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1 Introduction

This paper considers the deep learning-based approach for approximation of the solution of high-
dimension nonlinear parabolic PDEs suggested in [1] and [2]. In these papers, PDEs are reformu-
lated using backward stochastic differential equations and the gradient of the unknown solution
is approximated by neural networks, with the gradient acting as the policy function. Numerical
simulations are performed for the approximation of the solution of nonlinear Black-Scholes PDEs,
whose nonlinearity is a result of more realistic market assumptions.

Unlike classical numerical approaches such as finite difference methods, this method does not
run into difficulties involving computational cost and stability, especially in high dimensions. The
main idea behind the finite difference method is to employ a Taylor series expansion to replace the
partial derivatives in the PDE by difference quotients. The interior of the region where the PDE
is defined is replaced by a finite mesh grid of points and the partial derivatives in the PDE are
approximated at each grid point. This grid grows exponentially in the number of dimensions of
the PDE, which makes this method computationally heavy, even for d = 4. This is the so called
‘curse of dimensionality’, expression coined by Richard E. Bellman when considering problems in
dynamic programming |3].

Other methods have recently been developed to attempt to solve high-dimensional nonlinear
PDEs. One of these methods consists in using multilevel decomposition of Picard iteration [4].
I will compare the efficiency of this method with the efficiency of the neural network algorithm
used in this paper. Another method, which also uses deep neural networks is the so called "Deep
Galerkin Method (DGM)", which was developed by Sirignano and Spiliopoulos in [5] and further
developed in [6]. This method cousists in training the neural network using randomly sampled time
and space points, which makes the algorithm meshfree unlike commonly used numerical methods

such as finite difference methods.

2 Introduction to Partial Differential Equations

2.1 General Overview

A partial differential equation (PDE) is an equation involving unknown multivariable functions and
their partial derivatives. PDEs are used to mathematically formulate many phenomena from the
natural sciences (electromagnetism, Maxwell’s equations) to the social sciences (financial markets,
Black-Scholes model).

We will define the PDE for the unknown function u : R™ — K. This is the function we wish to
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solve for.

A k-th order partial differential equation is an equation of the form :
f (@, u(z), Du(x),... . DF Ly (x), Dku(:r:)) =1, z € R",

where D¥ is the collection of all partial derivatives of order k and x is the independent variable.
The order of the PDE is the order of the highest order derivative that appears in the equation. If
[ is a linear function of u and its derivatives, then the PDE is called linear, i.e. the coefficients
depend at most on the independent variable. If the coefficients of the terms involving the highest
order derivative of u depend only on the independent variable, not on u or its derivatives, the PDE
is called semilinear. If f is linear in the highest order derivative with coefficients that depend on
lower order derivatives the PDE is called quasilinear, i.e. the coefficients of the highest-order terms
K

may depend on @, w, Du, ..., D*~lu, but not on D¥u.

2.2 The Black-Scholes Partial Differential Equation

The Black-Scholes equation, perhaps the most well-known equation in quantitative finance, and the
associated Black-Scholes PDE were developed by three economists: Fischer Black, Myron Scholes
and Robert Merton. They were introduced in their paper "The Pricing of Options and Corporate
Liabilities," published in the Journal of Political Economy in 1973 [7].

They are used for the pricing of financial derivatives, such as European-style contingent claims.
A contingent claim is a financial instrument whose payoff depends on the realisation of some
uncertain future event. For European derivatives, this payoff depends on the level of an agreed-
upon underlying financial asset or a set of assets at a pre-determined maturity date. Common
underlying instruments include stocks, bonds, currencies and commodities.

The Black-Scholes model makes the following set of assumptions:

e Markets are arbitrage-free.

Markets are friction-less (i.e. no transaction costs, no taxes, etc.).

e No dividends are paid out during the life of the option.

e Any fraction of a share can be bought or sold and it is possible to hold a negative number of

shares (i.e. short-selling).
e The drift and the volatility of the underlying are known and constant.

The risk-free rate is constant.

To price an option, we assume that the price dyvnamics for the underlying asset are given by

the Black-Scholes market model. Let X = (X;);>o be the price process of the risky asset. In




the Black-Scholes model, this process follows a geometric Brownian motion (GBM) with constant
drift and volatility. Consider a given probability space (€1, F,P) supporting a Brownian motion
(Wi)i=0- Under the 'real world’ probability measure I?, the price process and the bank account

process are given by:

49X = pdt + odW,
. (2.1)
B, — rdt.

Here, the drift g represents the expected return on the asset and o is the variance of the returns
on the asset.

We want to price a claim written on the asset X. Assume that the claim’s price is given by
u(t, x), which gives the value of the claim at time t when the underlying asset is at the level X; = x.
Assume this function is sufficiently smooth. Define the payoff function by g(z), i.e. u(T,z) = g(x),
where T is the expiration date. By a dynamic hedging and no-arbitrage argument, it can be shown

that w must satisfy the Black-Scholes PDE:

du(t, ) + ra - Gpu(t,z) + 1o%2? - Oppult, ) =7 - ult, x)
w(T, z) = g(x).

(2.2)

Now that the Black-Scholes PDE is derived, it can be solved for an exact formula in the case
of a European option and for certain other simple derivatives. In other cases, one can use the
Feynman-Kac formula and Monte Carlo methods to approximate the solution, as long as the PDE

is linear.

3 Introduction to Deep Learning

Conventional programming involves precisely defining tasks for the computer to perform. By
contrast, in the field of machine learning (ML) computer algorithms learn by experience and
acquire skills without human involvement. Deep learning is a subset of ML where artificial neural
networks (ANN) learn from large amounts of data. ANN is inspired by biological neural networks
that make up the human brain. Similarly to how a human being learns from experience, a deep
learning algorithm repeatedly performs a task which is associated to a performance measure. The
goal is to improve this performance by tweaking the way the task is performed each time. The
word "deep" refers to the multiple layers of the neural network which enable learning. The recent
increased interest in deep learning is due to the increased amount of data generation in recent years,
as well as the stronger computing power available. This has allowed deep learning capabilities to
grow in recent years, leading to its success in a wide range of applications such as image recognition,

speech recognition and natural language processing.




