; € N be the number of units in the
i*"_hidden layer for any i =1, ,r — 1, dy = I, d. = N, and 6;: R% — R for any

i =1, ,r be activation functions.

A function f € R! — RY is a FNN with » — 1 hidden layers if
f=0,0L, 0. .od10L;,

where L;;R%-1 — R% for any ¢ = 1,---,r is an affine function parameterised

by weight matrix Wi = [Wi,] € Rixdi-1 and bhias vector b =
o =4 gk 1,di, k=1,--d
Hdg=1,diy k=1,di

6




(b1, b)), ic.
L,=Wiz+b, <R,

The class of functions f is denoted by

J’\‘rr (I dl: dr'—l:*"\r;al:' ) -:G‘,.) .

The natural numbers r, dy, - -+, d,_; are the hyper-parameters of the FNN, the weight

T

matrices W', ..., W" and the bias vectors b, .-, b" are the parameters of the FNN,

and together with the activation functions they form the architecture of the FNN.

Graphically, the units of a FNN correspond to vertices in a graph and the weights
correspond to edges in the graph. Therefore, 1-1-’1,\_ can be interpreted as the strength
at which the output from the &** unit of the (i — 1)th layer is transmitted to the ;'

unit of the ¢ layer. Figure 2.1 depicts a FNN belonging to N3 (4,6, 6,2).

Figure 2.1: Graphical Representation of a FNN in the class N5 (4,6,6,2). The
edges corresponding to the weights ],-1,’51‘2: l-l-’l'z‘ 4» and Hx’f‘ 4 are highlighted (Pakkanen
[29, Section 1 Introduction, Figure 1, page 8|).

One of the main reasons FNNs have become increasingly popular to tackle various
machine learning problems is their ability to approximate any function conforming
to certain regularity conditions arbitrarily well. This property is called the Universal

Approzimation Property of FNNs and is articulated in Theorem 4.

Definition 2. Let f be a function defined almost everywhere with respect to a
Lebesgue measure g on a measurable subset Q C R™. f is said to be essentially
bounded on Q if |f (x)| is bounded almost everywhere on 2. This is denoted by

fer=(Q).




Definition 3. Let f be a function defined almost everywhere with respect to a
Lebesgue measure p on a measurable subset 2 C R™. f is said to be locally essen-
tially bounded on Q if for every compact set K C Q, f € L> (K). This is denoted

by f & Lig. ().

Let

loc

M:=L (]R)ﬂ{f:]R—}]R“;,(m) —0)

where A (f) denotes the closure of the set of discontinuities of f and p is the Lebesgue

measure.
Theorem 4. Universal Approzimation Property:

(i) Let o € M. Define
S, = span{ar(Wa: +b):WeR" be R}.

Then S, is dense in C (R™) iff o is not an algebraic polynomial almost every-

where (Leshno et al. [24, Section 4 Results, Theorem 1, page 863]).

(ii) Let # be a non-negative finite measure on R™ with compact support and abso-
lutely continuous with respect to the Lebesgue measure. Then S, is dense in
LP(8), 1 <p < oo, iff ¢ is not a polynomial almost everywhere (Leshno et al.

[24, Section 4 Results, Proposition 1, page 863]).

A proof of Theorem 4 is provided in Leshno et al. [24, Section 6 Proofs, pages

864-866].

2.1.1 Training FNNs

Loss Function

FNNs f — R! — R"™ map inputs to outputs. Since we are interested in using
FNNs for a specific task, we require this mapping to be optimal (keeping the hyper-
parameters and activation functions fixed whilst varying the weights and biases to
achieve an optimal mapping). The concept of optimality is task specific and is

not an inherent feature of the FNN. Optimality is characterised by a loss function




ERY xBY — R for some N € N. Given an input £ ¢ R’ and a reference value

y € RY the realised loss is defined as
L(f().y).
Fixing the hyper-parameters and acitivation functions of the FNN
feN.(I,d, . ,d_1,Nor, - ,0.),
the network is parametrised by the vector # defined by

6= (W' - Wb o b) e RTD 5 x RPX 1 RT oo x R

If (z,y) are realisations of some random vector (X.¥'), one approach would be to

find a FNN f7 such that f* minimises risk, i.e.

F* = mindE (I (f (X).Y)]}-

However, in practice, the distribution of (X,Y) is not known and we need to use
empirical methods with samples 2, ---. 2y € R and y,,---,4,, € R" for some

M € N. The optimal FNN f* is constructed with the aim of reducing empirical

risk, i.e.
1 M
fr=min{L(O)}, LU=, D 1S (@) .9, (2.1)
=1
Empirical risk over any subset B C {1,---, M} (B is called a minibatch), is referred

to as minibatch risk and is defined by

£ (0) = ;qu(fe (z.) .9, (22)

il

where f, denotes the FNN f with weights and biases given by 6.

Stochastic Gradient Descent

Since FNNs are trained by minimising empirical risk (Eq. (2.1)) we need a way of

minimising this function. One of the methods used to minimise empirical risk is




stochastic gradient descent (SGD). In SGD, minibatches By,--, By C {1,---, M}
of fixed size m << M, M = km for some & € N are uniformly sampled without

replacement, i.e.
u¥ Bi={1,.-- .M}, |B;| =m, B; are disjoint for i = 1,-- - k.

Starting from an initial parameter vector 8, the parameters are updated using the
update scheme

B =01 —1VoLls (1), i=1-- k. (2.3)

One pass through the entire training data using the update scheme given in Eq. (2.3)
constitutes an epoch. In SGD, this process is performed for a pre-defined number
of epochs, each with its own (new) minibatches and initialising @ with the last value
of the previous epoch. n is a hyper-parameter which needs to be fine-tuned and is

called the learning rate.

Adam

Adam (Algorithm 1) is another algorithm used to minimise empirical risk. The
algorithm was introduced by Kingma and Ba [22]. It updates exponential moving
averages of the gradient and the squared gradient. The moving averages correspond
to the first moment (mean) and the second raw moment (uncentred variance) of the
gradient respectively. The moving averages are initialised to vectors of all 0 and
therefore the moment estimates are biased towards (), especially during the initial
updates. The decay rates 3y, 31 are set close to 1. The moving averages m and v
are the bias-corrected estimates. Through the second raw moment v, Adam adapts
itself to the loss function I via a diagonal Fisher matrix approximation diag (v) (Zhou
et al. [44]). The step size (a -m]) /(\/tf + r—.) is a function of the bias-corrected

moving averages.

SGD vs Adam and AdamW

To analyse the algorithmic performance of SGD and Adam, we formulate them as

discretisations of stochastic differential equations (SDE). The objective function of

10




Algorithm 1: Adam. (a-mi) /[ /0] +¢| indicates element-wise operations. Adam with La regu-
larization and Adam with decouple weight decay (AdamW) . SetScheduleMultiplier is a user defined
function to account for scheduling of parameters .

Require: learning rate a > ()

Require: decay rate of gradient moving average 3y € [0,1)
Require: decay rate of squared gradient moving average 5 € [0,1)
Require: initial parameter 8y

Require: munber of epochs E

Require: minibatch size B € I such that M = kB for some k € [{
Input:

fore=1,---,E do

sample disjoint BYy,---, B C {1,---, M} such that |B; =Bfory=1,---,k
if e = 1 then
a5 =6
my =
| vi=0
else
5i=0,
- me—1
mg = mj
v = ui_l
fori=1,---k do
g; = VgLlpe (#5_,) +28;_, (gradients w.r.t parameters)
m; =G -m{_; +(1—-5)-9; (update biased first moment estimate)
v = -vi_ | +(1—fF2)- (gf (E)gf) (update biased second moment estimate)
mi =ms/ (1 — 5;—&«— 1) (bias-corrected first moment estimate)
Uk =1-_|Ef.f(1 — _-'3;_“"'_” (bias-corrected second moment estimate)
b SetSchedule Multiplier (i + k(e — 1}) (scaling factor)
9:’- = 9:‘_1 —nt ({f.t -ﬁlf};"(,/’ﬁf + e) + )\\9"'_1] (update parameters)

the neural network can be formulated as

M

min f* () = % pFAC)

i=1

where f; (8) is the loss of the i*" sample, i.e.

[:0)=1(fp (=:).9.)

Consider the minibatches By, -+, By C {1, -, M} of fixed size m << M, M = km

for some k € N. Gradient noise is defined hy

u; = Vof (8;) — VoLsg, (6;)

11




where VgLp, (8;) = ﬁ ijeBl Vafi(x;;8;) (this is equivalent to the definition given

in Eq. (2.2)). Substituting gradient noise into SGD’s update rule, we get

1 «
0,=0,,— T}E Z Vo fi(0:;) =01 —nVaf (8:1) + nu.. (24)
" x;EB;
Definition 5. A random variable X is said to follow an SaS (¢)-distribution iff the

characteristic function of X, ¢x is given by
ox (w) = exp (— |ow|™).

There is no closed-form formula for the density of a random variable following the
SwS (o)-distribution, except for special cases, and the density decays with a power
law tail like 1/|z|*"" where a € (0,2). «a is called the tail index and determines the
behaviour of the distribution since as o gets smaller the distribution has a heavier

tail. ¢ > 0 is the scale parameter and controls the spread of X around 0.

In Simsekli et al. [6] the gradient noise is modelled as an Sa.S (E)-distributed ran-
dom variable where B is an iteration-independent covariance matrix. On the other
hand, Zhou et al. [44] model gradient noise as an Sa.S (£;)-distributed random vari-
able where 33; is an iteration-dependent covariance matrix. This is the approach we

will use to compare the optimisation algorithms.

Definition 6. Let (L%),_ be a stochastic process. (L*), . is said to be a Lévy

Motion if

(i) Ly =0
(ii) For {5 < -+ < ty the increments (JZ;‘I - L?.-_l) are independent for i =
1,---,N

(iii) For s < ¢, (Ly — L) and L§ , have the same distribution: SaS ((! — s)l'f“)
(iv) (L$);oy is continuous in probability.

Let (L;), =y be a Lévy Motion such that L; is a random vector where each of its
components follow an S5 (1) distribution. The Lévy-driven SDE for SGD is given

by

12




dﬂ;‘ = —ng* (81) di + FEI'dLI'

where ¢ .= =/ A derivation of this is provided in Appendix A.2.1.

