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Abstract

In the financial industry it is not uncommon to work with models that have a big number of
risk factors leading to a high dimensional pricing problem. An example is the valuation of basket
options. Well known numerical techniques such as the finite difference method or the American
Monte Carlo have been extensively studied and are widely used in low dimensions. When the
dimensionality increases the computational cost of such techniques becomes prohibitively high.
This phenomenon is known as the “curse of dimensionality”. Moreover in the Counterparty Credit
Risk (CCR) space it is required to price a derivative not only at one time instant but through
whole simulated paths for the risk factors. For this, it is industry standard to resort to some
pricing acceleration techniques that avoid having to compute the price at each time instant for
each simulated path.

In this thesis we study Deep Learning techniques that have the potential to solve the existing
impediments in high dimensional problems and can be used to accelerate the pricing process. We
desire to test if the techniques available in the literature, and two novel ones we propose, can be
used in the industry. One of this new approaches allows to work under a parametric approach,
making it more generic. This study was carried in the context of the creation of a counterparty
credit risk bench-marking library which requires generic pricers that can deal with high dimension-
ality and different parameters. With this in mind a key advantage of the proposed techniques is
that they are general enough to be used under any dynamics of the underlying and payoff structure.

After testing these techniques we have found higher errors than expected and proposed ap-
proaches to mitigate this problem that will be studied in further research.
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Introduction

A financial derivative is an instrument whose value derives from an underlying asset. These instru-
ments are commonly utilised for hedging and speculation, making the pricing and risk management
of derivatives a critical task for financial institutions and investors. As a direct outcome of the
financial crisis, significant transformations have taken place in the risk management practices of
financial institutions. There is now a widespread acknowledgment that accurate contract valua-
tion must incorporate the risk of counterparty default. This is the Credit Valuation Adjustment
or CVA. If an institution considers its own default risk this is done through the Debit Valuation
Adjustment or DVA. If relevant, other adjustments like funding costs (FVA), regulatory capital
costs (KVA), collateral cost (CollVA), etc. In general, these total valuation adjustments (XVA)
are incorporated into the pricing paradigm making calculations more complex. As a starting point
it requires valuing the contract not only at time 0 but also at future times.

An example on why the valuation at future times is required can be found in the formulas for
CVA or DVA ([12, Def. 2.3.1]):

CVA0 =

∫ T

0

E
[
(1−RecC)D(0, t)V̂ +(t)1t≤τ<t+dt

]
(0.0.1)

DVA0 =

∫ T

0

E
[
(1−RecB)D(0, t)V̂ −(t)1t≤τ<t+dt

]
(0.0.2)

where D(0, t) represents the discount factor between times 0 and time t, Reci the recovery from
the counterparty (i=C) or the bank (i=B). The above expectation is taken under the risk neutral
measure. The terms V +(t) and V −(t) are the discounted expected positive and negative exposure,
that will be explained in section 3.2.5, and depend on the value of the portfolio in the future.
For this calculation one plausible approach involves simulating a big number of risk factors paths
and employing pricing techniques across the different paths. This requires not only the knowledge
of prices at valuation time, but also calculating the prices at future time points t ∈ (0, T ).
Then there should be careful consideration to choose the pricing technique for the products in the
first place. The most desirable pricing technique will be to have a closed form formula such as the
well known Black-Scholes formula ([8]) that computes the price at time t of a European call option
on a stock, following a Geometric Brownian Motion (GBM):

Ct(St,K, σ) = StN (d+)−Ke−r(T−t)N (d−), (0.0.3)

where

d1 :=
lnSt

K +
(
r + σ2

2

)
(T − t)

σ
√
(T − t)

, d2 = d1 − σ
√

(T − t)

and where N denotes the cumulative distribution function of the Gaussian random variable, K is
the strike, σ the volatility, r the risk free rate and T the maturity.

Unfortunately closed form formulas are rarely available for more complex products or underlying
dynamics and numerical techniques are required instead. In a front office environment, where only
the price at valuation time matters, commonly used techniques include Monte Carlo simulation,
finite difference methods or the Longstaff and Schwartz [41] regression, also known as American
Monte Carlo. Each technique has some advantages or disadvantages compared with the others.
For example finite difference methods are able to provide the so called “Greeks” (sensitivities with
respect to the risk factors), that are useful for hedging purposes, American Monte Carlo is able to
handle options with early exercise features, such as Bermudan options. This techniques have been
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deeply studied and applied in low dimensional problems and are very effective. Their drawback is
their difficulties to perform well in high dimensional settings where they become computationally
infeasible as their computational complexity increases with the dimension. This is known as the
“curse of dimensionality” already postulated in the work of Bellman in [6]. High dimensionality
can happen even at an individual trade level if the derivative is affected by a big number of risk
factors.
In the counterparty credit risk (CCR) space it will be computationally unfeasible to call a front
office pricer for each time instant realization of the risk factors across different paths. As a solution,
it is industry standard to resort to fast pricers which use interpolation or regression techniques on
prices obtained for a number of points using front office pricers.

An additional layer of complexity is introduced when the assumptions of XVA calculations
are relaxed to a more realistic setting. For example in the case of replacement closeout (meaning
that at default event the value of the trade is calculated considering default risk of the remaining
participant) or asymmetric funding costs the valuation at time t needs to account for the XVA at
future times, resulting in a recursive valuation. In this case XVA calculations require very specific
mathematical tools as can be found in [50] or [13], where they use variants of the well known
American Monte Carlo.

Finally all of the valuation paradigms require a selection of parameters representing the market
conditions (volatility, discounting, correlations ...). It would be advantageous to incorporate these
parameters as part of our pricing function, enabling us to price derivatives under different market
scenarios without the need to re-train the pricing function from the beginning. This means working
under a parametric valuation approach. This has been studied in [23] in the context of solving
PDEs.

Valuation problems, both with and without default can be formulated as a Backward Stochas-
tic Differential Equation (BSDE), whose solution provides the value of the portfolio at different
time instants. The inconvenience is that solving a BSDE is in general not simple. New numerical
approaches, that leverage the recent interest and growth in the field of Deep Learning, try to offer
solutions to BSDEs, hence opening a set of new derivative valuation techniques. This numerical
methods are generally known as Deep (BSDE) Solvers.

In this thesis we investigate different Deep BSDE Solvers present in the literature, and asses
their application in the pricing of financial derivatives, which can help in XVA calculations solving
some of the above explained challenges. This is of high interest because Deep BSDE Solvers
have the potential to combine all the advantages of the traditional numerical methods explained
(obtaining the Greeks, handling early exercise options) and offer their owns: not affected by the
curse of dimensionality and can be used under any dynamics model. Therefore, once operative,
Deep BSDE solvers can be used as generic pricers to work for any product and any model. We
have restricted to simple settings for the numerical examples.

The structure of the thesis is as follows: firstly, in chapter 1 we give some background on
BSDEs, their usefulness in mathematical finance and connection with PDEs. In chapter 2, we
review deep learning covering neural networks, common architectures, important theorems and
training techniques. Chapter 3 starts with a summary of the existing literature on the use of neural
networks to solve high dimensional problems. We discuss several representative approaches in detail
and also propose an improvement to existing methods which significantly reduces numerical errors.
Additionally, in this chapter we also include some numerical results to compare numerical accuracy
of different methods. This is done in the context of derivative pricing. Finally, in chapter 4, we
develop a parametric approach that generalises chapter 3, and is able to deal with the problem of
changing market conditions. We do this by using a neural network that not only learns the pricing
value as a function of time and state variables, but also parameters. This novel approach has not
been studied in the literature in the context of BSDEs and we believe it has great potential to
build fast pricing methods.
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Chapter 1

BSDEs

In the first chapter we develop the basic background theory for Backward Stochastic Differential
Equations BSDEs, their relation with Partial Differential Equations (PDEs) and formulate why
BSDEs are of interest in the study of financial mathematics. This part of the dissertation is
mainly based on technical references such as the book from Jianfeng Zhang [55], lecture notes from
Bouchard [10] and Perkowski [46].

1.1 Why BSDEs?

Differential equations are a well known tool in mathematics, as they are able to represent the
dynamics of a deterministic system. They can be understood in terms of relations between how a
function changes under infinitesimal changes in its corresponding variables. Although the system is
deterministic the relationships can be very complex. When the system stops being deterministic,
and we add some noise, we need to use more advanced tools to understand the dynamics of a
random system. This is the purpose of Stochastic Differential Equations or SDEs which intuitively
characterise the behaviour of a stochastic process over time (in a more formal setting we suppose
we are working in a filtered probability space with the usual conditions). The theory of SDEs
was developed in the 1940s by Kiyosi Itô [34]. In reality there is no clear notion of what is an
infinitesimal change in a random variable. Hence, SDEs have to be understood in an integral sense:

Xt = X0 +

∫ t

0

µ (s,Xs) ds+

∫ t

0

σ (s,Xs)dWs, 0 ≤ t ≤ T (1.1.1)

where the first integral is in the Lebesgue sense (this term is also known as drift), the second
integral is an Itô integral (also known as diffusion term) and X0 is the initial condition (which can
be deterministic or random with a known distribution). The term Wt represents n-dimensional
Brownian motion. Note that we use the notation now and in the following A instead of A to
represent that it can be a multidimensional process (vector) in Rd. The above equation is equivalent
to its so called differential notation form:{

dXt = µ (t,Xt) dt+ σ (t,Xt)dWt,

X0 = ξ
(1.1.2)

and a solution is a process X adapted to the filtration (Xt is Ft-measurable for all t). It can be
shown that under certain suitability hypothesis a process satisfying the above equation exists (see
for example: [55, Chapter 3]). Stochastic differential equations have applications in several fields
such as biology, physics, and, as it will be seen through this dissertation, in finance (see for instance
[44]). In fact, one of the most well known examples is the case where r and σ are constants, with
µ (t,Xt) = r and σ (t,Xt) = σ ·Xt, where the process represents the price of an asset under the
risk neutral measure, with initial price X0. In this case Xt follows a geometric Brownian motion
and we can price a call option obtaining formula 0.0.3. An example on how the paths of an SDE
evolve is shown in figure 1.1.

A question arises if we would like to study the process’s behaviour running backwards in time.
In other words, what happens if instead of having an initial condition, we only have information
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about the terminal conditions or the value of the process at time T . In the case of deterministic
dynamics given by an Ordinary Differential Equation, or ODE, we simply revert time and we would
still have an ODE but in the case of randomness in the system, we need to introduce a new object,
the backwards stochastic differential equation or BSDE. The theory of BSDEs was firstly
developed by Bismut in [7] and then extended to the nonlinear case by Pardoux and Peng in [45].
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Figure 1.1: Evolution of stock price processes started at S0 = 100 under different diffusion dynam-
ics. On the right we have Black-Scholes dynamics with µ (t,Xt) = r, σ (t,Xt) = σXt in equation
1.1.1. On the left we have a Heston model where µ (t,Xt) = r but σ (t,Xt) =

√
VtXt being Vt also a

stochastic process. The black line represents the evolution of the path without noise (Xt = ert)X0),
and the colored lines represent different realisations of random paths.

