
Imperial College London

Department of Mathematics

Weighted multilevel Monte Carlo method

for VIX option pricing

Author: Rafael KYRIAKOU (CID: 02493212)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2023-2024

Declaration

The work contained in this thesis is my own work unless otherwise stated.

2

Acknowledgements

Firstly, I would like to thank Dr Ofelia Bonesini for her insightful feedback, and pa-
tience as I progressed through the challenges of this thesis. Your passion for the subject
and commitment to high standards have greatly inspired me and pushed me to achieve
my best work.

I would also like to thank Prof. Antoine Jacquier, whose practical advice have been
instrumental in shaping the direction and scope of this thesis. Your ability to clarify
complex concepts, and your willingness to discuss ideas at any stage of the process were
crucial in helping me overcome the obstacles I encountered.

Abstract

This thesis considers the computational challenges involved in pricing options on the
Volatility Index (VIX). The VIX is a crucial financial measure of the market’s expectation
of future volatility. It is commonly modelled using the rough Bergomi model, which cap-
tures the roughness and long memory properties observed in real market data. However,
the practical application of the Rough Bergomi model is computationally intensive when
using standard Monte Carlo methods due to the need for high accuracy in simulations.
To mitigate these challenges, this thesis investigates the use of the Weighted Multilevel
Monte Carlo (WMLMC) method, which builds upon the traditional Multilevel Monte
Carlo (MLMC) approach by introducing a weighting scheme designed to reduce computa-
tional costs. The WMLMC method achieves this by optimally allocating computational
resources across different levels of simulation, reducing the number of samples required
at coarser levels where variance reduction is more pronounced. The research presented
in this thesis includes both a theoretical and a numerical analysis of the computational
complexity of the WMLMC. The results demonstrate that while both methods have the
same asymptotic complexity O(ε−2 log2(ε)) for the rectangle scheme and O(ε−2) for the
trapezoidal scheme, the WMLMC consistently requires fewer computational resources due
to a lower constant factor.

Contents

1 VIX Option Pricing 6
1.1 Rough Bergomi Model . 6
1.2 Derivation of the VIX formula . 9
1.3 Time Discretisation . 10

1.3.1 Rectangle Scheme . 11
1.3.2 Trapezoidal Scheme . 11

1.4 VIX Simulation . 12
1.5 Strong and Weak Errors . 14

2 Monte Carlo Methods 16
2.1 Standard Monte Carlo . 16
2.2 Multilevel Monte Carlo . 17

2.2.1 MLMC Simulation . 18
2.2.2 Computational Complexity . 19

2.3 Weighted Multilevel Monte Carlo . 21
2.3.1 Recursive formulation of the MLMC 21
2.3.2 WMLMC Simulation . 23

3 Theoretical Results 25
3.1 WMLMC Computational Complexity . 25
3.2 Comparison with MLMC . 28

3.2.1 Variance reduction . 28
3.2.2 Overall complexity . 29

4 Numerical Results 32

A Python Code 37
A.1 MLMC Simulation . 37
A.2 WMLMC Simulation . 37

Bibliography 39

2

List of Figures

1.1 Comparison of fractional Brownian motion paths generated with Hurst pa-
rameters values: H = 0.3, H = 0.5, and H = 0.7. 8

3.1 Comparison of the ration δ(L) for the rectangle and trapezoidal discretisa-
tion schemes. The graph illustrates how the ratio δ(L) approaches 1 as the
finer level of the estimators increase. 31

4.1 Comparison of MSE and computational cost between MLMC and WMLMC
estimators for a VIX call option. The left graph shows the log-log plot of
MSE with the Cost, using T = 0.5, H = 0.1, η = 0.5, X0 = ln

(
0.2352

)
,∆ =

1
12 , and n0 = 6. The right graph illustrates the computational cost as a
function of the desired accuracy ε. 34

3

List of Tables

3.1 Number of samples required for MLMC and WMLMC to achieve a target
variance of ε/2 under rectangle and trapezoidal discretisation schemes for
LR = LT = 3. 29

4

Introduction

The accurate pricing of financial derivatives is crucial for risk management, trading strate-
gies, and investment decisions. Among these derivatives, options on the Volatility Index
(VIX) hold a special place due to their ability to provide insight into market expecta-
tions of future volatility. Since its introduction by the Chicago Board Options Exchange
(CBOE) in 1993, the VIX has become integral to financial markets, especially for option
pricing.

However, pricing VIX options is challenging due to the complex nature of market
volatility. Traditional models, like the Black-Scholes model, assume that volatility is
constant, which oversimplifies how markets really behave. In reality, market data show
patterns of ”rough” and long-lasting volatility [11, 7] that these models can’t capture effec-
tively. To better address this, the rough Bergomi model was developed [1] which employs
a fractional Brownian motion to more accurately reflect the short-term fluctuations and
roughness in market volatility. The introduction of the rough Bergomi model marked a
significant advancement in this area, offering a more realistic representation of the mar-
ket’s volatility dynamics. However, the computational cost associated with this model,
especially when implemented using traditional Monte Carlo simulations, presents a major
obstacle to its practical application.

This thesis investigates the use of the Weighted Multilevel Monte Carlo (WMLMC) [13]
method as a solution to this problem. The WMLMC method extends the Multilevel Monte
Carlo (MLMC) [8] approach by incorporating a weighting scheme designed to optimise
computational efficiency [13], particularly in cases where correlations between different
levels are not sufficiently high. By reducing variance without increasing the asymptotic
complexity, WMLMC offers a promising approach for efficiently pricing VIX options within
the rough Bergomi framework.

The structure of this thesis is as follows: Chapter 1 provides a comprehensive overview
of VIX option pricing, focusing on the rough Bergomi model and the derivation of the
VIX formula. It also covers the time discretisation techniques necessary for simulating
VIX samples and discusses the associated strong and weak errors. Chapter 2 delves into
Monte Carlo methods, with an emphasis on standard Monte Carlo, MLMC, and the newly
proposed WMLMC. Chapter 3 presents the theoretical results of the application of the
WMLMC method, including its computational complexity and a comparison with MLMC.
Chapter 4 illustrates the numerical results, validating the effectiveness of the WMLMC
method. Finally, we conclude the thesis by summarising the findings and discussing po-
tential future research directions.

5

Chapter 1

VIX Option Pricing

The VIX stands as a pivotal financial metric providing a real-time measure of market
expectations for volatility over the coming 30 days. This index is particularly significant
as it captures the anticipated fluctuations in the S&P 500 index. The VIX is particularly
useful because it reflects the level of uncertainty or risk in the market. When the VIX
is high, it usually means that investors are expecting large swings in the stock market,
which can indicate fear or concern about future events. Conversely, a low VIX suggests
that the market is expected to remain stable. This makes the VIX a valuable tool for both
predicting market trends and managing risk.

The CBOE defines the VIX index using the implied variance of a log-contract [5].
In essence, the VIX value at a specific time T represents the implied volatility of a log-

contract that delivers − 2
∆ ln

(
ST+∆

ST

)
at time T + ∆. Here, ∆ is 30 days, and S denotes

the S&P 500. The formula for calculating the VIX [4, Equation 1] is given by

VIXT :=

√
pricemkt

T

(
− 2

∆
ln

(
ST+∆

ST

))
This means that the VIX index reflects the market’s expectation of future volatility, derived
from the prices of options on the S&P 500 index.

To accurately price options based on the VIX, it’s important to use models that can
capture the complex behaviour of market volatility. One such model is the rough Bergomi
model, which has been developed to better reflect the roughness observed in real mar-
ket data. This model uses advanced mathematical techniques to simulate how volatility
behaves over time, offering a more realistic approach to option pricing.

In this chapter, we will explore the pricing of VIX options. We will start by discussing
the rough Bergomi model and its application to modelling market volatility. Then, we will
go through the steps involved in deriving the VIX and discuss the challenges that arise
when discretising time in these models.

1.1 Rough Bergomi Model

The rough Bergomi model, introduced in [1], establishes a comprehensive framework for
modelling the dynamics of instantaneous forward variances. This model has been ex-
tensively studied and validated for its effectiveness in capturing the volatility dynamics
observed in financial markets [7, 11]. It was specifically designed to address the limitations
of earlier models in capturing the unique characteristics of market volatility. Traditional
models, like the Black-Scholes model, assume that volatility is constant or follows a simple
stochastic process. However, real-world data show that volatility exhibits a more complex

6

behaviour, often displaying ”roughness” and long-memory effects that these classical mod-
els have trouble capturing.

It consists of two main components: the dynamics of the stock price (St)t∈[0,T] and the
dynamics of the variance process (Vt)t∈[0,T]. The stock price S under the rough Bergomi
model follows the stochastic differential equation (SDE)

dSt = St

√
Vt dWt, (1.1.1)

where

(i) St is the stock price at time t,

(ii) Vt is the variance process at time t,

(iii) Wt is a standard Brownian motion.

The rough rough Bergomi model is an extension of the Bergomi model [2, 3]. The stock
price St under the Bergomi model follows the same dynamics as in (1.1.1), and the vari-
ance process Vt is assumed to be stochastic and driven by another Brownian motion W v

t ,
correlated with Wt. Specifically, Vt follows the SDE

Vt = V0 exp

(
ηW v

t − 1

2
η2t

)
,

where V0 is the initial volatility, η > 0 is the volatility of volatility which controls how
much the process Vt fluctuates over time. W v

t is a standard Brownian motion under Q,
correlated with Wt. The rough Bergomi model extends this framework by replacing the
standard Brownian motion W v

t in the variance process with a fractional Brownian motion
WH

t , introducing the concept of rough volatility.
A fractional Brownian motion WH

t with Hurst parameter H ∈ (0, 1) is a continuous-
time Gaussian process that satisfies the following properties [16, section 1.2]:

(i) WH
0 = 0.

(ii) E[WH
t] = 0 for all t ≥ 0.

(iii) For all s, t ≥ 0, the covariance function of WH
t WH

s and is given by

Cov(WH
t ,WH

s) =
1

2

(
t2H + s2H − |t− s|2H

)
.

Fractional Brownian motion differs from standard Brownian motion since it includes the
Hurst parameter H which controls the degree of roughness in the volatility process. The
covariance structure implies that when H < 0.5, the increments are negatively correlated
meaning an increase in the value of the process during one time interval is likely to be
followed by a decrease in the next interval. This anti-persistence means that any influence
from a particular movement is quickly neutralised by subsequent movements. The process
does not carry the effect of a previous increment for long, which is why the memory of
the process is described as ”short-term”. Similarly, when H > 0.5 the increments are
positively correlated and the memory of the process can be described as ”long-term”.
When H = 0.5, and assuming that t > s, then Cov(WH

t ,WH
s) = 1

2 (t+ s− |t− s|) = s.
The covariance of a standard Brownian motion is given by Cov(Wt,Ws) = E[W 2

s] = s.
This is exactly the covariance function of the fractional Brownian motion. Therefore, when
H = 0.5, fractional Brownian motion reduces to standard Brownian motion, where the
increments are independent and identically distributed, following a normal distribution
with mean 0 and variance t − s. In other words, the standard Brownian motion is a

7

Figure 1.1: Comparison of fractional Brownian motion paths generated with Hurst pa-
rameters values: H = 0.3, H = 0.5, and H = 0.7.

particular case of fractional Brownian motion with H = 0.5, where the process has no
memory.