3.1 Neural Networks 7

Learning can be supervised or unsupervised. Supervised learning refers to the case where the
training data points are input-output pairs and the task of the algorithm is to learn the mapping
from the input to the output. The goal is to then use this mapping for new examples, where the
output variables are predicted for new input data. In unsupervised learning, the algorithms are left
to their own devices to discover previously nnknown patterns and structures in the data, without
pre-existing labels. In this case, we only have input data and no corresponding output. Other
branches of ML include semi-supervised and reinforcement learning. In this paper we will focus

on supervised learning.

3.1 Neural Networks

The power of the human brain is due to the sheer complexity of the connections between neurons.
The brain exhibits huge parallelism, with each neuron connected to many other neurons. This is
reflected in the design of ANNs. It is this parallelism that leads to robust networks. In fact, due
to this high degree of parallelism and multiple computation paths, a small number of errors can
be tolerated without affecting the result of the computation.

We can describe the ANN as a directed graph with computation units situated at the vertices
and weights on the directed edges. Some of the nodes may be distinguished as input nodes, which
receive signals from the data, and some as the output nodes. The nodes have activations and
their activation influences those of their neighbours. The degree to which the activation of one
node influences those of its neighbours is determined by the weights on the edges. The process of

learning’ is the adjustment of these weights.

'

Figure 1: Graphical representation of a neuron [8].

Frank Rosenblatt set the foundations for neural networks with his paper entitled "The Percep-
tron: A Perceiving and Recognizing Automaton’ in 1957 [9]. The perceptron takes several binary
inputs @y, xs,... and produces a single binary output. The weights wy, ws, ... are real numbers
expressing the importance of the respective inputs. The output, which can take the values 0 or 1,

is determined by whether the weighted sum is less than or greater than some threshold value:

0 if 3°;wjz; < threshold

1 if >, wjz; > threshold.

output =
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To simplify the notation, we can write the weighted sum 3 S WiT; as a dot product w - x |
where w and x are the weight and input vectors respectively. We also move the threshold to the
other side of the inequality and replace it by what is known as the perceptron’s bias such that,

b = —threshold. Now the above equation can be written as:

0 fw-z+b6<0
output =
1 ifw-xz+b>0.

In supervised learning, we can write learning algorithms which choose the optimal weights and
biases, by comparing the neural network’s output with the training data output. The algorithm
will bring small changes to the weights or biases, which should lead to a small corresponding
changes in the output. But this is not the case with the perceptron, as a small change in these
parameters can sometimes cause the output to flip between 0 and 1.

small change in any weight (or bias)

canses a small change in the output

w + Aur

» ot plll-l—_\:nlt‘pllt

Figure 2: Effect of parameter change on the output [3].

This problem was overcome by introducing the sigmoid neuron. In this case the output can
take any real value between 0 and 1. In fact, the output is now o(w -z +b), where o is the sigmoid

function, defined by:
1

o(z) = Tre"

The sigmoid function acts an activation funetion and is very commonly-used.

There exists a wide variety of neural network architectures, as can be observed in figure 3.
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Figure 3: Different architectures of neural networks.

In this paper we focus on "Deep Feedforward Networks", which are the most common type
of neural network in practical applications. Here, the underlying directed graph is acyclic, which

means that there are no directed cycles.
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hidden layers

output layer

——

input layer

Figure 4: Deep feedforward network example [8].

In figure 4, we can observe the architecture of a simple feedforward network. The leftmost layer
is called the input layer and the neurons within this layer are called input neurons. The rightmost
layer is called output layer and contains the output neurons. The middle layers are called hidden
layers. This network is a four-layer network with two hidden layers. A network is called *deep’ if it
has more than one hidden layer. The number of layers in the network is referred to as the 'depth’
of the neural network and the number of neurons in a layer is referred to as the 'width’ of that
particular laver. So the depth of this particular example is 4 and the hidden layers have a width
of 4 and 3 respectively.

Each of the neurons receive and transmit information forward, along the relevant edges of the
directed graph. Each edge has a weight w;; that represents the strength of the connection between
the neurons i and j. For each non-input neuron j, there is a corresponding nonlinear activation
function ¢; and a bias b;. The information arriving to neuron j is aggregated by taking the weighted
sum according to the weights on the edges leading to this neuron. The value of this information
is given by: 3, w;;x; . The information transmitted from this neuron is: ¢; (b; + 3, wy;a;) for
i=1,2,...,d, where d is the number of neurons in the previous layer.

I will describe these calculations for a four-layer network with m;, ma, mg and m4 being the
respective widths of the layers. First, I look at the information transmitted by a neuron j on the

first hidden layer.
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Figure 5: jth neuron on the first hidden layer of a four-layer network represented in green.

In this case, the jth neuron of the first hidden layer is connected to the input vector x via a
biased weighted sum and an activation function ¢;:
my

I;” = ¢ b;” + ng;]:r,-
i=1

Now, we look at the kth neuron of the second hidden layer:

0y .
» o >
\, A
A A \
- -
- - “'
i ®
) hS b
Ehy h -
Input Layer Hidden Layer Hidden Layer CQutput Layer

Figure 6: kth neuron on the second hidden layer of a four-layer network represented in green.

In this case the information transmitted is given by:

my

g

2 . 2 2 ;

@ o (6245 0@ (6043wl ) |
i=1 i=1

Finally, let’s look at the hth neuron of the output layer:




3.2 Stochastic Gradient Descent 12

LY '
Ny L
Input Layer Hidden Layer Hidden Layer Qutput Layer

Figure 7: hth neuron on the output layer of a four-layer network represented in blue.

In this case the information transmitted is given by:

gy ma my

m=an (19 + 350 (894 33020 (594 350D,
=1 J=1 i=1

Here, ¢,10,0 : R — [ are activation functions for the respective neurons and the bracketed
superscripts refer to the layer in question. In the above figures, B1, B2 and B3 represent the bias
parameters. Only the directed edges of the first neuron in each layer is represented to keep the
figure easy to understand.