To see why this new object is necessary, we study the simplest possible case of such a problem.
Let T < ∞ be a finite time horizon, and (Ω, {F}t,F,P) be a filtered probability space which
supports and n-dimensional Brownian motion Wt, where F is the natural filtration generated by
the Brownian motion with assumed right continuity, and completed with P-null sets. We have the
following equation:

dYt = 0 · dWt YT = ξ

with ξ FT being measurable, we would like its solution to be adapted to the filtration as well. The
solution has to be Yt = ξ but this it not adapted as we would require ξ ∈ F0. To avoid this problem
we make use of the martingale representation theorem. We recall the definition of a martingale:

Definition 1.1.1 (Martingale.). We say a stochastic process X : Ω × [0, T ] → Rd on a filtered
probability space is a martingale if:

1. X is adapted to the filtration

2. E [∥Xt∥] <∞ ∀t

3. E [Xt | Fs] = Xs

Theorem 1.1.2 ([55] Theorem 2.5.2). Let ξ be FT measurable in the above probability space.
There exists a unique square integrable process (meaning integrable in the L2 sense) Zt such that:

ξ = E [ξ] +

∫ T

0

Zs · dWs (1.1.3)

and consequently for any martingale X in the filtration such that E
[
|XT |2

]
< ∞ there exists a

unique process Zt such that:

Xt = X0 +

∫ t

0

Zs · dWs (1.1.4)

For a FT - measurable random variable ξ, it can be immediately seen,by the tower property,
that the random variable Yt = E [ξ | Ft] is a martingale. Hence, by theorem 1.1.2 there exists a
unique process Zt adapted to the filtration such that:

E [ξ | Ft] = E [ξ | F0] +

∫ t

0

Zs · dWs (1.1.5)
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which rearranging leads to:

E [ξ | Ft] = E [ξ | F0] +

∫ T

0

Zs · dWs −
∫ T

t

Zs · dWs

Yt = ξ −
∫ T

t

Zs · dWs

using that E [ξ | FT ] = ξ, by measurably, leading to a BSDE, which in a more general case can
have a (possibly random) drift term, hence taking the form:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

Zs · dWs (1.1.6)

where f is the generator and Zt will be commonly referred to as the control process. We write
it in differential notation as: {

−dYt = f(s, Yt,Zt)ds− Zt · dWt

YT = ξ

We can extend everything to a multidimensional setting without loss of generality. In the case
of BSDEs, a solution is not an individual process verifying the equation but a pair of processes
(Yt,Zt) verifying equation 1.1.6. The question is if any such pair even exists.

1.2 Existence, uniqueness and FBSDEs.

In this section we show the main results in relation to BSDE solutions and develop BSDEs further
to obtain the Forward Backward Stochastic Differential Equation or FBSDE, for short. We begin
with some assumptions.

Assumption 1.2.1. The random variable ξ is square integrable, and the generator function is:

1. F-measurable in all variables,

2. uniformly Lipschitz continuous in (y, z) with constant L,

3. f(0, 0, 0) is integrable.

Theorem 1.2.2 ([55] Theorem 4.3.1). Under the above assumptions the BSDE 1.1.6 has a unique
solution.

Example 1.2.3. We start by showing one of the simplest applications of BSDEs in finance.
Consider a financial market with a risky asset whose price, St, evolves following a Stochastic
Differential Equation (SDE) as in equation 1.1.1, a money market with instantaneous risk free rate
r and a contract paying at maturity g(ST ). We want to develop a replicating self-financing trading
strategy (λ, h)t where the first entry represents the amount invested in the money market and the
second entry the money invested in the risky asset. Then the infinitesimal evolution of the value
at time t (Vt) of this trading strategy is: why do you start by showing, there is only this example
????

dVt =
ht

St
dSt + λtrdt =

ht

St
dSt + (Vt − ht)rdt = rVtdt+ htσ(t, St)dWt

with terminal condition g(ST ), in order to replicate the payoff. The calculation of the price of a
derivative Vt will represent the numerical examples in following sections and will be referred to as
the problem of pricing.

We observe in the above example that the random terminal condition depends on ST and hence
on an SDE. This dependence is formalised in the concept of FBSDEs.

Definition 1.2.4 (FBSDE). Let (Ω, {F}t,F,P) be a filtered probability space with a d-dimensional
Brownian motion {dWt}, ξ a d-dimensional random vector. Let f : R×Rd×R→ R, µ : R×Rd →
Rd, σ : R × Rd×d → Rd be deterministic functions. Let Xt, Yt and Zt be square integrable,
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adapted stochastic processes. A decoupled Forward Backward Stochastic Differential Equation
is a system of two stochastic differential equations:

Xt = ξ +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs) · dWs, (1.2.1)

Yt = g(XT ) +

∫ t

0

f(s,Xs, Ys)ds+

∫ t

0

Zt · dWt (1.2.2)

where the first one is called the forward equation (or diffusion) since it starts with an initial
condition. The second equation is called backward equation.

It is called decoupled because the forward equation has no dependence on the backward term.
This can be extended to add extra dependence in a fully-coupled FBSDE (the term µ in the
diffusion depends on Yt). However, this lies outside our scope of study. Additionally, we have
assumed that Yt is a 1-dimensional real valued random variable, in order to better fit our purpose
of pricing derivatives, but this is without lost of generality.

A solution to the above FBSDE is a triple (Xt, Yt,Zt) of processes where X is a solution to the
SDE, and (Yt,Zt) is a pair solving the BSDE. We can change the setting slightly with an initial
condition at some other time point Xt = ξ for t ∈ (0, T ).

Assumption 1.2.5. In addition of assuming that f, σ, µ, g are deterministic functions, we may
assume:

1. µ(·, 0), σ(·, 0), g(0), f(·, 0, 0, 0) are bounded

2. µ, σ, f, g are uniformly Lipschitz continuous in space variables with Lipschitz constant L

3. µ, σ, f are uniformly Hölder- 12 continuous in t with constant L

By theorem 1.2.2 it follows that the FBSDE has a unique solution under the above assumptions.
The last assumption is only required for convergence results that will be used in chapter 3.

1.3 Generalised Feynman-Kac formula

One of the most well known results in the theory of SDE is their connections with PDEs through
the Feynman-Kac formula, in the 1-dimensional version:

Theorem 1.3.1 ([56] Theorem 16.). Let u(t, x) ∈ C1,2([0, T ],R) with the bounded derivative in
the second entry, satisfying the PDE:

ut(t, x) + µ(t, x)ux(t, x) +
1

2
σ(t, x)2uxx(t, x)− r(t, x)u(t, x) = 0 ∀(t, x) ∈ [0, T )× R

with terminal condition u(T, x) = g(x), with r being a non-negative function. Then u has a
representation:

u(t, x) = E
[
e−

∫ T
t

r(s,Xt,x
s )dsg(Xt,x

T )
]

where X satisfies the SDE:

dXt,x
s = µ(t,Xt,x

s )ds+ σ(s,Xt,x
s )dWs

where the notation Xt,x means the stochastic process started at time t in Xt = x.

It would be interesting then to have a similar connection in the case of BSDEs in a generalised
version of the Feynman-Kac theorem. Generally, solving a (F)BSDE is not a straightforward task.
Therefore, having this connection allows us to transform a PDE problem into a stochastic calculus
one, and vice-versa, allowing the application of a wider range of techniques to identify the solu-
tion. It is in our particular interest to have this connection since it would allow us to apply any of
the numerical techniques in further chapters to a PDE via its identification with the appropriate
BSDE, transferring high dimensional problems.
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We define the semi-linear parabolic PDE:{
∂tu(t, x) + Ltu(t, x) + f(t, x, u(t, x),∇xu(t, x)σ(t, x)) = 0

u(T, x) = g(x)
(1.3.1)

where Lt is the differential operator:

Ltu =

d∑
i=1

µi(t, x)∂xiu+

d∑
i,j

σi,j(t, x)∂xi,xju

Definition 1.3.2. Let u ∈ C1,2([0, T ] × Rd). We say u is a classical solution of the PDE 1.3.1 if
for all (t, x) ∈ [0, T )× Rd, u satisfies the interior condition.

Theorem 1.3.3 (Generalised Feynman-Kac formula. [46] Theorem 4.). Assume u ∈ C1,2([0, T ]×
Rd,R) is a classical solution of the partial differential equation 1.3.1 Then:

Y t,x
s = u(t,Xt,x

s ) Zt,x
s = ∇Xu(t,Xt,x

s ) (1.3.2)

where the process (Xt,x
s , Y t,x

s ,Zt,x
s ) is the unique solution of the FBSDE 1.2.1.

Proof. We simplify notation and only see the 1-dimensional case. By Itô’s lemma (using differential
notation) we have that:

du(t,Xt) = ∂tu(t,Xt)dt+ ∂xu(t,Xt)dXt +
1

2
∂xxu(t,Xt)dXtdXt

= ∂tu(t,Xt)dt+ ∂xu(t,Xt)(µ(t,Xt)dt+ σ(t,Xt)dWt) +
1

2
∂xxu(t,Xt)σ(t,Xt)

2dWtdWt

=

[
∂tu(t,Xt)dt+ ∂xu(t,Xt)µ(t,Xt) +

1

2
∂xxu(t,Xt)σ(t,Xt)

2dWtdWt

]
dt+ ∂xu(t,Xt)σ(t,Xt)dWt

= f(t,Xt, Yt,∇xu(t,Xt)σ(t,Xt))dt+ ∂xu(t,Xt)σ(t,Xt)dWt

where the last equality comes from the PDE solution. Compare to the backwards equation in 1.1.6
and we get that it is a solution if:

Zt = ∂xu(t,Xt)σ(t,Xt)

The terminal condition of the BSDE is satisfied by the PDE boundary condition.

Remark 1.3.4. This result adds some additional information. Noticing that ∇Xu is in fact
the delta of the valuation process, we are obtaining a connection of the control process Zt and
the hedging strategy for a derivative. This relation will prove particularly useful in some of the
numerical techniques to be presented.

It naturally follows to investigate when the opposite case will hold, namely, when a solution to
the FBSDE represents a solution to the PDE. In case of regularity, as in the conditions of u defined
in theorem 1.3.3, we have the opposite implication under assumptions 2.2.1. In a more general
setting we will have a weak form solution also known as the viscosity solution. This can be thought
of as having a function that behaves slightly differently from a C1,2 function which is a classical
solution. To avoid delving into very technical details which may require a lengthy development,
we restrain to this intuitive notion of viscosity solutions, and we refer to [55] for further details.
This is of our interest because through the entirety of this thesis we are solving the Black Scholes
PDE which is equation 1.3.1 with f(t, x, u(t, x),∇xu(t, x)σ(t, x)) = −r · u(t, x), and the boundary
condition given by the payoff function.
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Chapter 2

Deep Learning

A crucial part of the techniques used in this project is the use of Deep Learning Models. In this
chapter we aim to give the formal background required to develop further ideas. We follow [27]
and [28]. In section 2.1 we give the mathematical definition of a (Feed-forward) Neural Network.
After that, in section 2.2 we will provide the theoretical results that explain why Neural Networks
are a good choice for the purposes we have. Finally, we explain in section 2.3, 2.3 how do Neural
networks learn by training them with data.