Similarly, we derive the Lévy-driven SDE for Adam. Define
m; = Sm;_;+ (1 — 51) Vaf (8:)
with m{; = 0. The Lévy-driven SDE for Adam is given by

d; = —u,Q; 'midi + eQ;'S;dL;, dm! = 5y (Vef* (8;) —m]) di,

d‘v,- = 52 [VG,C’B‘. (31) (O] VQ'C’BI- (61) — Ui] di.

where ¢ = plo=V/2 Q. = diag (v/wv; + €), u; = 1/(1 — e %), and w; = 1 /(1 — ')
are two constants which correct the bias in m! and v;, and @ is the component-wise
Hadamard product. A detailed explanation of this SDE is provided in Appendix

A2.2

Suppose the process (8,) starts at a local basin € with minimum @*. Since

icN
it starts at (), 6, € ). Let 9% denote the boundary of ) and Q¢ = {y €
Q| distance (09,y) > €'} denote the inner part of £2. The escaping time I' of the
process (8,), .y is defined as I' == inf{i > 0| 8; ¢ 27"} where the constant y > 0 sat-
isfies lim, ,p €7 = 0. Also, define the escaping set W = {y | @,-'Eg-y ¢ Q27" } where
Xy = limy, - E; for both SGD and Adam, Q4. = I for SGD, and Qg+ = limy,. o~ Q;

for Adam.

Definition 7. Let X be a Hausdorff topological space and m () be a measure on

X. m is said to be a Radon measure if
(i) m is inner regular, i.e. m (V) = supycy m (U)
(ii) i is outer regular, i.e. m (V) = infycym (U)
(iii) m is locally finite, i.e. every point of X has a neighbourhood I with finite

13




m(U).

If in addition to conditions (i)-(iii) m obeys the condition m (U) < m (V) if U C V,

m 1s said to be a non-zero Radon measure.

Under certain assumptions on the objective function (Zhou et al. [44, Section 4
Analysis for Escaping Local Minima, Assumption 1, page 5]) and assumptions on
gradients of Adam (Zhou et al. [44, Section 4 Analysis for Escaping Local Minima,
Assumption 2, page 5]), Zhou et al. [44, Section 4 Analysis for Escaping Local
Minima, Theorem 1, page 6] show that when e is small, for both SGD and Adam,

the upper and lower bounds of their expected escaping time I' are of the order of

y (W) (2.5)

where O (e7!) = %e”‘ and m (W) is a non-zero Radon measure on the escaping set
(this value differs for SGD and Adam as they have different escaping sets). This
result provides us with an indication of the performance of SGD and Adam. If the
escaping time is large, the algorithm cannot easily escape the basin 2 and would
get stuck in it. Moreover, given the same basin , if an algorithm has a smaller

escaping time than another, the algorithm with the smaller escaping time is more

locally unstable and would escape the basin faster.

A minimum #° is said to be flat if its basin has large non-zero Radon measure.
SGD and Adam both have large escaping times at flat minima. Therefore, they
would escape sharp minima because of their smaller escaping time and converge to
flat ones. For a basin 2, its Radon measure is proportional to its volume, however
m (W) is inversely proportional to the volume of 2. Therefore, SGD and Adam are
more stable at the minima with a larger basin in terms of volume. Intuitively, this
can be interpreted that the volume of the basin determines the required jump size
of the Lévy motion (L;),.y in the SDEs to escape. Therefore, the larger the basin,

the harder it is for the algorithm to escape.

Another difference between SGD and Adam is their generalisation performance.

Keskar et al. [20] posit that minima at the flat or asymmetric basins often have
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better generalisation performance on the test set. Since Eq. (2.5) provides clarity
on the escape time of SGD and Adam from sharp minima to flat ones with larger
Radon measure, we conclude that the faster the escaping time of the algorithm, the
better its generalisation performance. Compared with SGD, the minima found by
Adam often suffer from worse test performance (Keskar and Socher [21], Wilson et
al. [40]). This generalisation difference can be explained through the gradient noise
and geometry adaptation reflected by the factors © (e7!) and m (W) respectively in

q. (2.5). Since Adam considers exponential gradie jise 2L ST 3y, whilst
Eq. (2.5). Since Adam considers exponential gradient noise i_:‘ i
=1

SGD assumes gradient noise to be u;, in Adam we smooth the gradient noise and
therefore SGD leads to heavier tails of gradient noise. Thus, SGD has smaller tail
index o for certain optimisation iterations which helps escaping behaviour. It fol-
lows that SGD is more locally unstable and converges to flat minima which are
generally located at the flat or asymmetric basins and therefore benefits from better
generalisation performance. An analysis of how the Radon measure of the escaping
set helps in explaining the better generalisation performance of SGD is found in

Zhou et al. [44, Section 4 Analysis for Escaping Local Minima, pages 6-8].

Loshchilov and Hutter [25] also investigate the generalisation discrepancies between
SGD and Adam. To alleviate the generalisation issue, they propose Adam with
decoupled weight decay (AdamW), an alternative version of Adam (Algorithm 1
blue section). SGD with weight decay is equivalent to SGD with L2 regulariza-
tion (Loshchilov and Hutter [25, Section 2 Decoupling The Weight Decay From The
Gradient-Based Update, Proposition 1, page 2]). However, this is not the case for
Adam (Proposition 2 Loshchilov and Hutter [25, Section 2 Decoupling The Weight
Decay From The Gradient-Based Update, Proposition 2, page 3|). In the case of
Adam, using L2 regularization results in weights with large gradient magnitude be-
ing regularized by a smaller amount when compared with other weights. On the
other hand, decoupled weight decay regularizes all weights with the same rate .
This results in the regularization of weights with a large gradient (in terms of mag-
nitude) being regularized more than with L2 regularization. Since Loshchilov and
Hutter [25] show empirically that AdamW has better generalisation performance

than Adam, the message classifier used for the purposes of this research is trained
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with AdamW.

Backpropagation

To update the parameters, the gradient of minibatch empirical risk £z needs to be
computed numerically. A possible approach could be to approximate the gradient
using finite differences, ie.

Kl 0) ~ Lp(0+10e) — Ly (8- L1Ae)
00, B A

where e; is the all 0 vector with 1 in the i*"

position and A = 0,

If £p is highly non-linear, this approximation yields poor results. Since FNNs
are non-linear (the ‘degree’ of non-linearity generally increases as the number of
hidden layers increase) finite difference methods are not well suited to approximate
the gradient of minibatch empirical risk. Instead we use backpropagation, a special

case of backward-mode algorithmic differentiation. Since

VoLs (0) = ﬁzw (Fo (@) .11)
icB
we only need to compute the gradient of the loss function I for specific samples. The-
orem 8 (Pakkanen [29]) formulates backpropagation and provides the formulae to
calculate Vgl for the specific case where all activation functions are the component-
wise application of a one-dimensional function. Backpropagation can also be ex-

tended to cover activation functions which are not component-wise such as softmax

which is defined by

e ek

softmaz:R* — [0, 1]k= softmax (z, -+, %) =
Theorem 8. Let fg € N, (I,dy, -+ .d,_,,N;a,, - ,0,) and x € R'. Suppose a;

is the component-wise application of a one-dimensional function g;:R — R and o

is the component-wise derivative of @;, i.e. o; = (g:,-+,0:),06% = (gl, ., gl) for
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i=1,---,r. Define

2t = (2 zi)=L'(a"")=Wa ' +b, i=1 v
a' = (a ay ) =0 (2") i=1 v
a' =2z

We also define the adjoint §' = ((ﬁ; e 5&{) € R% by

.ol ,
5_;1 — ("_JZIJ .}71:”':(11'
J
Joranyi=1,---,r. Then
§' =0,(2")© Vjl(a',y) (2.6)
§=o (z)o W) & i=1...r-1 2.7)
ol _
— =4, i=1,,r, j=1,,d; 2.8
A (28)
Il .
¢ =0tay i=1,,r j=1,.d;, k=1 di, (2.9)

AN j
oW,
where @ is the component-wise Hadamard product of vectors.

The proof of this result is provided in Appendix A.1.

In practice, to apply Theorem 8, I (fs(x) y) is first evaluated in a forward pass

through the network
z=a"—=2' sa' = 52 sad =y =1(f (x).y).

The intermediate values a',---,a” and 2!, -- -, 2" are stored. Then backpropagation
is performed using either symbolic or algorithmic differentiation of ¢, -, g, and

Vil (a". ).
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2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a collection of neural networks which in-
corporate memory into the models, thus making them more appropriate to handle
sequential data. FNNs have proven to be very good models at handling a lot of
tasks, however, their performance drops when dealing with sequential data. This
is because they cannot feed the output back into the system (there is no concept
of memory). For example, if trying to predict the next word in a sentence, being
able to remember a substantial amount of the preceding words should produce a
better output than if just the previous word is known. This is because more of
the context is being considered when making the prediction. Another advantage
of RNNs over FNNs when working with sequential data is that RNNs can work
with data of variable length, this being a fundamental characteristic of sequential
datasets (an example being that not all sentences have the same length). This is
achieved through the concept of parameter sharing (described below). RNNs form
the building block for LSTMs, a model featuring in the classification head of the
message classifier used for this research. A detailed explanation of RNNs is provided
in Goodfellow et al. [11, Chapter 10 Sequence Modelling: Recurrent and Recursive

Nets, pages 367-415].

Consider a function f:R! — RY which maps inputs of dimension I to outputs

of dimension N and is parametrised by the vector #. Consider the dynamic system
h=f (ht_l;ﬂ) .
This is a recurrent system and can be unfolded as follows
R =f(f(h20):0).

The unfolding can take place until the initial state is reached. Through unfolding,
we demonstrate a fundamental principle of RNNs; parameter sharing. The parame-
ter @ is passed down through the system. This allows the system to handle inputs of

variable length. This is essential for handling sequential data since, once the model
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is deployed, unseen sequence lengths will be common.

In most RNNs, besides passing forward the value of the previous state, a new input
is also inserted into the system. To account for this, we change the definition of f to
F:RY xR! - RY. Let A’ 2! be the output and input at sequence step ¢ respectively.
Fort = 1,

Rl — f (haflia:i;ﬂ)

and hY is the initial state.

For each step £ =1, -, T the following update equations are applied

a=b+Wh'!4+Uz

k' = 0o (a')
o' =ec+Vh
yz =0, (OL)

where ,,0, are activation functions, b, ¢ are bias vectors, and W, U,V are weight
matrices. The weight matrices and bias vectors are shared amongst the unfolded
layers in the neural network. Running through all the elements of a sequence con-
stitutes a forward propagation. A common architecture of a RNN is depicted in

Figure 2.2.

) G{) GP &)

.
.

Figure 2.2: Common structure of RNN. The right-hand side is the unrolled version
of the left-hand side.

