
Imperial College London

Department of Mathematics

Signature Coefficient Recovery via

Kernels

Author: Daniil Shmelev (CID: 01857518)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2023-2024

Declaration

The work contained in this thesis is my own work unless otherwise stated.

2

Acknowledgements

I would like to thank my supervisor, Dr. Cristopher Salvi, for his unwavering support and
insightful guidance throughout the course of this project. His expertise and enthusiasm for
rough path theory inspired my initial interest in the subject and motivated me to pursue
this thesis.

I would also like to thank my friends and family for their continued support throughout
my project.

Abstract

Central to the study of rough path theory is the signature transform of a path, a tensor
of infinite dimension composed of iterated integrals of the underlying path. The signature
poses an effective way to capture information from a path, thanks both to its rich analytic
properties and its universality when used as a basis to approximate functions on path
space. Whilst a truncated version of the signature can be efficiently computed using
Chen’s relation [7], there is a lack of efficient methods for computing a single coefficient
deep within the signature. We aim to solve this problem by leveraging the signature kernel,
defined as the inner product of two signature transforms, which is computable efficiently
as the solution of a Goursat PDE [18]. By forming a “filter” in signature space with which
to take kernels, one can effectively isolate specific groups of signature coefficients and, in
particular, a singular coefficient at any depth of the transform. We show that such a filter
can be expressed as a linear combination of suitable signature transforms and demonstrate
empirically the effectiveness of such an approach.

Contents

1 The Path Signature Transform 6
1.1 The Signature . 6
1.2 Properties of the Signature Transform . 7
1.3 The Signature Kernel . 9
1.4 Universal Nonlinearity . 10
1.5 Practical Motivations . 11
1.6 Naive Integration and a Lower Bound on Complexity 12
1.7 General Methodology . 12

2 Motivation: Randomised Scalings and Integral Transforms 14
2.1 Measures and Moment-Weighted Kernels . 14
2.2 Signed Measures . 15

3 Signature Coefficients as Derivatives 17

4 Vandermonde Systems 19

5 High Order Monomial Maps 24
5.1 Motivating Example . 24
5.2 Optimal Exponents . 25
5.3 Error Bounds and Results . 28

6 Limiting Axis Paths 30
6.1 Order Isolation with Axis Paths . 30
6.2 The Kernel PDE with Axis Paths . 31

7 Generalisations 33
7.1 Sums of Signature Coefficients . 33
7.2 Block-Ordered Coefficients . 34

8 Numerical Results 35

9 Conclusion and Future Work 39

A Technical Proofs 41
A.1 Proof of Proposition 2.2.2 . 41
A.2 Proof of Corollary 2.2.1.1 . 42
A.3 Proof of Proposition 3.0.1 . 44
A.4 Proof of Proposition 4.0.5 . 45
A.5 Proof of Proposition 5.3.2 . 45
A.6 Proof of Theorem 5.3.4 . 46
A.7 Proof of Theorem 7.2.1 . 47

B A Detailed Breakdown of Example 5.1.1 48

Bibliography 50

2

List of Figures

1.1 LRA benchmark performance and speed of different transformer models.
Circle size denotes memory footprint. Source: [20, Figure 3] 11

4.1 Average errors for computing S(x)P(1,...,k) over 1,000 random paths x constrained
to [0, 1]d, with path length L = 50 and coefficient depth k = 2 and 4.
Dyadic order for the PDE finite difference scheme [18] is fixed at 4. Average
magnitude of S(x)P(1,...,k) is 1.07× 10−1 for k = 2 and 1.18× 10−2 for k = 4. 23

5.1 9p(y)
(1)
t1

9p(y)
(2)
t2

9p(y)
(3)
t3

for n1 = 1, n2 = 2, n3 = 4 25

6.1 Convergence of pN (y) for k = 3 . 31

8.1 Average errors for computing S(x)(1,...,k) over 1,000 random paths constrained
to [0, 1]d using pN (y). Unless stated otherwise, we take path length L = 150,
coefficient depth k = 5, monomial order N = 1010 and scaling depthM = 2.
The dyadic order for the kernel PDE solver is fixed at 2. 37

8.2 Average errors for computing S(x)(1,...,k) over 1,000 random paths constrained
to [0, 1]d using the axis path z, with path length L = 150 and scaling depth
M = 2. Dyadic order for the kernel PDE solver is set to 2 (blue), 3 (green)
and 4 (red). 38

8.3 Average errors for computing S(x)(1,...,k) over 100 random linear paths
starting at 0 with end points in [0.5, 1]k, with decaying scaling depth and a
dyadic order of 6. Shaded area shows the region between the 10% and 90%
quantiles. 38

B.1 9p(y)
(1)
t1

9p(y)
(2)
t2

9p(y)
(3)
t3

for n1 = 1, n2 = 2, n3 = 4, split by sections corresponding
to signature coefficients in P(1, 2, 3). 48

3

List of Tables

5.1 Coefficient isolation within P(1, 2, 3) . 29

4

Introduction

Recently, the theory of rough paths and the signature transform have become important
tools in the processing of sequential data and effective feature selection. When concerned
with these problems, the signature transform of a path, consisting of a series of iterated
integrals, is an attractive choice of feature map owing to its many analytic and algebraic
properties. In practice, the simplicity of the signature of a linear path, combined with
an algebraic property called Chen’s relation, allows us to compute the signature of an
input data stream as the concatenation of signatures of linear paths interpolating the
data points.

A fundamental result in the study of the signature transform is that of its universal
non-linearity. That is, the coefficients of the signature transform can be viewed as a
set of non-linear basis functionals on which we can form a Taylor-like expansion of any
continuous function on path space. In certain contexts, such as when the function depends
on few coefficients or when considering machine learning models on signature space, we
may wish to focus on a small set of signature coefficients. A natural question is how we
might compute these specific coefficients within the signature, possibly at a very deep
level k of the transform. Naively, one may compute the entire transform up to level k
and extract the desired coefficients. However, we note that for a discrete input stream of
length L and dimension d, this computation would have a time complexity of O(Ldk), and
would require the computation of a large number of unused coefficients. A better option
is to directly compute the iterated integral which defines the signature coefficient, which
can be done in O(Lk2) time thanks to the iterative structure of the integral. Whilst an
improvement, this method still suffers from a quadratic complexity in the depth of the
coefficient k.

The methodology we propose is to compute signature coefficients by taking an inner
product of the signature with a suitable filter. If this filter can be formed in signature
space, then the resulting inner product is expressible as a linear combination of inner
products of signatures, called signature kernels. These kernels are readily computable as
the solution of a Goursat PDE, allowing practical computation of the filtered signature.
Our method will have a base complexity ofO(L2k), but with the important benefit that the
dependence on k can be parallelised away, resulting in an algorithm of complexity O(L).

We begin in Chapter 1 with a brief overview of fundamental definitions and results. We
provide some motivation for our approach to constructing the filter in Chapters 2 and 3
based on a weighted generalisation of the signature kernel called the ϕ-signature kernel.
Taking inspiration from these results, in Chapter 4 we propose a practical way to isolate
signature coefficients up to permutation of the multi-index. In Chapters 5 and 6, we
explore suitable paths from which to construct the filter in such a way that forces a specific
permutation of the multi-index. Combined with the previous results, this will give us the
desired filter for coefficient isolation. Finally, in Chapters 7 and 8, we provide numerical
results to support our methodology, as well as considering potential generalisations of the
method to computing more complicated structures.

5

Chapter 1

The Path Signature Transform

We begin by giving a brief introduction to some fundamental definitions and results.
Throughout, we will take (V, ∥·∥V) to be a finite-dimensional Banach space over R, equipped
with an inner product ⟨·, ·⟩V and an orthonormal basis {ei : 1 ≤ i ≤ d} with corresponding
dual basis {e∗i : 1 ≤ i ≤ d}.

1.1 The Signature

Before defining the path signature transform, we should define the spaces on which it acts
and endow these with consistent inner products. Having done this, we will move on to
define the signature, composed of a collection of iterated integrals in R referred to as the
coefficients of the transform. The inner products we define will underpin the construction
of the signature kernel, defined in Section 1.3.

Definition 1.1.1. Denote by Cp([a, b], V) the space of continuous paths from [a, b] to V
of finite p-variation, written Cp(V) when the interval can be inferred from context.

Two natural operations on Cp(V) are path concatenation

(x ∗ y)t :=

{
xt, t ∈ [a, b],

yt − yb + xb, t ∈ [b, c]

for x ∈ Cp([a, b], V), y ∈ Cp([b, c], V), where x ∗ y ∈ Cp([a, c], V), and the time reversal of
a path

←−x t = xa+b−t,

for x ∈ Cp([a, b], V), where ←−x ∈ Cp([a, b], V).

Definition 1.1.2. Define T (V) =
⊗∞

i=0 V
⊗i to be the tensor algebra of formal polynomials

over V endowed with the usual operations of + and ⊗.

Other than the tensor product ⊗, we may also define the shuffle product on T (V).

Definition 1.1.3 (Shuffle Product [5, Definition 1.3.9]). Define � : T (V)×T (V)→ T (V)
inductively by

u� r = r� u = ru, ∀r ∈ R, u ∈ V,
u� v = (u− � v)⊗ a+ (u� v−)⊗ b

for any u ∈ V ⊗n, v ∈ V ⊗m of the form u = u−⊗ a, v = v−⊗ b for a, b ∈ V . The function
� then extends uniquely to an algebra product on T (V)× T (V) by linearity.

We will see the relevance of this product once we have defined the signature transform.

6

Definition 1.1.4 (Hilbert-Schmidt inner product). Given an inner product ⟨·, ·⟩V on V ,
equip V ⊗k with the inner product

⟨u, v⟩V ⊗k =
k∏

i=1

⟨ui, vi⟩V

for any u = u1 · · ·uk, v = v1 · · · vk ∈ V ⊗k and define an inner product on T (V) by

⟨A,B⟩T (V) =

∞∑
k=0

⟨Ak, Bk⟩V ⊗k

for any A = (A0, A1, . . .), B = (B0, B1, . . .) ∈ T (V). Define the extended tensor algebra
T ((V)) to be the completion of T (V) with respect to ⟨·, ·⟩T (V).

Definition 1.1.5 (Signature Transform). Let x ∈ Cp([a, b], V) for p ∈ [1, 2). Then for any
[s, t] ⊆ [a, b], define the kth level of the signature transform as the iterated Young integral

S(x)
(k)
[s,t] =

∫
s<t1<···<tk<t

dxt1 ⊗ dxt2 ⊗ · · · ⊗ dxtk ∈ V
⊗k

and define the signature transform of x on [s, t] to be the formal series

S(x)[s,t] =
´

1, S(x)
(1)
[s,t], . . . , S(x)

(k)
[s,t], . . .

¯

∈ T ((V)).

We will often drop the subscript [s, t] when it is clear from context.

Definition 1.1.6 (Signature Coefficient). Let I = (i1, . . . , ik) be a multi-index of integers
in {1, . . . , d}. Let e∗I := e∗i1 · · · e

∗
ik
∈ (V ∗)⊗k. By viewing e∗I as an element of T ((V))∗,

define the scalar
S(x)I = e∗I(S(x)) ∈ R,

which we may write as the iterated integral∫
s<t1<···<tk<t

dx
(i1)
t1
dx

(i2)
t2
· · · dx(ik)tk

, (1.1.1)

where x(i) denotes the ith channel of the path xt = (x(1), . . . , x(d))t.

1.2 Properties of the Signature Transform

It is not immediately clear why iterated integrals should be used to represent a path. As
it turns out, the signature has several analytic and algebraic properties which make it well
suited as a “feature set” of a path. The first of these is invariance to reparametrisations
of time.

Proposition 1.2.1 (Reparameterisation invariance [5, Lemma 1.2.1]). Let x ∈ Cp([a, b], V)
for p ∈ [1, 2) and let λ : [c, d] → [a, b] be a continuous non-decreasing surjection. Then
S(x)[a,b] = S(x ◦ λ)[c,d].

This invariance removes an infinite dimensional group of symmetries on path space. The
presence of this symmetry can often cause problems in feature extraction, making the
signature transform an appealing choice of feature map. In cases where the parametrisation
of time is important, such as financial data, time can be added as a channel of the path
by taking x̃t = (t, xt). x̃ is then referred to as the time-augmented path. Given the
infinite-dimensional nature of the signature, one may question its practical use if it cannot
be computed fully. Luckily, the terms of the transform decay factorially, meaning lower
levels of the signature capture a large proportion of the information.

7

Lemma 1.2.2 (Factorial Decay [15, Lemma 5.1]). Let x ∈ C1([a, b], V) and k ∈ N. Then∥∥∥S(x)(k)∥∥∥
V ⊗k
≤
∥x∥k1,[a,b]

k!
,

where ∥x∥1,[a,b] is the 1-variation of x on [a, b].

The final important analytic property that we might require is uniqueness of the transform.
This holds up to so-called tree-like equivalence of paths.

Definition 1.2.3 (Tree-Like Equivalence [11, Definition 1.3]). x ∈ C1([a, b], V) is said
to be Lipschitz tree-like if there exists a continuous function h : [a, b] → R+ of bounded
variation such that h(a) = h(b) = 0 and

∥xt − xs∥V ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u). (1.2.1)

For x, y ∈ C1([a, b], V), say x and y are tree-like equivalent and write x ∼ y if x ∗ ←−y is
Lipschitz tree-like. Then ∼ defines an equivalence relation on C1([a, b], V).

