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Abstract

Financial data, particularly macroeconomic data, is notoriously noisy and often difficult
to interpret. Large Language Models (LLMs) enhanced with Retrieval Augmented Gen-
eration (RAG) offer a powerful and user-friendly interface, capable of answering user
queries by accessing a live database. However, the embedding models needed for RAG
are pre-trained on large and general datasets, and are typically not optimised for finan-
cial and macroeconomic tasks. We propose PKGE (Phased Knowledge Graph-attuned
Embedding): a commercially viable, multiple-training phase, human-inspired method for
fine-tuning embedding models for RAG, using knowledge graphs generated from a domain-
specific database of text documents. Our framework enhances embedding training over
the baseline vanilla RAG approach, with minimal extra computational complexity, and
enables the generation of large amounts of realistic training data from even a very small
number of text documents. Our embedding model, PKGE Domain-Specific, demonstrates
a notable improvement in empirical retrieval performance on a custom, domain-specific
dataset assembled from U.S. Federal Reserve press conference transcripts, as well as ex-
cellent real-world results on sample user queries in our demo application.
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Introduction

To overcome the hallucination (inaccurate or factually incorrect information) often seen
in LLM responses, the model needs access to an up-to-date database to retrieve relevant
context information for a user’s query. This method, proposed in 2020 by Lewis et al., is
known as Retrieval Augmented Generation [20]. An LLM enhanced with RAG can act
as a search engine interface for the database, providing convenient and intuitive use while
being able to support its answers with sources for the information used, if needed.

For financial data, this technique is particularly compelling. Since inaccurate responses
from an LLM regarding a trade idea or investment decision may have catastrophic con-
sequences, minimising this risk is crucial. Much of the work around LLMs and embed-
ding models for finance revolves around general financial news, financial statements, and
equities-related data, as seen in [2, 49, 48, 50]. We focus specifically on offering insights
into macroeconomic topics, such as interest rates, FX, and commodities. For this paper,
we restrict the scope to texts and research related to the U.S. Federal Reserve to simplify
the task and reduce the amount of data needed.

Our goal is to fine-tune an embedding model to retrieve the most relevant context
for every query. Embeddings are vector representations of data, which is text in our case,
but can also be images and audio [3], for example. By representing text as vectors, we
can compare them using similarity metrics such as cosine similarity or Euclidean distance
(defined in Appendix B).

With a notion of similarity defined, we can compare the embeddings of different texts,
which is crucial for tasks such as question answering and semantic similarity [20]. These
will be used in retrieving the most relevant documents from the database by finding the
top K closest embedded texts, in cosine similarity, to that of the query.

We generate custom datasets for fine-tuning by creatively applying knowledge graphs,
which contain structured information about macroeconomic concepts and entities, such
as the interest rate, inflation and the Federal Reserve. An LLM first extracts and distills
data from our source documents before generating the graph structure. This then forms
the basis for generating question and answer pairs, which is also done via LLM. Our
technique also comes with the benefit of being able to generate many new realistic data
points from a small corpus. The fine-tuned models are then evaluated on our custom Fed
press conferences dataset, as well as a standard finance Q&A dataset.

Our vision for the proposed final system is a commercial, scalable and comprehensive
application capable of offering precise, up-to-date domain-specific advice. We distinguish
our solution from similar recent works such as FinGPT [49] and FinBERT [2]. Firstly, we
concentrate on macroeconomic data, which lacks much representation in financial datasets.
Next, we only train an embedding model, rather than a model such as GPT-4o [30] or
Google’s T5 [27], due to the much lower computational cost and data required. Lastly, we
focus on the embedding model and its role as the retriever in the RAG procedure while
making use of LLMs in intermediate steps, as well as in generating the final output to the
user. At the end, we also discuss potential future work and considerations for practical
implementations of PKGE.
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Chapter 1

Architecture

1.1 Embedding Models

Text embedding models employ a deep neural network to represent words or sentences
[3]. Most importantly, these allow texts to be compared for similarity. Embeddings also
allow for visual representations through techniques such as t-SNE [41], which can aid data
analysis by depicting clusters.

Within deep neural network architectures, embedding layers are able to encode repre-
sentations of text features, which helps the model to generalise to unseen data. Embed-
dings can also “map categorical inputs to continuous vectors, facilitating backpropagation
and optimisation” [3].

Our purpose for embeddings is semantic search. By learning the association between
the semantic meanings of words, such as common word pairings and synonyms, embedding
models are able to determine similarity between two text documents accurately, even
without the same key words appearing in both texts. For example, a macroeconomic-
specific embedding model should be able to make a close association between “monetary
policy” and “interest rate”, or indeed between “interest” and “rate”. Mathematically,
we mean that the embedding vectors generated from the two similar texts should have a
cosine similarity close to 1. A model which is not sufficiently trained on financial language
may also mistake the word “interest” for meaning curiosity or intrigue instead.

With a macroeconomic-specific embedding model, we hope to improve the accuracy
of Retrieval Augmented Generation for answering user queries. By retrieving relevant
and precise context information from a database, an LLM can quote information sources
in its response, which helps to reduce hallucination. Without such context, an LLM
may incorrectly interpret its training data, or produce responses which follow unexpected
patterns in the data [15], resulting in nonsensical or factually incorrect answers.

1.1.1 Tokenisation

To be inputted into the model, text is first tokenised. It is separated into smaller words
or fragments, which are not necessarily words themselves. One such method is called
WordPiece [9], which is the tokenisation method originally used by Google in the the
BERT model [7]. This is also used in the Sentence Transformer models [37] which we
implement in this project.

Tokens allow a model’s entire “vocabulary” to be represented using smaller fragments
of words, which are then combined together to form the original word. This allows any
alphanumeric to be tokenised, and ensures an embedding can always be generated. Con-
densing the vocabulary into word pieces is also much more efficient on storage.
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1.1.2 BERT

BERT is a pioneering encoder-only architecture developed in 2019. The model consists
of several layers of encoder models trained to learn representations of a sequence of input
tokens for purposes such as semantic similarity, or comparing meanings of different pieces
of text [7].

Encoder-only architectures seek to understand texts beneath the surface, such as their
sentiment and semantic meaning. They take text as input and output a vector, which is the
embedding we want. BERT’s special [CLS] token allows it to perform classification tasks,
while its bidirectional attention allows it to see forwards and backwards [19], meaning that
it can learn from the entire input at once and understand the context of every token. This
is different from the architecture of decoder models such as GPT-4o [30], which can only
see the remaining tokens after each token in the input, allowing it to perform well on tasks
such as logical continuations of input text.

However, traditional embedding models such as BERT and Word2Vec [24] work only
on individual words, and are not effective for use on sentences or entire paragraphs. We
now introduce SBERT, which remedies this.

1.1.3 SBERT

Sentence BERT, or SBERT, addresses the original model’s inefficient comparison of sen-
tence embeddings. This is needed for tasks such as semantic search, for example [37].
BERT does not compute independent sentence embeddings, and methods such as averag-
ing word embeddings to create a fixed-length embedding for a sentence did not demonstrate
useful results.

A disadvantage of the original BERT architecture is that when two sentences are input,
the embeddings that are computed are relative to each other, and cannot be used for each
sentence independently for comparison against other sentences. This problem is solved by
SBERT [8].

SBERT allows sentences and longer text chunks to be compared using cosine similarity,
while offering a significant speedup in time to compare embeddings. The architecture for
fine-tuning is shown in Figure 1.1, while Figure 1.2 depicts the architecture at inference.

Figure 1.1: SBERT Training Figure 1.2: SBERT Inference

During training, Sentence A is considered as the ‘anchor’, while Sentence B is the
‘positive’. The BERT networks are siamese, meaning that their weights are linked [33].
Essentially, this results in only one model being trained, since the weights are identical,
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but the two sentences are still processed separately. Sentence A is embedded first and is
then followed by Sentence B.

Each BERT produces 512 768-dimensional embeddings, which are then averaged using
mean pooling to convert the original 512× 768 matrix to 1× 768, while ignoring padding
values. This procedure can be parallelised over several batches of sentence pairs [33].

