
Imperial College London

Department of Mathematics

Harvest Volatility Risk Premia using

Deep Reinforcement Learning

Author: Zhihao Xu (CID: 02274977)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2022-2023

Declaration

The work contained in this thesis is my own work unless otherwise stated.

2

Signature:

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Vladimir Lucic, for his un-
wavering support, guidance and invaluable insights throughout my research journey. His expertise
and guidance have been instrumental in shaping this project. In addition, I would like to express
my heartfelt gratitude to my parents and my girl friend, whose love and encouragement have been
the foundation of all my hard working. Their faith in me has been a source of strength.

Abstract

In this project, we focus on how to capture the Volatility Risk Premia (VRP), which can be simply
described as the di↵erence between implied and realised volatility. We outlined the two main
methods of capturing VRP. One is to sell delta-hedged options strategy. Based on the Black-
Scholes model, this strategy can achieve a positive PnL since the implied volatility is on average
higher than the realized volatility. The second method is to sell variance swaps (Variance Swaps),
which is exposed directly to the underlying volatility. This method is more direct than the former
and eliminates the e↵ect of Dollar gamma on PnL. Thanks to the static replication theorem, we
can replicate variance swaps using European call and put options, making it easier and more
straightforward to capture VRP. After solving the problem of how to capture VRP directly, we
started to explore how to achieve best PnL within a given range of target vega leverage, based on
a certain risk preferences. At this point, we used the Dueling Double Deep Q Learning (DDDQN)
reinforcement learning algorithm with soft updating, since the purpose of reinforcement learning
is to maximise the reward function through the agent’s interaction with the environment. In the
latter part of this thesis, we discuss how we accomplished our task within a reinforcement learning
framework. Finally, we trained and tested on S&P500 options data and achieved excellent results
in the out of sample data, realizing the maintenance of returns while reducing the Max Drawdown.

Contents

1 Mathematical Definitions and Preliminaries 7

1.1 Definition and Notation . 7
1.2 Project Structure . 9
1.3 Feynman-Kac Theorem . 9
1.4 Girsanov’s theorem . 9
1.5 The Black-Scholes model . 10

1.5.1 Greeks . 11

2 Harvest VRP by Delta-Hedged Variance Swap 13

2.1 VRP harvesting via selling Delta-Hedged portfolio 13
2.1.1 Trading liquid option and Hedging with actual volatility 13
2.1.2 Trading option priced by implied volatility and Hedging with implied volatility 14

2.2 Introduction to Variance Swap . 15
2.2.1 Relationship between Variance Swap payo↵ and delta-hedged Pnl 16
2.2.2 Constant Dollar Gamma portfolio construction 17
2.2.3 Static Replication of Variance Swap by option strips 19

3 Reinforcement Learning Prerequisites 24

3.1 Introduction of Reinforcement Learning . 24
3.1.1 Markov Decision Process . 25
3.1.2 Value function and Bellman Equation . 26
3.1.3 Optimal value function and iteration method 27

3.2 Q learning algorithm . 29
3.2.1 Exploration and Exploitation . 29

3.3 Deep Q learning(DQN) . 29
3.3.1 Deep learning for value function approximation 30
3.3.2 Implementation of the DQN Algorithm . 31
3.3.3 Improvement of DQN by DDDQN . 32

4 Implementation of DDDQN 34

4.1 Delta-hedging with DDDQN . 34

5 Backtesting DDDQN algorithm 37

5.1 Performance Metrics . 37
5.2 Performance of static replication of Variance Swap 38
5.3 Volatility premium harvesting with help of DDDQN 39

A Technical Proofs 45

A.1 Leverage has no e↵ect on Sharpe ratio . 45

Bibliography 46

2

List of Figures

2.1 Payo↵ of Variance Swap and Volatility Swap with y-axis payo↵($) 15
2.2 The Dollar Gamma with di↵erent strike and underlying 17
2.3 The Dollar Gamma weighted by 1

K . 18
2.4 The Dollar Gamma weighted by 1

K2 . 18

3.1 Interaction process of reinforcement learning . 25
3.2 Graphical representation of a feedforward neural network 30

4.1 Graphical representation of expected reward against the number of episodes 36
4.2 Graphical representation of agent delta and BS delta with respect to stock price . 36

5.1 Index value of 2 portfolios . 39
5.2 Graphical representation of expected reward against the number of episodes in train-

ing model . 42
5.3 Graphical representation of PnL of agent traded and constant target vega 42
5.4 Graphical representation of PnL of agent traded and constant target vega with leverage 43

3

List of Tables

4.1 Option Parameters . 34
4.2 Neural Network Parameters . 35

5.1 Option Parameters in S&P 500 with static replication 38
5.2 Statistics of delta-hedged portfolios . 38
5.3 Statistics of Undelta-hedged portfolios . 38
5.4 Option Parameters in S&P 500 using DDDQN . 39
5.5 Neural Network Parameters in S%P 500 . 40
5.6 Statistics of the agent PnL . 43
5.7 Statistics of the constant target vega PnL . 43

4

Introduction

The Volatility Risk Premia(VRP) refers to two facts, one is that implied volatility is on average
higher than realised volatility. The other is that higher realized volatility coincides with higher
movement of underlying price. The option buyers are willing to pay an option premium to protect
against a great decline in the underlying. This is a form of compensation by which the buyer
mitigates the seller’s significant downside risk inherent in the underlying1. In practice, VRP is
most significant in important in large-cap equity indices such as S&P 500 [1, Ge, 2016], S&P 100
and Dow Jones Industrial [2, Carr and Wu, 2009]. In the market, there are 3 dominant methods
for harvesting VRP and Ge [1, Ge, 2016] provides a detailed explanation. We will now analyze
these 3 methods in the following.

• Option Strategies: One approach is to sell index options directly and hedge by buying index
forward contracts which is driven by VRP and the direction of underlying movement [1,
Ge, 2016]. Many research papers have examined this approach as a fundamental methodol-
ogy. According to [3, Bakshi and Kapadia, 2001], this methodology leads to positive PnL
empirically, especially in periods of high volatility, and leads to greater VRP. We can con-
struct a portfolio that doesn’t require considering the direction of the underlying movement.
We can construct a portfolio that does not need to consider the direction of the underlying
movement. This portfolio consists of selling straddles and straddle options, both of which
consist of call and put options with the same expiry date. The di↵erence is that straddle
options have the same strike price while straddle options have di↵erent strike prices. Both of
these portfolio strategies are essentially investing around volatility. From payo↵ perspective,
positive PnL can be achieved when actual volatility is low and price fluctuations are minimal.
In addition, when implied volatility exceeds actual volatility, options become relatively more
expensive, resulting in higher premiums. However, significant losses can occur during times
of high realized volatility.

The cause of these situations lies in the di↵erence between implied and realised volatility.
We can further analyse the types of options we need to trade by examining the concept of
the volatility smile. For most options, the volatility smile tends to take a ’smiling’ shape.
Implied volatility is relatively low when the initial underlying asset price is close to the
strike price. This means that the probability of implied volatility exceeding actual volatility
are relatively small. This means that there is a smaller chance for implied volatility to
exceed realized volatility. Additionally, as the time to maturity becomes larger, there is
a higher probability that the OTM option will become ITM, potentially requiring option
sellers to make payments, and vice versa. The advantages of this strategy are simplicity, ease
of trading, high liquidity, and customisability. But the disadvantages are also obvious. It
cannot participate directly in volatility and the final profit depends on the di↵erence between
the price of the underlying asset and the strike price. Although in theory it converges on
the di↵erence between realised and implied volatility which is path-dependent, it is di↵erent
from direct exposure to volatility.

• VIX: The VIX index is a tool introduced by CBOE in 1993 for measuring market volatility.
It is calculated using the implied volatility of the at the money S&P 500 index in the near
term. Trading The VIX Index is a purer volatility trading instrument, known for its good
liquidity and availability of exchange trading. The downside is also clear: short-term changes

1
For example in OTM European call option, the payo↵ is [ST �K]

+
, greater the volatility, the larger the price

movements in S, which increases the likelihood of the underlying asset achieving extreme values. Consequently, the

option seller is exposed to significant risk when S has particularly large positive movements but will not be paid

more for S decreases deeply. Thus, option sellers will bear significant risk with large value of S.

5

in the VIX can be significant, so portfolios need to be constructed carefully to reduce risk.
Portfolio construction of the VIX Index has become more complex over time. Similar to the
drawbacks of variance swaps, it has a notional value expressed in Vega notional, which can
be di�cult to determine and understand.

• Swaps: There are two financial instruments, variance swaps and volatility swaps, available
for us to trade in order to harvest VRP. Variance swaps are di↵erent from traditional swaps
in many ways, as they do not involve periodic exchange of cash. IIt is a structured contract
that specifies an initial strike price at inception and only pays out at maturity based on the
di↵erence between the realised variance (the square of realised volatility) and the strike price
(the square of implied volatility) of a particular asset. Similar to other forward contracts,
this strike price is chosen to ensure that the value of the contract is zero at the time of
contract initiation. Similar to traditional swaps, variance swaps have a theoretical notional
value that is used to calculate PnL. However, calculating and understanding the notional
value of a Variance Swap can be challenging because the notional value of a Variance Swap
is derived from another theoretical value, the Vega notional. The advantages of this strategy
include direct exposure in the di↵erence between realised and implied volatility (VRP), the
ability to specify a notional exposure value, and not having to keep an eye on volatility at
all times. Another major advantage is that, through the static replication theorem, we can
replicate variance swaps with European call and put options, making them easier to trade
with greater liquidity. However, the drawbacks are that it is an over-the-counter (OTC) trade
that is relatively opaque, and the size of Vega notionals can be challenging, often relying on
the trader’s risk tolerance.

In summary, the essence of all the above methods lies in the di↵erence between realised and
implied volatility. Therefore, we conclude that VRP refers to the di↵erence between realised
and implied volatility. Thanks to the static replication theorem, we will now explore how to
capture the VRP of a variance swap using simple European call and put options.

6

Chapter 1

Mathematical Definitions and
Preliminaries

1.1 Definition and Notation

To assist readers in better understanding of this article, we will proceed to provide clear definitions
and annotations.

Definition 1.1.1 (Returns). Two popular ways of defining returns are arithmetic returns and
logarithmic returns. Formally, for the price process St, arithmetic returns Rt and logarithmic
returns Zt are defined as following:

Rt =
St � St�1

St�1
=

St

St�1
� 1 and Zt = log

St

St�1
= log(1 +Rt)

Normally, we assume the price process follow a Geometric Brownian motion where St
St�1

follows

independent log-normal distribution. Thus, Zt = log St
St�1

follows independent normal distribution.
The more insightful mathematical connection between these two types of returns, can be explained
as follows:

Using a Taylor expansion of f(x) = log(1 + x) at some point x1:

f(x) = f(x1) + f 0(x1)(x� x1) + ...

=) f(x) ⇡ f(x1) + f 0(x1)(x� x1)

We expand at x1 = 0, we have

log(1 + x) ⇡ x

Zt = log
St

St�1
= log(1 +Rt) ⇡ Rt

Thus, log-return is approximate as arithmetic return when arithmetic return is close to 0 which is
coincide in the real world and we will use log-returns as our return measure going forward.

Definition 1.1.2 (Implied Volatility). Implied Volatility �IV refers to the expected value of future
volatility of the underlying price process. This quantity is obtained based on a certain model, then
input the market price and then inversely derive volatility. Meanwhile, �IV is often used to price
the option with high volatility implies high premiums and vice versa.