In general, we can think of a deep learning problem as designing a function N : RN → RM that
turns inputs (x1, . . . , xN ) into outputs (y1, . . . , yM ) in an optimal way which is to be defined. What
we will be doing is trying to learn an unknown (possibly non-linear) function f from some available
data. A first requirement to being able to learn this function is having N to live in a sufficiently
rich functional space where we can search. To make this a problem that we can computationally
tackle, we normally choose N to be determined by a set of parameters θ ∈ Θ and we try to find
the optimal parameters (this is further explained in [28]). For this purpose neural networks are a
very helpful resource.

We can see neural networks as a composition of parameterised functions. Therefore, a key
concept in a Neural Network is understanding how the information flow of values move through
this composition, or internal structure of the network. This inner structure is called network
architecture, and there are several of them depending on the particular task to be achieved.
Although there are general, well known, architectures such as Recurrent Neural Networks, or
Long-Short Term Memory Networks, it is necessary to have a good understanding of the problem
in order to choose the correct architecture. This could, for example, include using a net to reduce
dimensionality to a latent space and another part to bring it back to the original dimension (auto-
encoder [28, Chapter 14]), or generating new data (GAN [28, Chapter 20]) or classification tasks.

2.1 Neural Networks

In the architectures we will be using, we will first focus on the simplest kind of neural network as
a building block: The Feed-forward Neural Network (FNN). It is in essence a function created by
composing trivial affine functions with non-linear activation functions. A formal definition will be:

Definition 2.1.1 (Feed-forward Neural Network.[27], Def. 2.1). Let N,M, r ∈ N. A function
N : RN → RM is a Feed-forward Neural Network with r − 1 hidden layers and with di ∈ N units
in the i−th hidden layer for i = 1, . . . , r− 1, together with the activation functions σi : Rdi → Rdi ,
where di = M , if N is given by the composition:

N = σr ◦ Lr ◦ · · · ◦ σ1 ◦ L1 (2.1.1)

where the functions Li : Rdi−1 → Rdi are affine for any i = 1, . . . , r:

Li(x) := W ix+ bi, x ∈ Rdi−1 (2.1.2)

The matrix W i =
[
W i

j,k

]
j=1,...,di;k=1,...,di−1

∈ Rdi×di−1 is the weight matrix, and the bias vector is

bi ∈ Rdi with d0 := N .
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Figure 2.1: Feed-forward Neural Network with 3 hidden layers taking inputs in R5 and giving a
real value. The architecture is r = 3, d0 = 5, d1 = d2 = 8 and the output has d3 = 1. The vertex
represent the activation function of the network and the lines represent the weights. The image is
done using the NN-SVG package from [38].

Definition 2.1.2. The set of all functional defined by the above structure is:

Nr(N, d1, . . . , dr−1,M ;σ1, . . . , σr)

It is common to have activation functions that act component wise, σ(x) = (g(x1), . . . , σ(xN )).
In this case we will simply use g instead of σ.
Two key concepts to take from the above definition are the parameters, made by the weights
and the biases of the network, as well as the hyperparameters which are the dimensions of each
vector space in the network. Knowing both of them, the network N is completely defined and
the difference between parameters and hyperparameters is that parameters are learnt, whereas
hyperparameters have to be chosen in advance. The depth of the network is given by the number
of hidden layers, and the dimensionality of each layer is called the width.

The following simple lemma will be helpful to compare the complexity of networks in the
following chapters:

Lemma 2.1.3. [27] Proposition 2.4 The number of parameters of N ∈ Nr(N, d1, . . . , dr−1,M ;σ1, . . . , σr)
assuming the activation functions do not involve additional parameters is:

r∑
i=1

(di−1 + 1)di (2.1.3)

An additional interesting property of the FNN is that they preserve some differentiability and
continuity properties of, at least, the least differentiable of their activation functions. This result
is reassuring, given that we will be approximating derivatives of functions in our work, we expect
some differentiability properties. The result is trivially true given that we are using the composition
of affine functions which are infinitely differentiable with the activation functions. We formalise
this in the following:

Lemma 2.1.4 ([27] Proposition 2.6). Let N be a Feed-forward Neural Network and let its activation
function σi ∈ Cmi(Rdi) for some mi ∈ N ∪ {0} ∪ {∞} for any i = 1, . . . , r then it holds:

N ∈ Cmin (mi)(RN ,RM )

A fundamental aspect of the neural network architecture, as demonstrated earlier, lies in the
selection of appropriate activation functions, a variety of which can be found in the literature,
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with each presenting distinct advantages and drawbacks, necessitating careful considerations when
committing to a choice. A comprehensive summary of these activation functions can be found in
[54]. For the present study we will solely focus on mentioning activation functions deployed in this
paper: identity, ReLU, and ELU.

The identity is the trivial function Id(x) = x which is then C∞. For our purposes we will use
it in the output layer to allow for negative values. Even though its differentiability properties are
desirable, it would not be beneficial to use it in every layer, as it will then not make any difference
with respect to an affine function. Moreover the derivative of the function is constant 1 which can
be detrimental in the learning process as it adds no information to gradient descent.

The Rectified Linear Unit (ReLU), defined as σ(x) = (x)+, is a widely adopted activation
function in deep learning due to its simplicity and ability to facilitate fast convergence [25]. Despite
these advantages, ReLU suffers from a well-known issue referred to as the ’dead-ReLU problem’.
This occurs when a layer in the network outputs solely negative values, which, after passing through
the ReLU layer, are transformed to 0 in every entry, effectively causing the gradient-based training
algorithm to freeze.
To address this limitation, we turn to another activation function, the exponential linear unit or
ELU, proposed by Clevert in [19], and defined as:

σ(x) = α(ex − 1)1x<0 + x1x≥0

which is C1 if we chose α = 1. The ELU and ReLU functions can be seen in 2.2.
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Figure 2.2: ReLU VS ELU activation function. The non-negativity of ReLU has often lead to dead
gradients in the training of some methods of section 3.

2.2 Universal approximation

Deep learning became popular under the expectation that our neural networks has the capability
to represent the objective function. In this matter there is a reassuring theoretical result that
states that every good enough function can be approximated by a neural networks.Furthermore,
this paper will show this this can be extended to operators. For the moment we give the theorem
for real valued function.

Assumption 2.2.1. Let σ verify:

1. is not polynomial function,

2. is bounded on any finite interval,

3. the closure of the sets of all discontinuity points of σ in R has zero Lebesgue measure

We immediately observe that the activation functions we have shown verify these assumptions.

Theorem 2.2.2 (Universal approximation theorem for functions. Theorem 1[39]). Let σ : R→ R
be a measurable function which verifies the assumptions 2.2.1, K ⊂ RN a compact set and ϵ > 0.
Then:
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1. For any function f ∈ C(K,R), there exists d ∈ N and N ∈ N2(N, d, 1;σ, Id) such that:

sup
x∈K
|f(x)−N (x)| < ϵ

2. For any p ≥ 1 and any measurable function f : K → R (assuming it is measurable under the
LP (K) norm) there exists d′ ∈ N and h ∈ N2(N, d′, 1;σ, Id such that:(∫

K

|f(x)−N (x)|pdx
)1/p

< ϵ

In practice, the result has limited practical applicability as it does not provide the specific
network structure required for a given problem, and most utilized architectures differ from those
proposed by the theorem. The hope is that this generalises for deeper networks. Furthermore, this
result does not ensure the convergence of solutions, as challenges such as numerical noise, local
minima, or poorly conditioned problems may impede convergence. Consequently, this theorem
merely serves as a theoretical reassurance that approximating functions using neural networks is
indeed possible.

2.3 Loss function and Neural network training.

Having identified the objective (learning a function) and the mathematical object to be employed
for its attainment, the next step involves contemplating the methodology. A fundamental aspect
of Deep Learning lies in evaluating the quality of the approximation function with respect to the
true function. This assessment is not inherent in the network’s structure but rather found by a
loss function, denoted as L : RM × RM → R. In our settings we will not have information about
the true value of the output of the function we want to approximate for a given set of inputs.
Therefore we have an unsupervised learning problem and desire to minimise the risk:

E [l(N (x))]

which will be computed over a sample batch B. Given a set of weights and biases by definition
2.1.1, it is clear that our function is completely determined. Hence, we can write the empirical loss
function as a function of the parameters θ:

l(θ) =
1

#B

∑
i∈B

l(N (x),y)

where B is a set of samples or batch.

Remark 2.3.1. We will normally use θ to represent the parameters of a neural network, and Θ
for the space this parameters are in, which is immediately dependent on the context.

After formulating the loss function, the next crucial step involves devising a method to obtain
a minimizer. We provide a concise overview of the most common techniques employed in machine
learning for this purpose.

A well known method is gradient descent which updates the parameters θ for a batch B as:

θnew = θold − η · ∇θ(B)

where η is a hyperparameter called learning rate and ∇ is the gradient of the loss function with
respect to the parameters of the neural network.

However, computing the gradient with respect to a whole data set can be costly and can lead
to over-fitting. To prevent this from happening the common choice is stochastic gradient descent
(SGD) which only does the training over random subsets of the training set called mini-batches.
Essentially we will split the data into disjoint subsets, B =

⊔
i=1 Bi and do the iterations as

explained in algorithm 1. Each loop in step 2 of the algorithm is call anepoch.
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Algorithm 1 Stochastic Gradient Descent

Require: Learning rate η, number of epochs T ,
Require: Training data (x(1)), (x(2)), . . . , (x(n))
1: Initialize model parameters θ ∈ Θ
2: for t = 1 to T do
3: Randomly split training data into n mini-batches Bi.
4: for i = 1 to n do
5: Compute the gradient: ∇θL(θ | Bi)
6: Update the parameters: θ ← θ − η · ∇θL(θ | Bi)
7: end for
8: end for
9: return Learned model parameters θ

The correct behavior of the algorithm is dependent on both the selection of an appropriate
set of initial parameters and a suitable learning rate. Choosing an excessively large learning rate
may avoid convergence, while an excessively small one may significantly delay the convergence.
Additionally, very big scale differences between the initial parameter of the network may lead to
local minima avoiding convergence.

To address these challenges, we opt to initialise our weights using the Xavier Initialiser from
[24], which employs a random normal distribution with zero mean and variance, determined by the
layer’s hyperparameters. The randomness avoids symmetric behaviour within the network that
can lead to problems in training, and it avoids the weights being too small or too big.

Regarding the learning rate, several interesting approaches are available:
- piece-wise constant function with powers of the form 10−i,
- exponential decay function, and
- Adam optimiser (proposed in [35]) as seen in algorithm 2.

Algorithm 2 Adam Optimizer

Require: Learning rate α, β1, β2, number of iterations T
Require: Training data (x(1)), (x(2)), . . . , (x(n))
1: Initialise model parameters θ
2: Initialise first moment variables: m← 0
3: Initialise second moment variables: v ← 0
4: Initialise time step: t← 0
5: for t = 1 to T do
6: Randomly shuffle the training data
7: for i = 1 to n do
8: Compute gradient: grad← ∇θL(θ | Bi)
9: Update biased first moment estimate: m← β1 ·m+ (1− β1) · grad

10: Update biased second moment estimate: v ← β2 · v + (1− β2) · grad⊙ grad
11: Correct bias in first moment: m̂← m

1−βt
1

12: Correct bias in second moment: v̂ ← v
1−βt

2

13: Update parameters: θ ← θ − α · m̂√
v̂+ϵ

14: end for
15: end for
16: return Learned model parameters θ

The computation of the gradients is done automatically in machine learning. For this purpose
we used TensorFlow [1] in our code.