1.1.4 Sentence Transformers

The Sentence Transformers Python library [37] offers a variety of capable pre-trained
SBERT embedding models which are designed for sentences and longer texts, and are also
easy to fine-tune.

Fine-tuning of a SentenceTransformer embedding model is done by minimising the
Multiple Negatives Ranking Loss, defined in the Sentence Transformers documentation
[37]. To preface the definition, we introduce some preliminaries.

Definition 1.1.1. (Positive & Negative Pairs) Consider a corpus with N queries {qi}i=1,...,N

and N answers {aj}j=1,...,N . A query and answer pair (qi, aj) is called a positive pair if
i = j and a negative pair if i ̸= j i.e. for each query qi, we define exactly 1 correct answer
and N − 1 incorrect/irrelevant answers.

Definition 1.1.2. (Binary Cross Entropy) [45] Let y be the true value of an observation,
and let ŷ be the predicted value. The binary cross entropy loss is given by

−y log(ŷ)− (1− y) log(1− ŷ).

Definition 1.1.3. (Softmax Activation Function) [4] Let z be the vector of logits produced
by the embedding model on answers {aj}j=1,...,N to a query qi, where zi is the i-th element
of z. The softmax activation function is given by

ezi∑N
j=1 e

zj
.

The softmax function transforms the vector of logits, which represents relative scores
for the relevance of each paragraph to the query, to a vector of probabilities. That is, the
softmax function maps values in R to [0, 1], with the sum of all the probabilities equal to
1. This allows the most relevant answers to be ranked [4].

Now, we can discuss the Multiple Negatives Ranking Loss. We define the loss for each
batch of Q&A pairs as follows:

Definition 1.1.4. [33] (Multiple Negatives Ranking Loss) For each batch with b pairs, we
begin by computing the cosine similarities between every possible query and answer pair.
Let B denote the matrix of cosine similarities, i.e.

B =

CosSim(q0, a0) · · · CosSim(q0, ab)
...

. . .
...

CosSim(qb, a0) · · · CosSim(qb, ab)

 .

Next, define I := Ib to be the b × b identity matrix. This represents the ideal cosine
similarities. Then, for each Bi,j and Ii,j , we aim to minimise the binary cross entropy
loss between the computed cosine similarity and ideal class (0 for a negative pair and 1 for
a positive pair):

b∑
i=1

b∑
j=1

−Ii,j log(Bi,j)− (1− Ii,j) log(1−Bi,j). (1.1.1)

This is the Multiple Negatives Ranking Loss for each batch, and can be summed over all
batches to obtain the overall loss.
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Splitting the corpus into batches allows to take advantage of parallel computing on a
GPU. Larger batches come with the benefit of allowing the Multiple Negatives Ranking
Loss to be calculated on more Q&A pairs at once, which generally increases performance
[37]. Incidentally, larger batch sizes have higher VRAM requirements when implementing
on a GPU. In our experiments, computation time increased non-linearly as the maximum
VRAM capacity was approached through increasing batch sizes. It is therefore vital to
find a good balance between batch size and training time.

1.1.5 Embedding Dimension and size

Embedding vectors are often several hundred dimensions, but this can be adjusted to
adapt to the amount of data available. Typical sizes include powers of two and related
numbers, such as 1024, 768 and 384. Larger embedding dimensions lead to larger models
sizes and computational complexity, but a greater ability to capture features in its data
[29]. We select a model with dimension 768 since it balances training and inference speed
with sufficient capability in understanding our domain.

Additionally, Sentence Transformer embeddings are pre-trained to produce vectors of
length 1. We do not consider the length of the embedding vector for our purposes, so it
is beneficial to have normalised vectors. Additionally, this means that when calculating
similarity, the dot product would yield the same interpretation as the cosine similarity.

1.2 The Transformer

1.2.1 Attention

The foundation of contemporary LLM architectures is the Transformer, pioneered by
Google in 2017 [42]. Crucially, this design introduced the concept of attention, which
allowed language models to understand context and relationships between words. Self-
attention refers to how closely an input word is related to other words within its own
context, while encoder-decoder attention keeps track of the significance between words
across the encoder’s and the decoder’s representations. Encoder-decoder attention ensures
that the meaning of important words in an input are not lost, which is particularly useful
for translation or instruction-following tasks [43].

1.2.2 Encoder & Decoder

We consider the encoder-only architecture, and do not worry about fine-tuning the weights
of the decoder. The encoder architecture is designed to learn effective representations of
data as vectors, and is different from decoders in that they can see forwards and backwards
from each token [19]. Decoders can only see forwards from each token, resembling the way
a human would continue a partially complete sentence. This allows encoders to fully
understand the semantic meaning of their input, rather than being good at predicting the
most reasonable continuation to a given text.

Finally, encoder-decoders may be particularly compelling for a future extension of this
project. These implement the full Transformer architecture, and allow information from
the encoder to be passed to the decoder, which has the potential to significantly boost
our framework’s capability. Currently, PKGE only implements a pre-trained decoder-only
LLM at the output step to save on the computation required to fine-tune a full encoder-
decoder model. Google’s T5 [27] offers excellent pre-trained models which may be used for
this purpose, but this is unfortunately beyond the scope of this project. Even with such a
model at the output stage, we still need a well-trained retriever to fetch relevant context
information. We continue to demonstrate our framework’s effectiveness on fine-tuning the
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Encoder Decoder

Figure 1.3: The Transformer architecture [42].

embedding model specifically for accurately retrieving macroeconomic data to answer user
queries.

1.3 The Motivation for PKGE

1.3.1 Why Specifically Embeddings?

Given our focus on commercial applications, we want to minimise the compute required
to produce, implement and run our framework. Firstly, we avoid pre-training entirely.
The pre-training of any model requires a very large amount of data and prohibitive GPU
compute costs. Therefore, we build our model on the foundation of already pre-trained
models, and fine-tune on top of those. This is much more viable and still shows excellent
results.

We target the embedding model for improvement as its architecture has relatively few
parameters compared to others. Our goal is to improve its semantic understanding of
macroeconomic language and to retrieve the most relevant context information for user
queries relating to the U.S. Federal Reserve, which is the area on which we demonstrate
our results in this paper. By restricting our scope, we reduce the computational effort
and the amount of data needed. It is significantly easier to fine-tune an embedding model
with several hundred million parameters, than even small LLMs such as Llama3-8B, with
8 billion parameters [1].

1.3.2 Phased Learning

The most common method for fine-tuning LLMs on domain-specific data today involves di-
rectly incorporating the data into the pre-trained model and adjusting the model’s weights
according to an optimisation procedure like Adam [18], such as in [31]. We believe that
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this direct fine-tuning method does not provide the model with the necessary foundational
knowledge to learn the most effective embeddings for the data.

IBM demonstrated the efficacy of a simple-to-complex task training procedure for
LLMs, improving scalability as well as performance on specific tasks[38]. They first trained
the model on simple tasks before moving to more complex ones, and illustrated that
training on both kinds at the same time lowered performance. Our procedure involves
progressively narrowing the scope of the training data, rather than increasing complexity
in the questions and answers. The domain contains mostly objective facts and theory,
which results in a broad range of knowledge. Accordingly, the model would need a large
quantity of data and exposure to the entire spectrum for a full understanding. Again, we
demonstrate our framework using only data relating to the Fed to reduce the amount of
documents required.

By “warming up” the embedding weights to the general context of macroeconomic
theory, as well as relevant articles, documents and reports, we hope to point the model in
the right direction prior to domain-specific fine-tuning.

The “phased” part of the PKGE method refers to how we approach the complexity of
the information that the model learns. Making use of transfer learning [25], we begin with
a pre-trained model. This sets a good foundation and ensures it can be trained for our
tasks with well-engineered prompts. We take inspiration from the way humans learn and
gain experience in specific fields; Firstly, the embedding model is “generally-trained” on a
large quantity of academic data in one subject, simulating a university undergraduate or
master’s level education. We ensure that the data used is diverse, covering a wide range
of topics and question types. This simulates the way humans would think when answering
questions in the LLM’s position.