For the above example of four-layer network, the total number of possible combinations for

these parameters (i.e. the weights, biases and the activation functions) is:
my -Mma+Mma Mz +mg-my +2-ma+2-mg+ 2 1my,

where the first three terms are due to weight combinations and the last three terms are due to
bias and activation function combinations. These are the parameters that are optimised during
the 'learning’ process. We will call this parameter set 8. For this optimisation, we need to define
a loss function L(#;x,y), which will determine the performance of a given parameter set #. The

goal is to find #* which minimises our loss function.

3.2 Stochastic Gradient Descent

We briefly touched upon the subject of optimising the neural network parameters @ in the previous
section. This optimisation is a minimisation problem. To minimise the loss function L(#;x,y), we
need to resort to a numerical solution as it is impossible to find an exact analytical solution. The

most popular optimisation techniques are variants of gradient descent.
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Consider a function f: R? — R which takes a d-dimensional vector x = [#5.5.0.0.5 :L'd]T as input.
The gradient of f with respect to x is defined by the following vector:
P ‘ T
s [0 0860 ofx)
* Ary T Oxe T Omg '
where the f(x)/8z; represent the partial derivatives of f with respect to ;. fori € {1,... . d}.

To simplify our notation we write Vy f(x) as ¥V f(x).
The directional derivative of f along a given vector u at a given point x represents the rate at

which the function changes at the given point in the direction u:

o fet hu) — f(x)
Duf(x) = lim ————m———"

This can also be rewritten as:

Duf(x) = Vf(x)-u.

To minimise f, we need to find the direction in which f can be reduced fastest. Since Dy, f(x)
gives the rates of change of f at the point x in all possible directions, minimising f comes down
to minimising D, f(x) with respect to u.

We have that:

Dy f(x) = [Vl - lul| - cos(8) = [V f(x)]| - cos(8),
where @ is the angle between V f(x) and u. The cosine function cos(f) is minimised when ¢ = 7.
This means that D, f(x) is minimised when u and V f(x) are in opposite directions. This iterative

formula allows us to reduce the value of f:
x = x — 7V f(x),

where 7 is the learning rate.

When the training data is large, the classical gradient descent algorithm is computationally
too expensive. Thus, a stochastic version of the algorithm is often used in the context of neural
networks. When training neural network models, the objective function is given by the sum of n
functions:

L&
L(x) =~ ;:Li(x),

where L;(x) is a loss function corresponding to the training data instance indexed by i. Note that
for each iteration, the computational cost increases linearly with the training data set size n. This
is the reason why the computation cost is very high when the training data is large. Stochastic
gradient descent (SGD) offers a solution to this problem. At each iteration, SGD computes VL;(x)
instead of VL(x), where the i is uniformly sampled. VL;(x) is an unbiased estimator of VL(x)
since:

E:VLi(x) = % Z VLi(x) = VL(x).
"=l
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At each iteration a different mini-batch 5 is sampled from the training data. In this case, we have
1
VLs() = 1 Y VLix).
el
Then x is updated as:
x 1= x — 7V L;(x),
where |B| denotes the size of the mini-batch and - is the learning rate. As previously, VLg(x)

is an unbiased estimator for VL(x):
EBVLB(X) = VL(X).

The computational cost is O(|B|) for each iteration. Thus, when the size of the mini-batch is

small, the computational cost remains low.

3.3 Universal Approximation Theorem

Neural networks have proven themselves to perform extremely well empirically, but so far we have
not discussed the theoretical results underlying the approximation capabilities of artificial neural
networks.

First we discuss the Kolmogorov-Arnold representation theorem, one of the classical theorems
in approximation theorey. This theorem could explain the motivation of using layered feedforward

networks to approximate functions.

Theorem 3.1 (Kolmogorov-Arnold representation theorem). Any continuous real-valued function

flzrxa,. .. 2y defined on [0,1], with n > 2, can be represented in the form:

i=

2n+1 i
f(X):f[.'?’,'l..Ig,.‘.,;E”): § :qJ ¢€j[3r€) s
J=1 1
where the g; are properly chosen continuous functions of one variable and the ¢;; are continuous

monotonically inereasing functions independent of f.

This theorem can be explained by the following network architecture:

s ®

xz —-
@)
M =)=\

g/

Figure 8: Graphical representation of Kolmogorov's theorem.
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Here M maps R™ into several uni-dimensional transformations. The theorem states that one
can express a continuous multivariate function on a compact set in terms of sums and compositions
of a finite number of single variable functions.

Girosi and Poggio [10], pointed out that the ¢;; functions are highly non-smooth and the func-
tions g; are not parameterised, which means that the Kolmogorov-Arnold representation theorem
cannot be relevant to neural networks. Kurkov.f\el. [11] contradicted this statement by saying that
non-smooth functions can be approximated as sums of infinite series of smooth functions, thus
one should be able to approximately implement ¢;; and g; with parameterised networks. Later,
Lin and Unbehauen [12] showed that an "approximate" implementation of g; does not lead to an
approximate implementation of f. Even if Kolmogorov’s theorem cannot be directly applied to
proving the universality of neural networks as function approximators, it points to the feasibility
of using parallel and layered network structures for multivariate function mappings.

Later, rigorous mathematical proofs were given to show that feedforward layered neural net-
works employing continuous sigmoid tvpe, as well as other more general, activation functions can
approximate continnous functions. The universal approximation theorem states that a feed-forward
neural network with a single hidden layer, containing a finite number of neurons can approximate
continuous functions on compact subsets of R". George Cybenko [13| proved this theorem for
sigmoid activation function in 1989. In 1991, Kurt Hornik [14] proved that it is the architecture of
the neural network and not the choice of the activation function that makes neural networks into
universal approximators.

In 2017, Lu et al. proved the universal approximation theorem for width-bounded deep neural
networks. They showed that a width of less or equal to n+4 is enough to approximate any
Lebesgue-integrable function of n-dimensional input variables with ReLU activation function.