17



Chapter 3

Solving BSDEs with Neural
Networks

In this core chapter chapter of the thesis, we explore the details on the numerical schemes to
solve BSDEs using machine learning. To this end we start section 3.1 with an in-depth review
on the existing literature and applications, providing a comprehensive context for the subsequent
discussions. In section 3.2 we explain the schemes that use one network at each time step in the
discretisation of the system, both in a forward (subsection 3.2.1) and backward (3.2.2) manner.
A third, novel approach, is proposed combining both in order to reduce the error pathwise. After
that, we focus on architectures that share the network through time in section 3.3, which will be
building block for the next chapter.

3.1 A review on the literature.

There is a considerable literature on deep learning techniques to solve high dimensional problems
focusing on (semi-linear elliptic) PDEs and BSDEs. There are different approaches, but in general
we could classify them in those using the PDE structure directly, namely Physics Informed Neural
Networks (PINN), and those using the BSDE formulation. A summary of the different techniques
can be found in [9].

The PINN method relies on minimising the discrepancy of the neural network approximation
from verifying the PDE in the inner domain and in its boundary conditions. In [49] and [48]
Raissi et al. developed the method and discussed data selection in the context of Burger’s, or
Navier-Stokes equations.

The BSDE approach is introduced by Han, Jentzen and E in [31] and [20]. They complement the
work in further research towards the boundaries of its errors given in [32]. Their method formulates
the PDE as a BSDE, use a discretisation of the time under an Euler scheme and then solves it
by approximating the control process at each time step with a Feed-forward Neural Network. The
results they obtained are very accurate approximations, although it is somewhat obscure whether
said methods lead to over-fitting given the high number of parameters and high flexibility of the
network. An additional drawback of this method is that it does not return u(t, x) and Du(t, x)
(the solution function and its gradient) for t, x outside of the trained trajectories, or trajectories
starting from a different initial condition. The final, and main, downside of this method is that
they simulate the BSDE in a forward manner and use the terminal condition only as part of the
loss function. This does not allow for early exercise features which require a backward simulation,
and, in a purely mathematical sense, it breaks the backwards nature of the BSDE.

The problem of early exercise features is addressed in several papers. The first one, which is a
natural continuation of Han’s et al. work, can be found in paper[52]. In this paper the authors run
the BSDE approximation starting on terminal conditions and try to make all paths converge to the
same initial value, as Y0 should be a function of X0 exclusively, in a Markovian framework. This is
done in the context of pricing Bermudan Swaption under a LIBOR Market Model, which creates a
high dimensional problem. The authors in [40] claim that in the Bermudan example, there is a bias
obtained by overestimating the continuation. They proposed a solution by combining the BSDE
approach with the traditional AMC regression to obtain better approximations for the continuation
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value. As the authors show, the combination of the two methods removes the bias at the high price
of computational efficiency. In their examples, the authors found that for European options their
method is on average 6 times slower than forward Monte Carlo methods and 4-5 times slower in
American options, compared to AMC. Liang et al. tested the method using computers and high
performance servers and concluded that their method is only convenient when memory overflow
occurs. In their setting the authors use this happens exclusively when running on a CPU in more
than 20 dimensions.

Some error boundaries, of what we will call the Backwards BSDE Solver, are shown in [21]
where they prove that the variance at the initial time upperbounds the error. In [37] the authors
essentially use a version of American Monte Carlo where they avoid a set of basis functions and use
a neural network instead. Very recently in [30] Guo et al. proposed using Doob’s decomposition to
approximate the American option price and avoid the bias. They consider networks to approximate
the martingale term and super-martingale term in the decomposition.

An orthogonal approach to using neural networks to approximate the pricing function can be
found in [3], [4], [5] and [29], where they construct the exercise boundary through a neural network
instead of the price itself.

Mixed approaches combining ideas from PINN and BSDE are found in [43], [47] and [18] in
the case of American options. Essentially, they approximate the pricing function with a neural
network instead of the control process but then combine part of the PDE and the BSDE in their
loss functions.

In the present study, our attention shall be directed towards methodologies that operate directly
with the BSDE without an extra layer of complexity.

3.2 One net at each time

The first approach we follow is approximating the the control processes in BSDE 1.1.6 with a
neural network.

3.2.1 A Forward Scheme

For the first method we follow the ideas proposed in [31] and [20]. We start with a decoupled BSDE
(possibly a PDE formulated as a BSDE) as in equation 1.2.1 which lives in a filtered probability
space (Ω, {F}t,F,P). We are looking for a solution which is a triple {(Xt, Yt,Zt)}t∈[0,T ] verifying
1.2.1. We recall that X,Z are d−dimensional stochastic processes and Yt ∈ R is a 1−dimensional
process. As mentioned before Y,Z are functions of X and the following relations holds:

Yt = u(t,Xt) Zt = σT (t,Xt)∇u(t,Xt) (3.2.1)

We are interested in the computation of u(t,Xt) via a neural network. As explained in chapter 2
we need to decide the architecture and then a loss, which will require training data for the learning
process. We first explain the architecture.
Consider an Euler scheme for the forward dynamics:

Xtn+1
= Xtn + µ(Xtn , tn)∆tn + σ(Xtn , tn) · dWtn

Xt0 = X0

where n = 0, 1, . . . , N − 1, tn is the time at step n over a equidistant partition of [0, T ], and X0 is
the initial value of the forward process. The Euler scheme can also be applied to the backwards
process:

−dY = f(t,Xt, Yt,Zt)dt−Zt · dWt

leading to:
Ytn − Ytn+1 = f(tn,Xtn , Ytn ,Ztn)∆tn −Ztn · dWtn

which can be rewritten as:

Ytn+1
= Ytn − f(tn,Xtn , Ytn ,Ztn)∆tn +Ztn · dWtn (3.2.2)

Contrary to the Euler scheme, in the forward part we do not know the initial condition Y0 but
rather a terminal condition g(XT ) (coming from the payoff function of a financial derivative). We
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also do not know the values of Zt at the step times and here is precisely where we use the power
of neural networks.

The initial condition Ŷ0 and Ẑ0 are treated as parameters that can be learnt in our model and
the control process at each time step tn, Ztn is parameterised in [31] by a neural network using
the relation 3.2.1:

Ztn = (σT∇u)(t,Xtn) ≈ σ̂T∇utn(θ |Xtn) (3.2.3)

As learnable parameters, Ŷ0 and Ẑ0 are randomly initialised at the start of training. In our
experiments we found that this seemingly random selection of initial values requires careful con-
sideration, as it is a source of high instability. We have found convergence issues can arise, even for
simple products like European put options, if the initial choice is too far from the right solution.
To ensure a satisfactory initial guess, we propose two approaches.

The first approach (specially in a practitioners side) involves using the last Mark-to-Market
(MtM) value obtained. The second performing a Monte Carlo forward simulation to obtain the
discounted payoff. The initial value Z0 does not exhibit problematic behavior and does not require
any special fit.

Additionally, in the work [31], the authors briefly mention an extension to handle the case
where X0 = η with η being a random variable. We have attempted to implement this extension by
replacing the random initial values Ŷ0 and Ẑ0 with an additional FNN N (η). However, we prefer
not to study this approach at this time, as it can be formulated as a parametric approach, hence
contained in the last chapter framework.

In our work have introduced a subtle modification by using the prior structure and then split-
ting the volatility term from the gradient in the neural network. We expect this to have some
advantages. In terms of implementation, the learning of the volatility at each moment in time
would not be embedded inside the control process, thereby allowing us to work with more general
volatility structures. Therefore, at each time step our network is:

Ztn = (σT∇u)(t,Xtn) ≈ (σT (t,Xtn)∇̂utn(θ |Xtn)). (3.2.4)

Figure 3.1: Data Flow of the Forward BSDE Architecture: In blue the learnable parts of the high
level architecture. The arrows represent flows of information and which functions the variables go
through for the next step according to equation 3.2.2. At the end we compare terminal values in
the loss function.

Hence we can think of the above scheme as a neural network operator:

N : Θ× Rd×N × Rd×N → R

where Ŷ0, Ẑ0 are included in Θ (the space of parameters), which runs all the iterations of the Euler
scheme in 3.2.2 requiring the whole path trajectory of the forward SDE and Brownians as input
data. The high level architecture of the network is represented in figure 3.1.By the BSDE structure
we have that:

YtN = g(XtN )

If it were the case that, at each time, the sub networks were exactly the gradient, Ŷ0 = Y0 and
Ẑ0 = Z0and we ignore the discretisation error of the Euler scheme, we would have:

ŶtN = N
(
θ | {Xi}tN=T

i=t0
, {dWi}tN=T

i=t0

)
= g(XtN )
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Thus it makes sense to consider the loss:

L(θ) = E
[(
N
(
θ | {Xi}tN=T

i=t0
, {dWi}tN=T

i=t0

)
− g(XtN )

)2]
(3.2.5)

In practice this expectation will be computed by M Monte Carlo sampling paths. Then optimiza-
tion algorithms are used to get θ. Normally the Adam optimiser is used. The whole training
algorithm can be found in algorithm 3. Each Y j

ti in the algorithm corresponds to u(ti,X
j
ti) so we

can obtain values for realised paths, but for a given pair t,Xt, that is not in a simulated path we
cannot compute u(t,Xt).

The main advantage of this method is that, after training, we obtain an estimation of the
initial Y0 as well as the gradients. Financially the gradients are the deltas, necessary for hedging
purposes, which will need re-evaluation if we were using other Monte Carlo techniques.

Algorithm 3 Deep Forward BSDE Solver

Require: Time grid ti, i = 1, . . . , N , initial X0, M number of sample paths, A = number of
training steps.

1: Simulate data: {Xi}tN=T
i=t0

keepBrownians {dWi}tN=T
i=t0

2: Initialize N parameters θ ∈ Θ
3: for a = 1 to A do
4: for i = 0 to N , j = 1 to M do
5: Y j

ti+1
= Y j

ti − f(ti,X
j
ti , Y

j
ti ,Z

j
ti)∆ti + (σ(t,Xj

ti)
T ∇̂u(θ | ti,Xj

ti)) · dW
j
ti

6: end for

7: Compute L(θ) =
∑M

j=1

(
Ŷ j
tN − g(Xj

tN )
)2

8: Update parameters (Adam)
9: end for

10: return Ŷ0, Ẑ0

Remark 3.2.1. We are trying to give a general framework where the generator f can take any
form. In pricing problems with a unique risk free interest rate and no valuation adjustments the
generator will be:

f(t,x, y, z) = −rt · y
being rt the risk free interest rate.

The convergence of the method is justified by the following results which we state in a slightly
more general setting than the one above allowing extra dependence on Y , Ẑt = N (Xt, Yt).