The domain-specific fine-tuning phase represents career experience, domain-specialisation,
or possibly PhD-level knowledge. The motivation is that, with a strong foundation in the
relevant general knowledge area, the embedding model is able to more easily and efficiently
learn specific topics within that area, just like in humans. In Chapter 4, we show that,
although our empirical results are mixed, phased learning has potential to add value given
a larger quantity of available training data.

1.3.3 Knowledge Graphs

A knowledge graph (KG) is defined as a network of real-world entities, such as objects,
events, situations or concepts, which illustrates the relationships between them [16]. Typ-
ically, this graph is directed, and edges are taken from a pre-defined list of relation types.
An example of a real-world implementation is Google’s knowledge graph, used to display
a panel of relevant information relating to a search query beside other search results [11].

We adopt a more general approach to the knowledge graph concept. By adapting the
graph maker library for Python [28], which uses a pre-trained LLM to create graph edges
from a set of text documents, we can easily create the KGs we need for embedding training.
In Section 2.1.1, we further discuss how we apply KGs in the training of embedding models.

The key differences in our approach are the lack of directed edges, as well as a unique,
LLM-generated description for each graph edge. This is because we are using the knowl-
edge graph in a different way. Firstly, we use KG generation as a method of distilling the
information contained in the original documents. By asking the LLM to extract only the
entities and their relationships from the text, we make it easier to generate meaningful
Q&A pairs later in the pipeline, and at the same time maintain a straightforward way to
restore the data to text form using the LLM again. Our approach combines the nodes
and edge descriptions with each original chunk of text from which they were extracted to
enrich the LLM’s understanding at the output stage, when the retrieved context is used
to generate the LLM’s final response.
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Importantly, we also avoid pre-defining a list of relations and avoid a directed graph.
In the macroeconomic context, both of these may be very difficult to apply accurately.
It is already challenging for a human to label relations between economic quantities and
entities due to their noisy and unpredictable interactions, and there is no accurate data
which the embedding model can be trained on. As a consequence of inaccurate data, the
embedding model may learn misleading or inconsistent relations.

Figure 1.4: A simple knowledge graph example.

The effectiveness of the knowledge graph structure becomes especially apparent for
the domain-specific documents database. It can be easily scaled as new documents arrive;
One only needs to determine the relationship between new concepts and old ones, and
adjustments/insertions can be easily made. Additionally, metadata can be added to each
edge to make this process easier, such as the article title, date published and any informa-
tion which may affect previous data, such as a change in view or a closed trade. Storing
edges in a Python list-like object also allows for easy updating. In production, however,
one should consider a graph database for greater storage capacity and data security.

Moreover, the structure allows for the creation of subgraphs, linking several related
concepts together. Since we can create a relatively large number of subgraphs from our
main graph, this has the potential to generate many new high-quality data points through
an LLM. Since we always have the context information available, we minimise hallucination
and can create many diverse question and answer pairs using unique combinations of graph
edges. This is particularly effective for our small set of domain-specific documents, turning
around 100 text chunks into almost 3,000 through taking subgraphs of various sizes. More
about this procedure is discussed in Section 3.1.2.

Finally, a natural visualisation of the way the human brain stores information would
be a connected graph of concepts, ideas and memories. This is exactly what we aim to
recreate with PKGE; Conceptually, we aim to mimic a human understanding of our topic.
A simple example of our knowledge graph structure is depicted in Figure 1.4, which shows
how a basic graph of Fed-related concepts may be connected and described.

1.3.4 Named Entity Recognition (NER)

Named Entity Recognition is a natural language processing technique which recognises
pre-defined categories of objects in text [14]. This is especially important when it comes
to macroeconomic texts, since there is a wide range of commonly used names which refer
to the same entity or concept. For example, the U.S. Federal Reserve may also be called
‘the Fed,’ or the ‘Federal Reserve System.’
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An ontology provides labelled categories of the entities to be extracted to the LLM,
identifying the entire range of entities to be expected in a text. The labels, as well as the
descriptions we have used, are presented in Table 1.1.

Category Description

Economic
Quantity

An important quantity for those who study economics, such as
economists, researchers and governments.

Person Singular person name without any adjectives. Remember a person
may be referenced by their name or using a pronoun.

Concept A noun relating to an academic definition or idea. This should NOT
include verbs, times, years and historical events.

Place A physical location. This should NOT include times, years and
historical events.

Action The fact or process of doing something, typically to achieve an aim,
e.g. increase, decrease, control, prevent, influence.

Document A piece of written, printed, or electronic matter that provides in-
formation or evidence or that serves as an official record.

Organisation A governing body or group of individuals who have a shared goal.

Event A situation or occurrence involving multiple people. Do not include
qualifiers or verbs like gives, leaves, works etc. This should NOT
include academic concepts or definitions. This should NOT include
times, years and historical events.

Miscellaneous Any important concept can not be categorised with any other given
label. This should NOT include times, years and historical events.

Table 1.1: Our ontology and category descriptions.

General-purpose NLP libraries such as NLTK [5] and spaCy [12] have shown inconsis-
tent results for categorisation according to our ontology. These require significant manual
labelling to work well. In testing these libraries, they empirically demonstrated poor entity
resolution performance due to the nuances of our domain. Often, they are unable to even
distinguish between different names for the Fed. Therefore, we consider alternatives.

Rather than using deep learning methods to resolve named entities, it turned out that
a human-defined query table was most effective. Given the diverse expressions used to
refer to macroeconomic concepts and organisations, we feel that manual labels that are
verified by domain experts would achieve the best results, especially given that this process
only needs to be done once. There is potential to expand the list to cover a wider range of
concepts, though it would become less practical. Future work may involve searching for a
more scalable solution to this problem.

The resolved entity names can then be applied in the graph, which makes it more
densely connected. This is because two entities which are not resolved may have their
own edges with other nodes, and may not necessarily be connected themselves. This is
an artifact of graph generation using LLMs, and more on the procedure will be explained
in Section 2.1.2. Unifying all entities referring to the same real-world concept allows that
entity’s node to have many connections and aids in Q&A generation further down the
pipeline, when we need to determine which other entities it would be related to.

14



Chapter 2

The PKGE Pipeline

PKGE, pronounced package, is split into two phases: The first involves learning general
knowledge about a particular domain, which is macroeconomics in our context, while the
second involves fine-tuning on specific areas within the general domain, which relate to
the U.S. Federal Reserve in this case.

Figures 2.1 and 2.2 illustrate our proposed framework.

Figure 2.1: The training phase of PKGE, where the embeddings for general domain knowl-
edge are learned. This yields a ‘generally-trained’ embedding model which can be further
fine-tuned on domain-specific data.

2.1 General-Domain Embedding

2.1.1 Preparing the General-Domain Data

Since embedding models for RAG applications play the role of the retriever, we need a
method of tuning them such that they are best prepared to deal with user queries requiring
retrieval. A question and answer objective has been shown to be effective in preparing an
embedding model for such tasks [17].
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Figure 2.2: The RAG phase of PKGE, where domain-specific documents are provided for
fine-tuning. This yields the final fine-tuned embedding model for RAG tasks.

Of course, in order to generate the Q&A pairs, we first gather a large collection of
general-domain text documents. Topics include, but are not limited to:

• Macro and microeconomic theory

• The interplay and relationship between different economic quantities

• The U.S. Federal Reserve

• How decisions by the Fed affect the market

• Monetary and fiscal policy

• Asset classes and how they are affected by the Fed’s decisions

The data is pre-processed slightly by hand. Articles are split into paragraphs of text,
each of which is considered as a separate “document”. Importantly, this means that no
information is shared between paragraphs of a document, from the LLM’s perspective.
Therefore, input texts should be written in such a way that paragraphs are mostly self
contained for best results, though this is not essential. We define a dictionary of common
variations of macroeconomic concepts and entities so that our procedure is able to recognise
variants and form dense connections between concepts, rather than splitting them among
different variants of the same entity.

By training the embeddings to become familiar with our domain, the model is guided
in the right direction for further fine-tuning in the later phase.