-,
-
S
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2.2.1 Training RNNs

Training RNNs is similar to training FNNs. They both use gradient-hased tech-
niques. However, instead of backpropagation, RNNs use the more general technique
of backpropagation through time (BPTT) (Chen [5]). Suppose we need to minimise

the loss function .
c=yr
t=1
where £ is the loss associated with the label y* (loss of element ¢ in the sequence).
Let §' denote the predicted label at time ¢ (§° = 2 (0')). To calculate the partial
derivative of £ with respect to the matrix W, we first need the partial derivative of

the loss at time ¢ with respect to W. At time step t — ¢ + 1, applying the chain

rule, we get
oL+t oLt oyt o't
oW T oyttt Rt oW

. . . . 1 .
Since W is shared across all recursive units, b has a direct dependence on W and

an implicit dependence through k', Applying BPTT, it follows that

Oh' ! N Op'! . IR on'
oW oW Oht oW’

Repeating the same process for Oh' /AW, substituting, and noting that

OR" on' On' On"" on'
oR' gRtt oW ghd oW

for j =1, -,¢t—1, we obtain

ILY QLT oy ORT S 0L oyt Ot oR®
OW oyt onTT OW = oy’ on' T ont oW

Then

ALFL gyttt OR' T AL gyttt OR' T OR*
()W ZZ gt on't oW ZZ T ORTT oRt oW

L(Jkl =0 k=1
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Similarly, applying BPT'T,

oL oL o oLt on <t ont
()U ah£+l (}U — f)h‘“ ()h}' (}U

Summing up the derivative at all time steps we get

OL == 0L OR On*

W~ = = 9n"T onF U
Also,
. T 5 pt st - T Hpp st P T 45 pt st apt
DL §~OLUY DL §SOLUOS DL S 0L 05 On'
WV oy oV de oy ae’ b = oy on' b

The parameters of the RNN are updated using a parameter update scheme such as

AdamW.

2.2.2 Vanishing and Exploding Gradient Problem

The main idea underpinning RNNs is the need to model long-term dependencies in
sequential data. In the optimisation process, this causes a major issue; gradients
propagated over many stages tend to either vanish or explode (the former being more
common than the latter). To demonstrate this problem, consider the simple RNN
h' = WTR"! which lacks a non-linear activation function and input 2. The RNN
simplifies to h' = (W"‘)T h". If W admits the eigendecomposition W = QAQ" where
Q is an orthogonal matrix, the recurrence relation simplifies to h* = Q"A'QR°. The
eigenvalues are raised to the power of ¢, and therefore if the eigenvalue has magnitude
less than 1 it decays to 0, otherwise it explodes. Any element of h° that is not aligned

with the largest (in terms of absolute value) eigenvalue is discarded.

2.2.3 Bi-directional RNN

The RNNs described so far condition on the previous values in the sequence. If the
future values in the sequence are known in advance (such as text classification), they
provide useful additional information which should be exploited by the model. Irsoy

and Cardie [19] present a bi-directional deep RNN. At each position in the sequence
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t, the network maintains two hidden layers, one for the left-to-right direction and
another for the right-to-left direction. Handling two hidden states comes with the
drawback of consuming double the memory required to store the weight matrices
and bias vectors than a regular RNN would. The final output is a concatenation of

both RNN hidden layers. This is given by the following equations

Ezzdl (Wht__{—l—l_f:r&—l—?)
W=, (wﬁmzam)
3,;1:02 (W [?,E] —I—c)

%
where {h_z, hl} is the concatenation of the two vectors.

2.2.4 Long Short-Term Memory Model

As shown in Bengio et al. [3], empirically RNNs have difficulty in capturing long-
term dependencies in sequential data. A reason why this occurs is because of the
vanishing gradient problem. A solution to this was proposed by Hochreiter and
Schmidhuber [17] where they introduced the LSTM model. Since LSTMs are better
than RNNs at capturing long-term dependencies, the message classifier adopted in

this research incorporates an LSTM as part of the classification head.

The RNNs described above consist of an unfolded neural network layer, where by
neural network layer we mean the composition of an activation function with an
affine function. LSTMs are composed of four neural network layers, each perform-
ing a specific function. An LSTM layer is provided in Figure 2.3 (Olah [28]). The
red nodes represent element-wise operations, the green nodes represent a neural net-
work layer with activation function ¢* (sigmoid function) or tanh, and the arrow
from input ' merging with the line of A symbolises that these are the two inputs
to the neural network layers. In an LSTM network, the LSTM layers will be con-

nected to form a chain like structure. The sigmoid and tanh activation functions
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Figure 2.3: LSTM layer.

are defined as

1 1
U*ZR”'—)RR; o (-'1:1:"':-'1:7;) = (1+F’1'1=---=1+F’I“)

e:{l —_ e—i'l e:l'n —_ e—:l'n
tanh: R" — R", tanh (z,-- , z,) = T

e.l.l + e—.l.'l el’)i + e-i’}i
The cell state (C) runs straight through the entire network, where information
flows along it mostly unchanged. Gates are a way of optionally letting additional
information into the cell state. The gates are composed of a neural network layer
with a sigmoid activation function. The sigmoid function outputs values in the range
[0,1], where the number signifies how much information to let through. A value of

(0 translates to no new information into the cell state and a value of 1 means lef all

information through.

Forget Gate

The forget gate (Figure 2.4) is used to determine which information of the cell state

to forget and therefore which information to keep. This decision is made by a neural
.  n i e -1

network laver which takes as input the previous state’s value b~ and the current

input &', As previously mentioned, the sigmoid function outputs values from 0 to 1

(inclusive of both) and a value of 0 means to forget completely and a 1 represents

to remember fully. The forget function f* is governed by the equation in Figure 2.4.
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Figure 2.4: Forget Gate.

Input Gate and New Memory Generation

=1

The new memory € is generated using the new input ' and past hidden state h*~".
However, the new memory generation stage does not check the relevance of the new
input to the overall objective before generating the new memory. This is performed
by the input gate. The input gate uses the input z* and the past hidden state h!
to determine whether the new memory Cm7L is worth preserving. i’ contains values in

qth

the range [0, 1] where a 0 in the j jh

position means discard the j** part of the new
memory and a value of 1 means to completely preserve it. The function definitions

- At . . x .
of C' and i' are provided in Figure 2.5

i =¢" (WA +U'z' +b')

¢’ = tanh (W{ﬁh?_l +U + bp)

l&f—l

Figure 2.5: Input Gate and New Memory Generation.
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Output Gate

The purpose of the output gate is to separate the final memory from the hidden state.

This is important because the final memory €" contains a lot more information than

is necessary to be saved in the hidden state h". This determines which part of the

memory should propagate into the hidden state. The signal which encodes which

parts are relevant is o'. Point-wise tanh is then performed with the memory. The

architecture and relevant equations are provided in Figure 2.6.

D.f = g* (wrjhlf—l +U”I" +b”)

k' =o' x tanh (C’)

®
el

ht—l

2.3 Transformer

The Transformer is a model

Figure 2.6: Output Gate.

architecture introduced in Vaswani et al. [38]. The

Transformer relies fully on an attention mechanism as opposed to recurrence to for-

mulate dependencies betweer

structure. The encoder maps

1 input and output. Tt consists of an encoder-decoder

an input sequence of symbol representations (xq, - -+, z,)

to a sequence of continuous representations z = (z1,+ -+, z,). z is then fed into the

decoder which generates an

output sequence (Y, -, ym) of symbols, one element

at a time. At each step, the model consumes the already generated symbols as

additional input when gener

classifier uses the encoder st

ating the next output in the sequence. The message

ructure to construct the text embeddings. The archi-

tecture of the model is depicted in Figure 2.7. We now describe each component of
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Figure 2.7: Transformer architecture. The encoder is on the left half and the decoder
is on the right half (Vaswani et al. [38, Section 3 Model Architecture, page 3]).

the Transformer in detail.

2.3.1 Residual Connection

Inside each layer of the encoder and decoder, a residual connection is used around
each sub-layer. Residual connections were introduced by He et al. [15] in their formu-
lation of a deep residual learning framework. The motivation behind this framework
is addressing the degradation problem; as network depth increases, the accuracy gets
saturated and then degrades rapidly. This problem was not caused by overfitting,
and adding more layers increased to higher training errors as was reported in He et
al. [15] and He and Sun [14]. This problem should not occur. If we consider a shallow
architecture and its deeper counterpart that adds more layers onto it, the deeper
model should produce a training error which is not higher than the shallower one
since by adding layers to the shallow network which consist of identity mappings,

we can construct the deeper network.

To overcome this problem, the layers are constructed to fit a residual mapping.
Formally, using the notation of He et al. [15], the stacked layers fit the residual

mapping F (z) = F* (£) — 2 where F" () is the desired underlying mapping. Then
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F7 (z) is recast into F'(2) +z. This is depicted in Figure 2.8,

weight layer

X
identity

Figure 2.8: Residual mapping building block architecture (He et al. [15, Section 1
Introduction, page T71]).

As previously mentioned, a deeper network can be constructed from a shallower
network by adding identity layers on top of the shallower network. Since the degra-
dation problem persists, the solvers might be encountering difficulties when trying
to approximate identity mappings. By working with the residual, if the identity
mappings are optimal, the solvers can drive the weights of the additional layers to
zero. In this way we will still be constructing an identity mapping. This is the

motivation behind using residual connections.

2.3.2 Normalisation

Internal Covariate Shift

A learning system is said to experience covariate shift when the input distribution
to the system changes (Shimodaira [34]). In Ioffe and Szegedy [18], covariate shift
is extended to cover not only the whole system but the internal sub-layers of the
system. In the case of neural networks, internal covariate shift extends covariate

shift to include the sub-layers of the network. Consider the network

f=Fy(F(z,01).0))

where F, Fy are arbitrary transformations and parameters 8,605 are to be learned
by minimising a loss function . Learning the parameters &, can be treated as if the

inputs to the system Fy (-, 8:) are 2 = Fy (2,604), i.e.

f=F:(z.0,).
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Using this representation, a gradient update step is equivalent to that of a stand-
alone network with input z. Therefore, properties of the input distribution that
make training a network more efficient also apply to the internal sub-layers of the
network. In particular, it is advantageous to keep z’s distribution fixed so 8, would

not need to readjust to distributional changes in z.

Layer Normalisation

Normalisation is used to improve the training speed and generalisation capability
of a neural network. Layer normalisation is described in Ba et al. [1]. Consider the
" hidden layer of a FNN and let a'~! € R%-1 be the output of the (I — l)th layer.
Define

¢ =Wa'=(q, - q) R

=1 will cause highly correlated changes in ¢'. To try and remedy the

Changes in a
internal covariance shift problem, the mean and variance of @' can be fixed for each

layer . Define

dy

dy
p=dt Z ¢ and o' = |d" Z (qf — p:!)z.
i=1

i=1

Then we define
i
P

T ._ 9 ]
¢ = g(ﬁ': — ')
where g; is a gain parameter scaling the normalized activation before the non-linear

activation function. The output of the I** layer is given by
a =o' (qf + b!)

where gl R4 — R ig the activation function, b € R% is the bias and ¢! =

I

(qii;---:q[de) € R%. In practice, given any vector g', the output of layer nor-

malisation is given by
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where v, 5 € R are learnable parameters, ¢ € R is a hyper-parameter, and the mul-

tiplication and addition in the definition of LN, g are performed component-wise.