Theorem 3.2.2 ([32], Theorem 1). Let π be a equidistant partition of the interval [0, T ], X̂π,

Ẑπ, Ŷ π represent the approximated solutions to the BSDE by the above scheme, and X̂, Ẑ, Ŷ
represent the true solution. Under the assumptions 1.2.5 together with linear growth in the functions
Ẑt(Xt, Yt) there exists a constant C independent of the partition norm and d such that:

sup
t∈[0,T ]

(
E
[
|Xt − X̂π

t |2
]
+ E

[
|Yt − Ŷ π

t |2
])

+

∫ T

0

E
[
|Zt − Ẑπ

t |2
]
dt ≤ C

(
∥π∥+ E

[
|g(Xπ

T )− Ŷ π
T |2
])

for sufficiently small ∥π∥, where Âπ
t = Âπ

ti for t ∈ [ti, ti+1) A ∈ {X,Y, Z}.

Theorem 3.2.2 proves an upper bound on the simulation error by the chosen loss function
in our learning process. Theorem 3.2.3 provides an upper bound of the loss function with the
approximation capabilities of the functional space. This indicates that if this space is rich enough,
such as in Deep Neural Networks, we can have a small loss function, and together with the previous
theorem, the approximated solution of the FBSDE should be close to the actual solution.

Theorem 3.2.3 ([32], Theorem 2). Under the same assumptions there exists a constant C inde-
pendent of ∥π∥ and d such that:

inf
θ∈Θ

E
[
|Y π

T − g(X̂π
t )|2

]
≤ C

(
inf
θ∈Θ

{
E
[∣∣∣Y0 − Ŷ0

∣∣∣2]+ N−1∑
i=0

E
[∣∣∣E [Z̃ti | X̂π

t

]
− Ẑπ

t

∣∣∣2] ∥π∥})

for ∥π∥ small, where Z̃ti = ∥π∥
−1 E

[∫ ti+1

ti
Ztdt | Fti

]
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Figure 3.2: Data Flow of the Backward BSDE Architecture: In blue the learnable parts of the high
level architecture. The arrows represent flows of information and which functions the variables go
through for the next step according to equation 3.2.7. At time 0 we compute the variance of all
paths to obtain the loss.

Remark 3.2.4. The above theorems has been proven under a much more general set of assump-
tions in the cited papers, including fully coupled systems, but we have only shown the result as
adapted for our purposes.

3.2.2 A Backward Scheme

The previous method is nonetheless unable to handle early exercise features in financial applications
such as Bermudan options, as we need information about prices in future, unseen, times. In a more
mathematical sense it is also interesting to use the original backwards structure of the BSDE to
solve it starting from terminal condition as it will have a better fit close to maturity. The solution
proposed in [52] is running the BSDE backwards. From equation 3.2.2 we can rewrite:

Ytn = Ytn+1
+ f(tn,Xtn , Ytn ,Ztn)∆tn −Ztn · dWtn (3.2.6)

Contrary to the previous case we have an implicit equation so we cannot run the scheme directly.
As a brief note this difficulty is not found in the set up of [52] or [51] as they work directly with
the discounted portfolio value, hence a martingale, so we have no generator function which makes
the equation implicit. To handle the case with non-zero generator function f we use the idea of
expanding f as a 1st order Taylor polynomial from [40]. In particular by remark 3.2.1 we are not
loosing any information as the 1st order expansion is the exact solution, in the problem of pricing.
We then have the Euler scheme going as:

Ytn ≈ Ytn+1 +
f(tn,Xtn , Ytn ,Ztn)∆tn −Ztn · dWtn

1− ∂f
∂Y ∆tn

(3.2.7)

We can simulate M forward paths of the state variables and then run the scheme backwards
to get a value of the initial price Yt0 which has a representation u(0, Xt0). Therefore we expect
that all these paths, when run backwards towards a initial condition, converge to the same value,
as they only depend on the initial condition of X0, which is shared along samples. As previously
this requires omitting possible errors due to the discretization. Similarly to the previous section,
the flow of information inside the network is shown in figure 3.2. The network uses as input entire
path trajectories of the SDE forward process and its Brownians. We refer to algorithm 4 for a more
detailed explanation. Again, we have only represent the gradient by a Neural network instead of
the whole control process.

All paths should converge to Yt0 giving:

Ŷ0 = E
[
N
(
θ | {Xi}tN=T

i=t0
, {dWi}tN=T

i=t0

)]
(3.2.8)

Then it naturally comes to consider a loss function measuring how deviated our samples are from
the true value, which is precisely the variance:

L(θ) = Variance
(
N
(
θ | {Xi}tN=T

i=t0
, {dWi}tN=T

i=t0

))
(3.2.9)
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Algorithm 4 Deep Backward BSDE Solver

Require: Time grid ti, i = 1, . . . , N , FBSDE, Initial X0, M numple sample paths, A = number
of training steps.

1: Simulate data: {Xi}tN=T
i=t0

keep Brownians {dWi}tN=T
i=t0

2: Initialize N parameters θ ∈ Θ
3: for a = 1 to A do
4: for i = N to 0, j = 1 to M do
5:

6: Y j
ti−1

=
Y j
ti
−(σT (t,Xj

ti
)∇̂u(θ|ti,Xj

ti
))·dW j

ti

1+r(ti+1−ti)
7:

8: end for

9: Compute L(θ) = Var
(
Ŷ j
t0

)
= 1

M

∑M
j=1

(
Ŷ j
t0 − Ȳt0

)2
10: Use training method (Adam)
11: end for
12: return Ŷ0

Similarly to the forward case, there is a theoretical justification of the backward method. In [21],
the authors upper bound the error committed when approximating by a neural network scheme.
The first theorem proves that the expected error in the numerical approximation of the stochastic
process solution to the FBSDE can be bound by the variance at initial time. The second one
proves that the loss (variance) can be small if the functional space we take our network from is
rich enough.

Theorem 3.2.5 ([21], Theorem 3.6). Let π be an equidistant partition of the interval [0, T ] , and

X̂π, Ẑπ, Ŷ π represent the approximated solutions to the BSDE by the above scheme. Under the
assumptions 1.2.5 where the Lipschitz constant verifies K < 1

6T 2 , a constant C exists independently
from the time grid norm and d , such that:

sup
t∈[0,T ]

E
[
|Yt − Ŷ π

t |2
]
+

∫ T

0

E
[
|Zt − Ẑπ

t |2
]
dt ≤ C

(
∥π∥+Var(Ŷt0)

)
for sufficiently small ∥π∥, where Âπ

t = Âπ
ti for t ∈ [ti, ti+1) A ∈ {X,Y, Z}.

Theorem 3.2.6 ([21], Theorem 3.8). Let π be a equidistant partition of the interval [0, T ] and

X̂π, Ẑπ, Ŷ π represent the approximated solutions to the BSDE by the above scheme. By theorem
1.3.3 we know that Zt = ∇xu(t,Xt)σ(t,Xt). Under the assumptions 1.2.5 where the Lipschitz
constant verifies K < 1

6T 2 , a constant C exits independently from the time grid norm and d such
that:

Var(Ŷt0) ≤ C

∥π∥+ ∑
0≤i≤n−1

E
{
|ϕ(Xπ

ti)− Zπ
ti |
}

for sufficiently small ∥π∥, where ϕ(t, x) := ∇xu(t, x)σ(t, x).

3.2.3 Hybrid approach

In relation to the two methods above there are some doubts on which one has better properties
when both are available. An important point in the decision is that the forward method has a
great amount of flexibility in the initial value, leading to very small relative errors as shown in
table 3.1. The reason is that it is a parameter of the model. The model will first fit the initial
value and then it will start adjusting the gradients to match the payoff at terminal time. Hence
we expect that as numerical noise accumulates, specially over long time horizons, we will still get
a good fit in the initial time, but get an increasing error when we are closer to maturity. Quite
the opposite effect happens with the backward method. The fit at terminal time is perfect, indeed
it is the condition that the method starts running from. Therefore, there is no numerical noise at
maturity. As we run backwards in time the numerical noise will accumulate and we will try to fit
the model to estimate the true initial condition.
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One of the objectives of this work was to investigate whether the advantages of both methods
can be combined to mitigate their drawbacks in a new approach. Their negative effects are less
relevant in examples where we are calculating the expected exposures, and the averaging cancels
some error, but are very relevant if we want to work pathwise (solving the BSDE for a particular
realisation of a Brownian motion and evolution of the forward process). This effect is seen in figure
3.3.
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Error path prediction under the backward method.

Figure 3.3: Error of simulated path under the forward and backward method, compared with the
true path value. The backward method has a perfect fit at maturity and high error at t = 0. The
forward method has perfect fit at t = 0 and high error at maturity.

To give a quick intuition of the above, let’s work with a problem where the generator of the
BSDE is zero, having no drift. Then our approximation methods at each time step are:

Ŷti = Ŷt0 +

i−1∑
j=0

σT (tj ,Xtj )∇̂utn(θ |Xtj )dWj

for the forward method, and:

Ŷti = g(XtN )−
N−1∑
j=i

σT (tj ,Xtj )∇̂utn(θ |Xtj )dWj

for the backward method. Under a perfect fit of the network and the true solution of the FBSDE,
it is straightforward to see that they should be the same for every ti. Based on the explanations
given above on how the accumulation of noise affects each method, we try to use the value:

Ŷti =
ti

(
g(X)tN −

∑N−1
j=i σT (tj ,Xtj )∇̂utn(θ |Xtj )dWj

)
T

+
(T − ti)

(
Ŷt0 +

∑i−1
j=0 σ

T (tj ,Xtj )∇̂utn(θ |Xtj )dWj

)
T

The weights for each method are selected to be higher for times closer to the perfect fit, t = 0
for the forward method and t = T for the backward method. We observe in the experiments, that
it reduces the average of the error in pathwise calculations.

3.2.4 Sub-network architectures

The choice of network architecture plays a crucial role in approximating each of the deltas and
significantly impacts the quality of the results. Therefore, we discuss the some possible choices.
The architecture proposed in the original papers follows a consistent pattern using four dense lay-
ers: one d-dimensional input layer, two (20+d)-dimensional hidden layers, and a one-dimensional
output layer. Each of these layers have no bias, employ the ReLU activation function, and incor-
porate batch normalisation.
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Working on the ideas presented in [14], we conducted experiments to explore various approaches.
Similarly to the finding of the authors, we have concluded that batch normalisation is unnecessary
and can be effectively substituted by using the ELU activation function, which also addresses the
well-known ReLU problem.

Figure 3.4: Variation of sub-network architectures. From left to right: architecture with batch
normalization and ReLU activation function, no batch normalization and ELU activation function,
architecture with a shortcut and adding payoff as a control variate. The output κt of each network
represents the control process at time t. The figure is from [14].

Additionally, we have investigated the potential benefits of implementing shortcuts within the
sub-networks. However, our experiments revealed that this approach is less efficient unless larger
numbers of hidden layers are used. While this may lead to improved results, it comes at the cost
of increased computational complexity, which does not seem justified by the small improvement.

A further addition that is expected to increase stability is adding the payoff g(tn, Xtn) or Yti−1

as an input of this networks. The first architecture has been called residual and the second one
ResNet by its resemblance to the ResNet architecture ([33]).

