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Abstract

With the development of interbank payment systems, in addition to the pure Real Time Gross
Settlement (RTGS) system, Liquidity Saving Mechanisms (LSM) have been introduced to reduce
the liquidity needs of payment system participants. LSMs allow payments to be queued and
periodically offset each other. Such a problem, that maximizes the total value of settled payments
with limited initial balances, has been referred to as the Bank Clearing Problem (BCP). Several
algorithms have been proposed to approximately solve this problem. In this thesis, we propose to
formulate the BCP as a mixed integer linear programming (MILP) problem and solve it using the
Gurobi solver. We then simulate different scenarios of synthetic payment queues based on different
parameter settings and compare the performances of our algorithm with two popular algorithms
in the LSM literature. We find that our algorithm tends to outperform the two other methods.
It also presents three advantages over them: (1) it provides information on the optimality of the
solution, which is not possible with other methods; (2) it makes it easy and flexible to change the
objective function to meet different optimizing requirements; (3) it can provide optimal solutions
as a benchmark for payment system operators to compare with their own system solutions.
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3.5.3 Chvátal-Gomory Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.4 Reformulation-Linearization Technique (RLT) . . . . . . . . . . . . . . . . . 21

3.6 Branch-and-Cut Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Gurobi Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Data 25
4.1 Network Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Value Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 28
5.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Simulations on Coefficient of Variation (CV) . . . . . . . . . . . . . . . . . 31
5.3.2 Simulations on Number of Payments . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3 Simulations on Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.4 Simulations on α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Further Discussion 37
6.1 Change of Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Multi-Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Multi-Objective Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.2 Value-Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.3 Value-Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion 40

Bibliography 42

2



List of Figures

1.1 Example of Gridlocked System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Example of Deadlocked System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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Chapter 1

Introduction

An interbank payment system consists of some participants (banks)1 with some payments among
them. Every participant has an initial balance and every payment can be settled with enough
balance, rejected due to insufficient balance, or delayed (if the system allows, payments can be
moved to a queuing system, and settled or rejected later).

In the past few decades, payment systems have rapidly developed and several different types
of systems were introduced or replaced, mainly because of the technological innovation of the
computing system, the structural changes in participating banks and the evolution of central bank
policies [1]. For example, in the Federal Reserve’s Fedwire Funds Transfer System (Fedwire),
the total value of payments in the system increased from about 100 trillion USD (approximately
15 times the GDP of the U.S.) in 1985 to more than 500 trillion USD (more than 75 times of
GDP in the U.S.) in 2005 [2]. Historically, payment systems have developed from Deferred Net
Settlement (DNS) systems to Real-Time Gross Settlement (RTGS) systems, and then Liquidity
Saving Mechanisms (LSM) were also introduced for further improvement.

Typically, interbank payment systems can be classified as net settlement systems and gross
settlement systems, in terms of the computing basis of settlement. For example, a net basis system
considers the netting among multiple payments while a transaction-by-transaction basis system
settles or rejects each payment individually. Moreover, a deferred settlement system allows the
payments to wait in the queue and be settled later while a real-time settlement system decides
whether to settle or reject a payment immediately based on whether the current balance is enough
or not [3].

A DNS system is a deferred settlement system, and payments are settled simultaneously on
a net basis at specific time steps. To reduce the settlement risks that exist in the DNS systems,
many central banks started to implement RTGS systems, where the payment is settled in real-time
without netting and will be rejected immediately if there is not enough balance for the sender bank
to pay for the payment. By 2006, the RTGS systems were implemented in 93 out of 174 central
banks over the world [1].

However, the RTGS systems reduce the settlement risk at the cost of increased liquidity re-
quirements to ensure the smooth settlement of each payment. For example, if a bank has to pay
a large amount of money before it can receive other payments, then it needs to prepare enough
liquidity at the beginning to ensure that it can afford the first several payments before it receives
payments from other banks. Bech and Soramäki [4] define a phenomenon called “gridlock” that
some payments cannot be all settled by time order due to the lack of liquidity but can be all settled
simultaneously, and if no such subset exists, the system becomes deadlocked.

Figure 1.1 and 1.2 illustrate examples of a gridlocked system and a deadlocked system respec-
tively [4]. In both examples, the list of payments is the same, i.e. A needs to pay B 15 units, B
needs to pay C 20 units and C needs to pay A 10 units. The only difference is the current balance
for the three participants. Suppose the time order of the three payments is: A to B, B to C, and C
to A. Then none of the three payments can be settled in the RTGS system based on the time order
in both examples. However, they can be settled simultaneously in the first example, i.e. gridlocked
system, while none of them can be settled simultaneously in the second example, i.e. deadlocked
system.

1Throughout the report, “a bank” is equivalent to “a participant” in the interbank payment system
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Figure 1.1: Example of Gridlocked System

Figure 1.2: Example of Deadlocked System

Therefore, Liquidity Saving Mechanisms (LSM) were introduced as a queuing arrangement to
be operated simultaneously with the original RTGS systems. LSMs allow banks to enter the system
with less liquidity by delaying some payments and then (partially) offsetting the payments to be
sent with the payments to be received simultaneously on a regular basis (e.g. every few minutes).
It improves the liquidity requirements in the pure RTGS system by introducing short delays [5].
Usually, LSMs are related to an optimization problem, which maximizes the total value of settled
payments with limited liquidity constraints2 and the order of payments in the queue.

Güntzer et al. [6] defined a discrete optimization problem, the Bank Clearing Problem (BCP),
as maximizing the value of settled payments with capacity constraints. Later Bech and Soramäki[7]
studied the Gridlock Resolution Problem (GRP), which takes into consideration the order of the
payments and adds it as a sequence constraint into the BCP. In this thesis, we formulate the BCP
explicitly as a mixed integer linear programming (MILP) problem and find an optimal solution
with the Gurobi solver in Python.

To evaluate the performances, we generate synthetic payment data based on different values
of 4 parameters to simulate different types of situations in the market, and then implement three
algorithms to maximize the total value of settled payments and compare the performance of each
algorithm with statistics including the percentage of volume3/value settled, efficiency and com-
puting time. Moreover, since the LSMs allow payments to wait, minimization of the total delayed
time of the remaining payments in the queue is also a valuable optimization problem to consider.
Such a problem can be easily done by our proposed algorithm while difficult to be done by other
algorithms.

The remainder of this thesis is structured as follows. Chapter 2 reviews two previous algorithms
for solving the BCP and states the motivation for using MILP. In Chapter 3, we introduce several
concepts and mathematical approaches to solving the MILP problem. We also formulate the BCP

2Limited liquidity for the current queue is also referred to as “initial balance”, “capacity”, or “deposit”.
3In this thesis, volume means the number of payments.
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into a MILP problem and briefly explain the solving methods. In Chapter 4, we introduce the
algorithm we use to generate synthetic payment queues and their related statistical distributions.
The results of our simulations under different parameters of queue generation and corresponding
solutions to the three algorithms are discussed in Chapter 5. Chapter 6 further discusses the
change of objective function for delay time and briefly introduces the multi-objective problem. In
Chapter 7, we draw the conclusion of this thesis and provide potential further improvements.
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Chapter 2

Literature Review and Motivation

2.1 Current Methods Review

In the past few decades, some research has focused on different types of LSBM Algorithms to
reduce the potential risk and improve the interbank payment system. Güntzer et al. (1998)[6]
modeled a discrete optimization problem called BCP and proposed five different algorithms to
offset payments both bilaterally and multilaterally, in which the fifth algorithm (referred to as
Güntzer5 Algorithm in the rest of this thesis) performs better than the others. Bech and Soramäki
(2001)[7] proposed an algorithm (referred to as Bech-Soramäki Algorithm in the rest of this thesis)
that solving GRP in the RTGS system [3]; Shafransky (2005)[8] proposed a fast heuristic algorithm
(S&D approximation algorithm) based on the graph representation of the system. In this chapter,
we briefly introduce the Güntzer5 Algorithm and the Bech-Soramäki Algorithm since they are the
two most popular algorithms, and compare their performances with that of our proposed algorithm
that solves the BCP as a MILP problem later in chapter 5.

2.1.1 Güntzer5 Algorithm

Güntzer et al. [6] defines the BCP that maximizes the total value of settled payments with the
constraints of limited liquidity. They propose a relatively simple algorithm to approximately solve
the BCP. The key structure of the algorithm consists of three while loops and one post-optimization
part.