Layer normalisation is invariant to scaling and shifting of the entire weight ma-
trix W and the input data. These properties of layer normalisation are articulated

in Theorems 9 and 10.

Theorem 9. Suppose 9£1 = (Wil bi) 0, = (WE-,_ bi) are two model parameters such
that the weight matrices WE1 and ]/Vi2 differ by the secaling foctor & and the weights
in sz are shifted by a constant vector ¥ € R%-1, i.e. Wi = JWEI + 1447 where
1, € R is the all 1-column vector and 4" denotes the transpose of y. Let al denote

the output using parameter @; fori = 1,2. Then al, = a!.

A proof of this result is provided in Appendix A .3.

-1 _i—-1

Theorem 10. Suppose at*,ab™" are two data instances such that ab™' = da'™* +

Y14, , where v,0 € R. Let ai denote the output corresponding to input ai_l Jor

i=1,2. Thenal =a).

Proof. The proof is very similar to the one provided for Theorem 9. |

2.3.3 Encoder

The encoder (left half of Figure 2.7) comprises of N stacked identical layers. Each
layer consists of two sub-layers. The first sub-layer is a multi-head self-attention

mechanism and the second sub-layer consists of a fully connected FNN.

2.3.4 Attention

An attention function is a mapping from a query and a set of key-value pairs to an
output. The output is a weighted sum of the values and the weight assigned to each
value is the result of a compatibility function of the query with the corresponding

key. The query, key-value pairs and output are all vectors.

Scaled Dot-Product Attention

The scaled dot-product attention model is depicted in Figure 2.9a. The inputs are

the query and key vectors of dimension d,. and the value vector of dimension d,,. The
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(a) Scaled Dot-Product Attention. (b) Multi-Head Attention.

Figure 2.9: Attention Mechanism (Vaswani et al. [38, Section 3 Model Architecture,
page 4]).

dot-product of the query with all the keys is computed. They are then normalized
by dividing by /dy and the softmaz function is applied to obtain the weights on
the values. An optional mask is included before the softmaz function is applied.
In practice, the attention function on a set of queries is computed simultaneonsly
where the queries are contained in the matrix @. The keys and values are also
packed together into the matrices K and V respectively. The matrix of outputs is

computed using the following formula

1

Attention (Q,K,V) = softmax (

QKT) V.
Attention is used to help the model better understand dependencies in the text. For
example, given the input sentence

“BoE discussed quantitative easing. They also mentioned interest rates.”,
attention allows the model to associate “They” with “BoE”. As each word is pro-
cessed by the model, attention looks at other words in the input text to determine

a better encoding for this word.

Multi-Head Attention

To capture information from different representation subspaces at different positions,
the queries, keys, and values are linearly projected h times with different, learned

linear projections to dy., di, and d, dimensions respectively. On each of these pro-
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jected queries, keys, and values scaled dot-product attention is performed in parallel.
This results in d,-dimensional output values. These are concatenated and once again
projected to yield the final attention scores. The structure of multi-head attention is
depicted in Figure 2.9b. Let d, 4.1 € N denote the output dimension of all sub-layers

in the model as well as embeddings. Then
Multihead (Q, K, V) = Concat (heady, - - - , heady) w°

where

head; = Attention (QWIQ: K Wf‘VW:’)

W9 WE ¢ Rinoderxde WV g Rebmodetxdv g WO € Rhdv*dmoder
t ! T ] i y O .

A more detailed explanation of multi-head attention (similar to the one presented

in Doshi [9]) is provided in Appendix C.

2.3.5 DPosition-wise FINN

Each layer of the encoder and decoder contains a fully connected FNN. The FNN
is applied to each position separately and identically. One of the most widespread
activation functions is the Rectified Linear Unit (ReLU) activation function defined
as

ReLU:R — RT U{0}, ReLU (z)=max(0,2)=2x"

where R™ denotes the positive real numbers. The FNN consists of one hidden layer

and ReLU activation function in between, i.e.
f € No(doder: Ay dioaer; ReLU, Identity), f(z) = W2 max ([J, W'z + b') +b?

where d; is the dimensionality of the inner layer.

2.3.6 Positional Encoding

Since the Transformer does not use recurrence or convolution, to make use of the or-

der of the sequence, information about the relative or absolute position of the words
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must be injected into the model. This is achieved by adding positional encodings
to the input embeddings before we start the encoding and the decoding process. So
that the positional encodings can be added to the embedding, they are of dimension

dimoder- The two main types of positional encodings are learned and fixed.

A common type of fixed positional encodings consists of using sine and cosine func-
tions of different frequencies

. pos pos
PE| .0, = sin (7) , PE0i1) = cos (7)
(wos2) = S 1 000028/ dmouet ) (pos241) = CO8 160002/ dmoder

where pos is the position and i is the dimension. Each dimension of the positional
encoding corresponds to a sinusoid and the wavelengths form a geometric progres-
sion from 27 to 10000 - 2xr. This encoding should allow the model to account for
relative positions because for any fixed offset k, PE,, . can be formulated as a

linear function of PE,,,.

In learned positional embeddings, the embedding is the output of an embedding

layer. The parameters of the embedding layer are optimised during model training.

2.3.7 Decoder

The decoder consists of N identical stacked layers. Each layer consists of a masked

multi-head attention layer, a multi-head attention layer, and a FNN.

2.4 BERT

When learning something new, we generally apply our pre-existing knowledge to
help in better understanding the new material. This is the general idea behind
pre-training. In pre-training a model is trained using a general method (not task
specific) and is then fine-tuned to the downstream task. In terms of parameters, this
translates to parameters being learnt to fit generalised tasks and then fine-tuned to
fit the specific task. Language pre-training has emerged as an effective technique

for improving many NLP tasks (Dai and Le [7] and Peters et al. [31]).
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Figure 2.10: BERT pre-training and fine-tuning procedures (Devlin et al. [8, Section
3 Bert, Figure 1, page 3]).

BERT (Devlin et al. [8], Figure 2.10) is a pre-trained bi-directional encoder. Bi-
directionality means that both the left-to-right context as well as the right-to-
left context of sentences are taken into account when training the encoder. Bi-
directionality is achieved through the pre-training methods used. BERT's architec-
ture mainly comprises of the Transformer’s encoder structure. We denote the num-
ber of stacked layers by L, the hidden size by H, and the number of self-attention
heads by A. The message classifier used for this research constructs the encodings

using BERT.

2.4.1 Input Representations

Throughout this section, a sentence refers to an arbitrary sequence of contiguous
text and not a linguistic sentence. Given a sentence, tokenization is the process of
breaking up the sentence into pieces called tokens. For example, the sentence “BoE
discussed quantitative easing. They also mentioned interest rates” can be tokenized

into the following tokens

discussed also

‘ BoE quantitative ‘ easing ‘ they mentioned ‘ interest ‘ rates
For BERT to be able to handle most downstream tasks such as classification and
language translation, the input sequence must unambiguously cater for both single

sentences and pairs of sentences. In our case, sequence refers to the input token
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Figure 2.11: BERT input embeddings are the sum of the token embeddings, the
segmentation embeddings, and the positional embeddings (Devlin et al. [8, Section
3 Bert, Figure 2, page 5]).

sequence to BERT.

The first token of every sequence is the special classification token [CLS]. The final
hidden representation of the [CLS] token is used as the input vector for classifica-
tion. Wordpiece embeddings are used to perform tokenization on the input sentence
(Wu et al. [41]). Given a corpus of tokens, a greedy algorithm is used to break up
the text into the longest-match-first tokens. The characters “##" are added to the
beginning of the tokens for words which are split, besides for the first token. For
example, if “playing” is split into the tokens “play” and “ing”, the tokens will be
represented as “play” and “##ing”. The algorithm is provided in Appendix B (Al-
gorithm 2). Sentence pairs are separated using the special token [SEP/. A learned
segmentation embedding is added to every token to indicate whether it is the first
(sentence A) or second (sentence B) sentence. The input embeddings are the sum of
the token embeddings, the segmentation embeddings, and the position embeddings
(Figure 2.11). The input embedding is denoted by F, the final hidden vector for
the [CLS] token is denoted by C € R and the final hidden vector for the i'" input

token is denoted by T; € R¥.

2.4.2 Pre-training BERT

BERT is pre-trained using two unsupervised tasks: Masked Language Model (MLM)
and Next Sentence Prediction (NSP).
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Masked Language Model

To train a deep bi-directional representation, a percentage of the input tokens are
masked at random which are then predicted by the model. This procedure is often
referred to as a Cloze task (Taylor [37]). The final hidden vectors of the mask tokens
are passed through a softmaz function over the vocabulary (corpus of tokens). A
drawback of this approach is that there is a mismatch between pre-training and
fine-tuning as the [Mask/ token does not appear in fine-tuning. To remedy this, not
all masked words are replaced by the [Mask/ token. 15% of the token positions in
the input sequence are chosen at random. If the i'" token is chosen. it is replaced
with the [Mask/ token 80% of the time, a random token 10% of the time, and the
unchanged token 10% of the time. T is used to predict the original token using
the cross-entropy loss function. Consider S length token sequences. Let IF"[TIZJ;]
denote a learned distribution over token sequences of length S. A probabilistic
model P [T;|T-;,T-,] is implicitly defined by conditioning on the tokens before and

after the i*" token. The cross-entropy objective function (Braverman et al. [4]) is

il 1 1 1
;log (I’FD[T,-|T<,,T>,])] TSl {log (P [les])]

where P is the true distribution of the tokens and Ep

defined by

T

2 Ty.g~P

.e~p denotes the expectation
under the true probability measure. Empirically, if log (IF"; [T,-|T<,-:T>:-]) is the
log-likelihood of the i*" token conditioned on the preceding and following tokens

according to our model,
18
CE((Ts,-+.T9) = —5 ;log (IPG [T,-|T<I-:T>I-]) .

Given M token sequences of length S| the cross-entropy loss function minimised by

the model is
M S8

£O) = —%Z log (B [TI/T2,, T2,])
1

j=1 i=

where T” denotes tokens from the j** sample.
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The original token is kept 10% of the time to bias the representation towards the
actual observed word. The main advantage of MLM is that the Transformer en-
coder will not know which words it needs to predict. This forces the Transformer
encoder to keep a distributional contextual representation of every token. Since ran-
dom replacement occurs 1.5% of the time, it does not damage the model’s language

understanding capabilities.