Later in 2017, Hanin showed that a width of n+1 is sufficient to approximate any continnous
convex function of n-dimensional input variables.

The universal approximation theorem can be expressed mathematically:

Theorem 3.2 (Universal Approximation Theorem). Let ¢ : R — R be a non-constant, bounded
and continiuos function and I, be the m-dimension unit hypercube. Then, given any ¢ and any
continuous, real-valued function f € C(I,,), there exists N € N and vy, b; € R and w; € R™ for
i=1,...,N, such that:

N

F(x) = E vig(wi - x + b)),

t=1

satisfies |F'(x) — f(x)| < € for all x € I,,.
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4 Algorithm

The PDEs I am interested in solving are semilinear parabolic PDEs. These can be represented by:

Owu(t,x) + 1T (oo (t, o) (Hesspu) (2, t)) + Vu(t, z) - p(t,z) + f (£, ult,2), 0T (@) Vu(t,x)) = 0
w(T, x) = g(x).

(4.1)

Here t and = represent the time and the d-dimensional space variables respectively, pt is a known
vector-valued function, o is a known d x d matrix-valued function, o7 is the transpose of o, Vu
and Hess,u denote the gradient and the Hessian of u with respect to x, Tr denotes the trace of a
matrix and f is a known nonlinear function. g(z) is the terminal condition. We are interested in
solving w at £ = 0 and 2 = £ for £ € RY,

The first step of the algorithm consists in reformulating the PDE as BSDE. The BSDE is viewed
as a stochastic control problem with the gradient of the solution being the policy function. This

policy function is then approximated by a deep neural network.

4.1 Introduction to BSDE

Define the probability space (€, F, ), let W : [0, T] x © — R? be a R%valued standard Brownian
motion, let {F;}4=0 be the normal filtration generated by W and let & € R? be a Fy-measurable

random variable. Then consider the following stochastic forward differential equation:

t t
X¢:E+A p{s,Xt‘}d3+£ (s, X, )dW,, (4.2)

where ;1: Ry x RY — R? and 0 : R, x RY — R,
For a terminal time T > 0, the solution of a backward stochastic differential equation (BSD) is

a pair of square integrable adapted processes (Y:, Z;)i<r such that:

. .
o=+ [ fsYz)as— [ (@)taw, e<. (43)
t t

Here ¢ is the terminal value, a Fp-measureable random variable. Contrary to forward SDEs,
the solution is not known at the initial time 0 but at the terminal time 7. The function f is called
the generator.

BSDESs were introduced in 1973 by J.M.Bismut [15] as equation for the adjoint process in the
stochastic version of Pontryagin maximum principle. In this case f was linear with respect to
(Y, Z). In 1990, Pardoux and Peng [16] generalised the notion and considered general BSDEs and

proved existence and uniqueness of the solution.
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Since then, BSDEs have been regularly used in mathematical finance, as any pricing problem
can be written in terms of linear BSDEs or nonlinear BSDEs when constraints are taken into

account.

4.2 The Nonlinear Feynman-Kac Formula

In this section, I introduce the link between nonlinear parabolic PDEs and BSDEs. This link has
been studied in depth in the literature (cf. [17-19] ). For this, we consider the Markovian BSDE.
This is a special case where the terminal condition and the generator depend on the solution of
a SDE. These Markovian BSDEs give a nonlinear Feynman-Kac representation of some nonlinear
parabolic PDEs. Keeping the definitions introduce in the previous section, conside the following

Forward-Backward Stochastic Differential Equation (FBSDE):

t t
X =¢ +f (s, Xs)ds +f als, Xs)dW, (4.4.a)
0 0
T- I- Pl
Y, = g(Xz) + f (8, X5, Ys, Z5)ds — f (Z)Tdw,. (4.4.b)
t t

In this system, X is called the forward component and (Y, Z) is the backward component.
This system is called a "decoupled" FBSDE, since the solution of the backward component does
not appear in the coefficients of the forward component. We want to find the {F;}icjo.r-adapted
solution process {(Xt,Yf,Zt)}te[U‘T] with values in R? x R x RY. It has been proven that under
suitable regularity assumptions on the coefficient functions p,e and f, there exists an up-to-
indistinguishabiliy unique solution (see [17] and [19]). In addition, the solution of the FBSDE will

be a solution of the associated PDE (4.1), i.e. for all £ € [0, T] it holds P-a.s. that:

YVi=ult, Xy) e R Zy = oL (t, X )Vu(t, X;) € R (4.5)

Now, we plug (4.5) into (4.1) and rewrite the equation forwardly:

u(t,Xe) =

u(0, &) — .ﬁ s, Xo u(s, X,), 07 (s, X, )Vu(s, X,))ds + j;:'[V'u.(s, X)) o(s, X )dW,. )

Now, to compute «(0,£) we can solve the BSDE and find the value of Yj.

4.3 Discretisation of the Backward Stochastic Differential Equation

To derive the algorithm to solve the FBSDE, we a apply a discretisation to (4.4) and (4.6).

For N € N, let ¢g,t1,...,tx € [0,7] be real number such that:

D=ty<thh <---<tn=T.
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Then for sufficiently large N, we consider an Euler Scheme forn=1,..., N-1:

~ Xt" &3 1"'“14 s Xt" )Atn + a(tn-. Xt.,, ]AH’“",_. (4'7)

tnga

and

11( t:1+1.~ X!"..'[} 2l

T -
'Ll( t‘n ' Xf,, ) - f(f'us Xf.,k 1 'u'(f'rl 1 th )3 OT(tFlt Xt.-. )V'u'(f'n 1 Xt.,.))Af'n * [V'ﬂ-(f-" 1 th )] U(f‘n: th )Aw/n-.

where At, = t,41 — &, and AW, = W, — W,.
The path {X;, }o<n<n can be sampled using Monte Carlo methods using (4.7). Now, to
approximate {u(t,, Xt, ) }o<n<n, we only need to approximate the function z — ot (t, X)) Vult, X})

at each time step f,,.

