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Abstract

The main purpose of this paper is to propose a probabilistic forecasting model based on Trans-
former neural network for predicting the distribution of future return in financial market. We form
a complete framework for intraday Foreign Exchange rate trading task, starting from data prepa-
ration to probabilistic forecasting, and finally the trading strategies. According to our empirical
results, the proposed Transformer-based model achieves better performance than the LSTM-based
probabilistic forecasting model regarding not only the training loss, but also several other mean-
ingful metrics. At the end of the paper, we examine the model profitability by establishing a few
strategies developed from the probabilistic predictions. Our out of sample backtesting on USDJPY
and AUDJPY currency pairs reveals the great potential of the proposed Transformer-based model
in generating profits.
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Introduction

Foreign Exchange (FX) market is a huge and important market in financial industry, a place
where people can buy and sell different currencies through currency pairs. This over-the-counter
(OTC) market runs currency transactions for the whole day except weekends, with market makers
constantly providing a flow of liquidity. According to Triennial Central Bank Survey 2022 from
the Bank for International Settlements[1], the trading volume in OTC FX market has risen to
$7.5 trillion per day in April 2022, which is 14% higher from $6.6 trillion in April 2019, keeping it
the world’s largest financial market. Salman Ahmed et al. pointed out that in Foreign Exchange
market there are more complicated movements driven by both currency trades and regional policies,
characterizing the nature of high volatility, nonlinearity, and irregularity[2]. These features make
FX trading more attractive to many investors because of the potential arbitrage. As one currency
pair compares the base currency to the quote currency, the holding of the quote currency generates
profit when the price of the currency pair elevates, and correspondingly the loss could be caused by
the decrease of price. Therefore, either for the aim of risk hedging or profit speculation, predicting
the Foreign Exchange rate is always a crucial challenge.

To classify the techniques that practitioners often use in Foreign Exchange rate forecasting,
Ayitey Junior et al.[3] concluded them in two streams, which are fundamental analysis and technical
analysis. While fundamental analysis focuses on the economic, social, political issues and their
influence on the Foreign Exchange rate, technical analysis pays more attention to the microstructure
of the currency market. Technical analysis relies on historical data to predict the future movement
of the currency pair, and various successful machine learning algorithms have been investigated in
FX rate forecasting. Rojas et al.[4] compared the performance of Regularized Logistic Regression,
Support Vector Machines (SVM), Gradient Boosting Classifier (GBC) and Neural Networks (NN)
in directional FX forecasting. From their results, they suggested that SVM performed the best in
the binary target while Ridge Regression in the continuous target with all algorithms outperforming
a long-only benchmark.

Recent years have also witnessed an increasing number of Deep Learning models that used in
predicting the rate movement according to Panda et al.[5]. Thanks to the universal approximation
theorem[6], the technique of neural network promises a powerful approach to learn the complex
representations over massive data. Proposed neural network architectures for Foreign Exchange
rate forecasting includes Feedforward Neural Network (FNN)[7, 8], Convolutional Neural Network
(CNN)[9], Recurrent Neural Network (RNN)[10, 11], Long Short-Term Memory network (LSTM)[2,
12, 13], etc. Apart from the above architectures, a most recent network called Transformer is also
triggering great attention in sequence prediction community. Proposed by Vaswani et al.[14] in
2017, the emerging Deep Learning model shed its first light on Natural Language Processing (NLP),
contributing significantly to recent advances in machine translation and content generation. The
Transformer network is capable to capture long-term dependencies and correlations through the
attention mechanism. However, it is often not easy for RNN and LSTM to handle the task.
Furthermore, the extremely renowned Chat Generative Pre-Trained Transformer (ChatGPT)[15]
is a typical application that reveals the power of Transformer. The incredible performance also
arises the interest of applying Transformer network to time series tasks such as forecasting[16],
anomaly detection[17], and classification[18].

For time series prediction, two common categories are point estimation and probabilistic fore-
casting [19]. Point estimation aims to predict the accurate value of the target, and the model is
often trained by minimising the mean squared error between the output and the true value. Prob-
abilistic forecasting gives the distribution estimation instead. For instance, estimating a normal
density function means to predict two parameters, mu and sigma. For deep probabilistic forecast-
ing, Salinas et al. proposed an auto-regressive model DeepAR based on LSTM neural network[20],
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where parameters are learned by maximizing the log-likelihood. Due to the stochastic nature and
complicated correlation among different assets inside the FX market, point estimation for price
movement could be even harder. Therefore, we use probabilistic forecasting for Foreign Exchange
rate prediction in this paper.