Next Sentence Prediction

Language modelling does not capture the relationship among sentences, which is
essential to a significant number of NLP downstream tasks. To train the model to
understand sentence relationships, the model is pre-trained using the next sentence
prediction binary task. When choosing the two sentences A and B for the input
representation, 50% of the time B is the sentence following sentence A (labelled as
IsNext) whilst the other 50% of the time sentence B is a random sentence from the
corpus (labelled as NotNext). The final hidden vector C is used as input into a

binary classifier. The binary classifier predicts the label for sentence B.

2.4.3 Fine-tuning BERT

To fine-tune BERT, an additional model (such as linear layer or LSTM) is added
on top of BERT which is specifically designed for the downstream task. This ad-
ditional model is used to generate the desired output. The task-specific inputs and
outputs are plugged into the model and the parameters are fine-tuned end-to-end.
Sentences A and B from pre-training are analogous to question-answer pairs in ques-
tion answering, sentence pairs in paraphrasing, etc. For classification tasks, A is the
sentence to be classified whilst sentence B is the empty string (). The token repre-
sentations are the input to the additional downstream specific model built on top

of BERT.
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Chapter 3

Implementation Details and

Results

The objective of the model is to classify messages exchanged between organisations
and stakeholders within the context of an organisation operating within the finan-
cial sector. The messages are exchanged via Bloomberg Terminals in relation to
various industry related topics, such as government policies, trade ideas, and pric-
ing models. By classifying the messages, the organisation will benefit from a better

understanding of current topics that are generating interest amongst stakeholders.

3.1 Message Classification Model

The message classifier used for this study consists of two main parts; embeddings
and classification. The embeddings were constructed using BERT. The BERT model
used was pre-trained on a large text corpus using MLM and NSP as described in
section 2.4.2. It consists of 12 stacked layers (L = 12), 12 attention heads per layer
(h = 12), a hidden size of H = 768, and intermediate size d; = 3072. The tokens
were constructed using the WordPiece model along with a specific vocabulary text
file containing a list of possible tokens. The embeddings constructed by BERT were
then passed into a bi-LSTM model. The final embedding of the [CLS] token (after
passing through the bi-LSTM) was passed as input to FNNs (a separate FNN for

each label) which produced the final classification. Each FNN performed a binary

classification task; whether the message falls into the current label or not. Each
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FNN belongs to the following class
Ny (H, H, 2; tanh, Identity)

where Tdentity:R? — R? is the identity function defined by Identity (x1,7;) =
(21, 22). The part of the model comprising of the bi-LSTM and FNNs is referred to

as the classification head.

Training the model consisted of two steps. In the initial part of training, the classi-
fication head is pre-trained. Pre-training involved normal model training, however
the parameters of the classification head are updated whilst the BERT parameters
are not. The next part of training focused on fine-tuning the entire model (updating
all the parameters). This was split into three stages where at each stage we start
fine-tuning from the best model of the previous stage, i.e. fine-tuning stage i starts
with model parameters initialised to the ones corresponding to the best model in
stage i — 1 for i = 1,2, 3 where i = 0 corresponds to the pre-training of the classi-
fication head. The techniques used during pre-training and training are detailed in

the following sections.

3.2 Optimisation and Learning Rate

Let 4 = (§1,--.§py) € RYI** be the output of the model where g, is the logit

produced by the 7"

classifier and |Y| denotes the amount of labels. Since each
FNN in the classification head acts as a binary classifier with labels i** label and
None,§; € R? is the unnormalised output of the FNN. The loss attributed to the

i*" class is defined by

) ) o,
L@ ye) = —Wilog | 5————
th

where §, ; is the j'* element of §; for j = 1,2, and W; € R is a weight, and y; € {0,1}.
In addition, an Ll-regularization term was incorporated to regularize the non-hias

parameters of the FNNs in the classification head. The total loss over a minibatch
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B is the cross-entropy loss with regularization and is calculated using the formula

[
1
L @) = Arey Ul = 757 D > Wlog

i€l k=1

e‘yl"k-ﬁ'l"A

_— (3.1)
e¥ik1  e¥ike

where y; € {0,1}P is the label vector of the i*" sample in the minibatch B, W € R
is a weight vector, and an index of {i, 4, k} indicates the k' value in the vector
corresponding to the j** class in the i*® sample. U is a matrix where each row is a

flattened weight matrix parameter in the classification head, .., is a regularization

parameter, and ||+||» denotes the Frobenius norm of a matrix defined as

T T
Z Z |n'i'j|2’ A= {n'f‘j}I'=1‘---‘m,j=l‘---‘n, e R"™,

i=1 j=1

1Al =

In our case W = 1y and A, = 107"

The learning rate hyper-parameter is vital in controlling the learning of the sys-
tem including generalisation and optimisation. In fact, Bengio et al. [2] describe

it as the “single most important hyper-parameter”. Therefore, it is vital that this

parameter is chosen as optimally as possible.

When pre-training the classification head, the AdamW optimiser is used with ¢ =
107, 3, = 0.9, B = 0.999, and A = 0.02 for non-bias parameters, otherwise A = (.
In this section, the AdamW hyper-parameter « is denoted by n_;. 5 epochs are
used along with minibatches of size 32. The learning rate is defined as a function of
the current update step. The initial learning rate is n_, = @ - 107%. The learning
rate is then updated according to the cosine schedule given by Eq. (3.2). Let O be
the total number of optimisation steps and f, € [0,1] be a percentage of warm up
steps. Let W = O . f, denote the number of warm up steps. The learning rate is

updated according to the following schedule

3 o -
-1 max Y ll t < 1'1‘
e = i (3.2)

n_ymar (l]; % (1 —+ cos (%))) . otherwise
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where f,, € [0, 1] is a hyper-parameter controlling the number of cycles in the cosine

schedule, and C:R — R is defined by

arccos (2z — 1).

1

C(x) =
(z) = 5
Intuitively, the learning rate is increased linearly from 0 to ny = n_; over the op-
timisation steps 0 to W and then decreased following a cosine function from ny- to
no. In our case we set f, = 0.05 and f,, = 0.2. Adding gradual warm up to the
learning rate schedule is presented in Goyal et al. [12] and certain benefits of decay-

ing the learning rate (optimisation steps after step 117) are discussed in You et al. [42].

A similar approach to pre-training the classification head was adopted for the fine-
tuning process. As previously mentioned, fine-tuning was performed in three stages
of 20, 15, and 15 epochs respectively. The batch size was set to 8 and an AdamW
optimiser with ¢ = 107, 3; = 0.9, and 8, = 0.999 was used (for all stages) to
minimise the loss function. A major difference to the pre-training of the classifica-
tion head is that different parts of the model have their own specific learning rates.
This is an optimisation technique described in Singh et al. [35]. Let fq be a hyper-
parameter controlling the learning rate decay and 5’ be a common learning rate

sth

hyper-parameter. The learning rate for the i** encoder layer was set to

— L—i
n—l‘r:nr.'udzr - 7;‘_1 d

fori=1,...,12. The learning rate is shown in Figure 3.1.

LR per Encoder Layer vs. Number of Optimisation Steps (Stage 1)

Layer 1
Layer 2
Layer 3
Layer 4 /i
Layer 5 /)
Layer 6 ¢
Layer 7
34 Layer &
Layer §
Layer 10
Layer 11
14 Layer 12

n

o 500 1000 1500 2000 2500 2000
Steps(t)

Figure 3.1: Learning rate of each encoder layer as a function of the number of
optimisation steps.
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The learning rate for the parameters in the embedding layers was set to

T —Lembedding = TII_I [f-'_l

and the learning rate for all other parameters was set to 5. The learning rates were
updated according to the cosine schedule (Eq. (3.2)). We set f,, = [0.2,0.02,0.2],
0y = [7-107%,25-107°,2.5-107°], f, = [0.3,0.05,0.01], f; = [0.95,0.95, 0.95]

th

where the i'" item in the list corresponds to the i** stage. Bias vectors and layer

normalisation hyper-parameters had A = (), whilst all other parameters had A = 0.02.

3.3 Dropout and Zoneout

Deep neural networks are capable of learning many complex relationships between
their inputs and outputs. However, with limited training data available, many of
these relationships form as a result of sampling noise present in the training data.
Therefore, they will not be present in the testing data even if the testing data is
sampled from the same distribution as the training data. This results in overfitting, a
recurring problem in machine learning tasks. Many techniques have been developed
to reduce overfitting. One way of handling overfitting is to stop training when
performance on the validation set starts to decrease. A popular technique which is
known to improve machine learning tasks is combining various models. In the case
of neural networks, this process is very expensive and not always feasible. Dropout is
a technique developed by Srivastava et al. [36] which prevents overfitting of neural
networks. It also provides a way of approximately merging exponentially many
different neural network architectures. Dropout consists of dropping units (hidden
and input) in a neural network. By dropping a unit, we mean temporarily removing
the unit from the network along with any incoming and outgoing connections, as
shown in Figure 3.2. The choice of which units to drop is performed at random by
a dropout layer. A common approach is retaining a unit with probability paropout.
The dropout layer corresponding to the I layer of a FNN with an element-wise

activation function is described by the following equations

ro= (‘ri, s 'rfif) . i’i ~ Bernoulli (p) LA

j=1,.,
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where r! is a vector of independent and identically distributed Bernoulli random

. . . Ll 5 s s . s {+1 .
variables, 2/*! is the input to the (I + 1)"-layer’s activation function, W' is the

?:th sth

row of the weight matrix, bﬁ“ is the i'"-entry of the bias vector, y' is the output

of the I'* layer and o is an activation function.

Figure 3.2: Graphical Representation of dropout (Srivastava et al. [36, Section 1
Introduction, Figure 1, page 1930]). Left: Standard neural network with 2 hidden
layers. Right: Resulting neural network after applying dropout to the network on
the left. Crossed units have been dropped.

A technique used to prevent overfitting in RNNs and which is similar to dropout is
zoneout (Krueger et al. [23]). In zoneout, noise is injected into the model during
training, however, instead of dropping out layers, units are zoned out and set to
their previous value (R = R'™'). The objective of zoneout is to improve the RNN’s
robustness to perturbations in the hidden state with the effect of regularizing the
dynamics. Zoneout also helps in combating the vanishing gradient problem and is
more appealing than dropout since it preserves information flow forwards and back-

wards.