3.2.5 Numerical tests with one network at a time.

We perform some experiments using the above mentioned techniques. We have focused on the
problem of pricing and the problem of calculating exposures. The problem of pricing consists of
calculating the price, at time t, of a derivative contract paying g(XT ) at maturity, which we denote
by Vt. As explained in the first chapter of this thesis, in example 1.2.3, pricing problems can be
formulated as a PDE or a BSDE.
We have tested the models for a European call, which pays (XT − K)+ at maturity, and an
arithmetic basket-call with payoff: (

n∑
i=1

wi · Si
T −K

)+

(3.2.10)

under 10-D and 100-D with equal weights. The risk factor processes are uncorrelated Black-Scholes
models with parameters r = 0.10 and σ = 0.30, X0 = 100. across all dimensions and the strike
is 100. The true prices are 16.7341, 10.2243, and 9.5222 (the last two values are obtained via
Monte Carlo over 1M paths). The results are shown in table 3.1 where we observe errors of around
0.05% at time 0 for the methods. It is important to remark that the computational time does
not increase from 1D to 10D but does with the 100D call. This is explained by the increase in
magnitude on the number of parameters of the network as we go from two layers with 21 neurons
(for 1D) or 30 (for 10D) to 120. By lemma 2.1.3 we observe an increment from 200× 483 = 9.66e4

to 200 × (14600) = 2.92e6 in the number of parameters which is an increase of two (2) orders of
magnitude. We should highlight that the loss represents different concepts in the methods. In
the backward model it is the dispersion with respect the true value (hence the error we expect
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to make when approximating initial value), while in the other three methods it is the error with
respect to the terminal condition. Hence, only the losses in the forward, Residual and ResNet are
comparable. It is difficult to infer any general properties from the observed data. ResNet is the
slowest method and keeps the same magnitude of relative error through all dimensions. In low
dimensions, 1 and 10, the Residual architecture has a lower loss than the forward method for a
similar computational time, but this effect disappears in high dimensions. Given the similarity in
the results of the methods we will use the forward architecture in our experiments.
All networks have been trained under the same training regime of 7000 iterations with training
batch of 128 samples and Adam optimiser. The loss is calculated over a validation set of 1024
samples. All these methods have been trained using the same CPU so we believe the time taken
is a comparable quantity.

Architecture Dimension Learning time (mm:ss) Price ($) Rel.error (%) at t = 0 Loss
Forward 1 09:08 16.7350 0.0054 3.5541
Backward 1 08:08 16.7461 0.0710 2.5869
ResNet 1 11:47 16.7299 0.0250 2.0023
Residual 1 08:58 16.7440 0.0591 2.3109
Forward 10 10:22 10.2292 0.0489 4.1288
Backward 10 10:35 10.2225 0.0176 3.1982
ResNet 10 15:34 10.2300 0.0557 4.6411
Residual 10 12:09 10.2291 0.0469 3.7133
Forward 100 38:47 9.5068 0.1616 2.9523
Backward 100 38:04 9.4904 0.3337 2.8987
ResNet 100 48:22 9.5209 0.0136 2.8106
Residual 100 39:03 9.5050 0.1809 4.024

Table 3.1: Pricing results under a Black Scholes for One Net at a time architectures for r = 0.10,
σ = 0.30, at the money option, strike 100.

The main advantage of the proposed techniques is not just the ability to price at time 0, but
the ability to replicate price paths in general. Keeping the advantages in mind, we can make use
of the applications proposed in [26] to calculate expected exposures. This is a key part in the
calculation of CVA and DVA as expressed in formulas 0.0.1 and 0.0.2. Their intuitive necessity
is that they explain how much money we can loose if there is a default event in the future.
Therefore, calculating exposures requires knowing the distribution of the price at future times. For
this purpose we generate paths with trained neural networks and then compute the discounted
positive and negative exposure:

DEPE(s) := E
[
e−r(s−t)(Vs)

+ | Ft

]
DENE(s) := E

[
e−r(s−t)(Vs)

− | Ft

]
To compute the expectation in our experiments, we are using 5000 outer Monte Carlo paths,
computing the mean at each point. In the case of European (basket) call options, the optionality
eliminates the negative exposure and we simply obtained discounted prices. This allows us to
benchmark the results for the basket call option for which the discounted exposure is constant to
the initial price. In figure 3.5 we show the training evolution for the forward and backward method
for the 1-D call together with the calculated exposures. We observe an identical exposure profile
for both methods with a good fit at time 0 and a higher error closer to maturity. Given their
similarity, in figure 3.6 we show a more detailed insight on the error for the exposures of a 100-D
basket call calculated only under the forward method.

Although the exposures calculated through the two methods are identical, we see different
properties if we work for individual paths. In figure 3.7 we show the average absolute error and
standard deviation obtained by approximating the price path of a 1-D call with different methods.
We observe that the proposed hybrid method provides a better approximation pathwise compared
to the other methods.
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Figure 3.5: Comparison of the forward and backward method for pricing a call option. In the left
the exposures are calculated using the forward BSDE solver and in the right with the backward
BSDE solver.
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Figure 3.6: DEPE and DENE of a 100-D basket call calculated under the forward BSDE solver
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Figure 3.7: Mean of absolute error of pathwise approximation under different Deep Solvers.

3.3 Common network

In the previous section we have focus on techniques that use a different sub-neural network at each
time step to approximate the control process. Although this can lead to good results, it does create
some complications. Most notably it drastically increases the number of parameters to learn during
training, if we attempt to have a finer time grid. This is challenging when dealing for example
with a long maturity T . Secondly we cannot calculate the value of u(t,Xt) for any particular pair
of pair of inputs (t,Xt). Finally we would expect that given all the functions are approximating
the delta at close time points the should have similar weights which is not necessarily guarantee
by having many different networks. By sharing the same network through the whole time grid,

27



this is achieved.

We are then looking for approximations done by a single neural network independently of the
time grid. In this architectures it is important to avoid using batch normalization in the networks.
This is because Xt will not be stationary. Hence, the normalisation is expected to change through
time (in our case with the risk free rate).

3.3.1 Approximate u(t,Xt), Raissi’s Method.

The first approach will be to approximate by a single Feed-forward neural network the valuation
function u(t,Xt). While training we would like to use the formulation we have developed about
the pricing problem as a BSDE. The solution to this is given in the work of Raissi [47]. In the
paper the author follows the ideas in PINN method where the solution function of a PDE is ap-
proximated by a neural network, but he extends to a loss function that keeps track of the BSDE
formulation. With the unknown function approximated by a neural network, we can compute the
gradient (delta) by automatic differentiation. We will not delve into the details of this, as this
will be done automatically via the code from Machine Learning libraries. For a reference about
automatic differentiation see [2].
In particular in that paper, Raissi formulates the approach to work for coupled FBSDE by simu-
lating the steps in the Euler forward scheme at the same time that the loss function is computed.

Let N : Θ × R+ × Rd → R be the neural network, where θ ∈ Θ represents the weights (and
biases if we use them), t ∈ R+ is a positive time instant, and Rd represents the state variables. By

using the discretization of the system in equation 3.2.2, we require Ŷt := N (θ | t,Xt) to satisfy
the BSDE:

Ŷtn+1
≈ Ŷtn + f(tn,Xn, Ŷtn , Ẑtn)∆tn + σT (tn,Xtn)Ẑtn · dWtn (3.3.1)

for every step tn n = 0, . . . , N − 1, where Ẑtn = ∇XN (θ | t,Xt). Additionally at terminal time
we would like the function to match the payoff:

g(T,XT ) = N (θ | T,XT ) (3.3.2)

Then the loss function will be the accumulation of errors over all the time steps:

L(θ) = E

[
α1 ·

N−1∑
n=0

(
Ytn+1

− Ytn − f(tn,Xtn , Ŷtn , Ẑtn)∆tn − σT (tn,Xtn)Ẑtn · dWtn

)2
+ α2 · (YtN − g (tN ,XtN ))

2
]

where the expectation is computed, as before, by simulating M paths. We show the method in
algorithm 5.

In our experiments we have added the αi terms, not found in the literature we explored. Their
rationale lies in the understanding of the algorithm’s intuition. At a first run the loss for a random
initialization gives a very small error for the term multiplying α1 (see table 3.2). This term is
called inner loss as it is the loss associated with the BSDE and the inner domain. The weights of
the neural network, by the Glorot Initialiser, will be on average zero. Consequently, we expect the
inner error to be small, because the function will be close to the 0 function. On the other hand, the
external loss is very high as shown in table 3.2, given we have not learned any function. During
the training the algorithm learns the function and the balance of errors changes. Intuitively the
network learns a local behaviour and it is only through the external loss that it learns the global
behaviour of the function. In this setting we have tested different combinations of the αi param-
eters and decided to stay with αi = 1. The reason is that, although a slightly higher value of α1

has shown improvements in the convergence of some particular tests, we have not found a general
rule for the choice.

We found that one of the main struggles in the algorithm is the scale difference between time
and state variables. On average at time t the state variables values the algorithm will see, as part
of the training, will be e

∫ t
0
r(s)dsXt with their spread controlled by the standard deviation, hence

the volatility. It is noticeable then, that there is a big difference when comparing with the time
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Algorithm 5 Deep Raissi BSDE Solver

Require: Time grid ti, i = 1, . . . , N , initial X0, M number of sample paths, A = number of
training steps.

1: Simulate data: {Xi}tN=T
i=t0

keep Brownians {dWi}tN=T
i=t0

2: Initialize N parameters θ ∈ Θ
3: for a = 1 to A do
4: L = 0
5: Y j

ti , Z
j
ti = N (θ | ti+1, X

j
ti+1

),∇XN (θ | ti+1, X
j
ti+1

)
6: for j = 1 to M do
7: for i = 0 to N − 1 do
8: Y j

ti+1
= N (θ | ti+1, X

j
ti+1

)

9: Zj
ti+1

= ∇XN (θ | ti+1, X
j
ti+1

)

10: L = L+
(
Y j
ti+1
− Y j

ti + f(ti,X
j
ti , Y

j
ti ,Z

j
ti)∆ti − (σT (t,Xj

ti)Z
j
ti · dW

j
ti

)2
11: Y j

ti , Z
j
ti = Y j

ti+1
, Zj

ti+1

12: end for

13: L = L+
(
Y j
tN − g

(
tN ,Xj

tN

))2
14: end for
15: Update parameters (Adam)
16: end for

grid where values go from 0 to 1. To solve this inconvenience we have re-scale the state variable
space using moneyness instead of spot price. Although neural networks are expected to eventually
converge to the right result, the moneyness trick accelerates the process and can potentially avoid
falling in local minima. In [47] this problem does not take place because the scale of the state
variables (which has no drift) is already in the order of magnitude of the units.

In [47] the author additionally imposes a first order condition in the boundary trying to match
the gradients:

∇Xg(T,XT ) = ∇XN (θ | T,XT )

In the setting of pricing derivatives it is somewhat obscure if this is an appropriate addition to the
loss. The discontinuity can lead to strange behaviour, by the different smoothness properties. In
fact in the numerical example we will observe that it is at the point of discontinuity where most
of the error concentrates. This does not happen in the followed literature where all the terminal
conditions are given by smooth functions.