Definition 1.1.3 (Realised Volatility). Realised volatility �RV refers to the actual volatility of
an asset’s price over a specific period, typically defined as the standard deviation of the asset’s
returns with rolling windows. It’s worth noting that the definitions of daily D��RV and annualised
realised volatility A� �RV di↵er.

D � �RV := Var
p
(Daily Return) and A� �RV := Var

p
(Annualised Return)

There are many di↵erent ways to estimate the realised volatility, we will primarily focus on
introducing three types.

7

• Direct: Suppose we have a rolling windows with length N, for each time t, we observe
N previous iid underlying assert log-return Zt, Zt�1, ..., Zt�(N�1) , we forecast the standard
deviation of log-return based on these N previous point by an unbiased estimator as following:

D � �RV =

vuut 1

N � 1

NX

n=1

(Zt�(n�1) � µ)2

where µ = 1
N

PN
n=1 Zt�(n�1) refers to the mean of return.

Assume that there are 252 trading days a year, we have

A� �RV = Std(Annualised Return) =

vuutVar(
252X

t=1

Zt)

Since returns are iid:

A� �RV =
p
252Var(Zt) =

p
252(D � �RV)

• Log-normal model: Suppose the assert price follows a log-normal model such as Geometric
Brownian motion model under real world measure P.

dSt = µStdt+D � �RV StdWt

where Wt is a Brownian motion. If we want to calibrate such model, remember that, log-
return Zt = log St

St�1
⇠ N(µ,D��RV)(We will give a rigorous proof later in section Variance

Swap). Thus the result is similar to direct method.

D � �RV =

vuut 1

N � 1

NX

n=1

(Zt�(n�1) � µ)2

and

A� �RV =
p
252(D � �RV)

• Normal model: Suppose the assert price follows a normal model such as

dSt = µdt+D � �RV dWt

Then we have

St � St�1 ⇠ N(µ,D � �RV)

This model make a bit di↵erent since we have

D � �RV =
p
Var(St � St�1)

Thus an unbiased estimator for D � �RV is given by

D � �RV =

vuut 1

N � 1

NX

n=1

((St�(n�1)St�1�(n�1))� µ̂)2

where µ̂ := 1
N

PN
n=1(Zt�(n�1) � Zt�1(n�1)).

For the sake of convenience and close alignment with reality, we choose the first and second
methods to estimate realized volatility.

8

1.2 Project Structure

Our project is divided into three main chapters. The first part describes how we obtain VRP using
certain financial instruments such as delta-hedged options and variance swaps. it also elaborates
how to replicate variance swaps using the static replication theorem. The second part explains
how to use Deep Q learning(DQN) to harvest VRP while reducing the maximum retracement. It
also describes Dueling Double Deep Q learning(DDDQN), an upgraded version of DQN. In the last
section, we test the accuracy of the algorithm by letting DDDQN make predictions on BS-delta for
the purpose of testing the accuracy of the algorithm, and then also backtest the S&P 500 option
data and evaluate the pros and cons of our model by some performance metrics.

1.3 Feynman-Kac Theorem

The Feynman-Kac Theorem allows us to view the solution of a parabolic partial di↵erential equa-
tion PDE, like the Black-Scholes PDE, through the lens of expected values derived from a stochastic
di↵usion process.

Theorem 1.3.1 (Feynman-Kac Theorem). Given suitable regularity and integrability conditions,
the solution of the PDE

@V

@t
(t, x) +

@V

@x
(t, x)b(x) +

1

2

@2V

@x2
(t, x)�2(x) = rV (t, x), V (T, x) = f(x),

can be expressed as
V (t, x) = e�r(T�t)EQ

t,x {f (XT) | Ft}
where the di↵usion process X has dynamics starting from x at time t

dXs = b (Xs) ds+ � (Xs) dW
Q
s , s � t,Xt = x

where under the expectation EQ
t,x{·} is taken under the probability measure Q. The process WQ is

a standard Brownian motion under Q.

• A su�cient condition is:

E
"Z T

0
D2

sV
2
x �

2 (s,Xs) ds

#
<1

where Ds := e�
R s
t r(u,Xu)du and Vx := @V (t,x)

@x . One possible condition is we can impose that
r(t, x) is bounded from below, Vx is bounded and �(t, x) has some suitable growth condition.
There are more possible approaches can be found in [4, Karatzas and Shreve, 1988].

1.4 Girsanov’s theorem

Theorem 1.4.1 (Girsanov’s theorem). Let {Wt} be a Wiener process defined on the filtered Wiener
probability space {⌦,F , {FW

t }1t=0,P} with the natural filtration of the Wiener process
�
FW

t

 1
t=0

.

Let Xt be a process adapted to
�
FW

t

 1
t=0

and define an exponential martingale

E(X)t = Lt := exp

✓
Xt �

1

2
[X]t

◆
,

where [X]t denotes the quadratic variation of the process X. We can easily check that EP[Lt] = 1
and Lt is a positive(Equivalent Measure) martingale with a suitable condition have been satisfied.

Thus, a probability measure Q can be defined on {⌦,F} such that Radon-Nikodym derivative

dQ
dP

����
Ft

= E(X)t

Then for each t the measure Q restricted to the FW
t is equivalent to P restricted to FW

t , i.e Q ⇠ P
by the fact that Radon-Nikodym is postitive. Furthermore if Yt is a local martingale under P then
the process

Ỹt = Yt � [Y,X]t

is a Q local martingale on the filtered probability space {⌦,F , {FW
t }1t=0,Q}.

9

The primary concept of Girsanov’s theorem is to explore the behaviour of the semimartingales
after change of measure.

Corollary 1.4.2. If Xt is continuous and adapted and Wt is Brownian motion under measure P
then

W̃t = Wt � [W,X]t

is Brownian motion under Q.

Proof. • [W,X]t is cross variation between W and X. We know that cross variation is right
continuous and finite variation, thus, W̃t is right continuous.

• [W̃ , W̃]t = [W,W]t = t by an easy corollary of cross variation of continuous function and
finite variation function equals 0.(Proof is in the appendix)

• By Girsanov’s theorem, W̃t is a Q local martingale. Thus by levy’s characterization, W̃t

Brownian motion under Q.

1.5 The Black-Scholes model

In this chapter, we aim to introduce the well-known Black-Scholes model for pricing theory espe-
cially European option.

Theorem 1.5.1. Define a filtered probability space (⌦,F , {Fn}1n=0,P). Assume that the underlying
stock price St follows a Geometric Brownian Motion such that

dSt = µStdt+ �StdW
P
t

where W P
t is a standard Brownian Motion under measure P and µ is drift. Assume a constant risk

free rate r such that depositing 1 unit of money in the bank at time t = 0 will yield Bt = exp(rt)
at time t.

In order to satisfy the fundamental theory of option pricing, the absence of arbitrage is equiva-
lent to the existence of an equivalent measure Q, We have to find the E(X)t such that underlying
process over a numeraires is a martingale under measure Q, i.e St

Bt
.

We can easily see that St
Bt

is a martingale if

dSt = rStdt+ �StdW
Q
t

where WQ
t := W P

t + µ�r
� t such that St follows Geometric Brownian motion under measure P.

By Corollary 1.4.2, WQ
t is a Brownian motion if

[W,X]t = �
µ� r

�
t) Xt =

Z t

0

r � µ

�
dWt

where we have used the Kunita-Watana property.
Thus, we find the risk neutral measure Q such that Radon-Nikodym derivative

dQ
dP

����
Ft

= E
✓Z t

0

r � µ

�
dWt

◆

Denote the value of the call option at time t as Ct with payo↵
h
(ST �K)+

i
. by no arbitrage

theorem,

Ct = EQ
h
e�r(T�t) (ST �K)+ |Ft

i

thus we can say Ct is a function of St and t since St is a markov process, i.e Ct := C(St, t).
Assume the function C(St, t) of time t and of the stock price St to have regularity C 2

C1,2 ([0, T]⇥ R+). Apply Ito’s Lemma to C to obtain

dC (t, St) =

✓
@C

@t
(St, t) + µSt

@C

@S
(St, t) +

1

2
�2S2

t
@2C

@S2
(St, t)

◆
dt+ �St

@C

@S
(St, t) dWt (1.5.1)

10

We consider a self-financing trading strategy for 0  t  T ,

�S
t =

@C

@S
(St, t) , �B

t =
�
Ct � �S

t St

�
/Bt

By construction, the value of this strategy at time t is Ct, since clearly C (St, t) = �B
t Bt + �S

t St.
Thus,

dCt = �B
t dBt + �S

t dSt =


C (St, t)�

@C

@S
(St, t)St

�
rdt+

@C

@S
(St, t)St (µdt+ �dWt) (1.5.2)

Then by equating 1.5.1 and 1.5.2 (ITO + SELF FINANCING), we obtain the BS valuation
equation:

@C

@t
(St, t) + rSt

@C

@S
(St, t) + �2S2

t
1

2

@2C

@S2
(St, t) = rC (St, t) (1.5.3)

with terminal condition C(ST , T) = (ST �K)+.
One can deduced that the solution of BS valuation equation 1.5.3 is

C(S, t) = StN (d1)�Ke�r(T�t)N (d2)

with

d1 =
1

�
p
T � t


ln

✓
St

K

◆
+

✓
r +

�2

2

◆
(T � t)

�

d2 = d1 � �
p
T � t

where N is the standard cumulative normal distribution function:

N(x) = P(X  x) =
1p
2⇡

Z x

�1
e�

x2

2 dx

By relationship of put-call parity for European options, the corresponding put option price deduced
as follows:

P (St, t) = Ke�r(T�t) � St + C(St, t)

P (St, t) = Ke�r(T�t)N (�d2)� StN (�d1)

1.5.1 Greeks

Definition 1.5.2 (Greeks). In the realm of options trading, the term ”Greeks” encompasses a
collection of mathematical metrics or indicators. These metrics serve to elucidate how an option’s
price is expected to fluctuate in reaction to a variety of factors. These factors basically encompass
alterations in the underlying asset’s value (St), the passage of time (t), shifts in volatility (�), and
changes in interest rates (r).

Thus, greeks under Black-Scholes model can be found by taking the partial derivative of the
option price w.r.t. to the corresponding components.

• BS Delta(�): The deltas of calls and puts which represent the sensitivity of an option price
to changes in the price of underlying assert are shown as follows:

�call =
@C(S, t)

@S
= N (d1)

�put =
@P (S, t)

@S
= N (d1)� 1 = �call � 1

• BS Vega(⌫): The vegas of calls and puts which measures the sensitivity of an option’s price
to changes in volatility are shown as follows:

⌫call =
@C(S, t)

@�
= S
p
T � tN 0(d1)

⌫put =
@P (S, t)

@�
= S
p
T � tN 0(d1) = ⌫call

11

• BS Gamma(�): The gammas calls and puts of which represent changes of deltas concerning
changes in the underlying asset’s price are shown as follows:

�call =
@�call

@S
=

N 0(d1)

S�
p
T � t

�put =
@�put

@S
=

N 0(d1)

S�
p
T � t

= �call

• BS Theta(⇥): The gammas calls and puts of which represents the sensitivity of an option’s
price to the time to maturity ⌧ are shown as follows:

⇥call =
@C(S, t)

@⌧
= ��SN 0(d1)

2
p
⌧

� rKe�r⌧N (d2)

⇥put =
@P (S, t)

@⌧
= ��SN 0(d1)

2
p
⌧

+ rKe�r⌧N (�d2)

12

Chapter 2

Harvest VRP by Delta-Hedged
Variance Swap

2.1 VRP harvesting via selling Delta-Hedged portfolio

In this section, we will clarify the methodology for acquiring VRP through selling Delta-Hedged
portfolio. Before diving into the specifics, we must clarify two key questions. Firstly, which
theoretical framework is our methodology based on? Secondly, in calculating delta (� = N(d1)),
do we use actual or implied volatility? For convenience, we will use the Black-Scholes (BS) model
and make a distinction between using implied and actual volatility to calculate delta.

