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Abstract

This thesis investigates the use of random features, a machine learning technique, to pro-

duce asset pricing models in high-dimensional settings. Traditional models like CAPM

and Fama-French struggle with the “factor zoo”, a vast number of potential explanatory

variables that challenge conventional statistical methods. Random features simplify model

training while maintaining strong theoretical foundations, offering a new way to estimate

stochastic discount factors (SDFs) effectively. This research develops a simple approach to

SDF estimation, providing theoretical guarantees and empirical evidence of its effective-

ness on historical data. The findings suggest that random features methods can deliver

performance on par with more sophisticated and computationally expensive approaches,

offering promising new asset pricing models.
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Introduction

Asset pricing theory tries to answer the fundamental question of finding a price for an

uncertain cashflow. Empirical asset pricing seeks to understand how securities (e.g. stocks,

bonds, etc.) are valued and what factors drive their expected returns. The theory is based

on the fundamental notion of no arbitrage, which implies that expected returns vary due to

different exposures (i.e., betas) to the stochastic discount factor (SDF).

The holy grail in asset pricing has been to estimate a stochastic discount factor that can

account for the expected returns of all assets. Practically, this involves overcoming several

problems. The SDF could inherently rely on all available information (past and present),

implying that it is a function of a potentially vast number of variables. The number of

potential explanatory variables is indeed large and is known as the “factor zoo” (Cochrane

2011). Moreover, the excess return of individual stocks has a low signal-to-noise ratio, i.e.

the mean is much smaller than its variance, thus making the estimation process much

harder.

Traditional models, such as the Capital Asset Pricing Model (CAPM) and multi-factor

models like Fama-French three and five factor models (Fama and French 1993, Fama and

French 2015), have long dominated the field, relying on a relatively small number of ob-

servable factors to explain the cross-section of returns. However, these models often strug-

gle to fully capture the complexities of financial markets, particularly as the number of

potential explanatory variables, like stock characteristics, grows. Forty years of research

have produced a “factor zoo” of hundreds of characteristic-based factors, also known as

anomalies, which is any strategy that generates a significant positive alpha relative to the

Fama-French three factor model (Novy-Marx and Velikov 2015). Cochrane (2011) calls this

problem “The Multidimensional Challenge”.

Conventional statistical methods, such as ordinary least squares (OLS), are often inade-

quate in this high-dimensional context, where the number of observations is typically much

smaller than the number of explanatory variables. In practice, it is common to have only a

few hundred observations for monthly stock characteristics and returns, while considering
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more than ten thousand potential factors. This imbalance poses significant difficulties for

traditional modelling approaches, as these methods tend to overfit noise, resulting in an

excellent in-sample fit but poor out-of-sample forecasts.

Amid the recent surge in popularity of machine learning, driven by advancements in

computing power and data availability, a new body of literature has appeared that applies

these methods to tackle this high dimensional problem, including shrinkage or regulariza-

tion methods (e.g. ridge, lasso and bayesian regression, Kozak et al. 2020), PCA (Lettau

and Pelger 2020), random forests (Bryzgalova et al. 2019), kernel methods (Kozak 2020),

random features (Didisheim et al. 2023), deep learning (Gu et al. 2020,Kelly et al. 2024),

or even generative adversarial networks (GANs, Chen et al. 2024). This integration of ma-

chine learning approaches represents a significant shift in the field of asset pricing, enabling

researchers to enhance the predictive power of asset pricing models.

In this thesis, we formulate the problem using the machine learning technique of ran-

dom features. Random features, also known as random feature neural networks, were

introduced by Rahimi and Recht (2007). They can be understood as feedforward neural

networks with a single hidden layer in which the hidden weights are fixed randomly (i.e.,

they are not trained) and only the output weights are trained. This drastically simplifies

training, as it typically results in a convex problem that often has closed-form solutions. In

contrast, feedforward neural networks (FFNs) must be trained using variants of stochas-

tic gradient descent (SGD), which introduces optimization errors that are challenging to

analyze mathematically.

Random features are also closely related to kernel methods; for each activation function

and weight distribution, one can associate a positive definite kernel. This connection is one

of the main reasons the method has exhibited both theoretical and empirical robustness. As

demonstrated by Rahimi and Recht (2008a) and Rahimi and Recht (2008b), and reviewed in

Chapter 2, this method has theoretical guarantees that show it can approximate functions

within a dense subspace of its associated reproducing kernel Hilbert space (RKHS) arbi-

trarily well. Moreover, recent results from Gonon et al. (2023) and Gonon (2023) establish

universal approximation results for random features under smoothness hypothesis of the

target function.

Our approach is grounded in the work of Kozak (2020) and Didisheim et al. (2023) which

are closely related and are reviewed in Chapter 1. Kozak (2020) extends the ridge regression

approach from Kozak et al. (2020) by introducing kernel methods to handle interactions and

non-linear features derived from basic characteristics. Didisheim et al. (2023) has a close
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formulation of the problem and introduce random features and its associated kernel. Our

approach is similar to that of Didisheim et al. (2023), but it is considerably simpler. We

do not re-rank random features as they do, and we evaluate different activation functions

and random weights. Moreover, the analysis of their algorithm is complex and is based

on random matrix theory. In comparison, our theory is based on Rademacher complexity

bounds and the approximation results from Rahimi and Recht (2008a), Rahimi and Recht

(2008b), and Gonon et al. (2023). The main results of this thesis include approximation,

generalization, and learning bounds for our random features based SDFs, as detailed in

Chapter 3. These results are derived under mild and relatively general assumptions, and

are supported empirically by our findings in Chapter 4.

This thesis is structured as follows: Chapter 1 begins with a review of key literature

on asset pricing and stochastic discount factors, then introduces characteristic-based SDFs

and discusses penalised estimators obtained from different approaches; in Chapter 2 a re-

view of statistical learning theory is done, focusing on Rademacher complexity bounds and

introducing the main results on random features; Chapter 3 contains approximation and

generalization bounds for random features based SDFs; finally in Chapter 4, the empirical

analysis applies these methods to historical data, evaluating model performance.
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Chapter 1

Characteristic-based SDFs

1.1 Stochastic discount factors

Consider a market with assets (e.g. stocks) indexed by i = 1, . . . , Nt. Trade occurs at dis-

crete times t = 1, . . . ,T. Let Re
t+1,i denote the excess return of asset i at time t+ 1, i.e.

Re
t+1,i = Rt+1,i −R f

t+1 where R f
t+1 denotes the risk-free return. Denote by (Ω,Σ,P, (Ft)t) a

filtered probability space where these random variables live and Ft represents all informa-

tion available up to time t.

Definition 1.1.1. A stochastic discount factor (SDF) (Mt)t is an adapted process which

satisfies that

Et[Mt+1Re
t+1,i]= 0, (1.1.1)

for all tradable assets i = 1, . . . , Nt.

A tradable SDF is an SDF which is a tradable payoff. Since condition 1.1.1 does not

determines the mean of Mt+1, consider an SDF of the form

Mt+1 = 1−b⊤
t (Re

t+1 −Et[Re
t+1]),

where Re
t+1 denotes the Nt ×1 vector of excess returns and bt ∈ mFt (i.e., these are known

at time t). Then, it follows that

0= Et[Mt+1Re
t+1]= Et[Re

t+1(1−b⊤
t (Re

t+1 −Et[Re
t+1])⊤]

= Et[Re
t+1]−Et[Re

t+1(Re
t+1 −Et[Re

t+1])⊤]bt = Et[Re
t+1]−Vt[Re

t+1]bt,

thus bt =Vt[Re
t+1]−1Et[Re

t+1]. Hence we obtain that the SDF coefficients are also the weights

of a mean-variance efficient portfolio.
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Suppose at each time we observe d asset characteristic-based instruments, that we cap-

ture in a matrix Zt ∈ mFt of dimensions Nt×d. Given a feature mapΦ :Rd →RL (where usu-

ally L ≫ d), we can consider the features X t =Φ(Zt) which is a matrix of dimensions Nt×L.

Associated with these features we have L factor portfolios Ft+1 = X⊤
t Re

t+1 = Φ(Zt)⊤Re
t+1.

More precisely,

Ft+1,ℓ =
Nt∑
i=1
Φ(Zt,i)ℓRe

t+1,i,

for ℓ= 1, . . . ,L, i.e. in the factor Fℓ we weight the i-th asset at time t+1 according to its ℓ-th

feature Φ(Zt,i)ℓ at time t. These factors are by definition managed portfolios, i.e. they are

tradable portfolios as their weights are known at time t (i.e., Ft-measurable).

The definition of the specific characteristic-based instruments will be deferred until

Chapter 4. For the moment, think of any characteristic that might have some explana-

tory power for excess returns of stocks, for example the size (i.e., market capitalization,

defined as price times shares outstanding) or the dividend yield (i.e., dividend as a fraction

of price). Then, stocks are ranked with respect to such characteristic to define the instru-

ments. There are hundreds of such characteristics available (see Novy-Marx and Velikov

2015 and Jensen et al. 2023). Similarly, the specific choice of the feature map Φ : Rd → RL

will be addressed later, but it will be based on random features. Consequently, the number

of features L could be as large as our computational resources and memory capacity permit.

The SDF definition implies infinitely many unconditional moment conditions, i.e.

E[Mt+1Re
t+1,iYt]= 0,

for all bounded Ft-measurable random variable Yt and all assets i = 1, . . . , Nt. In particular,

if we consider as test functions our features Φ(Zt), then

E[Mt+1Ft+1,ℓ]=
Nt∑
i=1
E[Mt+1Re

t+1,iΦ(Zt,i)ℓ]= 0,

thus E[Mt+1Ft+1]= 0. If our feature space is sufficiently ample, we might be able to find an

SDF that lives in the linear span of the characteristic-based factors.

Definition 1.1.2. (Cochrane 2009, Section 8.3) An unconditional (or fixed weight) linear

asset pricing model asks for an SDF Mt+1 = 1−b⊤(Ft+1−E[Ft+1]) for b ∈RL (fixed) such that

E[Mt+1Ft+1]= 0.

By far the most famous example of an asset pricing model is the Capital Asset Pricing

Model (CAPM) of Sharpe (1964)), where there is just one factor, the "market", and where the
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weights of each asset are proportional to their market capitalization. Other famous models

include Fama-French three (Fama and French 1993) and five factor (Fama and French 2015)

models. The three factor models adds two factors, SMB (Small Minus Big, based on the size)

and HML (High Minus Low, based on value). The five factor model adds the factor RMW

(Robust Minus Weak, based on profitability) and CMA (Conservative Minus Aggressive).

See Kenneth French data library for details on how the factors are constructed 1.

Traditional factors were usually expressed in terms of expected-return beta represen-

tations rather than in the language of stochastic discount factors. See Cochrane (2009,

Section 6.1) for equivalence results between stochastic discount factors, expected-return

beta representations and mean variance efficient portfolios.

As an alternative to 1.1.2, some authors ask for the SDF to be written as Mt+1 = 1−
b⊤Ft+1. This parametrisation is not exactly equivalent as the weights are not the same and

moreover it does not have mean one, however one can work with either in practice. Thus,

we might express the SDF as follows,

Mt+1 = 1− (Φ(Zt)b)⊤Re
t+1 = 1−

Nt∑
i=1

ωt,iRe
t+1,i,

where ωt ∈ RNt is the vector of asset-specific weights given by ωt,i =
Nt∑
i=1
Φ(Zt,i)ℓbℓ. Hence,

our main assumption here is that the weights ωt of the SDF are a linear function of the

(derived) features. However, the features themselves might be highly non-linear functions

of the basic instruments. It turns out one can postulate an SDF of the following form,

Mt+1 = 1−
Nt∑
i=1

ω(Zt,i)Re
t+1,i, (1.1.2)

for some function ω :Rd →R, and we will see in Chapter 2 that random features can approx-

imate a target function arbitrarily well under some relatively mild hypothesis on ω. The

main assumption in equation 1.1.2 is that the characteristic-based instruments determine

the weights of an asset on the SDF. Since we can add as many instruments and transfor-

mations (e.g., lags, interactions) this is not very restrictive.

However, it’s important to note that the expected return of a stock cannot directly de-

pend on firm characteristics. Instead, expected returns are correlated with these character-

istics, which is why we focus on managed portfolios associated with them. If stock returns

were directly dependent on characteristics like size, one could theoretically buy small com-

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_5_factors_2x3
.html
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panies with high expected returns, consolidate them into a large holding company, and then

distribute low returns to shareholders while pocketing the difference as the holding man-

ager. In reality, this strategy fails because the large holding company would still behave

like a portfolio of small firms, and its returns will still be like those of a portfolio of small

firms, as discussed by Cochrane (2009, Section 5.1). Our model rules out such scenarios

by explaining expected returns through their correlation with the stochastic discount factor

(SDF), which itself depends on how a stock correlates with characteristic-based factors, and

how much each factor impacts the SDF.

By definition 1.1.2 and a similar computation as before, it follows that the SDF co-

efficients are given by b = V[Ft+1]−1E[Ft+1]. Given a sample of T observations, a naïve

estimator is thus given by

µ= 1
T

T∑
t=1

Ft,

Σ= 1
T

T∑
t=1

(Ft −µ)(Ft −µ)⊤,

b̂ =Σ−1
µ.

This estimator will perform very poorly in practice unless the number of factors L is very

small relative to the sample size T. However, if we reduce the number of factors as in

traditional models, then it becomes less plausible that an SDF is approximated by one

living in this small linear subspace. To deal with the case of a large number of factors L

several approaches have been considered in the literature.

1.2 KNS shrinkage estimator

In Kozak et al. (2020), the problem is stated in the framework of Bayesian statistics. The

authors introduce a family of priors over the mean returns of factors as follows,

µ∼N

(
0,
κ2

τ
Ση

)
,

where Σ is the covariance matrix of the factors (assume it is known), τ = tr[Σ] and κ is a

constant that controls the scale of µ. In practice Σ is unknown and has to be estimated

in sample, so it is replaced by Σ or more generally some estimator Σ̂. They economically

motivate the choice of η = 2, but other values (e.g. η ≥ 2) remain plausible. Assuming a

multivariate normal likelihood Ft ∼N (µ,Σ), they consider a Bayesian regression

µ=Σb+ε
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where µ=Σb, thus ε∼N
(
0, 1

TΣ
)
. Recall the following formula for Bayesian regression.

Proposition 1.2.1. Consider a linear regression model:

y= X g+ε

where ε ∼ N (0,Σ) with known Σ and assume a prior g ∼ N (0,Σg). Then the posterior

distribution of g given the data y is normal with mean given by

gp =
(
X⊤Σ−1X +Σ−1

g

)−1
X⊤Σ−1 y (1.2.1)

and posterior variance Σp = (X⊤Σ−1X +Σ−1
g )−1.

If η = 2, then the prior distribution over is b = Σ−1µ ∼ N
(
0, κ

2

τ I
)
, thus the posterior

distribution has mean

b̂ = (Σ+γI)−1µ, (1.2.2)

and variance (Σ+γI)−1, where γ = τ
κ2T . We can interpret this estimator as the solution of

a penalised regression minimizing the Hansen-Jagannathan distance (Hansen and Jagan-

nathan 1997) with an L2 penalty

b̂ = argmin
b

(
(µ̄−Σb)⊤Σ−1(µ̄−Σb)+γ∥b∥2)

. (1.2.3)

We can understand better this estimator if we first perform a change of basis into that

of principal component (PC) factors, by applying the spectral theorem to the covariance

matrix. That is, we decompose Σ = QΛQ⊤ with Λ diagonal and Q an orthogonal matrix.

Define the PC factors by Pt+1 =Q⊤Ft+1. Then,

b̂P j =
µP j

λ j +γ
=

(
λ j

λ j +γ
)(
µP j

λ j

)
. (1.2.4)

We observe that the solution is a shrinkage of the naïve (OLS) solution b̂OLS
P j

= µP j
λ j

, where

µP = Q⊤µ are the mean of the PC factors. The shrinkage factor λ j
λ j+γ is much stronger for

small eigenvalues.

Notice that if we take η= 3, then b =Σ−1µ∼N
(
0, κ

2

τ Σ
)

whence

b̂ =
(
TΣ+ τ

κ2Σ
−1

)−1
Tµ= (Σ2 +γI)−1Σµ,
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which is the solution of the ridge regression problem

b̂ = argmin
b

(∥µ−Σb∥2 +γ∥b∥2)
.

They also consider adding an L1 penalty term to the estimator of equation 1.2.3, resulting

in the following optimisation problem

b̂ = argmin
b

1
2

[
(µ̄−Σb)⊤Σ−1(µ̄−Σb)+γ2∥b∥2

2
]+γ1∥b∥1. (1.2.5)

This estimator will look for an SDF which is sparse in the characteristics (or more generally

features) space, as only a few features will have non-zero coefficients. In general the authors

find that this method performs poorly suggesting that there’s no easy way to approximate

the SDF with a small number of characteristics. If instead we first rotate the factors into

the PC factors, then the problem will look for a sparse solution in PC factors (as opposed to

equation 1.2.3, this problem has no rotational invariance). The problem is thus

b̂P = argmin
bP

1
2

[
(µ̄−ΛbP )⊤Λ−1(µ̄−ΛbP )+γ2∥bP∥2

2
]+γ1∥bP∥1.

This problem has a closed form solution given by

b̂P j =
sgn(b̂OLS

P j
)
(
b̂OLS

P j
− γ1

λ j

)
+(

1+ γ2
λ j

) , b̂OLS
P j

=
µP j

λ j
. (1.2.6)

In either problems, the SDF or the MVE portfolio is characterised by the PC factors and

their singular values, with appropiate scaling given by equations 1.2.4 and 1.2.6 respec-

tively.