It is shown in [14] that the fractional Brownian motion satisfying the above properties
has the following integral representation

WH
t =

∫ ∞

−∞
hH(a, b; t, s) dWs, t ∈ R,

with

hH(a, b; t, s) = a
[
(t− s)

H−1/2
+ − (−s)

H−1/2
+

]
+ b

[
(t− s)

H−1/2
− − (−s)

H−1/2
−

]
.

Here, a and b are real constants, and x+, x− refer to the positive and negative parts of x,
respectively. x+ captures the part of x that is non-negative, while x− captures the part
that is non-positive. For a = 1 and b = 0 the fractional Brownian motion first introduced
by [15] is given by

WH
t =

∫ ∞

−∞

[
(t− s)

H−1/2
+ − (−s)

H−1/2
+

]
dWs

=

∫ 0

−∞

(
|t− s|H−1/2 − |s|H−1/2

)
dB(s) +

∫ t

0
|t− s|H−1/2 dWs

=
1

Γ
(
H + 1

2

) (∫ t

−∞
|t− s|H−1/2 dB(s)−

∫ 0

−∞
|s|H−1/2 dWs

)
.

Since we consider t ≥ 0, we have

WH
t =

1

Γ
(
H + 1

2

) ∫ t

0
(t− s)H−1/2 dWs,

which is the Riemann-Liouville definition of a fractional Brownian motion [14].
The dynamics of the variance process Vt under the rough Bergomi model is expressed

as

Vt = V0 exp

(
ηWH

t − 1

2
η2t2H

)
, (1.1.2)

where V0 is the initial variance, η is the volatility-of-volatility parameter, and WH
t is a

Riemann-Liouville fractional Brownian motion with Hurst parameter H.
In the rough Bergomi model the Hurst parameter ranges between 0 and 0.5, where

as seen in figure 1.1, the resulting volatility paths are rougher and exhibit more short-
term fluctuations. This characteristic makes the Rough Bergomi model particularly useful

8

for modelling markets where volatility is highly sensitive to short-term news or events.
Empirical studies have validated these parameter choices, showing that they significantly
improve the model’s accuracy in predicting volatility patterns and market behaviours [1,
Chapter 5].

The variance process Vt under the Bergomi model is included in a class of functions of
the form

Xu
t = Xu

0 − 1

2

∫ t

0
K(u, s)2 ds+

∫ t

0
K(u, s) dWs, u ≥ t, (1.1.3)

where K(t, s) is a kernel function and obtained when you set K(t, s) = ωe−κ(t−s), with
ω, κ > 0 [4, Equation 2]. According to [1] the kernel K(t, s) corresponding to the rough
Bergomi model is

K(t, s) = η(t− s)H−0.5

where H ∈ (0, 12) and η > 0. The kernel function plays a pivotal role in the rough Bergomi
model. It determines the influence of past volatility on the current variance process. The
parameter η controls the magnitude of this influence, while H controls the temporal decay
of this influence. The integral form of the variance process Vt, incorporating the kernel
function, provides a nuanced and flexible representation of how historical volatility impacts
future volatility. The choice of parameters was validated by [11, Chapter 3] for VIX options
and by [7, Chapter 3] for reconstructing the observed structure of the volatility skew of
the S&P500.

1.2 Derivation of the VIX formula

To further understand the VIX formula, we start with a standard financial model where the
price St of an asset follows a stochastic process. The asset price St under the risk-neutral
measure Q can be represented by the SDE

dSt = σtStdWt. (1.2.1)

Taking the logarithm of the asset price simplifies the analysis. Using Ito’s Lemma, we
convert the SDE into a form that focuses directly on the logarithm of price changes

d(logSt) = σtdWt −
1

2
σ2
t dt. (1.2.2)

Integrating (1.2.2) over a specific time interval separates the log returns into stochastic
and deterministic components

logST+∆ − logST =

∫ T+∆

T
σu dWu − 1

2

∫ T+∆

T
σ2
u du.

This step is essential for isolating the random elements from the predictable parts, pro-
viding a clearer picture of the underlying processes driving price changes.

Diving both sides by −2
∆ , we get

− 2

∆
log

(
ST+∆

ST

)
= − 2

∆

(∫ T+∆

T
σu dWu − 1

2

∫ T+∆

T
σ2
u du

)
.

The payoff of a forward log-contract is given by

EQ
t

[
− 2

∆
log

(
ST+∆

ST

)
| Ft

]
= EQ

t

[
− 2

∆

(∫ T+∆

T
σu dWu − 1

2

∫ T+∆

T
σ2
u du

)
| Ft

]
.

9

Since the expectation of a stochastic integral term with respect to a Brownian motion is
zero, we are left with

EQ
t

[
− 2

∆
log

(
ST+∆

ST

)
| Ft

]
= EQ

t

[
1

∆

∫ T+∆

T
σ2
u du | Ft

]
.

Thus, the forward variance V T+∆
t,T is defined as the market price of the forward log-contract

V T+∆
t,T := pricemkt

T

(
− 2

∆
ln

(
ST+∆

ST

))
= EQ

t

[
1

∆

∫ T+∆

T
σ2
u du | Ft

]
. (1.2.3)

This variance represents the expected average of the instantaneous variances over the
specified time interval, encapsulating the market’s forecast of future volatility.

To further describe the forward variance V T+∆
t,T in (1.2.3) we characterise it similar to

the approach in [10], such that we have

ξt := E[σ2
T | Ft],

which gives

V T+∆
t,T =

1

∆

∫ T+∆

T
ξut du. (1.2.4)

Following the framework and notations from [4] we consider volatility processes under the
rough bergomi model of the form

ξut = eX
u
T with Xu

T = Xu
0 − 1

2

∫ T

0
K(u, s)2 ds+

∫ T

0
K(u, s) dWs, u ≥ t, (1.2.5)

with kernel

K(u, s) = η(u− s)H−0.5. (1.2.6)

Finally, the squared VIX index at time T is

(VIXT)
2 =

1

∆

∫ T+∆

T
eX

u
T du. (1.2.7)

and the price at time zero of an option on the squared VIX with a payoff function φ, and
at maturity T is represented as the expectation

E
[
φ
(
VIX2

T

)]
= E

[
φ

(
1

∆

∫ T+∆

T
eX

u
T du

)]
. (1.2.8)

In the analysis conducted in this thesis, we consider the standard payoff functions of call
and put options, given by φcall(x) = (

√
x −K)+ and φput(x) = (K −

√
x)+, where K is

the strike price.

1.3 Time Discretisation

The model used to describe the squared VIX in (1.2.7), as mentioned in [4] cannot be
solved analytically. Thus, discrete approximations are necessary. In this section, we ex-
plore two common time discretisation schemes, the rectangle scheme and the trapezoidal
scheme. These methods provide different ways to approximate the integral (1.2.7), with
each having its own advantages and potential drawbacks in terms of accuracy and com-
putational efficiency. Through the thesis, we use D = R to denote the rectangle scheme
and D = T to denote the trapezoidal scheme.

10

1.3.1 Rectangle Scheme

The right-point rectangle scheme, also known as the right Riemann sum, approximates the
integral of a function by summing up the areas of rectangles whose heights are determined
by the function’s value at the right endpoint of each sub-interval.

Definition 1.3.1 (Right-point rectangle scheme). [6, Section 2.1] Given a function f :
[a, b] → R defined on the interval [a, b], the right-point rectangle scheme over n ∈ N points
is defined as

Rn =
n∑

i=1

f(xi)∆x, (1.3.1)

where

(i) ∆x = b−a
n is the width of each sub-interval.

(ii) xi = a+ i∆x are the right endpoints of the sub-intervals, for i = 1, 2, . . . , n.

Given that f is bounded and continuous almost everywhere, then the integral of f(x)
from a to b is given as the limit of the Riemann sums as the number of sub-intervals n
approaches infinity [6, Section 1.5]. Specifically,∫ b

a
f(x) dx = lim

n→∞
Rn = lim

n→∞

n∑
i=1

f(xi)∆x.

For the right-point rectangle scheme, we approximate the integral in (1.2.7) by dividing
the interval [T, T +∆] into n sub-intervals of equal width ∆x = ∆

n , and use the function
value at the right endpoint of each sub-interval. Thus we define the grid points

ui = T + i∆x, for i = 1, 2, . . . , n, (1.3.2)

where ∆x = ∆
n .

The right-point rectangle approximation for the integral is

1

∆

∫ T+∆

T
eX

u
T du ≈ 1

∆

n∑
i=1

eX
ui
T ∆x.

Substituting ∆x = ∆
n and simplifying

1

∆

n∑
i=1

eX
ui
T ∆x =

1

∆

(
∆

n

n∑
i=1

eX
ui
T

)
.

Therefore, the right-point rectangle scheme for VIX2
T is:

VIX2,Rn

T =
1

n

n∑
i=1

eX
ui
T . (1.3.3)

1.3.2 Trapezoidal Scheme

The Trapezoidal Scheme approximates the integral of a function by summing the areas
of trapezoids rather than rectangles. The bases of each trapezoid are determined by the
function values at the endpoints of each sub-interval, and the height is the width of the
sub-interval.

11

Definition 1.3.2. [6, Section 2.1] Given a function f : [a, b] → R defined on the interval
[a, b], the trapezoidal rule over n ∈ N points is defined as

Tn =
n∑

i=1

1

2
(f(xi) + f(xi−1))∆x, (1.3.4)

where

(i) ∆x = b−a
n is the width of each sub-interval,

(ii) xi = a+ i∆x are the endpoints of the sub-intervals, for i = 0, 1, 2, . . . , n.

For the trapezoidal scheme, we approximate the integral in (1.2.7) similarly as in the
rectangle scheme. We use the same grid points defined in (1.3.2), and thus the approxi-
mation for the integral is

1

∆

∫ T+∆

T
eX

u
T du ≈ 1

∆

n∑
i=1

1

2

(
eX

ui
T + eX

ui−1
T

)
∆x.

Substituting ∆x = ∆
n and simplifying we get that

VIX2,Tn
T =

1

2n

n∑
i=1

eX
ui
T + eX

ui−1
T . (1.3.5)

1.4 VIX Simulation

It is shown in [4, Section 2] that VIX2,Dn

T can be simulated exactly. In financial modelling,
exact simulation means creating sample paths of stochastic processes that accurately re-
flect the theoretical model’s properties, without introducing errors from approximations.
In other words, the distribution of the simulated samples match the distribution of the
model. For VIX2,Dn

T , an exact simulation ensures that the generated paths precisely follow
the dynamics of the rough volatility model.

Considering VIX2,Dn

T is defined with discretisation schemes in equations (1.3.3) and
(1.3.5) under the rough Bergomi model given in (1.2.5), the exact simulation involves gen-
erating samples from a multivariate Gaussian distribution where the mean and covariance
structures are derived directly from the theoretical model. Thus, to sample VIX2,Dn

T we
need to sample n samples of Xui

T for i = 0, 1, 2, . . . , n.
Recall that under the rough Bergomi model given in (1.2.5) we have

ξui
T = eX

ui
T with Xui

T = Xui
0 − 1

2

∫ T

0
K(ui, s)

2 ds+

∫ T

0
K(ui, s) dWs, u ≥ t

Expectation:

E
[
Xui

T

]
= E

[
Xui

0 − 1

2

∫ T

0
K(ui, s)

2 ds+

∫ T

0
K(ui, s) dWs

]
= E

[
Xui

0 − 1

2

∫ T

0
K(ui, s)

2 ds

]
.