For each while loop, it will be implemented when there exists any bank with a deficit, i.e.
negative balance, and a specific condition for the current system is met. The three while loops
continuously activate or deactivate payments until all banks in the system have positive balances
and then the algorithm moves to the post-optimization part.

Post-optimization labels each bank by True or False to detect whether the balance of any bank
changes (if the balance changes, then the corresponding bank will be labeled as True). This part
stops until all banks are labeled as False so that it makes settled payments as many as possible.

The pseudo-code of the Güntzer5 Algorithm is shown in Algotirhm 1.

2.1.2 Bech-Soramäki Algorithm

Based on the introduction of gridlock by BIS (1997) [3], Bech and Soramäki[7] propose a simple
algorithm to solve the GRP. The main step for this algorithm is that first order payments based on
specific requirements, e.g. descending order of the value of the payments. Then, iteratively remove
the last payment from a bank’s queue until all payments left can be settled by its current balance.
Such an order is defined as a sequence constraint for the system operation. With the additional
sequence constraints, we can manipulate the optimization variable.

For example, payments can be sorted by value descendingly (resp. ascendingly). Then the
payments will be continuously removed from the end of the queue, i.e. from the payment with the
smallest (resp. largest) value, until the balance of the bank is non-negative after all payments still
in the queue are settled. This particular ordering prioritizes the approximate maximization of the
value (resp. volume) of settled payments.

The pseudo-code of the Bech-Soramäki Algorithm is shown in Algorithm 2.

8



Algorithm 1 Güntzer5 Algorithm

Input : queue, capacity(initial balance)
Output: settled payment, updated balance
Initialize status = 1 for all payments, i.e. activate all payment orders
// In all algorithms and Python codes, we assign 0 to status to represent an

inactive payment and 1 for an active payment.

Update the balance after settling all payments
while balance of any bank < 0 do

current bank = the bank with the largest deficit
while current bank balance < 0 and ∃ a payment to current bank with status = 0 s.t. value <
sender balance do

list = {payment: receiver = current bank, status = 0 and value < sender balance}
sublist = {payment: payment ∈ list and value > current bank deficit }
if sublist is not empty then

Set the status of the minimum payment in the sublist to 1
else

Set the status of the maximum payment in the list to 1
end

end
while current bank balance < 0 and ∃ a payment from current bank with status = 1 s.t. value
< receiver balance do

list = {payment: sender = current bank, status = 1 and value < receiver balance}
sublist = {payment: payment ∈ list and value > current bank deficit}
if sublist is not empty then

Set the status of the minimum payment in the sublist to 0
else

Set the status of the maximum payment in the list to 0
end

end
while current bank balance < 0 do

list = {payment: sender = current bank and status = 1}
sublist = {payment: payment ∈ list and value > current bank deficit}
if sublist is not empty then

Set the status of the minimum payment in the sublist to 0
else

Set the status of the maximum payment in the list to 0
end

end

end
Initialize postoptimization status as True for all banks
while any bank with postoptimization status == True do

current bank = the first bank with postoptimization status True
// Banks are sorted in alphabetical order.

list = {payment: sender = current bank and status = 0, in descending order of value}
for each payment in list do

if value < current bank balance then
Set the status of this payment to 1
Update the current bank balance as: balance -= value
Set the postoptimization status of the receiver bank for this payment to True

end
Set the postoptimization status of current bank to False

end
Return the payments with status = 1 as optimal settled payments

9



Algorithm 2 Bech-Soramäki Algorithm

Input : queue, capacity(initial balance)
Output: settled payment, updated balance
Initialize status = 1 for all payments, i.e. activate all payment orders
Sort all payments according to the requirement
Update the balance after settling all payments
Set li = list of payments (in order) from bank i
while balance of any bank < 0 do

current bank = the bank with the largest deficit and non-empty queue
Remove the last payment in lcurrentbank
current bank balance += value of this payment
balance receiver bank of this payment -= value of this payment

end
Return the remaining payments in queues as optimal settled payments

Figure 2.1 gives an example of how the Bech-Soramäki Algorithm works when the order of the
payments in the queue is sorted descendingly i.e. large payments first (referred to as sort = 2).
The original queue is sorted by time of arrival and the last payment in the queue is removed in
each step. Simultaneously, the value of this removed payment is added to the balance. The process
stops when the balance is non-negative and current payments in the queue are settled payments.

Figure 2.1: Illustration of Bech-Soramäki Algorithm

2.2 Motivation of Using MILP Problem

In this thesis, we propose a new algorithm (referred to as BM Algorithm in this thesis) to explicitly
formulate the BCP problem into a 0-1 mixed integer linear problem and solve it with Gurobi. The
motivations and advantages of using the BM Algorithm are listed as follows:

1. Performance evaluation: Algorithms proposed before are local search methods, which can
only provide the approximating solution and it is impossible to evaluate the goodness of the
solution. Using the BM Algorithm, we can exactly read from the log file to get the tolerance
setting and the gap between the current solution and the upper bound.

2. Flexibility of target: Algorithms proposed before are specifically defined to maximize the
total value of settled payments and impossible to change the optimizing target. Using the
BM Algorithm, we explicitly define the whole problem as a MILP problem, which makes
it easy and flexible to explore different optimizing targets by simply changing the objective
function.

3. Benchmarking: Our BM Algorithm to find an optimal solution is established in an explicitly
mathematical way and solve the MILP problem mainly based on the Branch-and-Cut method.
Therefore, our BM Algorithm solution can act as a benchmark for other central banks to
compare the performances of their own systems with the performance given by our algorithm.
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4. Capability for Multi-Objective Optimization: Based on the explicit mathematical expressions
for all attributes of the payment, we can formulate the objective functions related to value,
volume, delay, etc. In practice, the system can not only find the maximum value of settled
payments but also find the maximum settled volume without losing too much for the settled
value, which will be further discussed in chapter 6.
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Chapter 3

Mixed Integer Linear
Programming (MILP)

In this chapter, we introduce the definition of terminologies for a MILP problem and several
methods for solving a MILP problem. Most of the methodologies are referenced to Chapter 1 in
Integer Programming [9] and original articles where the methods were initially proposed1. Then
we formulate the BCP into a MILP problem by explicitly giving its mathematical expressions and
briefly introduce the process for Gurobi solving a MILP problem, which is implemented for our
simulations. For simplicity, we assume that any linear programming problem in this chapter has
at least one feasible solution.

3.1 Introduction

Definition 3.1.1. A mixed integer linear programming (MILP) problem is a problem of the form

maximize cx+ hy

subject to Ax+Gy ≤ b,

x ≥ 0 integers,

y ≥ 0

(3.1.1)

where row vectors c = (c1, . . . , cn) ∈ Rn, h = (h1, . . . , hp) ∈ Rp, matrices A = (aij) ∈ Rm×n,

G = (gij) ∈ Rm×p and a column vector b =

 b1
...
bm

 ∈ Rm are the data and column vectors

x =

x1

...
xn

 ∈ Zn
+, y =

y1
...
yp

 ∈ Rp
+ are variables to be optimized, n,m, p ∈ N.

Remark 3.1.2. In this report, for simplicity, we use Zn
+ and Rn

+ to denote the set of non-negative
integers and real numbers respectively, i.e. 0 ∈ Zn

+ and 0 ∈ Rn
+. Also, we use N to denote the set

of nature numbers including 0.

Definition 3.1.3. A mixed integer linear set is the set of the form:

D :=
{
(x, y) ∈ Zn

+ × Rp
+ : Ax+Gy ≤ b

}
(3.1.2)

i.e. the set of feasible solutions to the MILP problem (3.1.1)

For convenience, we denote (3.1.1) as:

P := max {cx+ hy : (x, y) ∈ D} (3.1.3)

1Specific reference will be added for these methods when mentioned in subsections.
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3.2 Pre-solve

The purpose of pre-solving is to further simplify the original problem by taking advantage of the
integrality of variables. Some variables can be calculated to specific values and some rows or
columns are likely to be removed.

Example 3.2.1. Assume that we have a MILP problem as follows:

maximize x1 + x2 + x3 + x4

subject to x1 + x2 ≤ 1.5 (1),

x1 ≥ 1 (2),

x1 + x3 + x4 ≤ 6 (3),

x1, x2 ∈ N, x3, x4 ≥ 0 (4)

Combining (1),(2) and (4), the only feasible solution for x1, x2 is x1 = 1 and x2 = 0 and then
inequalities (1) and (2) and be removed and (3) can be revised as x3 + x4 ≤ 5. Moreover, the
objective function can be written as x3 + x4 + 1.