In this research, dropout layers were placed throughout the model. A dropout layer
was placed before the encoder. In each encoder layer, a dropout layer was placed
after the softmar function is applied in the scaled dot-product attention heads, af-
ter concatenating all the attention heads, and at the output of the encoder layer.
During pre-training of the classification heads, the dropout probabilities were set to
0.1. In the fine-tuning phase of training, the dropout probabilities were set to (0.15.

Another dropout layer with p = 0.6 (for pre-training and fine-tuning) was placed
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RelU and GELU Functions
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Figure 3.3: ReLU and GELU functions.

between the two layers of each FNN in the classification head.

3.4 Gaussian Error Linear Unit

The purpose of the activation function is to add non-linearity into the network. This
non-linearity is kept separate from the stochastic regularizers such as dropout, even
though they both determine the output of the layer. The Gaussian Error Linear
Unity (GELU) (Hendrycks and Gimpel [16]) combines a non-linearity activation
function with stochastic regularization. GELU is formulated by combining the ReL.U
activation function with properties of dropout and zoneout. The GELU function
multiplies the input by zero or one, where the values of the zero-one mask are
stochastically determined whilst being jointly dependent on the input. The input
x is multiplied by m ~ Bernoulli(® (x)), where ® (z) = P[X < 2|, X ~ N (0,1)
is the cumulative distribution function (CDF) of the standard normal distribution.
Under this function, inputs have a higher probability of being dropped as x decreases
(Figure 3.3). Therefore, the GELU function is stochastic as well as dependent on
the input. Since the CDF of a Gaussian random variable is often computed with

the error function erf (2) = % Iy e~t*dt, GELU is defined as follows

GELU (z) = 2P[X < 1] = 2® (x) = % [1 +erf (%H .

To benefit from the advantages outlined above, each ReLU activation function in

the model is replaced by the GELU activation function.
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3.5 Dataset and Results

The dataset consisted of 1550 text passages. The text data was accumulated from
two sources; Bloomberg Terminal chat messages and research reports. The text
passages were classified into 13 labels (Table 3.1). These labels were chosen as they
provide useful information on the current market and client landscape. An inherent
characteristic of the dataset is that the number of positive labels per class (Table
3.1) is low relative to the number of samples. Another feature of the dataset is that
a text passage can be associated with multiple labels. For example, the message
“Bank of England maintains interest rate” is classified as a Central Bank, Policy
Rates, and Monetary Policy message. Another characteristic of the dataset is that
certain labels tend to aggregate together, for example Monetary Policy and Policy
Rates are more likely to be associated with the same text passage than Policy Rates
and Trade Recommendation. Labelling the dataset was performed in an iterative
process consisting of two steps. The first step involved manually tagging the text
passages. The next step involved building a simple model to tag new data and
check the newly tagged data. The model built used BOW embeddings as inputs to
13 support vector machines (SVM) (described in Appendix D), one for each label.
Each SVM acted as a binary classifier for a particular label. Once the model was run
on new data, the tagging was checked and the new data samples were added to the
existing dataset. This process was repeated until a sufficient number of samples was
tagged. Using a model to tag the data provided insight into whether a functional
relationship between the text passages and labels could be found. Although the
model is relatively simple, this provided valuable insight into the dataset through
the keywords identified by the model for each category. For example, the model
rated “ech” for Central Bank (“ech” is an acronym for European Central Bank)
and “qe” for Monetary Policy (“qe” is an acronym for quantitative easing) as strong
words in these respective categories. Other categories such as Request For Quote
(RFQ)) messages, were always tagged as not falling into any category since a require-

ment of the model was to also identify messages that were not of interest to us.

To test the model, the dataset was randomly split into a training set and a val-
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idation set. Due to the class imbalance of each label (many more negatives than
positives per label), the random split was subject to the constraint that each label
had more positives in the training set and there were positives in the validation set.
The training dataset had 1200 training instances and 350 validation instances. The

number of positive instances per label are provided in Table 3.1.

Label # Train Pos. # Valid. Pos. # Pred. TPs
Central Bank 142 o8 54
Interest & FX Rates 123 35 18
Policy Rates 51 20 15
Inflation 40 15 14
Monetary Policy 114 50 42
Fiscal Policy 22 11 7
Central Bank Meeting 46 10 6
Economic Forecast 50 12 8
Bonds 60 23 18
Trade Recommendation 57 21 8
Emerging Markets 88 20 11
Curve 72 29 27
Bond Yields 20 7 6

Table 3.1: Number of Positive Instances Per Class in the Training and Validation
Sets.

To evaluate model performance, four different values were computed on the valida-
tion set. The mean validation accuracy was computed by averaging the accuracies
on the validation set of the binary classifiers. Although this gave a good indication
of model improvement and convergence, it can be misleading due to the imbalances
in each label. Suppose 1 indicates a positive prediction and ) a negative one. If a
label has 95% of the values in the validation set as () and the rest as 1, predicting all
0 will result in a validation accuracy of 95%. Two metries which are more indicative
of model performance are the Micro and Macro F1 Scores (Zhang and Zhou [43]).
Let TP;, FP;, F'N; denote the number of true positives, false positives, and false

negatives of the i'" binary classifier respectively for i = 1,---,|)Y|. The Micro and
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Figure 3.4: Evaluation Metrics. The green shading reflects the training stage.

Macro F1 Scores are computed using the formulae

e S S TR+ Y0, PN, SOV FF, e 1 & TR PN, T PR,

Since the Micro and Macro F1 scores are computed using the true positives, false
negatives, and false positives per label, they do not suffer from the problem described
for the mean validation accuracy. The final metric used to evaluate the model is

validation loss calculated using Eq. (3.1) with A, = 0 and a batch size of 64.

The results (Figure 3.4) show that the model did improve and converge. The mean
validation accuracy (Figure 3.4a) starts off high at 0.931 and reaches a maximum of
0.979. The main reason for such a high initial value is that most of the predictions
were negative, resulting in the problem described above for the mean validation

accuracy metric. This is also reflected in the graph showing the average number
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of TPs and FNs (Figure 3.4d). Initially, the average amount of FNs is relatively
high and decreases whilst the average amount of TPs increases. The averages are
quite low relative to the number of validation instances because of the positive label
imbalance across labels. Although the graph of mean validation accuracy (Figure
3.4a) illustrates the learning of the model, this is better captured in the graph of the
F1 scores (Figure 3.4b) since there is a larger improvement in the scores. Both F1
Scores are contained within the range [0, 1] and the higher the score the better the
model. As they are computed using the TPs, FPs, and FNs the scores give a clear
picture of model performance. To calculate the Micro F1 Score, we aggregate the

contributions of all labels to compute the final score. On the other hand, to compute

2TP

the Macro F1 Score, the ratio 75=r—55

is computed independently for each label
and then averaged. Therefore, when computing the Micro F1 Score all labels are
treated equally whilst in the Macro F1 Score the labels with the least positives are
given a higher weighting. In terms of scores produced, the Micro F1 score assumes
no label is more important than another and therefore the score focuses on the num-
ber of correct predictions. On the other hand, the Macro F1 Score is insensitive to
class imbalances and therefore gives a higher weighting to the class with the least
positives. In multi-label problems with an imbalance of positive labels across classes,
the Micro F1 Score is generally the preferred metric. On the validation set, both the
Micro and Macro F1 scores improved drastically. They both converged to values of
around (.8 with the Micro F1 score constantly above the Macro F1 score as from the
second epoch. The same information can be extrapolated from the cross-entropy loss
graph (Figure 3.4c). The model picked up on the acronyms hoe and ge for central
bank and monetary policy respectively as they featured frequently in the training
data. Analysing the results produced, the labels with the worst performance are
the ones with the most varied language. Not all emerging market countries were in
the training set and trade recommendation jargon changed across messages making
them more difficult to tag. This resulted in these categories performing slightly
worse compared to other categories. Another limitation of the model was picking
up on currency pairs and unseen currencies. This could be resolved in two ways;
either adding more data to the training set or fine-tuning the embeddings using the

current dataset to the MLM task. To fine-tune the embeddings using the MLM
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task we would mask tokens based on a probability distribution with the tokens con-
cerning currencies having a higher probability of being masked. This would have
improved the encodings of specific finance-related keywords. The new fine-tuned pa-

rameters would be used as the initial parameters in the message classification model.

The simple model used to tag the data was also run on the final dataset. The simple
model performed well in the Central Bank category correctly predicting 46 positives
out of 58 whilst the BERT model correctly predicted 54 positives. The SVM clas-
sifier identified keywords such as “ech” and “central”. Due to the limitation in the
BOW encodings and the simplicity of SVM classifiers, the model performed best in
categories with easily identifiable and recurring keywords (such as Central Bank).
For example, for the Bonds label, the simple model correctly predicted 8 out of 23
positives, half the amount correctly predicted by the BERT model. This outlines
one of the major advantages of BERT over the BOW encodings. Bond was one of
the keywords given a high weighting by the simple classifier. If this keyword were
used in a message such as “can I see your prices on bond”, since context is not con-
sidered by the simple model this message is tagged as a Bonds message although it
is an RF (). This problem is alleviated by using the BERT encodings. This limitation
of the simple model was reflected in other labels. Out of 10 positives in the Ceniral
Bank Meeting label, the simple model predicted 3 correct positives and the BERT
model correctly predicted 7 positives. The most prominent keywords identified by
the simple model were fome (acronym for Federal Open Market Committee) and
meet. These should be helpful when classifying messages such as “the minutes and
summary of the bank of england monetary policy committee’s march meeting” as
it contains the word “meeting”. On the other hand, the simple model has trouble
generalising and understanding the content of the message correctly when the key-
words are not present. However, the BERT model correctly predicted Central Bank
Meeting messages such as “the central bank of Egypt cbe kept its policy rates on
hold at its mpec this afternoon”. The BERT model predicts this message correctly
by associating the phrase “central bank of Egypt” with the Central Bank part of
the Central Bank Meeting label and identifies the Meeting aspect of the message

from “mpe this afternoon” (“mpe” is an acronym for Monetary Policy Committee).
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To try and improve model performance, context was added to the messages. For each
tagged message, the previous and following messages were added to the instance and
the tagged message was enclosed in a special token, i.e. if B is the tagged message, A
is the previous message, and C is the following message, the new data instance is A
[ST] B [ST] C. The messages A or C' can be empty strings (for example, if B is the
last message in the conversation, €' will be empty). The model with context per-
formed slightly worse than the model without context. The highest mean validation
accuracy and Micro F1 Score the model with context managed to achieve were (0.971
and 0.764 respectively. A reason for this dip in performance could be that since the
topic of conversation changes quickly when exchanging messages, the previous and
following messages could not be related to the message of interest (message B). In
this case, messages A or C are filling the dataset with noise. For example, suppose
message B is “Bostic says he upgraded his 2021 inflation forecast” whilst message

Ais “Good morning” and message C' is an empty string. The new instance is
“Good morning [ST] Bostic says he upgraded his 2021 inflation forecast [ST] ().