1.3 Maximum Sharpe ratio regression

Now we consider the approach introduced in Didisheim et al. (2023) and Kelly et al. (2024).

As before, we have a matrix of features X t = Φ(Zt) which defines factor portfolios Ft+1 =
X⊤

t Re
t+1. The authors parametrise the SDF as Mt+1 = 1−b⊤Ft+1, thus knowing population

moments the optimal coefficients are given by b = E[Ft+1F⊤
t+1]−1E[Ft+1]. Denote by F the

L×T matrix of of factor returns. First notice that we can find these coefficients with an

OLS regression of the constant vector 1 ∈RT against the factors

1= F⊤b+ε.
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Hence the solution is given by

b̂ = (
FF⊤)−1

F1=
(

1
T

FF⊤
)−1 1

T

T∑
t=1

Ft.

This naïve estimator will result in overfitting in sample and will perform poorly out of

sample. When L > T the system will generically have infinite solutions that perfectly fit the

data in sample. Consider instead now a ridge regression estimator for this problem, i.e.

b̂ = argmin
b

1
T

∥∥1−F⊤b
∥∥2 +γ∥b∥2. (1.3.1)

Thus, its solution is given by

b̂ = (
FF⊤+ (γT)I

)−1
F1=

(
1
T

FF⊤+γI
)−1 1

T

T∑
t=1

Ft. (1.3.2)

The estimator in equation 1.3.2 looks quite similar to that of equation 1.2.2. The main

difference is that 1.2.2 is based on the covariance matrix of factors and 1.3.2 is instead

based on the second moment matrix. This stems from the fact that they estimate different

parametrisations of the SDF.

1.4 Kernel methods and random features

When the number of features L becomes too large (e.g. L ∼ 105 or larger) then the formulas

of equations 1.2.2 and 1.3.2 become prohibitively expensive. Computing the inverse of the

regularised L×L matrix B = 1
T FF⊤ (or Σ̂) is O(L3), even storing this matrix in memory is

O(L2) which can be infeasible in practice. Consider instead the matrix B̃ = 1
T F⊤F which is

T×T. It turns out that we can compute (B+γI)−1 in terms of the eigenvalue decomposition

of B̃.

Proposition 1.4.1. (Didisheim et al. 2023, Lemma 1) Let X ∈ Rn×m, let X =UDV⊤ be its

compact SVD decomposition. Then

(X X⊤+γI)−1 =U(D2 +γI)−1U⊤+ 1
γ

(I −UU⊤)

Proof. Let r be the rank of X , and X⊤X =
r∑

i=1
λi qi q⊤

i be the spectral decomposition of X⊤X

(qi are orthonormal). Then V = [q1, . . . , qr] ∈Rm×r, D = diag(
p
λ1, . . . ,

p
λr) and ui = 1p

λi
X qi

( thus U = [u1, . . . ,ur] ∈Rn×r) give the compact SVD of X .
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Now consider the full SVD decomposition X = ŨD̃Ṽ⊤ of sizes m×m, m× n and n× n

respectively. Ũ = [U ,U∗] and Ṽ = [V ,V∗] where U∗ and V∗ columns are orthonormal basis

of ker(X⊤) = Im(X )⊥ and ker(X ) respectively, and D̃ is equal to D in its first r diagonal

elements and elsewhere it is zero. Thus,

(X X⊤+γI)−1 = Ũ(D̃D̃⊤+γI)Ũ⊤

=U(D2 +γI)−1U⊤+ 1
γ

U∗(U∗)⊤ =U(D2 +γI)−1U⊤+ 1
γ

(I −UU⊤),

where we used first that (D̃D̃⊤+γI)−1 is a diagonal matrix with values 1/(d2
i +γ) for i =

1, . . . , r and 1/γ for r+1, . . . ,n, and in the last equality we observe that U∗(U∗)⊤ = I −UU⊤

as it is the orthogonal projection onto the null space of X⊤.

As a consequence of 1.4.1 we find an alternative formula for the solution of ridge re-

gression that is computationally more efficient for fat matrices (i.e., when the number of

features exceeds the number of observations). Given that this is the most common scenario

in our setting, we will use this alternative approach in practice.

Corollary 1.4.2. (Kelly et al. 2024, Lemma 1) Let X ∈ Rn×m. Given y ∈ Rn then the ridge

regression solution of

β̂= argmin
β

∥y− Xβ∥2 +γ∥β∥2,

is given by

β̂= (X⊤X +γI)−1X⊤y= X⊤(X X⊤+γI)−1 y.

Proof. Let X =UDV⊤ the compact SVD decomposition of X . Then, it is well known that

β̂= (X⊤X +γI)−1X⊤y=V (D2 +γI)−1DU⊤y

Now using proposition 1.4.1 we get that

X⊤(X X⊤+γI)−1 y= X⊤
(
U(D2 +γI)−1U⊤+ 1

γ
(I −UU⊤)

)
y

=V D(D2 +γI)U⊤y,

where we used that X⊤(I −UU⊤) = 0. This proves the equality of the two formulas for the

ridge regression solution.

Thus, when L is larger than T we can compute the eigenvalue decomposition of B̃ in

order to compute b̂ (take X = 1p
T

F in proposition 1.4.1). Now we take a closer look at how
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to compute the matrix B̃. First observe that,

F⊤F =


F⊤

1 F1 . . . F⊤
1 FT

...
. . .

...

F⊤
T F1 . . . F⊤

T FT

=


(Re

1)⊤Φ(Z0)Φ(Z0)⊤Re
1 . . . (Re

1)⊤Φ(Z0)Φ(ZT−1)⊤Re
T

...
. . .

...

(Re
T )⊤Φ(ZT−1)Φ(Z0)⊤Re

1 . . . (Re
T )⊤Φ(ZT−1)Φ(ZT−1)⊤Re

T

 .

(1.4.1)

Thus, to compute B̃ we need to compute the factors Ft =Φ(Zt)⊤Rt+1, these cost O(L×Nt)

operations each assuming each feature evaluation is computed in O(1) operations. Hence

to compute F we need O(L× N ×T) operations where N is the average number of assets.

Then it costs O(T×L×T) to compute B̃ and O(T3) to perform its eigenvalue decomposition.

As these scale linearly in L, it is feasible to compute for large L, provided we have enough

space to save the factor matrix in memory.

There is an alternative way of computing F⊤F as in equation 1.4.1 in terms of a kernel

which in some cases is independent of the number of features. For z, z′ ∈Rd define k(z, z′)=
〈Φ(z),Φ(z′)〉 where 〈 , 〉 denotes the inner product of RL. This is a positive definite kernel, see

Mohri et al. (2018, Chapter 6) or Hardt and Recht (2022, Chapter 4) for an introduction to

kernel methods in machine learning. Common examples of p.d. kernels are the polynomial

kernel of degree q defined by

k(z, z)= (c+〈z, z′〉)q,

or the Gaussian kernel

k(z, z)= exp(−c∥z− z′∥2), (1.4.2)

where c > 0 is a constant, considered in Kozak (2020). Suppose we can compute the kernel

k(z, z′) in constant time O(1) for z, z′ ∈ Rd. For example, in the polynomial kernel of degree

q there are L = (d+q
q

)
features corresponding to all monomials of degree less or equal than

q, however k(z, z′) can be computed in O(d) operations which for our purposes it is the same

as constant time. Then we can compute the matrices k(Zt, Zs) for t, s = 0, . . . ,T−1, each with

cost O(Nt ×Ns). This is known as the kernel trick, which computes everything implicitely

in terms of dot product of the transformed features Φ(z) without ever explicitly computing

the transformation Φ(z) itself. The kernel trick allows algorithms to operate in very high-

dimensional (even infinite-dimensional) spaces without the computational cost of explicitly

transforming the data. Thus, the cost to compute

B̃ = 1
T

F⊤F = 1
T


(Re

1)⊤k(Z0, Z0)Re
1 . . . (Re

1)⊤k(Z0, ZT−1)Re
T

...
. . .

...

(Re
T )⊤k(ZT−1, Z0)Re

1 . . . (Re
T )⊤k(ZT−1, ZT−1)Re

T

 ,
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is O(N2T2) which is independent of L.

We consider now random features introduced by Rahimi and Recht (2007). Specifically,

consider a univariate activation function φ : R→ R (e.g. φ(x) = ReLU(x) = max(x,0)) and

some distribution p over weights w ∈ Ω ⊂ Rd (e.g. multivariate gaussian N(0, Id)). Then

given an i.i.d. sample S = w1, . . . ,wL ∼ p define the random features by

φℓ(z)= 1p
L
φ(w⊤

ℓ z),

for ℓ = 1, . . . ,L. Random features are also called random feature neural networks as they

can be interpreted as feedforward neural networks with one hidden layer where the inner

weights are left untrained. More specifically, one can associate a function

f (z;b,W)= b⊤Φ(Wz)=
L∑

i=1
bℓφℓ(z),

for each vector b ∈RL of outer weights to be trained, where W ∈RL×d is the matrix of random

weights stacked row-wise, see Figure 1.1.

z1

z2

z3

x1

x2

x3

x4

x5

f (z;b,W)

W b

Figure 1.1: A random feature neural network represented as a feedforward neural network
(FFN) with one hidden layer. The input layer is of dimension d = 3, while the number of
random features (that is, the dimension of the hidden layer) is L = 5. The weight matrix
W = [w1, . . . ,wL]⊤ ∈∈RL×d is not trained.

Then, associated to these random features there is a (random) kernel kS that converges

to the following (deterministic) limit

kS(z, z′)= 〈Φ(z),Φ(z′)〉 = 1
L

L∑
ℓ=1

φ(W⊤
ℓ z)φ(W⊤

ℓ z′) −→
L→∞

E[φ(w⊤z)φ(w⊤z′)],

where w ∼ p by the SLLN. Surprisingly, this expectation has a closed formula in some

cases. Rahimi and Recht (2007) show that the gaussian kernel defined in equation 1.4.2

can be approximated by cosine and sine activations (or complex exponentials) with gaussian

weights. In the case of ReLU activations with gaussian weights there is a formula due to a
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theorem of Cho and Saul (2009),

E[φ(w⊤z)φ(w⊤z′)]= sin(θ)+ (π−θ)cos(θ), θ = cos−1
(

z⊤z′

∥z∥∥z′∥
)
,

i.e. the so called arc-cosine kernel of degree one. Thus, when we consider the limit of infinite

random features, we obtain a kernel which can be computed in constant time. Hence, we

can compute the matrix B̃ by equation 1.4 and thus we can compute the estimator b̂ in this

case.

To further elaborate, both regression approaches from Kozak (2020) (equation 1.2.3)

and Didisheim et al. (2023) (equation 1.3.2) can be implemented in conjuntion with random

features methods. In fact, Didisheim et al. (2023) employs random features with cosine

and sine activations of different scales. It’s important to note that Didisheim et al. (2023)

re-ranks their random features (Didisheim et al. 2023, Equation 61), whereas Kozak et al.

(2020) and Kozak (2020) do not re-rank but instead center (Kozak 2020, Subsection 2.2.2)

or center and normalize (Kozak et al. 2020, Section 3.4) their derived features. While cen-

tering is straightforward, re-ranking disrupts the non-linearities in random features (e.g.,

causing all monotone activation functions to yield identical features) and alters the stronger

exposures produced by certain model configurations. In our approach, we adhere to the re-

gression model in equation 1.3.2 without applying any re-ranking or normalization. This

modeling decision allows for a more straightforward theoretical analysis and the derivation

of approximation bounds.
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Chapter 2

Statistical learning theory

2.1 Rademacher complexity bounds

In this section we introduce the main results of Statistical Learning needed to understand

why random features usually work well in practice. We start recalling McDiarmid’s in-

equality, which is the main concentration inequality that is used to produce approximation

and generalization bounds.

Theorem 2.1.1. (McDiarmid’s inequality, Mohri et al. 2018, Theorem D.8) Let X1, . . . , Xn ∈
Xn be i.i.d. random variables, and assume there are constants c1, . . . , cn such that the func-

tion f :Xn →R satisfies the bounded differences property:

| f (x1, . . . , xi, . . . , xn)− f (x1, . . . , x̃i, . . . , xn)| ≤ ci,

for all i = 1, . . . ,n and any points, x1, . . . , xn, x̃i ∈X. Then for all ε> 0 the following inequali-

ties hold:

P [ f (X1, . . . , Xn)−E[ f (X1, . . . , Xn)]≥ ε]≤ exp

(
−2ε2∑n
i=1 c2

i

)
,

P [ f (X1, . . . , Xn)−E[ f (X1, . . . , Xn)]≤−ε]≤ exp

(
−2ε2∑n
i=1 c2

i

)
,

and as a consequence,

P [| f (X1, . . . , Xn)−E[ f (X1, . . . , Xn)]| ≥ ε]≤ 2exp

(
−2ε2∑n
i=1 c2

i

)
.

Remark 2.1.2. McDiarmid’s inequality has a beatiful proof using martingales, specifically,

the Doob’s martingale of the sequence, see Mohri et al. (2018, Appendix D). However we
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decided not to include it here as this technique is not used elsewhere.

Now we introduce the notion of Rademacher complexity which measures how well some

function in a class F can be correlated with a random noise sequence. The typical example

to have in mind is a family of loss functions associated to a parametric (or not) class of

functions

F= { fθ : (x, y)→ L(hθ(x), y) |θ ∈Θ} ,

where L :Y×Y→R is some specified loss function (e.g. L(y, y′)= (y− y′)2, etc.).

Definition 2.1.3. (Bartlett and Mendelson 2002, Definition 2) Let p be a probability dis-

tribution over a set X and suppose S = X1, . . . , Xn is an i.i.d. sample drawn from p. Let F

be a class of functions f : X→ R. Then define the empirical Rademacher complexity as the

following random variable

R̂S(F)= E
[

sup
f ∈F

∣∣∣∣∣ 2
n

n∑
i=1

σi f (X i)

∣∣∣∣∣
∣∣∣∣X1, . . . , Xn

]
,

where σ1, . . . ,σn are i.i.d. uniform on {−1,1} (also known as Rademacher random vari-

ables) independent from X1, . . . , Xn. Then, define the Rademacher complexity as Rn(F) =
E
[
R̂S(F)

]
, thus by the tower property,

Rn(F)= E
[

sup
f ∈F

∣∣∣∣∣ 2
n

n∑
i=1

σi f (X i)

∣∣∣∣∣
]

.

Remark 2.1.4. Some authors such as Mohri et al. (2018) use an alternative definition of

the (empirical) Rademacher complexity, dropping the absolute value and the 2 inside the

expectation. These definitions are not equivalent but it can be shown that they differ at

most by a constant of 2.

Now, we bound the supremum difference between the sample mean of a function on a

class F and its expectation. The argument is classic and it is based on the idea of sym-

metrisation and is similar to the one given in the proof of Bartlett and Mendelson (2002,

Theorem 8).

Proposition 2.1.5. Let p be a probability distribution over a set X and suppose X1, . . . , Xn

are i.i.d. samples drawn from p. Let F be a class of functions f :X→R. Then,

E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (X i)−E[ f (X )]

∣∣∣∣∣
]
≤Rn(F).
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Proof. First we introduce X ′
1, . . . , X ′

n a ghost i.i.d. sample from p independent from the

sample X1, . . . , Xn. Then,

E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (X i)−E[ f (X )]

∣∣∣∣∣
]
= E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (X i)−E
[

1
n

n∑
i=1

f (X ′
i)

]∣∣∣∣∣
]

(1)= E

[
sup
f ∈F

∣∣∣∣∣E
[

1
n

n∑
i=1

f (X i)− 1
n

n∑
i=1

f (X ′
i)

∣∣∣∣ X1, . . . , Xn

]∣∣∣∣∣
]

(2)≤ E

[
E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (X i)− 1
n

n∑
i=1

f (X ′
i)

∣∣∣∣∣
∣∣∣∣ X1, . . . , Xn

]]
(3)= E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (X i)− 1
n

n∑
i=1

f (X ′
i)

∣∣∣∣∣
]

,

where (1) follows since X ′
1, . . . , X ′

n are independent of X1, . . . , Xn, (2) follows from the mono-

tonicity of conditional expectation, and (3) by the tower property. Now, since Zi = f (X i)−
f (X ′

i) is a symmetric random variable (around 0), then σiZi = σi( f (X i)− f (X ′
i)) has the

same distribution as Zi for σ1, . . . ,σn i.i.d. Rademacher random variables independent form

X1, . . . , Xn. Thus,

E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (X i)− 1
n

n∑
i=1

f (X ′
i)

∣∣∣∣∣
]
= E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

σi( f (X i)− f (X ′
i))

∣∣∣∣∣
]

≤ E
[

sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

σi f (X i)

∣∣∣∣∣+sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

σi f (X ′
i)

∣∣∣∣∣
]
≤ 2E

[
sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

σi f (X i)

∣∣∣∣∣
]

,

thus we get our result.

One can also bound the difference between the empirical Rademacher complexity and

the Rademacher complexity of a family of functions taking values in the interval [0,1]. The

following is essentially a restatement of Bartlett and Mendelson (2002, Theorem 11).

Theorem 2.1.6. Let X1, . . . , Xn be an i.i.d. sample of random variables with values in X.

Let F be a class of functions f :X→ [0,1]. Then,

P
[
R̂S(F)−Rn(F)≥ ε]≤ exp

(−nε2

2

)
,

P
[
R̂S(F)−Rn(F)≤−ε]≤ exp

(−nε2

2

)
.

Proof. Define g(x1, . . . , xn) = E

[
sup
f ∈F

∣∣∣∣∣ 2
n

n∑
i=1

σi f (xi)

∣∣∣∣∣
]

where the expectation is over the i.i.d.