A tree-like path can be thought of as a path which retraces its trajectory exactly back to
the start point. The function h can then be interpreted as a “height function” measuring
the distance of a point along the tree from the start point or “base node”. For a tree-like
path, if the “height” at time s and t is equal and the path only goes deeper into the tree
between s and t, that is

h(s) = h(t) = inf
u∈[s,t]

h(u),

then xs = xt. The above condition is equivalent to Condition (1.2.1). The notion of
tree-like equivalence is extended in [3] to weakly geometric rough paths, which includes the
p ∈ (1, 2) case.

Definition 1.2.4. Let ∼ denote the tree-like equivalence relation on Cp([a, b], V), as
defined in [3; 11]. Then Cp([a, b], V) = Cp([a, b], V)/∼ is the class of unparametrised
paths of finite p-variation.

With these concepts in hand, the signature can be shown to be unique on unparametrised
paths.

Theorem 1.2.5 (Injectivity on Cp [3]). Let x, y ∈ Cp(V) for p ∈ [1, 2). Then S(x) = S(y)
if and only if x ∼ y. If p = 1, then every equivalence class [x] ∈ C1(V) has an element of
minimal length, called the tree-reduced representative.

As with time-reparametrisations, if we wanted to distinguish between two paths which
are tree-like equivalent then we could instead consider the time-augmented paths. Having
appreciated the rich analytic properties of the signature, it is important to consider how
one might efficiently compute signatures in practice. For a piecewise linear interpolation
of data, this is straightforward thanks to the simplicity of the signature of a linear path
and an algebraic property called Chen’s relation.

Proposition 1.2.6 ([5, Section 1.3.1]). Let x ∈ C1([a, b], V) be the linear path

xt = xa +
t− a
b− a

(xb − xa).

Let xa,b denote the canonical inclusion of xb − xa ∈ V into T ((V)). Then

S(x)[a,b] = exp(xa,b),

where exp denotes the tensor exponential

exp(v) :=
∞∑
k=0

v⊗k

k!
.

8

Proposition 1.2.7 (Chen’s relation [5, Lemma 1.3.1; 7]). Let x ∈ Cp([a, b], V) and y ∈
Cp([b, c], V) for p ∈ [1, 2). Then

S(x ∗ y)[a,c] = S(x)[a,b] ⊗ S(y)[b,c],

where x ∗ y denotes the path concatenation of x and y.

Another useful algebraic property of the signature is the shuffle identity.

Theorem 1.2.8 (Shuffle Identity [5, Theorem 1.3.10]). Let x ∈ Cp([a, b], V) for p ∈ [1, 2)
and f, g ∈ T ((V))∗ ∼= T (V ∗). Then

f(S(x)) · g(S(x)) = (f � g)(S(x)).

1.3 The Signature Kernel

Whilst factorial decay allows us to justify the use of a truncated signature transform
which is only computed up to a given level, the problem of dimensionality persists, with
the kth level of the transform containing dk many coefficients. A potential solution when
comparing the signatures of two paths is to apply a “kernel trick” and consider instead
the inner product of the signatures as elements of T ((V)).

Definition 1.3.1 (Signature Kernel). Let x ∈ C1([a, b], V) and y ∈ C1([c, d], V). The
signature kernel kx,y : [a, b]× [c, d]→ R is given by

kx,y(s, t) =
〈
S(x)[a,s], S(y)[c,t]

〉
T ((V))

.

We will often write kx,y when the kernel is taken over the entire interval.

By applying the Cauchy-Schwarz inequality, we get the following corollary of Lemma 1.2.2.

Corollary 1.2.2.1. Let x, y ∈ C1([a, b], V) and k ∈ N. Then∣∣∣〈S(x)(k)[a,b], S(y)
(k)
[c,d]

〉
V ⊗k

∣∣∣ ≤ ∥x∥k1,[a,b]∥y∥k1,[c,d]
(k!)2

.

Occasionally, it will be helpful to refer to a truncated signature kernel in which we only
consider the signature up to the nth level.

Definition 1.3.2 (Truncated Signature Kernel). Let x ∈ C1([a, b], V) and y ∈ C1([c, d], V).
The truncated signature kernel kn

x,y : [a, b]× [c, d]→ R is given by

kn
x,y(s, t) =

n∑
k=0

〈
S(x)

(k)
[a,s], S(y)

(k)
[c,t]

〉
V ⊗k

.

Efficient approaches for computing truncated signature kernels for a linearly interpolated
data stream of length L are presented in [13], although these are typically non-linear in L
or reliant on low-rank approximations. We may wish to generalise the idea of signature
kernels by applying a weighting ϕ(k) to the inner product ⟨·, ·⟩V ⊗k at level k. We do this
by introducing the ϕ-inner product on T (V).

Definition 1.3.3 (ϕ-inner product). For a given weight function ϕ : N0 → R+, the ϕ-inner
product on T (V) is given by

⟨A,B⟩ϕ =
∞∑
k=0

ϕ(k) ⟨Ak, Bk⟩V ⊗k (1.3.1)

for any A = (A0, A1, . . .), B = (B0, B1, . . .) ∈ T (V). Define Tϕ((V)) to be the completion
of T (V) with respect to ⟨·, ·⟩ϕ.

9

To define a weighted signature kernel using this inner product, we must first ensure
that Tϕ((V)) contains the signatures that we wish to take inner products with. This
is guaranteed by the next lemma under certain conditions on ϕ.

Lemma 1.3.4 ([5, Lemma 2.1.2]). Let S denote the image of C1(V) under the signature

transform. If the function ϕ : N0 → R+ is such that for any C > 0 the series
∑

k∈N
Ckϕ(k)
(k!)2

converges, then S ⊂ Tϕ((V)).

Definition 1.3.5 (ϕ-Signature Kernel). Let x ∈ C1([a, b], V) and y ∈ C1([c, d], V). Let ϕ

satisfy the condition of Lemma 1.3.4. Then the ϕ-signature kernel kϕ
x,y : [a, b]× [c, d]→ R

is given by

kϕ
x,y(s, t) =

〈
S(x)[a,s], S(y)[c,t]

〉
ϕ
.

The untruncated signature kernel is of little practical use if we have no way to compute
it. Fortunately, it can be shown to be the solution to a hyperbolic PDE belonging to a
class of PDEs called Goursat problems.

Theorem 1.3.6 (Signature Kernel PDE [18, Theorem 2.5]). Let x ∈ C1([a, b], V) and
y ∈ C1([c, d], V). Then kx,y is the solution of the Goursat PDE

∂2kx,y

∂s∂t
= ⟨ 9xs, 9yt⟩V kx,y, kx,y(a, ·) = kx,y(·, c) = 1, (1.3.2)

the existence and uniqueness of a solution to which follows from [14, Theorems 2 & 4].

In [18] it was shown that for paths obtained by linearly interpolating discrete input streams
of length L and dimension d, computation of the signature kernel can be achieved in
O(L2d) time. The advantage of computing the full signature kernel over the truncated
version is that numerical PDE schemes lend themselves well to parallelisation. As such,
the complexity may be reduced to O(Ld) on suitable GPU hardware.

1.4 Universal Nonlinearity

Arguably one of the most important results in the study of the signature transform is that
of its univeral nonlinearity, which states that continuous functions on path space can be
well approximated by linear functionals on the signature.

Theorem 1.4.1 (Universal Nonlinearity [16, Theorem 3.3]). Given a suitable topology on
C1([a, b], V), let K ⊂ C1([a, b], V) be compact and f : K → R a continuous function. Then
for any ε > 0 there exists a truncation level k ∈ N and αi,I ∈ R such that for all x ∈ K∣∣∣∣∣∣f(x)−

k∑
i=0

∑
I∈{1,...,d}i

αi,I S(x)
I
[a,b]

∣∣∣∣∣∣ ≤ ε.
This is extended to Cp in [5, Theorem 1.4.7]. A discussion of suitable topologies on
Cp can be found in [5; 6]. Theorem 1.4.1 provides our main motivation for computing
isolated signature coefficients. Suppose for a given function f and tolerance ε we know
the coefficients αi,I . Moreover, suppose the αi,I mostly vanish. Let x be a piecewise linear
path obtained from interpolating an input data stream of length L. To compute f(x) one
can, of course, compute S(x) up to level k to get an approximate value for f(x). However,
for a path of length L this would have a computational complexity of O(Ldk) [12; 17] and
would involve unnecessary computation of unused signature coefficients. Alternatively,
one could compute the required signature coefficients by directly computing the integral

10

in Equation (1.1.1). As we will see below, a coefficient at depth k can be computed in this
way in O(Lk2) time, which is an improvement over computing the entire signature up to
level k, but still quadratic in depth k.

The problem we focus on is that of efficiently computing a single coefficient within level
k of the signature transform, without needing to compute the entire transform. In the
formulation above, this is the case where all but one of the αi,I are zero. Our approach
will have a base complexity of O(L2k), but with the benefit of being easily parallelisable
down to O(L).

1.5 Practical Motivations

The motivation given in the previous section is highly abstract, so we provide a concrete
use case rooted in machine learning.

First introduced in the seminal paper Attention is all you need [21], transformer models
form the foundation of modern GPT models and have natural applications to time series
forecasting in areas such as quantitative finance. At the heart of the transformer model
is the “self-attention” mechanism, which enables the model to dynamically focus on
different parts of the input sequence to capture inherent dependencies. Unlike other
models operating on sequential data, such as recurrent neural networks (RNNs) [23], the
self-attention mechanism is pivotal in allowing the transformer model to capture long-range
dependencies in the sequence. A major bottleneck of the self-attention mechanism is its
quadratic complexity in sequence length. Several recent papers [2; 8; 22] have presented
methods for linearizing transformers using various approximations of self-attention. Whilst
successful in some areas, on average these models underperform the vanilla transformer in
long-context tasks, as illustrated in the Long-Range Arena (LRA) benchmark [20].

Figure 1.1: LRA benchmark performance and speed of different transformer models. Circle
size denotes memory footprint. Source: [20, Figure 3]

When considering long financial time series, a potential solution to the quadratic complexity
in sequence length is to consider transformer models on the level of signature coefficients,
rather than the underlying sequence. In such a setup, the transformer would focus on
specific signature coefficients throughout the training, leveraging signature universality to
capture the necessary information from the path. For this to be viable in practice, we must
be able to efficiently compute isolated signature coefficients. If this is possible, then we
note that, since signature coefficient computation is linear in sequence length, the resulting
mechanism would break the quadratic complexity which hinders classical transformers.

11

1.6 Naive Integration and a Lower Bound on Complexity

A naive approach to computing the signature coefficient is to directly compute the integral
(1.1.1). We can exploit the iterative structure of the coefficient by computing recursively

S(x)
(i1,...,im)
[0,t] =

∫ t

0
S(x)

(i1,...,im−1)
[0,u] dx(im)

u

for all discretisation points 0 = t0, t1, . . . , tL = 1, by noting that if x is piecewise linear,

then S(x)
(i1,...,im)
[0,t] must be piecewise polynomial of degree m. Since integrating a path

which is piecewise polynomial of degree m can be done in O(Lm) time, we can compute
S(x)(i1,...,ik) recursively in O(Lk2) time. At the cost of accuracy, we may also choose
to approximate the integral by numerical integration techniques, which can reduce the
complexity down to O(Lk). We should note that, for instance, the signature coefficient
S(x)(1,...,k) depends on each of the Lk many input data points of the path x. Therefore,
a fundamental lower bound on the unparallelised complexity of computing this coefficient
must be Lk. We will show that the kernel methods which we develop for computing
a signature coefficient allow us to parallelise away the dependence on k, resulting in a
complexity of O(L). Moreover, the tools we develop will extend to computing certain
sums of coefficients which may not be easily computable by direct integration.

1.7 General Methodology

Given a multi-index (i1, . . . , ik) ∈ {1, . . . , d}k representing the signature coefficient which
we aim to compute, the main idea of the approach is to create a filter F ∈ span(S) such
that

F (j1,...,jm) =

{
1 if (j1, . . . , jm) = (i1, . . . , ik),

0 otherwise.

We then note that, for x ∈ C1(V), ⟨S(x), F ⟩ = S(x)(i1,...,ik). If F can be expressed linearly
in terms of signature transforms of paths, then we may rewrite the above inner product
as a linear combination of signature kernels, which by Theorem 1.3.6 are computable
efficiently as solutions of Goursat PDEs. We introduce some definitions which will aid
with our construction of F .

Definition 1.7.1. Let P(j1, . . . , jm) denote the set of multi-indices which are permutations
of (j1, . . . , jm).

Example 1.7.1. P(1, 2, 2) = {(1, 2, 2), (2, 1, 2), (2, 2, 1)}.

Definition 1.7.2. For a set I of multi-indices, let S(x)I denote the sum
∑

I∈I S(x)
I .

Within our construction of F , we will extensively make use of component-wise path
scalings. We will denote these as follows.

Definition 1.7.3. Let λ = (λ1, . . . , λd) ∈ Rd. For z ∈ Cp(V) given by zt =
∑d

i=1 z
(i)
t ei,

denote by λ⊙ z ∈ C1(V) the path given by (λ⊙ z)t =
∑d

i=1 λiz
(i)
t ei.