Since K(ui, s) is a deterministic kernel we get

µi := E
[
Xui

T

]
= Xui

0 − 1

2

∫ T

0
K(ui, s)

2 ds = Xui
0 − η2

4H

(
u2Hi − (ui − T)2H

)
. (1.4.1)

12

Covariance:

Cov
(
Xui

T , X
uj

T

)
= E

[(
Xui

T − E
[
Xui

T

]) (
X

uj

T − E
[
X

uj

T

])]
= E

[∫ T

0
K(ui, s) dWs

∫ T

0
K(uj , s) dWs

]
.

Using the Ito isometry we can rewrite this as

E
[∫ T

0
K(ui, s) dWs

∫ T

0
K(uj , s) dWs

]
= E

[∫ T

0
K(ui, s)K(uj , s) ds

]
=

∫ T

0
K(ui, s)K(uj , s) ds.

Thus, we set

Σi,j := Cov
(
Xui

T , X
uj

T

)
=

∫ T

0
K(ui, s)K(uj , s) ds. (1.4.2)

For later simulations, when i = j the terms can easily be computed as∫ T

0
K(ui, s)K(uj , s) ds =

∫ T

0
K(ui, s)

2 ds =
η2

2H

(
u2Hi − (ui − T)2H

)
,

and when i < j, we use the function scipy.integrate.quad from the SciPy library [17].
Given that the rough Bergomi model is a multivariate Gaussian distribution with mean

and covariance structures in Equations (1.4.1) and (1.4.2) respectively, to generate Xu
T we

use
Xu

T = µ+ LZ

where Z = (Z1, . . . , Zn)
T is a vector where each Zi is an independent standard random

variable (Zi ∼ N (0, 1)), µ = (µ1, . . . , µn)
T , and L is a lower triangular matrix such that

Σ = LLT .
To obtain L we decompose the covariance matrix Σ using the Cholesky decomposition.

The Cholesky decomposition is a method to factorise Σ into the product of a lower trian-
gular matrix L and its transpose, such that Σ = LLT . Given a symmetric positive-definite
matrix Σ of size n×n, the Cholesky decomposition is computed as follows [9, Chapter 4]:

(i) Start with the matrix L initialised as a zero matrix with the same size as Σ.

(ii) For each i from 1 to n:

Lii =

√√√√Σii −
i−1∑
k=1

L2
ik

where the sum term accounts for the contributions from previously computed ele-
ments of L.

(iii) For each j from i+ 1 to n:

Lji =
1

Lii

(
Σji −

i−1∑
k=1

LjkLik

)
.

These steps ensure that the lower triangular matrix L satisfies the condition Σ = LL⊤.
Finally, we discuss the cost of generating a sample of VIX2,Dn

T . The Cholesky decom-
position itself is an O(n3) operation in terms of computational complexity, where n is the

13

size of the matrix. However, since this decomposition is performed offline, its cost is not
included in the simulation cost. Instead, the focus is on the cost of using this decompo-
sition to generate each sample. Once L is computed, generating a single sample of the
(n + 1)-dimensional Gaussian vector X involves multiplying the matrix L by the vector
Z, which requires O(n2) operations. This is because matrix-vector multiplication involves
performing a dot product for each row of the matrix, and there are n + 1 rows in the
matrix L. After generating the Gaussian vector (Xui

T)i=0,...,n, the next step is to discretise
the integral that defines V IX2

T in (1.2.7). The integral is approximated as a sum over the
discretisation points, with the choice of discretisation scheme affecting both the accuracy
and computational cost. The rectangle scheme is simple to implement and has a com-
putational cost of O(n) for evaluating the sum, where n is the number of discretisation
points. The trapezoidal scheme generally requires the same O(n) computational cost for
evaluating the sum, but it produces a more accurate approximation due to its use of both
endpoints. Thus, the cost per sample of VIX2,Dn

T is O(n2) + O(n), where the dominant
term is O(n2).

1.5 Strong and Weak Errors

Definition 1.5.1 (Strong convergence of order α). [12, Equation 6.3] Strong convergence
refers to the convergence of a numerical approximation. A discrete time approximation
X̂n with step-size n converges strongly with an order α > 0 if there exists c > 0 such that

E
[∣∣∣X − X̂n

∣∣∣p] = O
(
n−α

)
for some p ≥ 1, and O (n−α) ≤ cn−α.

For the rectangle scheme, it has been shown in [10, Proposition 2] that the strong
convergence rate is α = 1, for p = 1, and later extended by [4, Propositon 2] for p ≥ 1.
This indicates that the strong error of the rectangle scheme decreases linearly as the
number of discretisation steps increases. Formally, this is expressed as(

E
[∣∣∣VIX2

T −VIX2,Rn

T

∣∣∣p]) 1
p
= O

(
1

n

)
. (1.5.1)

While this provides a basic level of accuracy, the convergence rate is relatively slow, which
may necessitate a large number of discretisation steps to achieve acceptable accuracy. As
shown in [4, Proposition 2] the trapezoidal scheme improves upon the rectangle scheme
by achieving a strong convergence rate of α = 1 + H, where H is the Hurst parameter
associated with the rough volatility model. This improvement is represented as(

E
[∣∣∣VIX2

T −VIX2,Tn

T

∣∣∣p]) 1
p
= O

(
1

n1+H

)
, (1.5.2)

as n → ∞. This improved convergence rate allows for more accurate approximations with
fewer discretisation steps, making the trapezoidal scheme more effective in models where
high precision is required.

Definition 1.5.2 (Weak convergence of order β). [12, Equation 7.4] Weak convergence
refers to the convergence of the distribution of the numerical approximation. A discrete
time approximation X̂n with step-size n converges weakly of order β > 0 if for all f ∈
C2β+2, there exists a c > 0 such that∣∣∣E [f(X)]− E[f(X̂n)

]
= O(n−β)

where O(n−β) ≤ cn−β. Here C2β+2 denotes the number 2β + 2 of times f : Rd → R is
differentiable.

14

A direct consequence of [4, Proposition 2] yields for the rectangle scheme, a weak
convergence rate of β = 1. This implies that as we increase the number of discretisation
points n, the error in the expected value of the function f(VIX2

T), where VIX
2
T is simulated

using the rectangle scheme, decreases proportionally to 1
n .∣∣∣E [φ (VIX2

T

)
− φ

(
VIX2,Rn

T

)]∣∣∣ = O
(
1

n

)
, (1.5.3)

This means that for each doubling of the number of discretisation points, the weak error
is halved. While this rate of convergence is sufficient for many practical purposes, it can
be limiting when high precision is necessary. This is because it would require a very large
number of discretisation points to achieve a small weak error.

Similarly, the trapezoidal scheme offers a more refined approximation by averaging the
function values at both endpoints of each discretisation interval. This leads to an improved
weak convergence rate of β = 1 +H.∣∣∣E [φ (VIX2

T

)
− φ

(
VIX2,Tn

T

)]∣∣∣ = O
(

1

n1+H

)
. (1.5.4)

The trapezoidal scheme’s provides a more balanced and accurate representation of the
process over each discretisation interval. This balanced approach reduces the overall bias
in the approximation, leading to faster convergence.

15

Chapter 2

Monte Carlo Methods

2.1 Standard Monte Carlo

The fundamental idea behind the Monte Carlo method is to use randomness to solve
problems that might be deterministic in principle. By repeatedly sampling random vari-
ables and averaging the results, the method approximates the desired quantities with high
accuracy, given sufficient samples.

Definition 2.1.1. Let X be a random variable with probability distribution P . The goal
is to estimate µ = E[f(X)], the expected value of some function f of X. The Monte Carlo
estimator for µ using M samples is given by

µ̂M =
1

M

M∑
i=1

f(Xi),

where Xi are i.i.d. samples drawn from P .

Thus, the Monte Carlo estimator for the expectation E
[
φ(VIX2

T)
]
is defined as

P̂Dn =
1

M

M∑
m=1

φ
(
VIX2,Dn

T,m

)
, (2.1.1)

where
(
VIX2,Dn

T,m

)
1≤m≤M

are i.i.d samples of VIX2,Dn

T .

Now, we will examine the mean squared error (MSE) of the Monte Carlo estimator
P̂Dn . The MSE is an essential metric used to measure the accuracy of an estimator. It is
defined as the expected value of the square of the difference between the estimated value
and the true value, and it is a combination of both bias and variance of the estimator.
More precisely, it is given by

MSE = E
[(

E
[
φ
(
VIX2

T

)]
− P̂Dn

)2]
= E

[(
φ
(
VIX2

T

)
− φ

(
VIX2,Dn

T

))]2
︸ ︷︷ ︸

(Bias)2

+Var
(
P̂Dn

)
︸ ︷︷ ︸

Variance

, (2.1.2)

where the variance of estimator is given by

Var
(
P̂Dn

)
=

1

M
Var

(
φ
(
VIX2,Dn

T

))
As in Equation (2.1.2) the MSE can be decomposed into two parts:

16

(i) Bias Error : The error due to the difference between the exact value φ
(
VIX2

T

)
and

the approximation φ
(
VIX2,Dn

T

)
.

(ii) Statistical Error : The error due to the variance of the estimator.

For the estimator P̂Dn to be optimal, we want the MSE to smaller than ε2, where ε > 0
is a given threshold. For an optimal bias-variance trade-off we impose

Var
(
P̂Dn

)
≤ ε2

2
, which will give us the optimal samples M,

E
[(

φ
(
VIX2

T

)
− φ

(
VIX2,Dn

T

))]2
≤ ε2

2
, which will give us the steps n.

It was shown in [4, Section 3.1] that using the weak errors given in equations (1.5.3) and
(1.5.4), we obtain the optimal discretisation steps n. For the rectangle scheme we set

n = O
(
ε−1
)
, and for the trapezoidal scheme we set n = O

(
ε−

1
1+H

)
. It was also shown

that the optimal samples needed to achieve an MSE smaller than ε are M = O
(
ε−2
)
, for

both discretisation schemes.

Finally, the computational complexity of the standard Monte Carlo method is given
by the cost of generating a sample of VIX2,Dn

T multiplied by the number of samples M .
Thus for the rectangle scheme we have

CostRMC = O(ε−2)×O(n2) = O(ε−2)×O(ε−2) = O(ε−4).

This indicates that as the desired accuracy ε becomes smaller, the computational cost
increases rapidly. Specifically, halving the error tolerance, results in the computational
cost increasing by a factor of 16. This is a significant computational burden, especially
for very small ε, which is often required in financial simulations where high precision
is necessary. While the rectangle scheme is straightforward to implement, its inefficiency
makes it less attractive for scenarios where high accuracy is needed. Therefore, this result is
generally not good for practical applications unless computational resources are abundant
or the required accuracy is relatively low. For the trapezoidal scheme the total cost is
given by

CostTMC = O(ε−2)×O(n2) = O(ε−2)×O
(
ε−2 1

1+H

)
= O

(
ε−2(1+ 1

1+H
)
)
.