Finally, the original MILP problem with 3 inequalities and 4 variables is simplified to a new
MILP problem with only 1 inequality and 2 variables as follows, without losing any original feasible
solution.

maximize x3 + x4 + 1

subject to x3 + x4 ≤ 5,

x3, x4 ≥ 0

(3.2.1)

3.3 Linear Programming (LP) Relaxation

The main idea for LP relaxation is to remove the integrality constraints of variables and transform
the MILP problem into a more general linear programming problem. The optimal value given by
the solution of LP relaxation provides an upper bound for the optimal value of the original MILP
problem.

Definition 3.3.1. A natural linear relaxation R for the set D defined in (3.1.2) is defined by
removing the integrality constraint for x as:

R =
{
(x, y) ∈ Rn

+ × Rp
+ : Ax+Gy ≤ b

}
(3.3.1)

Definition 3.3.2. A natural linear programming (LP) relaxation LP of the MILP problem P
defined in (3.1.1) is defined by substituting R for D as:

LP := max {cx+ hy : (x, y) ∈ R} (3.3.2)

Proposition 3.3.3. Suppose (x∗, y∗) is the optimal solution of LP with optimal value z∗.Then z∗

is the upper bound of the optimal value of the original MILP P .

Proof. By the definition of natural linear relaxation, D ⊆ R and then any feasible solution (x, y)
with value z for original MILP problem P satisfies (x, y) ∈ D ⊆ R. Since the objective function is
maximum, we have:

z = cx+ hy ≤ max{cx+ hy : (x, y) ∈ D} ≤ max{cx+ hy : (x, y) ∈ R} = z∗

3.4 Branch-and-Bound Method

3.4.1 Methodology

Based on the notations in chapter 1 of Integer Programming [9], consider a general MILP problem
P = max {cx+ hy : (x, y) ∈ D} where D =

{
(x, y) ∈ Zn

+ × Rp
+ : Ax+Gy ≤ b

}
. Let LP and R be

the natural LP relaxation and natural linear relaxation for P and D, respectively. Suppose (x0, y0)

13



is the optimal solution to LP and there exists some element in x that is fractional, i.e. x0
i for some

1 ≤ i ≤ n.

Define two sets as:

D1 := D ∩
{
(x, y) : xi ≤ ⌊x0

i ⌋
}
, D2 := D ∩

{
(x, y) : xi ≥ ⌈x0

i ⌉
}

where ⌊x⌋ is the largest integer that smaller than or equal to x and ⌈x⌉ is the smallest integer that
larger than or equal to x.

Define the two corresponding sub-problems as:

P1 = max {cx+ hy : (x, y) ∈ D1}
P2 = max {cx+ hy : (x, y) ∈ D2}

Proposition 3.4.1. Suppose two sub-problems P1, P2 have optimal values z∗1 and z∗2 . Then the
optimal value of P is z∗ = max{z∗1 , z∗2}.

Proof. By the integrality of vector x in D, it is obvious that D1, D2 are disjoint and D1 ∪D2 = D.
Suppose the corresponding solutions are (x∗

1, y
∗
1) and (x∗

2, y
∗
2), then:

(x∗
1, y

∗
1) ∈ D1 and z∗1 = cx∗

1 + hy∗1 ≥ cx1 + hy1 ∀(x1, y1) ∈ D1

(x∗
2, y

∗
2) ∈ D2 and z∗2 = cx∗

2 + hy∗2 ≥ cx2 + hy2 ∀(x2, y2) ∈ D2

Since D1 ∪D2 = D, we have:

max{z∗1 , z∗2} ≥ cx+ hy ∀(x, y) ∈ D

Therefore, the optimal value of P is z∗ = max{z∗1 , z∗2}

Let LP1 and LP2 be the natural LP relaxation of P1 and P2, respectively. Let R1 and R2 be
the natural linear relaxation of D1 and D2, respectively.

All different cases are listed as follows:

1. If Ri = ∅, which implies LPi is infeasible, then:

Di ⊆ Ri ⇒ Di = ∅ ⇒ Pi is infeasible

In this case, we do not need to consider the sub-problem Pi any further and say that Pi is
pruned by infeasibility.

2. If Ri ̸= ∅ for i = 1, 2, then let
(
xi, yi

)
be an optimal solution to LPi with optimal value zi,

i = 1, 2. Let l and u be the current best lower bound and upper bound for the optimal value.

(a) If every element in xi is an integer, i.e.
(
xi, yi

)
∈ Di, then

(
xi, yi

)
is the optimal solution

of Pi and the corresponding optimal value zi is the updated lower bound, i.e. l = zi.
We do not need to consider the sub-problem Pi any further since it is solved already
and say that Pi is pruned by integrality.

(b) If there exists an element in xi is not an integer and zi ≤ l, then it is impossible to find
a better solution in Di by proposition 3.3.3 as:

z ≤ z∗ ≤ l ∀z as an optimal value for Pi

We do not need to consider the sub-problem Pi any further since it is solved already
and say that Pi is pruned by bound.

(c) If there exists an element in xi is not an integer and zi > l, then it is possible to find a
better solution in Di and we need continue to do the branching process for

(
xi, yi

)
.
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3.4.2 Example

Suppose we have a MILP problem as follows:

maximize 5.5x1 + 2.1x2

subject to −x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ≥ 0 integers

(3.4.1)

In this section, we solve the MILP problem P0 (3.4.1) to illustrate the above four different cases
in the Branch-and-Bound method.

Step 1: Solve the LP relaxation LP0 of (3.4.1) and get the optimal solution x0
1 = 1.3 and x0

2 = 3.3
with optimal value z0 = 14.08

Step 2: Since the solution of LP0 does not satisfy the integrality, we create a branch on x1 by
separating the feasible region into two parts with x1 ≤ 1 and x1 ≥ 2 so that we define two
sub-problems P1 and P2 as follows. The corresponding LP relaxations are denoted as LP1

and LP2, respectively.

Sub-problem P1:

maximize 5.5x1 + 2.1x2

subject to −x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ≥ 0 integers,

x1 ≤ 1

Sub-problem P2:

maximize 5.5x1 + 2.1x2

subject to −x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ≥ 0 integers,

x1 ≥ 2

Step 3: For LP1, we can solve for the optimal solution x1
1 = 1 and x1

2 = 3 with optimal value
z1 = 11.8. Note that all variables are integers so this is a feasible solution to the original
MILP problem (3.4.1) and there is no need to continue from this node, which is called pruned
by integrality.

Step 4: For LP2, we can get the optimal solution x2
1 = 2 and x2

2 = 0.5 with optimal value z2 = 12.05.
Note that x1 is an integer while x2 is still fractional and also the optimal value is larger than
z1, which requires further branching on this node. Figure 3.1 shows the solutions to the three
LP relaxations on the plane.
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Figure 3.1: LP Relaxation and First Branching

Step 5: By the conclusion in step 4, we continue to create a branch from LP2 node on x2 by separating
the feasible region into two parts with x2 ≤ 0 and x2 ≥ 1 so that we define two sub-problems
P3 and P4 as follows. The corresponding LP relaxations are denoted as LP3 and LP4,
respectively.

Sub-problem P3:

maximize 5.5x1 + 2.1x2

subject to −x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ≥ 0 integers,

x1 ≥ 2,

x2 ≤ 0

Sub-problem P4:

maximize 5.5x1 + 2.1x2

subject to −x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ≥ 0 integers,

x1 ≥ 2,

x2 ≥ 1

Step 6: For LP3, the optimal solution is x3
1 = 2.2125 and x3

2 = 0 with optimal value z3 = 11.6875.
Note that 11.6875 is less than the optimal value of 11.8 given by LP1, which is the lower bound
for the solution to the MILP problem since it already satisfies the integrality. Therefore,
11.6875 < 11.8 stops the following process for LP3 node and this is the case called pruned by
bound.

Step 7: For LP4, Figure 3.2 shows that after adding two branching inequalities x1 ≥ 2 and x2 ≤ 0,
the feasible region becomes empty, so that LP4 is infeasible and the process stops here. This
situation is called pruned by infeasibility.