2.1.1 Trading liquid option and Hedging with actual volatility

In order to formalize the main idea, we denote the option price C(St, t) and stock price St and
Delta-Hedged portfolio as C (St, t)� �B

t Bt � �S
t St at time t . where

�S
t =

@C

@S
(St, t) = �t, �B

t =
�
Ct � �S

t St

�
/Bt

The gain process of this portfolio from time t to t+ ⌧ Gt,t+⌧ with cash earns the risk-free rate
r is defined as

Gt,t+⌧ := Ct+⌧ � Ct �
Z t+⌧

t
�udSu �

Z t+⌧

t
r (Cu ��uSu) du (2.1.1)

where r is the constant risk-free rate.
Assume the stock price follow the geometric Brownian Motion under the real world probability

measure P:

dSt = µStdt+ �StdW
P
t

Apply ito’s formula to option price C(St, t), we can derive following equation:

dCt =
@Ct

@St
dSt +

✓
@Ct

@t
+

1

2
�2S2

t
@2Ct

@S2
t

◆
dt

Ct+⌧ � Ct =

Z t+⌧

t

@Cu

@Su
dSu +

Z t+⌧

t

✓
@Cu

@u
+

1

2
�2S2

u
@2Cu

@S2
u

◆
du

(2.1.2)

Notice that option price satisfies the BS valuation equation,

@C

@t
(St, t) + rSt

@C

@S
(St, t) + �2S2

t
1

2

@2C

@S2
(St, t) = rC (St, t) (2.1.3)

By equations 2.1.2 and 2.1.3, we deduce that

Ct+⌧ � Ct =

Z t+⌧

t
�udSu +

Z t+⌧

t
r (Cu ��uSu) du (2.1.4)

13

Comparing to equation 2.1.1, it is apparent that if we continuously delta-hedged, the gain
equals to 0 (Gt,t+⌧ = 0) over every period. Actually, following the similar derivation, Gt,t+⌧ = 0
appears up for all one-dimensional Markov price process dSt = µ(St)StdSt + �(St)StdW P

t .
It is noteworthy that the gain process Gt,t+⌧ is zero only under the Black-Scholes (BS) model.

If under a stochastic volatility model, the Gt,t+⌧ manifests as a stochastic process. Its expected
value E(Gt,t+⌧) can be interpreted as the excess return of the delta-hedged portfolio. Furthermore,
it has been demonstrated that E(Gt,t+⌧) = 0 unless volatility risk is priced and symmetric in [3,
Bakshi and Kapadia, 2001].

2.1.2 Trading option priced by implied volatility and Hedging with im-
plied volatility

In this section, we aim to elucidate the nexus between harvesting VRP and delta-hedged options,
which stands as our primary objective. Concurrently, we operate under the assumption that we

are trading an option priced by implied volatility with value process C(i)
t and subsequently define

the delta-hedged portfolio as Delta-Hedged portfolio as C(i) � �B(i)
t Bt � �S(i)

t St at time t. Thus
we have [5, D. Olivier and M. Abhishek, 2022]

�S(i)
t =

@C(i)

@S
(St, t) = �(i)

t , �B(i)
t =

⇣
C(i)

t � �S(i)
t St

⌘
/Bt

which corresponds to buy the option and delta hedged the option using implied volatility �(iv)

while the actual volatility of the stock prices is �(rv). Thus, we can define the pnl ⇧(i)
t using the

self-financing condition of the trading strategy (�S(i)
t ,�B(i)

t):

d⇧(i)
t = dC(i)

t ��(i)
t dSt � r

⇣
C(i)

t ��(i)
t St

⌘
dt (2.1.5)

Applying ito’s formula to option price C(i)
t , we can derive following equation:

dC(i)
t =

@C(i)

@t
dt+

@C(i)

@S| {z }
=�(i)

t

dSt +
1

2
�2
(rv)S

2
t
@2C(i)

@S| {z }
=�(i)

t

dt, (2.1.6)

Combining equation 2.1.5 and 2.1.6, we have

d⇧(i)
t =

✓
@C(i)

@t
+

1

2
�2
(rv)S

2
t
@2C(i)

@S2
� r

⇣
C(i)

t ��(i)
t St

⌘◆
dt.

where dSt = µStdt+�(rv)StdW P
t . Notice that by Feynman-Kac theorem, option price C(i)

t satisfies
the following BS valuation equation:

@C(i)

@t
+

@C(i)

@S| {z }
=�(i)

t

rSt +
1

2

@2C(i)

@S2
| {z }
=�(i)

t

�2
(iv)S

2
t � rC(i)

t = 0

Thus, we obtain

d⇧t =
1

2

⇣
�2
(rv) � �2

(iv)

⌘
S2
t �

(iv)dt

Over each short duration, the pnl of delta-hedged portfolio is contingent upon the discrepancy
between realized and implied variance, scaled by the gamma (calculated utilizing the implied
volatility). Although d⇧t is deterministic, the cumulative hedging gain throughout the option’s
tenure exhibits path-dependency. Its absolute value is higher when the paths of stock fluctuate
around the strike such that the gamma is higher.

As previously articulated, harvesting VRP is tantamount to the di↵erence between implied
volatility and realised volatility(�iv��rv). The aforementioned portfolio entails purchasing options
and subsequently selling stocks. Hence, to capture VRP, we would sell options and buy stocks for
delta-hedging, rendering our VRP’s gain process as

14

VRPt :=
1

2

Z t

0
�(iv)
u S2

u

⇣
�2
(rv) � �2

(iv)

⌘
dt =

Z t

0
�$(iv)
u

⇣
�2
(rv) � �2

(iv)

⌘
dt

where we denote Dollar Gamma as �$(iv)
t := 1

2�
(iv)
t S2

t .

2.2 Introduction to Variance Swap

This chapter draws on the research from [6, JP Morgan, 2005] for a comprehensive study of variance
swaps. We clarify and summarise the preliminary content on the topics of variance swaps and static
replication, aiming to harvesting VRP through static replication of variance swap.

Definition 2.2.1 (Variance Swap). The variance swap is an over-the-counter (OTC) customised
financial derivative designed to speculate on or hedge against the volatility (degree of fluctuation)
of a specific underlying asset (e.g., an equity index, currency or interest rate). Essentially, this
instrument provides a payo↵ based on the di↵erence between the realised variance of the under-
lying asset (square of the realised volatility) and a strike price (square of the implied volatility)
determined at the start of the agreement. The payo↵ is given by

Variance Swap Payo↵ = Variance Notional⇥ (Realised Volatility at maturity2 � Strike2Var)

Volatility Swap Payo↵ = Volatility Notional⇥ (Realised Volatility at maturity� StrikeVol)

where variance notional is defined as:

Variance Notional =
Vega Notional(USD)

2⇥ Strike

such that the realsied volatility is 1 ’vega’ above the strike at maturity, the payo↵ is approximately
equal Vega Notional by

Vega Notional(USD)

2⇥ Strike
⇥ ((Strike + 1)2 � Strike2) ⇡ Vega Notional(USD)

We can easily see VSpayo↵ is convex on Realised Volatility at maturity, as illustrated in Figure 2.1.
It means the investor who longs a variance swap will have faster gain and slower loss.

Figure 2.1: Payo↵ of Variance Swap and Volatility Swap with y-axis payo↵($)

where we can see the Variance Swap strike is larger than volatility Swap strike by the Jensen’s
inequality(concave) as following:

StrikeVol = E

q
Realised Volatility2

�
<=

q�
E
⇥
Realised Volatility2

⇤�
= StrikeVar

15

2.2.1 Relationship between Variance Swap payo↵ and delta-hedged Pnl

Denote that the option price as a function of S, t and �, i.e C(S, t,�). By applying ito’s formula,
we have:

dC =
@C

@S
dS +

@C

@t
dt+

1

2

@2C

@S2
dS2 +

@C

@�
d� + . . .

= �dS +⇥dt+
1

2
�dS2 + ⌫d� + . . .

= Delta PnL + Theta PnL + Gamma PnL + Vega PnL + . . .

Consider the portfolio ⇧ consisting of delta-hedged option. Thus

⇧ = C � @C

@S
S = C ��S

By self-financing condition of portfolio and applying ito’s formula to option C, we have

d⇧ = dC ��dS = ⇥dt+
1

2
�dS2 + ⌫d� + . . .

= Theta PnL + Gamma PnL + Vega PnL + . . .

By assuming the volatility is constant like BS model and risk free interest rate equals 0, we can
express the Daily Pnl of delta-hedged portfolio d⇧ as

d⇧ = ⇥dt+
1

2
�dS2 (2.2.1)

As shown in 1.5.3, any contingent claims with value f(S, t) at time t is the function of underlying
S, satisfy the BS valuation equation also linear combination of them. Then

r⇧ = ⇥+ r�S +
1

2
��2S2

since from stochastic di↵erential equation 2.2.1 of ⇧, we have

@⇧

@t
= ⇥ and

@2⇧

@S2
= �

Meanwhile, we have @⇧
@S = 0 from equation 2.2.1, thus

⇥ = r⇧� 1

2
��2S2

By assuming risk free interest rate equals 0 as before, then

⇥ = �1

2
��2S2 (2.2.2)

By substituting equation 2.2.2 into 2.2.1, then

d⇧ =
1

2
�(dS2 � �2S2dt)

=
1

2
�S2 ⇥

"✓
dS

S

◆2

� �2dt

(2.2.3)

Now, we partition both the t axis and the S axis, with step sizes of �t = 1 and daily changes of S
�S respectively. Thus, the Daily Pnl of delta-hedged portfolio is given by

Daily PnL =
1

2
�S2 ⇥

"✓
�S

S

◆2

� �2�t

#
(2.2.4)

where we can interpret �S
S as the daily stock return and square it can be seen as daily squared

realised volatility. Furthermore, �2�t can be interpreted as the daily squared implied volatility.
Therefore, from equation 2.2.4, it can be inferred that the delta-hedged daily return is driven by
the di↵erence between the squared realized volatility and the squared implied volatility.

16

Now we sum up all the daily PnL till the maturity of the option, we obtain the total PnL as
following:

Total PnL =
nX

t=0

�$
t ⇥

⇥
r2t � �2�t

⇤
(2.2.5)

where rt :=
�
�S
S

�2
is the stock daily return and �$

t := 1
2�tS2

t is the dollar Gamma.

Equation 2.2.5 closely mirrors the payo↵ structure of a variance swap, being dollar Gamma
weighted sum of the di↵erence between squared realized returns and a constant strike. However,
a key distinction lies in the weighting. In a variance swap, these weights remain consistent, while
in this context, they vary based on the option’s dollar gamma over its duration which is called
path-dependency.