This shows a significant improvement over the rectangle scheme. For typical values of H
(e.g., H ≈ 0.1), the cost scaling is better than O(ϵ−4), often closer to O(ϵ−3). This means
that the computational cost increases less rapidly with a decreasing ϵ, making it a more
efficient choice. Although, this complexity is still far from being optimal.

2.2 Multilevel Monte Carlo

The Multilevel Monte Carlo (MLMC) method represents a significant advancement in
computational finance and numerical simulations, offering a more efficient alternative to
traditional Monte Carlo methods. The core idea behind MLMC is to decompose the prob-
lem across multiple levels of resolution. By doing so, it capitalises on the fact that coarse
simulations are cheaper to compute but less accurate, while fine simulations are more accu-
rate but computationally expensive. By combining these different levels, MLMC achieves
a balance, reducing the overall computational cost while maintaining high accuracy.

17

2.2.1 MLMC Simulation

We first adopt the notation from [4]. We consider L ∈ N∗ and define the sequences
n = (n0, . . . , nL) and M = (M0, . . . ,ML), where n represents a series of time steps and M
represents the corresponding Monte Carlo sample sizes. These sequences are structured
so that the number of time steps and sample sizes increase across levels. For convenience,
we define

PD
ℓ := φ

(
VIX

2,Dnℓ
T

)
. (2.2.1)

for each ℓ = 0, . . . , L. In this context, ℓ denotes the discretisation level, and PD
ℓ serves as an

approximation of the VIX option payoff φ(VIX2
T) at the specified level ℓ and discretisation

scheme D. Starting with an initial value n0 ∈ N∗, we set

nℓ = n02
ℓ, ℓ = 0, . . . , L

This doubling pattern implies that the number of time steps is doubled at each successive
level. We now combine what is above with the notation from [13]. We define for ℓ =
0, . . . , L

Yℓ := PD
ℓ − PD

ℓ−1 with Y0 := PD
0 , (2.2.2)

η2ℓ := Cost(Yℓ) = n2
ℓ , (2.2.3)

∆2
ℓ := Var(Yℓ). (2.2.4)

where Cost(Yℓ) is the cost of generating Yℓ. The MLMC method was first presented in [8]
and later applied for PD

ℓ in [4]. The expectation of the finest level PD
L is given by

E
[
PD
L

]
= E

[
PD
0

]
+

L∑
ℓ=1

E
[
PD
ℓ − PD

ℓ−1

]
. (2.2.5)

Using standard Monte Carlo to approximate E
[
PD
0

]
and each term E

[
PD
ℓ − PD

ℓ−1

]
, results

in the multilevel estimator for the expectation E
[
φ(VIX2

T)
]
given by

P̂D
L :=

1

MD
0

MD
0∑

m=1

PD,m
0 +

L∑
ℓ=1

 1

MD
ℓ

MD
ℓ∑

m=1

(
PD,m
ℓ − PD,m

ℓ−1

) , (2.2.6)

Now, we will examine the mean squared error (MSE) of the MLMC, which is given by

MSE = E
[(

P̂D
L − E[P]

)2]
=
(
E[PD

L]− E[P]
)2︸ ︷︷ ︸

(Bias)2

+Var
(
P̂D
L

)
︸ ︷︷ ︸
Variance

(2.2.7)

where the variance of estimator is given by

Var
(
P̂D
L

)
=

L∑
ℓ=0

Var (Yℓ)

Mℓ
=

L∑
ℓ=0

∆2
ℓ

Mℓ

For the estimator P̂D
L to be optimal, we want the MSE to smaller than ε2, where ε > 0 is

a given threshold. For an optimal bias-variance trade-off we impose

(i) Var
(
P̂D
L

)
≤ ε2

2 , which will give us the optimal samples MD
ℓ , ℓ = 0, . . . , LD,

(ii)
(
E[PD

L]− E[P]
)2 ≤ ε2

2 , which will give us the optimal levels LD.

18

2.2.2 Computational Complexity

The computational complexity of the MLMC under the rectangle and trapezoidal scheme
was derived in [4, Theorem 8]. The theorem is as follows.

Theorem 2.2.1. Assume that the function φ is Lipschitz, and let n0 be a positive natural
number. For any given tolerance ε > 0, there exists an initial sample size MR

0 and a num-
ber of levels LR for the rectangle scheme (MT

0 and LT for the trapezoidal scheme) such that

the corresponding multilevel estimator P̂R
L (and P̂ T

L), defined in equation (2.2.6), achieves
an MSE < ϵ2. with computational complexity O(ln(ε)ε−2) (and O(ε−2) respectively). For
the rectangle scheme, we set

nℓ = n02
ℓ, MR

ℓ = MR
0 2−2ℓ, for all ℓ = 0, . . . , LR, (2.2.8)

and for the trapezoidal scheme, we set

nℓ = n02
ℓ, MT

ℓ = MT
0 2−(2+H)ℓ, for all ℓ = 0, . . . , LT . (2.2.9)

The theorem was proved using the MLMC complexity theorem in [8, Theorem 1].
Adopting the notation in [13] as before, we present the theorem.

Theorem 2.2.2 (MLMC Complexity theorem). Suppose that there are positive constants
c1, c2, c3, α, β, γ with 2α ≥ min(β, γ) such that, for ℓ = 0, 1, 2, . . . L,

(i)
∣∣E[PD

ℓ − P]
∣∣ ≤ c12

−αℓ,

(ii) ∆2
ℓ ≤ c22

−βℓ,

(iii) η2ℓ ≤ c32
γℓ.

Then there exists a positive constant c4 such that, for any ε < 1/e there exists an
integer L such that P̂D

L (as defined by (2.2.6)) has mean squared error with bound

E[(P̂D
L − E[P])2] < ε2,

with a computational complexity C with bound

C ≤


c4ε

−2, β > γ,

c4ε
−2(log ε)2, β = γ,

c4ε
−2− γ−β

α , β < γ.

The parameter α reflects the rate at which the bias, which is the error due to approxi-
mation decreases as the level of discretisation becomes finer. Specifically, α indicates how
fast the bias converges to zero as ℓ increases. A higher value of α means that the bias
decreases rapidly, allowing for fewer levels or a coarser discretisation to achieve a given
accuracy, thus reducing computational cost. The parameter β describes the rate of decay
of the variance of the difference between successive levels of discretisation as the level ℓ
increases. A larger β results in faster variance reduction, which enables fewer samples to
be required at finer levels, thereby lowering the overall computational effort. The param-
eter γ is associated with the computational cost of generating a sample at each level ℓ.
Specifically, γ indicates how the cost of computation scales as ℓ gets larger. Higher values
of γ imply that the cost increases significantly with each finer level. These three parame-
ters collectively influence the efficiency of the MLMC method by controlling the trade-off
between bias, variance, and computational cost across different levels of approximation.

19

For the rectangle scheme, it is shown in [4] that α = 1 derived using the weak error
in (1.5.3), β = 2 derived using the strong error in (1.5.1), and γ = 2 since the cost of
generating a sample of Yℓ is O

(
n2
)
. Thus, we observe that 2α ≥ min(β, γ) and β = γ,

which gives us a computational complexity of O
(
ln(ϵ)2ϵ−2

)
.

Similarly for the trapezoidal scheme, it is shown in [4] that α = 1+H derived using the
weak error in (1.5.4), β = 2(1+H) derived using the strong error in (1.5.2), and γ = 2 since
the cost of generating a sample of Yℓ is the same for both discretisation schemes. Thus,
we observe that 2α ≥ min(β, γ) and β > γ, which gives us a computational complexity of
O
(
ϵ−2
)
.

To better understand how equations (2.2.8) and (2.2.9) are derived we first introduce
E2

L as the total cost of computing P̂D
L where

E2
L =

L∑
ℓ=0

Mℓ η
2
ℓ . (2.2.10)

To find the optimal samples we use Lagrange multipliers to solve the constrained optimi-
sation problem

min
M0,...,ML

E2
L such that Var

(
P̂D
L

)
≤ ε2

2
,

where we attempt to minimise the cost for a given variance. Thus, the Lagrangian can be
expressed as

L =

L∑
ℓ=0

MD
ℓ η2ℓ + λ

(
L∑

ℓ=0

∆2
ℓ

MD
ℓ

− ε2

2

)
. (2.2.11)

We have
∂L

∂MD
ℓ

= 0 ⇐⇒ η2ℓ − λ
∆2

ℓ(
M θ,D

ℓ

)2 = 0

Solving for MD
ℓ we get

MD
ℓ =

√
λ

√
∆2

ℓ

η2ℓ
=

√
λ
∆ℓ

ηℓ
(2.2.12)

Substituting this to the variance term of (2.2.11) gives us the Lagrange multiplier λ.
Specifically we get,

L∑
ℓ=0

∆2
ℓ

MD
ℓ

=
ε2

2
⇒

L∑
ℓ=0

∆2
ℓ

√
λ

√
∆2

ℓ

η2ℓ

=
ε2

2
.

Rearranging the terms, gives us

√
λ =

2

ε2

L∑
ℓ=0

√
∆2

ℓη
2
ℓ =

2

ε2

L∑
ℓ=0

∆ℓηℓ.

Substituting the Lagrange multiplier λ into equation (2.2.12), we get

MD
ℓ =

(
2

ε2

L∑
ℓ=0

∆ℓηℓ

)
∆ℓ

ηℓ
.

Denote EL =
(

2
ε2
∑L

ℓ=0∆ℓηℓ

)
, then we write

MD
ℓ =

EL∆ℓ

ηℓ
.

20

Rectangle scheme: Using conditions (ii) and (iii) in Theorem 2.2.2 for the rectangle
scheme we get

MR
ℓ ≤

(
2
√
c2
√
c3

ε2

L∑
ℓ=0

2−ℓ2ℓ

) √
c2√
c3
2−ℓ2−ℓ =

(
2c2
ε2

L∑
ℓ=0

1

)
2−2ℓ =

2c2
ε2

(L+ 1)2−2ℓ.

We achieve MR
ℓ = MR

0 2−2ℓ, where MR
0 =

⌈
2c2
ε2

(L+ 1)
⌉
.

Finally, to find the optimal number of levels LR, we set the square bias to be less than or
equal to ε2

2 (which corresponds to condition (1) of theorem (2.2.2)), with α = 1 and we
get

c212
−2LR ≤ ε2

2
⇐⇒ LR ≥

ln
(√

2c1ε
−1
)

ln(2)
.

Thus, we set LR =

⌈
ln(

√
2c1ε−1)
ln(2)

⌉
.

Trapezoidal scheme: Using conditions (2) and (3) from theorem (2.2.2) for the trape-
zoidal scheme we get that

MR
ℓ ≤

(
2
√
c2
√
c3

ε2

L∑
ℓ=0

2−(1+H)ℓ2ℓ

) √
c2√
c3
2−(1+H)ℓ2−ℓ =

(
2c2
ε2

L∑
ℓ=0

2−Hℓ

)
2−(2+H)ℓ

=
2c2
ε2

(
1− 2−H(L+1)

1− 2−H

)
2−(2+H)ℓ.

and we achieve MR
ℓ = MR

0 2−(2+H)ℓ where MT
0 =

⌈
2c2
ε2

(
1−2−H(L+1)

1−2−H

)⌉
.