4.4 Neural Network Based Approximation

In this step, we use deep learning to approximate o7 (t,, z)Vu(t,.z) € R for + € B? and n €
{0,1,...,N}. Using this approximation, we can then approximate u(t,,z) € R recursively by

using (4.8). To approximate the function o7 (f, X;)Vu(t, X;), we use a multilayer feedforward

neural network:

oL (t, X, )Vult, X, ) = (6TVu)(t, X)) = (6T Vu)(t, X, | 00). (4.9)

where #,, denotes the parameters of the neural network at t = £,,.

In the examples which we will study, & satisfies that for all z € R, o(x) = Idgs. This
means that we only aim to approximate the spatial gradients Vu(t, X;). The initial "guess" of
u(0,€) = 6, and Vu(0,) = fly,, are parameters of the model, which we aim to optimise. A total

of 1 + d parameters are necessary for this approximation (1 for #,, and d for fv,, ).

uity, X, ) 1l X, ) w2, Xp) ———> ity Xy ) et ity X )
p ) I — . B P —
(Vulto, X) —  (Vwtr X)) — (Ve Xe)— . ot X 3 ——
k Y — — Y
A " W
f 1 1
t t t
h} h} i
t 1 t
St I X > oo Xewos i
— W, -w, ) W, -w, ., - W, W, - W,
I=8 =4 f=1r e =1y =1y

Figure 9: Network architecture for solving the semilinear parabolic PDE [1] .

(4.8)
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In the above figure, b}, ..., h.f represent the multilayer feedforward neural network approxi-

mating Vu(t, X;) at time t = t,,. The network learns the appropriate parameter set # that leads
to an optimal function approximation. This approximation is done with a composition of a chain
of simple functions. In total, we employ N — 1 neural networks. In each of these N — 1 neural
networks, we employ H hidden layers. This means that each network has a total of H + 2 layers,
where Xy, € R represents the input layer and Viu(tn, X, ) € R? represents the output layer. The
input and the output layers are d-dimensional layers, i.e. they have a width of d. The width of the
hidden layers can be chosen to optimise the approximation. In the papers studied ( [1] and [2]),
a width of d 4+ 10 was chosen. I will explore a variety of width in later sections of this paper. We
adopt a general notation of d + k for the width of the hidden layers. The number of parameters
(here weights) used to describe the linear transformation from the d-dimensional first layer to the
(d + k)-dimensional first hidden layer is d(d + k). The number of parameters used for the linear
transformation from one (d + k)-dimensional hidden layer to the next (d + k)-dimensional hidden
layer is (d +k)2. Finally, the number of parameters used from the final (d + k)-dimensional hidden
layer to the d-dimensional output layer is d(d + k). This means that 2d(d + 10) + H(d + k)? param-
eters are necessary to represent the weights of one neural network. As we employ a total of N —1
neural networks, we have a total number of (N — 1)(2d(d + k) + H(d + k)?) weight parameters
to optimise. After each linear transformation described above, we also add a bias (affine linear
transformation). We use d 4+ k parameters between each linear transformation and the application
of the activation function on the hidden layers. We use d parameters after the final linear trans-
formation. This means that we have a total number of (N — 1)(H(d + k) + d) bias parameters
to optimise. The chosen activation function is the rectified linear function (also called ReLU) :
2 ++ max{0,z}. Summing the number of parameters discussed above, we get a total number of
parameters: p=1+d+ (N —1)(2d(d+ k) + H(d + k)?)(N — 1)(H(d + k) + d).

All the parameters 8 = (f,...,0,) € R? are initialized through a normal or a uniform distri-

bution without any pre-training.

4.5 Stochastic Optimization Algorithm

The above described algorithm takes the paths {X;, }o<n<y and {W, }o<n<y as input data and
gives as final output an approximation of u(ty, Xy, ), denoted by a({X, }“5 n<iNs {W, }{,Snsj\r).
Now we can define the loss function by the squared absolute difference between this approximation

and the actual final value of w(T, X7) = g(X7):

L(0) = E [|lg(X7) — @({ X+, Jo<nen, (We, Jo<nen)?] - (4.10)

Now, I use a variant of stochastic gradient descent, called Adam optimiser to optimise the
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parameters # by minimising the loss function. This variant has been used in [1] and [2], as recom-
mended in [20]. The name Adam is derived from "adaptive moment estimation". While classical
stochastic gradient descent maintains a constant learning rate for all weight updates, Adam adapts
the learning rates to the parameters from estimates of first and second moments of the gradients.

The authors of [20] describe Adam as combining the advantages of two other extensions of
stochastic gradient descent, Adaptive Gradient Algorithm (AdaGrad) and Root Mean Square Prop-
agation (RMSProp). AdaGrad maintains a per-parameter learning rate that improves performance
on problems with sparse gradients (e.g. natural language and computer vision problems). RM-
SProp also maintains per-parameter learning rates that are adapted based on the average of recent
magnitudes of the gradients for the weight (e.g. how quickly it is changing). This means that the
algorithm does well on online and non-stationary problems (e.g. noisy). Adam offers the benefits
of both AdaGrad and RMSProp. Empirical results have shown that Adam works well in practice
and is now widely used among practitioners.

The recommended batch size is 64. Denote by #* € R” the real vector which minimises the
loss function. Denote by m € Ny the number of steps in the gradient descent. Through the
optimisation, we obtain random approximations 0y, ©q,--- : & — R of #*. In particular, define

¢™ R x Q= R by:

Gjm(f?-.w) = Ig(X’j'n (w) - ﬂ({Xt’: (f"“)}llSngNs {"V::_I(w) }{)SnSNN?, (4.11)

for all # € R?,w € Q and m € Ny. Define the function ™ : R” x } — R” by:

™ (0,w) = (Vod™)(6,w), (1.12)

and let © : Ny x 2 — R? be a stochastic process such that:

(;)m = em,—:l i (Dm{gm,—l}-. (“113)

where v € (0,00) is the learning rate. We approximate «(0, ) for sufficiently large p, Nym € N

and sufficiently small v € (0, 00).