Rademacher random variables σ1, . . . ,σn. Then g satisfies the bounded differences property
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as follows,

|g(x1, . . . , xi, . . . , xn)− g(x1, . . . , x̃i, . . . , xn)|

=
∣∣∣∣∣E

[
sup
f ∈F

∣∣∣∣∣ 2
n

n∑
i=1

σi f (xi)

∣∣∣∣∣
]
−E

[
sup
f ∈F

∣∣∣∣∣ 2
n

n∑
i=1

σi f (xi)+ 2
n
σi( f (x̃i)− f (xi))

∣∣∣∣∣
]∣∣∣∣∣

(1)≤
∣∣∣∣∣E

[
sup
f ∈F

{∣∣∣∣∣ 2
n

n∑
i=1

σi f (xi)

∣∣∣∣∣−
∣∣∣∣∣ 2
n

n∑
i=1

σi f (xi)+ 2
n
σi( f (x̃i)− f (xi))

∣∣∣∣∣
}]∣∣∣∣∣

(2)≤ E

[
sup
f ∈F

2
n
|σi( f (x̃i)− f (xi))|

]
≤ sup

f ∈F
2
n
| f (x̃i)− f (xi)| ≤ 2

n
,

where (1) follows since the difference of the suprema is less than the supremum of the

difference and (2) is the reverse triangle inequality (i.e., |∥x∥−∥y∥| ≤ ∥x− y∥, holds in any

normed vector space). Then, since E[g(X1, . . . , Xn)]= E[R̂S(F)]=Rn(F), the result follows by

McDiarmid’s inequality 2.1.1.

We are now able to state and prove a “generalization bound”, which bounds uniformly

over a class F the empirical mean of a function and its expectation. It is essentially the

same as Mohri et al. (2018, Theorem 3.3) with the caveat of observation 2.1.4.

Theorem 2.1.7. Let X1, . . . , Xn be an i.i.d. sample of random variables with values in X.

Let F be a class of functions f :X→ [0,1]. Then, for any δ> 0, with probability at least 1−δ
over X1, . . . , Xn, the following inequalities holds for all f ∈F:

∣∣∣∣∣ 1
n

n∑
i=1

f (X i)−E[ f (X )]

∣∣∣∣∣≤Rn(F)+
√

log
(1
δ

)
2n

,

and ∣∣∣∣∣ 1
n

n∑
i=1

f (X i)−E[ f (X )]

∣∣∣∣∣≤ R̂S(F)+3

√
log

(2
δ

)
2n

.

Proof. Define g(x1, . . . , xn) = sup
f ∈F

∣∣ 1
n

∑n
i=1 f (xi)−E[ f (X )]

∣∣. We now show that g satisfies the

bounded differences property as follows,

|g(x1, . . . , xi, . . . , xn)− g(x1, . . . , x̃i, . . . , xn)|

=
∣∣∣∣∣sup

f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (xi)−E[ f (X )]

∣∣∣∣∣−sup
f ∈F

∣∣∣∣∣ 1
n

n∑
i=1

f (xi)−E[ f (X )]+ 1
n

( f (x̃i)− f (xi))

∣∣∣∣∣
∣∣∣∣∣

≤
∣∣∣∣∣sup

f ∈F

{∣∣∣∣∣ 1
n

n∑
i=1

f (xi)−E[ f (X )]

∣∣∣∣∣−
∣∣∣∣∣ 1
n

n∑
i=1

f (xi)−E[ f (X )]+ 1
n

( f (x̃i)− f (xi))

∣∣∣∣∣
}∣∣∣∣∣

≤ sup
f ∈F

1
n
| f (x̃i)− f (xi)| ≤ 1

n
.
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Moreover, by Proposition 2.1.5 we have that E[g(X1, . . . , Xn)]≤Rn(F). Thus, by McDiarmid’s

inequality 2.1.1, we have that

P [g(X1, . . . , Xn)≥Rn(F)+ε]≤P [g(X1, . . . , Xn)−E[g(X1, . . . , Xn)]≥ ε]≤ exp(−2nε2)=: δ.

Rearranging we get that ε =
√

log( 1
δ )

2n and we get the first inequality. To get the second

inequality we use a union bound with Theorem 2.1.6 as follows,

P
[
g(X1, . . . , Xn)≥ R̂S(F)+3ε

]
≤P [g(X1, . . . , Xn)≥Rn(F)+ε]+P[

Rn(F)≥ R̂S(F)+2ε
]

= 2exp(−2nε2)=: δ.

Rearranging we get that ε=
√

log( 2
δ )

2n and we get the second inequality.

The next results shows how one can bound the Rademacher complexity of linear func-

tions with coefficients (or weights) bounded in the euclidean norm. This follows from

Bartlett and Mendelson (2002, Lemma 22) for the case of the euclidean inner product kernel

k(x, y)= x⊤y.

Proposition 2.1.8. Let p be a probability distribution over a set X and suppose X1, . . . , Xn

are i.i.d. samples drawn from p. Assume E[∥X∥2
2]≤ C2. Let F= {x → w⊤x |∥w∥2 ≤ B}. Then,

Rn(F)= E
[

sup
∥w∥2≤B

∣∣∣∣∣ 2
n

n∑
i=1

σiw⊤X i

∣∣∣∣∣
]
≤ 2BCp

n
,

for σ1, . . . ,σn are independent Rademacher random variables.

Proof. We first bound by Cauchy-Schwartz inequality,

E

[
sup

∥w∥2≤B

∣∣∣∣∣ 2
n

n∑
i=1

σiw⊤X i

∣∣∣∣∣
]
≤ E

[
sup

∥w∥2≤B
∥w∥2

∥∥∥∥∥ 2
n

n∑
i=1

σi X i

∥∥∥∥∥
2

]
≤ 2BE

[∥∥∥∥∥ 1
n

n∑
i=1

σi X i

∥∥∥∥∥
2

]
.

Then, we compute

2BE

[∥∥∥∥∥ 1
n

n∑
i=1

σi X i

∥∥∥∥∥
2

]
(1)≤ 2B

√√√√
E

[∥∥∥∥∥ 1
n

n∑
i=1

σi X i

∥∥∥∥∥
2

2

]
(2)≤ 2B

√
1
n2

n∑
i=1
E
[∥X i∥2

2
] (3)≤ 2BCp

n
,

(1) Jensen’s inequality for
p· , (2) because this is the variance of a sum of i.i.d. random

variables and E[∥σi X i∥2
2]= E[σ2

i ]E[∥X i∥2
2]= E[∥X i∥2

2] and (3) because E[∥X∥2
2]≤ C2.
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The following result, sometimes referred to as “Talagrand’s Lemma”, is particularly

useful to bound the (empirical) Rademacher complexity of families of functions which are

obtained via compositions with contractions (or more generally, Lipschitz functions).

Theorem 2.1.9. (Ledoux and Talagrand 1991, Theorem 4.12) Let F : R+ → R+ convex and

increasing. Let ϕi :R→R be contractions such that ϕi(0)= 0. Then for any bounded subset

T ⊂Rn we have that

E

[
F

(
1
2

sup
t∈T

∣∣∣∣∣ n∑
i=1

σiϕi(ti)

∣∣∣∣∣
)]

≤ E
[

F

(
sup
t∈T

∣∣∣∣∣ n∑
i=1

σi ti

∣∣∣∣∣
)]

where t = (t1, . . . , tn) ∈ T and σ1, . . . ,σn are i.i.d. Rademacher random variables.

An immediate corollary is the following result.

Corollary 2.1.10. (Bartlett and Mendelson 2002, Theorem 12.4) Let φ : R → R be

K-Lipschitz such that φ(0)= 0, then Rn(φ◦F)≤ 2KRn(F).

2.2 Complexity bounds for non-i.i.d. processes

The main results of the previous section can be generalized to the non-i.i.d. case, such as

Mohri and Rostamizadeh (2008) for the case of stationary β-mixing processes. This will be

used later as the i.i.d. assumption does not hold in practice for most financial time series.

First recall the notion of a (strictly) stationary sequence.

Definition 2.2.1. (Stationarity) A sequence of random variables X = (X t)t∈Z is said to be

stationary if for any t and non-negative integers m and k the vectors (X t, . . . , X t+m) and

(X t+k, . . . , X t+m+k) have the same distribution.

Notice that in particular, for a stationary sequence X the distribution of X t is the same

for all times t ∈ Z. Next, we recall the concept of β-mixing sequences introduced in Yu

(1994). Informally, a stationary sequence is β-mixing if the dependence between samples

decreases with time. In other words, if two samples are far away from each other then they

are roughly independent.

Definition 2.2.2. (β-mixing, Yu 1994, Definition 2.2) Let X = (X t)t∈Z be a stationary se-

quence, denote by σl the sigma algebra generated by the random variables X t for t ≤ l, i.e.

σl = σ ({X t | t ≤ l}) and similarly σ′
l = σ ({X t | t ≥ l}). Then, for k any positive integer, define

the k-th β-mixing coefficient of X as follows

β(k)= sup
l
E

[
sup

A∈σ′
l+k

∣∣P[A |σl]−P[A]
∣∣] .
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We say that X is β-mixing if β(k)→ 0 as k →∞.

Example 2.2.3. If X= (X t)t∈Z is a strictly stationary countable-state Markov chain, then X

is irreducible and aperiodic if and only if it is β-mixing (see Bradley 2005, Theorem 3.2).

The definition of Rademacher complexity can be extended in an almost verbatim manner

to stationary sequences. Notice that since the distribution of a sample from a stationary

sequence only depends on the sample size (i.e., it is independent of t) one can take any

sample of size m from it to define the Rademacher complexity.

Definition 2.2.4. (Mohri and Rostamizadeh 2008, Definition 3) Given a stationary se-

quence X = (X t)t∈Z taking values over a set X and let S = (X t, . . . , X t+m−1) be a sample of

size m this process. Let F be a class of functions f :X→R. Define the function

R(x1, . . . , xm)= E
[

sup
f ∈F

∣∣∣∣∣ 2
m

m∑
i=1

σi f (xi)

∣∣∣∣∣
]

,

for x = (x1, . . . , xm) ∈ Xm, where σ1, . . . ,σm are i.i.d. Rademacher random variables. Then

define the empirical Rademacher complexity as the random variable

R̂S(F)= R(S)= R(X t, . . . , X t+m−1).

Finally, define the Rademacher complexity as Rm(F)= E[
R̂S(F)

]
.

While the empirical Rademacher complexity can be estimated from a sample of a sta-

tionary sequence, the Rademacher complexity can be even harder to compute than in the

case of i.i.d. sequences. Nonetheless, the key feature of stationary β-mixing sequences is

that one can for most purposes replace the original sequence by a sequence of independent

blocks and the difference in expectations can be controlled by the β-mixing coefficients.

This method is known as the independent blocks technique. The method consists of

splitting the sample S in two samples S0 and S1, each consisting of µ blocks of a consecutive

points, thus m = 2µa. These are defined as follows,

S0 = (X (0)
1 , . . . , X (0)

µ ), where X (0)
i = (X(2i−2)a+1, . . . , X(2i−2)a+a),

S1 = (X (1)
1 , . . . , X (1)

µ ), where X (1)
i = (X(2i−1)a+1, . . . , X(2i−1)a+a),

for i = 1, . . . ,µ, see Table 2.1. Then, we can replace S0 by a sequence S̃0 = (X̃ (0)
1 , . . . , X̃ (0)

µ )

where the blocks
(
X̃ (0)

k

)µ
k=1

are mutually independent, but each block X̃ (0)
k has the same

distribution as X (0)
k . For a sufficiently fast β-mixing distribution, and sufficiently large
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blocks sizes a > 0, the expectation of a function defined on these blocks is only slightly

change if we replace S0 with S̃0.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12︸ ︷︷ ︸
X (0)

1

︸ ︷︷ ︸
X (1)

1

︸ ︷︷ ︸
X (0)

2

︸ ︷︷ ︸
X (1)

2

Table 2.1: A visual representation of the independent block technique. A sample S of size
m = 12 is split into µ= 2 blocks of size a = 3.

With this technique Mohri and Rostamizadeh (2008) are able to extend the generaliza-

tion bound of Theorem 2.1.7 to the case of a stationary β-mixing sequence. The cost we pay

is that we have to split the sequence into independent blocks as above, δ must be larger

than 2(µ−1)β(a), thus we need β(a) to be small so as to have a high probability bound, and

the size of the independent sample for the bound is µ instead of m.

Theorem 2.2.5. (Mohri and Rostamizadeh 2008, Theorems 1 and 2) Let F be a class of

functions from X to [0,1]. Then for any sample of size m drawn from a stationary β-mixing

sequence, and for any µ,a > 0 such that m = 2µa, and δ > 2(µ−1)β(a), with probability at

least 1−δ the following inequality hold for all f ∈F,

E[ f (X t)]− 1
m

m∑
i=1

f (X t+i−1)≤RD̃
µ (F)+

√√√√ log
( 2
δ′

)
2µ

,

where δ′ = δ−2(µ−1)β(a) and RD̃
µ (F) denotes the Rademacher complexity of a sample of

size µ of i.i.d. distributed random variables as X t. Moreover, with probability at least 1−δ,

E[ f (X t)]− 1
m

m∑
i=1

f (X t+i−1)≤ R̂Sµ
(F)+3

√√√√ log
( 4
δ′

)
2µ

,

where δ′ = δ−4(µ−1)β(a) and Sµ is a subsample of µ points separated by a gap of 2a−1

points (say, extract the first point of each block of S0).

Remark 2.2.6. Alternatively, less restrictive weak dependence assumptions, like those in-

troduced in Gonon et al. (2020, Assumptions 1 and 2), could be considered. Moreover, a

generalization of Rademacher complexity is defined for reservoir systems with a causal

Bernoulli shift structure in Gonon et al. (2020). This approach is particularly relevant be-

cause many standard time-series are non-mixing, and even for those that are, mixing is not

a testable property, and estimating mixing parameters is challenging in practice.
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2.3 Random features

Let {φ(·,w) | w ∈Ω} be a family of functions over a compact set X ⊂ Rd, parametrized by a

set Ω. We are interested in approximating functions which have an integral representation

f (x)=
∫
Ω
α(w)φ(x,w)dw,

for some α :Ω→ R. Given a probability distribution p over the parameter space Ω, we can

define a norm for such functions as follows

∥ f ∥p = sup
w∈Ω

∣∣∣∣α(w)
p(w)

∣∣∣∣ . (2.3.1)

Denote by Fp the vector space of functions f (x)= ∫
Ωα(w)φ(x,w)dw such that ∥ f ∥p <∞ (i.e.,

with finite p norm), it is easy to check that Fp is thus a normed space. We will approximate

f by functions of the following form

f̂ (x)= 1
L

L∑
ℓ=1

bℓφ(x,wℓ),

where w1, . . . ,wL are i.i.d. sampled from p and we can only choose the coefficients b =
(b1, . . . ,bL).

The following theorem gives an approximation result in the L 2 sense.

Theorem 2.3.1. (Rahimi and Recht 2008a, Lemma 1) Let X⊂ Rd be a compact and µ be a

probability measure on X. Let {φ(·,w) | w ∈Ω} be a family of functions and p a probability

distribution over Ω. Let f ∈ Fp as defined in equation 2.3.1. Suppose sup
x∈X,w∈Ω

|φ(x,w)| ≤ 1.

Then for any δ> 0, with probability at least 1−δ over w1, . . . ,wL drawn i.i.d. from p, there

exists b1, . . . ,bL such that f̂ (x)= 1
L

L∑
ℓ=1

bℓφ(x,wℓ) satisfies

∥ f̂ − f ∥L 2(X,µ) ≤
∥ f ∥pp

L

(
1+

√
2log

(
1
δ

))
,

where ∥ f ∥p = sup
w∈Ω

∣∣∣∣α(w)
p(w)

∣∣∣∣. Moreover, b = (b1, . . . ,bL) is such that ∥b∥∞ ≤ ∥ f ∥p.

Proof. Let f (x) = ∫
Ωα(w)φ(x,w)dw. Then, given w1, . . . ,wL drawn i.i.d. from p, define

fℓ(x) = bℓφ(x,wℓ) where bℓ = α(wℓ)
p(wℓ) are importance sampling chosen weights, and define
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f̂ = 1
L

L∑
i=1

fℓ. Then,

Ep[ fℓ(x)]= Ep

[
α(w)
p(w)

φ(x,w)
]
=

∫
Ω

α(w)
p(w)

φ(x,w)p(w)dw =
∫
Ω
α(w)φ(x,w)dw = f (x),

so in particular Ep[ f̂ (x)]= f (x) for all x ∈X. Also, since sup
x∈X,w∈Ω

|φ(x,w)| ≤ 1 we have that

∥ fℓ∥L 2(X,µ) =
√∫

X
(bℓφ(x,wℓ))2 dµ(x)≤ ∥ f ∥p.