The problem of forming F using signature transforms can be split into 3 sub-problems:

1. Level isolation: How do we zero all levels of a signature other than the kth?

2. Permutation class isolation: Within level k, how do we zero all coefficients given by
multi-indices outside of P(i1, . . . , ik)?

12

3. Order isolation: How do we zero coefficients given by multi-indices within P(i1, . . . , ik)
whilst setting the coefficient at index (i1, . . . , ik) to 1?

Without loss of generality, we may assume that (i1, . . . , ik) = (1, . . . , k) and dim(V) = k.
If this is not the case, then one can reorder the channels of the path x, cloning or removing
channels as necessary. We make this assumption throughout. In our construction of F ,
we will consistently make use of the linear path y ∈ C1([0, 1], V) given by yt = t1, where
1 = e1 + · · ·+ ek. By Proposition 1.2.6, the signature coefficients of y are given by

S(y)(i1,...,im) =
1

m!

for any multi-index (i1, . . . , im). The simple form of this signature will allow us to
manipulate y and S(y) to form F .

13

Chapter 2

Motivation: Randomised Scalings
and Integral Transforms

We begin with the problems of level and permutation class isolation. Specifically, we aim
to compute S(x)P(1,...,k) through signature kernels. To motivate our approach to this,
we recall several well-known results concerning integral transforms applied to signature
kernels. In particular, these concern expected kernels given a random path scaling and,
more generally, integration with respect to (signed) measures.

2.1 Measures and Moment-Weighted Kernels

Proposition 2.1.1 (Moment-Weighted Kernel [4, Proposition 4.3]). Let π be a random
variable with finite moments of all orders. Let ϕ(k) = E[πk] and ψ(k) = E[|πk|] ∀k ≥ 0
and suppose ψ satisfies the condition of Lemma 1.3.4. Then for any x, y ∈ C1([a, b], V)
the ϕ-signature kernel is well defined and satisfies

kϕ
x,y(s, t) = E[kπx,y(s, t)] = E[kx,πy(s, t)].

For the purpose of isolating level k in the signature, we would ideally want a distribution
such that ϕ(i) = δi,k, or at least one which has a moment sequence close to this. Unfortunately,
the set of probability distributions, or even more generally Radon measures, is not rich
enough to produce such a moment sequence, as we demonstrate in the following.

Theorem 2.1.2 (Solution of the Hamburger Moment Problem [19, Theorem 1.12]). For
any real sequence ϕ = (ϕ(n))n∈N0, the following are equivalent:

1. There is a Radon measure µ on R such that

ϕ(n) =

∫
R
xn dµ(x), ∀n ∈ N0.

That is, ϕ is a Hamburger moment sequence.

2. The sequence ϕ is positive semidefinite.

3. All Hankel matrices

Hn(ϕ) =

¨

˚

˚

˚

˝

ϕ(0) ϕ(1) · · · ϕ(n)
ϕ(1) ϕ(2) · · · ϕ(n+ 1)
...

...
. . .

...
ϕ(n) ϕ(n+ 1) · · · ϕ(2n)

˛

‹

‹

‹

‚

for n ∈ N0 are positive semidefinite.

14

4. The Riesz linear functional L on R[x] defined by L(xn) = ϕ(n) is positive. That is,
L(p2) ≥ 0 for all p ∈ R[x].

Corollary 2.1.2.1. For ε ≥ 0, let ϕk,ε be a sequence such that ϕk,ε(k) = 1 and ϕk,ε(n) < ε
for all n ≥ 1, n ̸= k. Then there exists ε0 > 0 such that ϕk,ε is not a Hamburger moment
sequence for any ε ≤ ε0.

Proof. Consider the cases for ϕk,ε(0).

• If ϕk,ε(0) < 0, then clearly ϕk,ε cannot be the moment sequence of an unsigned
measure.

• If ϕk,ε(0) = 0, let p = xk − 1 ∈ R[x]. Then

L(p2) = L(x2k − 2xk + 1) < ε− 2.

Thus, choosing ε ≤ ε0 = 2 gives L(p2) < 0, and so by Theorem 2.1.2, ϕk,ε is not a
Hamburger moment sequence for ε ≤ ε0.

• If ϕk,ε(0) > 0, let p = xk − ϕk,ε(0)−1 ∈ R[x]. Then

L(p2) = L(x2k − 2ϕk,ε(0)
−1xk + ϕk,ε(0)

−2) < ε− ϕk,ε(0)−1.

Thus, choosing ε ≤ ε0 = ϕk,ε(0)
−1 gives L(p2) < 0, and so by Theorem 2.1.2, ϕk,ε is

not a Hamburger moment sequence for ε ≤ ε0.

2.2 Signed Measures

Whilst unsigned measures are insufficient, signed measures are rich enough to at least
produce approximate behaviour, as we will show below. First, however, we should note
that Proposition 2.1.1 generalizes to finite signed Borel measures. The following theorem
is presented in [4, Theorem 4.11].

Theorem 2.2.1. Let µ be a finite signed Borel measure on R. Let ϕ : R→ R be such that

ϕ(m) =

∫
D
πmµ(dπ), ∀m ∈ N0

for a suitable domain D ⊆ R. Let x, y ∈ C1([a, b], V). For s, t ∈ [a, b], m ∈ N0 define

am(s, t) =
〈
S(x)

(m)
[a,s], S(y)

(m)
[a,t]

〉
V ⊗m

and assume that ∀s, t ∈ [a, b]

1.
∫
D|π

mµ(dπ)|<∞ for all m ≥ 0, and

2.
∑

m≥0 am(s, t)
∫
D|π

mµ(dπ)| converges absolutely,

then

kϕ
x,y(s, t) =

∫
D
kπx,y(s, t)µ(dπ) =

∫
D
kx,πy(s, t)µ(dπ).

15

The proof of Theorem 2.2.1 follows simply by noting that conditions (1) and (2) allow for
an application of Fubini’s Theorem to interchange the sum in the ϕ-inner product and the
integral with respect to µ. Proposition 2.1.1 then follows as a direct corollary. To see that
signed Borel measures can approximate the desired behaviour for signature level isolation,
we take ψσ to be a centered Gaussian density with standard deviation σ and let µk,σ be
the finite signed Borel measure given by

µk,σ(A) =

∫
A

(−1)k

k!
ψ(k)
σ dΛ ∀A ∈ B(R),

where Λ is the Lebesgue measure. The following result shows that this class of measures
is suitable for isolating the kth level of the signature.

Proposition 2.2.2. Let D = [−1, 1] in Theorem 2.2.1. For any ε > 0 and integer k ≥ 1,
there exists σ > 0 such that the measure µk,σ satisfies the conditions of Theorem 2.2.1 for
any choice of x, y ∈ C1(V) and has moment sequence

ϕk,σ(m) =

∫ 1

−1
πmµk,σ(dπ)

such that |ϕk,σ(k)− δm,k|< ε for all m ∈ N0.

Proof. See Appendix A, Section A.1.

This allows us to achieve approximate level isolation with signed measures. In fact, we can
extend this beyond just level isolation by considering a component-wise scaling of the path.
If we scale each component of a path by an independent variable and then take signatures
followed by integrals with respect to the signed measure µ1,σ, then by construction we are
left with precisely those signature coefficients which contain each component of the path
exactly once, that is, the signature coefficients given by multi-indices in P(1, . . . k). We
formalise this below by applying said scaling to y and taking signature kernels with x to
compute S(x)P(1,...,k).

Corollary 2.2.1.1. Let x ∈ C1([0, 1], V) and let y ∈ C1([0, 1], V) be the linear path given
by yt = 1t. Let µσ be the measure on [−1, 1]k defined as the product measure µ⊗k

1,σ. Then
for all ε > 0 there exists σ > 0 such that∣∣∣∣∣k!

∫
[−1,1]k

kx,π⊙y µσ(dπ)− S(x)P(1,...,k)

∣∣∣∣∣ < ε.

Proof. By Fubini’s Theorem and linearity, one can interchange integrals and inner products
to consider the integral on levels of the signature of π ⊙ y. One then notes that by
Proposition 2.2.2,∣∣∣∣k! ∫ S(π ⊙ y)(i1,...,im)µσ(dπ)− 1

{
(i1, . . . , im) ∈ S(x)P(1,...,k)

}∣∣∣∣ < ε.

For a detailed proof, see Appendix A, Section A.2.

Whilst these results achieve the goal of permutation class isolation, the integral transforms
used are particularly difficult to compute in practice due to dimensionality issues and the
limiting behaviour of µσ as σ → 0. Nonetheless, we now have an idea of how to approach
permutation class isolation via path scalings.

16

Chapter 3

Signature Coefficients as
Derivatives

In the above discussion, ψσ was intentionally chosen to be a nascent delta function, since
the moment sequence when integrating against the Dirac delta derivative δ(k) exhibits
precisely the behaviour that we are looking for due to the property∫

R
g(u)δ(k)(u)du = (−1)kg(k)(0)

for any suitable smooth function g. We may therefore bypass the measure theoretic
construction and state the result directly as a derivative.

Proposition 3.0.1. Let x ∈ C1([0, 1], V) and let y ∈ C1([0, 1], V) be the linear path
yt = t1. Let λ = (λ1, . . . , λk) ∈ Rk. Then

∂k

∂λ1 · · · ∂λk
kx, λ⊙y

∣∣∣∣
λ=0

=
1

k!
S(x)P(1,...,k). (3.0.1)

Proof. The proof follows from the fact that

S(λ⊙ z)(i1,...,im) = S(z)(i1,...,im)
m∏
j=1

λij .

The full proof is detailed in Appendix A, Section A.3.

Remark 3.0.2. Let E be the Banach space E = {v ∈ T ((V)) : ∥v∥ <∞}, and S−1(E) ⊂
C1(V) be the pre-image of E under the signature transform acting on C1(V). Then by
considering the restriction of S to S−1(E), we can restate the above result without relying
on deterministic scalings by considering instead the Gateaux derivative

DkS(0){x(1)e1, . . . , x(k)ek},

where x(i)ei is understood to be the path (x
(i)
t ei)t ∈ C1([0, 1], V). Intuitively, we see that

the only coefficients remaining after evaluating such a derivative are those of first order
in x(1), . . . , x(k), that is, precisely those given by multi-indices in P(1, . . . , k).

As a consequence of Proposition 3.0.1, we obtain the approximation using a forward finite
difference ∣∣∣∣∣∣ k!hk

∑
H∈{0,h}k

(−1)sgn(H)kx,H⊙y − S(x)P(1,...,k)

∣∣∣∣∣∣ = o(h), (3.0.2)

17

where sgn(H) =
∑

i 1{Hi = 0}. This is obvious intuitively if the sum is brought into the
inner product of the kernel and we instead look at

k!

hk

∑
H∈{0,h}k

(−1)sgn(H)S(H ⊙ y) (3.0.3)

to consider the sum component-wise in the signature.

Example 3.0.1. Let k = 3 and consider the (1, 2, 3) coefficient of the sum in (3.0.3). We
get

3!

h3

∑
H∈{0,h}3

(−1)sgn(H)S(H ⊙ y)(1,2,3) = 3!

h3

∑
H∈{0,h}3

(−1)sgn(H)H1H2H3S(y)
(1,2,3)

=

3∏
i=1

¨

˝

1

h

∑
Hi∈{0,h}

(−1)1{Hi=0}Hi

˛

‚

= 1,

whereas the (1, 2, 3, 2) coefficient is

3!

h3

∑
H∈{0,h}3

(−1)sgn(H)S(H ⊙ y)(1,2,3,2) = 3!

h3

∑
H∈{0,h}3

(−1)sgn(H)H1H
2
2H3S(y)

(1,2,3,2)

=
1

4
h,

and the (1, 1, 2) coefficient is

3!

h3

∑
H∈{0,h}3

(−1)sgn(H)S(H ⊙ y)(1,2,2) = 3!

h3

∑
H∈{0,h}3

(−1)sgn(H)H1H
2
2S(y)

(1,2,2)

= 0.

As mentioned in Section 1.3, the signature kernel can be computed as the solution of a PDE
inO(Lk) time, giving the approximation in Equation (3.0.2) a computational complexity of
O(Lk2k). Whilst this is an improvement over the integral transform approaches in terms of
computational ease, computing cross-derivatives of high order is still a notoriously difficult
numerical task and often unstable as h→ 0. At the cost of a slightly higher computational
complexity, we will offer a way to mitigate this instability in the next section.

18

Chapter 4

Vandermonde Systems

Notice that the finite difference approximation in Equation (3.0.3) is exact on linear
functions. Thus, by considering component-wise sums as in Example 3.0.1, we see that for
any choice of h the sum still gives the exact desired behaviour up to the kth level. Past this,
we get unwanted non-zero coefficients such as the (1, 2, 3, 2) coefficient in Example 3.0.1. To
mitigate the numerical instability associated with taking high dimensional derivatives, we
fix h = 1 and look for another way to zero the higher levels. We could, of course, disregard
higher levels of the signature entirely and simply consider the truncated signature kernel
up to level k.