This paper proposes a Transformer-based probabilistic forecasting framework for a Foreign
Exchange rate trading task. To our best knowledge, Transformer-based probabilistic forecasting
for Foreign Exchange rate movements has not been investigated in other related research, which
is one of the contributions of this paper. We would like to address that the proposed model is
flexible to extend on various asset classes and in any frequency, and it is possible for user to
conduct risk analysis on the probabilistic prediction. With the multi-head attention mechanism,
the Transformer model learns to predict the forward return of the currency pair through a long
sequence of historical data input. In addition, as a highlighted part, we incorporate time embedding
to our feature set. Although FX market opens 24 hours a day, the trading volume might not follow
the uniform distribution among different trading sessions. Since Foreign Exchange market is an
OTC market, where the trading volume is not applicable, we could use the time feature as a
reference of market liquidity. We evaluate our model in several performance metrics and compare
the results with the DeepAR model[20] on the same data setting. We also investigate how the
forecasting model performs during different trading hours, hence the intraday contribution to
the daily PnL. Finally, we backtest a few strategies to examine the profitability of the proposed
probabilistic forecasting model.

Chapter 1 introduces the theoretical background of this paper, including a brief review on the
statistical estimation, fundamental knowledge of neural networks for time series prediction and a
universal approximation theorem for distribution expression with neural network.

Chapter 2 proposes a Transformer-based probabilistic forecasting framework for FX rate trad-
ing. Starting with the section of problem description, we explain the settings of the prediction
target, as well as the model’s input and output. The second section illustrates the model ar-
chitecture with details. In the last section of the chapter, we conduct experiments on USDJPY
and AUDJPY currency pairs in several forecasting periods as the examples, and compare the pre-
dicted results with the LSTM-based model. We also discuss about features construction, training
parameters, evaluation metrics and hourly performance in this section.

In chapter 3, we backtest a few trading strategies based on the model prediction, and analyse
the out of sample daily PnL performance in terms of Annualised Return, Sharpe Ratio, Maximum
Drawdown, etc. Additionally, an analysis of the intraday PnL contribution for each strategy will
be included as well.
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Chapter 1

Theoretical methodology

In this chapter, we introduce the theoretical background of probabilistic forecasting and neural
network. To set the stage for probabilistic forecasting with empirical data, we first make a review
on the statistical estimation. Particularly, the maximum likelihood estimation (MLE) method
is emphasized as it will become the essential part of the loss function in our forecasting model.
Then, the fundamental knowledge of neural network follows. Three classic neural networks for time
series prediction, Recurrent Neural Network (RNN), Long Short-Term Memory network (LSTM)
and Transformer network are demonstrated with great details. Finally, the universal approximation
theorem gives the strong theoretical support to the methodology of this paper.

1.1 Statistical inference

Statistical inference is a method to analyse data with some existing distributions. The advantage
of using a well studied distribution is that we can utilize the properties to infer plenty of valuable
results. We could describe the observed data through a model with information about the average
value, variance, quantiles, and many other statistics.

The reason why we need statistical inference is that even though we don’t know the exact
distribution of the data, we still want to use some statistical tools to characterise the patterns.
Typically, the statistical tools are chosen from some probability models, and our goal is to estimate
the parameters of the chosen model.

1.1.1 Parametric estimation

Given a sequence of sample data Xn = (X1, . . . ,Xn), the basic hypothesis is that the random
variables Xi, for i = 1, . . . , n are independent and identically distributed (iid). Regarding the
notation, for some random vector X ∈ Rp, the distribution is parameterized by β, we write fβ
as the density function, Fβ as the distribution and Eβ as the expectation of X. Specifically, we
assume that F belongs to a set of parametric distributions F = (Fβ)β∈B , where β ∈ B determines
a unique distribution Fβ , or in a mathematical way, β 7→ Pβ is injective.

To model the data, we should choose a type of distribution first. The choice may depend on
some initial analysis on the data patterns. For example, we could use a normal distribution to
model the data with symmetric pattern, or use a t-distribution to model the data with heavy tails.
With the empirical data in hand, there are several methods to fit the parameters β. However,
we mainly focus on maximum likelihood estimation (MLE) in this paper because it would be the
essential part in the loss function of our probabilistic forecasting model.