Step 8: Note that all the branches are pruned and we have Figure 3.3 containing all the nodes with
solution information. Comparing the terminal solution of each branch, it is easy to conclude
that the solution to LP1, i.e. x

1
1 = 1, x1

2 = 3 with value z1 = 11.8, is the optimal solution to
the original MILP problem.
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Figure 3.2: Second Branching

Figure 3.3: Branch-and-Bound Tree

3.5 Cutting Plane Method

The cutting plane method is a fundamental approach to solving a MILP problem and in the past
few decades, many different types of algorithms were introduced to generate different cuts such as
tableau-based disjunctive cuts (e.g. Gomory cuts, Mixed-Integer-Rounding (MIR) cuts), knapsack
cuts (e.g. cover cuts), etc. Marchand [10] summarized several useful cutting planes including
Gomory’s mixed integer cuts, MIR cuts, lift-and-project cuts, etc.

In this section, we briefly introduce the general methodology of cutting plane methods and three
specific generations of cuts, i.e. cover cuts, Chvátal-Gomory cuts and reformulation-linearization
technique (RLT), which are most commonly used in our implementations of the BM Algorithm.
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3.5.1 Methodology

Consider the same general MILP problem P in section 3.4.1 and suppose
(
x0, y0

)
is the optimal

solution to LP with optimal value z0.

Definition 3.5.1. A cutting plane separating a point (x0, y0) from a set D is defined as a valid
inequality αx+ γy ≤ β such that

αx+ γy ≤ β ∀(x, y) ∈ D and αx0 + γy0 > β

Figure 3.4 gives an illustration of the definition of a cutting plane, where the blue dashed line
represents the cutting plane that separates the optimal solution to LP, i.e. the red point, from the
integer feasible set.

Figure 3.4: Example of a Cutting Plane

The key idea for cutting planes methods is that if
(
x0, y0

)
∈ R\D, then adding a cutting plane

separating
(
x0, y0

)
from D gives a smaller feasible sub-region

D1 = D ∩ {(x, y) : αx+ γy ≤ β}

i.e. retaining all feasible solutions of P and removing the optimal solution of LP .

Then define the new natural linear relaxation and LP relaxation as:

R1 = R ∩ {(x, y) : αx+ γy ≤ β} and LP1 = max {cx+ hy : (x, y) ∈ R1}

Find the optimal solution
(
x1, y1

)
for LP1 with optimal value z1. If

(
x1, y1

)
/∈ D1, then

keep adding a new cutting plane seperating
(
x1, y1

)
from D1 to get a new sub-region D2, the

corresponding natural linear relaxation R2 and LP relaxation LP2, . . . Repeat the addition of
cutting planes until

(
xi, yi

)
∈ Di for some i and then

(
xi, yi

)
with value zi is the optimal solution

to the original MILP problem P .

3.5.2 Cover Cut

The cover cut is a set of cover inequalities first proposed by Balas[11] in 1973 and then extensions
were discussed and such inequalities were applied to the cutting plane method.

18



In this section, we discuss the cover cut for a specific type of MILP problem, the 0-1 MILP
problem, where all the variables are decision variables, i.e. 0 or 1. Under the same representation,
we can write a general 0-1 MILP problem as:

P = max {cx : x ∈ D} where D = {x ∈ {0, 1}n : Ax ≤ b} (3.5.1)

where A ∈ Rm×n and b ∈ Rm.
Suppose the j-th inequality in the constraint satisfies:

n∑
i=1

ajixi ≤ bj (3.5.2)

where aji > 0, for all i = 1, . . . , n and bj > 0

Definition 3.5.2. A subset C ⊆ {1, . . . , n} is a cover for (3.5.2) if:

∑
i∈C

aji > bj

i.e. only taking all variables with index in C has already exceeded the constraint boundary.

Definition 3.5.3. A cover C for (3.5.2) is minimal if for all proper subset Q of C:

∑
i∈Q

aji ≤ bj

Theorem 3.5.4. Let Γ = {C : C is the minimal cover for (3.5.2)} and |C| denote the number of
elements in C. Then (3.5.2) is equivalent to the set of inequalities:

∑
i∈C

xi ≤ |C| − 1 ∀C ∈ Γ (3.5.3)

where each inequality is called a cover inequality of cover C.

Example 3.5.1. Consider the following MILP problem

maximize 5.5x1 + 2.1x2

subject to −x1 + x2 ≤ 2,

9x1 + 10x2 ≤ 17,

x1, x2 ≥ 0 integers

Note that the second inequality 9x1 + 10x2 ≤ 17 satisfies that all the coefficients and R.H.S value
are positive.

By definition of the minimal cover, it is easy to see that C = {1, 2} is the only minimal cover
and therefore applying Theorem 3.5.4 gives the cover inequality:

x1 + x2 ≤ 2− 1 = 1
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Figure 3.5: Example of a Cover Inequality

3.5.3 Chvátal-Gomory Cut

In 1958, Gomory [12] first proposed a general cutting method for a pure integer programming
problem, i.e. a general MILP defined in (3.1.1) with p = 0, and then combined with the contri-
butions of Chvátal [13], the improved Chvátal-Gomory inequality was introduced to be a common
cut used in many solvers.

Proposition 3.5.5 (C-G inequality). Let Ax ≤ b be the linear system of inequalities where x is a
non-negative integer vector, i.e. Ax ≤ b are constraints for a pure MILP problem. Let u ∈ Rm

+ be
a non-negative real vector. Then there exists a valid inequality defined as:

n∑
i=1

⌊uAi⌋xi ≤ ⌊ub⌋ (3.5.4)

where Ai denotes the i-th row of A, i = 1, . . . , n.This inequality is called Chvátal-Gomory inequality
(C-G inequality)

Proof. By the definition of the floor, since u and x are non-negative, we have:

n∑
i=1

⌊uAi⌋xi ≤
n∑

i=1

uAixi ≤ ub

Then since ⌊uAi⌋ and xi are integers for all i = 1, . . . , n,
∑n

i=1⌊uAi⌋xi must be an integer so that
it must be less than or equal to the largest integer not larger than ub, i.e.

n∑
i=1

⌊uAi⌋xi ≤ ⌊ub⌋

Note that proposition 3.5.5 holds for any non-negative vector u so that corresponding CG-
inequalities are valid. However, the plane created by these CG-inequalities may not be the cutting
plane for LP relaxation, which depends on the choice of u. Further research and improvement are
made such as implementing the simplex method before choosing u.
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Example 3.5.2. Consider the same example MILP problem in (3.4.1)

maximize 5.5x1 + 2.1x2

subject to −x1 + x2 ≤ 2,

8x1 + 2x2 ≤ 17,

x1, x2 ≥ 0 integers

Take u = (0.4, 0.3), we have:

2x1 + x2 ≤ 5.9

By C-G inequality, taking the floor of coefficients and R.H.S, we get a new cut as:

2x1 + x2 ≤ 5

The cutting plane is illustrated in Figure 3.6 with the blue dashed line. It shows that this inequality
indeed adds a cutting plane that separates the LP optimization solution and retains all feasible
integral solutions.
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x1=1.3, x2=3.3

−x1+2x2≤2
8x1+2x2≤17
2x1+ x2≤5

Figure 3.6: Example of a C-G Inequality

3.5.4 Reformulation-Linearization Technique (RLT)

In this section, we also discuss the RLT for the 0-1 MILP problem as (3.5.1). Sherali and Adams
[14] first invented the RLT and conclude that higher level of the hierarchy k results in stronger
RLT relaxation and optimal RLT can be retrieved when k = n. Franklin et al. [15] review the
algorithm and summarize a specific process for the 0-1 MILP problem, which adds the cutting
plane to the continuous relaxation defined as below.

Definition 3.5.6. The continuous relaxation of a 0-1 MILP problem as (3.5.1) is a problem that
relaxes the binary constraint of the variable to the interval [0,1] as:

CR = max {cx : x ∈ RC} where RC = {x ∈ [0, 1]
n
: Ax ≤ b} (3.5.5)

For any given k ∈ {1, . . . , n}, the level-k RLT relaxation has two steps as follows:
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• Reformulation step: Construct a system K of valid polynomial inequalities of degree k + 1.
Let S, T be disjoint subsets of {1, . . . , n}. Define:

J(S, T ) =
∏
i∈S

xi

∏
i∈T

(1− xi)

– If |S|+ |T | = k + 1, then add the inequality J(S, T ) ≥ 0 into the system K.