2.2.2 Constant Dollar Gamma portfolio construction

In formula 2.2.5, it prompts us to consider whether we can apply a certain scaling ratio to our
delta-hedged portfolio to ensure that the dollar gamma value of the options in the portfolio remains
in time (t) and stock price (S) such that the PnL of delta-hedged portfolio has constant exposure
to squared realised volatility. Next, we will explore the feasibility of scaling by plotting the curve
of dollar gamma with respect to t and S. A rigorous mathematical proof will be provided at the
end of this discussion. The Dollar Gamma across strikes and underlying is given by Figure 2.2
where we can see that the peak dollar gamma exhibits an increasing relationship with the strike.
Furthermore, options with lower strikes contribute minimally compared those with higher strikes.
Thus, it’s essential to amplify the weights of options with lower strikes while reducing the weights
of those with higher strikes.

Figure 2.2: The Dollar Gamma with di↵erent strike and underlying

The simplest scaling involves multiplying by 1
K which yield the following graph 2.3 where we

can see that with the escalation in strike, there’s an amplification in the spread of Dollar Gamma.

17

Figure 2.3: The Dollar Gamma weighted by 1
K

The 1
K2 weighted sum is given by Figure 2.4 which results in constant Dollar Gamma.

Figure 2.4: The Dollar Gamma weighted by 1
K2

The weighted parameters 1
K2 is motivated by finding a portfolio with value process ⇧(S, t) such

that

� =
@2⇧

@S2
=

c

S2

Then Dollar Gamma becomes constant

�$ =
c

S2
S2 = c

By Solving above second order di↵erential equation, we get:

⇡(S, t) = �a ln(St) + bSt + c (2.2.6)

where a, b and c are constant. Thus, the replication of Variance Swap is
While we cannot trade log contract directly in the market, thankfully due to static replication

theory, we can replicate it using option strips.
From the equation 2.2.6, it can be inferred that in order for our PnL to have a constant

exposure to volatility, we need to construct a portfolio consisting of a log-contract, the underlying
stock, and cash. We will later demonstrate that the log contract can actually be replicated by
options such that the replication is a direct exposure to realised variance. Meanwhile, the position
of underlying stock essentially replicates the stock part in the delta-hedged portfolio, providing
exposure to implied variance. A more clear representation is provided below.

18

Variance Swap Payo↵ = Variance Notional⇥ (Realised Volatility at maturity2| {z }
log contract

� Strike2Var| {z }
stock

)

Delta-hedged payo↵ = C|{z}
log contract

� �S|{z}
stock

Subsequently, we will delve into static replication theory and provide a rigorous proof for the
replication of variance swap.

2.2.3 Static Replication of Variance Swap by option strips

Theorem 2.2.2 (Static Replication). A European options with payo↵ of g(ST) can be replicated
using the underlying asset S, cash, and European Calls and Puts option strips. Furthermore, this
replication is static in nature and does not necessitate position rebalancing.

Let g : R ! R be a C2 function, H a non-negative constant, P (St,K, T) and C(St,K, T) are
European Puts and Calls option at time t with underlying S,strike K and expiry time T and define
a filtered risk netural probability space (⌦,F , {Fn}1n=0,Q), the payo↵ g(ST) satisfies

e�r(T�t)EQ [g (ST) | Ft] = e�r(T�t)g(H) + e�r(T�t)g0(H) (E[ST]�H)

+

Z H

0
g00(K)P (St,K, T) dK +

Z 1

H
g00(K)C (St,K, T) dK

(2.2.7)

Before proceeding with the proof, our preliminary task is to determine the first and second order
derivatives of the European option with respect to the strike, and understand their implications.

Proposition 2.2.3. Suppose we are pricing the European call and put option with payo↵ (ST�K)+

and (K � ST)+ respectively. Suppose �(x) is dirac delta function and fST |Ft
is conditional pdf of

random variable ST .

e�r(T�t)fST |Ft
(K) =

@2P (St,K, T)

@K2
=

@2C (St,K, T)

@K2

Proof. Without loss of generality, we prove the following using European call option C(ST ,K, T).
By dominated convergence theorem,

@C(St,K, T)

@K
= e�r(T�t)EQ


@
(ST �K)+

@K
|Ft

�
K > 0

= e�r(T�t)EQ [� KST |Ft]

= �e�r(T�t)P(ST � K|Ft)

@P (St,K, T)

@K
= e�r(T�t)EQ


@
(K � ST)+

@K
|Ft

�
K > 0

= e�r(T�t)EQ [K�ST |Ft]

= e�r(T�t)P(ST  K|Ft)

@2C(St,K, T)

@K2
= e�r(T�t)EQ


@2 (ST �K)+

@K2
|Ft

�
K > 0

= e�r(T�t)EQ

@
� KST

@K
|Ft

�

= e�r(T�t)

Z
�(x�K)fST |Ft

(x)dx

= e�r(T�t)fST |Ft
(K)

@2P (St,K, T)

@K2
= e�r(T�t)EQ


@2 (K � ST)+

@K2
|Ft

�
K > 0

= e�r(T�t)EQ

@ K�ST

@K
|Ft

�

= e�r(T�t)

Z
�(x�K)fST |Ft

(x)dx

= e�r(T�t)fST |Ft
(K)

(2.2.8)

19

where we have defined the derivative in the sense of distribution since the derivative in the
usual sense doesn’t exist at discontinue point.

Now we begin to prove the static replication theorem by above proposition 2.2.3.

Proof. Denote fST |Ft
(K) as the condition probability density function of ST , then by proposition

2.2.3

e�r(T�t)fST |Ft
(K) =

@2P (St,K, T)

@K2
=

@2C (St,K, T)

@K2

Thus by the martingale pricing theorem, we deduce that the payo↵ g(ST) of European option
satisfies:

e�r(T�t)EQ [g (ST) | Ft] = e�r(T�t)

Z 1

0
g(K)fST |Ft

(K)dK

= e�r(T�t)

Z 1

0
g(K)er(T�t) @

2P (St,K, T)

@K2
dK

=

Z 1

0
g(K)

@2P (St,K, T)

@K2
dK

= STH

Z H

0
g(K)

@2P (St,K, T)

@K2
dK + ST�H

Z 1

H
g(K)

@2C (St,K, T)

@K2
dK

where H is a non-negative constant. Integrating by parts yields:

e�r(T�t)EQ [g (ST) | Ft] = STH

g(K)

@P (St,K, T)

@K

����
H

0

�
Z H

0
g0(K)

@P (St,K, T)

@K
dK

!

+ ST�H

✓
g(K)

@C (St,K, T)

@K

����
1

H

�
Z 1

H
g0(K)

@C (St,K, T)

@K
dK

◆

By the calculation of first order derivative in equation 2.2.8, then

e�r(T�t)EQ [g (ST) | Ft] = e�r(T�t)g(H)�
Z H

0
g0(K)

@P (St,K, T)

@K
dK�

Z 1

H
g0(K)

@C (St,K, T)

@K
dK

Applying integration by parts again to yield:

e�r(T�t)EQ [g (ST) | Ft] = e�r(T�t)g(H)� g0(K)P (St,K, T)|H0 +

Z H

0
g00(K)P (St,K, T) dK

� g0(K)C (St,K, T)|1H +

Z 1

H
g00(K)C (St,K, T) dK

Finally, St > 0 almost surely under BS model, then

(
P (St,K, T) = e�r(T�t)EQ [(0� ST)+ | Ft] = 0 if K = 0

C (St,K, T) = e�r(T�t)EQ [(ST �1)+ | Ft] = 0 if K =1

Recall that the put call parity for European option as following:

P (St, H, T) + e�r(T�t)E[ST] = C (St, H, T) + e�r(T�t)H

Thus,

e�r(T�t)EQ [g (ST) | Ft] = e�r(T�t)g(H) + e�r(T�t)g0(H) (E[ST]�H)

+

Z H

0
g00(K)P (St,K, T) dK +

Z 1

H
g00(K)C (St,K, T) dK

20

This formula indicates that any contingent claim with a payo↵ g(ST) g : R ! R a C2 func-
tion, can be replicated using cash, the underlying asset S, and an infinite number of out-of-the-
money(OTM) European call and put options strips with di↵erent strike prices.

A simpler approach to this proof is to employ the Carr-Madan-formula, which allows us to
avoid the tedious integration by parts.

Lemma 2.2.4 (Carr-Madan-formula). Let g : R! R be a C2 function, H a non-negative constant,

g(S) = g(H) + g0(H)(S �H) + 11{S>H}

Z 1

H
g00(u)(S � u)+du+ 11{S<H}

Z H

0
g00(u)(u� S)+du

Proof. For S > 0 and non-negative constant H, by the fundamental theorem of calculus

g(S)� g(H) = 11{S>H}

Z S

H
g0(u)du � 11{S<H}

Z H

S
g0(u)du

Then

g(S) = g(H) + g(S)� g(H)

= g(H) + 11{S>H}

Z S

H
g0(u)du � 11{S<H}

Z H

S
g0(u)du

= g(H) + 11{S>H}

Z S

H


g0(H) +

Z u

H
g00(v)dv

�
du� 11{S<H}

Z H

S

"
g0(H)�

Z H

u
g00(v)dv

#
du

= g(H) + g0(H)(S �H) + 11{S>H}

Z S

H

Z S

v
g00(v)dudv + 11{S<H}

Z H

S

Z v

S
g00(v)dvdu

= g(H) + g0(H)(S �H) + 11{S>H}

Z S

H
g00(v)(S � v)dv + 11{S<H}

Z H

S
g00(v)(v � S)dv

= g(H) + g0(H)(S �H) + 11{S>H}

Z 1

H
g00(v)(S � v)+dv + 11{S<H}

Z H

0
g00(v)(v � S)+dv

= g(H) + g0(H)(S �H) +

Z 1

H
g00(v)(S � v)+dv +

Z H

0
g00(v)(v � S)+dv

We only need to expand the payo↵ g(ST) of the European option into the Carr-Madan-formula
and compute the discounted expectation under measure Q which will give us the same result as
2.2.7.