Proposition 4.0.1. Let x ∈ C1([0, 1], V) and let y ∈ C1([0, 1], V) be the linear path
yt = t1. Then

k!
∑

λ∈{0,1}k
(−1)sgn(λ)kk

x, λ⊙y = S(x)P(1,...,k), (4.0.1)

where sgn(λ) =
∑

i 1{λi = 0} and kk is the truncated signature kernel up to level k.

Proof. The result follows immediately from Proposition 3.0.1 and Equation (3.0.2) by
noting that the forward difference approximation of ∂/∂λi is exact on linear functions of
λi.

It can be useful to reformulate the above in terms of a general weighted signature kernel,
as we define below.

Definition 4.0.2. For a weight function ω : N→ R+, let ⟨·, ·⟩ω denote the weighted inner
product on V given by

⟨u, v⟩ω =
d∑

i=1

ω(i)uivi,

for any u = (u1, . . . , ud), v = (v1, . . . , vd) ∈ V . Let ⟨·, ·⟩ω-ϕ denote the ϕ-inner product on
T (V) constructed under the inner product ⟨·, ·⟩ω on V .

It is easy to see that if (V, ∥·∥V) is a Banach space endowed with an inner product ⟨·, ·⟩V
with respect to which ei is an orthonormal basis, then (V, ∥·∥ω) is a Banach space for any
weight function ω : N→ R+, where ∥·∥ω is the norm induced by ⟨·, ·⟩ω.

Definition 4.0.3 (ω-ϕ Signature Kernel). Let x ∈ C1([a, b], V) and y ∈ C1([c, d], V).

Let ϕ satisfy the condition of Lemma 1.3.4. We define the ω-ϕ signature kernel kω-ϕ
x,y :

[a, b]× [c, d]→ R given by

kω-ϕ
x,y (s, t) =

〈
S(x)[a,s], S(y)[c,t]

〉
ω-ϕ

.

Denote by kω-ϕ,n
x,y (s, t) the ω-ϕ signature kernel truncated at level n.

19

Remark 4.0.4. Let ϕ(i) = βi for some β ∈ R+. Then the ω-ϕ signature kernel can be
reduced to the signature kernel

kω-ϕ
x,y (s, t) = kx, βω⊙y(s, t) = kβω⊙x, y(s, t),

in which case kω-ϕ
x,y (s, t) is easily computable as the solution of a Goursat PDE by Theorem

1.3.6. In this case, we will write kω-β to mean kω-ϕ with ϕ(i) = βi.

Viewing the vector λ as a function λ(i) = λi, Proposition 4.0.1 can then be rewritten as

k!
∑

λ∈{0,1}k
(−1)sgn(λ)kλ-1,k

x,y = S(x)P(1,...,k). (4.0.2)

If ⟨·, ·⟩λ is viewed as the inner product taken after an orthogonal projection x 7→ λ ⊙ x,
then Equation (4.0.2) can be interpreted as a signed sum of signature kernels formed
under orthogonal projections onto lower dimensional space. Whilst this is an exact form
for S(x)P(1,...,k) in terms of truncated kernels, one might prefer to consider untruncated
kernels as these are easier to compute as PDE solutions. If we could zero the first few
levels after the kth, we may then rely on the factorial decay of signature coefficients to
minimize the error from higher levels. To do this, we return to the idea of random path
scalings for inspiration. Suppose we hope to scale the path by a random variable π, such
that π has moment sequence satisfying ϕ(k) = 1 and ϕ(n) = 0 for all k < n ≤ k +M ,
where M ≥ 0 is a parameter which we call the depth of the scaling. For levels deeper than
k+M , we rely on the factorial decay in Lemma 1.2.2 to keep the error low. Suppose π is
finitely supported on the set {β0, . . . , βM} and let αi = P(π = βi). Then we require that

M∑
i=0

αi = 1,

M∑
i=0

αiβ
m
i = δm,k, ∀k ≤ m ≤ k +M.

In fact, we may drop the requirement that αi define a probability distribution, and instead
of the expectation of a random variable we consider a general weighted sum. We may then
rewrite the above equations as the Vandermonde matrix equation

Bk,M · α =

¨

˚

˚

˚

˝

βk0 βk1 · · · βkM
βk+1
0 βk+1

1 · · · βk+1
M

...
...

. . .
...

βk+M
0 βk+M

1 · · · βk+M
M

˛

‹

‹

‹

‚

¨

˚

˚

˚

˝

α0

α1
...
αM

˛

‹

‹

‹

‚

=

¨

˚

˚

˚

˝

1
0
...
0

˛

‹

‹

‹

‚

. (4.0.3)

Such generalized Vandermonde matrices Bk,M are invertible for distinct βi > 0. An explicit
inversion is given by the following.

Proposition 4.0.5. For distinct βi > 0, an explicit solution to Equation (4.0.3) is given
by

αi =
(−1)M

βki

M∏
j=0
j ̸=i

βj
βi − βj

.

Proof. See [1] and Appendix A, Section A.4.

20

Note that if any of the βi are chosen greater than 1, there will be signature coefficients
in levels beyond the (k +M)th which are scaled by a high power of βi, which may cause
high error. To exclude this possible source of error, the βi should be chosen in (0, 1] to
ensure that βmi does not grow as m → ∞. Beyond that, the method is not particularly
sensitive to the choice of βi as long as these are chosen reasonably, as per the conditions of
Proposition 4.0.6 below. Combining this scaling with Equation (3.0.2) for h = 1, we get:

Proposition 4.0.6. Fix k ≥ 1 and let βi = βi(M) ∈ (0, 1] be chosen such that for any
positive constant C > 0,

max
0≤i≤M

|αi|= max
0≤i≤M

1

βki

M∏
j=0
j ̸=i

βj
|βi − βj |

= O
ˆ

[(k +M)!]2

M
CM

˙

(4.0.4)

asM →∞. Let y ∈ C1([0, 1], V) be the linear path yt = t1. Then for any x ∈ C1([0, 1], V),

k!

M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi
x,y → S(x)P(1,...,k) (4.0.5)

as M →∞, where sgn(λ) =
∑

i 1{λi = 0}.

Proof. Since V is equipped with an inner product, we have ∥λ⊙ y∥1 ≤ ∥y∥1 =
?
k for all

λ ∈ {0, 1}k (see the proof of Proposition 2.2.1.1 in Appendix A, Section A.2). Then by
Proposition 4.0.1,∣∣∣∣∣∣k!

M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi
x,y − S(x)P(1,...,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣k!
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αi

∞∑
j=k+M+1

〈
S(x)(j), S(βiλ⊙ y)(j)

〉
V ⊗j

∣∣∣∣∣∣ (Proposition 4.0.1)

≤ k!
M∑
i=0

∑
λ∈{0,1}k

|αi|
∞∑

j=k+M+1

∣∣∣〈S(x)(j), S(βiλ⊙ y)(j)〉
V ⊗j

∣∣∣
≤ k! 2k

M∑
i=0

|αi|
∞∑

j=k+M+1

βji ∥x∥
j
1 k

j/2

(j!)2
(Corollary 1.2.2.1)

≤ k! 2k(M + 1) max
0≤i≤M

|αi|
∞∑

j=k+M+1

∥x∥j1 kj/2

(j!)2

≤ k! 2k(M + 1) max
0≤i≤M

|αi|
(∥x∥1

?
k)k+M

((k +M)!)2

∞∑
j=1

((k +M)!)2

((k +M + j)!)2
∥x∥j1 k

j/2

→ 0. (Condition (4.0.4))

Remark 4.0.7. For a fixed path x, it is clearly sufficient to take C = (∥x∥1
?
k)−1 in

Condition (4.0.4). The more general condition will prove convenient in later results (see
Theorems 5.3.4 and 7.2.1).

21

Example 4.0.1. The uniform choice βi = (i + 1)/(M + 1) satisfies the above condition
since

max
0≤i≤M

|αi| = max
0≤i≤M

1

βki

M∏
j=0
j ̸=i

βj
|βi − βj |

= max
0≤i≤M

ˆ

M + 1

i+ 1

˙k M∏
j=0
j ̸=i

j + 1

|i− j|

= max
0≤i≤M

ˆ

M + 1

i+ 1

˙k+1 ˆ

M

i

˙

= O(Mk+12M).

Remark 4.0.8. Choosing M = 0, β0 = h and α0 = 1/hk corresponds to the discretisation
in Equation (3.0.2).

In practice, when k is large we can choose βi such that the kth power is uniform to minimize
numerical errors associated with overly strong path scalings and a blow-up of the 1/βki
factor in αi. That is, we choose βi = [(i + 1)/(M + 1)]1/k. This can be shown to satisfy
Condition (4.0.4) for all k.

Remark 4.0.9. When evaluating sums such as (4.0.5) numerically, the error can be
reduced by subtracting 1 from every kernel, thus effectively only considering level 1 and
above of the signature. It is easy to see that this change does not affect the result, but may
significantly reduce the magnitude of each term of the sum and hence reduce the numerical
error.

The resulting algorithm involves (M + 1)2k kernel evaluations, giving it a computational
complexity of O(LkM2k). Figure 4.1 shows the average error when computing S(x)P(1,...,k)

using the above sum of kernels for 1,000 random paths x constrained to [0, 1]d for k = 2
and 4. We report the average absolute error when compared against the exact value

S(x)P(1,...,k) =
∑

(i1,...,ik)∈P(1,...,k)

∫
0<t1<···<tk<1

dx
(i1)
t1
· · · dx(ik)tk

=

∫
[0,1]k

dx
(1)
t1
· · · dx(k)tk

=
k∏

i=1

´

x
(i)
1 − x

(i)
0

¯

.

As reference, we note that the average magnitude of
∣∣S(x)(1,...,k)∣∣ is 1.07× 10−1 for k = 2

and 1.18× 10−2 for k = 4. We see that for k = 2, there is no improvement in error after
M = 4, whereas for k = 4 choosing M = 1 is sufficient since the effect of factorial decay is
stronger in the deeper levels of the signature. We note that M does not need to be very
large, so the effect on complexity is minimal. Indeed, M is only particularly relevant for
small values of k and can be set to 0 for k sufficiently large. As such, we do not include
it in any reasoning about computational complexity from now on.

22

0 1 2 3 4 5 6
Scaling depth M

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Ab
so

lu
te

er
ro

r

Dependence of Error on Scaling Depth, k = 2

0 1 2 3 4 5 6
Scaling depth M

4.8 × 10 4

4.85 × 10 4

4.9 × 10 4

4.95 × 10 4

5 × 10 4

5.05 × 10 4

5.1 × 10 4

5.15 × 10 4

Ab
so

lu
te

er
ro

r

Dependence of Error on Scaling Depth, k = 4

Figure 4.1: Average errors for computing S(x)P(1,...,k) over 1,000 random paths x
constrained to [0, 1]d, with path length L = 50 and coefficient depth k = 2 and 4.
Dyadic order for the PDE finite difference scheme [18] is fixed at 4. Average magnitude
of S(x)P(1,...,k) is 1.07× 10−1 for k = 2 and 1.18× 10−2 for k = 4.

23

Chapter 5

High Order Monomial Maps

We now have a strong grasp on how to isolate S(x)P(1,...,k), so we move on to address
the problem of isolating coefficients within P(1, . . . , k). We approach this in two ways.
Initially, we consider applying a monomial transformation to the path y. We will see
that there exists an optimal choice of exponents for the monomial that best approximates
the isolating behaviour that we are looking for. Having done this, we will note in the
subsequent chapter how the monomials limit to a simple axis path, which can be substituted
into the kernel instead of y. Although directly using the axis path is clearly simpler and
less error-prone, the monomial approach provides an interesting framework for potentially
isolating more complicated patterns of signature coefficients for which the optimal path
to substitute for y may not be as obvious. See for instance the discussion in Chapter 9.

5.1 Motivating Example

We will look for a map p : Rk → Rk such that

S(p(y))(i1,...,ik) =

∫
0<t1<···<tk<1

dp(y)
(i1)
t1
· · · dp(y)(ik)tk

=

∫
0<t1<···<tk<1

9p(y)
(i1)
t1
· · · 9p(y)

(ik)
tk

dt1 · · · dtk

is maximised over (i1, . . . , ik) ∈ P(1, . . . , k) by (1, . . . , k). An analytically tractable choice
of map whose action on path signatures has been studied in great detail is the polynomial
map. In [9], it is shown that the signature coefficients of a polynomial transformation
applied to a path can be expressed in terms of signature coefficients of the original
path. Moreover, the corresponding map is an algebra homomorphism on the shuffle
algebra (T (V),�), with several algebraic properties which aid in its computation. For
our purposes, we will consider the simpler class of monomial maps

p : Rk → Rk

v =

k∑
i=1

viei 7→
k∑

i=1

vni
i ei

for ni ∈ N. We are interested in finding n1, . . . , nk such that the product of time derivatives

9p(y)
(1)
t1
· · · 9p(y)

(k)
tk

is largest in the region 0 < t1 < · · · < tk < 1.

Example 5.1.1. Figure 6.1 shows an example of the desired behaviour with k = 3, n1 =
1, n2 = 2 and n3 = 4, whereby the integral

24

∫
D
dt1d(t

2
2)d(t

4
3) =

∫
D
(2t2)(4t

3
3)dt1dt2dt3

is maximised over simplexes D by {ti : 0 < t1 < t2 < t3 < 1}, meaning that S(p(y))(1,2,3)

will be the largest coefficient in P(1, 2, 3). A detailed breakdown of this example into regions
is shown in Figure B.1 in Appendix B.