– If |S| + |T | = k, then add the inequality J(S, T )(bj −
∑n

i=1 ajixi) ≥ 0 into the system
K, j = 1, . . . ,m.

• Linearization step: Substitute new variables for monomials of degree > 1

– Expand the left-hand side of each inequality in the system K to the format as a weighted
sum of distinct monomials

– Substitute xi for x
r
i for all i = 1, . . . , n and r = 2, . . . , n+ 1.

– For each inequality in the system K, if 2 ≤ |S| ≤ min{k+1, n}, then define yS =
∏

i∈S xi

be a new binary variable and replace the corresponding product term in each inequality

Now we get a system of linear inequalities with binary variables and each inequality has the
format as:

n∑
i=1

αixi +
∑

2≤|S|≤min{k+1,n}

βSyS ≤ γ (3.5.6)

where αi and βS are coefficients computed by reorganizing the terms of the inequality for
some constant γ.
The system with inequalities as (3.5.6) provides the RLT cutting plane to solve the 0-1 MILP
problem.

3.6 Branch-and-Cut Method

In practice, we combine the Branch-and-Bound approach in section 3.4 and the cutting plane meth-
ods in section 3.5 together to more efficiently find the optimal solution to the MILP problem, since
the cutting plane method can provide tighter upper bound for each problem, which is important
for pruning the Branch-and-Bound Tree.

In chapter 1 of Integer Programming [9], a formal algorithm of Branch-and-Cut method is
constructed as follows:
Let Ni be the node representing problem Pi,L be the set of non-pruning nodes, z be the current
lower bound and (x∗, y∗) be the optimal solution.

Step 1: Initialization: Set L = {N0}, z = −∞ and (x∗, y∗) = ∅

Step 2: Decision for termination: The process terminates here if L = ∅ and (x∗, y∗) is the optimal
solution for the problem, otherwise go to step 3.

Step 3: Node selection: Select a node, say Ni with corresponding LP relaxation LPi, and remove it
from the set L

Step 4: LP relaxation: If LPi is infeasible, then go back to step 3; otherwise, write the optimal
solution to LPi as (x

i, yi) with the optimal value zi

Step 5: Decision for pruning: in this step, we have three different cases:

(a) If zi ≤ z, then it is pruned by bound and go back to step 3.

(b) If zi ≥ z and (xi, yi) is feasible to the original MILP problem, then update z = zi and
(x∗, y∗) = (xi, yi) and then go back to step 3.

(c) If zi ≥ z but (xi, yi) is infeasible to the original MILP problem, then go to step 6

Step 6: Cut or Branch: For further exploration on the current node, we can do either of the following:

• Add a cutting plane to strength the LPi and go back to step 4, OR

• Use the branch method to continue branch the current node to k ≥ 2 sub-problems with
LP relaxations LPi1 , . . . , LPik , as creating new sub-nodes as Ni1 , . . . , Nik and add them
to L. Go back to step 1.
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3.7 Problem Formulation

Bank Clearing Problem (BCP) is a discrete optimization problem that maximizes the total value
of settled payments with the limited capacity for each participant, which can be formulated as a
MILP problem with objective function as the value of settled payments and constraints that the
total value sent by each bank cannot exceed its capacity. Variables of each payment are binary as
0 represents not settled payment and 1 represents settled payment.

To formulate the BCP as a MILP problem, let us clarify the notations as follows:

• n: the number of banks in the payment system

• bi: the capacity of bank i

• mi: the number of payments whose sender is bank i, i = 1, . . . , n

• ri,k: the receiver of the k-th payment in bank i’s queue, i = 1, . . . ,mi

• vi,k: the value of the k-th payment in bank i’s queue, i = 1, . . . ,mi

• xi,k ∈ {0, 1}: the decision variable of the k-th payment in bank i’s queue, i = 1, . . . ,mi,
where 0 represents inactive payment and 1 represents active payment

Define V (x) as the total value of the settled payments, Si(x) as the total value of the settled
payments sent by bank i and Ri(x) as the total value of the settled payments received by bank i,
i.e.

V (x) =

n∑
i=1

mi∑
k=1

xi,kvi,k

Si(x) =

mi∑
k=1

xi,kvi,k i = 1, . . . , n

Ri(x) =

n∑
j=1

mj∑
k=1

xj,kvj,k1{rj,k=i} i = 1, . . . , n

(3.7.1)

Then based on the definition of BCP, we can formulate the BCP as the follwing MILP problem:

maximize V (x)

subject to Si(x)−Ri(x) ≤ bi, i = 1, . . . , n,

xi,k ∈ {0, 1}, k = 1, . . . ,mi, i = 1, . . . , n

(3.7.2)

where V , Si and Ri are functions defined above in (3.7.1)

3.8 Gurobi Solver

Gurobi solver is a solver for optimization problems that is interfaced with many programming
languages such as Python, C++, R, etc and we use Gurobi solver in Python to solve the BCP
problem. Figure 3.7 describes the process of Gurobi solver for a MILP problem.

Notice that the Gurobi solver does not guarantee the global optimum as it always returns the
best optimal solution within a specific tolerance with default value 1e-4, i.e. solving to optimality.
There is a difference between the concept of a global optimum and solving to optimality. For a
global optimum, it is exactly the optimized value and for example for a maximization problem, if
x∗ is the global optimizer with the global optimum z∗, then mathematically it is equivalent to say
that for any x in the feasible region with corresponding objective value z, we have z ≤ z∗. While
for solving to optimality, usually there exists some parameter such as error or tolerance so that
when some optimal value meets the specific requirement such as within the tolerance interval, the
process will be stopped and this value will be taken as the optimum. However, it is possible that
there exists some value that is more optimal than the current solution.
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Figure 3.7: Procedure of Gurobi Solver for a MILP Problem
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Chapter 4

Data

To evaluate the performances of the algorithms corresponding to queues with different characteris-
tics in the interbank payment system, we first generate some artificial queues for different scenarios,
using the Soramäki-Cook Algorithm [16] for the construction of the interbank-payment network
and assigning the payment values following a truncated log-normal distribution with different
standard deviation.

4.1 Network Construction

Note that the interbank payment system is actually a network, where each node represents a bank,
the directed link from node i to node j represents a payment from bank i to bank j and the weight
of the link equals the value of this payment. For the pseudo-code for the Soramäki Cook Algorithm
see Algorithm 3 and relevant terminologies are explained as follows:

• n0: initial number of nodes

• n: desired number of nodes (total number of banks)

• nb payments: total number of payments in the queue

• h = (hi)i=1,...,n: tracks the amount of preferential attachment strength of each bank, rep-
resenting the relative possibility to be selected as a sender or receiver of a payment in the
process of building payments network

• α: strength of preferential attachment, i.e. added to hi when a payment is related to bank i

• matrix s = (sij)i,j=1,...,n: sij represents the number of payments from bank i to bank j

4.2 Value Assignment

Assume that the values of payments in the queue follow a truncated log-normal distribution with
a constant mean, a specific standard deviation, and also with an upper limit of 10 times the mean
to cut off extremely large payments.

We generate the variates following the truncated log-normal distribution and randomly assign
the number to each payment in the network as the value of the payment, i.e. the weight of each
edge in the network.
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Algorithm 3 Soramäki Cook Algorithm

Input : n0, n, nb payments, α
Output: data frame of one queue
Initialize h[i] = 0 for i = 0, . . . , n− 1
Set h[i] = 1 for i = 0, . . . , n0 − 1
Set s = np.zeros((n, n), dtype=int)
Set m = int(nb payments / (n-n0))
for k in range(n0,n,1) do

for l in range(0,m,1) do
Randomly choose bank i∗ as the sender based on probability distribution h
// i.e.bank i has the probability hi∑

hi
of being chosen

Set h[i∗] = h[i∗] + α
Randomly choose bank j∗ as the receiver (Repeat until j∗ ̸= i∗)
Set h[j∗] = h[j∗] + α
Set s[i∗, j∗] = s[i∗, j∗] + 1

end
Set h[k] = 1 // add a new node (bank)

end
for l in range(nb payments-m*(n-n0)) do

Randomly choose bank i∗ as the sender based on probability distribution h
Set h[i∗] = h[i∗] + α
Randomly choose bank j∗ as the receiver (Repeat until j∗ ̸= i∗)
Set h[j∗] = h[j∗] + α
Set s[i∗, j∗] = s[i∗, j∗] + 1

end

Proposition 4.2.1 (Relationship between log-normal distribution and normal distribution). Let
X be a normal distribution with mean µx and variance σ2

x and Y = eX be the corresponding
log-normal distribution with mean µy and variance σ2

y. Then:

µx = ln
µy√
σ2
y

µ2
y
+ 1

σ2
x = ln (

σ2
y

µ2
y

+ 1) (4.2.1)

Proof. Note that the moment generating function of normal distribution X is:

E[etX ] = MX(t) = eµxte
1
2σ

2
xt

2

Then by the fact that Y = eX , we have:

µy = E[Y ] = E[eX ] = MX(1) = eµx+
σ2
x
2

σ2
y = E[Y 2]− E[Y ]2 = MX(2)− µ2

y = e2µx+2σ2
x − e2µx+σ2

x = µ2
y(e

σ2
x − 1)

Solving the system of two equations, we can get the results (4.2.1)

We use scipy.stats.truncnorm in Python to generate a truncated normal variate, where the
mean and standard deviation are computed by the relationship in proposition 4.2.1 and the upper
bound is set to be ln (10µy). Then exponentiating the variate gives an approximate generation of a
truncated log-normal variate. Table 4.1 lists the statistics of the distribution of 100,000 samplings
and the significantly small percentage errors show that this generation algorithm approximately
generates the truncated log-normal distribution with supposed mean and proportional sigma. Fig-
ure 4.1 illustrates the histogram of 100,000 samplings.

Combining the value of each payment with the corresponding network of queuing payments
generated in section 4.1, we simulate one queue as Figure 4.2 shows.
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supposed
std/mean

realized mean realized std max realized
std / mean

(%) mean
error

(%) std
error

0.05 1937127.46 96904.46 2373619.50 0.05 -0.00 0.05
0.10 1937436.24 192752.33 2920497.62 0.10 0.02 -0.50
0.20 1933736.40 385152.53 4129834.47 0.20 -0.18 -0.59
0.30 1936961.48 580539.74 6990150.51 0.30 -0.01 -0.10
0.40 1944428.28 784768.25 9735584.29 0.40 0.38 1.28
0.50 1932845.32 968036.82 12941281.18 0.50 -0.22 -0.05
0.60 1939360.60 1160781.27 17285879.75 0.60 0.12 -0.13
0.70 1933540.48 1341037.07 19298776.59 0.69 -0.19 -1.10
0.80 1931878.74 1524915.89 19158582.56 0.79 -0.27 -1.60

Table 4.1: Generating Truncated Log-normal Distribution under Different Coefficients of Variation
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Figure 4.1: Histogram of 100,000 Samples from Truncated Log-normal Distribution

Figure 4.2: Network of One Queue of Payments
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Chapter 5

Results

In this chapter, we simulate 51 scenarios of queues by changing different values of four parameters
and simulating 1,000 queues for each scenario. Then we evaluate and compare the performances
of the solutions given by different algorithms, using error bars to show the 99% confidence interval
of the mean.

For the implementation of the BM Algorithm, we solve the MILP problem by running the
Gurobi solver in Python, version 10.0.1. The configuration of the computer is MacBook Pro 2021
with an Apple M1 Pro chip, 10 cores and 32GB Unified Memory. Note that the computing time
depends on the computer configuration.

5.1 Parameters

During the simulations, we fix the following parameters:

• n0 = 10: the number of initial nodes for the construction of the queue by Algorithm 3

• n = 37: the total number of banks in the interbank payment system

• mean = 98.6e12/50.9e6: the average value of one payment in the queue, settled as a constant
mean for the truncated log-normal distribution for values of the payments (this statistical
data based on the annual data provided by the Bank of England1)

• upper bound = 10 × mean: pre-assigned upper bound of the truncated log-normal distribu-
tion of all payments in one queue for value assignment

Then we do the simulations on different values on the following parameters to simulate different
performances of each algorithm under queues with different features:

• Coefficient of Variation (CV): we set the standard deviation of the truncated log-normal
distribution of values of payments in the queue as a CV with respect to mean, i.e. larger CV
implies larger volatility for the value in a queue.

• Number of Payments: the number of payments in one queue represents the size of the queue

• Capacity: we set capacity as the proportion of the total liquidity needed to settle all the
payments in the queue, i.e. for each bank, its liquidity needed is the difference between the
sum of its send-out payments value and the sum of its receive-in payments value, and smaller
capacity represents more serious lack of liquidity in the market.

• α: the strength of preferential attachment, i.e. larger α implies that more payments will be
related to several big banks (i.e. core banks) while fewer payments will involve other banks
(i.e. periphery banks).

1https://www.bankofengland.co.uk/payment-and-settlement/chaps
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Parameter Value Total
CV 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 9
Number of Payments 100, 200,300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000,

5000, 6000, 7000, 8000, 9000, 10000, 20000, 50000, 100000
22

Capacity 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% 10
α 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 10

Table 5.1: Scenarios of Simulations

Table 5.1 lists all the scenarios we set for the four parameters. And Table 5.2 lists the default
parameters when simulating each parameter.

Parameter Default Value
CV 0.2

Number of Payments 3000
Capacity 80%

α 0.1

Table 5.2: Default Parameters for Simulations

5.2 Outputs

For each queue, we implement 4 Algorithms and denote them in the plot legends as follows:

• Bech Soramäki 1: Algorithm 2 (Bech-Soramäki Algorithm) with descending sorting of pay-
ment values, i.e. large payment settled first

• Bech Soramäki 2: Algorithm 2 (Bech-Soramäki Algorithm) with ascending sorting of payment
values, i.e. small payment settled first

• Güntzer et al. 5: Algorithm 1 (Güntzer5 Algorithm)

• MILP: BM Algorithm

We optimize the maximum settled value and compute the following data to analyze the perfor-
mances of each algorithm. Figure 5.1 and Figure 5.2 give two different layouts of example outputs
for 5 queues by Güntzer5/Bech-Soramäki Algorithm and BM Algorithm, respectively:

• value settled: the total value of settled payments

• total value: the total value of payments in the queue

• % value settled: the percentage of value settled with respect to the total value, i.e.

% value settled = value settled / total value × 100%

• volume settled: the total number of settled payments

• total volume: the total number of payments in the queue

• % volume settled: the percentage of volume settled with respect to the total volume, i.e.

% volume settled = volume settled / total volume × 100%

• used liquidity: the total liquidity used for settling these payments, defined as:

used liquidity =
∑n

i=1 max{inital balance of bank i - final balance of bank i, 0}

• liquidity / value: relative used liquidity with respect to the value settled.

• computing time: time (in seconds) for solving the problem for one queue by each algorithm
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Figure 5.1: Example Outputs for 5 Queues by Güntzer5/Bech-Soramäki Algorithm

For our BM Algorithm, we additionally have three more columns as follows:

• status: -1 represents the success of finding an optimal solution; if an optimal solution cannot
be found in the settled limit time (90s), then the gap between the current solution and the
upper bound will be shown in this column

• raw: the raw column shows the optimality of the solution given by Gurobi within a limited
processing time. If an optimal solution is found then it shows “Optimal solution found” with
corresponding tolerance; if the optimal solution is not found within the limited time (we set
90 seconds in all simulations), then it marks as “Time limit reach”

• thread: the thread column collects the information of the number of threads used for solving
the problem as more threads are used, the much faster the solution will be reached

Figure 5.2: Example Outputs for 5 Queues by BM Algorithm

For each parameter variable, we evaluate and compare the four main statistics of optimal
solutions as follows:

• % volume settled: the percentage of volume settled over the total volume of the queue

• % value settled: the percentage of value settled over the total value of the queue

• efficiency: value / liquidity, i.e. The value settled that one unit of liquidity used

• computing time: the computing time for each algorithm to compute the optimal solution for
each queue.

We take the confidence interval for each statistic computed by 1000 simulations as a main
method to evaluate and compare the performance of each algorithm. Table 5.3 gives an example
of the computed statistics with 99% confidence interval by default parameters listed in Table 5.2.