2.1.2 Generating the General-Domain Knowledge Graph

Now, with our training data, we make use of a pre-trained LLM to generate the edges
of the knowledge graph. In 2019, OpenAI demonstrated that LLMs are capable of tasks
such as reading comprehension, translation, summarisation and question answering with
zero-shot prompts [34].
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Naturally, we make use of this ability. We employ both OpenAI’s GPT-4o [30] along
with an adapted version of the GraphMaker library [28] to generate variations of the
knowledge graph using a finely engineered prompt. This model is the current state-of-the-
art for all-purpose tasks, though we have also tested Llama 3-70B and observed acceptable
results. The details of the prompt are shown in Figure 2.3.

You are a network graph maker who extracts terms and their relations from a
given context.
You are provided with a context chunk (delimited by ``` ). Your task is to
extract the ontology of terms mentioned in the given context. These terms
should represent the key concepts as per the context.
Thought 1: While traversing through each sentence, think about the key
terms mentioned in it.

• Terms may include object, entity, location, organization, person, condi-
tion, acronym, documents, service, concept, etc.

Thought 2: Think about how these terms can have a one on one relation with
other terms.

• Terms that are mentioned in the same sentence or the same paragraph
are typically related to each other.

• Terms can be related to many other terms, so maximise dense relation-
ships between terms when possible.

Thought 3: Find out the relation between each such related pair of terms and
try to minimise the number of connections needed.
Thought 4: You want to produce a very well connected and dense graph, with
as much overlap as possible.
Thought 5: Remember that some phrases and names have many variations,
but they all refer to the same entity, so make sure to be consistent in their
naming.
Format your output as a list of JSON. Each element of the list contains a pair
of terms and the relation between them, like the following:

[
{
“node 1”: “A concept from extracted ontology”,
“node 2”: “The related concept from the extracted ontology”,
“edge”: “relationship between the two concepts, node 1 and node 2 in
one or two sentences”

}, {. . .}
]

Figure 2.3: LLM system prompt to generate a list of JSON objects describing the graph
edges.

With the edges generated, we can now visualise the dense network produced by the
LLM. This is depicted in Figure 2.4.

The graph has over 3,000 edges, with hotspots representing particularly well-connected
nodes, such as ‘Inflation’, ‘U.S. Federal Reserve’ and ‘Interest Rate’. Since these kinds
of topics are discussed in greater detail and across more documents in the corpus, more
connections are created by the LLM. A zoomed-in snippet of the graph is shown in Figure
2.5, which depicts some of the nodes. Accordingly, less common concepts will not be as
well connected, which can be seen around the edges in Figure 2.5.
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Figure 2.4: The full general-domain
knowledge graph.

Figure 2.5: A snippet of the general-
domain knowledge graph.

Since different documents may refer to these concepts in different ways, entity resolu-
tion minimises stray nodes which appear unconnected, yet refer to the same concept. Since
our NER method is not all-encompassing, a number of unconnected smaller graphs remain.
These generally include more obscure topics, poorly-phrased node names, or otherwise bad
quality extractions from the LLM. We now discuss post-processing the generated graph
to resolve these issues.

2.1.3 Graph Post-Processing

Before generating the Q&A pairs, we first prune the graph to only the top 1,000 nodes of
highest degree (nodes which have the most edges, including loops). This eliminates many
of the smaller subgraphs on the outside which are not connected to the “main” graph
(see the edges of Figure 2.4). Importantly, the LLM sometimes extracts nodes which are
uninformative, unusually phrased or otherwise not useful. These comprise most of the less
well connected nodes and subgraphs. Pruning may remove some useful information, but
mostly has the effect of reducing anomalies.

Additionally, the LLM sometimes generates “multi-edges.” This means that the same
two nodes can have more than one edge between them, again due to similar concepts
and relations being mentioned across documents. Resolving this is straightforward; Each
group of multi-edge descriptions is collected and fed into another LLM prompt in order
to summarise them in a few sentences. The extra edges are removed, and a single, unified
edge replaces them.

With post-processing completed, the graph is now ready for generating the Q&A pairs.

2.1.4 Generating General-Domain Q&A Pairs

Our model is designed for long-form question answering (LFQA), inspired by the work in
[6]. This objective involves the understanding that many short queries require answers
which are often several sentences to a paragraph long. We want the embedding model to
associate these shorter queries with longer answers to hopefully improve retrieval on large
paragraphs. The authors of the paper introduce the FinTextQA dataset for this purpose,
specific to the financial domain. Although this dataset would have been ideal for training
or evaluating PKGE, it has not yet been made public at this moment. Instead, we create
our own macro-specific LFQA datasets using our knowledge graph.
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By generating question and answer pairs based on pairs of nodes, as well as subgraphs of
three and four nodes, we are able to capture more complex, multi-hop connections between
concepts, which the embedding model can learn from. One of the most important features
of the PKGE framework is its ability to generate a large number of high-quality Q&A
pairs from a small number of source documents. This is done by exploiting subgraphs to
create unique groupings of nodes. Each grouping can then be fed into an LLM prompt to
generate the question and answer pairs.

The nodes and edges in each subgraph are first formatted and fed into the LLM prompt
as context. The answer generated by the LLM is effectively a summary of the relationship
between the nodes, enriched with the context of the original text chunk which yielded the
edge, while the question is form-fitted to work with the answer. Other data such as the
title and date of the source document may also be stored in each edge’s metadata.

Figure 2.6 shows the LLM prompt for generating Q&A pairs from a given subgraph.
Note that we make use of few-shot prompting to give the LLM some guidance on what
we expect it to produce, which generally improves its ability to learn instructions for a
new task [34]. These examples are written by hand and use information available on the
Federal Reserve website.

You are given some context information.
Your task is to write one very general and interesting question relating directly
to the given nodes, relationship and context.
Remember that there can be several answers to a question, so make sure to
add this detail to your answers.
The question should focus on the nodes provided and their relationship, but
expand and diversify your answer using the context and relationship.
The answer should be at least a few sentences long, but use only the informa-
tion given, no external knowledge.

Here are some examples of good Q and A pairs:
Q: How does the Federal Reserve work?
A: The Federal Reserve conducts the nation’s monetary policy to... (truncated)
Q: What is monetary policy?
A: The term ‘monetary policy’ refers to... (truncated)
Q: What quantities are influenced by the Federal Funds Rate?
A: The Federal Funds Rate is the interest rate at which... (truncated)

Do not respond with anything else except the Q and A pair.
The information is below.
Nodes: {nodes}, Relationships: {edges}, Context: {original text}

Q:
A:

Figure 2.6: LLM prompt to generate Q&A pairs from a given subgraph of nodes and
edges.

Capturing all possible subgraphs from our 1,000-node pruned knowledge graph is un-
necessary, so we restrict it to several categories: single-edge, single-hop and multi-hop.
Single-edge involves two nodes and the edge between them, single-hop involves three con-
nected nodes and two edges, and multi-hop involves four connected nodes and their three
edges. We randomly sample a set number of subgraphs from each category: 1,000 single-
edges, 2,000 single-hops and 2,000 multi-hops to yield 5,000 Q&A pairs in total. These
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proportions were chosen to emphasise LFQA. We ensure that the groups are unique: no
category has two subgraphs with identical nodes.

All of our generated Q&A pairs are used for model training and validation, but are
not used in any evaluation. This is left to external datasets.

2.2 Domain-Specific Embedding

2.2.1 Preparing the Domain-Specific Data

Following our procedure, we now proceed with the fine-tuning phase using live domain-
specific data, where the temporal aspect now comes into play. Previously, the general-
domain knowledge, which encompasses facts and theories related to financial markets and
macroeconomics, had little temporal importance. This is because the data remains largely
relevant over time, except during significant events like a change in the Chair of the Fed.
With the domain-specific data, the temporal aspect is almost essential. News which affect
macroeconomic quantities such as bond yields, FX and commodity prices quickly become
stale, so it is crucial that the knowledge graph of these documents are regularly updated
and pruned as news arrives and becomes outdated.