3.3.2 Modelling a shared gradient.

The final approach of this chapter is the one formulated in [14]. It approximates the gradient as
in the first two methods but, instead of using one different network at each time step, we simplify
it by sharing the same network through all time steps: N : Θ × R+ × Rd → R. This is justified
because the valuation function, and hence its gradient, have the same form for the entire space-time
domain. Hence, we only have one neural network and the initial condition for Ŷ0 to learn.
The numerical algorithm is identical to 3 with the only difference that in the 5th step, the gradient
is calculated through a share network and that time is not simply an index of which network should
be use. The data flow of the network hence should be as in figure 3.8.

Due to the greater generality of Raissi’s method which fits our purposes better we will not show
numerical experiments on this approach.

3.3.3 Numerical tests on Raissi’s method.

As previously explained, using the proposed techniques for option pricing problems present some
complications. In this section we start by presenting the example of pricing a one dimensional
ATM option, with X0 and strike 100, using the Raissi method. The dynamics of the underlying
model are a Black Scholes model with volatility σ = 25% and interest rate r = 10%. .The correct
price at time 0 is 14.9757. We show the results with different width and depth. The compared
architectures are FNN with:
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Figure 3.8: Data Flow BSDE shared gradient Architecture: only one network has to be learnt
apart from the initial condition. At the end we compare terminal values in the loss function.

1. 4 hidden layers with 20 neurons each

2. 4 hidden layers with 20 neurons each + ELU in the last layer,

3. 6 hidden layers with 20 neurons each,

4. 4 hidden layers with 50 neurons each.

By lemma 2.1.3 the numbers of parameters are: 1321 for the first two architectures, 2161 for the
third one and 7711 for the last one. This is a substantial reduction in the number of parameters
compared with the previous section architectures.

It is important to justify the usage of the ELU function in the last layer of the network in one
of the architectures. We observe in figure 3.9 that the approximated value (in green) goes under
zero for a set of paths, which is not realistic as the call option should never have negative price.
We have tried to floor the approximation with this extra activation function in the last layer, while
keeping differentiability (which we would have lost if using ReLU).

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

120

140

Ca
ll 

op
tio

n 
pr

ice

Raissi paths
Approximated value
True value

0.0 0.2 0.4 0.6 0.8 1.0
t

0

20

40

60

80

100

120

140

Ca
ll 

op
tio

n 
pr

ice

Raissi paths
Approximated value
True value

Figure 3.9: In the left the paths approximated adding a ELU activation function in the last layer.
In the right the same architecture whiteout ELU activation in the last layer. Both have 4 hidden
layers with 20 neurons each.

In table 3.2 we show the training process of different network structures. A more general
overview of the training is shown in figure 3.10.

The results show that the addition of the extra ELU function should not be used since it creates
a bias in the whole approximation as is shown in the results.

As observed in table 3.2 all architectures give a very accurate initial price. This is not surprising
given that the algorithm trains over the pair t = 0, X0 = 100. for every pair, so a total of 36000×100
times. In our research we are interested in the approximation error that the method will make for
a general (t,Xt). Therefore we study the evolution of the error through time. This is shown in
figure 3.11 for r = 10% and σ = 25% and trained over 100 time steps. For the sake of readability
other settings are presented in the appendix. Through all this figures we show the true value
minus the approximation, without squaring or taking absolute value, so we discern between over-
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Architecture Iteration Inner Loss External loss Gradient loss Ŷ0 Time
[20, 20, 20, 20] 1 0.1864 1.453× 105 151.7346 0.6024 0s
[20, 20, 20, 20] 500 223.6275 69.2435 5.1101 14.8941 64s
[20, 20, 20, 20] 5000 122.8540 12.2719 2.8769 14.9958 193s
[20, 20, 20, 20] 10000 122.2420 6.2596 2.4374 14.875 336s
[20, 20, 20, 20] 20000 119.5698 5.9679 2.2888 14.9491 625s
[20, 20, 20, 20] 30000 118.8617 6.8222 2.3145 14.9644 911s

[20, 20, 20, 20]+ELU 1 0.0120 1.8831× 105 148.0486 −0.1626 0s
[20, 20, 20, 20]+ELU 500 248.4136 106.6012 6.9701 15.6972 74s
[20, 20, 20, 20]+ELU 5000 125.1190 16.3481 3.6207 15.3853 193s
[20, 20, 20, 20]+ELU 10000 123.4179 161.7731 2.6476 14.9065 327s
[20, 20, 20, 20]+ELU 20000 116.5707 5.6802 2.1055 15.3905 595s
[20, 20, 20, 20]+ELU 30000 116.3503 5.2700 2.0440 15.3582 864s
[20, 20, 20, 20, 20, 20] 1 0.4421 1.6342× 105 154.9823 −0.1989 0s
[20, 20, 20, 20, 20, 20] 500 130.3159 20.4544 3.1028 15.5226 85s
[20, 20, 20, 20, 20, 20] 5000 102.2737 5.6755 1.7017 15.0151 234s
[20, 20, 20, 20, 20, 20] 10000 96.0008 13.2512 1.8145 14.8077 402s
[20, 20, 20, 20, 20, 20] 20000 100.0730 4.1736 1.2484 14.8885 740s
[20, 20, 20, 20, 20, 20] 30000 100.7935 3.0847 1.1066 14.9858 1081s

[50, 50, 50, 50] 1 0.1066 1.7038× 105 150.8409 0.0229 0s
[50, 50, 50, 50] 500 145.8189 48.7139 4.2810 15.5513 72s
[50, 50, 50, 50] 5000 109.1380 7.7543 2.4970 14.9733 207s
[50, 50, 50, 50] 10000 107.5036 3.4357 1.6579 15.0138 359s
[50, 50, 50, 50] 20000 105.2589 6.0111 1.7069 14.9242 668s
[50, 50, 50, 50] 30000 106.6101 3.6583 1.4809 14.9759 979s

Table 3.2: Training values for the Raissi method pricing an ATM call option under r = 0.10,
σ = 0.25 in a Black Scholes model with strike 100. The true price is 14.9757. The results are
given over a validation data set of 250 paths, while we train with batches of 100 paths. The loss is
presented as the sum of losses over all paths instead of their mean. We train for 36000 iterations
with piece-wise constant learning rate: 3000 iterations with 1e−2, 10000 with 1e−3, 10000 with
1e−4, 7000 with 1e−5 and 6000 with 1e−6.
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Figure 3.10: Training evolution for Raissi’s method.

or underestimation. The averages of the absolute errors obtained ranges from 0.0756 at maturity
to 0.8977 at t = 0.6. This is slightly higher than the average errors obtained in [47], which are of
one order of magnitude less, and, in any case, too high to be used in industry standards.

In order to understand the nature of this error we have undergone several tests. In the literature
they solve a Black-Scholes-Barenblatt 100-D BSDE:

dXt = 0.4 · diag(Xt)dWt

dYt = 0.05
(
Yt −ZT

t Xt

)
dt− 0.4 ·ZT

t diag(Xt)dWtdWt

YT = ∥XT ∥2
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with initial X0 = (1, 0.5, . . . , 1, 0.5). After testing that our code obtains for the settings in the
literature similar results, we have tried to discern the key differences between the two settings and
identify four factors:

1. No drift term in the forward SDE in their setting,

2. scale of the state variables in the order of magnitude of the units,

3. smooth payoff,

4. bigger dimension.

We have discarded 1 and 2 as the root of our problem given that the problem persists with r = 0
and we are already re-scaling our state variables. Then we have focused on the effects of the
remaining two factors. With respect to the payoff differentiability there is a jump at the strike in
the derivative of the payoff (XT − K)+. In our perspective this can lead to bad learning of the
correct function at maturity and this error propagates through the whole time dimension when
learning the global behaviour of the function. In figure 3.11 we observe that indeed the error at
maturity concentrates around strike which may support our hypothesis. We have tried smoothing
the payoff function g(Xt) by:

g(Xt) ≈
1

λ
log
(
1 + eλ(Xt−K)

)
(3.3.3)

with large λ as proposed in [18]. This requires special care to be taken with exploding numerical
values in the code, as the exponential part can go to numerical infinity for some paths. Unfortu-
nately, we have observed no reduction in the error so further analysis needs to be done in order to
understand if this is indeed the root of the problem.
The implications of the high dimensionality are difficult to understand. In figures A.1, B.1 and
C.1 we observe that there is no error reduction when increasing the time granularity but there
is a big one when reducing the volatility. We believe that this will explain why, when increasing
dimensions, the approximation error is smaller as in essence having a 100-D vector for a symmetric
function at terminal condition, is equivalent to having 1-D vector with a much lower volatility.
In figure 3.12 we see the call prices replication and the paths of the underlying. The strike and
means of the process are also plotted as our original hypothesis was that the error only happened
for paths that end up out of the money and have been under the average price for a long trajectory.
We have concluded by the above discussion that this is not the case and that the error is related
with the volatility term.
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Figure 3.11: Evolution of error profile in Raissi method for different time instants. The vertical
lines represent the strike and average of Xt.
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Figure 3.12: Pathwise approximation using Raissi’s method.
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Chapter 4

A parametric approach

In the previous section we study deep solvers that represent the solution process
(
Y t,X
s ,Zt,X

s

)
in

different ways, which always depend on a previous choice of dynamics and parameters for the FB-
SDE. Hence, our network only took the state variables Xt as inputs, and the time variable t when
we shared a network through time. As a result those techniques fail to price under new market
conditions as new training needs to be done. If the interest rate curve, the volatility observed in
the market vary or the strike is different, no new prices can be provided quickly.

For this final chapter we propose a novel approach to solve parametric BSDEs using Deep
learning. In a different setting, an example of applying parametric learning to solving PDEs can
be found in the work of Kathrin Glau and Linus Wunderlich [23]. This requires transforming
the previous frameworks into a parametric problem, that is, the inputs of the model are not only
state variables and time, but also parameters modeling the dynamics of the FBSDE. In order to
have this triple dependence, our model learns an operator that maps between infinite dimensional
functional spaces. For example, it will take a short rate curve, a local volatility function and return
a function Rd×R+ → R which values a derivative. The core idea, as it will be developed in section
4.1, consists of approximating a function by an infinite series and learning the coefficients and basis
functions separately. In section 4.2 we briefly discuss some tips to simplify the network, and in
section 4.3 we explain the details on the training.