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

Figure 5.1: 9p(y)
(1)
t1

9p(y)
(2)
t2

9p(y)
(3)
t3

for n1 = 1, n2 = 2, n3 = 4

5.2 Optimal Exponents

Before attempting to optimize over the exponents ni, we must determine the form of the
general signature coefficient S(p(y))(i1,...,ik).

Proposition 5.2.1. Let p : V → V be the map such that p(v) =
∑k

i=1 v
ni
i ei for v =∑k

i=1 viei ∈ V and ni ∈ N. Denote by p(y) ∈ C1([0, 1], V) the path given by a point-wise
application of p to y, where y is the linear path yt = t1. Then

S(p(y))
(i1,...,ik)
[0,1] =

∏k
j=1 nij∏k

m=1

∑m
j=1 nij

. (5.2.1)

Proof. We will prove by induction on k that

S(p(y))
(i1,...,ik)
[0,t] =

∏k
j=1 nij∏k

m=1

∑m
j=1 nij

t
∑k

j=1 nij .

The base case of k = 1 is trivial. For k > 1,

S(p(y))
(i1,...,ik)
[0,t] =

∫ t

0
S(p(y))

(i1,...,ik−1)
[0,u] dp(y)(ik)u

=

∫ t

0

« ∏k−1
j=1 nij∏k−1

m=1

∑m
j=1 nij

u
∑k−1

j=1 nij

ff

nku
nk−1du

=

« ∏k
j=1 nij∏k−1

m=1

∑m
j=1 nij

ff∫ t

0
u
∑k

j=1 nij
−1du

=

∏k
j=1 nij∏k

m=1

∑m
j=1 nij

t
∑k

j=1 nij ,

which completes the induction.

25

In the context of forming the filter F , we are interested in the choice of n1, . . . , nk
minimizing the quantity

max
(i1,...,ik)∈P(1,...k)
(i1,...,ik)̸=(1,...,k)

S(p(y))(i1,...,ik)

S(p(y))(1,...,k)
(5.2.2)

= max
(i1,...,ik)∈P(1,...k)
(i1,...,ik)̸=(1,...,k)

∏k
m=1

∑m
j=1 nj∏k

m=1

∑m
j=1 nij

. (5.2.3)

We are not interested in the behaviour outside of P(1, . . . , k), as this is already dealt with
in Section 4. Note that it is clear from Proposition 5.2.1 that we must have n1 < n2 <
· · · < nk, so we assume this from now on.

Lemma 5.2.2. Let n1 < · · · < nk and let τ(1, . . . , k) ⊂ P(1, . . . , k) denote the set of
multi-indices

τ(1, . . . , k) := {(1, . . . , j − 1, j + 1, j, j + 2, . . . , k) : j = 1, . . . , k − 1}

obtained from (1, . . . , k) by a transposition of contiguous indices j, j + 1. Then

min
(i1,...,ik)∈P(1,...,k)
(i1,...,ik) ̸=(1,...,k)

k∏
m=1

m∑
j=1

nij = min
(i1,...,ik)∈τ(1,...,k)

k∏
m=1

m∑
j=1

nij .

Proof. For I = (i1, . . . , ik), let Rm(I) :=
∑m

j=1 nij . For m = k, Rm(I) is fixed over
permutations (i1, . . . , ik) of (1, . . . , k). For m < k, since n1 < · · · < nk, clearly the
minimum valueRm(I) can take over permutations (i1, . . . , ik) isR

0
m :=

∑m
j=1 nj . Moreover,

the second least value Rm(I) can take is R1
m :=

∑m−1
j=1 nj + nm+1. We conclude that

min
(i1,...,ik)∈P(1,...,k)
(i1,...,ik)̸=(1,...,k)

k∏
m=1

Rm(I) ≥ min
j=1,...,k−1

R0
1 · · ·R0

j−1R
1
jR

0
j+1 · · ·R0

k.

Moreover, we have precisely that

{R0
1 · · ·R0

j−1R
1
jR

0
j+1 · · ·R0

k : j = 1, . . . , k − 1} =

{
k∏

m=1

Rm(I) : (i1, . . . , ik) ∈ τ(i1, . . . , ik)

}

since R0
1 · · ·R0

j−1R
1
jR

0
j+1 · · ·R0

k is attained by the product
∏k

m=1Rm(I) when (i1, . . . , ik)
= (1, . . . , j + 1, j, . . . , k). It follows that

min
(i1,...,ik)∈P(1,...,k)
(i1,...,ik)̸=(1,...,k)

k∏
m=1

Rm(I) ≤ min
(i1,...,ik)∈τ(1,...,k)

k∏
m=1

Rm(I)

= min
j=1,...,k−1

R0
1 · · ·R0

j−1R
1
jR

1
j+1 · · ·R0

k

≤ min
(i1,...,ik)∈P(1,...,k)
(i1,...,ik)̸=(1,...,k)

k∏
m=1

Rm(I).

26

This result significantly simplifies the problem of minimizing Expression (5.2.2). Using
Lemma 5.2.2, we may now reduce the problem to a set of simultaneous equations, which
we later use to approximate ni. In order to simplify the statement and proof, we will
assume that ni ∈ R+ in the following corollary.

Corollary 5.2.2.1. For a fixed N , the choice of ni ∈ R+ minimizing

max
(i1,...,ik)∈P(1,...k)
(i1,...,ik)̸=(1,...,k)

∏k
m=1

∑m
j=1 nj∏k

m=1

∑m
j=1 nij

with 1 ≤ n1 < · · · < nk = N is such that n1 = 1 and the fractions

f(j) :=

∑j
i=1 ni∑j−1

i=1 ni + nj+1

are equal for 1 ≤ j < k.

Proof. From Lemma 5.2.2, we have that

max
(i1,...,ik)∈P(1,...k)
(i1,...,ik)̸=(1,...,k)

∏k
m=1

∑m
j=1 nj∏k

m=1

∑m
j=1 nij

= max
(i1,...,ik)∈τ(1,...k)

∏k
m=1

∑m
j=1 nj∏k

m=1

∑m
j=1 nij

= max
j=1,...,k−1

∑j
i=1 ni∑j−1

i=1 ni + nj+1

< 1

which we wish to minimize over ni. Since the denominator is strictly larger than the
numerator, adding a constant term to both will strictly increase the fraction. We may
therefore fix n1 = 1. To see that the optimal solution equates all the fractions, note first
that the fraction f(j) is strictly decreasing in nj+1, strictly increasing in n1, . . . , nj and
independent of nj+2 . . . , nk. Suppose the fractions are not equal. We run the following
algorithm: let k1 ∈ [1, k) denote the largest index such that

f(k1) > max
j>k1

f(j). (5.2.4)

If k1 < k − 1, then increase nk1+1 in order to decrease f(k1) and increase f(j) for all
j > k1 until (5.2.4) is an equality. If k1 = k − 1, then decrease nk1 in order to decrease
f(k1) until f(k1) = maxj<k1 f(j). In both cases, we leave f(j) for j < k1 unaffected and
strictly reduce maxj≥k1 f(j). Repeating these steps, the algorithm must terminate at the
optimal ni, and it is clear that this choice of ni will equate f(j).

Proposition 5.2.3. An approximate solution for ni ∈ N is given by

nj = round
´

N
j−1
k−1

¯

, ∀1 ≤ j ≤ k. (5.2.5)

Proof. Consider equating f(j) = f(1), that is, set∑j
i=1 ni∑j−1

i=1 ni + nj+1

=
1

n2
, ∀ 2 ≤ j < k

recalling that n1 = 1. By rearranging, the above is equivalent to the system of equations

n1 = 1,

nj+1 = (n2 + 1)nj − nj−1, ∀1 < j < k,

nk = N,

27

an explicit real-valued solution to which is given by

nj = 2−j

ˆ

C1

´

(n2 + 1)−
a

(n2 + 1)2 − 4
¯j

+ C2

´

(n2 + 1) +
a

(n2 + 1)2 − 4
¯j

˙

.

for some constants C1, C2. Note that when n2 is large, (n2+1)−
a

(n2 + 1)2 − 4 is small,
and so a further approximation is to take nj of the form nj = aλj . Substituting boundary
conditions and rounding gives the result.

In the construction of F , we must also make sure that F (1,...,k) = 1, and so we must scale
by the coefficient in Equation (5.2.1). To ease notation, we choose to scale by the kth root
of this coefficient before applying the signature transform and absorb this into the map p,
but we could just as well apply the scaling after taking signatures. From now on, we refer
to pN : V → V as the map

pN (v) =

˜∏k
m=1

∑m
j=1 ni∏k

j=1 ni

¸1/k k∑
i=1

vni
i ei

for v =
∑k

i=1 viei ∈ V , where nj = round
´

N
j−1
k−1

¯

.

5.3 Error Bounds and Results

Having found the optimal choice of exponents for a fixed N , we can now show that pN
can approximate the desired behaviour up to arbitrary precision and combine this with
Proposition 4.0.6 to compute the signature coefficient S(x)(1,...,k).

Remark 5.3.1. Under the approximation given by (5.2.5),

max
(j1,...,jk)∈P(1,...k)
(j1,...,jk) ̸=(1,...,k)

S(pN (y))(j1,...,jk) ≈ 1

n2
≈ N− 1

k−1 → 0

as N →∞.

More precisely, we have:

Proposition 5.3.2. Let N be the (k − 1)th power of a positive integer. Then

max
(j1,...,jk)∈P(1,...k)
(j1,...,jk)̸=(1,...,k)

S(pN (y))(j1,...,jk) ≤ 1

N
1

k−1 − 1

Proof. A direct computation of

max
1≤j<k

∑j
i=1 ni∑j−1

i=1 ni + nj+1

using the fact that ni = N
i−1
k−1 gives the result. See Appendix A, Section A.5 for details.

Example 5.3.1. Table 5.1 shows the resulting values of S(pN (y))(j1,j2,j3) for (j1, j2, j3) ∈
P(1, 2, 3) when k = 3 and N = 103, 106 and 109. We see that pN gives a very close
approximation of the isolating behaviour we are looking for when N is large.

28

N (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

10 3 1 3 .2 × 10−2 3 .2 × 10−2 1 .0 × 10−3 3 .2 × 10−5 3 .1 × 10−5

10 6 1 1 .0 × 10−3 1 .0 × 10−3 1 .0 × 10−6 1 .0 × 10−9 1 .0 × 10−9

10 9 1 3 .2 × 10−5 3 .2 × 10−5 1 .0 × 10−9 3 .2 × 10−14 3 .2 × 10−14

Table 5.1: Coefficient isolation within P(1, 2, 3)

Remark 5.3.3. In practice, when N is large or path length L is small, S(pN) can
suffer heavily from discretisation error. To mitigate this, we can make use of the time
reparametrisation invariance of the signature given in Proposition 1.2.1 and, for example,
discretise pN on time points ti = (1 − 2−(i−1))/(1 − 2−L) for i = 1, . . . , L, thereby
concentrating the discretisation points around t = 1 where the time derivative of pN is
large in magnitude.

We can now recover signature coefficients. The following is a corollary of Propositions
4.0.6 and 5.3.2.

Theorem 5.3.4. Let βi be chosen to satisfy Condition 4.0.4 and αi be as in Proposition
4.0.5. Let y ∈ C1([0, 1], V) be the linear path yt = t1. Then for any x ∈ C1([0, 1], V),

M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi

x, pN (y) → S(x)(1,...,k)

as N,M →∞, where sgn(λ) =
∑

i 1{λi = 0}.

Proof. See Appendix A, Section A.6.

29

Chapter 6

Limiting Axis Paths

As we saw in the previous chapter, monomial transforms are a malleable and analytically
tractable tool for reproducing patterns within the signature such as order isolation. As it
happens, the monomial paths we have considered tend to a simple axis path as N → ∞.
We will derive this limit and show that we can consider the limiting path directly, removing
the need for monomials and, crucially, the approximating parameter N .

6.1 Order Isolation with Axis Paths

Proposition 6.1.1. The limit of pN (y) as N → ∞ is, up to reparametrisation of time,
the axis path given by

zt = (e1 ∗ e2 ∗ · · · ∗ ek)t
for t ∈ [0, 1], where (ei)t is understood to be the linear path from 0 to ei.

Proof. Set m = N
1

k−1 . Let t0 = 0, tk = 1 and

ti = mpmi−1−miq
−1

∈ (0, 1)

for i = 1, . . . , k − 1. Then we have

tN
j−1
k−1

i = m
mj−i

1−m → 1{i ≥ j}

for all i, j = 1, . . . , k as N →∞. It follows from the definition of pN that

pN (y)
(j)
ti
→ 1{i ≥ j},

and so pN (y)ti tends to the ith vertex of the axis path z as N → ∞. The result follows
from the component-wise monotonicity of pN (y).

Alternatively, it is easy to show directly that the path zt exhibits the desired behaviour
by noting that

S(z)(i1,...,ik) = rexp(e1)⊗ · · · ⊗ exp(ek)s
(i1,...,ik) = 1{(i1, . . . , ik) = (1, . . . , k)}

for all (i1, . . . , ik) ∈ P(1, . . . , k), by Proposition 1.2.6 and Chen’s relation. As a direct
corollary of Theorem 5.3.4 and Proposition 6.1.1, we have the following.