However, message A provides no context to assist in tagging message B. Moreover,
suppose Al [ST] B [ST] C1 and A2 [ST] Al [ST] C2 are two instances in the
dataset. If the labels associated with the first message are different to the second,
the model is fed message A7 with two different labels. This could cause contradic-

tions for the model. For example, consider the following two instances

“focus remained on the gbp [ST] policymakers caution in dialling back fiscal stim-
ulus (ST} ¢

and

“0 [ST] focus remained on the ghp [ST] policymakers caution in dialling back fiscal
stimulus”.

The first instance is tagged as Fiscal Policy whilst the second instance is tagged as
Interest €& FX Rates. Since “focus remained on gbp” and “polciymakers caution in
dialling back fiscal stimulus” are in both instances and they have different labels,
the classifier might get confused as to the correct tags. This contradiction occurred

in 267 instances.
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Conclusion

In this thesis we focused on classifying financial messages. Classifying messages
posed multiple challenges such as encoding the text data, tagging the data, and
handling the class imbalances. The model used to embed the data was BERT. A
classification head consisting of a bi-LSTM and a FNN for each label was added
on top of BERT. The model was trained by minimising cross-entropy loss and the

weights were updated using AdamW.

Multiple techniques were used to prevent overfitting and improve model convergence
and performance. For example, the classification head was pre-trained, fine-tuning
consisted of multiple stages, the learning rate followed a cosine schedule, and dif-
ferent layers had different learning rates. Results showed that the model performed
very well, with the model achieving a mean validation accuracy of 0.979 and a micro
F1 Score of above (.8. This showed that the class imbalance was handled well by
the model. Convergence is visible in the figures presented. When context was added

to the instances, the model performed slightly worse.

Further research could focus on improving the BERT encodings. This could be
done by fine-tuning BERT to the MLM task using the current dataset as described
in Section 3.5. Another area of further research could concentrate on incorporating
the Sig-Transformer Encoder into the classifier as described in Biyong et al. [32].
In addition, identifying important Attention heads and pruning unnecessary ones
(Voita et al. [39]) is an area which could also be studied further in the context of

this message classifier.




Appendix A

Technical Proofs and Derivations

A.1 FNN Backpropagation
Proof of the backpropagaion of FNNs (Theorem 8).

Proof. ([29, Section 3 Training feedforward neural networks, pages 39-40]) Since

I=1(a".y)=1(o,(2"),y) we apply to chain rule to obtain

()l ()n[ N ol
= =g (2] ay), j=1--- N Al
=R er d r =9 (%) %, Y. j=1, (A.1)

since
oar, ol (2), k=
0z] 0, iy

Equation (2.6) is equation (A.1) in vector form.

To obtain (2.7), we first apply the chain rule to d:

dieq disq

L al ol 0zt 02 ,_
a;*d—%*gwd—z}*;% D2 J=1,d. (A.2)
Since,
Zn g () + it (A.3)

u=1




it follows that
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which is (2.7) in vector/matrix form.

Replacing i + 1 with i in (A.3), we get

05 _ L k=0 95 a, k=i
by 0, k4] aw;, 0, oy

Applying the chain rule we get

o; d. .
RN S R N N S
a5 = 2o on ~ O g = Lgawt, 0

A.2 SDEs of Optimisation Algorithms

To analyse the SDEs, we first need the following result.
Theorem 11. Let X ~ SaS (al) fora > 0. Then X = aSaS (I) in distribution.

Proof. Let X = (X{, -, Xy) ~ aSaS(al). Since the covariance matrix is af,
X; are independent and X; ~ SaS(a) for i = 1,...,N. Using the independence

properties of the characteristic function,

N

ox (w) = H Ox; H exp (— |aw;|®).

=1

Similarly, let ¥ = (Y1,.-+,Yn) ~ aSaS (I). The Y; are independent and Y; ~

aSaS (1) fori=1,---,N. Applying the scaling and independence properties of the




characteristic function we get
N N

N
oy (w) = H by, (w;) = H Oz (aw;) = H exp (— |aw,|") = ¢x (w),

=1 =1

where Z ~ SaS (1). Since the characteristic functions are equal, X =Y = aSaS (I)

in distribution. O

A.2.1 Lévy-driven SDE for SGD

The Lévy-driven SDE for SGD is given by
d8; = —Nof" (8:) di + €X,dL;.

Consider the grid points ¢y < ¢; < -+ < ty for some N € N such that ¢; = in for
i=0, - N. Now
(i+1)n
[ Vs @)= —avf 6.)
T

iy
and

(i+1)n
/ EEI'(ILI' ~ EE:’!; (L{I'—l}!; — Lir;) .

1

By definition of Lévy motion,
D . PR, N 1/e
(Lii+1yy — Liy) = SaS (((r + 1) —in) I) = Sas (p''°I).

Discretising the SDE by applying the Euler scheme and applying Theorem 11, we
get

e{x—l}q - eiq = _?}vﬂf" (eiq) + ”LfﬂﬁziqLiq-

Since ¢ = n@=1/a and the gradient noise is SaS (5;)-distributed, by relabelling in

with ¢ and (i + 1) with i + 1 we get the SGD update given by Eq. (2.4).

A.2.2 Lévy-driven SDE for Adam

By relabelling the indices, the Adam update scheme can be formulated as

0,1 — 6, —r;rh,-/(\/f)_,-—Fe)




where n > 0 is the learning rate,
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By definitions of m; and m!, we get
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Assume ﬁ (m. —m;) ~ SaS (I) with covariance matrix ;. Since
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where
2il1 = (1 —,{J’i_l) ( Vi + 6) \
it follows that the Lévy-driven SDE for Adam is given by

d8; = —1.Q; 'midi + eQ;'S,dL;, dm! = 5, (Vef* (8;) —m.) di,
dvi = 52 [Vaﬁgl. (91) (O] Vsﬁgl. (61) — ‘UI'] di.

where e = p@=1/° Q, = diag (\/wiv; + €), u; = 1/(1 — e7"), and w; = 1/(1 — e #")

are two constants which correct the bias in m! and v;.

A.3 Layer Normalisation

Since no proof of Theorem 9 was provided in Ba et al. [1], one is provided below.

qth

Proof. Let aj‘l and 7, denote the 7' entry in a' ! and 7 respectively. Also, let 'U"fc”




denote the (7, j)"h entry of the matrix Wi for k =1,2. We have that,
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Appendix B

WordPiece Tokenization

Algorithm

Algorithm 2: WordPiece Tokenizer. A message 1s represented as a list of tokens and each token is
represented as a list of characters. Empty lists are denoted by [01].

Require: Vocabulary File: vocab. taxl
Input: Message [M],_
outputTokens = (0]
for Token T i [M],_, . o do
N = Length (T)
characlers = [T}]j._l_____‘,\.
if N = 1000 then
| Append “{UNK]" to outputTokens
start = 0
isBuad = Fulse
subTokens = [0]
while start < N do
end = N
currentSubstring = [i1]
while start < end do
substring = Tirart, s Tend—1
if start > 0 then
|_ substring = “F##" +substring
if substring € vocab.tzl then

current Substring = substring
break

8

end = end — 1

if currentSubsiring = [] then
isBad = True
break

Append current Subsiring to subTokens
start = end

if isBad = True then
|_ Append “[UNK]" to outputTokens
else
L Place subTokens at the end of outputTokens

Output: outputTokens




Appendix C

Computing Multi-Head Attention

The first step in computing the multi-head attention involves constructing the query,
key, and value vectors. To speed up computations, the query, key, and value vectors
of the different heads are placed in query, key, and value matrix respectively. This is
done by multiplying the word embeddings with three matrices that are being trained
during the training process. Let W' denote the weight matrix used to obtain vector
i where ¢ is the query (@), key (K), or value (V') matrix. Consider an input sequence
with the following dimensions (N, S, E) where N is the number of samples, S is the
sequence length, and E is the embedding size (i.c. E = dyo0e). Let ‘L‘j-‘k € R denote

T

sample fori =1,... N,

1

the k" value of the embedding of the j** token in the i*!

j=1,---,5 and k=1,---, E. The embeddings are depicted in Figure C.1.
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Figure C.1: Embedding of the input data.




For simplicity, consider the i sample (Figure C.2).
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Figure C.2: ith sample of the input data.

Three separate linear layers are used to generate the query, key, and value. Each
linear layer has its own weight matrix and bias vector. In each linear layer, the same
bias vector is added to every column of the matrix resulting from the multiplication
of the weight matrix and the input matrix. The input matrix is passed through

these linear layers to obtain @, K, V' (Figure C.3).
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Figure C.3: Linear Layers used to generate the Query, Key, and Value matrices.

The computation of all heads can be performed using one matrix rather than re-
quiring A matrices. This improves efliciency and simplifies the model. For example,
the matrix W9 is decomposed into h matrices of dimension R¥motet*dguerysize where

— -1
dqm.‘rys:rzr: - dm,od(:l - h , Le.
Q _ Q. WY
W — (W WS

where WI-J € Rifmodet*dqueryeize for § = 1 ... h. This is depicted in Figure C.4.




Emb Query Size Query Size
—_ ‘

WQ ~
h

Figure C.4: Matrix W¢ decomposed into the i heads.

The matrices @, K,V outputted by the three linear layers are reshaped to account
for a head dimension. As a result of this reshaping, each query size slice corresponds

to a matrix per head. The reshaping of Q is depicted in Figures C.5 and C.6.

Q' for one head ‘Q for one head
Emb i '
- T —=3 ‘ 2 I
% : | T i)
. = g T = =
L 7l | (o “o
Q Query Sz Heads Qe — o

Seq

Figure C.5: Reshaping the matrix @ to include a head dimension. The matrix is
reshaped again for ease of computation.
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Figure C.6: Reshaping the matrix @ to include a head dimension. The matrix is
reshaped again for ease of computation.

Once the three matrices Q. K.V are split across the heads, the attention score for
each head is computed. Let’s consider head j. The first step is to multiply @; and
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Figure C.7: Multiplication of the query and key matrices of the j** head.
An optional mask is then added to the output of the multiplication. The mask is
used to filter out unwanted entries when the softmaz function is applied.
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Figure C.8: Mask applied to the output of the multiplication.

The matrix of attention scores is then computed and all the attention scores from

the h heads are merged together.
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Figure C.9: Computation of the attention scores.