Proposition 2.2.5 (Realised Variance estimation under BS model). Recall that the randomness
in the payo↵ of Variance Swap is Realised Variance. Realised variance estimation is given by

V ar(rT) =
1

T
[lnS, lnS]T

Proof. Assume St follows a geometric brownian motion model. Then

d lnSt = µdt+ �dWt

where µ is drift, � is volatility and Wt is a Brownian motion.
Define the daily log-return

rt := lnSt � lnSt�1 = µ+

Z t

t�1
�dWs

.
Thus, the variance of daily log-return(using ito’s isometry) and quadratic variation of log stock

price are given by

V ar(rt) = V ar(lnSt � lnSt�1) =

Z t

t�1
�2ds = �2

[lnS, lnS]t =

Z t

0
d lnSsd lnSs =

Z t

0
�2ds = �2t

21

Hence we can conclude that

V ar(rT) =
1

T
[lnS, lnS]T (2.2.9)

Applying ito’s formula to f(S) = ln(S)

d ln(St) =

✓
r � 1

2
�2

◆
dt+ �dWt

Then
1

2
�2dt =

dSt

St
� d ln(St)

By equation 2.2.9, the Realised Variance VT is given by

VT =
1

T
[lnS, lnS]T =

1

T

Z T

0
�2ds =

2

T

"Z T

0

dSt

St
�
Z T

0
d ln(St)

#

=
2

T

"Z T

0

dSt

St
� ln

ST

S0

#

=
2

T

✓
rT + �WT � ln

ST

S0

◆

=
2

T

✓
ln
�
erT
�
+ �WT � ln

ST

S0

◆

=
2

T

✓
�WT � ln

ST

erTS0

◆

=
2

T

✓
�WT � ln

ST

EQ [ST]

◆

=
2

T

✓
�WT � ln

ST

EQ [ST]

◆

Now we take the expectation under risk netural measure Q on both sides:

EQ [VT] = �
2

T
EQ

ln

ST

EQ [ST]

�

Thus, we can replicate the Realised Variance part by a log-contract ln ST

EQ[ST] . More specifically,

EQ [ST] = F where F is the forward price of the underlying stock S. Now we denote this log-
contract as ln ST

F .
Although we successfully replicated Realised Variance using log-contract, unfortunately, we

cannot trade log-contract. Therefore, the theory of static replication becomes crucial. We will
demonstrate how to apply this theory to log-contracts.

e�r(T�t)EQ [g (ST) | Ft] = e�r(T�t)g(H) + e�r(T�t)
�
EQ[ST]�H

�
+

Z H

0
g00(K)P (St,K, T) dK

+

Z 1

H
g00(K)C (St,K, T) dK

By choosing non-negative constant H = F , g(ST) = ln ST
F and notice that

g0(K) =
1

K
and g00(K) = � 1

K2

Thus

e�r(T�t)EQ

ln

ST

FT
| Ft

�
= e�r(T�t) ln

FT

FT
+ e�r(T�t)

�
EQ[ST]� FT

�
�
Z F

0

1

K2
P (St,K, T) dK

�
Z 1

F

1

K2
C (St,K, T) dK

= �
Z F

0

1

K2
P (St,K, T) dK �

Z 1

F

1

K2
C (St,K, T) dK

22

Thus, we can conclude that Realised Variance part in Variance Swap can be replicated by European
Calls and Puts option strips weighted by 1

K2 which is coincide the figure we showed before with
constant Dollar Gamma.

In summary, we do not trade variance swaps directly because the European call and put option
markets are large, liquid and easy to operate, and we can replicate variance swaps by trading
weighted delta-hedged options with di↵erent strike prices continuously for the purpose of capturing
VRP. In the following, we will use reinforcement learning to adjust our target vega to ensure
a utility function by trading weighted delta-hedged options to harvest VRP within prescribed
leverage limits. Detailed discussions will be presented in the next chapter.

23

Chapter 3

Reinforcement Learning
Prerequisites

3.1 Introduction of Reinforcement Learning

This chapter aim to introduce deep Q learning, which is a fusion of reinforcement learning and
deep learning. We will delve into the essence and application of the algorithm in this chapter, in
particular its application in harvesting VRP. The following reinforcement learning knowledge is
based on [7, silver, 2015] and detailed algorithm construction will be introduced later.

Imagine guiding someone to invest in stocks without explicitly informing them of the number
of stocks they are investing in. When they make a profit in the stock market, we consider the
money earned as a positive return. Conversely, when they lose money, we view the money lost
as a negative return. Over time, and after countless stock investing e↵orts, this person gradually
learns how to invest in stocks to maximise returns. This process of learning driven by rewards and
punishments encapsulates the essence of reinforcement learning.

In reinforcement learning, there are several representative terms: Agent, Action, Environment,
State, and Reward.

• The ”Agent” typically represents an entity capable of taking actions, such as the individual
in the aforementioned example.

• The ”Environment” refers to the surroundings perceived by the Agent during its activities,
like the stock market or the computer it operates in the given example.

• At its core, reinforcement learning is a process of interaction between the Agent and the
Environment. Throughout this process, the concepts of Action, Observation, and Reward
are indispensable.

• The ”Action” at denotes specific activities performed by the Agent to interact with the
Environment. In the stock market example, the quantity of stocks purchased is the action.

• The ”State” st encompasses a set of metrics observable from the Environment. Since the
Agent cannot perceive all the information within the Environment, we use the term ”Obser-
vation” to represent the available information. Stock prices, stock volume, and news are the
observable information in the given example.

• The ”Reward” rt serves as a criterion to judge the quality of the actions taken. If the stocks
generate profit, the reward is positive, and if there’s a loss, the reward is negative which
indicating the quality of the action.

We can find the entire interaction process of reinforcement learning in Figure 3.1 sourced from [7,
silver, 2015]. Now that we understand how the whole process works, the next step is to determine
the goal of the task. Typically, we set the goal as obtaining as many rewards as possible. The
more rewards we get, the better the agent will be able to complete the task. As can be seen from
3.1, at each time step t, we determine the action based on the observed state. Thus, there is a
mapping relationship between states and actions. A straightforward idea is that a state corresponds

24

Figure 3.1: Interaction process of reinforcement learning

to an action, which means that when an agent observes a particular state, it takes a particular
action. Another approach is probabilistic, viewing this mapping relationship as the probabilities
corresponding to di↵erent actions. The higher the probability associated with a particular action,
the more that action should be taken. Therefore, we call to this mapping relationship as the policy
⇡

a = ⇡(s) or ⇡(a|s)

Initially, we do not know what the optimal policy is. Therefore, we can start experimenting
with a random policy to obtain a series of samples of state, action and reward.

{s1, a1, r1, s2, a2, r2, ...}

Thus, reinforcement learning can improve the policy by learning from these samples, aiming to
achieve increasingly better Rewards.

3.1.1 Markov Decision Process

We have covered the structure of reinforcement learning. Next up is the model’s assumption — the
Markov Decision Process (MDP). The Markov Decision Process describes the entire environment,
i.e., the next state st+1 is entirely determined by the current state st.

Definition 3.1.1 (Markov Process). A process St is Markov if and only if

P = [St+1|S1, ..., St] = P = [St+1|St]

Markov process means the current state st encompasses all pertinent details from the past and
once the state is identified, the historical data becomes redundant.

Definition 3.1.2 (Markov Reward Process). A Markov Reward Process is a tuple

hS,P,R, �i

• S is a finite set of states

• P is a state transition probability matrix with Pss0 = P [St+1 = s0|St = s]

• R is a reward function with Rs = E [Rt+1|St = s]

• � is a discount factor with � 2 [0, 1]

25

3.1.2 Value function and Bellman Equation

Definition 3.1.3 (Return). The return Gt is the total discounted reward from time t.

Gt = Rt+1 + �Rt+2 + �2Rt+3 + ... =
1X

k=0

�kRt+k+1

where the discount factor � 2 [0, 1] represents the present value of future rewards.

The reason for introducing � discount factor is that people are usually more interested in
immediate rewards than in delayed rewards. If we represent rewards only in terms of return, then
we cannot fully observe the entire process unless it is over. Therefore, we introduce the value
function v(s) to represent the potential future value of a state.

Definition 3.1.4 (State value function). The state value function v(s) of an Markov decision
process is the expected return conditional on state s

v(s) = E [Gt|St = s]

We can obtain the optimal policy ⇡⇤ by using the state value function v(s). If we know the
value associated with each state, then we prefer states with higher values. Therefore, it is crucial
to estimate the state value function. Hence, we introduce the Bellman equation to estimate the
state value function.

Definition 3.1.5 (Bellman Equation). The state value can be decomposed into 2 parts as following

v(s) = E [Gt | St = s]

= E
⇥
Rt+1 + �Rt+2 + �2Rt+3 + . . . | St = s

⇤

= E [Rt+1 + � (Rt+2 + �Rt+3 + . . .) | St = s]

= E [Rt+1 + �Gt+1 | St = s]

= E [Rt+1 + �v (St+1) | St = s]

where we have used tower property E [Gt+1 | St = s] = E [E [Gt+1|St+1] |St = s] in the last equal-
ity.

More specifically, in the Markov Reward Process hS,P,R, �i

v(s) = Rs + �
X

s02S
Pss0v (s

0)

Typically, when we define a reward function, the premise is that given a certain state and
taking a specific action, we can determine the amount of reward. Therefore, we need to introduce
an action set to the Markov reward process.

Definition 3.1.6 (Markov Decision Process). A Markov Decision Process is a tuple hS,A,P,R, �i

• A is the action set

• P is a state transition probability matrix with Pa
ss0 = P [St+1 = s0 | St = s,At = a]

• R is a reward function with Ra
s = E [Rt+1 | St = s,At = a]

• � is a discount factor with � 2 [0, 1]

Definition 3.1.7 (Policy). In the environment hS,A,P,R, �i, a policy is the conditional distri-
bution of action given state

⇡(a|s) = P [At = a | St = s]

After introducing the policy, the probability of taking action in each state will follow the policy,
which is di↵erent from the previous random action. Therefore, we define the State Value function
and the Action Value function under the policy.

The State value function

v⇡(s) = E⇡ [Gt|St = s] = E⇡ [Rt+1 + �v⇡ (St+1) | St = s]

26

The Action value function

q⇡(s, a) = E⇡ [Gt|St = s,At = a] = E⇡ [Rt+1 + �q⇡ (St+1, At+1) | St = s,At = a]

The State value function can be represent by Action value function

v⇡(s) = E⇡ [Gt|St = s] = E⇡ [E⇡ [Gt|St = s|At = a]]

= E⇡ [E⇡ [Gt|St = s,At = a]]

= E⇡ [q⇡(s, a)]

=
X

a2A
⇡(a|s)q⇡(s, a)

The Action value function can be represent by State value function

q⇡(s, a) = E⇡ [Gt|St = s,At = a] = E⇡ [Rt+1 + �Gt+1|St = s,At = a]

= E⇡ [Rt+1 + �E⇡ [Gt|St = s] |St = s,At = a]

= E⇡ [Rt+1 + �v⇡(s)|St = s,At = a]

= Ra
s + �

X

s02S
Pa
ss0v⇡ (s

0)

Thus, combining with these 2 equation, we get the Bellman Equation for v⇡(s) and q⇡(s, a)

v⇡(s) =
X

a2A
⇡(a | s)

Ra

s + �
X

s02S
Pa
ss0v⇡ (s

0)

!

q⇡(s, a) = Ra
s + �

X

s02S
Pa
ss0

X

a02A
⇡ (a0 | s0) q⇡ (s0, a0)

3.1.3 Optimal value function and iteration method

Definition 3.1.8 (Optimal value function). The optimal state value function v⇤(s) is the maximum
state value function over all policies

v⇤(s) = max
⇡

v⇡(s)

The optimal action value function q⇤(s, a) is the maximum action value function over all policies

q⇤(s, a) = max
⇡

q⇡(s, a)

Definition 3.1.9 (Partial ordering over policies). Suppose there are 2 policies ⇡1,⇡2, if v⇡1 � v⇡2

for 8s, then
⇡1 � ⇡2

For any Markov Decision Process, there exists an optimal policy ⇡⇤ that is better than or equal
to all other policies, i.e. ⇡⇤ � ⇡, 8⇡.

Definition 3.1.10 (Policy Iteration). From the Bellman equation, we can infer that we can update
our state value function through iterative methods

vk+1(s) =
X

a2A
⇡(a | s)

Ra

s + �
X

s02S
Pa
ss0vk (s

0)

!

Policy Iteration typically consists of two steps:

• Policy Evaluation: Aiming to update the Value Function, or to better estimate the value
based on the current policy.

• Policy Improvement: Utilizing a greedy policy to generate new samples for the first step of
policy evaluation.