5 Examples for Nonlinear PDEs and Nonlinear BSDEs

In this section, I study extensions of the Black-Scholes model which take in consideration important
risk factors in the real markets, such as defaultable securities and higher interest rates for borrowing
than for lending. I use the above described algorithm to price European derivatives with two

extented Black-Scholes models.
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5.1 Pricing of European Financial Derivatives with Different Interest

Rates for Borrowing and Lending

This example is based on an example studied in [1]. In this market, the risk free bank account has

different interest rates for borrowing and lending. The pricing model takes into account a basket

with 100 underlying assets, resulting in a high-dimensional nonlinear PDE. The parameters used
i3 -

here are the same as the ones chosen in the original paper: ji = ;5.7 = 5, R' = 335, B* =

5 d=100,2 = (21,...,24), y € R, z e R™, m € Ny, T = 1, N = 20, v, = 0.005, p(t,z) =

fx, o(t,r) = gdiaggava(xy,...,2q4), £ = (100,..., 100) € RY. The payoff function is defined by:

- -
=( max z;— = ax_xz;— 150 . 5.
glz) = ( max I; 120) 2 (L Snz:lSLI(UUT 1)0) (5.1)

1<i<100

The nonlinear function f is defined by:

= _ pl o +
flt, vy, 2) = —R'y — % Y u+ (R -RY (% > ozm- 'y) ) (5.2)

i=1 i=1
The input paths {X;, }o<n<n are sampled using an Euler Scheme. I assume that the asset
prices follow a geometric Brownian motion:

&2

Xy, = X, exp ((,u - ?) At, + aAWu) (5.3)

Now we use the algorithm to numerically approximate u(0, £). Denote this approximation value
by U 2 u(0,£). This approximation is run 6 times independently with different random seeds.
Initially, we choose the number of hidden layers H to be 2 and the width of each hidden layer to
be d + 10. In the below table, I give the mean for U for m € {0, 1000, 2000, 3000, 4000} based
on 256 Monte Carlo samples (validation sample), as well as the mean of the loss function. I also

give the standard deviation for these values and the average runtime in seconds.

Number  of | Mean of /9= | Stand. dev. | Mean of loss | Stand. dev. | Average run-
steps m of YO of loss time in sec.

0 18.786 2.620 50.577 8.091

1000 20.722 0.552 34.098 4.152 120

2000 21.236 0.058 33.244 4.397 202

3000 21.266 0.0279 33.235 4.534 285

4000 21.273 0.044 33.170 4.534 368

Table 1: Numerical simulation for two hidden layers and d+10 neurons per hidden layer.
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I compare the approximation of u(0, £) with the value calculated by means of multilevel-Picard
approximation in [4], in Section 4.3, Table 6. The value found using this alternative method is
21.299, which is very close to 4@ = 21.273. It is interesting to note that the average runtime
for 7 Picard iterations is 8825, which is higher than the average runtime with this method. The
standard deviation with the Picard approximation is 0.467, which is nearly 10 times higher.

In the below plots, we can see the mean of U= and the mean of the loss for m € {1,2,3,...,4000}

21.04
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20.04

Approximation of u(0,£)
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Figure 10: Mean of the approximation U= for m € {1,2,3...,4000}.
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Figure 11: Mean of the loss function for m € {1,2,3...,4000}.
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5.2 Pricing of European Financial Derivatives with Default Risk

This example is based on an example studied in [2]. In this case, T consider the fair price of a
European option with 100 underlying assets with default risk. If the option issuer defaults, the
option holder will only receive a fraction § € [0,1) of the current option value. The default is
modeled by the first jump time of a Poisson process with intensity Q. The default probability is a
decreasing function of the current option value, i.e., the default becomes more likely as the value

of the option decreases. The parameters used here are the same as the ones chosen in the original

paper: ji = 155, 0 = &, 0" =50, 0" = 70,9" = 02,9 =0.02,d = 100, z = (21,....24), y €
R, zeRY™ meN, T=1N=140,8 = %, R = 0.02, v, = 0.008, plt, ) = jiz, o(t,z) =
Fdiaggaxa(z1,. .. ,xq), € = (100,...,100) € RY. The payoff function is defined by:
g(z) = min{xy, ... 24} (5.4)
The nonlinear function f is defined by:
f(t,w,y,2) = =Ry — (1 - 8)Q(y)y- (5.5)

The intensity function @ is defined as a piece-wise linear function of the current value of the
option within three regions:

h _ ’YI

Qy) = L—oo,om) WY + Lo o) () {W (v-o") + ?‘“} + Lot o) (W)Y (5.6)
The input paths {X;, }USnSN are sampled using an Euler Scheme. | assume that the asset
prices follow a geometric Brownian motion:

5.2

Xt o = Xy, exp ((,ﬁ - ?) Aty + ErAI’Vn) (5.7)

Now, I use the algorithm to numerically approximate u(0,£). As in the previous example, the
approximation is based on 6 independent runs with different random seeds. The number of hidden
layers H is 2 and the width of each hidden layer is d 4+ 10. In the below table, I give the mean for
U for m € {0, 1000, 2000, 3000, 4000, 5000, 6000} based on 256 Monte Carlo samples (validation
sample), as well as the mean of the loss function. I also give the standard deviation for these values

and the average runtime in seconds.
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Number  of | Mean of 4#®= | Stand. dev. | Mean of loss | Stand. dev. | Runtime in
steps m of YO of loss sec.

0 44.399 1.399 301.031 53.750 110
1000 51.133 1.280 116.255 21.843 462
2000 55.990 1.124 55.867 9.150 714
3000 59.129 0.741 37.339 2.030 972
4000 60.552 0.304 33.825 1.996 1226
5000 60.938 0.052 33.293 2.292 1474
6000 60.977 0.062 33.028 2.275 1713

Table 2: Numerical simulation for two hidden layers and d+10 neurons per hidden layer.

I compare the approximation of u(0, £) with the value caleulated by means of multilevel-Picard

approximation in [4], in Section 4.1, Table 2. The value found using this alternative method is

58.113, which is very close to U0 — 60.977. The average runtime for 7 Picard iterations is

8453, which is higher than the average runtime with this method. The standard deviation with

the Picard approximation is 0.035, which nearly 2 times higher.