Finally, to find the optimal number of levels LT , we set the square bias to be less than or
equal to ε2

2 , with α = 1 +H and we get

c212
−2(1+H)LT ≤ ε2

2
⇐⇒ LT ≥

ln

((√
2c1ε

−1
) 1

1+H

)
ln(2)

.

Thus, we set LT =


ln

(
(
√
2c1ε−1)

1
1+H

)
ln(2)

.
2.3 Weighted Multilevel Monte Carlo

In this section, we extend the MLMC method by incorporating a weighting scheme that
optimises computational efficiency, particularly when correlations between different levels
are not sufficiently high. The WMLMC method offers a refined approach that adjusts for
these correlations, reducing variance without altering the asymptotic complexity of the
original MLMC method.

2.3.1 Recursive formulation of the MLMC

The control variate method is a technique used in Monte Carlo simulations to increase the
accuracy of an estimate by reducing its variance. It involves using a secondary variable,
called the control variate, that is correlated with the main variable of interest and whose
expected value is already known.

21

Definition 2.3.1 (Control variate). Suppose (Xi, Yi)
n
i=1 are independent and identically

distributed samples of (X,Y) and E [Y] is known. The control variate with parameter c
is given by

Xn(c) = Xn + c
(
Y n − E[Y]

)
=

1

n

n∑
i=1

Xi + c

(
1

n

n∑
i=1

Yi − E[Y]

)
(2.3.1)

We can find the optimal c by minimising the variance of the control variate with respect
to c, and by using the optimal c we can show that the variance of the control variate is
less than the variance of the standard monte carlo estimator. The variance of the control
variate is given by

Var
[
Xn(c)

]
=

1

n
Var [X + c (Y − E[Y])] =

1

n

(
Var [X] + 2cCov [X,Y] + c2Var [Y]

)
(2.3.2)

Minimising the variance with respect to c yields the optimal choice

c̃ = −Cov [X,Y]

Var [Y]
.

Substituting c̃ back into (2.3.2) we get

Var
[
Xn(c)

]
=

1

n

(
Var [X]− Cov [X,Y]2

Var [Y]

)
≤ Var

[
Xn

]
As shown in [8, Section 1.1] the optimal parameter c̃ can also be expressed as

c̃ = −ρ

√
Var(X)

Var(Y)

where ρ is the correlation between X and Y , and the variance of the estimator is reduced
by 1− ρ2.

To fully understand the idea behind the addition of weights to MLMC estimator we
first need to express the MLMC recursively. By doing this we can show that, at its core,
the MLMC can be viewed as a sequence of control variates, each one designed to reduce the
variance of the estimator at the next finer level. The idea is that, by carefully selecting
these control variates, we can minimise the overall variance of the estimator, thereby
achieving more accurate results with fewer computational resources. From equation (2.2.6)
we have that

E
[
PD
L

]
= E

[
PD
0

]
+

L∑
ℓ=1

E
[
PD
ℓ − PD

ℓ−1

]
=

L∑
ℓ=0

E [Yℓ] .

Expanding the last term of the summation across the discretisation levels we get

E
[
PD
L

]
= E [YL] +

L−1∑
ℓ=0

E [Yℓ] .

We observe that the last term is precisely E
[
PD
L−1

]
, so the equation becomes

E
[
PD
L

]
= E [YL] + E

[
PD
L−1

]
.

Using standard Monte Carlo to approximate E [YL] gives

P̂D
L =

1

MD
L

MD
L∑

m=1

(
PD,m
L − PD,m

L−1

)
+ E

[
PD
L−1

]
=

1

MD
L

MD
L∑

m=1

PD,m
L −

 1

MD
L

MD
L∑

m=1

PD,m
L−1 − E

[
PD
L−1

] . (2.3.3)

22

Comparing equations (2.3.3) and (2.3.1), we notice that the MLMC estimator can be seen
as a nested series of control variates, also shown in [13, Section 2.1], that are used to lower
the variance of the higher level estimator. The WMLMC method extends this idea by
introducing weights that further optimise the variance reduction process.

2.3.2 WMLMC Simulation

From the recursive formulation of the MLMC we have that

P̂D
L =

1

MD
L

MD
L∑

m=1

PD,m
L −

 1

MD
L

MD
L∑

m=1

PD,m
L−1 − E

[
PD
L−1

]
Given a set of weights θ = (θ0, . . . , θL), with θ0 = 0, we define the WMLMC estimator

for the expectation E
[
φ(VIX2

T)
]
recursively. The weights θ are applied similarly to the

way parameter c is applied in equation (2.3.1). Thus, we have

E
[
P θ,D
L

]
=

1

MD
L

MD
L∑

m=1

PD,m
L − θL

 1

MD
L

MD
L∑

m=1

PD,m
L−1 − E

[
PD
L−1

] .

Given this recursive form of the WMLMC, we simulate it as with MLMC in (2.2.6), such
that

P̂ θ,D
L =

1

MD
L

MD
L∑

m=1

PD,m
L − θL

1

MD
L

MD
L∑

m=1

PD,m
L−1 + θLE

[
PD
L−1

]

=
1

MD
L

MD
L∑

m=1

PD,m
L − θLP

D,m
L−1 + θL

 1

MD
L−1

MD
L−1∑

m=1

(
PD,m
L−1 − θL−1P

D,m
L−2

)
+ θL−1E

[
PD
L−2

] .

To simplify the calculations, we now define the equivalent of Equation (2.2.2) for the
weighted scheme, such that, for ℓ = 0, . . . , L, we have

Y θ
ℓ := PD

ℓ − θℓP
D
ℓ with Y θ

0 = PD
0 , (2.3.4)

η2ℓ := Cost(Y θ
ℓ) = Cost(Yℓ) = n2, (2.3.5)

(∆θ
ℓ)

2 := Var(Y θ
ℓ). (2.3.6)

Substituting this into P̂ θ,D
ℓ above, yields

P̂ θ,D
L =

1

MD
L

MD
L∑

m=1

Y θ
L + θL

1

MD
L−1

MD
L−1∑

m=1

Y θ
L−1 + θLθL−1E

[
PD
L−2

]
.

If we keep expanding until for all ℓ = 0, . . . , L we arrive to the formula

P̂ θ,D
L =

L∑
ℓ=0

(
ℓ∏

k=ℓ+1

θk

)
1

MD
ℓ

MD
ℓ∑

m=1

Y θ
ℓ , for ℓ = 0, . . . , L.

Finally, the resulting WMLMC estimator for the expectation E
[
φ(VIX2

T)
]
is defined as

P̂ θ,D
L :=

L∑
ℓ=0

ΘL
ℓ

1

M θ,D
ℓ

Mθ,D
ℓ∑

m=1

(
PD,m
ℓ − θℓP

D,m
ℓ−1

)
, (2.3.7)

23

where the added weights are given by

Θℓ
ℓ = 1, and ΘL

ℓ =
L∏

k=ℓ+1

θk, 0 ≤ ℓ ≤ L.

Similarly to the MLMC the total cost of computing P̂ θ,D
L denoted by (Eθ

L)
2 is given

by the following expression:

(Eθ
L)

2 =
L∑

ℓ=0

M θ,D
ℓ η2ℓ , (2.3.8)

It is shown in [13, Lemma 2.5] that the computational (square root) effort needed to

compute P̂ θ,D
L with variance ε2

2 is

ẼL ≤ σL
√
2

ε

L∑
l=1

ηl

√
1− ρ2l , (2.3.9)

and in [13, Proposition 2.2, Corollary 2.3] it is shown that to achieve this we need to set

θ̃ℓ =
ρℓσℓ
σℓ−1

− sgn(ρℓ)
ε∆̃ℓẼℓ−1√
2σ2

ℓ−1ηℓ
. (2.3.10)

Above we denoted the optimal weights by θ̃ℓ and the corresponding optimal values of
Eθ

ℓ and ∆θ
ℓ by Ẽℓ and ∆̃ℓ, respectively. Finally, we denoted ρℓ := Cor

(
PD
ℓ , PD

ℓ−1

)
, and

σ2
ℓ := Var

(
PD
ℓ

)
.

Now, we examine the MSE of the WMLMC, used to measure the accuracy of an
estimator. It is given by

MSE = E
[(

P̂ θ,D
L − E[P]

)2]
=
(
E[PD

L]− E[P]
)2︸ ︷︷ ︸

(Bias)2

+Var
(
P̂ θ,D
L

)
︸ ︷︷ ︸

Variance

(2.3.11)

where the variance of the estimator is given by

Var
(
P̂ θ,D
L

)
= Var

 L∑
ℓ=0

Θ̃L
ℓ

1

M θ,D
ℓ

Mθ,D
ℓ∑

m=1

Y θ
ℓ

 =
L∑

ℓ=0

Var

Θ̃L
ℓ

1

M θ,D
ℓ

Mθ,D
ℓ∑

m=1

Y θ
ℓ

 ,

and by independence we get

Var
(
P̂ θ,D
L

)
=

L∑
ℓ=0

(
Θ̃L

ℓ

)2
∆̃2

ℓ

M θ,D
ℓ

.

For the estimator P̂D
L to be optimal, we want the MSE to smaller than ε2, where ε > 0 is

a given threshold. For an optimal bias-variance trade-off we impose

(i) Var
(
P̂ θ,D
L

)
≤ ε2

2 , which will give us the optimal samples M θ,D
ℓ , ℓ = 0, . . . , LD.

(ii)
(
E[PD

L]− E[P]
)2 ≤ ε2

2 , which will give us the optimal levels LD.

24

Chapter 3

Theoretical Results

This chapter focuses on the theoretical aspects of the Weighted Multilevel Monte Carlo
method, building on the concepts and methods introduced in earlier sections. The primary
goal of this chapter is to establish the computational complexity of the WMLMC method
and compare it with the traditional MLMC approach.

3.1 WMLMC Computational Complexity

To establish the computational complexity of WMLMC for pricing VIX options, we begin
by presenting the WMLMC complexity theorem given in [13, Theorem 2.6]. This theorem
is the equivalent of Theorem 2.2.2 but for the WMLMC. It is foundational, as it sets the
stage for proving the more specific results that follow. It provides the general conditions
under which the WMLMC method achieves an MSE within a specified tolerance ε, while
maintaining an optimal computational complexity.

Theorem 3.1.1 (WMLMC complexity theorem). Suppose that there are positive constants
c̃1, c̃2, c̃3, α, β, γ with 2α ≥ min(β, γ) such that, for ℓ = 0, 1, 2, . . .,

1. |E[Pℓ − P]| ≤ c̃12
−αℓ,

2.
√

1− ρ2ℓ ≤ c̃22
−βℓ,

3. ηℓ ≤ c̃32
γℓ.

Then there exists a positive constant c̃4 such that, for any ε < 1/e there exists an

integer L such that P̂ θ,D
L (as defined by (2.3.7)) has mean squared error with bound

E[(P̂ θ,D
L − E[P])2] < ε2,

with a computational complexity C with bound

C ≤


c̃4ε

−2, β > γ,

c̃4ε
−2(log ε)2, β = γ,

c̃4ε
−2− γ−β

α , β < γ.