Consider the function

g(w1, . . . ,wL)= ∥ f̂ − f ∥L 2(X,µ) =
∥∥∥∥∥ 1

L

L∑
ℓ=1

fℓ− f

∥∥∥∥∥
L 2(X,µ)

,

where the functions fℓ are defined as above. We show that g satisfies the bounded differ-

ences property. Let f̃ i(x)= α(w̃i)
p(w̃i)

φ(x, w̃i) for w̃i ∈Ω. If f̃ denotes the average of the functions

fℓ where we replace f i by f̃ i then,

|g(w1, . . . ,wL)− g(w1, . . . , w̃i, . . . ,wL)| = |∥ f̂ − f ∥2 −∥ f̃ − f ∥2|

≤ ∥ f̂ − f̃ ∥2 = 1
L
∥ f i − f̃ i∥2 ≤

2∥ f ∥p

L
,

where we used that f i and f̃ i are in the ball of radius ∥ f ∥p in L 2(X,µ). Now we bound the

mean of g as follows,

E[g(w1, . . . ,wL)]= E
[∥∥∥∥∥ 1

L

L∑
ℓ=1

fℓ− f

∥∥∥∥∥
2

]
(1)≤

√√√√
E

[∥∥∥∥∥ 1
L

L∑
ℓ=1

( fℓ− f )

∥∥∥∥∥
2

2

]

(2)=
√√√√ 1

L2

L∑
ℓ=1

E[∥ fℓ− f ∥2
2]

(3)≤ ∥ f ∥pp
L

,

where (1) is Jensen’s inequality for the square root, (2) because this is the variance of a sum

of i.i.d. random variables, and to show (3) observe that

E[∥ fℓ− f ∥2
2]≤ E[∥ fℓ∥2

2]≤ ∥ f ∥2
p,

using Fubini and the fact that f (x)= E[ fℓ(x)] and the mean minimizes the squared distance

to a constant.
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Thus, by McDiarmid’s inequality 2.1.1,

P

(
∥ f̂ − f ∥2 ≥

∥ f ∥pp
L

+ε
)
≤P (g(w1, . . . ,wL)≥ E[g(w1, . . . ,wL)]+ε)≤ exp

(
−ε2L
2∥ f ∥2

p

)
=: δ.

Rearranging terms we get that ε= ∥ f ∥pp
L

√
2log

(1
δ

)
. Thus with probability 1−δ,

∥ f̂ − f ∥2 ≤
∥ f ∥pp

L

(
1+

√
2log

(
1
δ

))
.

Given the feature map φ :X×Ω→R and a probability measure p over Ω, we can define

an associated p.d. kernel as follows,

k(x, y)= Ep[φ(x,w)φ(y,w)]=
∫
Ω
φ(x,w)φ(y,w) p(w)dw. (2.3.2)

Associated to this kernel there is a Hilbert space H called its reproducing kernel Hilbert

space (RKHS). Formally, this Hilbert space is constructed as the closure of the linear span

of the functions kx : y → k(x, y) for x ∈X. It turns out that for this particular kernel, H can

be given a more explicit description.

Proposition 2.3.2. (Rahimi and Recht 2008b, Proposition 4.1) Let φ :X×Ω→R be a feature

map such that sup
x∈X,w∈Ω

|φ(x,w)| ≤ 1. Then, the RKHS H of the p.d. kernel k defined by

equation 2.3.2 is given by the set of functions f (x)= ∫
Ωα(x)φ(x,w)dw such that

∫
Ω
α(w)2

p(w) dw <
∞, with the inner product

〈 f , g〉H =
∫
Ω

α(w)β(w)
p(w)

dw,

for g(x)= ∫
Ωβ(x)φ(x,w)dw.

Proof. To show that H is the RKHS it is enough to show that

1. For all x ∈X, the function kx = k(x,−) :X→R is in H.

2. For all x ∈X and f ∈H the reproducing property holds:

f (x)= 〈 f ,kx〉H.

Given x ∈X, then

kx(y)= k(x, y)=
∫
Ω
φ(x,w)φ(y,w) p(w)dw =

∫
Ω
α(w)φ(y,w)dw,
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where α(w)=φ(x,w)p(w). Moreover,

∫
Ω

α(w)2

p(w)
dw =

∫
Ω

(φ(x,w))2 p(w)dw ≤ 1,

as |φ(x,w)| ≤ 1 for all (x,w). Thus kx ∈H and (1) follows.

Now given f (x)= ∫
α(w)φ(x,w)dw, then

〈 f ,kx〉H =
∫
Ω

α(w)φ(x,w)p(w)
p(w)

dw = f (x),

so the reproducing property (2) holds.

Moreover, one can show that the space Fp is dense in the RKHS.

Proposition 2.3.3. (Rahimi and Recht 2008b, Theorem 4.2) Let φ :X×Ω→R be a feature

map such that sup
x∈X,w∈Ω

|φ(x,w)| ≤ 1. Let Fp be the normed space of functions defined in

equation 2.3.1. Then, Fp is a dense subspace of the RKHS H of the kernel k defined in

equation 2.3.2.

Proof. First notice that if f ∈Fp then

∫
Ω

α(w)2

p(w)
dw =

∫
Ω

(
α(w)
p(w)

)2
p(w)dw ≤ ∥ f ∥2

p,

thus f ∈H. To show that Fp is dense it suffices to show that kx are in Fp, as their linear

span is dense in H. Now, kx(y)= ∫
Ωα(w)φ(y,w)dw for α(w)=φ(x,w)p(w), and thus

∥kx∥p = sup
w∈Ω

∣∣∣∣α(w)
p(w)

∣∣∣∣= sup
w∈Ω

|φ(x,w)| ≤ 1.

Hence kx ∈Fp and the result follows.

Remark 2.3.4. Theorem 2.3.1 can be relaxed to the hypothesis that ∥φ(−,w)∥L 2(X,µ) ≤ 1

for all w ∈ Ω. Also, Propositions 2.3.2 and 2.3.3 hold under the weaker hypothesis that

φ(x,−) ∈ L 2(Ω, p) for all x ∈ X , although the proof for the latter result is different as kx is

no longer necessarily in Fp.

The next result shows that under slightly stronger hypothesis than Theorem 2.3.1, one

can approximate a function in Fp uniformly, i.e. with respect to the ∞-norm of uniform

convergence.

Theorem 2.3.5. (Rahimi and Recht 2008b, Theorem 3.2) Let X⊂Rd be a compact set. Let

φ(x,w)=φ(w⊤x) for φ :R→R K-Lipschitz, φ(0)= 0 and |φ| ≤ 1. Suppose p has finite second
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moment. Fix f ∈ Fp as defined in equation 2.3.1. Then for any δ > 0, with probability

at least 1−δ over w1, . . . ,wL drawn i.i.d. from p, there exists b1, . . . ,bL such that f̂ (x) =
1
L

L∑
ℓ=1

bℓφ(x,wℓ) satisfies

∥ f − f̂ ∥X,∞ ≤ ∥ f ∥pp
L

(√
2log

(
1
δ

)
+4KBC

)
,

where B = sup
x∈X

∥x∥2 and
√
E[∥w∥2

2]≤ C. Moreover, b = (b1, . . . ,bL) is such that ∥b∥∞ ≤ ∥ f ∥p.

Proof. Let f (x)= ∫
Ωα(w)φ(x,w)dw. Consider the function

g(w1, . . . ,wL)= ∥ f̂ − f ∥∞ = sup
x∈X

∣∣∣∣∣ 1
L

L∑
ℓ=1

fℓ(x)− f (x)

∣∣∣∣∣ ,

where the functions fℓ are given by importance sampling fℓ(x) = α(wℓ)
p(wℓ)φ(x,wℓ) as before.

Then we observe that g satisfies the bounded differences property, since

|g(w1, . . . ,wL)− g(w1, . . . , w̃i, . . . ,wL)| = |∥ f̂ − f ∥∞−∥ f̃ − f ∥∞|

≤ ∥ f̂ − f̃ ∥∞ = 1
L

sup
x∈X

∣∣∣∣α(wi)
p(wi)

φ(x,wi)− α(w̃i)
p(w̃i)

φ(x, w̃i)
∣∣∣∣≤ 2∥ f ∥p

L
.

Now, we bound its expectation using the Rademacher complexity bound of Proposition 2.1.5,

E[g(w1, . . . ,wL)]= E
[

sup
x∈X

∣∣∣∣∣ 1
L

L∑
ℓ=1

fℓ(x)− f (x)

∣∣∣∣∣
]
≤ 2E

[
sup
x∈X

∣∣∣∣∣ 1
L

L∑
ℓ=1

σℓ fℓ(x)

∣∣∣∣∣
]

,

where σ1, . . . ,σL are Rademacher random variables. Specifically, our class of functions are{
w → α(w)

p(w)φ(x,w) |x ∈X
}

from Ω to R, and the random variables are w1, . . . ,wL sampled i.i.d.

from p and recall that f (x) = E[ fℓ(x)] so Proposition 2.1.5 applies. We will now apply Theo-

rem 2.1.9 to bound the RHS. Fix w1, . . . ,wL, and let ϕℓ(tℓ) = 1
∥ f ∥pK

α(wℓ)
p(wℓ)φ(tℓ), for t ∈ RL are

contractions such that ϕℓ(0) = 0. Let T = {
(w⊤

1 x, . . . ,w⊤
L x) |x ∈X}

which is bounded since X

is compact. Then, by Theorem 2.1.9 we get that

Eσ

[
1
2

sup
x∈X

∣∣∣∣∣ L∑
ℓ=1

σℓϕℓ(w⊤
ℓ x)

∣∣∣∣∣
]
≤ Eσ

[
sup
x∈X

∣∣∣∣∣ L∑
ℓ=1

σℓw⊤
ℓ x

∣∣∣∣∣
]

.

Multiply by 2∥ f ∥pK
L and take expectation over w1, . . . ,wL to get

E

[
sup
x∈X

∣∣∣∣∣ 1
L

L∑
ℓ=1

σℓ fℓ(x)

∣∣∣∣∣
]
≤ 2∥ f ∥pK E

[
sup
x∈X

∣∣∣∣∣ 1
L

L∑
ℓ=1

σℓw⊤
ℓ x

∣∣∣∣∣
]

.
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Then we compute

E[g(w1, . . . ,wL)]≤ 4K∥ f ∥p E

[
sup
x∈X

∣∣∣∣∣ 1
L

L∑
ℓ=1

σℓw⊤
ℓ x

∣∣∣∣∣
]

(1)≤ ∥ f ∥p
4KBCp

L
,

where (1) follows from Proposition 2.1.8 where B = sup
x∈X

∥x∥2 and
√
E[∥w∥2

2]≤ C.

Thus, by McDiarmid’s inequality 2.1.1,

P

(
∥ f̂ − f ∥∞ ≥ ∥ f ∥p

4KBCp
L

+ε
)
≤P(g(w1, . . . ,wL)≥ E[g(w1, . . . ,wL)]+ε)≤ exp

(
−ε2L
2∥ f ∥2

p

)
=: δ

Rearranging terms we get that ε= ∥ f ∥pp
L

√
2log

(1
δ

)
. Thus with probability 1−δ,

∥ f̂ − f ∥∞ ≤ ∥ f ∥pp
L

(√
2log

(
1
δ

)
+4KBC

)
.

However, there is different recent approach to random features, developed in Gonon

et al. (2023) and Gonon (2023), which gives universal approximation and generalization

results based on smoothness assumptions on the target function.

Denote by W k,2(Rd) for k ∈ N the Sobolev space of functions u : Rd → R whose partial

derivatives Dαu for any multi-index (α1, . . . ,αd) such that α1 +·· ·+αd ≤ k, satisfies Dαu ∈
L 2(Rd). Recall that for u ∈L 1(Rd), F(u)(ξ)= ∫

Rd e−i〈ξ,x〉u(x)dx for ξ ∈Rd denotes its Fourier

transform. The space W k,2(Rd) can be alternatively described as the functions u ∈ L 2(Rd)

such that the norm

∥u∥k =
(∫
Rd

|F(u)(ξ)|2(1+∥ξ∥2)kdξ
)1/2

, (2.3.3)

is finite. The following theorem gives an approximation result in the L 2 sense, compare

with Theorem 2.3.1. Informally, the theorem says that if the target function f is sufficiently

smooth (i.e., k large and ∥ f ∥k bounded), we sample from a bounded random variable X , and

we choose a ReLU neural network with one hidden layer whose weights are uniform on a

ball, and sufficiently large biases (not trained as well), then there are coefficients such that

the target function is close on average to our random feature neural network.

Theorem 2.3.6. (Gonon et al. 2023, Corollary 2) Let k ≥ d
2 +1+ ε for some ε > 0 and f ∈

W k,2(Rd)∩L 1(Rd). Assume that X is an Rd-valued random variable with ∥X∥2 ≤ M P-

almost surely. Let R = L1/(2k−2ε+1), suppose W = (w1, . . . ,wL) are i.i.d. random variables

uniformly distributed over BR ⊂ Rd, suppose ξ = (ξ1, . . . ,ξL) are i.i.d. uniformly distributed

over the interval [−max(MR,1),max(MR,1)], assume that W ,ξ are independent and let
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φ : R→ R given by φ(x) = max(x,0). Then, there exists a random σ(W ,ξ)-measurable vector

b = (b1, . . . ,bL) and a constant C > 0 (depending on d and M but independent of f , L) such

that

E[∥ f (X )− f̂W ,ξ(X )∥2]1/2 ≤ C∥ f ∥kL−1/α,

with α = 2+ d+1
k−d/2−ε , where f̂W ,ξ(x) = 1

L

L∑
ℓ=1

bℓφ(w⊤
ℓ x+ξℓ) and the expectation is over X , W ,

and ξ. Moreover, ∥b∥∞ ≤ 2∥ f ∥L 1(Rd) and C is explicitly given by Gonon et al. (2023, Equation

43).

Remark 2.3.7. Gonon et al. (2023, Corollary 2) does not explicitely states that the vector

b = (b1, . . . ,bL) is σ(W ,ξ)-measurable or the bound ∥b∥∞ ≤ 2∥ f ∥L 1(Rd), however these two

properties follow from the bound on Gonon et al. (2023, Equation 21-22). Explicitely, first

bℓ is given by importance sampling, i.e. the Radon-Nikodym derivative bℓ = dα
dπ (wℓ,ξℓ),

thus is σ(wℓ,ξℓ)-measurable. Second, Gonon et al. (2023, Equation 21) gives a bound

∣∣∣∣dα
dπ

(w,ξ)
∣∣∣∣≤ (

1(−M∥w∥,0)(u)+2
p

21[−1,1](u)
) 1
πR(u)

g(w).

In this case πR is the uniform density over the interval [−max(MR,1),max(MR,1)], thus it

is bounded by 1/2. The numerator can be bounded by 1+2
p

2 times sup
w∈BR

|g(w)| where g is

the Fourier transform of f . Now,

sup
w∈BR

|g(w)| = sup
w∈Rd

∣∣∣∣∫
Rd

e−i〈w,x〉 f (x)dx
∣∣∣∣≤ ∫

Rd
| f (x)|dx = ∥ f ∥L 1(Rd),

thus the bound follows.

As a direct consequence of Theorem 2.3.6 and Markov’s inequality we obtain the follow-

ing bound.

Corollary 2.3.8. Under the same assumptions as in Theorem 2.3.6, with probability at

least 1− δ over W = (w1, . . . ,wL) and ξ = (ξ1, . . . ,ξL), the random feature neural network

satisfies the inequality

∥ f − f̂W ,ξ∥L 2(Rd ,µX ) =
(∫
Rd

( f (x)− f̂W ,ξ(x))2µX (dx)
)1/2

≤ C∥ f ∥k

L1/α
p
δ

.

Proof. Simply apply Markov’s inequality to the random variable ∥ f − f̂W ,ξ∥2
L 2(Rd ,µX ) and use
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Theorem 2.3.6 to bound it’s expectation as follows

P
[
∥ f − f̂W ,ξ∥L 2(Rd ,µX ) > ε

]
=P

[∫
Rd

( f (x)− f̂W ,ξ(x))2µX (dx)> ε2
]
≤

(
C∥ f ∥k

L1/αε

)2
=: δ.

Rearranging we get that ε= C∥ f ∥k

L1/α
p
δ
, and thus with probability at least 1−δ,

∥ f − f̂W ,ξ∥L 2(Rd ,µX ) ≤
C∥ f ∥k

L1/α
p
δ

.
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Chapter 3

Random features SDF

3.1 Approximation bounds

Suppose we sample random features φ(z,wℓ) for w1, . . . ,wL drawn i.i.d. from the distribu-

tion p. Define the associated random factors as

Ft+1,ℓ = 1
L Nt

Nt∑
i=1

φ(Zt,i,wℓ)Re
t+1,i, (3.1.1)

for ℓ= 1, . . . ,L. Call Ft+1 the L×1 vector of factors. Notice that solving for Mt+1 = 1−b⊤Ft+1

such that E[Mt+1Ft+1]= 0 is equivalent to solve the minimization

b̂ = argmin
b

E
[∥1−b⊤Ft+1∥2]

. (3.1.2)

We now argue why minimising this quantity might make sense in order to find an “approx-

imate SDF”. Suppose

M∗
t+1 = 1−F∗

t+1 = 1− (ω∗
t )⊤Re

t+1,

is the true (tradable) SDF, i.e. ω∗
t ∈ mFt and Et[M∗

t+1Re
t+1,i] = 0 for all i and t. Let Mt+1 =

1−b⊤Ft+1 for some coefficients b ∈RL. Then,

E
[∥Mt+1∥2]= E[∥∥Mt+1 −M∗

t+1 +M∗
t+1

∥∥2
]

= E
[∥∥M∗

t+1
∥∥2

]
+E

[∥∥Mt+1 −M∗
t+1

∥∥2
]
+2E

[
M∗

t+1(Mt+1 −M∗
t+1)

]
= E

[∥∥M∗
t+1

∥∥2
]
+E

[∥∥Mt+1 −M∗
t+1

∥∥2
]

,

(3.1.3)

where in the last step we observe that E
[
M∗

t+1(Mt+1 −M∗
t+1)

]= 0 as

Mt+1 −M∗
t+1 = (ωt −ω∗

t )⊤Re
t+1,
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where ωt,i = 1
L Nt

L∑
ℓ=1

bℓφ(Zt,i,wℓ) ∈ mFt are the asset-specific portfolio weights of the ap-

proximate SDF, thus is an excess return and hence is orthogonal to the true SDF. It follows

from this computation that minimising equation 3.1.2 is equivalent to minimising the dis-

tance to the true SDF M∗
t+1.