In the below plots, we can see the mean of /%= and the mean of the loss for m € {1,2,3,...,6000}
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Figure 12: Mean of the approximation 4®= for m € {1,2,3...,6000}.
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Figure 13: Mean of loss function for m € {1._ 2,3..., 6000}.

6 "Wide" vs "Deep"

The question of whether shallow or deep networks perform better has been discussed by multiple
papers, mostly in the context of image recognition. Shallow circuits can require exponentially more
components than deeper circuits, which is why the anthors of ResNet in [21] tried to make them
as thin as possible in favor of increasing their depth and having less parameters. Goodfellow et
al. |22] also showed that an increased number of layers results in higher accuracy, stating that "the
depth was crucial to our success". They also believe that such deep networks need a large amount
of data to train successfully. They did point out however that even though deeper architectures
may obtain better accuracy, the returns are diminishing, as can be observed in figure 14.

Accuracy versus depth
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Figure 14: Performance analysis shows the increasing accuracy of deep architectures, with dimin-

ishing returns [22].
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However, Zagoruyko and Komodakis [23] noted that doubling the number of layers only led to
a fraction of a percent of improvement in accuracy, which means that "training very deep residual
networks has a problem of diminishing feature reuse, which makes these networks very slow to
train". They showed that wide and shallow networks are superior to thin and deep networks. As
an example, they showed that a 16-layer network outperforms even a 1000-layer network both in

accuracy and efficiently. This can be observed in figure 15.
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Figure 15: Wide network is 8 times faster than thin network with approximately the same accuracy

[23].

Most of the literature discusses the question of depth versus width in the context of image
recognition but [24] briefly discussed this problem in the context of option pricing. Their findings
show that wide networks lead to higher performance but there are diminishing returns. This was
not specifically mentioned in the paper, but it seems like the performance starts to deteriorate
after 140 neurons per layer.

# of Neurons vs. R~2 (GBM-4 Layers)
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Figure 16: Performance analysis shows the increasing accuracy of wide architectures, with dimin-

ishing returns [24].
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More interestingly, their analysis shows that an increase in the number of layers leads to higher
accuracy only up to 4 layers. Any number of layer greater or equal to 5 leads to lower accuracy.

Their interpretation of this is that too many layers lead to over-parametrisation of the problem.

# of Layers vs. RMSE (GBM)
0.0080
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Figure 17: Performance increases up to 4 layers but decreases after 5 layers [24|.

6.1 "Wide" vs "Deep" for Example of Different Interest Rates for Bor-

rowing and Lending

I carry out a similar analysis to nnderstand the effect of different numbers of layers as well as
different numbers of neurons per hidden layer on the accuracy of the approximation. In figure 11
we can see that the loss stabilises at around m = 2500 iterations, so I choose the maximum number
of steps to be 2500. First, I keep the number of layers fixed at 2 hidden layers (i.e. fixed depth) and
vary the number of neurons per layer (i.e. varying width). Figure 18 shows how the loss changes

as the number of neurons per la‘\_f(!l' increases.
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Figure 18: Loss with fixed depth and varying width.

We can observe that the loss converges to the smallest value for d++10 after m = 2500 iterations.
Now, I keep the width fixed and vary the depth. Figure 19 shows how the loss changes as the

number of hidden layers increases.
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Figure 19: Loss with fixed width and varying depth.

We observe that a higher number of hidden layers results in lower loss, but it is not clear
whether a higher number of layers always leads to a better performance, as 3 hidden layers show
lower loss than 4 hidden layers.

To get a better overall understanding of the effect of width and depth, I will compare a variety

of different combinations of width and depth for the second example.
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6.2 "Wide" vs "Deep" for Example of Default Risk

As previously, I analyse the accuracy of the approximation depending on the width and depth.

In figure 13, we can see that the loss stabilises at around m = 3400 iterations, so I choose the

maximum number of steps to be 3400. Now, I compare a variety of different combinations of width

and depth:

H=2 H=3 H=4 H=5 H=6
d+10 34.550 35.001 36.382 34.443 34.852
d+20 37.279 33.570 33.367 34.091 34.216
d+30 35.049 32.622 34.277 33.726 35.698
d-+40 34.691 32.916 34.570 36.486 34.915
d-+50 37.775 34.756 34.936 33.902 35.953

Table 3: Numerical simulation for varying width and depth.

I plotted these values as a 3-D plot to visualise the effectiveness of different combinations.

Figure 20: 3-D surface representing the loss for different width and depth combinations.
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In this second plot, I used interpolation to get a smooth 3-D plot to make the visualisation

clearer.

Loy 55 110

Figure 21: Smooth 3-D surface representing the loss for different width and depth combinations.

The result seems to be similar to |24], as we can observe that the loss increases for more extreme
numbers of layers and numbers of neurons per layver. In fact, a combination of a high number of
layers and a high number of neurons per layer leads to the highest loss. Lower number of layers,
combined with a lower number of neurons per layer also seem to lead to a higher loss level. The
best performance seems to be concentrated in the middle of the 3-D surface, around a number of

layer equal to 3 or 4 and a number of neurons per hidden layer of 130 to 140.

7 Activation Functions

In this section, I will study different activation functions and analyse the performance of different
activation functions in the context of option pricing. Firstly, I will describe the most commonly

used activation functions and their advantages and disadvantages.




7.1 Sigmoid Activation Function 31

7.1 Sigmoid Activation Function

Firstly, I will describe the sigmoid function, which I briefly introduced previously:

1
o(z) = Tre
This function was one of the first activation functions used in the context of neural networks, but
it is rarely used nowadays, due to a big disadvantage called the "vanishing gradient problem".
As sigmoid function’s values lie within the interval [0,1] and due to the S-shape of the function,
applying this function to any small or large value will return a value close to zero or one respectively.
This means that the gradient becomes close to zero so that it would effectively kill the neuron and

prevent the network from learning. This is not as much a problem for shallow networks but with

deep networks the progressively dyving gradient strongly affects the training.
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Figure 22: The sigmoid function and its derivative.