The conditions outlined in this theorem, including the relationships between the con-
stants α, β, and γ, are crucial to ensure that the WMLMC method performs efficiently.
As in the MLMC, α represents the rate at which the bias decreases as the level of dis-
cretisation becomes finer. The parameter β affects the rate of which the correlation of
successive levels approaches one, as ℓ increases. From the relationship of ∆θ

ℓ and ρℓ given

25

in [13, Proposition 2.2], β subsequently affects the rate of decay of the variance of the
difference between successive levels of discretisation as the levels increase. The parameter
γ (same as in the MLMC) indicates the rate of which the cost of generating a sample
increases with level ℓ.

Theorem 3.1.2. Assume that the function φ is Lipschitz, and let n0 be a positive natural
number. For any given tolerance ε > 0, there exists an initial sample size M θ,R

0 and a

number of levels LR for the rectangle scheme (M θ,T
0 and LT for the trapezoidal scheme)

such that the corresponding multilevel estimator P̂ θ,R
L (and P̂ θ,T

L), defined in equation
(2.3.7), achieves an MSE < ϵ2. with computational complexity O(ln(ε)ε−2) (and O(ε−2)
respectively). For the rectangle scheme, we set

nℓ = n02
ℓ, M θ,R

ℓ = M θ,R
0 2−2ℓ, for all ℓ = 0, . . . , LR, (3.1.1)

and for the trapezoidal scheme, we set

nℓ = n02
ℓ, M θ,T

ℓ = M θ,T
0 2−(2+H)ℓ, for all ℓ = 0, . . . , LT . (3.1.2)

Proof of Theorem 3.1.2. Step 1: Finding parameters α, β, γ along with parameters
c̃1, c̃2, c̃3 for both discretisation schemes.

For D = R: Assuming that the cost of generating a sample of Y θ
ℓ is the same as the

cost of generating a single-level sample Pℓ, we have that Cost(Y θ
ℓ) = Cost(Yℓ) = O(n2

ℓ)
which gives

ηℓ ≤
√
c32

ℓ.

Thus, we set γ = 1 and c̃3 =
√
c3.

Using the variance formula for the difference of two correlated variables

∆2
ℓ = σ2

ℓ + σ2
ℓ−1 − 2ρℓσℓσℓ−1 = σ2

ℓ (1− ρ2ℓ) + (σℓ−1 − ρℓσℓ)
2 ≥ σ2

ℓ (1− ρ2ℓ) ≥ σ2
L(1− ρ2ℓ).

Thus, we get √
(1− ρ2ℓ) ≤

∆ℓ

σL
≤

√
c2

σL
2−ℓ, (3.1.3)

and we set β = 1 and c̃2 =
√
c2.

Since condition 1 of Theorem 2.2.2 involves the bias of the discretisation scheme we set,
same as in the proof of [4, Theorem 8], α = 1 and c̃1 = c1.
We observe that 2α > min(β, γ), and β = γ, which means we are in the second case of the
complexity theorem (Theorem 3.1.1). We conclude that the computational complexity of
the WMLMC under the rectangle scheme is O

(
ln(ϵ)2ϵ−2

)
.

For D = T : For the trapezoidal scheme we proceed similarly as for the rectangle
scheme. Since the cost of generating a single-level Pℓ is the same for both discretisa-
tion schemes we have

ηℓ ≤
√
c32

ℓ.

Thus, we set γ = 1 and c̃3 =
√
c3.

In addition, we have √
(1− ρ2ℓ) ≤

∆ℓ

σL
≤

√
c2

σL
2−(1+H)ℓ,

and we set β = 1 +H and c̃2 =
√
c2.

The bias of the trapezoidal scheme gives us α = 1 +H and c̃1 = c1.
We observe that 2α > min(β, γ), and β > γ, which means we are in the first case of the
complexity theorem (Theorem 3.1.1). We conclude that the computational complexity of

26

the WMLMC under the trapezoidal scheme is O(ϵ−2).

Step 2: Finding the optimal number of samples M θ,R
ℓ and M θ,T

ℓ along with

parameters M θ,R
0 ,M θ,R

0 .
For D = R: To find the optimal samples we use Lagrange multipliers to solve the

constrained optimisation problem:

min
M0,...,ML

(Eθ
L)

2, such that Var
(
P̂ θ,D
L

)
≤ ε2

2
.

This means that we minimise the cost for a given variance. Thus, the Lagrangian for the
problem can be expressed as

L =
L∑

ℓ=0

M θ,R
ℓ η2ℓ + λ

(
L∑

ℓ=0

(Θ̃L
ℓ)

2∆̃2
ℓ

M θ,R
ℓ

− ε2

2

)
,

where we have

∂L
∂M θ,R

ℓ

= 0 ⇒ η2ℓ − λ

(
Θ̃L

ℓ

)2
∆̃2

ℓ(
M θ,R

ℓ

)2 = 0.

Solving for M θ,R
ℓ , we get

M θ,R
ℓ =

√
λ

√√√√(Θ̃L
ℓ

)2
∆̃2

ℓ

η2ℓ
=

√
λ

∣∣∣Θ̃L
ℓ

∣∣∣ ∆̃ℓ

ηℓ
. (3.1.4)

Substituting this to the variance formula gives us the Lagrange multiplier λ. Specifically,
we have

L∑
ℓ=0

(Θ̃L
ℓ)

2∆̃2
ℓ

M θ,R
ℓ

=
ε2

2
⇒

L∑
ℓ=0

(Θ̃L
ℓ)

2∆̃2
ℓ

√
λ

√
(Θ̃L

ℓ)
2
∆̃2

ℓ

η2ℓ

=
ε2

2
.

Rearranging terms, we obtain

√
λ =

2

ε2

L∑
ℓ=0

√
(Θ̃L

ℓ)
2∆̃2

ℓη
2
ℓ =

2

ε2

L∑
ℓ=0

∣∣∣Θ̃L
ℓ

∣∣∣ ∆̃ℓηℓ.

Substituting the Lagrange multiplier into equation (3.1.4), we get

M θ,R
ℓ =

(
2

ε2

L∑
ℓ=0

∣∣∣Θ̃L
ℓ

∣∣∣ ∆̃ℓηℓ

) ∣∣∣Θ̃L
ℓ

∣∣∣ ∆̃ℓ

ηℓ
.

From [13, Lemma 2.5], we have the relationship

2

ε2

L∑
ℓ=0

∣∣∣Θ̃L
ℓ

∣∣∣ ∆̃ℓηℓ ≤
2σL
ε2

L∑
ℓ=1

ηℓ

√
1− ρ2ℓ and

∣∣∣Θ̃L
ℓ

∣∣∣ ∆̃ℓ ≤ σL

√
1− ρ2ℓ ≤ ∆ℓ.

Thus, we write

M θ,R
ℓ ≤

(
2σL
ε2

L∑
ℓ=1

ηℓ

√
1− ρ2ℓ

)
∆ℓ

ηℓ
=

2
√
c2
√
c3

ε2

(
L∑

ℓ=1

2ℓ2−ℓ

) √
c22

−ℓ

√
c32ℓ

=
2c2
ε2

(
L∑

ℓ=1

1

)
2−2ℓ

=
2c2L

ε2
2−2ℓ.

27

Finally, we achieve M θ,R
ℓ = M θ,R

0 2−2ℓ where M θ,R
0 =

⌈
2c2L
ε2

⌉
.

For D = T : For the trapezoidal scheme we proceed similarly, and we see

M θ,T
ℓ ≤

(
2σL
ε2

L∑
ℓ=1

ηℓ

√
1− ρ2ℓ

)
∆ℓ

ηℓ
=

2
√
c2
√
c3

ε2

(
L∑

ℓ=1

2ℓ2−(1+H)ℓ

) √
c22

−(1+H)ℓ

√
c32ℓ

=
2c2
ε2

(
L∑

ℓ=1

2−Hℓ

)
2−(2+H)ℓ

=
2c2
ε2

(
1− 2−H(L+1)

1− 2−H
− 1

)
2−(2+H)ℓ

Finally, we achieve M θ,T
ℓ = M θ,T

0 2−(2+H)ℓ where M θ,T
0 =

⌈
2c2
ε2

(
1−2−H(L+1)

1−2−H − 1
)⌉

.

Step 3: Finding the optimal number of levels LR and LT .

For D = R: To find the optimal number of levels LR, we set the square bias to be less
than or equal to ε2

2 (which corresponds to condition (i) of Theorem 3.1.1) with α = 1 and
we get

c212
−2LR ≤ ε2

2
⇐⇒ LR ≥

ln
(√

2c1ε
−1
)

ln(2)
.

Thus, we set LR =

⌈
ln(

√
2c1ε−1)
ln(2)

⌉
.

For D = T : To find the optimal number of levels LT , we set the square bias to be less
than or equal to ε2

2 with α = 1 +H and we get

c212
−2(1+H)LT ≤ ε2

2
⇐⇒ LT ≥

ln

((√
2c1ε

−1
) 1

1+H

)
ln(2)

.

Thus, we set LT =


ln

(
(
√
2c1ε−1)

1
1+H

)
ln(2)

.
3.2 Comparison with MLMC

3.2.1 Variance reduction

Recall that under the MLMC the optimal samples are given by MR
ℓ = MR

0 2−2ℓ using the
rectangle scheme and by MT

ℓ = MT
0 2−(2+H)ℓ when using the trapezoidal scheme. Under

the WMLMC the optimal samples are given similarly by M θ,R
ℓ = M θ,R

0 2−2ℓ when using

the rectangle scheme and by M θ,T
ℓ = M θ,T

0 2−(2+H)ℓ when using the trapezoidal scheme.
We assume that

(i) LR = LT = 3,

(ii) H = 0.1, c2 = 0.01, ε = 0.001,

(iii) MR
0 =

⌈
2
ε2
(LR + 1)

⌉
, MT

0 =
⌈

2
ε2

(
1−2−H(LT +1)

1−2−H

)⌉
,

(iv) M θ,R
0 =

⌈
2LR
ε2

⌉
, M θ,T

0 =
⌈

2
ε2

(
1−2−H(LT +1)

1−2−H − 1
)⌉

.

28

Number of samples needed to achieve Var(P̂R
L) ≤ ε2

2 (resp. Var(P̂ θ,T
L) ≤ ε2

2)

Rectangle Scheme Trapezoidal Scheme

Discretisation Level MLMC WLMC MLMC WLMC

ℓ = 0 80000 60000 72316 52316

ℓ = 1 20000 15000 16868.3 12203.1

ℓ = 2 5000 3750 3934.6 2846.4

ℓ = 3 1250 937.5 917.7 663.9

Table 3.1: Number of samples required for MLMC and WMLMC to achieve a target
variance of ε/2 under rectangle and trapezoidal discretisation schemes for LR = LT = 3.

In table 3.1 we observe the corresponding number of samples needed for both the MLMC
and WMLMC estimators, as defined in (2.2.6) and (2.3.7) respectively, to achieve a vari-

ance less than ε2

2 .
At coarser levels, the number of samples are larger and start to decrease as the levels

get finer. On the other hand, the number of time steps are smaller at coarser levels and
increase as the levels get finer. Thus, at smaller levels the dominant term minimising the
MSE is the variance of the estimator. We have shown that at those levels the number of
samples needed to achieve the desired variance when using the WMLMC is smaller than
the MLMC for both discretisation schemes, achieving a more effective variance reduction.