Bech-Soramäki 1 Bech-Soramäki 2 Güntzer5 MILP
% volume settled 96.078±0.0933 97.8817±0.0512 98.9888±0.0116 98.7138±0.017
% value settled 97.3099±0.0659 96.8644±0.0742 98.8243±0.0147 98.8594±0.0147
efficiency 29.0642±0.4946 30.1948±0.538 29.0141±0.4831 28.8082±0.4767
computing time 0.0955±0.0006 0.0838±0.0004 0.1469±0.0016 1.0153±0.0052

Table 5.3: Confidence Intervals for Outputs
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5.3 Simulations

We use the error-bar plot to illustrate the confidence interval we compare our BM Algorithm with
the other three algorithms based on the four error-bar plots of four statistics listed in section 5.2.
Furthermore, additional graphs and tables are included for further analysis.

In all simulations, our BM Algorithm has the best performance on average on the percentage of
value settled. In most scenarios, Güntzer5 Algorithm performs best on the percentage of volume
settled. Moreover, we set the time limit for computing as 90 seconds. There are 24 queues that
computed to the time limit and the current best solution is returned. However, all these sub-
optimal solutions still outperform the other three algorithms on the percentage of settled payment
values.

5.3.1 Simulations on Coefficient of Variation (CV)

In this section, we simulate different volatilities of the values of payments in the queue by taking
different coefficients of variation (CV) with respect to the mean, from 0.1 to 1.0 with step 0.1.
Other parameters are set to default as Table 5.2. Since we set the mean as a constant, when CV
increases, the volatility of the payment value increases.

According to Figure 5.3, the change of the features of relative size between each payment does
not have some significant impact on the percentages of volume and value settled for both BM
Algorithm and Güntzer5 Algorithm and Güntzer5 Algorithm always performs better for volume
while relatively worse for value than BM Algorithm. Both of them outperform the Bech-Soramäki
Algorithm with ascending or descending order significantly for value, but when CV is larger than
0.4, Bech-Soramäki Algorithm with ascending order, i.e. small payments settled first, has better
performance on volume than BM Algorithm.

The efficiency of all algorithms decreases when CV increases, as when the volatility of payment
values becomes larger, one unit liquidity settles less value, and Bech-Soramäki Algorithm with
ascending order has the largest efficiency much more than the other three however, it is worth
noticing that Bech-Soramäki Algorithm settled the least payments.

The computing time for our BM Algorithm is relatively larger than the other three algorithms,
but it is still stable for around one second which is already very fast and does not oscillate as CV

5.3.2 Simulations on Number of Payments

In practice, different systems may have different sizes of participating banks, or usually more
payments are submitted at the beginning of the day, either of which results in different numbers of
payments in the queue. In this section, we range the number of payments from 100 to 100,000 to
compare the performance of each algorithm under different sizes of the queue. Other parameters
are set to default as Table 5.2. Since the range of parameters goes from 100 to 100,000, we use the
log scale of the x-axis to better illustrate the shape of the curve.

As Figure 5.4 shows, as the number of payments increases, both the percentages of volume
settled and value settled increase and almost converge starting from 3000 payments in a queue. But
notice that Güntzer5 Algorithm does not perform best for volume when considering small queues
with sizes less than 1,000. Both of them outperform a lot over the Bech-Soramäki Algorithm for
both descending and ascending order of the payment values in both percentages of volume settled
and value settled. As the curve of the efficiency for each algorithm is almost overlapping, the
efficiency is almost the same and increases as the number of payments increases. Also as Figure
5.5 shows, the computing time for all algorithms increases linearly with respect to the number
of payments, which makes it easy to estimate the computing time for each algorithm when the
number of payments in the queue is changed.
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Figure 5.3: Performances for Different CVs (σ/µ)
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5.3.3 Simulations on Capacity

In this section, we simulate different situations of the relative shortage of liquidity in the market,
i.e. larger capacity represents more current liquidity that can be used to settle the payments. We
take different capacities from 10% to 100% with step 10% to compare the performances and note
that when capacity = 100%, all payments can be settled without any netting. Other parameters
are set to default as Table 5.2.
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Figure 5.6: Performances for Different Capacities (% liquidity needed)
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Under different capacities, Figure 5.6 shows that BM Algorithm and Gunzter5 Algorithm per-
form well for all situations of existing liquidity in the market as they can always settle more than
95% volume and value of the payments and the performance difference between these two algo-
rithms is not significant. However, for Bech-Soramäki Algorithm, the amount of current liquidity
in the market has a significant influence on the algorithm performance, especially when there
is a serious lack of liquidity in the market. Similar results are also given as Güntzer5 and BM
Algorithms always outperform the Bech-Soramäki Algorithm.

Based on the stable performance on volume and value for Güntzer5 Algorithm and BM Algo-
rithm, their efficiency decreases as the capacity increases, significantly for a small increase when
the current liquidity is very low, while for Bech-Soramäki Algorithm, the efficiency also decreases
but without obvious change. And when there is more than 30% of liquidity needed available in
the market, the difference among the efficiencies of all algorithms is extremely slight.

Analyzing the computing time for simulations on capacity, we can take 0.1 capacity as a special
case because, during the 1,000 simulations, there exist 24 queues that BM Algorithm does not
return the optimal solution since the time limit of 90 seconds is reached and the Gurobi solver
provides only the current solution (not optimal). Therefore, the average and the confidence interval
of computing time when the capacity is 0.1 are relatively large. For all other capacities, BM
Algorithm uses only about 1 second on average to compute the optimal solution for a queue with
3,000 payments, which is fast enough although the computing time is relatively larger than that
of the other three algorithms.

For capacity, Figure 5.7 shows the difference between the total value of settled payment between
the BM Algorithm and Güntzer5 Algorithm (VM − VG) for different capacities. It is obvious that
the difference decreases exponentially as the capacity increases, which implies that when there is
a serious lack of liquidity in the market, then the payment system with the BM Algorithm settles
more value of payments than Güntzer5 Algorithm and the serious lack, the better performance
that BM Algorithm can give than Güntzer Algorithm. This result strongly encourages us to use
our BM Algorithm as the computing time for these two algorithms does not differ too much, i.e.
around 1 second for most capacities and only 5 seconds for 10% capacity which is due to some
Time Limit Reached cases for some queues during the simulations.
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Figure 5.7: Different Total Value of Settled Payments between BM Algorithm and Güntzer5 Al-
gorithm for Different Capacities

5.3.4 Simulations on α

In this section, we take different α ranging from 0.1 to 1.0 with step 0.1 to simulate different
features of the network construction of the queue. Based on Soramäki Algorithm, α represents the
strength of preferential attachment, i.e. during the network construction, any time a bank (node)
is selected to be a sender or a receiver of the payment (linked with the edge), the probability for
this bank being selected next time is increased by adding α to the probability scale.

Figure 5.8 illustrates the performances under different α. First of all, Güntzer5 Algorithm
performs always the best for the percentage of volume for all α’s with the smallest 99% confidence
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interval, while for the average percentage of value settled in 1000 simulations, BM Algorithm
performs the best. Both of Güntzer5 and BM Algorithms outperform a lot over the Bech-Soramäki
Algorithm for both descending and ascending order of the payment values.
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Figure 5.8: Performances for Different α

36



Chapter 6

Further Discussion

6.1 Change of Objective Function

Back to the motivation of our BM Algorithm, we can simply change the optimization target by
changing the objective function in the MILP problem and one of the important applications is to
maximize the delay time for settled payments, i.e. minimize the delay time for remaining payments
in the queue.

The delay time for payment is the time difference between the current time and the original
time that the payment entered the system, i.e. the time it has been waited to be settled. To further
discuss the optimization problem of delay time, we assume that the delay time for each payment
in the queue follows a truncated log-normal distribution with an average time of 10 minutes, a
standard deviation of 5 minutes, and an upper bound of 60 minutes, i.e. any payment delayed for
more than 1 hour will be rejected and removed from the queue.

Let di,k be the delay time of the k-th payment in bank i’s queue. To be consistent with the
notation in section 3.7, define the total delay time D(x) as:

D(x) =

n∑
i=1

mi∑
k=1

xi,kdi,k (6.1.1)

Substituting D(x) for V (x) in MILP version of BCP (3.7.2), we have:

maximize D(x)

subject to Si(x)−Ri(x) ≤ bi, i = 1, . . . , n,

xi,k ∈ {0, 1}, k = 1, . . . ,mi, i = 1, . . . , n

(6.1.2)

where Si and Ri are the total value of send-out payments and receive-in payments of bank i,
respectively, defined in (3.7.1)

6.2 Multi-Objective Functions

To further discuss another motivation of our BM Algorithm that we can have multiple optimization
targets with different priorities, we consider two cases as setting the maximization of the total value
of settled payments to be the first objective function and then making the second objective function
to be the maximization of the total volume in section 6.2.2 or the total delayed time of settled
payments in section 6.2.3, respectively.