Theorem 6.1.2. Let βi be chosen to satisfy Condition 4.0.4 and αi be as in Proposition
4.0.5. Let z denote the axis path of Proposition 6.1.1. Then for any x ∈ C1([0, 1], V),

k!
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi
x,z → S(x)(1,...,k)

as M →∞, where sgn(λ) =
∑

i 1{λi = 0}.

30

0.0 0.2 0.4 0.6 0.8 1.0

t
0.0

0.2
0.4

0.6
0.8

1.0

t N

0.0

0.2

0.4

0.6

0.8

1.0

tN

Figure 6.1: Convergence of pN (y) for k = 3

Proof. The proof follows from that of Theorem 5.3.4 but with z in place of pN (y).

Remark 6.1.3. Returning to the original formulation of our approach, the filter F with
which we effectively take inner products can now be written as

F = k!
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αiS(βiλ⊙ z) ∈ span(S).

Theorem 6.1.2 then states that ⟨S(x), F ⟩ → S(x)(1,...,k) as M →∞.

6.2 The Kernel PDE with Axis Paths

Recall the signature kernel PDE (1.3.2) is given by

∂2kx,y

∂s∂t
= ⟨ 9xs, 9yt⟩V kx,y, kx,y(0, ·) = kx,y(·, 0) = 1

for general x, y ∈ C1([0, 1], V). In [18, Section 3.1], the proposed finite difference scheme
for solving the above Goursat PDE takes the form

pk(si+1, tj+1) = pk(si+1, tj) + pk(si, tj+1)− pk(si, tj)

+
1

2

〈
xsi+1 − xsi , ytj+1 − ytj

〉´

pk(si+1, tj) + pk(si, tj+1)
¯

(6.2.1)

over the dyadically refined grid Pλ = {(si, tj)}0≤i≤2λLx, 0≤j≤2λLy
of order λ, where Lx and

Ly are the lengths of the discrete data streams x and y respectively. The complexity of the
above finite difference scheme can be reduced to O(Lk) after a suitable parallelisation of
the computation, where L = max{Lx, Ly}. The dependence on k arises from computing
the inner product

〈
xsi+1 − xsi , ytj+1 − ytj

〉
. We note, however, that when y is taken to

be the axis path z of Proposition 6.1.1 parametrised uniformly such that 9zt = kem for
t ∈

`

m−1
k , mk

˘

, we have 〈
xsi+1 − xsi , ztj+1 − ztj

〉
= k

´

x(m)
si+1
− x(m)

si

¯

for (tj , tj+1) ⊂
`

m−1
k , mk

˘

, meaning that the complexity of the finite difference scheme
reduces to O(L). Note that each term of the sum of Theorem 6.1.2 is a signature kernel

31

of x with an axis path, weighted by k! (−1)sgn(λ)αi. Moreover, the terms can be computed
independently of each other. Thus, we may parallelise the computation of the terms to
reduce the complexity to O(L).

Remark 6.2.1. In practice, instead of computing each kernel completely independently,
consider the following. Let λ+ = (λ1, . . . , λk−1, 1) ∈ {0, 1}k and λ− = (λ1, . . . , λk−1, 0) ∈
{0, 1}k. For i = 0, . . . , k, let ti ∈ [0, 1] denote the time at which z attains its ith vertex.
Then

kx,λ−⊙z(s, t) =

{
kx,λ+⊙z(s, t), t ∈ r0, tk−1s ,

kx,λ+⊙z(s, tk−1), t ∈ (tk−1, 1]

for all s ∈ [0, 1]. Therefore, having computed kx,λ+⊙z, we immediately recover kx,λ−⊙z.
This observation halves the number of kernels which we need to compute.

32

Chapter 7

Generalisations

7.1 Sums of Signature Coefficients

The tools we have developed to isolate a single signature coefficient can be applied to
isolate patterns of coefficients within the signature. The following two remarks summarise
the fundamental two patterns which, when overlayed, produce coefficient isolation.

Remark 7.1.1. Let z denote the axis path given in the previous section. Then the kernel

kx,z =
∑

J=(j1,...,jm)
j1≤···≤jm

1

#1(J)! · · ·#k(J)!
S(x)J ,

where #i(J) is the number of times index i appears in J , isolates the coefficients of the
signature which are given by an ordered multi-index. The set of coefficients appearing in
this sum can be viewed as a path transform which is variant to path channel permutations.

Remark 7.1.2. For any x, y ∈ C1(V), we may define a permutation class kernel

kP
x,y :=

∑
I∈P(1,...,k)

SI(x)SI(y)

=
∂k

∂λ1 · · · ∂λk
kλ-1
x,y ,

computable as the sum of truncated kernels

k!
∑

λ∈{0,1}k
(−1)sgn(λ)kλ-1,k

x,y ,

or approximated by

k!
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi
x,y

for M sufficiently large.

33

7.2 Block-Ordered Coefficients

The axis path z may be generalized further to compute sums of signature coefficients with
“blocks” of unordered indices. Suppose, for example, we wish to compute

S(x)(1,2,3) + S(x)(2,1,3),

that is, the sum of coefficients given by a multi-index where 1 and 2 appear before 3, but
the order of 1 and 2 is not important. Instead of considering the path z = e1 ∗ e2 ∗ e3, we
consider z = (e1 + e2) ∗ e3 to remove the order constraint on 1 and 2. It is easy to see by
Chen’s relation that

S(z)(1,2,3) = S(z)(2,1,3) = 1/2,

S(z)(1,3,2) = S(z)(2,3,1) = S(z)(3,1,2) = S(z)(3,2,1) = 0,

giving the desired isolation pattern on P(1, 2, 3). To generalise this idea, we introduce
the concatenation of multi-indices. For two multi-indices I = (i1, . . . , im1) and J =
(j1, . . . , jm2), denote the concatenation of I and J by I ∗ J = (i1, . . . , im1 , j1, . . . , jm2).
For two sets of multi-indices I and J , denote by I ∗ J the set

I ∗ J = {I ∗ J : I ∈ I, J ∈ J }.
The following result follows immediately from Chen’s relation and Proposition 4.0.6:

Theorem 7.2.1. Let βi be chosen to satisfy Condition 4.0.4 and let αi be as in Proposition
4.0.5. Suppose I1, . . . , Im are multi-indices of lengths l1, . . . , lm respectively, such that
I1 ∗ · · · ∗ Im = (1, . . . , k). Let ji =

∑i
p=1 lp for i = 1, . . . ,m and denote by z the path

zt = ((e1 + · · ·+ ej1) ∗ (ej1+1 + · · ·+ ej2) ∗ · · · ∗ (ejm−1+1 + · · ·+ ek))t

for t ∈ [0, 1], where (ei)t is understood to be the linear path from 0 to ei. Then

M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi
x,z →

1

l1! l2! · · · lm!
S(x)P(I1)∗P(I2)∗···∗P(Im)

as M →∞, for any x ∈ C1([0, 1], V).

Proof. See Appendix A, Section A.7.

Remark 7.2.2. The single coefficient case corresponds to Ij = (j), since then P(I1) ∗
P(I2) ∗ · · · ∗ P(Im) = (1, 2, . . . k). Similarly, isolation of S(x)P(1,...,k) corresponds to I1 =
(1, . . . , k).

Remark 7.2.3. Recall that, as is the case throughout, the assumption that I1∗I2∗· · ·∗Im =
(1, . . . , k) is purely for simplicity and the result can easily be shown to extend to a general
multi-index I1 ∗ I2 ∗ · · · ∗ Im = (i1, . . . , ik).

Theorem 7.2.1 has a simple interpretation. Let

x̃it :=

∫
[0,t]li

∏
j∈Ii

dx(j)uj

=
∏
j∈Ii

´

x
(j)
t − x

(j)
0

¯

and define x̃ = (x̃1, . . . , x̃m), where x̃ can either be viewed as a path of li-dimensional
integrals with respect to the channels of x given by indices in Ii, or equivalently as a
product of channels as above. Then we may write

S(x)P(I1)∗P(I2)∗···∗P(Im) = S(x̃)(1,...,m).

34

Chapter 8

Numerical Results

We present some numerical results to showcase the accuracy of our method. Throughout,
we will compute signature coefficients on a random sample of paths and report the absolute
error, as well as the average absolute magnitude of the coefficients. It should be noted
that average percentage error is not a suitable metric in the case of signature coefficients,
which may naturally be very close or equal to 0. Instead, for a measure of error relative to
coefficient magnitude, we consider a “scaled error”, which we define as the mean absolute
error divided by the average magnitude of a coefficient.

Definition 8.0.1. In the results that follow, for a random sample of paths {xi}i=1,...,m,
we define

Scaled Error –

1
m

∑m
i=1|Ŝ(xi)(1,...,k) − S(xi)(1,...,k)|

1
m

∑m
i=1|S(xi)(1,...,k)|

,

to be used as a suitable substitute for percentage error, where Ŝ(xi)
(1,...,k) denotes the value

obtained using Theorem 5.3.4 or Theorem 6.1.2.

Figure 8.1 shows the average errors when computing S(x)(1,...,k) using the monomial
approximation pN and their dependence on coefficient depth k, scaling depth M and
monomial order N . The average is taken over 1,000 random paths of length L = 150
constrained to [0, 1]d, where the true value of the signature is computed using the iisignature
package [17]. Similarly to what we noted in Chapter 4, for k = 2 we benefit from increasing
M all the way to M = 6, whereas for k = 5 it suffices to take M = 2 because of the
strong effects of factorial decay. From Proposition 5.3.2, we expect the error to decay
exponentially with monomial order N . Indeed, we see that this is the case up to about
N ≈ 108, after which the plateau in the error is likely caused either by discretisation
error in pN (y) or by other sources of error unrelated to pN , such as the scaling depth M
or the dyadic order of the finite difference scheme (6.2.1). We note that when using the
monomial approximation pN , the algorithm performs poorly for larger coefficient depths
k, since the chosen monomial order of 1010 is no longer sufficient to produce adequate
isolating behaviour at these levels.

Figure 8.2 shows the dependence of error on coefficient depth k using the axis path z, where
M = 2. Here we observe much lower errors for higher depths k than with the monomial
approximation pN , since the isolating behaviour produced by the axis path is exact. Even
for the choice ofM = 2, we attain remarkably low error relative to the absolute magnitude
of coefficients. It should be noted at this point that the error is mainly due to the dyadic
order of the PDE scheme (6.2.1). When we increase this in Figure 8.2, we observe even
lower errors.

As we discussed in Section 1.4, the complexity of computing the signature of a d dimensional
path of length L up to level k is O(Ldk). In our case, since we assume d = k this becomes

35

O(Lkk). In light of this, computing coefficients for a large sample of paths using iisignature
becomes infeasible for high levels k. To test our algorithm on levels beyond k = 7, we test
the error on a sample of random linear paths starting at 0 and ending at a random point in
[0.5, 1]k, whose signature is computable easily using Proposition 1.2.6. The restriction on
the endpoint ensures that deep coefficients are not too small. In light of our observations
about the scaling depth M , we let it decay as k increases. Specifically, we take

M =


2, k ≤ 6,

1, 7 ≤ k ≤ 10,

0, k ≥ 11.

For all values of k, we fix a dyadic order of 6 for the PDE scheme. Figure 8.3 shows
the resulting absolute error, the absolute magnitude of coefficients and the scaled error as
defined above. We see that at deeper levels, the algorithm recovers coefficients up to a
scaled error of roughly 0.05.

Given that signature terms decay factorially as per Lemma 1.2.2, we may naturally
question why Figure 8.3 shows the scaled error increasing with coefficient depth. After
all, the only source of error in Theorem 6.1.2 is that from levels of the signature beyond
the (k +M)th, and so we would expect this error to decay away factorially with depth
k. In practice, however, the discretisation error arising from the numerical scheme (6.2.1)
becomes increasingly significant as the magnitude of the target coefficient decays. This
becomes the main driver for the error seen in Figure 8.3. As discussed with Figure 8.2,
we can reduce this error by increasing the dyadic order of the scheme.

36

1 2 3 4 5 6 7
Coefficient depth k

0.1

0.2

0.3

0.4

0.5

0.6

Ab
so

lu
te

Co
ef

fic
ien

t
Absolute Magnitude of Coefficients

1 2 3 4 5 6 7
Coefficient depth k

0.000

0.001

0.002

0.003

0.004

0.005

Ab
so

lu
te

er
ro

r

Dependence of Error on Coefficient Depth

1 2 3 4 5 6 7
Coefficient depth k

0.00

0.02

0.04

0.06

0.08

Sc
ale

d
er

ro
r

Dependence of Error on Coefficient Depth

102 104 106 108 1010 1012 1014

Monomial order N

10−2

10−1

Ab
so

lu
te

er
ro

r

Dependence of Error on Monomial Order

0 1 2 3 4 5 6
Scaling depth M

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

Ab
 o

lu
te

er
ro

r

Dependence of Error on Scaling Depth, k=2

0 1 2 3 4 5 6
Scaling depth M

3×10−3

4×10−3

6×10−3

Ab
so
l
te
er
ro
r

Dependence of Error on Scaling Depth, k=5

Figure 8.1: Average errors for computing S(x)(1,...,k) over 1,000 random paths constrained
to [0, 1]d using pN (y). Unless stated otherwise, we take path length L = 150, coefficient
depth k = 5, monomial order N = 1010 and scaling depth M = 2. The dyadic order for
the kernel PDE solver is fixed at 2.