3.2.2 Overall complexity

Now, we examine the overall computational complexity of both the MLMC and WMLMC
methods under both discretisation schemes. The focus is on understanding how the
WMLMC, despite not altering the asymptotic complexity of the method, still offers im-
provements in terms of the total computational cost.

Rectangle scheme: For the MLMC, the total cost is given by Equation (2.2.10),
where

E2
L =

L∑
ℓ=0

MD
ℓ η2ℓ .

For D = R it becomes

E2
L =

L∑
ℓ=0

MR
0 2−2ℓc32

2ℓ = c3M
R
0

L∑
ℓ=0

1 = c3M
R
0 (L+ 1)

Since MR
0 ≤ 2c2

ε2
(L+ 1), in this case the total cost becomes

E2
L ≤ 2c2c3

ε2
(L+ 1)2

From Theorem 2.2.1, we have that E2
L ≤ c4ε

−2(ln ε)2, so we set

c4 =
2c2c3(L+ 1)2

(ln ε)2

For the WMLMC, the total cost is given by equation (2.3.8), where

(Eθ
L)

2 =

L∑
ℓ=0

M θ,D
ℓ η2ℓ .

29

When D = R it becomes

(Eθ
L)

2 =
L∑

ℓ=0

M θ,R
0 2−2ℓc32

2ℓ = c3M
θ,R
0

L∑
ℓ=0

1 = c3M
θ,R
0 (L+ 1).

Since M θ,R
0 ≤ 2c2L

ε2
, the total cost becomes

(Eθ
L)

2 ≤ 2c2c3
ε2

L(L+ 1).

From Theorem 3.1.2 we have that (Eθ
L)

2 ≤ c̃4ε
−2(ln ε)2. Thus we set

c̃4 =
2c2c3L(L+ 1)

(ln ε)2
.

Finally, we have

δ(L) :=
c̃4
c4

=
L(L+ 1)

(L+ 1)2
=

L

L+ 1
< 1,

which implies that c̃4 < c4.

Trapezoidal scheme: For the MLMC, the total cost, given by Equation (2.2.10), be-
comes

E2
L ≤

L∑
ℓ=0

MT
0 2−(2+H)ℓc32

2ℓ = c3M
T
0

L∑
ℓ=0

2−Hℓ = c3M
T
0

(
1− 2−H(L+1)

1− 2−H

)
.

Since MT
0 ≤ 2c2

ε2

(
1−2−H(L+1)

1−2−H

)
, the total cost becomes

E2
L ≤ 2c2c3

ε2

(
1− 2−H(L+1)

1− 2−H

)2

.

From Theorem 2.2.1 we have E2
L ≤ c4ε

−2. Thus we set

c4 = 2c2c3

(
1− 2−H(L+1)

1− 2−H

)2

.

For the WMLMC, the total cost, given by Equation (2.3.8), becomes

(Eθ
L)

2 =
L∑

ℓ=0

M θ,T
0 2−(2+H)ℓc32

2ℓ = c3M
θ,T
0

L∑
ℓ=0

2−Hℓ = c3M
θ,T
0

(
1− 2−H(L+1)

1− 2−H

)
.

Since M θ,T
0 ≤ 2c2

ε2

(
1−2−H(L+1)

1−2−H − 1
)
, the total cost becomes

(Eθ
L)

2 ≤ 2c2c3
ε2

(
1− 2−H(L+1)

1− 2−H
− 1

)(
1− 2−H(L+1)

1− 2−H

)

From Theorem 2.2.1 we have that (Eθ
L)

2 ≤ c̃4ε
−2. Thus we set

c̃4 = 2c2c3

(
1− 2−H(L+1)

1− 2−H
− 1

)(
1− 2−H(L+1)

1− 2−H

)
.

30

Finally, we have

δ(L) :=
c̃4
c4

=
2c2c3

(
1−2−H(L+1)

1−2−H − 1
)(

1−2−H(L+1)

1−2−H

)
2c2c3

(
1−2−H(L+1)

1−2−H

)2 =

(
1−2−H(L+1)

1−2−H − 1
)

(
1−2−H(L+1)

1−2−H

) .

Setting L′ := 1−2−H(L+1)

1−2−H − 1, we see that, similarly to the rectangle scheme,

c̃4
c4

=
L′

L′ + 1
< 1,

which implies that c̃4 < c4.
Figure 3.1 shows the ratio δ(L), which is an indicator of how much the WMLMC

method improves on the MLMC method for a given discretisation scheme. Specifically,
δ(L) reflects the efficiency gain achieved by WMLMC over MLMC at each level L. The

Figure 3.1: Comparison of the ration δ(L) for the rectangle and trapezoidal discretisation
schemes. The graph illustrates how the ratio δ(L) approaches 1 as the finer level of the
estimators increase.

δ(L) ratio for the rectangle scheme starts low and rapidly increases as the number of lev-
els L increases, indicating a significant improvement in efficiency when using WMLMC
compared to MLMC, particularly at lower levels. As L increases further, the ratio ap-
proaches but does not reach 1, implying that WMLMC consistently outperforms MLMC
but with diminishing returns at higher levels. The δ(L) ratio for the trapezoidal scheme
with H = 0.1 starts lower than the rectangle scheme but follows a similar pattern of rapid
improvement at lower levels L. Over time, the Trapezoidal Scheme ratio also approaches
1, though it stays slightly below the Rectangle Scheme, indicating that while WMLMC
improves upon MLMC, the improvement is more pronounced compared to the rectangle
scheme. The dashed line at y = 1 represents the point where WMLMC and MLMC have
equal efficiency. The fact that both curves approach this line but do not cross it suggests
that WMLMC generally provides better performance across all levels.

31

Chapter 4

Numerical Results

In this chapter, we present the numerical results that serve to validate the theoretical
findings discussed in the previous chapters. Specifically, we aim to demonstrate the com-
putational efficiency and accuracy of the WMLMC method in the context of pricing VIX
options.

To effectively illustrate the theoretical results, we employ log-log plots, which provide
a clear and visual representation of the relationship between the MSE and computational
cost of the estimators. These plots are particularly useful because they allow us to confirm
whether the expected power-law relationship between MSE and the cost holds true in
practice.

A log-log plot is a graph where both the x-axis (representing the computational cost)
and the y-axis (representing the MSE) are on logarithmic scales. This type of plot is
advantageous for analysing data that follows a power-law relationship, as it transforms
the power-law function into a linear function. In our context, if the relationship between
the computational cost of the estimators and the MSE follows a power law of the form

MSE ∝ Cost−α ⇐⇒ MSE = K · Cost−α

for a constant K, then by taking the logarithm on both sides, we obtain

ln(MSE) = −α ln(Cost) + ln(K).

This equation is linear with a slope of −α, which should manifest as a straight line on a log-
log plot. The value of the slope provides a direct verification of the theoretical predictions.
If the slope matches the expected value, it confirms that the WMLMC method performs
as predicted, both in terms of reducing the MSE and in terms of computational efficiency.

From theorem 3.1.2 the computational complexity of the WMLMC under the rectangle
scheme is

CostRWMLMC = O
(
ε−2 ln2(ε)

)
To achieve an MSE less than ε2, we consider the log-log relationship

ln(ε2) = −α ln
(
ε−2 ln2(ε)

)
+ ln(K).

Simplifying, we get

−2 ln(ε) = −α(−2 ln(ε) + 2 ln(ln(ε))) + ln(K).

Matching terms, the dominant part −2 ln(ε) gives us α = 1, with a minor correction due
to the logarithmic term 2 ln(ln(ε)). This correction does not significantly alter the slope,

32

which means it is still expected to be close to −1. Similarly for the WMLMC under the
trapezoidal scheme, from theorem 3.1.2, the computational complexity of the estimator is

CostTWMLMC = O(ε−2).

In this case, to achieve an MSE less than ε2, we consider the log-log relationship

ln(ε2) = −α ln
(
ε−2
)
+ ln(K).

Therefore, matching terms gives us α = 1. Thus, the slope of the log-log plot for the
trapezoidal scheme is also expected to be −1.

For all four estimators, we consider an at-the-money VIX call option, using parameters
T = 0.5, H = 0.1, η = 0.5, X0 = ln

(
0.2352

)
,∆ = 1

12 , and n0 = 6. For different values of
ε, the total coat of the MLMC estimator under the rectangle scheme is calculated using
equation (2.2.10), such that

CostRMLMC =

LR∑
ℓ=0

MD
ℓ η2ℓ = c3M

R
0 (LR + 1)

where c3 = n2
0, LR =

⌈
ln(

√
2c1ε−1)
ln(2)

⌉
and MR

0 =
⌈
2c2
ε2

(LR + 1)
⌉
. Under the trapezoidal

scheme the total cost is calculated using

CostTMLMC =

LT∑
ℓ=0

MT
ℓ η2ℓ = c3M

T
0

(
1− 2−H(LT +1)

1− 2−H

)

where LT =


ln

(
(
√
2c1ε−1)

1
1+H

)
ln(2)

 and MT
0 =

⌈
2c2
ε2

(
1−2−H(L+1)

1−2−H

)⌉
. The total cost of the

WMLMC estimator under the rectangle scheme is calculated using equation (2.3.8) such
that

CostRWMLMC =

L∑
ℓ=0

M θ,R
ℓ η2ℓ = c3M

θ,R
0 (L+ 1)

where LR =

⌈
ln(

√
2c1ε−1)
ln(2)

⌉
and M θ,R

0 =
⌈
2c2L
ε2

⌉
. Under the trapezoidal scheme the total

cost is calculated using

CostTWMLMC =

L∑
ℓ=0

M θ,T
ℓ η2ℓ = c3M

θ,T
0

(
1− 2−H(L+1)

1− 2−H

)

where LT =


ln

(
(
√
2c1ε−1)

1
1+H

)
ln(2)

 and M θ,T
0 =

⌈
2c2
ε2

(
1−2−H(L+1)

1−2−H − 1
)⌉

. The parameters c1

and c2 are calculated in [4, Proof of Theorem 8] and are given by c1 = LφΛ(X0, T,∆, H)n−1
0 ,

and c2 = 10L2
φΛ(X0, T,∆, H)2n−2

0 . Lφ is the Lipschitz constant of the function φcall(x) =

(
√
x−K)+ and is given by Lφ = 1

2K [4, Remark 6]. Λ(X0, T,∆, H) was calculated in [4,
Theorem 5] and is given by

Λ(X0, T,∆, H) =
eX0

2

(
eη

2 T2H

2H + eη
2 (T+∆)2H−∆2H

2H − 2eη
2
∫ T
0 tH− 1

2 (∆+t)H− 1
2 dt

)1/2

and the integral is calculated using the scipy.integrate.quad function.

33

To estimate the MSE for each method, we consider the same values of ε and it is
calculated as the average of the squared differences between the estimated prices and a
reference price. Specifically, the MSE is computed using

MSE =
1

NMSE

NMSE∑
j=1

(p̂j − p)2

Here, p represents the reference price, which is typically obtained from a highly accurate or
analytical solution, serving as a benchmark for evaluating the accuracy of the estimated
prices. The quantities p̂j are the estimated prices generated by the simulation method
under consideration, either the MLMC method or the WMLMC method. We choose
NMSE = 103 and p = 0.0298840 which was obtained in [4, Section 3.3] using an intensive
standard Monte Carlo simulation with a control variate using 500 discretisation points
and 2× 107 samples M .