Also, in this section, we compare the results given by multi-objective algorithms with the results
of the original single-objective BM Algorithm. For the additional objective function with respect
to volume, we also compare the performance with Güntzer5 Algorithm since Güntzer5 Algorithm
always outperforms others in the total volume of settled payments. And for the additional objec-
tive function with respect to delay time, we also compare the performance with Bech-Soramäki
Algorithm since Bech-Soramäki Algorithm can take the delay time order into consideration by
sorting.
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6.2.1 Multi-Objective Problem

We choose to investigate multi-objective optimization using a hierarchical approach. This approach
assigns a priority to each optimization function and a relative tolerance. The solver then processes
the optimization functions by priority order and allows the later objectives to degrade the previous
ones within their pre-assigned relative tolerance. For more details on the method, see [17]. To
exemplify, consider a duo-objective MILP problem with objective functions f(x) in higher priority
and g(x) in lower priority and a feasible region D. Let r be the relative tolerance. Solving the first
MILP problem:

max {f(x) : x ∈ D}

Suppose the optimal solution is x∗ with optimal value z∗. Then it solves the optimization problem
for the second objective function g(x) as follows:

max {g(x) : x ∈ D and f(x) ≥ z∗ − |z∗| × r}

where a degrading bound restriction is added for the first objective function related to the pre-
assigned relative tolerance.

6.2.2 Value-Volume

Consistent with the notation in section 3.7, since xi,k is a binary variable for each payment, we
can calculate the volume of settled payments V ol(x) by summing all variables xi,k as:

V ol(x) =

n∑
i=1

mi∑
k=1

xi,k (6.2.1)

Then the MILP problem with muti-objective functions is defined as follows:

maximize V (x)− 1st;V ol(x)− 2nd

subject to Si(x)−Ri(x) ≤ bi, i = 1, . . . , n,

xi,k ∈ {0, 1}, k = 1, . . . ,mi, i = 1, . . . , n

(6.2.2)

According to the simulation results in chapter 5, it is worth noticing that the Güntzer5 Algo-
rithm performs best in the volume of settled payments in most scenarios. Therefore, we compare
the result of the duo-objective with value first and volume second with the result of the Güntzer5
Algorithm and the single-objective BM Algorithm.

Table 6.1 shows the statistics of the performances for three algorithms under the parameters
that CV = 0.2, number of payments in the queue = 3000, capacity = 80% and α = 0.1. Notice that
compared with the optimal solution to the single-objective MILP problem that optimizes the total
value settled, MILP-Multi settles about 9 more payments on average of 1000 simulation queues
at the cost of only 0.15% value of payments. Moreover, MILP-Multi also settles 1 more payment
than Güntzer5 Algorithm on average and has the largest efficiency among the three algorithms.

Güntzer5 MILP MILP-Multi
volume settled 2969.326±0.3584 2961.145±0.5337 2970.509±0.344

value settled (%) 98.8117±0.0153 98.8482±0.0153 98.6929±0.0162
efficiency 28.8148±0.5077 28.5983±0.4993 29.7576±0.5402

computing time 0.1466±0.0008 1.0304±0.0038 0.9167±0.0152

Table 6.1: Results Comparison among Algorithms for Multi-Objective with Value and Volume

6.2.3 Value-Delay

Then the MILP problem with muti-objective functions is defined as follows:

maximize V (x)− 1st;D(x)− 2nd

subject to Si(x)−Ri(x) ≤ bi, i = 1, . . . , n,

xi,k ∈ {0, 1}, k = 1, . . . ,mi, i = 1, . . . , n

(6.2.3)
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Under the same assumption of delay time as in section 6.2.1, we simulate the delay time of
payments in the queue as a truncated log-normal distribution with an average of 10 minutes,
standard deviation of 5 minutes and upper bound of 60 minutes.

According to the introduction of Bech-Soramäki Algorithm in section 2.1.2, we can define the
sequence constraint in GRP by sorting the payments in the queue descendingly in terms of the
delay time so that payments with longer delay time will be settled first, which has the same purpose
of maximizing the total delay time of settled payments (equivalently minimizing the delay time of
remaining payments in the queue after then). Therefore, in this section, we compare the result
of the duo-objective with value first and delay time second with the result of the Bech-Soramäki
Algorithm and the single-objective BM Algorithm.

Table 6.2 shows the statistics of the performances for three algorithms under the parameters
that CV = 0.2, number of payments in the queue = 3000, capacity = 80% and α = 0.1. Notice that
MILP-Multi gives an optimization solution with about 14 thousand seconds less delay time than
that of the single-objective BM Algorithm at the cost of nearly 0.13% value of settled payments,
and about 10 thousand seconds less than that of the Bech-Soramäki Algorithm with even more
percentage of settled payments value. Moreover, MILP-Multi also settles the largest volume of
payments and has the second-largest efficiency among the three algorithms, only 0.3 smaller than
the Bech-Soramäki Algorithm on average of 1000 simulation queues.

Bech-Soramäki MILP MILP-Multi
volume settled 2910.428±2.2188 2961.305±0.4981 2965.668±0.4002

value settled (%) 97.0065±0.0744 98.8512±0.0144 98.7284±0.0151
remaining delay (s) 20134.2371±524.6301 23290.3592±331.3129 9260.8113±125.3079
remaining delay (%) 1.1186±0.0292 1.2939±0.0184 0.5145±0.0069

efficiency 29.2497±0.5322 28.5613±0.4994 28.9882±0.5175
computing time 0.0886±0.0005 0.9812±0.0038 0.9798±0.0099

Table 6.2: Results Comparison among Algorithms for Multi-Objective with Value and Delay
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Chapter 7

Conclusion

As more and more interbank payment systems use Liquidity Saving Mechanisms (LSM) to reduce
liquidity needs and liquidity risk, it is important to find the best possible solution to the Bank
Clearing Problem (BCP).

In this thesis, we propose a new approach, the BM Algorithm, to mathematically solve the
BCP. The main idea is to explicitly formulate the BCP into a 0-1 MILP problem. Then we use
the Branch-and-Cut method to get an optimal solution within the error tolerance of 1e-4 (using
the Gurobi solver in Python). We compare our method to two well-known algorithms in the LSM
literature: Guntzer5 and Bech-Soramäki. Our method allows for more flexibility in the objective
function, including the possibility of multi-objective optimization.

Simulation results under different scenarios show that our new approach outperforms on average
the two popular algorithms on the total value settled.

Although the Güntzer5 Algorithm performs best on the percentage of volume settled in most
scenarios, our BM Algorithm does not have too much difference on the settled volume and does
outperform the Güntzer5 Algorithm on the settled value.

In terms of computing time, it is worth noting that although our BM Algorithm runs slower
than the other two algorithms, it is fast enough to be used in practice. For the default number of
payments (3000), it just needs 1 additional second. Also, the computing time of the BM Algorithm
increases only linearly with respect to the number of payments, which guarantees that even for the
extremely large size of interbank payment systems, our algorithm will not take too much time to
produce a solution.

Additionally, the brief discussion about the change of objective function shows that our BM
Algorithm is much more flexible than the previous algorithms so that in practice, the system
operator can optimize different targets, e.g. value, volume, delay time, etc., based on different
requirements. The result of our BM Algorithm can also be used as a benchmark for other systems
to compare with their algorithms.

One limitation we met is that the Gurobi solver sometimes gives different solutions for the
same MILP problem because of the different setting order of the parameters, variables, equations,
etc. The main limitation comes from the random selection of the nodes in the Branch-and-Cut
method(see [18] for details). Further research that solves the BCP-MILP problem by other solvers
should be done.

Secondly, we have already briefly discussed the MILP problem with duo-objective functions by
the hierarchical approach. Further research on multi-objective problems should also be done, such
as investigating more combinations of objective functions (e.g. value, volume and delay time) and
quantifying the trade-offs between objective functions.

Finally, similar to the idea from the Bech-Soramäki Algorithm that introduces the sequence
constraint to the BCP, further exploration could be done to take into consideration some additional
order requirements for the payments in the queue, e.g. participant priorities.
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