By including the date of the document in each edge’s metadata, it is easy to check if an
edge becomes too out-of-date, allowing it to be removed from the database. This is more
straightforward than allowing the LLM to access to the entire database and filtering at the
retrieval stage. The downside is that, although some information in an older document
may no longer be relevant, such as an old trade idea, other aspects of it may remain useful,
such as trends in macro indicators.

In the same fashion as the general-domain documents, the data is split into paragraphs,
which make the knowledge graph generation process easier. Since we use research articles
as a data source, we encounter charts and tables which can be tedious to describe by hand.
Again, GPT-4o may be leveraged to interpret these. Using its multi-modal capability,
we can easily transcribe data from a chart or table into text form, and even highlight
interesting trends or data points [30].

Lastly, we note that numerical data in text does not integrate well with the knowledge
graph structure. There are various methods to overcome this, though we found that our
fully fine-tuned embedding model was able to retrieve numerical data well, and this was
also reported accurately by the LLM in its final output. However, we consider possible
alternatives. One approach is to query a separate live database for specific quantities, like
the U.S. 10-Year Treasury Yield, which necessitates function calling or tool interaction.
Alternatively, one can prompt an LLM to extract all numerical information from a text
and store it in JSON or Python dictionary format, which can then be added back to the
LLM’s context via a second retrieval step.

2.2.2 Data Sources

We compile only sources which directly relate to or comment on the operations of the
U.S. Federal Reserve. This offers a deep insight into this domain. Such documents may
include:

• Federal Open Market Committee (FOMC) statements and meeting minutes

• Fed Summary of Economic Projections (SEP)

• Transcripts of speeches by Fed Chair Jerome Powell and other members of the Fed
Board of Governors, as well as any following press conferences
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• Research articles directly commenting on and forecasting the Fed’s actions and U.S.
interest rates

By combining both official Fed documents as well as in-house research articles, the
domain-specific knowledge graph captures both objective and subjective truths about the
topic, which we expect to provide more holistic responses.

2.2.3 Domain-Specific Q&A Pairs

The process of generating Q&A Pairs for the domain-specific documents is largely the same
as that for the general-domain documents, although with far fewer documents available.
We only consider articles from July and August 2024 to keep them as up-to-date as
possible.

2.2.4 Domain-Specific Test Dataset

We have real examples of question and answer pairs in the form of the transcripts from
FOMC press conferences. After the speech, reporters are given the chance to ask questions,
including follow-ups. This presents an excellent opportunity to scrape genuine Q&A data,
without the need for synthetic pairs generated by an LLM. However, since the transcript
aims to represent the conversation as accurately as possible, there is often stuttering,
extra punctuation and other noise in the text. To remedy this, we again make use of the
versatility of LLMs [34] to clean up the text, remove any mentions of names and format it
with “Q:” and “A:” denoting each pair. This streamlines the data for use in embedding
training. The cleanup prompt is shown in Figure A.5.

Since this is the best source of real-world Q&A data we have, we employ it as our
test dataset. We only use press conferences from a maximum of one year ago to keep it
relevant, and to avoid the outliers during Covid years. The data is also narrow in scope,
relating mostly to questions on monetary policy and the operations and decision-making
processes of the Fed. There is, as always, plenty of scope for extension, including using
real examples of client interaction with our fine-tuned in-house chatbot, which has access
to our entire database of research articles.
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Chapter 3

Experiments

3.1 Setup

Before we present our findings, we first elaborate on our methodology for conducting
experiments using the PKGE framework. We detail the models used, the datasets and,
lastly, the metrics on which we evaluate.

3.1.1 Models

We compare two versions of our procedure against ablated versions, base models and
finally against competing solutions.

PKGE Domain-Specific Embedding is the full, final model which has been fine-tuned
on current domain-specific data, while PKGE General-Domain is only the first phase of
fine-tuning, done on our custom general macroeconomic theory dataset.

The Baseline models are equivalent, except that they are fine-tuned on their respective
non-PKGE datasets. The Baseline Simple model ablates our framework entirely, and is
fine-tuned on the Baseline general-domain and domain-specific training data at the same
time (the Baseline combined dataset). This represents the vanilla way to fine-tune an
embedding model for RAG.

The base model we selected for PKGE is multi-qa-mpnet-base-cos-v1, due to its com-
pact size, reasonably large embedding dimension and ease of fine-tuning. We also include
multi-qa-MiniLM-L6-cos-v1, a much smaller though less capable embedding model that
will illustrate how model size affects performance on our data.

Of course, we include the pre-trained base models to understand the effect of fine-
tuning on macroeconomic data for RAG. Lastly, we compare against the state-of-the-art:
OpenAI’s Text Embedding 3 Small, as well as the finance domain models Voyage Finance
2 and Finance Embeddings Investopedia.

Table 3.1 shows the details of the embedding models we are considering.

All of these have a Sentence Transformer base model, except Text Embedding 3 Small
and Voyage Finance 2. The “multi-qa” variants of these models were selected since they
have specifically been trained on question and answer pairs and are intended for semantic
search applications [36, 35]. Additionally, being a Sentence Transformer, the base model
we chose was not too difficult to fine-tune, taking around 2 hours on our own hardware,
while still delivering a notable improvement in performance versus the much smaller multi-
qa-MiniLM-L6-cos-v1.

3.1.2 Datasets

Choosing suitable datasets on which to evaluate our framework proved to be challeng-
ing. The majority of finance-related datasets mostly contain data relating to general and
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Model Base model Dimension

PKGE Domain-Specific PKGE General-Domain 768
PKGE General-Domain multi-qa-mpnet-base-cos-v1 768
Baseline Domain-Specific Baseline General-Domain 768
Baseline General-Domain multi-qa-mpnet-base-cos-v1 768
Baseline Simple multi-qa-mpnet-base-cos-v1 768
multi-qa-mpnet-base-cos-v1 - 768
multi-qa-MiniLM-L6-cos-v1 - 384
bge-base-en-v1.5 - 768
Text Embedding 3 Small - 1536
Voyage Finance 2 - 1024
Finance Embeddings Investopedia bge-base-en-v1.5 768

Table 3.1: The embedding models we use for our experiments.

personal finance topics, equity-related data, such as stock sentiment and form 10-Ks, and
general banking questions. These types of tasks are not our goal, but are found in the
most common datasets such as FiQA, FinTextQA, and TAT-QA [40, 6, 51]. To preserve
some comparability against these, we test on the Finance Alpaca dataset [10], which is a
combination of the Stanford Alpaca dataset [39], FiQA dataset [40] and 1,300 pairs gen-
erated by GPT-3.5. We consider only the first 10,000 pairs to save on computation time,
API calls, and also to avoid the GPT-generated pairs.

We assemble a custom test dataset from Fed press conference transcript PDFs dating
back to May 2023, which is our primary focus for testing. The most recent press conference
was included in the domain-specific datasets, and previous ones in the Fed press conference
dataset for testing. This prevents data leakage. Only press conferences from a maximum of
one year ago are considered due to their declining relevance. Covid years are also avoided
since they contain non-generalisable data. The Q&A sessions from each press conference
transcript are extracted and first pre-processed using OpenAI’s GPT-4o [30], as described
earlier in Section 2.2.4.

With the Q&A pairs written in a well-formatted text file, we can easily convert this
into the required format for our Python libraries to evaluate.

The final list of datasets that we use is shown in Table 3.2. We implement a training-
validation split of 80-20, and only train/validate on our own PKGE and Baseline datasets.
Fed press conferences and Finance Alpaca are only used for final evaluation and testing.

Dataset Purpose No. of Pairs

PKGE domain-specific Train/Val 2,360/591
PKGE general-domain Train/Val 4,000/1,000
Baseline domain-specific Train/Val 87/24
Baseline general-domain Train/Val 588/147
Baseline combined Train/Val 675/171
Fed press conferences Test 233
Finance Alpaca Test 10,000

Table 3.2: Our datasets used.