Now we state the assumptions we need in order to get effective learning error bounds.

First we specify the properties of the feature map φ and of the random weights w ∼ p. These

determine the kernel k defined in equation 2.3.2, its associated RKHS H and the normed

space Fp defined in equation 2.3.1.

Assumption 3.1.1. There is a K-Lipschitz function φ :R→R such that φ(0)= 0 and |φ| ≤ 1.

Let the associated feature map be φ(z,w) = φ(w⊤z) for z ∈Z⊆ Rd compact and w ∈Ω⊆ Rd.

Let p be a distribution over Ω. We assume p to have finite second moments, i.e. if w ∼ p

then
√
E[∥w∥2

2]≤ C.

Now, in order to have an approximate SDF given by our random factors we assume that

the true SDF weights are a function of the characteristics Zt, and moreover this function

lives in the space Fp.

Assumption 3.1.2. We assume there exists a function f ∗ ∈Fp (i.e., there is α :Ω→R such

that f ∗(z)= ∫
Ωα(w)φ(z,w)dw and such that ∥ f ∥p <∞), such that

M∗
t+1 = 1−F∗

t+1 = 1− 1
Nt

f ∗(Zt)⊤Re
t+1,

is the true SDF, i.e. Et[M∗
t+1Re

t+1,i]= 0 for all i and t.

Notice that f ∗(Zt) ∈ RNt denotes the vector of applying f ∗ pointwise to each asset, i.e.

f ∗(Zt) = ( f ∗(Zt,1), . . . , f ∗(Zt,Nt )). A larger (resp. lower) than one value of f ∗(Zt,i) means we

overweight (resp. underweight) this asset with respect to an equally-weighted portfolio.

Lastly, we assume that returns are bounded so as to be able to apply the generalization

bounds of Theorems 2.1.7 and 2.2.5. This is consistent with our winsorizing of returns as

explained in section 4.1.

Assumption 3.1.3. Assume that excess returns are bounded Re
t+1,i ∈ [−1,1] for all i, t.

Remark 3.1.4. This assumption can be relaxed to a bound like Re
t+1,i ∈ [−1,Rmax] for some

constant Rmax, only at the cost of keeping track of such constant. Moreover, the bounded-

ness of returns is not essential for our approximation results, for this it is enough to have

returns with bounded second moments. It will, however, be essential for our generalization

bounds, otherwise the theory becomes more involved.
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We will then make use of the approximation theorems of Rahimi and Recht (Theorem

2.3.1 or Theorem 2.3.5) to bound the distance from our approximate SDF to the true SDF.

How restrictive is the assumption that f ∗ ∈Fp will depend on the kernel chosen, but recall

that Fp is dense in the RKHS H by Proposition 2.3.3, and for a universal kernel H might

be dense in the space of continuous functions, thus it might not be very restrictive after all.

Proposition 3.1.5. Suppose that Assumptions 3.1.1, 3.1.2 and 3.1.3 hold. Suppose that

the weights w1, . . . ,wL are sampled i.i.d. from p. Then for any δ > 0, with probability at

least 1−δ over w1, . . . ,wL, there exists b1, . . . ,bL such that f̂ (z) = 1
L

L∑
ℓ=1

bℓφ(z,wℓ) and the

approximate SDF Mt+1 = 1− 1
Nt

f̂ (Zt)⊤Re
t+1 satisfies

E
[∥Mt+1 −M∗

t+1∥2]= E[∥Mt+1∥2]−E[∥M∗
t+1∥2]≤ ∥ f ∗∥2

p

L

(√
2log

(
1
δ

)
+4KRC

)2

,

where R = sup
z∈Z

∥z∥2,
√
E[∥w∥2

2] ≤ C and K is the Lipschitz constant of φ. Moreover ∥b∥∞ ≤
∥ f ∗∥p.

Proof. By our previous computation in equation 3.1.3,

E
[∥Mt+1∥2]= E[∥∥M∗

t+1
∥∥2

]
+E

[∥∥Mt+1 −M∗
t+1

∥∥2
]

= E[∥M∗
t+1∥2]+ 1

N2
t
E
[∥∥( f ∗(Zt)− f̂ (Zt))⊤Re

t+1
∥∥2]

,

Now we bound this second term which is the distance between our approximate SDF and

the true SDF. Using Hölder’s inequality we get the bound

1
N2

t
E
[∥∥( f ∗(Zt)− f̂ (Zt))⊤Re

t+1
∥∥2]

≤ 1
N2

t
E
[∥∥ f ∗(Zt)− f̂ (Zt)

∥∥2
∞

]
E
[∥Re

t+1∥2
1
]
.

Then, we observe that

E
[∥∥ f ∗(Zt)− f̂ (Zt)

∥∥2
∞

]
= E

[
max

i=1,...,Nt

(
f ∗(Zt,i)− f̂ (Zt,i)

)2
]
≤ ∥∥ f ∗− f̂

∥∥2
Z,∞ ,

where Z ⊂ Rd is compact. Thus, we can apply Theorem 2.3.5 to bound this quantity. Ex-

plicitely, with probability at least 1−δ over w1, . . . ,wL there exists b1, . . . ,bL such that the

following inequality holds

∥ f ∗− f̂ ∥Z,∞ ≤ ∥ f ∗∥pp
L

(√
2log

(
1
δ

)
+4KRC

)
, (3.1.4)
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where R = sup
z∈Z

∥z∥2 and
√
E[∥w∥2

2]≤ C and φ :R→R is K-Lipschitz. Moreover, b is such that

∥b∥∞ ≤ ∥ f ∗∥p.

Since Re
t+1,i ∈ [−1,1], then

E
[∥Re

t+1∥2
1
]≤ N2

t E
[∥Re

t+1∥2
∞

]≤ N2
t . (3.1.5)

Thus, combining the bounds from equations 3.1.4 and 3.1.5 we get that with probability

1−δ over w1, . . . ,wL drawn i.i.d. from p, there exists b1, . . . ,bL such that

E
[∥Mt+1∥2]≤ E[∥M∗

t+1∥2]+ ∥ f ∗∥2
p

L

(√
2log

(
1
δ

)
+4KRC

)2

= E[∥M∗
t+1∥2]+O

(∥ f ∗∥2
p

L

)
.

Alternatively, we can deduce a similar approximation result from Theorem 2.3.1. More-

over, Assumption 3.1.1 can be substantially relaxed.

Proposition 3.1.6. Assume the feature map φ : Z×Ω → R satisfies |φ(z,w)| ≤ 1 for all

(z,w) ∈ Z×Ω. Suppose that Assumptions 3.1.2 and 3.1.3 hold. Suppose w1, . . . ,wL are

sampled i.i.d. from p. Then for any δ > 0, with probability at least 1−δ over w1, . . . ,wL,

there exists b1, . . . ,bL such that f̂ (z) = 1
L

L∑
ℓ=1

bℓφ(z,wℓ) and the approximate SDF Mt+1 =
1− 1

Nt
f̂ (Zt)⊤Re

t+1 satisfies

E
[∥Mt+1 −M∗

t+1∥2]= E[∥Mt+1∥2]−E[∥M∗
t+1∥2]≤ ∥ f ∗∥2

p

L

(
1+

√
2log

(
Nt

δ

))2

.

Moreover ∥b∥∞ ≤ ∥ f ∗∥p.

Proof. Instead of Hölder’s inequality we can apply Cauchy-Schwarz to bound the distance

E
[∥Mt+1 −M∗

t+1∥2]
, thus we obtain the following inequality

1
N2

t
E
[∥∥( f ∗(Zt)− f̂ (Zt))⊤Re

t+1
∥∥2]

≤ 1
N2

t
E
[∥∥ f ∗(Zt)− f̂ (Zt)

∥∥2
2

]
E
[∥Re

t+1∥2
2
]
.

First observe that

E
[∥Re

t+1∥2
2
]≤ NtE

[∥Re
t+1∥2

∞
]≤ Nt. (3.1.6)

Moreover,

E
[∥∥ f ∗(Zt)− f̂ (Zt)

∥∥2
2

]
=

Nt∑
i=1
E
[(

f ∗(Zt,i)− f̂ (Zt,i)
)2

]
=

Nt∑
i=1

∥ f ∗− f̂ ∥2
L 2(Z,µt,i)

,
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where µt,i is the distribution of Zt,i. By the bound on Theorem 2.3.1, and using a union

bound we get that

P

[
Nt∪
i=1

{
∥ f ∗− f̂ ∥L 2(Z,µt,i) ≥

∥ f ∗∥pp
L

+ε
}]

≤ Nt exp

(
−ε2L

2∥ f ∗∥2
p

)
=: δ.

Rearranging terms we get that ε= ∥ f ∗∥pp
L

√
2log

(
Nt
δ

)
. Thus with probability at least 1−δ over

w1, . . . ,wL we have that

E
[∥∥ f ∗(Zt)− f̂ (Zt)

∥∥2
2

]
=

Nt∑
i=1

∥ f ∗− f̂ ∥2
L 2(Z,µt,i)

≤
Nt ∥ f ∗∥2

p

L

(
1+

√
2log

(
Nt

δ

))2

, (3.1.7)

for all i = 1, . . . , Nt. Thus combining the bounds from equation 3.1.6 and 3.1.7 we get that

1
N2

t
E
[∥∥( f ∗(Zt)− f̂ (Zt))⊤Re

t+1
∥∥2]

≤
∥ f ∗∥2

p

L

(
1+

√
2log

(
Nt

δ

))2

,

with probability at least 1−δ over w1, . . . ,wL, which proves the result.

As an immediate consequence of Propositions 3.1.5 and 3.1.6 we can take minimum of

both constants and obtain the following result.

Corollary 3.1.7. Suppose that Assumptions 3.1.1, 3.1.2 and 3.1.3 hold. Suppose w1, . . . ,wL

are sampled i.i.d. from p. Then for any δ> 0, with probability at least 1−δ over w1, . . . ,wL,

there exists b1, . . . ,bL such that f̂ (z) = 1
L

L∑
ℓ=1

bℓφ(z,wℓ) and the approximate SDF Mt+1 =
1− 1

Nt
f̂ (Zt)⊤Re

t+1 satisfies

E
[∥Mt+1 −M∗

t+1∥2]= E[∥Mt+1∥2]−E[∥M∗
t+1∥2]≤ ∥ f ∗∥2

pH

L

where H is the constant

H =min

{(√
2log

(
1
δ

)
+4KRC

)
,

(
1+

√
2log

(
Nt

δ

))}2

,

and R = sup
z∈Z

∥z∥2,
√
E[∥w∥2

2] ≤ C and K is the Lipschitz constant of φ. Moreover ∥b∥∞ ≤
∥ f ∗∥p.

Furthermore, as another option, we can deduce an approximation bound from the re-

sults of Gonon et al. (2023), see Theorem 2.3.6 and Corollary 2.3.8, which are based on

smoothness and integrability conditions on the target function.
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Proposition 3.1.8. Let k ≥ d
2 +1+ ε for some ε > 0 and f ∗ ∈ W k,2(Rd)∩L 1(Rd). Assume

that Zt,i is an Rd-valued random variable with ∥Zt,i∥2 ≤ K P-almost surely for all assets

i = 1, . . . , Nt for some constant K > 0. Assume that

M∗
t+1 = 1−F∗

t+1 = 1− 1
Nt

f ∗(Zt)⊤Re
t+1,

is the true SDF. Suppose E[∥Re
t+1∥2] ≤ D. Let R = L1/(2k−2ε+1), let W = (w1, . . . ,wL) be i.i.d.

random variables uniformly distributed over BR ⊂ Rd and ξ= (ξ1, . . . ,ξL) be i.i.d. uniformly

distributed over [−max(KR,1),max(KR,1)]. Assume that W ,ξ are independent and let φ :

R→ R given by φ(x) = max(x,0). Then for any δ > 0, with probability at least 1−δ over

W ,ξ, there exists a vector b = (b1, . . . ,bL) such that f̂W ,ξ(x) = 1
L

L∑
ℓ=1

bℓφ(w⊤
ℓ x+ ξℓ) and the

approximate SDF Mt+1 = 1− 1
Nt

f̂ (Zt)⊤Re
t+1 satisfies

E
[∥Mt+1 −M∗

t+1∥2]= E[∥Mt+1∥2]−E[∥M∗
t+1∥2]≤ C2∥ f ∗∥2

kD

L2/αδ
,

where α= 2+ d+1
k−d/2−ε , C is a constant given by Gonon et al. (2023, Equation 43) and ∥ f ∗∥k

denotes the norm of the Sobolev space W k,2(Rd) defined in equation 2.3.3. Moreover, ∥b∥∞ ≤
2∥ f ∥L 1(Rd).

Proof. The proof follows the same strategy of that of Proposition 3.1.6, use Cauchy-Schwarz

inequality and a union bound combined with Corollary 2.3.8. By a union bound on Corollary

2.3.8,

P

[
Nt∪
i=1

{
∥ f ∗− f̂W ,ξ∥L 2(Rd ,µZt,i )

≥ ε
}]

≤ Nt

(
C∥ f ∗∥k

L1/αε

)2
=: δ.

Rearranging we get that ε = C∥ f ∗∥k
p

Nt

L1/α
p
δ

. Thus, with probability at least 1−δ over W ,ξ we

have that

E
[∥∥ f ∗(Zt)− f̂W ,ξ(Zt)

∥∥2
2

]
=

Nt∑
i=1

∥ f ∗− f̂W ,ξ∥2
L 2(Rd ,µZt,i )

≤ C2∥ f ∗∥2
kN2

t

L2/αδ
.

The bound on E
[∥Mt+1 −M∗

t+1∥2]
then follows by Cauchy-Schwarz.

3.2 Generalization bounds

Now let us consider the estimation problem. We assume that the factors (Ft)t defined in

equation 3.1.1 are i.i.d. to simplify our analysis first, and later consider less restrictive
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assumptions. We want to bound the difference

E
[∥∥1−b⊤Ft+1

∥∥2]
− 1

T

T∑
t=1

(1−b⊤Ft+1)2,

for ∥b∥2 ≤ B. This follows since the ridge penalised regression of equation 1.3.1 is equivalent

to minimizing
1
T

T∑
t=1

(1−b⊤Ft+1)2 = 1
T

∥∥1−F⊤b
∥∥2

,

restricted to ∥b∥2 ≤ B for some B = B(γ). Explicitely, the equivalence is as follows. Given B,

the solution to the bounded regression problem coincides with the unconstrained solution

of minimal norm if such b̂ satisfies ∥b∥2 ≤ B, otherwise it is given by

b̂ =
(

1
T

FF⊤+γI
)−1 1

T

T∑
t=1

Ft,

where γ is a non-negative σ(w1, . . . ,wL)-measurable random variable such that ∥b̂∥2 = B.

This means that once the random weights have been chosen, γ is simply a constant.

To simplify our analysis let us introduce the following notations,

L (b)= E
[∥∥1−b⊤Ft+1

∥∥2]
, L̂ (b)= 1

T

T∑
t=1

(1−b⊤Ft+1)2 (3.2.1)

for the expected loss and the empirical loss respectively. We observe that to get a good

approximation bound in Propositions 3.1.5 and 3.1.6, we can restrict b to be in the ball

∥b∥∞ ≤ ∥ f ∗∥p. Thus, if we choose B =p
L∥ f ∗∥p or larger, then there is an approximate SDF

close to the true SDF M∗
t+1, as

∥b∥2 ≤
p

L∥b∥∞ ≤
p

L∥ f ∗∥p = B. (3.2.2)

Alternatively, under the assumptions of Proposition 3.1.8, we have that an approximate

SDF might be found with highp probability for ∥b∥2 ≤ B = 2
p

L∥ f ∗∥L 1(Rd).

Assuming that the factors F2, . . . ,FT+1 are i.i.d. over time, the generalization error

can be bounded as in a bounded linear regression and the Rademacher complexity can be

bounded for using Proposition 2.1.8.

Proposition 3.2.1. Suppose that Assumption 3.1.3 holds. Assume the factors F2, . . . ,FT+1

are independent and identically distributed over time. Then with probability at least 1−δ
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over F2, . . . ,FT+1 we have that

sup
∥b∥≤B

∣∣L (b)−L̂ (b)
∣∣≤ M2

 8p
T

+
√

log
(1
δ

)
2T

=O
(

1p
T

)
,

where M = 1+ Bp
L

.

Proof. First we bound the norm of the factors by Hölder’s inequality,

|Ft+1,ℓ| = 1
L Nt

∣∣∣∣∣ Nt∑
i=1

φ(Zt,i,wℓ)Re
t+1,i

∣∣∣∣∣≤ 1
L Nt

∥∥φ(Zt,wℓ)
∥∥

1

∥∥Re
t+1

∥∥∞ ≤ 1
L

.

Then, we have a bound

|1−b⊤Ft+1| ≤ 1+∥b∥2∥Ft+1∥2 ≤ 1+B
p

L
1
L

≤ 1+ Bp
L

= M.

Now, we observe that the function y → (1− y)2 is 2M-Lipschitz for y such that |1− y| ≤ M.

Thus, by Theorem 2.1.9 and Proposition 2.1.8, we can bound the Rademacher complexity as

follows

E

[
sup
∥b∥≤B

∣∣∣∣∣ 2
T

T∑
t=1

σt+1(1−b⊤Ft+1)2

∣∣∣∣∣
]
≤ 4ME

[
sup
∥b∥≤B

∣∣∣∣∣ 2
T

T∑
t=1

σt+1b⊤Ft+1

∣∣∣∣∣
]
≤

8MB
√
E
[∥Ft+1∥2

]
p

T
.