7.2 Tanh Activation Function

Tanh is very similar to the sigmoid function, but returns value in the range [—1, 1] instead of [0, 1].
This function can be interpreted as a scaled up version of sigmoid, but it still suffers from the
vanishing gradient problem. Nowadays, tanh is sometimes used in the final layer but rarely in

earlier layers.
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Figure 23: Comparison of tanh and sigmoid functions.

7.3 ReLU Activation Function

The rectified linear activation (ReLU) function is one of the reasons deep neural networks have
recently achieved such outstanding results. As of 2017, it is the most widely used activation
function for deep neural networks. It was proven in 2011 that this function did a better job at
training deep neural networks compared to previously used activation functions [25].

This function is defined by the positive part of its input:

f(x) = max(z,0)

RelU Activation Function
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max(0,x)
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Figure 24: ReLU Activation Function.

This function solves the vanishing gradient problem mentioned before, since its derivative is

given by:
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0 for z<0
1) =

I for x>0
In fact, as long as the value of the input is greater or equal to zero, the gradient of the activation
function will be 1, which means that the neural network can continue to learn. When the input
is less than zero, the output is zero, which means that that specific neuron will not be activated.
This is called a sparse representation. It can simplify and accelerate the learning process, but
in some cases might hinder the learning. This is called "dying ReLU" problem. This problem
can canse several nenrons to stop responding, making a substantial part of the network passive.
Some variations of ReLU were developed to mitigate this issue, which I will discuss in the coming

sections.

7.4 LReLU Activation Function

Leaky ReLU (LReLU) is a modification of ReLU which was introduced to overcome the "dying
ReLU" problem. This function allows for small negative values, as we can see in the figure and

formula below:

ar for <0
Jw) =

x for x>0

where a € [0,1).

AR

fo)=y

Y

fy)=ay

Figure 25: LReLU Activation Function.

This means that the gradient will be small but non-zero. This reduces the sparsity but makes
the gradient more robust for optimisation, since now the weights will be adjusted for those neurons
that were not active with ReLU.

This modification of the ReLU activation function was introduced in [26], but the analysis of

the authors did not show any significant improvement from ReLU.
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7.5 ELU Activation Function

Exponential Linear Unit (ELU) is another activation function inspired by ReLU, which has the
same aim as LReLU, i.e. increasing the learning speed by not deactivating some neurons. But it
also has the advantage of speeding up the process by deactivating some of the neurons, since the
slope in most of its negative domain approaches 0.

The function is given by:

fa) = alexp(z) —1) for <0

r for x>0

ELU activation function (a=1)

-4 -2 0 2 4

Figure 26: ELU Activation Function.

This activation function was introduced in [27] and the numerical analysis in the paper shows

significant improvement from ReLU.

7.6 Application of Activation Functions to the Algorithm

Now I apply the sigmoid, ReLU, LReLU and ELU activation functions to the first option pricing
example (different borrowing and lending rates) introduced above, for d = 50 and d = 100. The
algorithm is run 6 times independently for m € {0,1,...,2500}.

We observe in figures 27 and 28 that in both cases, the sigmoid function shows the worse
performance and the ELU function shows the best performance. It is not clear whether LReLU

shows any improvement from ReLU as in the case of d = 50, ReLU outperforms LReLU.
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Figure 27: Performance analysis of different activation functions for d=50.
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Figure 28: Performance analysis of different activation functions for d=100.

This result is in agreement with the literature (cf. [27-29] ), where the authors have shown
that nonlinear versions of ReLU (such as ELU) show a better performance than both ReLU and

LReLU.
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8 Runtime

Now [ will analyse the runtime of this algorithm. Firstly, I analyse how the runtime grows with

the space dimension of the considered PDE (i.e. the number of underlying assets). I have done

the analysis for the example of a European derivative with default risk. The number of iterations

is m = 3400. In figure 29, we can observe that the runtime only grows linearly with respect to the

dimension.
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Figure 29: Linear runtime growth with respect to PDE dimension.

This linear growth is the main advantage that this algorithm offers, as it does not suffer from

the curse of dimensionality.

I also analyse how the runtime grows with respect to the width and the depth of the neural

network. This analysis was done for the example of a European derivative with default risk. The

number of iterations is m = 3400 and the dimension is d = 100. As shown in figure 30, the runtime

is high for neural networks with higher number of layers. This should be one of the considerations

when choosing the number of layers.
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Figure 30: Runtime growth with respect to width and depth.

Conclusion

In this paper, I explore the benefits of implementing neural networks to solve high-dimensional

nonlinear PDEs. My numerical analysis shows that this method offers an effective approximation,

with results close to the values found with alternative methods. In addition to the accuracy of the

approximation, this method allows one to decrease the runtime considerably, which is the main

advantage of this method. In fact, the runtime only grows linearly with respect to the dimension

of the PDE, which makes this method computationally inexpensive. I analysed different variations

of neural network structures by varying the depth and the width of the networks. I observed that

the accuracy of the approximation increased with the layers up to a certain point, but diminished

eventually. To be precise, a number of hidden layers of 3 or 4 seems to be the optimal. The change

in accuracy with respect to the width was less clear. My analysis of the runtime with respect to
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the different depth and width combinations shows that the runtime increases significantly with
the depth and the width. This is another factor to be taken in consideration when choosing the
optimal depth and width. When taking into consideration both the accuracy of the approximation
and the runtime, I believe that a number of hidden layers of I = 3 and a number of neurons per
hidden layer of d + 10 offers the optimal combination. I also analysed the performance of a variety
of activation functions. I observed a significant improvement in the accuracy of the approximation
with the nonlinear version of ReLU (ELU).

Finally, I would like to add that the parameters for the neural networks need to be modified
based on the problem. The optimal combination of depth and width is dependent on the dimension
of the PDE. The optimal choice of the activation function is also dependent on the dimension, as

we observed above. Therefore, experimentation and reflection is key to improving the result.
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