Note again that there is very little available data for the Baseline domain-specific
dataset, highlighting the need for the PKGE framework. For the scope of our project,
the domain-specific documents include a handful of relevant recent research articles from
our database, as well as the most recent Fed summary of economic projections (SEP)
and press conference. In production, we would definitely expand the scope of the data to
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include external research and news articles, as well as capturing a much larger quantity
overall. This is discussed further in Chapter 5.

3.1.3 Metrics

We apply the the standard metrics for evaluating retrieval, including accuracy/hit rate,
precision, Mean Rank Reciprocal (MRR) and NDCG (Normalised Discounted Cumulative
Gain). Accuracy and precision give intuitive understandings for the quality of retrieval,
while MRR and NDCG both yield a rank-dependent score. Importantly, in all retrievals,
we define exactly one “correct” answer in the corpus (positive pair), with all other answers
considered incorrect (negative pairs). This means that the model’s recall is identical to
its accuracy, so we will only quote accuracy. Also, MRR and NDCG will yield the same
interpretation, since there is no possibility of multiple correct retrievals.

For retrieval, we find the top-K closest embedded text chunks in the corpus, in cosine
similarity, for K ∈ {1, 3, 5, 10}. The corpus contains N queries {qi}i=1,...,N and N answers
{ai}i=1,...,N , with K ≤ N . The positive pairs are the (qi, aj) for which i = j, and the
negative pairs are those with i ̸= j.

Remark 3.1.1. In practice, there would sometimes be several “correct”, or relevant,
answers to a given user query, especially when it relates to macroeconomics. This is
because there are often many interpretations are possible. It may also be the case that
there are more than K relevant answers for any value of K we choose. For simplicity, and
given that our aim is to demonstrate the effectiveness of our framework, we consider only
one ground truth relevant answer.

Let Ri,K = {ri,k}k=1,...,K be the retrieved answers for a query qi, where ri,1 is the
answer with the highest cosine similarity with the query, and ri,K the lowest. Let 1{ai∈Ri,K}
be the indicator function which determines whether or not the positive pair ai matches any
of the retrieved answers. Finally, rank(ai) is the position of the positive pair in the ranking
of the cosine similarities of the entire answer corpus to query qi. Of course, 0 < k ≤ K if
ai is retrieved, and K < k ≤ N if not.

We now define the metrics for each K as follows:

Accuracy(K) =
1

N

N∑
i=1

1{ai∈Ri,K} (3.1.1)

Precision(K) =
1

N

N∑
i=1

1{ai∈Ri,K}

K
(3.1.2)

MRR(K) =
1

N

N∑
i=1

1{ai∈Ri,K}

rank(ai)
(3.1.3)

NDCG(K) =
1

N

N∑
i=1

1{ai∈Ri,K}

log2(rank(ai) + 1)
(3.1.4)

3.2 Fine-Tuning Procedure

PKGE involves a two-phase fine-tuning procedure for embedding models. Firstly, we fine-
tune a pre-trained model on general-domain data to produce PKGE-GD, the “generally-
trained” embedding. Then, we fine-tune PKGE-GD on domain-specific data to yield
PKGE-DS, the final model. The Baseline-GD and Baseline-DS models are trained in the
same way, but using the baseline datasets.
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3.2.1 Training Objective

The goal of training is to minimise the Multiple Negatives Ranking Loss, defined in 1.1.4.
This was also used in the pre-training of our base Sentence Transformer models [36, 35].

3.2.2 Optimiser and Regularisation

The Sentence Transformers library uses the AdamW algorithm as its default optimiser.
Based on the Adam optimiser, the AdamW algorithm applies L2 regularisation to model
weights by decoupling it from the gradient descent procedure [22].

The Adam optimiser has become indispensable in the training of machine learning
models due to being “straightforward to implement... computationally efficient, [having]
little memory requirements... invariant to diagonal rescaling of the gradients, and is well
suited for problems that are large in terms of data and/or parameters” [18]. Naturally,
then, it is appropriate for our purposes.

Regularisation is a technique which prevents model overfitting by either reducing some
weights to zero, or close to zero. We define both L1 and L2 regularisation here, adapted
from [26].

Consider the Mean Squared Error (MSE) loss function as an example. Let N be the
number of observations, Yi be the actual value, and Ŷi be the predicted value.

1

N

N∑
i=1

(Yi − Ŷi)
2

Definition 3.2.1. (L1 Regularisation) An MSE loss function with L1 regularisation has
the form

1

N

N∑
i=1

(Yi − Ŷi)
2 + λ

N∑
i=1

|θi|, (3.2.1)

with λ ∈ [0, 1] being a chosen parameter and θi being the weights.

L1 Regularisation allows weights to decay to zero, removing its explanatory power,
which can promote more efficient, sparser representations of the data using fewer features.
This also comes with the disadvantage of potentially underfitting by removing too many
features, which can result from a choice of lambda which is too high. L2 regularisation
does not have this particular problem, since it will not fully eliminate features.

Definition 3.2.2. (L2 Regularisation) An MSE loss function with L2 regularisation has
the form

1

N

N∑
i=1

(Yi − Ŷi)
2 + λ

N∑
i=1

θ2i , (3.2.2)

with λ ∈ [0, 1] being a chosen parameter and θi being the weights.

The difference with L2 regularisation is that it does not allow weights to decay to zero,
but only to approach zero, leading to non-sparse solutions. L1 penalises the absolute value
of the weights, whereas L2 penalises their square. In both cases, setting lambda as zero
removes the effect of the regularisation component completely.

3.2.3 Training Parameters

All PKGE and Baseline models are trained on the same parameters: 2 epochs of stochastic
gradient descent, with a minibatch size of 36 for estimating the gradient. The learning
rate is 2e-5, with a warmup given by 0.1 ∗N ∗ epochs, where N is the number of pairs in
each dataset.
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3.2.4 Hardware

All training and testing is conducted on an Nvidia GeForce RTX 4050, which has 6GB
of VRAM. As this is memory-constrained, we choose models which are small enough to
fit in the VRAM buffer and would not exceed the capacity during training. This proved
capable for our purposes and no cloud compute was necessary, thanks to the relatively low
compute requirement of the PKGE framework. For a production-ready embedding model,
one should certainly train on more capable hardware, and with significantly more data.
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Chapter 4

Results

4.1 Empirical Results

The results on our test datasets are shown in Table 4.1 and Table 4.2.

4.1.1 Fed Press Conferences

Model Acc@1 Acc@3 Acc@5 Acc@10 Prec@1 Prec@3 Prec@5 Prec@10 MRR@10 NDCG@10

mpnet-base 0.3247 0.5022 0.5758 0.6623 0.3247 0.1674 0.1152 0.0662 0.4303 0.4858
MiniLM-L6 0.3247 0.4502 0.5022 0.6104 0.3247 0.1501 0.1004 0.0610 0.4053 0.4535
bge-base 0.2814 0.4589 0.4978 0.5931 0.2814 0.1530 0.0996 0.0593 0.3844 0.4347
Investopedia 0.2641 0.4113 0.4589 0.5455 0.2641 0.1371 0.0918 0.0545 0.3515 0.3976
OpenAI 0.3550 0.4805 0.5541 0.6407 0.3550 0.1602 0.1108 0.0641 0.4393 0.4874
VoyageAI 0.3160 0.5108 0.5671 0.6753 0.3160 0.1703 0.1134 0.0675 0.4338 0.4918
Baseline-Simple 0.3463 0.5022 0.5541 0.6667 0.3463 0.1674 0.1108 0.0667 0.4391 0.4929
Baseline-GD 0.3463 0.5022 0.5325 0.6364 0.3463 0.1674 0.1065 0.0636 0.4344 0.4823
Baseline-DS 0.3074 0.4589 0.5714 0.6753 0.3074 0.1530 0.1143 0.0675 0.4112 0.4740
PKGE-GD 0.3593 0.5152 0.5628 0.6494 0.3593 0.1717 0.1126 0.0649 0.4538 0.5006
PKGE-DS 0.3853 0.5195 0.5844 0.6753 0.3853 0.1732 0.1169 0.0675 0.4695 0.5181

Table 4.1: Results on the Fed press conferences dataset. The top-performing model is
highlighted in bold.