27

Algorithm 1: Policy iteration

Initialization: Randomly set V (s) 2 R and ⇡(a | s) 2 [0, 1] for all s 2 S;
Policy Evaluation;
while True do

� 0 ;
for each s 2 S do

v V (s);
V (s)

P
a2A ⇡(a | s)

�
Ra

s + �
P

s02S Pa
ss0vk (s

0)
�
;

� max(�, |v � V (s)|);
if � < ✓(a small positive number) then

break;

Policy Improvement;
policy true;
for each s 2 S do

a ⇡(s);
⇡(s) argmaxa Ra

s + �
P

s02S Pa
ss0V (s0);

if a 6= ⇡(s) then
policy false;

if policy then

stop and return v⇤ = V and ⇡⇤ = ⇡ ;
else

go to Policy Evaluation ;

Essentially, it involves generating new samples using the current policy and then using these
new samples to better estimate the policy values. Subsequently, the policy itself is updated using
the policy values, and this process is repeated. Theoretically, it can be shown that the policy will
eventually converge to the optimal value. The Policy iteration pseudo code

Definition 3.1.11 (Value Iteration). From the Bellman equation, we can define the optimal state
value function

v⇤(s) = max
a

E [Rt+1 + �v⇤ (St+1) | St = s,At = a]

= max
a

Ra
s + �

X

s02S
Pa
ss0v

⇤ (s0)

The iteration formula is given by

vk+1(s) = max
a

Ra
s + �

X

s02S
Pa
ss0vk (s

0)

Algorithm 2: Value iteration

Initialization: Randomly set V (s) 2 R and ⇡(a | s) 2 [0, 1] for all s 2 S;
while True do

� 0 ;
for each s 2 S do

v V (s);
V (s) maxa Ra

s + �
P

s02S Pa
ss0V (s0);

� max(�, |v � V (s)|);
if � < ✓(a small positive number) then

break;

⇡(s) = argmaxa Ra
s + �

P
s02S Pa

ss0V (s0);
Return ⇡(s);

28

3.2 Q learning algorithm

The concept of Q Learning is derived entirely from value iteration. However, it’s important to note
that value iteration updates the Q-values for all state-action pairs in each iteration. In practical
scenarios, we cannot enumerate all states and actions; we can only obtain a limited set of samples.
Thus, Q-learning provides us a new method for updating Q value based on Bellman Equation

Q (St, At) Q (St, At) + ↵
⇣
Rt+1 + �max

a
Q (St+1, a)�Q (St, At)

⌘

Algorithm 3: Q learning

Initialization: Step size ↵ 2 (0, 1], ✏ > 0, randomly set Q(s, a) 2 R for all s 2 S except that
Q(terminal state,·) = 0;

for each episode do

Initialize S;
for each step do

Choose A from S using policy derived from Q(s,a) (i.e. ✏-greedy);
Obtain action A, reward R, next state S0 ;
Q (S,A) Q (S,A) + ↵ (R+ �maxa Q (S0, a)�Q (S,A));
S S0;

3.2.1 Exploration and Exploitation

From the Q-learning algorithm, it’s evident that generating actions is a crucial step. Consequently,
two methods emerge for generating actions:

• Random generation: Using random actions corresponds to exploration, which means probing
the e↵ects of unknown actions, beneficial for updating Q-values and obtaining a better policy.

• Greedy policy: Using a greedy policy equates to exploitation. This approach might not be as
e↵ective for updating Q-values, but it can yield better test results to evaluate the algorithm’s
e�cacy.

• Combining both approaches results in ✏-greedy.

⇡(s) =

(
argmaxa2A(s) Q

⇤(S, a) probability 1� ✏

randomly select action from A(s) probability ✏

3.3 Deep Q learning(DQN)

In Q-learning, we need to record the Q-value of each action corresponding to each state. However,
in practice, this is challenging because the number of states can be very large. For example,
consider training an agent to play an Atari game [8, M. Volodymyr et al, 2013] where the input is
raw image data, specifically an image of 210x160 pixels, and the output is a set of key actions. In
this case, how many di↵erent states are there? Theoretically, if each pixel can have 256 di↵erent
values (due to the 8-bit colour depth), then the total number of states is 256(210⇥160), which is an
astronomical number! Faced with a high-dimensional state space, these states must be e�ciently
compressed or represented. Value Function Approximation (VFA) is one solution.

Definition 3.3.1 (Value Function Approximation). Value Function Approximation is use a func-
tion to approximate Q(s, a) by a function f(s, a) where f : S ! |A|. With Value Function
Approximation, we observe that regardless of the dimension of the input state, we can obtain a
corresponding action vector of a length equal to the number of actions. Consequently, we can
further represent this function using a unified parameter set, denoted as ✓.

Q(s, a) ⇡ f(s, a, ✓)

29

In this approach, a neural network takes a state as input and produces Q-values for all potential
actions. The networks becomes a function f : S ! |A| where |A| represents the number of action
and parameters are optimized to minimize the discrepancy between its predicted Q-values and the
target Q-values, which are based on the Bellman equation.

3.3.1 Deep learning for value function approximation

In this section, we introduce the feedforward neural network, which we will employ for value
function approximation. The feedforward neural network is defined as following[9, Lukas, 2022]:

Definition 3.3.2 (Feedforward neural network). Let I,O, r 2 N. A function f : RI ! RO is a
feedforward neural network (FNN) with r � 1 2 {0, 1, . . .} hidden layers, where there are di 2 N
units in the i-th hidden layer for any i = 1, . . . , r� 1, and activation functions �i : Rdi ! Rdi , i =
1, . . . , r, where dr := O, if

f = �r �Lr � · · · � �1 �L1, (3.3.1)

where Li : Rdi�1 ! Rdi , for any i = 1, . . . , r, is an a�ne function

Li(x) := W ix+ bi, x 2 Rdi�1 , (3.3.2)

parameterised by the weight matrix W i =
h
W i

j,k

i

j=1,...,di,k=1,...,di�1

2 Rdi⇥di�1 and the bias

vector bi =
�
bi1, . . . , b

i
di

�
2 Rdi , with d0 := I. We shall denote the class of such functions f by

Nr (I, d1, . . . , dr�1, O;�1, . . . ,�r) .

If �i(x) = (g (x1) , . . . , g (xdi)) ,x = (x1, . . . , xdi) 2 Rdi , for some g : R ! R, we write g in place
of �i.

The integers r, d1 . . . , dr�1 are called the hyperparameters of the FNN - to distinguish them
from the weights in W 1 . . . ,W r and biases in b1, . . . , br, which are the actual parameters of the
network.

Figure 3.2: Graphical representation of a feedforward neural network

To practically apply it to our value function approximation, we need to standardize the acti-
vation function, loss function and risk, and gradient descent method.

• Activation function: In our experiment, we choose rectified linear unit (ReLU) function as an
activation function in hidden layer and identity function as an activation function in output
layer since ReLU is computational simplicity and performing well in practice.

ReLU(x) := max {x, 0} and Id(x) = x

• Loss function and Risk: Suppose f : RI ! RO and f 2 Nr (I, d1, . . . , dr�1, O), loss function
is defined as

` : RO ⇥ RO ! R.

30

Given input x 2 RI and target value y 2 RO we compute the Loss as `(f(x),y).

If x and y are samples of joint random variables (X,Y), we could try to seek an optimal f
by minimising the risk

E[`(f(X),Y)]. (3.3.3)

In practice, we often don’t have access to the distribution of (X,Y), Instead, we rely on
empirical methods, using sampled data points x1, . . . ,xN of x and y1, . . . ,yN of y for some
N 2 N. As an empirical proxy of 3.3.3, we then work with empirical risk

L(f) := 1

N

NX

i=1

`
�
f
�
xi
�
,yi
�

(3.3.4)

We could define minibatch risk

LB(f✓) :=
1

#B

X

i2B

`
�
f✓

�
xi
�
,yi
�

(3.3.5)

• Gradient descent method: Euler approximation serves as the foundation for gradient descent,
an iterative method that incrementally searches for a minimizer using gradient updates:

✓new := ✓old � ⌘rF (✓old)

given some initial condition ✓0 and learning rate ⌘ > 0.

When working with neural networks, one might initially consider directly minimizing the
empirical risk LB (f✓), as outlined in 3.3.5. However, determining the gradient of LB (f✓)
can be computationally expensive, especially with a large value of N . Moreover, using
gradient descent on LB (f✓) might result in an overfitting model f✓. Due to these challenges,
stochastic gradient descent (SGD) is often the favored approach for training neural networks.

In SGD, the training data, denoted by indices 1,...,N, is partitioned into random minibatches.
These minibatches are then sequentially utilized to calculate gradient updates. To this end,
we fix minibatch size m ⌧ N , typically such that N is divisible by m, that is, N = km
for some k 2 N. We then sample uniformly minibatches B1, . . . , Bk ⇢ {1, . . . , N}, such
that #Bi = m for any i = 1, . . . , k, without replacement and B1, . . . , Bk are disjoint with
[ki=1Bi = {1, . . . , N}. Starting from initial condition ✓0, the parameter vector ✓ is updated
via

✓i := ✓i�1 � ⌘r✓LBi (✓i�1) , i = 1, . . . , k,

where LBi(✓) is minibatch empirical risk corresponding to Bi.

3.3.2 Implementation of the DQN Algorithm

We have already provided an in-depth introduction to deep learning. To train our neural network,
we require a substantial amount of sample data. We then update our parameters using gradient
descent through backpropagation. Consequently, for every input data pairs (s, a), we need to
assign a label Qtarget(s, a) as following

Qtarget(s, a) := Rt+1 + �max
a

Q(St+1, a)

Thus, the risk in neural network is defined as

L(✓) = E

⇣
r + �max

a0
Q(S0, a0, ✓)�Q(s, a, ✓)

⌘2�

The DQN algorithm is presented as following[8, M. Volodymyr et al, 2013]:
The algorithm is described primarily concerned with the Experience Replay technique which is

the way of the samples are stored and sampled. Given that the samples collected from the Atari
game are arranged chronologically, there is continuity between the samples. Due to the distribution
of the samples, updating the Q-value directly as each sample is received may lead to sub-optimal
results. Therefore, a straightforward approach is to store these samples first and then sample
randomly, which refect the essence of ”experiential playback”. From a neuroscience perspective,
the human brain employs a similar mechanism of learning through recall.

Thus, DQN is essentially centered around iterative experimentation and data storage. Once
enough data has been accumulated, random samples are drawn for gradient descent.

31

Algorithm 4: Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights ✓
Initialize target action-value function Q⇤ with random weights ✓⇤ = ✓
for episode= 1, ..., M do

Initialize sequence s1 = {x1} and preprocessed �1 = �(s1);
for t = 1, ..., T do

With probability ✏ select a random aciton at;
otherwise select at = argmaxa2A(s) Q

⇤(�(st), a; ✓⇤) (✏-greedy);
Execute action at in emulator and observe reward rt and state xt+1;
Set st+1 = xt+1 and preprocess �t+1 = � (st+1);
Store transition (�t, at, rt,�t+1) in D;
if number of samples in D is large enough then

Sample random minibatch of transitions (�j , aj , rj ,�j+1) from D ;

Set yj =

(
rj for terminal �j+1

rj + �maxa0 Q (�j+1, a0; ✓) for non-terminal �j+1
;

Perform a gradient descent step on (yj �Q (�j , aj ; ✓))
2 with respect to ✓;

3.3.3 Improvement of DQN by DDDQN

In this section, we will improve the DQN algorithm, thus introducing the Double Dueling DQN
(DDDQN) algorithm. We will explore the DDDQN algorithm in depth and perform numerical
experiments in following sections.

• Double DQN: A fundamental problem with DQN is the tendency to overestimate the Q-value.
This overestimation bias stems from the fact that the Q-value is derived from the maximum
target Q-value. Given that the Q-value estimates themselves contain noise, especially in the
early stages of network training, this can lead to overly optimistic Q-value predictions.