37

1 2 3 4 5 6 7
Coefficient depth k

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Ab
so

lu
te

er
ro

r
Dependence of Error on Coefficient Depth

Dyadic order = 2
Dyadic order = 3
Dyadic order = 4

1 2 3 4 5 6 7
Coefficient depth k

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

Sc
ale

d
er

ro
r

Dependence of Error on Coefficient Depth
Dyadic order = 2
Dyadic order = 3
Dyadic order = 4

Figure 8.2: Average errors for computing S(x)(1,...,k) over 1,000 random paths constrained
to [0, 1]d using the axis path z, with path length L = 150 and scaling depth M = 2.
Dyadic order for the kernel PDE solver is set to 2 (blue), 3 (green) and 4 (red).

3 4 5 6 7 8 9 10 11 12 13 14 15
Coefficient depth k

10 15

10 13

10 11

10 9

10 7

10 5

Ab
so

lu
te

er
ro

r

Dependence of Error on Coefficient Depth

3 4 5 6 7 8 9 10 11 12 13 14 15
Coefficient depth k

10 14

10 12

10 10

10 8

10 6

10 4

10 2

Ab
so

lu
te

Co
ef

fic
ien

t

Absolute Magnitude of Coefficients

3 4 5 6 7 8 9 10 11 12 13 14 15
Coefficient depth k

10 4

10 3

10 2

10 1

Sc
ale

d
Er

ro
r

Dependence of Error on Coefficient Depth

Figure 8.3: Average errors for computing S(x)(1,...,k) over 100 random linear paths starting
at 0 with end points in [0.5, 1]k, with decaying scaling depth and a dyadic order of 6.
Shaded area shows the region between the 10% and 90% quantiles.

38

Chapter 9

Conclusion and Future Work

We have developed a framework for efficiently computing signature coefficients through the
signature kernel. In Chapter 2, we motivated our approach to permutation class isolation
with existing results concerning randomised signature kernels and integral transforms with
respect to unsigned and signed measures. In Chapter 3 we argued that, instead of integral
transforms, we can recover S(x)P(1,...,k) by considering a suitable derivative of a kernel
with respect to a component-wise scaling of the underlying path. By considering a finite
difference approximation, we recovered the permutation class as a sum of signature kernels.
In Chapter 4, we proposed a different scheme, based on the finite difference, which avoids
the numerical instabilities associated with approximating a high-order derivative. Having
found a stable algorithm for permutation class recovery, we moved on in Chapters 5 and 6
to the problem of order isolation via monomial approximations and axis paths. We argued
that, when using the axis paths, the algorithm may be parallelised down to a complexity
of O(L), which boasts an improvement over the naive methods discussed in Sections 1.4
and 1.6. Finally, we considered some generalisations of the approach in Chapter 7 and
presented numerical results supporting the efficacy of our method in Chapter 8.

There are potential ways in which our algorithm may be improved, but which we did not
explore here due to time constraints. For example, as we discussed in Chapter 8, the error
of our algorithm is largely due to the discretisation of the signature kernel PDE. Whilst
for simplicity we have used the same numerical scheme as in [18], it is likely that we can
choose a simpler scheme when one of the paths in the signature kernel is an axis path,
as in Theorem 6.1.2. If this is the case, we stand to significantly reduce the associated
discretisation error. A study of suitable numerical schemes is left for future work.

Another interesting question for future research is whether our approach can be extended
to cover, for instance, recovery of the product of two signature terms, which can be written
using the Shuffle Identity (Proposition 1.2.8) as

S(x)I · S(x)J = S(x)I�J ,

where S(x)I�J := (e∗I � e∗J)(S(x)) is a sum of signature coefficients. In Chapter 7, we
considered “block-ordered” coefficients, where we isolate the sum of coefficients whose
multi-indices are formed with “blocks” of unordered coefficients, with the blocks themselves
being ordered such that all indices in one block precede all indices in the next block. The
shuffle product is the opposite of this, where coefficients within each block are ordered, but
the blocks themselves are not and can shuffle into each other. In this case, the optimal path
to take signature kernels with is less obvious, but we may try to leverage the monomial
framework we have developed in Chapter 5 to derive an optimal solution.

In Section 1.5, we discussed potential applications to machine learning and transformer
models on signature space. Another path transform which has seen use cases in machine

39

learning is the “log-signature”, defined as the tensor logarithm of the signature. The
log-signature offers a more compact representation of the signature, taming the curse of
dimensionality from which the standard signature suffers. If we are successful in computing
the shuffle product and subsequently products of coefficients, then we may reasonably try
to recover log-signature coefficients in an efficient manner, since these can be expressed as
a sum of products of standard signature coefficients.

40

Appendix A Technical Proofs

A.1 Proof of Proposition 2.2.2

Lemma A.1.1 ([10]). Let ψσ denote the centered Gaussian density with standard deviation

σ. Then ψ
(n)
σ admits the representation:

ψ(n)
σ (x) =

»

–

⌊n/2⌋∑
m=0

Cσ(n,m)xn−2m

fi

flψσ(x),

where

Cσ(n,m) =

ˆ

n

2m

˙

2m
Γ

`

2m+1
2

˘

Γ
`

1
2

˘

ˆ

1

σ

˙2(n−m)

(−1)n+m.

Proof. A simple induction gives the result.

Lemma A.1.2. For n ≥ 1, ψσ restricted to [0, 1] has nth moment Mn where

Mn ≤
1

σ
?
2π

„

1

n+ 1
− 1

2σ2(n+ 3)
+

1

8σ4(n+ 5)

ȷ

.

Proof. The proof follows simply from applying the bound e−
1
2
(x/σ)2 ≤ 1− 1

2

`

x
σ

˘2
+ 1

8

`

x
σ

˘4
.

Proof of Proposition 2.2.2: Condition (1) clearly holds. Moreover, from the above
two lemmas∫

D
|πmµk,σ(dπ)| =

1

k!

∫ 1

−1
|πmψ(k)

σ (π)Λ(dπ)|

=
1

k!

∫ 1

−1

∣∣∣∣∣∣
»

–

⌊k/2⌋∑
i=0

Cσ(k, i)π
m+k−2i

fi

flψσ(π)

∣∣∣∣∣∣Λ(dπ) (Lemma A.1.1)

≤ 2

k!

∫ 1

0

⌊k/2⌋∑
i=0

|Cσ(k, i)|πm+k−2iψσ(π)Λ(dπ)

=
2

k!

⌊k/2⌋∑
i=0

|Cσ(k, i)|Mm+k−2i

= O
ˆ

1

m

˙

. (Lemma A.1.2)

By Corollary 1.2.2.1, we also have that

|am(s, t)|≤
∥x∥m1,[a,s]∥y∥

m
1,[a,t]

(m!)2
.

Thus, there exists C > 0 such that

∑
m≥0

|am(s, t)|
∫ 1

−1
|πmµ(dπ)| ≤ C

∑
m≥0

∥x∥m1,[a,s]∥y∥
m
1,[a,t]

m(m!)2
<∞,

41

and so condition (2) holds for any choice of x, y ∈ C1(V). Moreover, since ψ
(k)
σ is a nascent

delta function, it follows that

lim
σ→0

∫
D
πmµk,σ(dπ) = lim

σ→0

(−1)k

k!

∫ 1

−1
πmψ(k)

σ (π)dπ = δm,k,

and this convergence can easily be shown to be uniform across m by applying Lemma
A.1.2.

A.2 Proof of Corollary 2.2.1.1

Proof. Since we assume V is equipped with an inner product with respect to which the

basis ei is orthonormal, we must have that ∥v∥V =

b∑k
i=0

`

v(i)
˘2

for all v =
∑k

i=0 v
(i)ei ∈

V . Thus we have that

∥π ⊙ y∥1 = sup
D∈D[0,1]

∑
ti∈D

∥∥(π ⊙ y)ti+1 − (π ⊙ y)ti
∥∥
V

= sup
D∈D[0,1]

∑
ti∈D

g

f

f

e

k∑
j=1

π2j

´

y
(j)
ti+1
− y(j)ti

¯2

≤ sup
D∈D[0,1]

∑
ti∈D

g

f

f

e

k∑
j=1

´

y
(j)
ti+1
− y(j)ti

¯2
= ∥y∥1

for all π ∈ [−1, 1], where D[0, 1] is the set of partitions of [0, 1]. Note that,

∞∑
m=0

∫
[−1,1]k

∣∣∣〈S(x)(m), S(π ⊙ y)(m)
〉
V ⊗m

∣∣∣µσ(dπ)
≤

∞∑
m=0

∫
[−1,1]k

∥x∥m1 ∥π ⊙ y∥
m
1

(m!)2
µσ(dπ) (Corollary 1.2.2.1)

≤
∞∑

m=0

∫
[−1,1]k

∥x∥m1 ∥y∥
m
1

(m!)2
µσ(dπ)

= µσ

´

[−1, 1]k
¯

∞∑
m=0

∥x∥m1 ∥y∥
m
1

(m!)2
<∞.

Thus by Fubini’s Theorem, we have

∣∣∣∣∣k!
∫
[−1,1]k

kx,π⊙yµσ(dπ)− S(x)P(1,...,k)

∣∣∣∣∣
=

∣∣∣∣∣k!
∫
[−1,1]k

∞∑
m=0

〈
S(x)(m), S(π ⊙ y)(m)

〉
V ⊗m

µσ(dπ)− S(x)P(1,...,k)

∣∣∣∣∣
=

∣∣∣∣∣k!
∞∑

m=0

∫
[−1,1]k

〈
S(x)(m), S(π ⊙ y)(m)

〉
V ⊗m

µσ(dπ)− S(x)P(1,...,k)

∣∣∣∣∣ ,
where

42

∫
[−1,1]k

〈
S(x)(m), S(π ⊙ y)(m)

〉
V ⊗m

µσ(dπ)

=

∫
[−1,1]k

∑
(i1,...,im)∈{1,...,k}m

S(x)(i1,...,im)S(π ⊙ y)(i1,...,im)µσ(dπ)

=
1

m!

∑
(i1,...,im)∈{1,...,k}m

S(x)(i1,...,im)

∫
[−1,1]k

πi1 · · ·πimµσ(dπ)

for m ≥ 1, and 0 for m = 0. Let ϕ1,σ(i1, . . . , im) :=
∫
[−1,1]k πi1 · · ·πimµσ(dπ). Then as a

direct consequence of Proposition 2.2.2, there exists σ such that

∣∣∣ϕ1,σ(i1, . . . , im)− 1
{
(i1, . . . , im) ∈ S(x)P(1,...,k)

}∣∣∣ < Cε,

C :=

˜

k!

∞∑
m=1

∥x∥m1
(m!)2

¸−1

,

for which

∣∣∣∣∣k!
∞∑

m=0

∫
[−1,1]k

〈
S(x)(m), S(π ⊙ y)(m)

〉
V ⊗m

µσ(dπ)− S(x)P(1,...,k)

∣∣∣∣∣
=

∣∣∣∣∣∣k!
∞∑

m=1

1

m!

∑
(i1,...,im)∈{1,...,k}m

S(x)(i1,...,im)ϕ1,σ(i1, . . . , im) − S(x)P(1,...,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣k!
∞∑

m=1

1

m!

∑
(i1,...,im)∈{1,...,k}m

S(x)(i1,...,im) pϕ1,σ(i1, . . . , im) − 1 {(i1, . . . , im) ∈ P(1, . . . , k)}q

∣∣∣∣∣∣
≤ k!

∞∑
m=1

1

m!

∑
(i1,...,im)∈{1,...,k}m

∣∣∣S(x)(i1,...,im)
∣∣∣ |ϕ1,σ(i1, . . . , im) − 1 {(i1, . . . , im) ∈ P(1, . . . , k)}|

≤ k!
∞∑

m=1

1

m!

∑
(i1,...,im)∈{1,...,k}m

∣∣∣S(x)(i1,...,im)
∣∣∣Cε

≤ k!
∞∑

m=1

1

m!

∥∥∥S(x)(m)
∥∥∥Cε

≤ k!
∞∑

m=1

∥x∥m1
(m!)2

Cε

= ε.

Thus, ∣∣∣∣∣k!
∫
[−1,1]k

kx,π⊙yµσ(dπ)− S(x)P(1,...,k)

∣∣∣∣∣ ≤ ε.

43

A.3 Proof of Proposition 3.0.1

We will first prove a lemma detailing how the derivative acts on levels of the signature,
before moving on to the proof of the theorem itself.

Lemma A.3.1.

∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

S(λ⊙ z)(m)
[0,1] =

{∑
(i1,...,ik)∈P(1,...,k) S(z)

(i1,...,ik)
[0,1] ei1 · · · eik , m = k

0, m ̸= k.