Firstly, PKGE Domain-Specific outperforms all other models on the press conferences
dataset, with the exception of ties on Accuracy@10 and Precision@10, which could have
been avoided with a larger dataset. On average, PKGE Domain-Specific delivers an 8.92%
gain over Baseline Domain-Specific, 6.77% vs Baseline Vanilla and 6.69% vs mpnet-base,
its base model, across all metrics. This shows that our framework offers a notable accuracy
and ranking improvement.

Phased learning shows mixed results on the dataset, however. Baseline Domain-
Specific outperforms on accuracy at high K versus Baseline Simple, but demonstrates
worse performance on ranking ability, seen in lower MRR and NDCG scores. This may
have been avoided if we had a larger amount of raw domain-specific data available, as it
is possible that Baseline-DS was not exposed to enough data.

Notably, Voyage Finance 2 appears to have similar performance to Text Embedding
3, where the former outperforms on K = 5 and K = 10, while the latter outperforms
on K = 1 and K = 3. Their ranking capability is also very close. Finance Embed-
dings Investopedia had unexpectedly poor performance, which may be due to insufficient
fine-tuning on macroeconomic texts. It also underperforms its own base model, bge-base.
Overall, PKGE Domain-Specific delivers the best performance on this dataset, which em-
pirically shows that our model is fit-for-purpose.
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4.1.2 Finance Alpaca

Model Acc@1 Acc@3 Acc@5 Acc@10 Prec@1 Prec@3 Prec@5 Prec@10 MRR@10 NDCG@10

mpnet-base 0.2602 0.4487 0.5304 0.6301 0.2602 0.1496 0.1061 0.0630 0.3753 0.4363
MiniLM-L6 0.1947 0.3450 0.4099 0.5028 0.1947 0.1150 0.0820 0.0503 0.2884 0.3395
bge-base 0.2178 0.3821 0.4546 0.5473 0.2178 0.1274 0.0909 0.0547 0.3185 0.3732
Investopedia 0.1674 0.3039 0.3637 0.4507 0.1674 0.1013 0.0727 0.0451 0.2520 0.2993
OpenAI 0.2418 0.4149 0.4927 0.5875 0.2418 0.1383 0.0985 0.0588 0.3477 0.4048
VoyageAI 0.2381 0.4231 0.5044 0.6040 0.2381 0.1410 0.1009 0.0604 0.3505 0.4111
Baseline-Simple 0.3463 0.5022 0.5541 0.6667 0.3463 0.1674 0.1108 0.0667 0.4391 0.4929
Baseline-GD 0.2565 0.4413 0.5234 0.6232 0.2565 0.1471 0.1047 0.0623 0.3697 0.4304
Baseline-DS 0.2458 0.4301 0.5089 0.6101 0.2458 0.1434 0.1018 0.0610 0.3575 0.4178
PKGE-GD 0.2407 0.4198 0.4999 0.5977 0.2407 0.1399 0.1000 0.0598 0.3506 0.4097
PKGE-DS 0.2290 0.4018 0.4770 0.5726 0.2290 0.1339 0.0954 0.0573 0.3340 0.3910

Table 4.2: Results on the Finance Alpaca dataset. The top-performing model is high-
lighted in bold.

On Finance Alpaca, the Baseline Simple model outperforms outright. Firstly, we ex-
pect that the increasingly fine-tuned general-domain and domain-specific models should
lose some generalisation due to the fine-tuning process. This is especially apparent in the
other PKGE and Baseline models, which underperform their own base model, mpnet-base.
Finance Alpaca contains a small amount of macro-related data, but mostly consists of per-
sonal finance, banking and equities data. Baseline Simple delivers strong outperformance,
despite being trained on the same data as the PKGE and other Baseline models. It is
possible that, for this dataset, it was more beneficial to expose the model to the full range
of data at once, rather than in phases.

Finally, although the OpenAI and VoyageAI embedding models performed in-line with
the overall average, they underperform mpnet-base. It may also be possible that some
pre-training data for mpnet-base and MiniLM-L6 coincided with this dataset, since both
of these had the same training corpus of 215 million Q&A pairs [36, 35].

4.2 Real-World Testing

By far, the most important evaluation for PKGE is testing the entire application on real
data, for a real-world task. We build a simple interface which is of the form illustrated in
the RAG section of Figure 2.2. We use GPT-4o to generate the final output. Four sample
user queries which capture different aspects of the knowledge available in our domain-
specific database are included, and the LLM’s corresponding responses are detailed in
Appendix A.1. Additionally, we detail the LLM system prompt used, which describes
how the LLM “consultant” should behave, shown in the appendix in Figure A.6.

The responses demonstrate the efficacy of the PKGE framework. Firstly, PKGE
Domain-Specific is easily able to retrieve information on the Fed’s potential monetary
policy decisions (Figures A.2 and A.3). When asked for potential trade ideas relating to
Fed actions, the model is not only able to retrieve the specific text chunk in the database
containing the trade details, but also give an explanation to the reasoning for the trade,
which is located in a different text chunk (Figure A.1). Finally, our model is still able to
deliver a relevant and informative response even when asked an extremely vague question,
thanks to its comprehensive system prompt (Figure A.4).

An important consideration for the application is the amount of context to retrieve.
Returning only one text chunk is insufficient, while ten is excessive and opens up the
LLM to the “lost-in-the-middle” problem. This refers to the phenomenon of worse quality
responses when the relevant context is near the middle of a much longer context chunk,
with better performance when it is near the beginning or the end [21]. Therefore, we have
selected K = 3 as our optimal number of texts to retrieve, based on the amount of data
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we have. With more available data, K = 5 may become more appropriate.
Our intended users are researchers or traders at banks, asset managers and hedge

funds, who are interested in quickly interfacing with all the current U.S. macro and rates
news, as well as our company’s views. RAG is especially important for these users because
the information must be as true to its source as possible. In production, the system may
also be tailored to meet the specific needs of clients, such as information being presented
in a certain way. The LLM system prompt may be altered, or additional formatting steps
may be introduced to accommodate this, though these extensions are beyond our scope.
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Chapter 5

Further Work & Practical
Considerations

5.1 Extensions

5.1.1 Generalising PKGE

The PKGE framework is not restricted to macroeconomic data. Although we have shown
that it suits this domain well, it could be extended to other popular areas for embedding
models and LLMs, such as law, medicine and technical support. In tech support for
example, one can train first on general-domain documents such as IT best practices, before
then incorporating company-specific procedures, guidelines and tutorials.

Another generalisation of the idea is to extend phased learning, where a model receives
the same education progression as humans, beginning with concepts typically taught in
primary school and below, and ending with professional-level expertise acquired from
decades of experience in a field. This may even be applied at the pre-training stage. We
believe both of these could be a compelling area for future research.

5.1.2 Enhancing the RAG Pipeline

We have only considered fine-tuning the embedding model for the retrieval stage of the
RAG pipeline, and have not incorporated any fine-tuning of encoder-decoder or decoder-
only models. For our purposes, we only require the model to learn efficient representations
of our data so that relevant context information can be retrieved reliably, while a pre-
trained decoder-only LLM, such as GPT-4o [30], is sufficient in producing the final output
to the user.

Alternatively, fine-tuning an encoder-decoder model like Google’s T5 [27] may enable
better performance overall, since both encoder and decoder weights can be fine-tuned. The
PKGE framework eliminates the intensive computation required in fine-tuning an encoder-
decoder or decoder-only model, which have significantly more weights. Techniques such
as Low Rank Adaptation (LoRA) [13] and Parameter-Efficient Fine-Tuning (PEFT) [23]
can alleviate the compute required, however, by only requiring a small number of extra
weights to be trained on top of the original model. This yields performance close to that
of fine-tuning all model weights, and these techniques may be explored in future work.

5.2 Practical Considerations

In a production setting, our envisaged application should be able to retrieve data and gen-
erate responses quickly, as well as being efficient on compute, tokens and API calls. These
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considerations are central to PKGE, which was built, from the start, to be a commercially
viable framework.