Now,
√
E
[∥Ft+1∥2

] ≤ 1p
L

, thus, putting all together we obtain the following bound for the

Rademacher complexity,

E

[
sup
∥b∥≤B

∣∣∣∣∣ 2
T

T∑
t=1

σt+1(1−b⊤Ft+1)2

∣∣∣∣∣
]
≤ 8MBp

TL
≤ 8M2

p
T

=O
(

1p
T

)
.

Thus, we get a generalization bound by means of Theorem 2.1.7. That is, with probability

at least 1−δ over F2, . . . ,FT+1 we have that

sup
∥b∥≤B

∣∣L (b)−L̂ (b)
∣∣≤ M2

 8p
T

+
√

log
(1
δ

)
2T

=O
(

1p
T

)
.

We can relax the i.i.d. assumption on the factors F2, . . . ,FT+1 to that of a stationary

β-mixing sequence, and instead apply Theorem 2.2.5 to get a generalization bound.

Proposition 3.2.2. Suppose that Assumption 3.1.3 holds. Assume the factors F2, . . . ,FT+1

are a sample of a stationary β-mixing sequence. Let T = 2µa for µ,a > 0. Then with proba-
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bility at least 1−δ over F2, . . . ,FT+1 we have that

sup
∥b∥≤B

∣∣L (b)−L̂ (b)
∣∣≤ M2

 8p
µ
+

√√√√ log
( 4
δ′

)
2µ

=O
(

1p
µ

)
,

where M = 1+ Bp
L

and δ′ = δ−4(µ−1)β(a). Moreover, with probability at least 1−δ,

sup
∥b∥≤B

∣∣L (b)−L̂ (b)
∣∣≤ R̂Sµ

(F)+3M2

√√√√ log
( 8
δ′

)
2µ

,

where δ′ = δ−8(µ−1)β(a) and Sµ is a subsample of µ points separated by a gap of 2a−1

points.

Proof. We apply the generalization bound of Theorem 2.2.5. The Rademacher complexity

RD̃
µ (F) can be bounded as in Proposition 3.2.1, only that now our i.i.d. sample is of size µ,

thus for F= {x → (1−b⊤x)2 |∥b∥ ≤ B} we have that RD̃
µ (F)≤ 8M2p

µ
. Then by Theorem 2.2.5,

P

[
sup
∥b∥≤B

1
M2

(
L (b)−L̂ (b)

)≥ 8p
µ
+ε

]
≤ exp

(−2µε2)+2(µ−1)β(a)

A similar bound is obtained for the class −F (i.e., minus the squared loss). Setting the right-

hand side to be δ
2 , rearring we get that ε=

√
log

(
4
δ′

)
2µ where δ′ = δ−4(µ−1)β(a), using a union

bound we have that with probability at least 1−δ, for all ∥b∥ ≤ B

∣∣L (b)−L̂ (b)
∣∣≤ M2

 8p
µ
+

√√√√ log
( 4
δ′

)
2µ

 ,

and thus we get the first inequality. The second inequality follows in a similar manner.

3.3 Learning error bounds

Let us introduce some extra notation to that of equation 3.2.1, let us denote by L ∗ =
E
[∥∥1−F∗

t+1

∥∥2
]

the global minimum of the expected loss, i.e., the expected squared norm

of the true SDF. Denote b̂ the empirical loss minimiser, in other words b̂ = argmin
∥b∥≤B

L̂ (b),

and denote by b∗ = argmin
∥b∥≤B

L (b) the expected loss minimiser within our model class. Then,

L (b̂)−L ∗ = (
L (b̂)−L̂ (b̂)

)+ (
L̂ (b̂)−L̂ (b∗)

)+ (
L̂ (b∗)−L (b∗)

)+ (
L (b∗)−L ∗)

≤ 2 sup
∥b∥≤B

∣∣L (b)−L̂ (b)
∣∣+L (b∗)−L ∗.

(3.3.1)
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Thus, depending on the assumptions we make, by applying Propositions 3.2.1 or 3.2.2 we

can bound the first term, and with Propositions 3.1.5 or 3.1.6 we can bound the last term,

with probability 1−δ over the factors F2, . . . ,FT+1 and the weights w1, . . . ,wL. Thus, we

have the following result in the case of i.i.d. factors.

Proposition 3.3.1. Suppose that Assumptions 3.1.1, 3.1.2 and 3.1.3 hold. Suppose that

w1, . . . ,wL are sampled i.i.d. from p. Assume the factors F2, . . . ,FT+1 are independent and

identically distributed over time. Let B = λ
p

L∥ f ∗∥p for some constant λ ≥ 1. Then, with

probability at least 1−δ over the factors F2, . . . ,FT+1 and the weights w1, . . . ,wL we have

that

E
[∥M̂t+1 −M∗

t+1∥2]= E[∥M̂t+1∥2]−E[∥M∗
t+1∥2]≤ M2

(
C1p

T
+ C2

L

)
,

where M̂t+1 = 1−b̂⊤Ft+1 is the approximate SDF which solves min
∥b∥≤B

1
T

T∑
t=1

(1−b⊤Ft+1)2, M∗
t+1

is the true SDF, M = 1+λ∥ f ∗∥p and C1, C2 are the constants

C1 =
(
16+

√
2log

(
2
δ

))
, C2 =

(√
2log

(
2
δ

)
+4KRC

)2

,

where R = sup
z∈Z

∥z∥2,
√
E[∥w∥2

2]≤ C and K is the Lipschitz constant of φ.

Proof. We bound L (b̂)−L ∗ by means of equation 3.3.1 and apply a union bound on Propo-

sitions 3.2.1 and 3.1.5. Specifically, with probability at least 1− δ
2 over F2, . . . ,FT+1 we have

that

2 sup
∥b∥≤B

∣∣L (b)−L̂ (b)
∣∣≤ M2

p
T

(
16+

√
2log

(
2
δ

))
,

because of Proposition 3.2.1. Since M = 1+λ∥ f ∗∥p ≥ ∥ f ∗∥p, the bound of equation 3.2.2, and

since b∗ denotes the expected loss minimiser, with probability at least 1− δ
2 over w1, . . . ,wL

we have that

L (b∗)−L ∗ ≤ M2

L

(√
2log

(
2
δ

)
+4KRC

)2

,

by Proposition 3.1.5. Thus, with probability at least 1−δ we have the bound

L (b̂)−L ∗ ≤ M2
(

C1p
T

+ C2

L

)
.

By the same means, using Propositions 3.1.5 and 3.2.2 we obtain one of our main results.

Theorem 3.3.2. Suppose that Assumptions 3.1.1, 3.1.2 and 3.1.3 hold. Suppose w1, . . . ,wL

are sampled i.i.d. from p. Assume the factors F2, . . . ,FT+1 are a sample of a stationary
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β-mixing sequence. Let T = 2µa for µ,a > 0. Let B = λ
p

L∥ f ∗∥p for some constant λ ≥ 1.

Then, with probability at least 1−δ over the factors F2, . . . ,FT+1 and the weights w1, . . . ,wL

we have that

E
[∥M̂t+1 −M∗

t+1∥2]= E[∥M̂t+1∥2]−E[∥M∗
t+1∥2]≤ M2

(
C1p
µ
+ C2

L

)
,

where M̂t+1 = 1− b̂⊤Ft+1 is the approximate SDF which solves min
∥b∥≤B

1
T

T∑
t=1

(1−b⊤Ft+1)2, M∗
t+1

is the true SDF, M = 1+λ∥ f ∥p and C1,C2 are the constants

C1 =
(
16+

√
2log

(
8
δ′

))
, C2 =

(√
2log

(
2
δ

)
+4KRC

)2

,

where δ′ = δ−4(µ−1)β(a), R = sup
z∈Z

∥z∥2,
√
E[∥w∥2

2]≤ C and K is the Lipschitz constant of φ.

By the same means, applying the approximation bound of Proposition 3.1.8 combined

with Propositions 3.2.1 or 3.2.2 we obtain learning bounds under smoothness and integra-

bility assumptions.

Proposition 3.3.3. Let k ≥ d
2 +1+ ε for some ε > 0 and f ∗ ∈ W k,2(Rd)∩L 1(Rd). Assume

that Zt,i is an Rd-valued random variable with ∥Zt,i∥2 ≤ K P-almost surely for all assets

i = 1, . . . , Nt for some constant K > 0. Assume that

M∗
t+1 = 1−F∗

t+1 = 1− 1
Nt

f ∗(Zt)⊤Re
t+1,

is the true SDF. Suppose that Assumption 3.1.3 holds. Let R = L1/(2k−2ε+1), let

W = (w1, . . . ,wL) be i.i.d. random variables uniformly distributed over BR ⊂ Rd and

ξ = (ξ1, . . . ,ξL) be i.i.d. uniformly distributed over [−max(KR,1),max(KR,1)]. Assume

that W ,ξ are independent and let φ : R→ R given by φ(x) = max(x,0). Assume the factors

F2, . . . ,FT+1 are independent and identically distributed over time. Let B = λ
p

L∥ f ∗∥L 1(Rd)

for some constant λ ≥ 2. Then, with probability at least 1−δ over the factors F2, . . . ,FT+1

and the weights w1, . . . ,wL we have that

E
[∥M̂t+1 −M∗

t+1∥2]= E[∥M̂t+1∥2]−E[∥M∗
t+1∥2]≤ M2C1p

T
+ C2

L2/α ,

where:
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• The approximate SDF is defined as

M̂t+1 = 1− 1
Nt

f̂ (Zt)⊤Re
t+1 = 1− b̂⊤Ft+1,

for f̂W ,ξ(x)= 1
L

L∑
ℓ=1

b̂ℓφ(w⊤
ℓ x+ξℓ).

• The vector b̂ = (b̂1, . . . , b̂L) solves the constrained least squares problem

b̂ = argmin
∥b∥≤B

L̂ (b)= argmin
∥b∥≤B

1
T

T∑
t=1

(1−b⊤Ft+1)2.

• The constants α, M, C1 and C2 are defined as follows

α= 2+ d+1
k−d/2−ε , , M = 1+λ∥ f ∗∥L 1(Rd),

C1 =
(
16+

√
2log

(
2
δ

))
, C2 =

2C2∥ f ∗∥2
kNt

δ
,

where C is explicitly given by Gonon et al. (2023, Equation 43).

Proof. Follows directly from Propositions 3.1.8 and 3.2.1 by a union bound as in Proposition

3.3.1, and observing that E[∥Re
t+1∥2

2]≤ Nt under Assumption 3.1.3.

Theorem 3.3.4. Let k ≥ d
2 +1+ε for some ε> 0 and f ∗ ∈W k,2(Rd)∩L 1(Rd). Assume that Zt,i

is an Rd-valued random variable with ∥Zt,i∥2 ≤ K P-almost surely for all assets i = 1, . . . , Nt

for some constant K > 0. Assume that

M∗
t+1 = 1−F∗

t+1 = 1− 1
Nt

f ∗(Zt)⊤Re
t+1,

is the true SDF. Suppose that Assumption 3.1.3 holds. Let R = L1/(2k−2ε+1), let

W = (w1, . . . ,wL) be i.i.d. random variables uniformly distributed over BR ⊂ Rd and

ξ = (ξ1, . . . ,ξL) be i.i.d. uniformly distributed over [−max(KR,1),max(KR,1)]. Assume

that W ,ξ are independent and let φ : R→ R given by φ(x) = max(x,0). Assume the factors

F2, . . . ,FT+1 are a sample of a stationary β-mixing sequence. Let T = 2µa for µ,a > 0. Let

B = λ
p

L∥ f ∗∥L 1(Rd) for some constant λ ≥ 2. Then, with probability at least 1−δ over the

factors F2, . . . ,FT+1 and the weights w1, . . . ,wL we have that

E
[∥M̂t+1 −M∗

t+1∥2]= E[∥M̂t+1∥2]−E[∥M∗
t+1∥2]≤ M2C1p

µ
+ C2

L2/α ,

where:
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• The approximate SDF is defined as

M̂t+1 = 1− 1
Nt

f̂ (Zt)⊤Re
t+1 = 1− b̂⊤Ft+1,

for f̂W ,ξ(x)= 1
L

L∑
ℓ=1

b̂ℓφ(w⊤
ℓ x+ξℓ).

• The vector b̂ = (b̂1, . . . , b̂L) solves the constrained least squares problem

b̂ = argmin
∥b∥≤B

L̂ (b)= argmin
∥b∥≤B

1
T

T∑
t=1

(1−b⊤Ft+1)2.

• The constants α, M, C1 and C2 are defined as follows

α= 2+ d+1
k−d/2−ε , , M = 1+λ∥ f ∗∥L 1(Rd), δ′ = δ−4(µ−1)β(a),

C1 =
(
16+

√
2log

(
8
δ′

))
, C2 =

2C2∥ f ∗∥2
kNt

δ
,

and C is explicitly given by Gonon et al. (2023, Equation 43).

Proof. Follows directly from Propositions 3.1.8 and 3.2.2 by a union bound as in Proposition

3.3.1.
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Chapter 4

Empirics

4.1 Data

As starting point, we consider the set of U.S. firms available in the Center for Research

in Securities Prices (CRSP) dataset. This time series has the prices, adjusted returns, of

U.S. stocks since 1925. The stock characteristics we use to construct managed portfolios are

from the Financial Ratios Firm Level dataset by Wharton Research Data Services (WRDS).

This dataset has 69 financial ratios for each firm from 1970 onwards classified in seven

categories: valuation, profitability, capitalisation, financial soundness, solvency, liquidity,

efficiency and others. For example, the dataset includes valuation ratios such as Book/-

Market (bm), Price/Book (ptm), profitability ratios such as Return on Equity (roe), Return

on Assets (roa), etc. See Appendix A for the complete list of financial ratios. We supple-

ment these 69 ratios with 12 past monthly returns in months t−1 through t−12, thus we

have a set of d = 81 basic asset characteristics. We denote c j
i,t the characteristic j (where

j = 1, . . . ,d) of asset i (where i = 1, . . . , Nt) at time t (where t = 1, . . . ,T).

We restrict our sample to large cap stocks, as trading small cap stocks involves high

bid-ask spreads and low liquidity, thus a high Sharpe ratio achieved with small cap stocks

might not be exploitable. In practice, we restrict ourselves to the universe of stocks with

a market capitalisation above 0.01% of the total market capitalisation, this leaves us with

about 700 to 900 stocks on each month. This large capitalization group is defined as in

Kozak et al. (2020) or Chen et al. (2024). It is in between the mega and large capitalization

groups considered in Didisheim et al. (2023).

The CRSP dataset provide us with delisting returns for stocks that are delisted due to

mergers, exchange, performance, etc. If a delisting return is missing and is due to per-

formance, we set the delisting return to −100%. This is the most conservative estimate,
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however, it is only applied once in the large cap universe. Alternatively, one can use a

−30% proxy as suggested by Shumway (1997) based on average perfomance delisting re-

turns. Other delisting returns are typically small (e.g. mergers have an average positive

2% delisting return) and when there is a missing delisting return not due to performance

we proxy it to 0%.

Some care must be taken to compound the standard returns and delisting returns of

a stock on its last month. The monthly delisting return typically includes both the return

from the start of the month until the delisting date, as well as the delisting return itself. If

the delisting occurs before the last trading day of the month, these returns are combined in

the delisting return, and the standard return is missing. However, if the delisting happens

on the last trading day of the month, both the standard return and the delisting return are

reported separately. In this case, these two returns must be compounded to obtain the total

return for the delisted stock. See Beaver et al. (2007) for more details.

We use the one month treasury bill rate as a proxy for the risk free rate R f
t+1, and

substract it from returns to obtain the excess return of each asset.

Lastly, we winsorize excess returns of assets so that they do not exceed 100% on each

month, to reduce the impact of these outliers on the final estimates, as done in Jensen et

al. (2023). Such returns happen although they are exceptionally rare for large cap stocks,

only 0.035% of our sample or about 1 return every 3000 exceeds this bound. The test data

remains unaltered when evaluating the model, i.e. we apply this winsorizing only to the

training data.

4.2 Instruments from characteristics

Now we explain how the instrument matrix Zt ∈ RNt×d is defined from observed charac-

teristics. At each time t, we observe d characteristics c j
i,t for j = 1, . . . ,d and each stock

i = 1, . . . , Nt. There are usually missing values, so for each characteristic j we have Nt( j)

non-missing values that we rank from 1 to Nt( j) and normalise it as follows

rc j
i,t =

rank(c j
i,t)

Nt( j)+1
.
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Notice that r̄c j
t = 1

2 is the mean of the normalised rankings. Then, we center these ranks

and normalise to have unit 1-norm:

Z j
i,t =

rc j
i,t − 1

2
N∑

i=1

∣∣∣∣rc j
i,t −

1
2

∣∣∣∣
.

We also define Z j
i,t = 0 for all missing values, so that stocks with a missing value have no

exposure to the respective factor, and we get Zt ∈ RNt×d. The resulting instruments have

zero mean (i.e.,
∑N

i=1 Z j
i,t = 0) and have fixed leverage as the absolute exposure is one (i.e.,∑N

i=1 |Z
j
i,t| = 1). Moreover, the instruments are bounded as Z j

i,t ∈
[−1

2 , 1
2
]
, thus Zi,t ∈

[−1
2 , 1

2
]d

for all assets. This definition is the same as in Kozak (2020, Section 4.2) and is also used in

Kozak (2020) and Didisheim et al. (2023).

It is worth noting that Chen et al. (2024) employs a different methodology by including

only stocks with complete firm characteristics available for a given month. This method has

the advantage of excluding stocks with small market capitalizations and avoids potential

artificial time-series fluctuations in the instrument-based factors that can arise from data

imputation. However, while the instrument factors have zero exposure to missing values,

this is no longer the case for the (transformed) features.