The Double DQN (DDQN) algorithm, proposed by [10, V. Hado et al,2016], mitigates this
overestimation bias by separating action selection from its valuation. Rather than employing
a singular network for both action selection and its assessment, DDQN utilizes the primary
Q-network for action determination and the auxiliary target Q-network for gauging the value
of the chosen action as following

The Double DQN (DDQN) algorithm proposed by [10, V. Hado et al,2016] to mitigate this
overestimation bias by separating action selection from its value evaluation. DDQN does not
use a single network for action selection and its evaluation. Instead it use the primary Q-
network to determine the action and the auxiliary target Q-network to measure the selected
action which is shown as following

Q(s, a) = r + �Q (s0, argmaxa0 Q⇤ (s0, a0; ✓⇤) ; ✓)

Experimental results show that DDQN solves the overestimation bias problem by separat-
ing the action selection and action evaluation processes compared to the traditional DQN
algorithm. This modification leads to more accurate Q-value prediction and higher training
stability.

• Dueling DQN: Based on the traditional DQN framework, Dueling-DQN proposes a refined
method[11, W. Ziyu et al,2016].The core principle of Dueling-DQN lies in the bifurcation of
its state-value representation V (s) and its corresponding action dominance function A(s, a),
which is designed to address the di↵erences in computational requirements between di↵erent
actions. Combining V (s) and A(s, a), then

Q(s, a) = V (s) +A(s, a)

Within the same neural network, we divide the output layer into two parts: one to estimate
the state-value function V (s) and the other to estimate the advantage function A(s, a). These

32

two parts are then combined to produce the output for estimating Q(s, a). Subsequently,
these two parts are combined to produce the output used to estimate Q(s, a). The rationale
behind this design of the Dueling DQN is to decouple the state value function from the
advantage function in the Q value function. The state value function is only responsible for
assessing the quality of a state, while the advantage function only measures the importance
of each action in that state. Then Q function reflects the extent to which taking a particular
action increases the value of a particular state. By ensuring that each branch focuses on its
respective task, the accuracy of the prediction is improved.

However, it is not feasible to train a neural network simply by adding value and advantage
functions. In the equation Q = V+A, given Q, recognizing the respective values of V and
A is problematic due to their ”unidentifiability”. To solve this problem, a technique was
proposed in the research: limiting the maximum value of Q to coincide with the value of
V ensures that the peak of the advantage function is zero and all other values are negative.
This allows for accurately determining the value of V so that all advantage can be calculated.
Here is the training methodology:

Q(s, a) = V (s) +

✓
A(s, a)� max

a02|A|
A(s, a)

◆

The paper also suggests another training methodology as following:(Read more details in
paper[11, W. Ziyu et al, 2016]):

Q(s, a) = V (s) +

A(s, a)� 1

|A|
X

a0

A(s, a)

!

33

Chapter 4

Implementation of DDDQN

4.1 Delta-hedging with DDDQN

In this section, we will discuss how to use the DDDQN algorithm aiming to train an agent for
delta hedging through the construction of a reward function. Subsequently, we will introduce the
formulation of the problem. To implement this algorithm, we require 6 components: stock price
model, option parameters, state, action, reward function and neural network parameters.

• Stock price model: Assuming the stock prices follows Geometric Brownian motion

dSt = rStdt+ �StdW
Q
t

Assuming expiry date = T(Year) and we split the date into N+1 samples, t0, t1, ..., tN and
simulation scheme of the stock prices is given by

Sti = exp

(
log(S0) +

k=iX

k=1

(r � �2

2
)(tk � tk�1) + �

p
tk � tk�1Nk

)

where N1, ...,NN are iid standard normal random variables.

• Option parameters: We aim to delta-hedged 1Y ATM call option with following parameters

Flag call
Volatility �t 0.15
Step size �t 1
Maturity T 365
Interest rate r 0
Strike price K 100
Initial Stock price S0 100

Table 4.1: Option Parameters

• State: We define the stock prices St and time to maturity ⌧ = T � t as the state at time t
forming a tuple

st = {St, ⌧} 2 S
.

• Action: We aim to learn the BS-delta and recall that 0  �call  1, we define action
at 2 [0, 1] represents the quantity of stocks used for hedging. Since DQN addresses problems
with discrete actions, we partition the action set into 101 segments, corresponding to

at 2 A := {0.00, 0.01, ..., 0.99, 1.00}

• Reward function: Recall that we have showed E[⇧t] = 0 for each t where ⇧t is the pnl of
delta-hedged portfolio. Thus, the reward is constructed as following:

rt = �E
⇥
|ati(Sti � Sti�1)� (Cti � Cti�1)|

⇤

which implies that agent will be penalised by incorrect delta-hedge.

34

• Neural network parameters:

hidden layers activation function ReLU
Output layers activation function Id
Number of input(state) dimension 2
Number of hidden layers 2
hidden layers dimension 64
Number of output(action) dimension 101

Table 4.2: Neural Network Parameters

The implementation of DDDQN algorithm is based on [12, fschur, 2021].

Algorithm 5: Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights ✓
Initialize target action-value function Q⇤ with random weights ✓⇤ = ✓
Initialize gradient decent algorithm: Adam with learning rate adjustment scheduler:
StepLR

Initialize algorithm parameters: learning rate = 0.001, � = 0.99, ✏ = 1, ✏ - decay = 0.999,
step - size = 1000*64, update-rate ⌧ = 0.005

for episode= 1, ..., M do

Initialize sequence s0 = {S0} where S0 is stock price at time 0 ;
for t = 0, 1, ..., T do

With probability ✏ select a random aciton at;
otherwise select at = argmaxa2A(s) Q

⇤(st, a; ✓) (✏-greedy);
Execute action at in emulator and observe reward rt and state xt+1;
Set st+1 = xt+1 and store transition (st, at, rt, st+1) in D;
if number of samples in D is large enough then

Sample random minibatch of transitions (sj , aj , rj , sj+1) from D ;

Set yj =

(
rj for terminal sj+1

rj + �Q (s0, argmaxa0 Q⇤ (s0, a0; ✓⇤) ; ✓) for non-terminal sj+1
;

Perform a gradient descent step on (yj �Q (sj , aj ; ✓))
2 with respect to ✓ where

Q(s, a) = V (s) +

A(s, a)� 1

|A|
X

a0

A(s, a)

!

Update target network parameters with polyak update (soft update):

✓0 ⌧ ⇤ ✓ + (1� ⌧) ⇤ ✓0

35

After training, the expected reward is plotted against the number of episodes in Figure 4.1

Figure 4.1: Graphical representation of expected reward against the number of episodes

As we can see from Figure 4.1, the expected reward basically converges to around 0 after
230 episodes. This indicates that the agent’s training performance is particularly good, and the
algorithm converges rapidly. The oscillation in the reward can be said to the fact that the states
used in each episode are simulated and action is predicted from greedy algorithm, which in turn
causes the reward to fluctuate.

To further assess whether our agent has accurately predicted the BS delta, we have plotted
both the BS-delta and the agent’s action in Figure 5.1.

Figure 4.2: Graphical representation of agent delta and BS delta with respect to stock price

This section provides a foundational experiment on the DDDQN algorithm. In next section,
we will discuss how to backtest the strategy and apply the algorithm to reality problems.

36

Chapter 5

Backtesting DDDQN algorithm

5.1 Performance Metrics

In this chapter, we introduce the method for calculating the index I, which consists of the total
PnL(profit and loss) of all positions in a strategy. This methodology helps to more e↵ectively
compare the PnL of di↵erent strategies as a benchmark for evaluating their relative merits.

Assuming start Index I0 = 100 and the index at time t+1 is given by

It+1 = It(1 +
X

legs i at time t

!i
t+1(V

i
t+1 � V i

t))

It+1 = It + It
X

legs i at time t

!i
t+1(V

i
t+1 � V i

t)

where V i
t represents the $ value of leg i at time t. Now, we will introduce several important

Performance Metrics.

• Sharpe Ratio:

Definition 5.1.1 (Sharpe Ratio). The Sharpe Ratio is a tool used to assess the return
of an investment relative to its risk. This metric provides a way to directly compare the
performance of one investment with another. The Sharpe Ratio quantifies the additional
return per unit of risk taken and is defined as

Sharpe Ratio =
Portfolio Return-Risk-Free Rate

Portfolio Standard Deviation

• Annual Return:

Definition 5.1.2 (Annual Return). The annual return simply denotes the percentage vari-
ation in an investment’s value over one-year period. It’s a basic measure that investors rely
on to measure the yearly performance of their investments which is computed as:

Annual Return =

✓
Portfolio Final Value

Portfolio Initial Value

◆ 1
Number of Years

� 1

• Cumulative Returns:

Definition 5.1.3 (Cumulative Returns). Cumulative returns provide a comprehensive per-
spective on the overall return of an investment for a given duration which can be expressed
as:

Cumulative Return =
Portfolio Final Value

Portfolio Initial Value
� 1

• Max Drawdown:

37

Definition 5.1.4 (Max Drawdown). Maximum drawdown is a measure that captures the
most significant decline in a portfolio’s value from its peak to its lowest point, prior to
reaching a new peak. It represents the most unfavorable potential loss of an investment over
a specified period of time. The formula is as follows

Max Drawdown t =
maxs<t Ps � Pt

maxs<t Ps

• Calmar Ratio:

Definition 5.1.5 (Calmar Ratio). The Calmar Ratio is a performance metric that contrasts
the Annual Return with the max drawdown which can be expressed as:

Calmar Ratio =
Annual Return over 3 years

Max Drawdown over 3 years

• Value at Risk(VaR):

Definition 5.1.6 (VaR). VaR is a prevalent risk assessment methodology that estimates
the potential decline in the value of the portfolio over a period of time, based on a specified
confidence level ↵ which can be defined as:

VaR↵(X) = � inf {x 2 R : FX(x) > ↵}

where X represents Portfolio PnL.

5.2 Performance of static replication of Variance Swap

In this chapter, we will provide a practical experience on the performance metric for the delta-
hedged portfolio replicating a Variance swap. Furthermore, since our testing set includes the
occurrence of market turbulence, we will also present the drawdown in 2020 corresponds to covid19
market crash. The following are the specific parameters of the delta-hedged portfolio.

Option underlying: S&P 500
Option date range From 2019 to 2021
Option type OTM
Delta hedging frequency Daily
Target vega 15 bps

Table 5.1: Option Parameters in S&P 500 with static replication

The statistics of delta-hedged portfolios is given by

Annual return Cumulative returns Annual volatility Sharpe ratio
0.001% 0.004% 0.007% 0.21
Calmar ratio Max drawdown 5% value at risk
0.11 -0.013% -0.001%

Table 5.2: Statistics of delta-hedged portfolios

The statistics of Undelta-hedged portfolios is given by

Annual return Cumulative returns Annual volatility Sharpe ratio
0.004% 0.0013% 0.011% 0.42
Calmar ratio Max drawdown 5% value at risk
0.29 -0.015% -0.001%

Table 5.3: Statistics of Undelta-hedged portfolios

As can be seen from the table, the PnL on the hedged portfolio is lower than the PnL on
the unhedged portfolio on average. This is because the di↵erence in PnL between the two port-
folios is reflected in the delta PnL. Moreover, the delta-hedged portfolio is short gamma. This

38

Figure 5.1: Index value of 2 portfolios

leads us to buy when the underlying price rises and sell when it falls. As a result, our pnl de-
creases.Undeniably, delta hedged portfolio lacks risk from delta PnL. Therefore, overall risk and
volatility are reduced. While the Sharpe and Kalmar ratios indicate a higher return-to-risk ratio
for the unhedged portfolio, the max drawdown for the unhedged portfolio is also higher. This is
the last thing option traders, and especially asset managers want to see. And reducing the max
drawdown is our primary goal later on through the reinforcement learning agent. Reducing the
max drawdown is our main goal to be achieved by the reinforcement learning agent later. Lastly,
we observe that at the beginning of 2020, the PnL of both strategies experienced a cli↵-like drop,
mainly due to the impact of the covid-19 epidemic on the financial markets, which led to the
promotion of multiple meltdowns in several indices such as S&P 500, Nasdaq and so on within a
month. The drop of S&P 500 even ranked third in its history.