Again, we currently focus on the embedding model to improve retrieval and minimise
the number of LLM calls needed in the process. General-domain knowledge graph gener-
ation is the most token-intensive step, though it only needs to be performed once. This is
similar for the domain-specific knowledge graph in terms of Q&A generation to fine-tune
the domain-specific embedding model, which only needs to be carried out to keep in-line
with new market regimes. LLM calls are required often to update the graph with new
edges, though the token usage should be light.

For production, the model must be fine-tuned on considerably more data than we
have provided in our demonstration. Our framework can be easily adapted to suit other
macroeconomic areas, or even completely different domains. PKGE’s knowledge graph
Q&A generation allows one to easily generate enough data for decent fine-tuning results,
regardless of its area.

The flexibility of PKGE allows it to be implemented into many different kinds of
pipelines. Additional steps can easily be added into the process, such as reranking retrieved
answers. A reranker model, or cross-encoder, compares the similarity between a query and
retrieved document using a full Transformer architecture, which is slow but more accurate
than using embedding models [32]. This can overcome the “lost-in-the-middle” problem
when retrieving many text chunks. Rerankers are also commonly used in search engines,
which could be another area in which PKGE can be adapted.

On balance, although our current PKGE framework has already demonstrated promis-
ing performance, there remain many areas which are worth investigating that have the
potential to significantly boost its capabilities.
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Conclusion

In this paper, we introduced Phased Knowledge Graph-Attuned Embedding: A flexible
and commercially applicable framework for enhancing Retrieval Augmented Generation
on macroeconomic data.

Factual question answering often requires relevant context to be retrieved to help the
LLM to avoid hallucination. Fine-tuning an embedding model for retrieval is done through
teaching the model to learn the relationship between queries and their answers [20]. The
model then accesses a database to retrieve the most relevant context by finding the top K
closest text chunks, in cosine similarity, to an embedded query. In our case, we define K
to be 3, which provides sufficient context while minimising the effect of the “lost-in-the-
middle” problem [21].

We demonstrated that our fully fine-tuned embedding model, PKGE Domain-Specific,
was able to outperform the state-of-the-art Text Embedding 3 from OpenAI, as well as
competing finance-specific embedding models, including VoyageAI’s Voyage Finance 2,
on our custom Fed press conference dataset. This is the closest benchmark to real-world
usage of our model. Most importantly, in our test application, we demonstrate high-quality
responses to a variety of user queries which all capture the relevant factual information,
even when the query is extremely vague.

In addition, PKGE also introduces an effective method of data generation through
augmenting existing data via knowledge graphs. Using a pre-trained LLM, one can easily
generate new question and answer pairs through grouping existing nodes in unique sub-
graphs. This can be immensely valuable in domains with very little relevant training data.
Interest rates research is one such area; News and opinions quickly become out-of-date as
new data arrives. With more information about the domain, the embedding model is able
to learn more of its specific language features and topics, leading to increased accuracy at
the retrieval stage.

The value in our framework remains in its practical application. To become a valuable
resource for traders and researchers in banks, hedge funds and asset managers, the ap-
plication would require scaling to many concurrent users and implementation on a server
with embedding and LLM inference endpoints, along with a live vector/graph database.
This paper only proposes the framework, which is now left to the reader to interpret and
adapt to their specific use case.
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Appendix A

Prompts, Queries & Answers

A.1 PKGE Application Sample Queries & Responses

Query: How do I trade the Fed?
Answer: To trade the Fed based on the view of a single 2024 cut in November
or December FOMC meetings, compared to market expectations of more cuts,
you can tactically short January Fed Funds. This means you would take a
bearish position on January Fed Funds contracts, anticipating a decrease in
the Fed Funds rate. The market, however, is pricing in two cuts by September
and five cuts by December, showing a more dovish outlook than your single
cut expectation.

Figure A.1: Sample LLM response on user query with retrieved context: Fed trade ideas.

Query: How does the Fed see inflation for the remainder of this year?
Answer: The Fed expects inflation to return to its 2 percent goal as the econ-
omy progresses. They don’t plan to reduce the target range for the federal
funds rate until there’s more confidence that inflation is moving sustainably
towards 2 percent. The Fed will continue to monitor inflation data and make
decisions on a meeting-by-meeting basis. They acknowledge the risks of adjust-
ing policy too soon or too late. Despite strong economic fundamentals, growth
and inflation have surprised on the downside. The Fed sees balanced risks to
employment and inflation and could potentially cut rates once in 2024 to mit-
igate downside risks to growth, likely in November or December, to prioritize
political gains over economic costs.

Figure A.2: Sample LLM response on user query with retrieved context: Fed view on
inflation.
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Query: Labour market impact on Fed decisions?
Answer: The Federal Reserve closely monitors the labor market conditions
when making decisions. Powell stated that they would react quickly to un-
expected labor market weaknesses. The recent weak July NFP data suggests
labor market rebalancing, but the Fed is likely to frontload its rate cut due
to advanced rebalancing. In the labor market, supply and demand conditions
have improved, with solid average job gains of 177,000 per month in the second
quarter. The unemployment rate is at 4.1%, and overall labor market condi-
tions have returned to pre-pandemic levels. The spread between minority and
white unemployment rates signals a strong labor market, with African Amer-
ican/white spread below 2019 average and Hispanic/white spread above and
rising due to high migrant inflows.

Figure A.3: Sample LLM response on user query with retrieved context: Labour market
impact on Fed decisions.

Query: What’s looking interesting now?
Answer: Recent indicators show that economic activity is solid, with strong
job gains and a low unemployment rate. Inflation has eased but remains ele-
vated, making modest progress toward the 2% inflation objective. Labor mar-
ket conditions are improving, with payroll job gains averaging 177,000 per
month in the second quarter. The unemployment rate has moved up slightly
to 4.1%, reflecting strong job creation in recent years. Wage growth has eased,
and the job-to-workers gap has narrowed. Overall, labor market conditions are
strong but not overheated. It’s important to be cautious with judgments as the
pandemic era has been unusual, and traditional indicators may not function as
expected.

Figure A.4: Sample LLM response on user query with retrieved context: Vague query.
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A.2 PKGE Pipeline Prompts

Clean up this text and remove any conversational utterances, stutters and
punctuation. Streamline and simplify the questions but make sure to keep
the main ideas, and remove any mention of names. Format the questions and
answers like this:
Q: Question text
A: Answer text
The text is given below:
{text}

Figure A.5: Cleanup prompt for pre-processing press conference PDFs.

You are an expert in U.S. rates, U.S. macro and U.S. financial markets. Your
role is to write a short analysis piece, in a friendly and conversational tone, by
summarising the most important points in the given context.
You prefer to use simple language and very concise but factual answers.
Only use the information provided to answer the query.
Do not use any external knowledge.
Highlight as much factual information from the context as possible, especially
numbers, trends and trade recommendations. Present all the facts.
If the context is clearly irrelevant, or the exact information required to answer
the question is not available, ignore the context and just tell your client that
you are not sure of the answer.
The following are good examples of answers:
Query: What quantities are influenced by the Federal Funds Rate?
Context: Changes in the federal funds rate trigger...(truncated)
Answer: When the Federal Funds Rate changes, it...(truncated)
Query: What do you think about current inflation?
Context: What we’re seeing now is better than last year...(truncated)
Answer: I’d like to highlight that the progress on inflation...(truncated)
Also remember that if the user asks you a question not directly related to
U.S. rates, macro and financial markets, only respond that your knowledge is
specific to those subjects. Otherwise, respond only with your answer.

Figure A.6: LLM system prompt for final output to the user.
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Appendix B

Definitions

Definition B.0.1 (Euclidean Norm). [47] Given a vector p, its Euclidean norm is defined
as

∥p∥ =
√
p · p.

Definition B.0.2 (Cosine Similarity). [44] Given two vectors p and q, their cosine simi-
larity is defined as

CoSim(p, q) := cos(θ) =
p · q

∥p∥∥q∥
,

where θ is the angle between the vectors p and q.

Definition B.0.3 (Euclidean Distance). [46] Given two vectors p and q, the Euclidean
distance between them is defined as

d(p, q) = ∥p− q∥.
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