4.3 Model configurations

With our theory, we obtain different approximate SDFs depending on the weights distribu-

tion w ∼ p and the activation function φ :R→R. We consider the following weight distribu-

tions:

a) w ∼ N(0, Id), i.e. standard d-dimensional gaussian.

b) w ∼U(Bd), i.e. uniform over the unit ball Bd = {w ∈Rd |w⊤w ≤ 1}.

c) w ∼U(Sd−1), i.e. uniform over the sphere Sd−1 = {w ∈Rd |w⊤w = 1}.

d) w ∼ tν(0, Id), i.e. a multivariate standard t-student distribution with ν degrees of

freedom (with ν> 2 so it has finite second moments).

With respect to activation functions, we consider the following list:

i) φ(x)=ReLU(x)=max(x,0), i.e. the rectified linear unit (ReLU) function.

ii) φ(x)=σ(x)= 1
1+e−x , i.e. the sigmoid or logistic function.
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iii) φ(x)= tanh(x)= ex−e−x

ex+e−x , i.e. the hyperbolic tangent function.

iv) φ(x)= (cos(x),sin(x)), i.e. cosine and sine functions.

We observe that the ReLU function does not satisfy Assumption 3.1.1 as it is unbounded.

However, if we consider weights as in b) or c), then for z ∈Z= [−0.5,0.5]d we have the bound

|w⊤z| ≤
p

d
2 . Thus, effectively it behaves as if |φ| ≤ 1 up to a constant of normalisation. On

the other hand, the sigmoid and hyperbolic tangent functions are bounded by 1 and thus

satisfy Assumption 3.1.1 with any distribution of the list.

Our baseline configuration is given by a ReLU activation function with weights uni-

formly distributed over the unit ball (i.e., i) and b)). We will also explore alternative con-

figurations for comparison. We will also evaluate the performance of configurations that

do not satisfy all our theoretical hypothesis, such as the ReLU activation with gaussian

or t-student weights, or the cosine-sine activation from Rahimi and Recht (2007) which is

implicitely a C-valued activation (i.e., the complex exponential). The cosine-sine activation

with gaussian weights (iv) and a)) is a nice example as it corresponds in the limit to the

gaussian kernel used in Kozak (2020). Finally, we assess the performance of a ReLU ac-

tivation with weights W = (w1, . . . ,wL) uniformly distributed on the unit ball and biases

ξ = (ξ1, . . . ,ξL) uniform over [−pd,
p

d]. This configuration is closely aligned with that of

Proposition 3.1.8, since if z ∈ Z = [−0.5,0.5]d, then ∥z∥2 ≤ p
d∥z∥∞ =

p
d

2 . Additionally,

R = L1/(2k−2ε+1) ≤ 2 for the values considered, since by assumption k ≥ d
2 +1+ε which implies

that 2k−2ε+1≥ d+3= 84, thus R is close to one.

We consider the number of random features Lk = 2kd for k =−2,−1,0,1, . . . ,7 to evaluate

the performance of the algorithm as the number of factors increase. Thus, the maximum

number of random features considered is L = 128d = 10,368. When it comes to the regular-

isation paramenter γ, we consider a grid of 30 evenly spaced numbers on a log scale from

10−10 to 103. The implementation of the algorithms is available in a github repository 1.

4.4 Empirical results

4.4.1 Simple split

We first consider a simple split of the data, training our SDF with returns from Febru-

ary 1970 to January 2000, i.e. a fixed window of T = 360 months, and we evaluate its

performance out of sample from February 2000 to December 2023. We recall that the SDF

coefficients are those of a mean-variance efficient (MVE) portfolio (see Section 1.1, Cochrane

1https://github.com/matiasdata/RandomFeatures
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2009, Section 6.1 or Chen et al. 2024, I. A.). Figure 4.1 displays the annualized Sharpe ra-

tio achieved by the estimated MVE portfolios as a function of the regularisation parameter

γ. The maximum Sharpe ratio achieved is 1.02, and it is comparable to those obtained by

Chen et al. (2024, Table IV) with a GAN based SDF using 46 anomaly characteristics and

124 macroeconomic time series (restricted to large cap stocks, i.e. ≥ 0.01% of total market

cap) and Kozak (2020, Figure 8) using a radial kernel approach as described in section 1.4

on 50 anomaly characteristics.

Moreover, we look at the time series of returns obtained by the MVE portfolio for the

γ that achieves the maximum Sharpe ratio in Figure 4.2. Specifically, Figure 4.2 displays

the Year-over-Year return and cumulative return that this portfolio achieves out of sample.

The optimal weights ω̂t = Φ(Zt)b are typically large and correspond to highly leveraged

portfolios, thus we normalise these to have unit leverage (∥ω̂t∥1 = 1), i.e. the sum of long and

short positions is equal to one dollar. This has no impact on the Sharpe ratio and controls

the leverage which is a key measure when risk-managing such positions. Alternatively, one

can normalized the weights so that the portfolio has the same standard deviation as the

aggregate market (or a benchmark index), as done by Kozak et al. (2020), although this can

be done exactly ex-post or only approximately in real-time.

Lastly, in table 4.1 we report the Jensen’s alpha of our MVE portfolio for the CAPM and

Fama-French 5-factor models, both alphas are above 10% and are statistically significant.

The portfolio weights are normalized so that it has the same volatility as the market in that

period.

Sharpe ratio CAPM α Z-score Fama-French α Z-score
1.02 13.38% 4.47 11.46% 3.74

(2.99%) (3.06%)

Table 4.1: Out-of-sample (OOS) annualized Sharpe ratio, annualized CAPM α, Fama-
French 5 factors α (standard errors in parenthesis) and respective Z-scores for the optimal
γ portfolio in a simple split training. Portfolio returns are normalized to have the same
volatility as the market. We use L = 128d = 10,368 random features. Random weights are
chosen uniformly over the unit ball (i.e., w ∼U(Bd)), and a ReLU activation function is used
(i.e., φ(x)=ReLU(x)). The data is split once, optimal parameters are determined in-sample
(IS), and held constant out-of-sample (OOS). In-sample period: February 1970 to January
2000. Out-of-sample period: February 2000 to December 2023.
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Figure 4.1: Out-of-sample (OOS) annualized Sharpe ratios of the estimated MVE portfolios
as a function of the regularisation parameter γ, for L = 128d = 10,368 random features.
Random weights are chosen uniform over the unit ball (i.e., w ∼U(Bd)) and we use a ReLU
activation function (i.e., φ(x)=ReLU(x)). The data is splitted once, optimal parameters are
found IS and are held constant OOS. In-sample period: February 1970 to January 2000.
Out-of-sample period: February 2000 to December 2023.
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(a)

(b)

Figure 4.2: (a) Out-of-sample (OOS) Year-over-Year (YoY) return and (b) Out-of-sample
(OOS) cumulative return for the portfolio with optimal γ, using L = 128d = 10,368 random
features. The portfolio leverage is fixed at 1, i.e., ∥ω̂t∥1 = 1. Random weights are chosen
uniformly over the unit ball (i.e., w ∼U(Bd)), and a ReLU activation function is used (i.e.,
φ(x)=ReLU(x)). The data is split once, optimal parameters are determined in-sample (IS),
and held constant out-of-sample (OOS). In-sample period: February 1970 to January 2000.
Out-of-sample period: February 2000 to December 2023.
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4.4.2 Rolling window

In contrast to the simple split approach, where we trained the SDF once on a fixed in-sample

(IS) period and evaluated it on an out-of-sample (OOS) period, the rolling window approach

continuously re-estimates the model. Specifically, we use a rolling window of 360 months,

where the SDF is trained on the most recent 360 months of data and then evaluated on

the next month. This process is repeated by shifting the window forward by one month,

allowing the model to update its parameters as new data becomes available.

Figure 4.3 presents the out-of-sample annualized Sharpe ratios for the estimated mean-

variance efficient (MVE) portfolios as a function of the regularisation parameter γ, similar

to the analysis in the simple split approach. The maximum Sharpe ratio achieved under the

rolling window method is 1.28, which is considerably higher than the 1.02 obtained in the

simple split, indicating a better performance when we re-estimate the model every month.

Additionally, in Figure 4.4, we observe the Year-over-Year (YoY) and cumulative returns

for the portfolio that achieves the maximum Sharpe ratio under the rolling window ap-

proach. This figure shows that the cumulative return is higher achieving a 275% return

versus 249% for the simple split. The improvement in the SR is mainly achieved with a

reduction of volatility of the MVE portfolio.

Finally, in Table 4.2, we report the Jensen’s alpha for both the CAPM and Fama-French

5-factor models under the rolling window approach, along with their respective Z-scores.

Similar to the simple split analysis, these alphas are statistically significant and above

10%, but with the rolling window, we observe an even higher CAPM alpha of 18.79% and

a corresponding higher Z-score. This suggests that re-estimating the model every month

might capture more of the time-varying risks and opportunities in the market compared to

a fixed in-sample training period.

Sharpe ratio CAPM α Z-score Fama-French α Z-score
1.28 18.79% 5.87 13.71% 4.27

(3.20%) (3.21%)

Table 4.2: Out-of-sample (OOS) annualized Sharpe ratio, annualized CAPM α, Fama-
French 5 factors α (standard errors in parenthesis) and respective Z-scores for the optimal
γ portfolio in a rolling window training. Portfolio returns are normalized to have the same
volatility as the market. We use L = 128d = 10,368 random features. Random weights are
chosen uniformly over the unit ball (i.e., w ∼U(Bd)), and a ReLU activation function is used
(i.e., φ(x) = ReLU(x)). Training is performed on a rolling window of T = 360 months, and
evaluated on the next month, from February 2000 to December 2023.

55



Figure 4.3: Out-of-sample (OOS) annualized Sharpe ratios as a function of the regulari-
sation parameter γ, for L = 128d = 10,368 random features. Random weights are chosen
uniform over the unit ball (i.e., w ∼ U(Bd)) and we use a ReLU activation function (i.e.,
φ(x) = ReLU(x)). Training is performed on a rolling window of T = 360 months, and evalu-
ated on the next month, from February 2000 to December 2023.
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(a)

(b)

Figure 4.4: (a) Out-of-sample (OOS) Year-over-Year (YoY) return and (b) Out-of-sample
(OOS) cumulative return for the portfolio with optimal γ, using L = 128d = 10,368 random
features. The portfolio leverage is fixed at 1, i.e., ∥ω̂t∥1 = 1. Random weights are chosen
uniformly over the unit ball (i.e., w ∼U(Bd)), and a ReLU activation function is used (i.e.,
φ(x) = ReLU(x)). Training is performed on a rolling window of T = 360 months, and evalu-
ated on the next month, from February 2000 to December 2023.
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4.4.3 Different number of factors

In this section, we examine how the Sharpe ratio of the MVE portfolio varies as a function

of both the regularization parameter γ and the ratio L/d of the number of random features

L to the number of basic characteristics d.

Figure 4.5 illustrates this relationship, showing that the SR improves almost monoton-

ically as L/d increases. This suggests that incorporating more random features improves

the model’s approximation ability to capture the underlying data structure, leading to bet-

ter out-of-sample performance, consistent with our theory of Chapter 3 and the “virtue of

complexity” observed in Didisheim et al. (2023). We observe that the maximum Sharpe

ratio of 1.33 is achieved with 648 random features, is only slightly higher than the 1.28

obtained by the most complex model.

Furthermore, we evaluate if the convergence rate of the out-of-sample empirical loss

aligns with that of our Theorems 3.3.2 and 3.3.4. We consider the out-of-sample squared

norm of our SDF:

EOOS[∥M̂∥2]= 1
TOOS

T+TOOS∑
t=T

(
1− 1

Nt
f̂ (Zt)⊤Re

t+1

)2
.

From Theorem 3.3.2 (or Theorem 3.3.4 for k large enough) we expect that
√

EOOS[∥M̂∥2]

should decrease to the constant
√
E[∥M∗

t ∥2] with the number of factors (L) at a rate of

O(1/
p

L) and a rate of O(1/T1/4) for the training sample size (i.e., T, recall that µ is propor-

tional to T).

To evaluate this convergence, we increase linearly the (rolling window) training sample

size T from 12 months to 360 months (30 years), and we allow the number of random

features to increase according to L = c
p

T, where c is set to 1000/
p

360 so that 360 months

corresponds to 1000 features. Under this configuration, we expect EOOS[∥M̂∥2] to decrease

at a O(1/
p

L).

Figure 4.6 plots
√

EOOS[∥M̂∥2] against the number of features L, along with a curve of

the form y(L) = c1 + c2p
L

where c1 and c2 are fitted to the data by a least squares criterion.

The results indicate that the empirical loss decreases at the predicted O(1/
p

L) rate of our

results, albeit with some noise.
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Figure 4.5: Out-of-sample (OOS) annualized Sharpe ratio as a function of γ and L/d. The
model has L = 128d = 10,368 random features, random weights are chosen uniform over
the unit ball (i.e., w ∼U(Bd)) and we use a ReLU activation function (i.e., φ(x) = ReLU(x)).
Training is performed on a rolling window of T = 360 months, and evaluated on the next
month, from February 2000 to December 2023.
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Figure 4.6: Out-of-sample (OOS) loss, i.e.
√

EOOS[∥M̂∥2], as a function of the number of
random features. Random weights are chosen uniform over the unit ball (i.e., w ∼ U(Bd))
and we use a ReLU activation function (i.e., φ(x) = ReLU(x)). The number of random fea-
tures goes from 182 to 1000 and increases as L = c

p
T where T is the rolling window size. γ

is fixed at the optimal value of Section 4.4.2 (γ≈ 0.0005). Training is performed on a rolling
window of T months for T = 12,24, . . . ,360. Evaluation is done in the period from February
2000 to December 2023.
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4.4.4 Cross validation

The results obtained from the simple split or rolling window approaches, although infor-

mative, present an idealized scenario as the optimal regularisation parameter γ is known

only after evaluating the entire out-of-sample period, thus it’s Sharpe ratio is not actually

achievable. In other words, in a real-world setting, this knowledge isn’t available at the

time the portfolio needs to be executed as γ has to be fixed in advance. To address this,

we apply 5-fold cross-validation within our in-sample period to select the optimal γ, mak-

ing the portfolio tradable, i.e. the process is implementable on-line. In the cross-validation

approach, the model is trained on a rolling window of 360 months, and every 12 months,

the regularisation parameter γ is re-selected using 5-fold cross-validation on the in-sample

data.

Figure 4.7 shows the evolution of the selected regularisation parameter γ over time,

illustrating how cross-validation dynamically adjusts the regularisation parameter. Even

though the out-of-sample SR achieved using cross-validation (1.275) is slightly lower than

the one obtained in the rolling window method (1.281), the difference is marginal, indicating

that the efficiency loss from not knowing the optimal γ ahead of time is small. We observe

that the chosen γ is stable over time as it only changes a few times, and are close to the

optimal fixed value of γ≈ 0.0005 found in subsection 4.4.2.

Further supporting this, Figures 4.8 (a) and (b) present the out-of-sample Year-over-Year

(YoY) and cumulative returns for the portfolio where γ is chosen through cross-validation.

The cumulative return is slightly higher at 291%, compared to the 275% achieved with the

rolling window approach.

Furthermore, Table 4.3 reports Jensen’s alpha for both the CAPM and Fama-French

5-factor models under the cross-validation method, along with their respective Z-scores.

The CAPM alpha is 18.06%, which, although slightly lower than the 18.79% observed in

the rolling window approach, remains highly significant. This demonstrates that cross-

validation, gives a tradable approximate MVE portfolio without much efficiency loss.

Finally, Figure 4.9 plots the out-of-sample rolling three-year and five-year Sharpe ratio

of the MVE portfolio and the market portfolio. We observe that the performance of the

SDF is extraordinarily high in the 2000s’, where it achieves a SR between 2 and 3. On the

2010s’ performance drops but its is still about 1.5 on average and is still outperforming the

market by a considerable amount. However, since 2020 the SR drops (particularly during

the COVID crisis) and has been close to 0.5 on average, only to recover by the end of 2023.

This might be due to the extraordinary circumstances of this crisis, where these tail
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risks where not priced appropriately by this SDF. An alternative explanation is that it might

be due to the “publication decay”, as documented by McLean and Pontiff 2016 and Jensen

et al. 2023). This phenomenon occurs where after a new factor that predicts the cross-

section of stock returns is published, the returns of a portfolio based on it are significantly

reduced, by about 50% on average. Given that machine learning methods exploiting similar

characteristics were published around that time, it is plausible that this has negatively

impacted the performance of our SDF. This serves as a word of caution against relying on

these methods for machine-learning-driven investments.

Figure 4.7: Regularisation parameter γ as a function of time selected with cross-validation
every 12 months. The model has L = 128d = 10,368 random features, random weights are
chosen uniform over the unit ball (i.e., w ∼U(Bd)) and we use a ReLU activation function
(i.e., φ(x) = ReLU(x)). Training is performed every month on a rolling window of T = 360
months, and every 12 months γ is selected with 5-fold cross validation.