5.3 Volatility premium harvesting with help of DDDQN

In this section, we will have the reinforcement learning agent learn how to determine our static
portfolio exposure and based on a certain risk preference to harvest the VRP. In the following, we
will provide the framework of the DDDQN algorithm to implement this task. Similarly, we need
to define following components

• Option parameters: We aim to delta-hedged OTM option with following parameters

Underlying S&P 500
Training option date From 2015 to 2018
Testing option date From 2019 to 2021
Option type OTM
Delta hedging frequency Daily

Table 5.4: Option Parameters in S&P 500 using DDDQN

• State: State is the value of portfolio following the bump of the options underlying with
following shifts.

st =
n
⌫�20%
t , ⌫�15%

t , ⌫�10%
t , ⌫�5%

t , ⌫0%t , ⌫5%t , ⌫10%t , ⌫15%t , ⌫20%t

o
2 S

.

39

• Action: Recall that the static portfolio replicating Variance Swap is given by

1

K2

✓
@C

@S
S � C

◆

Notice that Vega(Variance Swap) = Vega(delta-hedged portfolio), we control the leverage by
specifying the target vega ⌫target of the portfolio we want to obtain, thereby achieving the
purpose of capturing the VRP as following

⌫target
�
@C
@S S � C

�

K2

such that

Total vega of portfolio = ⌫target ⇥Vega(weighted delta-hedged portfolio)

Therefore, the agent is tasked with predicting how much vega exposure we need at each time
t. Moreover, we need to set a threshold for this ⌫target to prevent excessive use of leverage.
Here, we limit the ⌫target 2 [0.15%, 2.25%]. Meanwhile, we split the action space into 101
segments,

at = ⌫targett 2 A := {0.15%, ..., 2.25%}

• Reward function: Our goal is to reduce the max drawdown. Therefore, we need to construct
a utility function that makes us more averse to drawdowns. Naturally, we thought of the
following function:

rt = E

2

4log

8
<

:1 + c⇥ It ⇥
X

legs i at time t

!i
t+1(V

i
t+1 � V i

t)

9
=

;

3

5

where c is a positive constant to preserve enough curvature. This utility function indicates
that when current Strategy Index It is large, we penalize more if we loss money to achieve
the e↵et of drawdown penalization by the concave property of log function.

• Neural network parameters:

hidden layers activation function ReLU
Output layers activation function Id
Number of input(state) dimension 9
Number of hidden layers 1
hidden layers dimension 64
Number of output(action) dimension 101

Table 5.5: Neural Network Parameters in S%P 500

40

The implementation of DDDQN algorithm is based on [12, fschur, 2021].

Algorithm 6: DDDQN with soft update

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights ✓
Initialize target action-value function Q⇤ with random weights ✓⇤ = ✓
Initialize gradient decent algorithm: Adam with learning rate adjustment scheduler:
StepLR

Initialize algorithm parameters: learning rate = 0.0001, � = 0.8, ✏ = 1, ✏ - decay = 0.99,
step - size = 10*90, update-rate ⌧ = 0.005, batch-size = 32, M = 101

for episode= 1, ..., M do

Initialize sequence s0 = {S0} where S0 is stock price at time 0 ;
for t = 0, 1, ..., T do

With probability ✏ select a random aciton at;
otherwise select at = argmaxa2A(s) Q

⇤(st, a; ✓) (✏-greedy);
Execute action at in emulator and observe reward rt and state xt+1;
Set st+1 = xt+1 and store transition (st, at, rt, st+1) in D;

if episode > 2 then

for j = 0, 1, ..., T do

Sample random minibatch of transitions (sj , aj , rj , sj+1) from D ;

Set yj =

(
rj for terminal sj+1

rj + �Q (s0, argmaxa0 Q⇤ (s0, a0; ✓⇤) ; ✓) for non-terminal sj+1
;

Perform a gradient descent step on (yj �Q (sj , aj ; ✓))
2 with respect to ✓ where

Q(s, a) = V (s) +

A(s, a)� 1

|A|
X

a0

A(s, a)

!

Update target network parameters with polyak update (soft update):

✓0 ⌧ ⇤ ✓ + (1� ⌧) ⇤ ✓0

41

After training, the expected reward is plotted against the number of episodes in Figure 5.2.

Figure 5.2: Graphical representation of expected reward against the number of episodes in training
model

As we can see from Figure 5.2, we can observe that after 3-4 episodes, the algorithm begins to
converge. This implies that our reward function has a good curvature. The subsequent oscillations
in the Expected values are due to the use of epsilon-greedy to select actions during the training
process. Thus, there will be slight fluctuations. Finally, we can demonstrate our training success
through PnL and performance metrics.

The PnL of agent traded and constant target vega is given by Figure 5.3.

Figure 5.3: Graphical representation of PnL of agent traded and constant target vega

In order to achieve higher returns while maintaining the Sharpe ratio, we leverage up our
portfolio 1 where the pnl is given by Figure 5.4.

1
The proof is give in the Appendix

42

Figure 5.4: Graphical representation of PnL of agent traded and constant target vega with leverage

The statistics of the agent PnL is given by

Annual return Cumulative returns Annual volatility Sharpe ratio
0.001% 0.002% 0.002% 0.38
Calmar ratio Max drawdown 5% value at risk
0.18 -0.003% -0.0002%

Table 5.6: Statistics of the agent PnL

The statistics of the constant target vega PnL is given by

Annual return Cumulative returns Annual volatility Sharpe ratio
0.001% 0.004% 0.007% 0.21
Calmar ratio Max drawdown 5% value at risk
0.11 -0.013% -0.001%

Table 5.7: Statistics of the constant target vega PnL

We can see that the out of sample data has seen a significant decrease in volatility while
maintaining similar annualized returns. In addition, both the Sharpe Ratio and the Calmar Ratio
have improved significantly. The max drawdown has reduced substantially. One more crucial point
is that our strategy keeps performing well even under market crash which is exactly what we want.

43

Conclusion

This thesis focuses on 3 main modules, one is how to harvest VRP and another is how to use
reinforcement learning to help us harvest the most VRP for a specified level of risk aversion and
the last is backeting on S&P500 option data. The success of the first part comes from the static
replication theorem, which allows us to replicate the Variance Swap using a liquid and easily
tradable European call and put option such that our portfolio is exposured to volatility directly.

In the second part of the reinforcement learning algorithm, we mainly focus on DQN algorithm,
while in order to address the problem of the tendency of ordinary DQNs to overestimate the Q-value
and to separate the state function from the value function, we introduce the DDDQN algorithm
which make sure that each branch specialises in its respective task, aiming to improve the accuracy
of the predictions.

During the algorithmic backtesting in the third part, we conduct two tests in total. The first
test is to test whether the agent of the DDDQN algorithm predicts the BS-delta accurately. Based
on the backtesting results, the algorithm converges after about 200 episodes, which is relatively
fast, and the action predicted by the agent overlap with the BS-delta mostly. It can be said that
the DDDQN algorithm solves this problem e�ciently. In the second test we first define Index to
calculate the pnl of our strategy and define performance metric to measure quality of the pnl.
Then, VRP is harvested by defining a specific utility function in the DDDQN algorithm to reduce
the Max Drawdown. In the training process of the algorithm, our training data is S&P500 option
data from 2015-2018 and the test data is S&P500 option data from 2019-2021. It is worth to note
that there are two significant benefits to selecting the 2019-2021 data as the test set. One is to
test the performance of our strategy in out of sample, and the other is to test the performance
of our strategy under a market crash(covid epidemic), or occurrence of turbulence. Ultimately,
our algorithm converges well after fewer episodes and our pnl significantly reduces Max Drawdown
and volatility. Our risk is reduced substantially, but our return is relatively not reduced a lot, as
evidenced by the sharpe ratio, we gain almost double sharpe ratio compared to the constant target
vega strategy.

There are many areas where our research could be improved. Since we trade a lot of call put
options, we need to consider the bid-o↵er spread as well as the transaction cost. We can observe
that there are many strategies work historically when these factors are not taken into account,
so the addition of these two metrics can bring our strategy closer to reality, resulting in a more
accurate PnL. We can also start to improve the model parameters of reinforcement learning, such
as the number of episodes, the type of activation function, batch-size, and so on. Given our limited
data, we only have 4 years of training data, and we can get more data, as well as clean and update
the data to get high-quality training data. We can also test the performance of our strategy in the
event of market crash such as the 2008 financial crisis.

In conclusion, our research combines a lot of mathematical proofs and coding, which is a major
challenge, I need to develop deeply and rigorously into mathematical proofs and need to study the
composition of the algorithm architecture to achieve our task. Furthermore, I need to optimise the
data processing as well as the algorithm which greatly enhanced and honed my capabilities.

44

Appendix A

Technical Proofs

A.1 Leverage has no e↵ect on Sharpe ratio

Sharpe ratio is define as
R� r

�

where R is the return.
Assume that we leverage up n times. The return becomes n⇥R and

� =
p
V ar(nR) = n

p
V ar(R) = n�

At first glance, it seems our Sharpe ratio would change because r remains unchanged, but
leveraging is not free, so r becomes n⇥ r. Thus, Sharpe ratio becomes

nR� nr

n�
=

R� r

�

45

Bibliography

[1] Wei Ge. A survey of three derivative-based methods to harvest the volatility premium in
equity markets. The Journal of Investing, 25(3):48–58, 2016.

[2] Peter Carr and Liuren Wu. Variance risk premiums. The Review of Financial Studies,
22(3):1311–1341, 2009.

[3] Gurdip Bakshi and Nikunj Kapadia. Delta-hedged gains and the negative market volatility
risk premium. The Review of Financial Studies, 16(2):527–566, 2003.

[4] Ioannis Karatzas, Steven E Shreve, Ioannis Karatzas, and Steven E Shreve. Stochastic di↵er-
ential equations. Brownian Motion and Stochastic Calculus, pages 281–398, 1988.

[5] Olivier Daviaud and Abhishek Mukhopadhyay. Linking the performance of vanilla options to
the volatility premium. Risk, July, 2022.

[6] Sebastien Bossu, Eva Strasser, and Regis Guichard. Just what you need to know about
variance swaps. JPMorgan Equity Derivatives Report, 4, 2005.

[7] David Silver. Lectures on reinforcement learning. url: https://www.davidsilver.uk/

teaching/, 2015.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[9] Lukas Gonon. Lecture notes in math70116 - deep learning 2022-2023, February 2022.

[10] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[11] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR, 2016.

[12] fschur. Deep-reinforcement-learning-for-hedging. url: https://github.com/fschur/

Deep-Reinforcement-Learning-for-Hedging, 2021.

46