To merge the attention heads, the matrices are reshaped multiple times. This is

depicted in Figure C.10.
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Figure C.10: Merging the scores.
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Appendix D

Support Vector Machine

A Support Vector Machine (SVM) is a binary classifier. Consider the training data

{(xi,v;) bie1.. v where z; € R and y; € {—1,1}. Define the hyperplane
{z:f(z) =28+ =0} (D.1)
where 8 € RY is a unit. vector. A classification rule is defined as
G (x) = sign(f (z)) = sign (.'.':T,B + ,5'3’(,) :

S (z) (defined in Eq. (D.1)) computes the signed distance of a point z to the
hyperplane 78 + #, = 0. If the classes are separable, there exists a function
f(x) =278 + B, such that y,f (x;) > 0 for alli = 1,-.., N. Let M be the dis-
tance between the hyperplane and the closest instance in either class, i.e. if ; and
x;. are the closest points to the hyperplane such that y; = 1 and 3 = —1, then

[f(z;)| =|f(z)| =M. 2M is called the margin (Figure D.1).

The optimisation problem an SVM solves is finding the hyperplane that creates the

largest margin. This is formulated as

max M
B8.5:|8(|=1

subject to (zITﬁ + ,Hf,) =M, i=1,--- N.
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Figure D.1: SVM classifier. The left-hand side illustrates the separable case. The
righ-hand side shows the non-separable case (Hastie et al. [13, Chapter 12 Support
Vector Machines and Flexible Discriminants, Figure 12.1, page 418]).

If we define M = |#= the optimisation problem can be formulated as

18]

min
win 8]

subject to  y; (x/B+5y) =1, i=1,--+ N.

So far we have only considered the simple case when the data points are separable.
This is often not the case. A common way of handling overlapping data points is
allowing some points to slack and be on the wrong side of the margin. Define the

slack variables € := (€1, -+ -, &y) € RY. The constraint, is now modified to
yi (2] B+ 5) = M(1-¢) (D.2)

such that & > O fori =1,---, N and Zf\;lgf < K where K is a constant. The
value of £ in the constraint presented in Eq. (D.2) is the proportional amount by
which the prediction f (z;) is on the incorrect side of the margin. By bounding the
summation of the &;’s, we bound the total proportional amount by which predictions
occur in the incorrect side of the margin. A misclassification occurs when & > 1
and therefore bounding the summation by K limits the number of misclassifications

to K. The optimisation problem becomes

min
min 8]
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v (&fB+8) =1—-& i=1--- N

subject to

6§20, XN G<K

A more detailed description of SVMs is provided in Hastie et al. [13, Chapter 12

Support Vector Machines and Flexible Discriminants, pages 417-458].

63




Bibliography

1]

2]

8]

4]

0

7l

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization, 2016. Preprint
arXiv:1607.06450.

Y. Bengio. Practical Recommendations for Gradient-Based Training of Deep
Architectures. In Newral Networks: Tricks of the Trade, volume 7700, pages

437-478. Springer, 2012.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157—

166, 1994.

M. Braverman, X. Chen, S. Kakade, K. Narasimhan, C. Zhang, and Y. Zhang.
Calibration, entropy rates, and memory in language models. In 37h Interna-
tional Conference on Machine Learning, ICML 2020, 37th International Confer-
ence on Machine Learning, ICML 2020, pages 1066-1076. International Machine

Learning Society (IMLS), 2020.
G. Chen. A Gentle Tutorial of Recurrent Neural Network with Error Back-
propagation, 2016. Preprint arXiv:1610.02583.

U. Simsekli, L. Sagun. and M. Giirbiizbalaban. A Tail-Index Analysis of
Stochastic Gradient Noise in Deep Neural Networks. In In Proc. Int’l Conf.

Machine Learning, 2019.

A. M. Dai and Q. V. Le. Semi-supervised Sequence Learning. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

64




(8]

(9]

[10]

1]

[12]

[13]

(14]

[16]

(7]

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4171-4186. Association for Computational Linguisties, 2019.

K. Doshi. Transformers Explained Visually (Part 3): Multi-head Atten-
tion, deep dive, 2017. Available at https://towardsdatascience.com/
transformers-explained-visually-part-3-multi-head-attention-

deep-dive-1c1££1024853.

J. Eisenstein. Introduction to natural language processing. The MIT Press,
2019.
I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A, Tulloch, Y. Jia, and K. He. Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour, 2017. Preprint arXiv:1706.02677.

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical

Learning: Data Mining, Inference and Prediction. Springer, 2 edition, 2009.

K. He and J. Sun. Convolutional neural networks at constrained time cost. In
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 5353-5360, 2015.

K. He, X. Zhang, 5. Ren, and J. Sun. Deep Residual Learning for Image Recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 7T70-778, 2016.

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus), 2020. Preprint

arXiv:1606.08415.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Newral Compu-

tation, 9(8):1735-1780, 1997.




(18]

19]

[20]

(21]

(22]

23]

(24]

[25]

[26]

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd
International Conference on Machine Learning - Volume 37, ICML’15, page

448-456, 2015.

O. Irsoy and C. Cardie. Bidirectional Recursive Neural Networks for Token-

Level Labeling with Structure. CoRR, abs/1312.0493, 2013.

N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang.
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp
Minima. In 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

N. S. Keskar and R. Socher. Improving Generalization Performance by Switch-

ing from Adam to SGD. CoRR, abs/1712.07628, 2017.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In
Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

D. Krueger, T. Maharaj, J. Kramar, M. Pezeshki, N. Ballas, N. R. Ke, A. Goyal,
Y. Bengio, A. C. Couwrville, and C. J. Pal. Zoneout: Regularizing RNNs by
Randomly Preserving Hidden Activations. In 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-

ference Track Proceedings, 2017.

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function.

Neural Networks, 6(6):861-867, 1993.

I. Loshchilov and F. Hutter. Decoupled Weight Decay Regularization. In 7th
International Conference on Learning Representations, ICLR 2019, New Or-

leans, LA, USA, May 6-9, 2019, 2019.

B. Marr. What Is Unstructured Data And Why I[s It So Important

To Businesses? An Easy Explanation For Anyone, 2019. Available at

66




[27]

28]

29]

30]

31]

[32]

33]

34]

https://www.forbes.com/sites/bernardmarr/2019/10/16/what-is-
unstructured-data-and-why-is-it-so-important-to-businesses-an-

easy-explanation-for-anyone/7sh=7934163715£6.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word
Representations in Vector Space. In Ist International Conference on Learn-
ing Representations, ICLR 2013, Scotisdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings, 2013,

C. Olah. Understanding LSTM Networks, 2015. Available at https://colah.
github.io/posts/2015-08-Understanding-LSTMs/.

M. Pakkanen. Deep Learning Lecture Notes, 2020.

J. Pennington, R. Socher, and C. D. Manning. GloVe: Global Vectors for
Word Representation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 15321543, Doha,

Qatar, October 2014. Association for Computational Lingunistics.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer. Deep Contextualized Word Representations. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pages 2227-2237. Association for Computational Linguistics, 2018,

J. Pougué Biyong, B. Wang, T. Lyons, and A. Nevado-Holgado. Information
Extraction from Swedish Medical Prescriptions with Sig-Transformer Encoder.

ACL Anthology, pages 41-54, 2020,

A. Radford and K. Narasimhan. Improving Language Understanding
by Generative Pre-Training, 2018.  Technical Report, OpenAl. URL:
https://s3-us-west-2.amazonaws.com/openai-assets/research-

covers/language-unsupervised/language_understanding paper.pdf.

H. Shimodaira. Improving predictive inference under covariate shift by weight-
ing the log-likelihood function. Journal of Statistical Planning and Inference,

90(2):227-244, 2000.

67




[35]

[36]

[37]

[38]

[39]

[40)

[41]

[42]

B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor. Layer-Specific Adaptive
Learning Rates for Deep Networks. 2015 IEEE 14th International Conference
on Machine Learning and Applications (ICMLA ), pages 364 — 368, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal

of Machine Learning Research, 15(56):1929-1958, 2014.

W. L. Taylor. “Cloze Procedure”: A New Tool For Measuring Readability.

Journalism Bulletin, 30(4):415-433, 1953.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin. Attention is All you Need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neuwral Information Processing Systems, volume 30. Curran

Associates, Inc., 2017.

E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing Multi-
Head Self-Attention: Specialized Heads Do the Heavy Lifting, the Rest Can
Be Pruned. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5797-5808. Association for Computational

Linguistics, 2019.

A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The Marginal
Value of Adaptive Gradient Methods in Machine Learning. In Proceedings of
the 31st International Conference on Neural Information Processing Systems,

NIPS'17, page 4151-4161. Curran Associates Inc., 2017.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey, et al. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation, 2016.

Preprint arXiv:1609.08144.

K. You, M. Long, J. Wang, and M. I. Jordan. How Does Learning Rate Decay

Help Modern Neural Networks?, 2019, Preprint arXiv:1908.01878.

68




[43] M. Zhang and Z. Zhou. A Review on Multi-Label Learning Algorithms. IEEE
Transactions on Knowledge and Data Engineering, 26(8):1819-1837, 2014.

[44] P. Zhou, J. Feng, C. Ma, C. Xiong, S. Hoi, and W. E. Towards Theoretically
Understanding Why SGD Generalizes Better Than ADAM in Deep Learning.
In 34th Conference on Neural Information Processing Systems, NeurlPS 2020,
2020.

69




Alden_Andrew 01666104

GRADEMARK REPORT

FINAL GRADE GENERAL COMMENTS

/O Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

PAGE 12

PAGE 13

PAGE 14

PAGE 15

PAGE 16

PAGE 17

PAGE 18

PAGE 19

PAGE 20




PAGE 21

PAGE 22

PAGE 23

PAGE 24

PAGE 25

PAGE 26

PAGE 27

PAGE 28

PAGE 29

PAGE 30

PAGE 31

PAGE 32

PAGE 33

PAGE 34

PAGE 35

PAGE 36

PAGE 37

PAGE 38

PAGE 39

PAGE 40

PAGE 41

PAGE 42

PAGE 43

PAGE 44

PAGE 45

PAGE 46




PAGE 47

PAGE 48

PAGE 49

PAGE 50

PAGE 51

PAGE 52

PAGE 53

PAGE 54

PAGE 55

PAGE 56

PAGE 57

PAGE 58

PAGE 59

PAGE 60

PAGE 61

PAGE 62

PAGE 63

PAGE 64

PAGE 65

PAGE 66

PAGE 67

PAGE 68

PAGE 69

PAGE 70

PAGE 71

PAGE 72




PAGE 73

PAGE 74

PAGE 75

PAGE 76

PAGE 77

PAGE 78