Sharpe ratio CAPM α Z-score Fama-French α Z-score
1.28 18.06% 5.81 11.76% 3.90

(3.11%) (3.01%)

Table 4.3: Out-of-sample (OOS) annualized Sharpe ratio, annualized CAPM α, Fama-
French 5 factors α (standard errors in parenthesis) and respective Z-scores for the optimal
γ portfolio chosen with cross validation. Portfolio returns are normalized to have the same
volatility as the market. We use L = 128d = 10,368 random features. Random weights are
chosen uniformly over the unit ball (i.e., w ∼U(Bd)), and a ReLU activation function is used
(i.e., φ(x) = ReLU(x)). Training is performed every month on a rolling window of T = 360
months, and every 12 months γ is selected with 5-fold cross validation.
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(a)

(b)

Figure 4.8: (a) Out-of-sample (OOS) Year-over-Year (YoY) return and (b) Out-of-sample
(OOS) cumulative return for the portfolio with γ chosen through cross-validation, using
L = 128d = 10,368 random features. The portfolio leverage is fixed at 1, i.e., ∥ω̂t∥1 = 1. Ran-
dom weights are chosen uniformly over the unit ball (i.e., w ∼U(Bd)), and a ReLU activation
function is used (i.e., φ(x)=ReLU(x)). Training is performed every month on a rolling win-
dow of T = 360 months, and every 12 months γ is selected with 5-fold cross validation.
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(a)

(b)

Figure 4.9: OOS (a) three-year and (b) five-year rolling Sharpe ratio for the portfolio with
γ chosen through cross-validation, using L = 128d = 10,368 random features. The portfolio
leverage is fixed at 1, i.e., ∥ω̂t∥1 = 1. Random weights are chosen uniformly over the unit
ball (i.e., w ∼U(Bd)), and a ReLU activation function is used (i.e., φ(x)=ReLU(x)). Training
is performed every month on a rolling window of T = 360 months, and every 12 months γ is
selected with 5-fold cross validation.
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4.4.5 Results for alternative model configurations

In this section, we present the out-of-sample (OOS) performance metrics for various model

configurations, focusing on different activation functions and random weight distributions.

We compare the results across a simple split training, a rolling window training, and in a

cross-validation approach. The results across various model configurations are summarized

in Tables 4.4, 4.5, and 4.6.

These tables show that ReLU-based models exhibit stable performance regardless of the

type of random weight distribution used. As seen in Table 4.6, the t-student distribution

with ν= 4 slightly outperforms other configurations, particularly in cross-validation, where

it achieves the highest Sharpe ratio (SR).

The hyperbolic tangent activation function, as indicated in all three tables, consistently

underperform compared to ReLU, although it clearly produces a different approximate SDF

with considerably lower market exposure. On the other hand, the sigmoid and cosine-sine

activation yield results that are decidedly close to the ReLU configurations. The results for

ReLU with gaussian or t-student weights, although not covered by our theory, exhibit sim-

ilar performance, indicating that our theoretical results might hold under less restrictive

hypothesis.

Overall, the results demonstrate that the models are robust and deliver strong out-of-

sample performance across different configurations, with ReLU remaining a reliable choice,

regardless of the random weight distribution used.
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Model SR CAPM β CAPM α Z-score FF α Z-score
ReLU U(Bd) 1.02 0.43 13.38% 4.47 11.46% 3.74

(0.054) (2.99%) (3.06%)
ReLU t-student 1.01 0.40 13.53% 4.45 11.69% 3.76

ν= 4 (0.054) (3.04%) (3.11%)
ReLU gaussian 1.01 0.48 12.91% 4.45 10.73% 3.62

(0.052) (2.90%) (2.96%)
Tanh gaussian 0.80 0.37 10.42% 3.38 10.18% 3.19

(0.055) (3.08%) (3.19%)
Sigmoid gaussian 0.99 0.43 12.81% 4.30 11.47% 3.74

(0.053) (2.98%) (3.07%)
Cosine-sine gaussian 0.98 0.43 12.85% 4.29 11.51% 3.73

(0.054) (2.99%) (3.09%)
ReLU U(Bd) 0.99 0.42 12.94% 4.31 11.60% 3.80
with biases (0.054) (3.00%) (3.05%)

Table 4.4: Out-of-sample (OOS) annualized Sharpe ratio (SR), CAPM β, annualized CAPM
α, Fama-French 5 factors α (standard errors in parenthesis) and respective Z-scores for the
optimal γ portfolio in a simple split training for alternative model configurations. Portfolio
returns are normalized to have the same volatility as the market. We use L = 128d = 10,368
random features. Different activation functions and random weights are considered. The
data is split once, optimal parameters are determined in-sample (IS), and held constant out-
of-sample (OOS). In-sample period: February 1970 to January 2000. Out-of-sample period:
February 2000 to December 2023.

Model SR CAPM β CAPM α Z-score FF α Z-score
ReLU U(Bd) 1.28 0.25 18.79% 5.87 13.71% 4.27

(0.057) (3.20%) (3.21%)
ReLU t-student 1.29 0.25 18.98% 5.93 13.69% 4.28

ν= 4 (0.057) (3.29%) (3.19%)
ReLU gaussian 1.28 0.24 18.79% 5.84 13.91% 4.31

(0.058) (3.21%) (3.23%)
Tanh gaussian 1.09 0.15 16.36% 5.00 13.00% 3.84

(0.059) (3.27%) (3.38%)
Sigmoid gaussian 1.27 0.27 18.51% 5.81 13.96% 4.31

(0.057) (3.19%) (3.24%)
Cosine-sine gaussian 1.26 0.26 18.43% 5.77 13.90% 4.28

(0.057) (3.20%) (3.25%)
ReLU U(Bd) 1.27 0.28 18.51% 5.82 13.90% 4.31
with biases (0.057) (3.18%) (3.23%)

Table 4.5: Out-of-sample (OOS) annualized Sharpe ratio, CAPM β, annualized CAPM α,
Fama-French 5 factors α (standard errors in parenthesis) and respective Z-scores for the op-
timal γ portfolio in a cross validation training for alternative model configurations. Portfolio
returns are normalized to have the same volatility as the market. We use L = 128d = 10,368
random features. Different activation functions and random weights are considered. Train-
ing is performed every month on a rolling window of T = 360 months, and every 12 months
γ is selected with 5-fold cross validation.
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Model SR CAPM β CAPM α Z-score FF α Z-score
ReLU U(Bd) 1.28 0.34 18.06% 5.81 11.76% 3.91

(0.056) (3.11%) (3.01%)
ReLU t-student 1.30 0.33 18.54% 5.92 12.13% 4.01

ν= 4 (0.056) (3.13%) (3.03%)
ReLU gaussian 1.24 0.38 17.19% 5.61 11.12% 3.73

(0.055) (3.06%) (2.98%)
Tanh gaussian 1.03 0.09 15.91% 4.83 12.06% 3.58

(0.059) (3.29%) (3.36%)
Sigmoid gaussian 1.27 0.35 17.91% 5.77 12.85% 4.14

(0.055) (3.10%) (3.10%)
Cosine-sine gaussian 1.26 0.34 17.80% 5.72 12.74% 4.09

(0.056) (3.11%) (3.11%)
ReLU U(Bd) 1.25 0.36 17.51% 5.67 12.33% 4.01
with biases (0.055) (3.09%) (3.07%)

Table 4.6: Out-of-sample (OOS) annualized Sharpe ratio, CAPM β, annualized CAPM α,
Fama-French 5 factors α (standard errors in parenthesis) and respective Z-scores for the op-
timal γ portfolio in a rolling window training for alternative model configurations. Portfolio
returns are normalized to have the same volatility as the market. We use L = 128d = 10,368
random features. Different activation functions and random weights are considered. Train-
ing is performed on a rolling window of T = 360 months, and evaluated on the next month,
from February 2000 to December 2023.
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Conclusion

This thesis has explored the application of random features, also known as random feature

neural networks, to asset pricing models within high-dimensional contexts. The empiri-

cal analysis demonstrated that random features-based methods could achieve comparable

performance to more complex and computationally intensive techniques. Furthermore, the

theoretical contributions of this thesis, including approximation, generalization, and learn-

ing bounds, provide a solid foundation for the practical use of random features in asset

pricing.

However, open questions remain, such as extending these bounds under less restrictive

assumptions. Results from Gonon et al. (2023), Gonon (2023) and Györfi et al. (2002) could

prove to be really helpful in this direction. Additionally, it would be interesting to analyze

the approach proposed by Kozak (2020) using the theory developed in this thesis. Another

promising direction would be to investigate modifying the GAN model proposed by Chen

et al. (2024) by incorporating random features.

In conclusion, the use of random features in asset pricing models represents a signif-

icant advancement, offering a practical and theoretically sound alternative to traditional

methods.
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Appendix A

Variable definitions

Below is the list of characteristics from the Financial Ratios Firm Level dataset by Wharton

Research Data Services (WRDS). This dataset has 69 financial ratios for each firm classified

in seven categories: valuation, profitability, capitalisation, financial soundness, solvency,

liquidity, efficiency and others. Definitions are taken from the dataset manual1.

1. Dividend Payout Ratio (dpr) - Valuation. Dividends as a fraction of income before

extra items.

2. Trailing P/E to Growth (PEG) ratio (peg_trailing) - Valuation. Price-to-Earnings,

excluding extraordinary items (diluted) to 3-year past EPS growth.

3. Book/Market (bm) - Valuation. Book value of equity as a fraction of market value of

equity.

4. Shiller’s Cyclically Adjusted P/E Ratio (capei) - Valuation. Multiple of market

value of equity to 5-year moving average of net income.

5. Dividend Yield (divyield) - Valuation. Dividend rate as a fraction of price.

6. Enterprise Value Multiple (evm) - Valuation. Multiple of enterprise value to earn-

ings before interest, taxes, depreciation, and amortisation (EBITDA).

7. Price/Cash flow (pcf) - Valuation. Multiple of market value of equity to net cash flow

from operating activities.

8. P/E (Diluted, Excl. EI) (pe_exi) - Valuation. Price-to-Earnings, excluding extraordi-

nary items (diluted).

9. P/E (Diluted, Incl. EI) (pe_inc) - Valuation. Price-to-Earnings, including extraordi-

nary items (diluted).

1https://wrds-www.wharton.upenn.edu/documents/793/WRDS_Industry_Financial_Ratio_Manual.
pdf
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10. Price/Operating Earnings (Basic, Excl. EI) (pe_op_basic) - Valuation. Price-to-

Operating-Earnings, excluding extraordinary items (diluted).

11. Price/Operating Earnings (Diluted, Excl. EI) (pe_op_dil) - Valuation. Price-to-

Operating-Earnings, including extraordinary items (diluted).

12. Price/Sales (ps) - Valuation. Multiple of market value of equity to sales.

13. Price/Book (ptb) - Valuation. Multiple of market value of equity to book value of

equity.

14. Effective Tax Rate (efftax) - Profitability. Income Tax as a fraction of Pretax Income.

15. Gross Profit/Total Assets (gprof) – Profitability. Gross profitability as a fraction of

total assets.

16. After-tax Return on Average Common Equity (aftret_eq) – Profitability. Net

income as a fraction of average of common equity based on most recent two periods.

17. After-tax Return on Total Stockholders Equity (aftret_equity) - Profitability. Net

income as a fraction of average of total shareholders’ equity based on most recent two

periods.

18. After-tax Return on Invested Capital (aftret_invcapx) – Profitability. Net income

plus interest expenses as a fraction of invested capital.

19. Gross Profit Margin (gpm) – Profitability. Gross profit as a fraction of sales.

20. Net Profit Margin (npm) – Profitability. Net income as a fraction of sales.

21. Operating Profit Margin After Depreciation (opmad) – Profitability. Operating

income after depreciation as a fraction of sales.

22. Operating Profit Margin Before Depreciation (opmbd) – Profitability. Operating

income before depreciation as a fraction of sales.

23. Pre-tax Return on Total Earning Assets (pretret_earnat) – Profitability. Oper-

ating income after depreciation as a fraction of average total earnings assets (TEA)

based on most recent two periods, where TEA is defined as the sum of property plant

and equipment and current assets.

24. Pre-tax return on Net Operating Assets (pretret_noa) – Profitability. Operating

income after depreciation as a fraction of average net operating assets (NOA) based

on most recent two periods, where NOA is defined as the sum of property plant and

equipment and current assets minus current liabilities.

25. Pre-tax Profit Margin (ptpm) – Profitability. Pretax income as a fraction of sales.
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26. Return on Assets (roa) – Profitability. Operating income before depreciation as a

fraction of average total assets based on most recent two periods.

27. Return on Capital Employed (roce) – Profitability. Earnings before interest and

taxes as a fraction of average capital employed based on most recent two periods,

where capital employed is the sum of debt in long-term and current liabilities and

common/ordinary equity.

28. Return on Equity (roe) – Profitability. Net income as a fraction of average book

equity based on most recent two periods, where book equity is defined as the sum of

total parent stockholders’ equity and deferred taxes and investment tax credit.

29. Capitalization Ratio (capital_ratio) – Capitalization. Total long-term debt as a frac-

tion of the sum of total long-term debt, common/ordinary equity and preferred stock.

30. Common Equity/Invested Capital (equity_invcap) – Capitalization. Common eq-

uity as a fraction of invested capital.

31. Long-term Debt/Invested Capital (debt_invcap) – Capitalization. Long-term debt

as a fraction of invested capital.

32. Total Debt/Invested Capital (totdebt_invcap) – Capitalization. Total debt (long-

term and current) as a fraction of invested capital.

33. Inventory/Current Assets (invt_act) – Financial soundness. Inventories as a frac-

tion of current assets.

34. Receivables/Current Assets (rect_act) – Financial soundness. Accounts receivables

as a fraction of current assets.

35. Free Cash Flow/Operating Cash Flow (fcf_ocf) – Financial soundness. Free cash

flow as a fraction of operating cash flow, where free cash flow is defined as the differ-

ence between operating cash flow and capital expenditures.

36. Operating CF/Current Liabilities (ocf_lct) – Financial soundness. Operating cash

flow as a fraction of current liabilities.

37. Cash Flow/Total Debt (cash_debt) – Financial soundness. Operating cash flow as a

fraction of total debt.

38. Cash Balance/Total Liabilities (cash_lt) – Financial soundness. Cash balance as a

fraction of total liabilities.

39. Cash Flow Margin (cfm) – Financial soundness. Income before extraordinary items

and depreciation as a fraction of sales.
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40. Short-Term Debt/Total Debt (short_debt) – Financial soundness. Short-term debt

as a fraction of total debt.

41. Profit Before Depreciation/Current Liabilities (profit_lct) – Financial sound-

ness. Operating income before D&A as a fraction of current liabilities.

42. Current Liabilities/Total Liabilities (curr_debt) – Financial soundness. Current

liabilities as a fraction of total liabilities.

43. Total Debt/EBITDA (debt_ebitda) – Financial soundness. Gross debt as a fraction

of EBITDA.

44. Long-term Debt/Book Equity (dltt_be) – Financial soundness. Long-term debt to

book equity.

45. Interest/Average Long-term Debt (int_debt) – Financial soundness. Interest as a

fraction of average long-term debt based on most recent two periods.

46. Interest/Average Total Debt (int_totdebt) – Financial soundness. Interest as a

fraction of average total debt based on most recent two periods.

47. Long-term Debt/Total Liabilities (lt_debt) – Financial soundness. Long-term debt

as a fraction of total liabilities.

48. Total Liabilities/Total Tangible Assets (lt_ppent) – Financial soundness. Total

liabilities to total tangible assets.

49. Total Debt/Equity (de_ratio) – Solvency. Total liabilities to shareholders’ equity

(common and preferred).

50. Total Debt/Total Assets (debt_assets) – Solvency. Total debt as a fraction of total

assets.

51. Total Debt/Total Assets (debt_at) - Solvency. Total liabilities as a fraction of total

assets.

52. Total Debt/Capital (debt_capital) – Solvency. Total debt as a fraction of total capital,

where total debt is defined as the sum of accounts payable and total debt in current

and long-term liabilities, and total capital is defined as the sum of total debt and total

equity (common and preferred).

53. After-tax Interest Coverage (intcov) – Solvency. Multiple of after-tax income to

interest and related expenses.

54. Interest Coverage Ratio (intcov_ratio) – Solvency. Multiple of earnings before in-

terest and taxes to interest and related expenses.
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55. Cash Conversion Cycle (Days) (cash_conversion) – Liquidity. Inventories per daily

COGS plus account receivables per daily sales minus account payables per daily

COGS.

56. Cash Ratio (cash_ratio) – Liquidity. Cash and short-term investments as a fraction

of current liabilities.

57. Current Ratio (curr_ratio) – Liquidity. Current assets as a fraction of current liabil-

ities.

58. Quick Ratio (Acid Test) (quick_ratio) – Liquidity. Quick ratio: current assets net of

inventories as a fraction of current liabilities.

59. Asset Turnover (at_turn) – Efficiency. Sales as a fraction of the average total assets

based on the most recent two periods.

60. Inventory Turnover (inv_turn) – Efficiency. COGS as a fraction of the average

Inventories based on the most recent two periods.

61. Payables Turnover (pay_turn) – Efficiency. COGS and change in inventories as a

fraction of the average of accounts payable based on the most recent two periods.

62. Receivables Turnover (rect_turn) – Efficiency. Sales as a fraction of the average of

accounts receivables based on the most recent two periods.

63. Sales/Stockholders Equity (sale_equity) – Efficiency. Sales per dollar of total stock-

holders’ equity.

64. Sales/Invested Capital (sale_invcap) – Efficiency. Sales per dollar of invested capi-

tal.

65. Sales/Working Capital (sale_nwc) – Efficiency. Sales per dollar of working capital,

defined as difference between current assets and current liabilities.

66. Accruals/Average Assets (accrual) - Other. Accruals as a fraction of average total

assets based on most recent two periods.

67. Research and Development/Sales (rd_sale) – Other. R&D expenses as a fraction

of sales.

68. Advertising Expenses/Sales (adv_sale) – Other. Advertising expenses as a fraction

of sales.

69. Labor Expenses/Sales (staff_sale) – Other. Labor expenses as a fraction of sales.
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