Figure 4.1: Comparison of MSE and computational cost between MLMC and WMLMC
estimators for a VIX call option. The left graph shows the log-log plot of MSE with the
Cost, using T = 0.5, H = 0.1, η = 0.5, X0 = ln

(
0.2352

)
,∆ = 1

12 , and n0 = 6. The right
graph illustrates the computational cost as a function of the desired accuracy ε.

The results of the log-log plot are presented in the left graph of Figure 4.1. The straight-
line relationship observed on the log-log plot is a strong validation of the theoretical
predictions. The slope matching the expected value of -1 indicates that the asymptotic
complexities discussed in Theorem 3.1.2 are indeed reflected in a practical setting.

For the rectangle scheme, the WMLMC method shows a slight improvement over the
standard MLMC method. This improvement would manifest as the WMLMC line be-
ing positioned lower on the plot compared to the MLMC line, although the MSE of the
WMLMC appears to be higher than the MSE of MLMC. This could be attributed to com-
paring relatively close numbers of ε, which may affect the accuracy of these experiments.

The trapezoidal scheme generally provides better accuracy than the rectangle scheme
for the same number of discretisation points. The WMLMC line for the trapezoidal scheme
lies below the corresponding MLMC line, indicating that the WMLMC method improves
the efficiency of the trapezoidal scheme by further reducing the required computational
resources and by achieving a lower MSE. This allows for faster computations or more accu-
rate results within the same computational budget, making the WMLMC method a more
efficient option. This is further confirmed by the right graph of Figure 4.1, where it shows

34

that the the WMLMC under the trapezoidal scheme has the lowest overall computational
cost.

35

Conclusion

In this thesis we explored the application of advanced computational techniques to the
challenging problem of pricing VIX options. The VIX is a critical measure of market
expectations for future volatility, and traditional pricing models fail to provide an accurate
model, necessitating the use of more sophisticated models such as the Rough Bergomi
model. We have seen that the rough Bergomi model, while offering a more realistic
representation of volatility dynamics through fractional Brownian motion, it introduces
significant computational challenges due to the high cost of simulating its rough volatility
paths. The primary contribution of this thesis is the investigation and application of the
Weighted Multilevel Monte Carlo method as a solution to these challenges.

Through a detailed theoretical analysis and comprehensive numerical experiments, we
demonstrated that the WMLMC method significantly reduces the computational cost as-
sociated with VIX option pricing under the Rough Bergomi model. The WMLMC method
has been shown to maintain the same asymptotic complexity as the MLMC method, with
a complexity of O(ϵ−2 log2(ϵ)) for the rectangle scheme and O(ϵ−2) for the trapezoidal
scheme. However, the WMLMC achieves a lower total computational cost due to a re-
duced constant factor, c̃4, which arises from the optimised allocation of computational re-
sources across different levels. The reduced computational cost associated with WMLMC
does not compromise the accuracy of the simulations. Instead, it allows for the same level
of precision to be achieved with fewer resources, making WMLMC a more efficient and
practical choice for financial modelling. This efficiency is particularly pronounced under
the trapezoidal scheme, where the WMLMC method significantly outperforms the MLMC
method.

In conclusion, this thesis has provided a comprehensive examination of the WMLMC
method and its application to a critical problem in quantitative finance. The findings
suggest that the WMLMC method is not only theoretically sound but also practically
advantageous, offering significant computational savings without sacrificing accuracy. This
work contributes to the broader field of financial mathematics by providing a more efficient
method for pricing complex financial derivatives, such as VIX options, under models that
capture the rough nature of market volatility.

The success of the WMLMC method in this context opens several avenues for future
research. Potential directions include: Investigating the application of WMLMC to other
complex financial models, particularly those that exhibit rough volatility or other challeng-
ing stochastic characteristics. Further refining the weighting scheme within the WMLMC
to enhance efficiency, especially in scenarios with extremely high computational demands.
Developing real-time pricing tools based on WMLMC, which could be integrated into
trading platforms to provide real time pricing for VIX options and other derivatives.

The continued development of efficient computational methods like the WMLMC will
be crucial as financial markets evolve and the demand for high-speed, high-accuracy sim-
ulations increases.

36

Appendix A

Python Code

A.1 MLMC Simulation

def mlmc_simulation(H, eta , T, delta , L, M0 , K, precomputed_values):

payoff_diffs = np.zeros(L + 1)

for ell in range(L + 1):

M = int(M0 * 2**(-2* ell))

mu , L_matrix , n = precomputed_values[ell]

VIX_fine_samples = np.zeros(M)

VIX_coarse_samples = np.zeros(M)

for m in range(M):

Z = np.random.normal(size=n + 1)

VIX_fine_samples[m] = calculate_vix(precomputed_values , ell , Z)

if ell > 0:

VIX_coarse_samples[m] = calculate_vix(precomputed_values ,

ell - 1, Z[::2])

if ell > 0:

payoff_diff = np.mean(call_option_payoff(VIX_fine_samples , K) -

call_option_payoff(VIX_coarse_samples , K))

else:

payoff_diff = np.mean(call_option_payoff(VIX_fine_samples , K))

payoff_diffs[ell] = payoff_diff

mlmc_estimator = np.sum(payoff_diffs)

return mlmc_estimator

A.2 WMLMC Simulation

def calculate_weights(L, M0_theta , strike , epsilon , precomputed_values):

v = epsilon/np.sqrt (2)

E = []

weights = []

vix_samples = []

for ell in range(L + 1):

mu , L_matrix , n = precomputed_values[ell]

M = int(M0_theta * 2**(-2* ell))

37

VIX_fine_samples = np.zeros(M)

VIX_coarse_samples = np.zeros(M)

Eta = n

for m in range(M):

Z = np.random.normal(size=n + 1)

VIX_fine_samples[m] = calculate_vix(precomputed_values , ell , Z)

if ell > 0:

VIX_coarse_samples[m] = calculate_vix(precomputed_values ,

ell - 1, Z[::2])

else:

VIX_coarse_samples[m] = 0

vix_samples.append ((VIX_fine_samples , VIX_coarse_samples))

if ell == 0:

weights.append (0) # No weight needed for the coarsest level

sigma_l = np.std(call_option_payoff(VIX_fine_samples , strike))

E.append ((sigma_l*Eta)/v)

else:

Delta_l = np.std(call_option_payoff(VIX_fine_samples , strike) -

call_option_payoff(VIX_coarse_samples , strike))

sigma_l = np.std(call_option_payoff(VIX_fine_samples , strike))

sigma_l_minus_1 = np.std(call_option_payoff(VIX_coarse_samples ,

strike))

rho_l = np.corrcoef(call_option_payoff(VIX_fine_samples , strike

), call_option_payoff(VIX_coarse_samples , strike))[0, 1]

theta = (rho_l * sigma_l / sigma_l_minus_1) - (np.sign(rho_l) *

(Delta_l*v*E[ell -1])/(sigma_l_minus_1 **2 * Eta))

weights.append(theta)

E.append ((1/v)*(Delta_l*Eta + np.abs(theta)*E[ell -1]*v))

return weights , vix_samples

def calculate_Theta_l(weights , l, L):

if l == L:

return 1

else:

return np.prod(weights[l+1:])

def wmlmc_simulation(H, eta , T, delta , L, M0_theta , K, precomputed_values ,

weights , vix_samples):

payoff_diffs = np.zeros(L + 1)

for ell in range(L + 1):

mu , L_matrix , n = precomputed_values[ell]

M = int(M0_theta * 2**(-2* ell))

VIX_fine_samples , VIX_coarse_samples = vix_samples[ell]

Y_l = call_option_payoff(VIX_fine_samples , K) - weights[ell] *

call_option_payoff(VIX_coarse_samples , K)

Theta_l = calculate_Theta_l(weights , ell , L)

payoff_diff = Theta_l * np.mean(Y_l)

payoff_diffs[ell] = payoff_diff

wmlmc_estimator = np.sum(payoff_diffs)

return wmlmc_estimator

38

Bibliography

[1] C. Bayer, P. K. Friz, and J. Gatheral, Pricing under rough volatility, Quanti-
tative Finance, 16 (2016), pp. 887–904.

[2] L. Bergomi, Smile dynamics ii, Risk, 18 (2005), pp. 67–73.

[3] , Stochastic volatility modeling, CRC Press, 2016.

[4] F. Bourgey and S. De Marco, Multilevel monte carlo simulation for vix options
in the rough bergomi model, arXiv preprint arXiv:2105.05356, (2021).

[5] Chicago Board Options Exchange, The cboe volatility index - vix. http://www.
cboe.com/micro/vix/vixwhite.pdf, 2009.

[6] P. J. Davis and P. Rabinowitz, Methods of numerical integration, Courier Cor-
poration, 2007.

[7] M. Fukasawa, Rough volatility and fractional calculus, in Advanced Modelling in
Mathematical Finance, Springer, 2017, pp. 237–260.

[8] M. B. Giles, Multilevel monte carlo methods, Acta numerica, 24 (2015), pp. 259–328.

[9] G. H. Golub and C. F. van Loan, Matrix Computations, JHU Press, fourth ed.,
2013.

[10] B. Horvath, A. Jacquier, and P. Tankov, Volatility options in rough volatility
models, SIAM Journal on Financial Mathematics, 11 (2020), pp. 437–469.

[11] A. Jacquier, C. Martini, and A. Muguruza, On vix futures in the rough bergomi
model, Quantitative Finance, 18 (2018), pp. 45–61.

[12] P. E. Kloeden, E. Platen, P. E. Kloeden, and E. Platen, Stochastic differ-
ential equations, Springer, 1992.

[13] Y. Li and A. Ware, A weighted multilevel monte carlo method, arXiv preprint
arXiv:2405.03453, (2024).

[14] S. Lim and V. Sithi, Asymptotic properties of the fractional brownian motion of
riemann-liouville type, Physics Letters A, 206 (1995), pp. 311–317.

[15] B. B. Mandelbrot and J. W. Van Ness, Fractional brownian motions, fractional
noises and applications, SIAM Review, 10 (1968), pp. 422–437.

[16] Y. Mishura and I. Mishura, Stochastic Calculus for Fractional Brownian Motion
and Related Processes, no. no. 1929 in Lecture Notes in Mathematics, Springer, 2008.

[17] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
et al., Scipy 1.0: fundamental algorithms for scientific computing in python, Nature
methods, 17 (2020), pp. 261–272.

39

http://www.cboe.com/micro/vix/vixwhite.pdf
http://www.cboe.com/micro/vix/vixwhite.pdf

	VIX Option Pricing
	Rough Bergomi Model
	Derivation of the VIX formula
	Time Discretisation
	Rectangle Scheme
	Trapezoidal Scheme

	VIX Simulation
	Strong and Weak Errors

	Monte Carlo Methods
	Standard Monte Carlo
	Multilevel Monte Carlo
	MLMC Simulation
	Computational Complexity

	Weighted Multilevel Monte Carlo
	Recursive formulation of the MLMC
	WMLMC Simulation

	Theoretical Results
	WMLMC Computational Complexity
	Comparison with MLMC
	Variance reduction
	Overall complexity

	Numerical Results
	Python Code
	MLMC Simulation
	WMLMC Simulation

	Bibliography