4.1 DeepONet

As seen in theorem 2.2.2 every “good” function can be approximated by neural networks. A
result, which may not be as well known, is that any non-linear continuous functional (see [15],
[42]) or transformation between functional spaces (called operator see ([17], [16])) can also be
approximated by neural networks. In particular we have the following theorem proven in [17]:

Theorem 4.1.1 (Universal approximation theorem for Operator, [17] Theorem 1). Suppose that
σ is a continuous non polynomial function and K1,K2 are compact subsets of a Banach Space X
and RN respectively. Let V be a compact subset in C(K1) and G a nonlinear continuous operator
mapping V → C(K2). We recall C(K1) is the set of continuous functions from K1 to R. Then,
for any ϵ > 0 there are positive integers n, p,m and sets of constants cki , ξ

k
ij , θ

k
i , ζk ∈ R, wk ∈ RN ,

xj ∈ K1 for i = 1, . . . , n, k = 1, . . . , p, j = 1, . . . ,m such that ∀u ∈ V, y ∈ K2 it holds:∣∣∣∣∣∣G(u)(y)−
p∑

k=1

 n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

σ(wk · y + ζk)

∣∣∣∣∣∣ < ϵ (4.1.1)

We will be using the ideas in [23] to construct our network. Theorem 4.1.1 tells us that
the operator G can be approximated via the composition of affine operations and the activation
function σ, which is again a reassuring result as it means it can be approximated by a neural
network. Differently from the Universal Approximation theorem for functions, theorem 4.1.1 will
additionally be helpful in the architecture of the network. The main insight of the above theorem
is that we find a split between the term taking as input the information about the functional, and
the part taking as input the vector y.
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For our purposes, if we have a parameterised FBSDE with solution
(
Y t,X
s (α),Zt,X

s (α)
)
, where α

are the parameters controlling the FBSDE, we try to represent:

Y t,X
s (α) = u(α | t,X) ≈ G(α)(t,X)

by the function form in the Markovian framework.
Although the numerical examples will be done only for constant parameters we explain the theory
in the general case where the dynamics can be given by possibly random functions. Notably a
Neural Network cannot take an infinite number of inputs, for the value of the function in its entire
domain, so we require the following definition:

Definition 4.1.2. Let u ∈ V as above and let {x1, . . . , xn} ∈ X. We say that {x1, . . . , xn} ∈ X
is the set of sensors of u in X. The idea is that functions need to be represented by numerical
values to act as an input for a neural network and hence we need to work with {u(x1), . . . , u(xn)}.

We call y, as in theorem 4.1.1, the external input.

Determining how the structure of the network should be is not a trivial task. The first idea is to
simply input all the parameters and state variables in a FNN and expect the network to learn the
correct form. The high complexity of the relations between the parameters, and the state variables
in the function will require a very rich net which can possibly lead to over-parametrisation, over-fit
or slow training. Going back to the theorem 4.1.1, as mentioned, we observed a split between the
part with the sensors and the external input, both being affine functions and activation, which is
essentially two different FNN. The same will be done in our architecture.
We believe that learning operators may be seen as too abstract a framework compared to learning
a real valued function. To give an intuition on how operators are well known mathematical objects,
we provide two examples. Firstly, suppose that we want to map a continuous function to the space
of infinite series of polynomials. This map is an operator and we can take for instance the Taylor
series of the function around a point a:

Ta(f)(y) =

( ∞∑
n=0

f (n)(a)

n!
(· − a)n

)
(y)

Another example is the Fourier series of a periodic function:

Fourier(f)(y) =

(
A0 +

∞∑
n=1

(
An cos

(
2πn

T
·
)
+Bn sin

(
2πn

T
·
)))

(y)

where:

• A0 is the average value of the function f over one period,

• An and Bn are the Fourier coefficients given by:

An =
2

T

∫ T

0

f(u) cos

(
2πnu

T

)
du Bn =

2

T

∫ T

0

f(u) sin

(
2πnu

T

)
du

Both operators represent a function as a series of coefficients and basis functions. In the first case

the coefficients are given by
{

f(n)(a)
n!

}∞

n=0
and basis functions {(x− a)n}∞n=0. In Fourier series the

coefficients are given by the An and Bn, with sines and cosines as basis functions. We propose a
network architecture of the form operator:

O(f)(t,Xt) =

( ∞∑
n=0

B(α) · K(·, ·)
)
(t,Xt)

which is called DeepONet. We cannot compute an infinite series so we cap at some index q which
is considered big enough to achieve accuracy, as we will do with a Taylor representation. The
functions B and K are represented by neural networks following theorem 4.1.1. In figure 4.1 we
see the data flow of the high level architecture. The neural networks representing the coefficients
is the BranchNet and the one representing the basis functions is the TrunkNet.
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Figure 4.1: Structure of a DeepONet. On top we have the Branch Net which gives the basis
functions coefficients, and below the Trunk net which gives the basis functions. We use

⊗
to

denote element wise multiplication.

4.2 Subnets.

The DeepONet is a high level architecture and there are different possibilities to choose the sub-
architectures of the Trunk and the Branch nets. In [53], [22] and [36] there are ideas for the input
of data, and reducing the number of parameters of the network. We highlight two important
additions that will be studied in further research: stacked branch net and Permutation Invariant
layer.
The first one is observed in figure 4.1 (c and d). The idea is that each sensor of constant parameter
can either go through a different network, or a shared one, in order to be transformed into the
coefficients of the basis functions, or BranchNet. The reduction in the number of parameters,
specially for a big number of sensors, makes the unstacked (shared) branch net a better choice
([53]).
The second addition, the Permutation Invariant layer causes a reduction in the complexity of the
TrunkNet. In the case of pricing an option in a high dimensional setting, there is frequently some
symmetry among the state variables at maturity, as seen, for example in equation, 3.2.10. Any
permutation of the underlying prices leads to the same payoff. Therefore there are reasons to
believe that this is also true at all previous times and that we do not need the information of
each individual component.The solution, as proposed in [22], consists of adding a first layer in the
TrunkNet that calculates a quantity based on the state variables such as their mean, geometric
mean or maximum. The Permutation Invariant layer will be dependant on the payoff.

4.3 Training a DeepONet

Finally, we explain how to train the DeepONet to learn its functional form. The DeepONet has
already been studied in the literature [23] and our contribution is using it together with the BSDE
structure of the problem. The principles followed are similar to the Raissi method previously
discussed. The main difference is that, to train the DeepONet, we require knowledge of the
parameters, not only as inputs of the function but also for the simulation of the Forward SDE to
generate training data. This is because the parameters are inside the drift and diffusion term. In
the case of curves it is necessary to assume that they are parameterised by a finite set of parameters
α (for example a local volatility function). The set of parameters follows a probability distribution
D which is known.
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Let G(α)(t,Xt) be the DeepONet, with network parameters θ. To compute the loss we proceed as
following:

1. Sample parameters αj ∼ D for j = 1, . . . J . Each form a training super-batch.

2. For each super-batch simulate M paths of the SDE along a partition of the interval [0, T ],
{0 = t0, t1 . . . , tN = T}. Using j for the super-batch, m for the path, and tk for the time
instant:

Xj,m
ti+1

= µ
(
αj | ti,Xj,m

ti

)
∆ti + σ

(
αj | ti,Xj,m

ti

)
·∆W j,m

ti (4.3.1)

where the initial Xj
0 can also be a parameter of the model.

3. Initialise for every j,m:

Y j,m
t0 = G(αj)(t0,X

j,m
t0 ) Zj,m

t0 = ∇XG(αj)(t0,X
j,m
t0 ) Lj,m = 0

4. For i = 0, 1, . . . N − 1 let Y j,m
ti+1

= G(αj)(ti+1,X
j,m
ti+1

), Zj,m
ti+1

= ∇XG(αj)(ti+1,X
j,m
ti+1

) and:

Lj,m = Lj,m+
(
Y j,m
ti+1
− Y j,m

ti + f
(
ti,X

j,m
ti , Y j,m

ti ,Zj,m
ti

)
∆ti − σT

(
αj | ti,Xj,m

ti

)
Zj,m

ti ·∆W j,m
ti

)2
5. At maturity T : Lj,m = Lj,m +

(
Y j,m
tN − g

(
tN ,Xj,m

tN

))2
where g is the payoff function or

termincal condition on the BSDE.

We try to minimise.
L(θ) = Eα∼D[Lα(θ)] (4.3.2)

so we train with the network as in other sections.
In the tests done we have trained a DeepONet to price a European call in a Black Scholes model
using as parameters r, sigma and strike K. Training with r and σ allows pricing under different
market conditions, while learning K permits pricing different instruments. The distributions of the
parameters is shown in table 4.1 with X0 = 100. The trained network is validated with a validation
set of 250 paths within 100 super-batches and 50 time steps. The result is an average squared error,
at each time point, with respect to the correct value of 0.5567 after 3 hours of training. In a similar
time, if we price an option with X0 = 100 and strikes in a distribution U(95, 105) we obtain an
average error of 0.4012 which suggest that the strike is, similarly to Raissi’s method, a problematic
point.

Parameter Distribution
σ U(0.2375, 0.2625)
r U(0.095, 0.105)
K U(95, 105)

Table 4.1: Parameter Distributions for the DeepONet training.
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Chapter 5

Conclusions and further research.

In this thesis we have presented a set of techniques which can be helpful in several areas of financial
mathematics, particularly in derivative pricing. In more generality they can be used to solve any
BSDE or PDE through the Generalised Feynman-Kac theorem. This techniques have the potential
to handle high dimensional problems since they are not dimension dependent. Although this tech-
niques show good results in the literature, we have shown that they require careful considerations
in order to be used in general settings, like low dimensions, where their accuracy decreases. In
the literature this problems might not arise by their particular setting. For instance, symmetry
along the variables, the terminal condition functions are C∞, solution values far from zero (so
the relative error does not explode) and the stochastic process solution of the forward SDE has a
similar scale to the time variable. We have shown some variations to achieve better results such
as the hybrid approach, re-scaling of the state variables, using the ELU activation function in the
last layer, or adding shortcuts in the networks. Some of these modifications are ad-hoc solution
which makes them difficult to be used in a new, unknown problem, which is a requirement when
building a generic pricer. Additionally a novel, parametric, approach has been proposed an proved
in a simple setting. We are particularly interested in this method and test different enhacements
to achieve better perfromance.

This work will be continued to create an entire library of Deep Learning based prices that can
be used for fast benchmarking purposes in the counterparty credit risk space. The first step will
be to improve the numerical accuracy in general settings, and the speed of the methods. It also
has to be tested in different models such as a Heston volatility model where the control process in
the BSDE becomes Zt = (XtVolt∇Xu, σVolt∇Volu).
One immediate continuation is the handling of Asian options since in Markovian frameworks it
is possible to use a state variable such as At = 1

t

∫ t

0
Xudu in the pricing function. A further

development will be the pricing of early exercise options. If the option can be exercised in dates
τ1, . . . , τk , we modify the FBSDE 1.2.1 to have this extra information (see [21] and [52]):

YT = g(XT )

Yt = Yτi+1
+

∫ τi+1

t

fsds−
∫ τi+1

t

Zs · dWs, t ∈ (τi, τi+1),

Yτi = max

{
g(Xτi),

∫ τi+1

τi

fsds−
∫ τi+1

τi

Zs · dWs

}
where f is the generator of the BSDE.

Finally, BSDEs are helpful tools in the formulation of XVA problems, particularly if we include
collateral and funding making the problem recursive. In [11] a general framework is provided, and
the price process including XVA is formulated as a BSDE. Given this thesis has been done in a
team whose main focus is XVA calculations, it is of our interest to solve the BSDE problems coming
from XVA calculations. Therefore we would like to apply all the above mentioned techniques in
the computation of prices including XVA.
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Appendix A

Raissi under r = 10%, σ = 3%.
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Figure A.1: Evolution of the error profile of Raissi method under 3% volatility. The time grid has
100 steps. Note that most paths end up deeply in the money, where there is very small error.
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Appendix B

Raissi under r = 0%, σ = 3%.
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Figure B.1: Evolution of the error profile of Raissi method under 3% volatility and no drift. The
time grid has 100 steps.
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Appendix C

Raissi under r = 10%, σ = 25%, 200
time steps.
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Figure C.1: Evolution of the error profile of Raissi method under 25% volatility and r = 10%. The
time grid has 200 steps.
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