Proof. For m = k,

∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

S(λ⊙ z)(m)
[0,1] =

∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

∫
0<t1<···<tk<1

d(λ⊙ z)t1 ⊗ · · · ⊗ d(λ⊙ z)tk

=
∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

∫
0<t1<···<tk<1

(λ⊙ dzt1)⊗ · · · ⊗ (λ⊙ dztk)

=
∑

(i1,...,ik)∈P(1,...,k)

∫
0<t1<···<tk<1

(ei1 ⊙ dzt1)⊗ · · · ⊗ (eik ⊙ dztk)

=
∑

(i1,...,ik)∈P(1,...,k)

S(z)
(i1,...,ik)
[0,1] ei1 · · · eik .

By a similar calculation, it is easy to see that the derivative is 0 ∈ V ⊗m if m ̸= k.

Proof of Proposition 3.0.1:

∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

kx,λ⊙y =
∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

〈
S(x)[0,1], S(λ⊙ y)[0,1]

〉
=

∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

∞∑
i=0

〈
S(x)

(i)
[0,1], S(λ⊙ y)

(i)
[0,1]

〉
V ⊗i

=
∞∑
i=0

〈
S(x)

(i)
[0,1],

∂k

∂λ1 · · · ∂λk

∣∣∣∣
λ=0

S(λ⊙ y)(i)[0,1]

〉
V ⊗i

=

〈
S(x)

(k)
[0,1],

∑
(i1,...,ik)∈P(1,...,k)

S(y)
(i1,...,ik)
[0,1] ei1 · · · eik

〉
V ⊗k

=
∑

(i1,...,ik)∈P(1,...,k)

S(x)
(i1,...,ik)
[0,1] S(y)

(i1,...,ik)
[0,1]

=
1

k!
S(x)

P(1,...,k)
[0,1] ,

where the interchange of summation and differentiation is justified by the uniform convergence
of the series of derivatives.

44

A.4 Proof of Proposition 4.0.5

Proof. We define e
(M+1)
j (x), e

(M+1)
j,l (x) and dj as in [1] and write VM+1,k = Bk,M , xj =

βj−1 to match the notation. By [1, Theorem 2] we have that

αi = (Bk,M)−1
i,1 = (VM+1,k)

−1
i+1,1 =

(−1)Me
(M+1)
M+1,i+1(x)

di+1
.

By [1, Equation 6], we have

e
(M+1)
M+1,i+1(x) =

∂

∂xi+1
e
(M+1)
M+1 (x)

=
∂

∂xi+1

M+1∏
j=1

xj

=
M+1∏
j=1

j ̸=i+1

xj .

Substituting in di+1 = xki+1

M+1∏
j=1

j ̸=i+1

(xi+1 − xj) and xj = βj−1 gives the result.

A.5 Proof of Proposition 5.3.2

Proof. From the proof of Proposition 5.2.2.1, we have that

max
(ji,...,jk)∈P(1,...k)
(ji,...,jk) ̸=(1,...,k)

S(pN (y))(j1,...,jk) = max
1≤j<k

∑j
i=1 ni∑j−1

i=1 ni + nj+1

.

Since ni = N
i−1
k−1 , we have

max
1≤j<k

∑j
i=1 ni∑j−1

i=1 ni + nj+1

= max
1≤j<k

∑j
i=1N

i−1
k−1∑j−1

i=1 N
i−1
k−1 +N

j
k−1

= max

{
N− 1

k−1 , max
1<j<k

(N
j

k−1 − 1)/(N
1

k−1 − 1)

(N
j−1
k−1 − 1)/(N

1
k−1 − 1) +N

j
k−1

}

= max

{
N− 1

k−1 , max
1<j<k

N
j

k−1 − 1

N
j−1
k−1 − 1 +N

j+1
k−1 −N

j
j−1

}

≤ max

{
N− 1

k−1 , max
1<j<k

N
j

k−1

N
j−1
k−1 +N

j+1
k−1 −N

j
j−1

}

= max

{
N− 1

k−1 ,
1

N− 1
k−1 +N

1
k−1 − 1

}
≤ 1

N
1

k−1 − 1
.

45

A.6 Proof of Theorem 5.3.4

Proof. Let N be the (k − 1)th power of an integer. By the construction of Chapter 4 and
pN (y), we have∣∣∣∣∣∣

M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αi

k+M∑
j=0

〈
S(βiλ⊙ x)(j), S(pN (y))(j)

〉
V ⊗j
− S(x)(1,...,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(j1,...,jk)∈P(1,...,k)

S(x)(j1,...,jk)S(pN (y))(j1,...,jk) − S(x)(1,...,k)
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
∑

(j1,...,jk)∈P(1,...,k)
(j1,...,jk)̸=(1,...,k)

S(x)(j1,...,jk)S(pN (y))(j1,...,jk)

∣∣∣∣∣∣∣∣
≤ 1

N
1

k−1 − 1

∣∣∣∣∣∣∣∣
∑

(j1,...,jk)∈P(1,...,k)
(j1,...,jk)̸=(1,...,k)

S(x)(j1,...,jk)

∣∣∣∣∣∣∣∣ (Proposition 5.3.2)

→ 0

as N → ∞. It is easy to see that ∥pN (y)∥1 ≤ k, for instance, by considering the limiting
axis path z of Proposition 6.1.1 and noting that

∥pN (y)∥1 ↑ ∥z∥1 = k

as N →∞. We have, therefore, that∣∣∣∣∣∣k!
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αi

∞∑
j=k+M+1

〈
S(βiλ⊙ x)(j), S(pN (y))(j)

〉
V ⊗j

∣∣∣∣∣∣
≤ k!

M∑
i=0

∑
λ∈{0,1}k

|αi|
∞∑

j=k+M+1

∣∣∣〈S(βiλ⊙ x)(j), S(pN (y))(j)
〉
V ⊗j

∣∣∣
≤ k! 2k

M∑
i=0

|αi|
∞∑

j=k+M+1

βji ∥x∥
j
1 k

j

(j!)2
(Corollary 1.2.2.1)

≤ k! 2k(M + 1) max
0≤i≤M

|αi|
∞∑

j=k+M+1

∥x∥j1 kj

(j!)2

≤ k! 2k(M + 1) max
0≤i≤M

|αi|
(∥x∥1 k)k+M

[(k +M)!]2

∞∑
j=1

((k +M))2

((k +M + j)!)2
∥x∥j1 k

j

→ 0 (Condition (4.0.4))

as M →∞. It follows that∣∣∣∣∣∣
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi

x, pN (y) − S(x)
(1,...,k)

∣∣∣∣∣∣→ 0

as N,M →∞.

46

A.7 Proof of Theorem 7.2.1

Proof. By Chen’s relation (Proposition 1.2.7) and Proposition 1.2.6, it is easy to see that

S(z)(j1,...,jk) =
1

l1! · · · lm!
1{(j1, . . . , jk) ∈ P(I1) ∗ · · · ∗ P(Im)}

for all (j1, . . . , jk). By the construction of Chapter 4, we have

M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αi

k+M∑
j=0

〈
S(βiλ⊙ x)(j), S(z)(j)

〉
V ⊗j

=
∑

(j1,...,jk)∈P(1,...,k)

S(x)(j1,...,jk)S(z)(j1,...,jk)

=
1

l1! · · · lm!
S(x)P(I1)∗···∗P(Im).

By the same steps as in the proof of Theorem 5.3.4 in Appendix A, Section A.6, we have∣∣∣∣∣∣k!
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αi

∞∑
j=k+M+1

〈
S(βiλ⊙ x)(j), S(z)(j)

〉
V ⊗j

∣∣∣∣∣∣→ 0

as M →∞, for any βi satisfying Condition (4.0.4). It follows that∣∣∣∣∣∣
M∑
i=0

∑
λ∈{0,1}k

(−1)sgn(λ)αik
λ-βi
x, z −

1

l1! · · · lm!
S(x)P(I1)∗···∗P(Im)

∣∣∣∣∣∣→ 0.

47

Appendix B A Detailed Breakdown of
Example 5.1.1

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

(a) 0 < t1 < t2 < t3 < 1

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

(b) 0 < t1 < t3 < t2 < 1

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

(c) 0 < t2 < t1 < t3 < 1

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

(d) 0 < t2 < t3 < t1 < 1

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

(e) 0 < t3 < t1 < t2 < 1

0.0
0.2

0.4
0.6

0.8
1.0t1

0.0
0.2

0.4
0.6

0.8

1.0

t2

0.0

0.2

0.4

0.6

0.8

1.0

t3

(f) 0 < t3 < t2 < t1 < 1

Figure B.1: 9p(y)
(1)
t1

9p(y)
(2)
t2

9p(y)
(3)
t3

for n1 = 1, n2 = 2, n3 = 4, split by sections corresponding
to signature coefficients in P(1, 2, 3).

48

Bibliography

[1] A. Arafat and M. El-Mikkawy, A fast novel recursive algorithm for computing
the inverse of a generalized vandermonde matrix, Axioms, 12 (2022), p. 27.

[2] I. Beltagy, M. E. Peters, and A. Cohan, Longformer: The long-document
transformer, arXiv:2004.05150, (2020).

[3] H. Boedihardjo, X. Geng, T. Lyons, and D. Yang, The signature of a rough
path: uniqueness, Advances in Mathematics, 293 (2016), pp. 720–737.

[4] T. Cass, T. Lyons, and X. Xu, Weighted signature kernels, The Annals of Applied
Probability, 34 (2024), pp. 585–626.

[5] T. Cass and C. Salvi, Lecture notes on rough paths and applications to machine
learning, arXiv preprint arXiv:2404.06583, (2024).

[6] T. Cass and W. F. Turner, Topologies on unparameterised path space, Journal of
Functional Analysis, 286 (2024), p. 110261.

[7] K.-T. Chen, Iterated integrals and exponential homomorphisms, Proceedings of the
London Mathematical Society, 3 (1954), pp. 502–512.

[8] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,
T. Sarlos, P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser, et al., Rethinking
attention with performers, arXiv:2009.14794, (2020).

[9] L. Colmenarejo and R. Preiß, Signatures of paths transformed by polynomial
maps, Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry,
61 (2020), pp. 695–717.

[10] M. A. de Oliveira and R. H. Ikeda, Representation of the n-th derivative of
the normal pdf using bernoulli numbers and gamma function, Applied Mathematical
Sciences, 6 (2012), pp. 3661–3673.

[11] B. Hambly and T. Lyons, Uniqueness for the signature of a path of bounded
variation and the reduced path group, Annals of Mathematics, (2010), pp. 109–167.

[12] P. Kidger and T. Lyons, Signatory: differentiable computations of the
signature and logsignature transforms, on both CPU and GPU, arXiv preprint
arXiv:2001.00706, (2020).

[13] F. J. Király and H. Oberhauser, Kernels for sequentially ordered data, Journal
of Machine Learning Research, 20 (2019), pp. 1–45.

[14] M. Lees, The goursat problem, Journal of the Society for Industrial and Applied
Mathematics, 8 (1960), pp. 518–530.

49

[15] T. Lyons, Rough paths, signatures and the modelling of functions on streams,
International Congress of Mathematicians, Seoul, (2014).

[16] T. Lyons and A. D. McLeod, Signature methods in machine learning, arXiv
preprint arXiv:2206.14674, (2022).

[17] J. Reizenstein and B. Graham, The iisignature library: efficient calculation
of iterated-integral signatures and log signatures, arXiv preprint arXiv:1802.08252,
(2018).

[18] C. Salvi, T. Cass, J. Foster, T. Lyons, and W. Yang, The signature kernel
is the solution of a Goursat PDE, SIAM Journal on Mathematics of Data Science, 3
(2021), pp. 873–899.

[19] K. Schmüdgen, Ten lectures on the moment problem, arXiv preprint
arXiv:2008.12698, (2020).

[20] Y. Tay, M. Dehghani, S. Abnar, Y. Shen, D. Bahri, P. Pham, J. Rao,
L. Yang, S. Ruder, and D. Metzler, Long range arena: A benchmark for efficient
transformers, arXiv preprint arXiv:2011.04006, (2020).

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, Attention is all you need, Advances in neural
information processing systems, 30 (2017).

[22] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, Linformer: Self-attention
with linear complexity, arXiv:2006.04768, (2020).

[23] K. Wen, X. Dang, and K. Lyu, RNNs are not transformers (yet): The key
bottleneck on in-context retrieval, arXiv:2402.18510, (2024).

50

	The Path Signature Transform
	The Signature
	Properties of the Signature Transform
	The Signature Kernel
	Universal Nonlinearity
	Practical Motivations
	Naive Integration and a Lower Bound on Complexity
	General Methodology

	Motivation: Randomised Scalings and Integral Transforms
	Measures and Moment-Weighted Kernels
	Signed Measures

	Signature Coefficients as Derivatives
	Vandermonde Systems
	High Order Monomial Maps
	Motivating Example
	Optimal Exponents
	Error Bounds and Results

	Limiting Axis Paths
	Order Isolation with Axis Paths
	The Kernel PDE with Axis Paths

	Generalisations
	Sums of Signature Coefficients
	Block-Ordered Coefficients

	Numerical Results
	Conclusion and Future Work
	Technical Proofs
	Proof of Proposition 2.2.2
	Proof of Corollary 2.2.1.1
	Proof of Proposition 3.0.1
	Proof of Proposition 4.0.5
	Proof of Proposition 5.3.2
	Proof of Theorem 5.3.4
	Proof of Theorem 7.2.1

	A Detailed Breakdown of Example 5.1.1
	Bibliography