1.1.2 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is one of the most important and popular methods for
parametric estimation. Under an assumed statistical model, the parameters are estimated by
making the observed data most probable by maximizing the likelihood function.

Definition 1.1.1 (Likelihood function). The likelihood function is the map Ln from B to R defined
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as

Ln(β) :=

n∏
i=1

fβ (Xi) , for all β ∈ B,

and we define the log-likelihood ln := logLn.

According to the independent and identically distributed assumption, the likelihood function is
nothing but the joint density function of (X1, . . . ,Xn). Then the maximum likelihood estimator
is defined as

β̂ML
n := argmax

β∈B
Ln(β).

The necessary condition for optimal parameters β̂ML
n is the likelihood equation ∇ln(β) = 0.

1.1.3 Auto-regressive estimation with likelihood model
In mathematical finance, the classic Black-Scholes model assumes that in probability space (Ω,F ,P),
the return Xt is driven by the stochastic process

Xt :=
dSt

St
= µdt+ σdWt, (1.1.1)

where Wt is the Brownian motion in the probability space. Equation 1.1.1 assumes that the returns
are independently normal distributed. However, we should note that they are not necessarily to
be independent and identically distributed (iid), as some more complicated stochastic models rely
on the dynamics of parameters. We will not discuss too much in this paper.

As we mentioned at the beginning of this section, the distribution of return is changing from time
to time. Therefore, instead of fitting one general statistical model, the auto-regressive estimation
aims to model the conditional distribution on each time step. One way is to propose a probabilistic
forecasting model to output the conditional distribution’s parameters from time to time. We simply
introduce a generalised version here, as our proposed model will be discussed with details in the
next chapter.

Denote the return series by {x}i,t, feature vector series by {z}i,t, with sample label i = 1, . . . , N ,
and time t = 1, . . . , T . We use data from time 1 to t0 − 1 to predict the distribution parameters
from time t0 to T . Then, the estimators of the conditional density function is given by

βi,t0:T := Mθ (xi,1:t0−1, zi,1:t0−1) , (1.1.2)

where Mθ is the probabilistic forecasting model parameterised by θ, showing that the distribution
only depends on the historical data, or say the filtration Ft0 . Once we have obtained βi,t, the
predicted estimator at time t, we note the conditional probability of observing xi,t as fβi,t

(xi,t).
Similarly, the likelihood function could be written in the form of the product of conditional

density functions,

LT (θ) =
N∏
i=1

T∏
t=t0

fβi,t (xi,t) =
N∏
i=1

T∏
t=t0

fMθ(xi,1:t0−1,zi,1:t0−1) (xi,t) , (1.1.3)

and correspondingly the log-likelihood function becomes

lT (θ) =

N∑
i=1

T∑
t=t0

log
(
fβi,t

(xi,t)
)
=

N∑
i=1

T∑
t=t0

log
(
fMθ(xi,1:t0−1,zi,1:t0−1) (xi,t)

)
. (1.1.4)

If we only consider one step prediction, hence t0 = T . Then for simplicity of the notation, we omit
t in the expression,

LT (θ) =

N∏
i=1

fβi
(xi) =

N∏
i=1

fMθ(xi,1:t0−1,zi,1:t0−1) (xi) , (1.1.5)

lT (θ) =

N∑
i=1

log (fβi (xi)) =

N∑
i=1

log
(
fMθ(xi,1:t0−1,zi,1:t0−1) (xi)

)
. (1.1.6)
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Note that now we are optimising the probabilistic forecasting model’s parameters θ instead of
the conditional distribution’s parameters, and in practice, people often use log-likelihood function
to avoid extensive product calculations,

θ̂T := argmax
θ∈Θ

lT (θ). (1.1.7)

We could achieve the optimal (or sub-optimal) θ̂T through gradient descent in deep models.

1.2 Neural networks for sequential prediction

1.2.1 Fundamentals of neural network

Deep learning is standing as a unique and powerful technique in the machine learning algorithms,
making significant contribution to various areas, such as predictive forecasting, image recognition,
natural language processing, content generation, etc. In this subsection, we will cover the fun-
damental concepts of feedforward neural network (FNN), activation functions, loss functions and
backpropagation.

Feedforward neural network

The following definitions come from the deep learning lecture note by Lukas Gonon[21].

Definition 1.2.1 (Feedforward neural network). Let I,O, r ∈ N. A function f : RI → RO is a
feedforward neural network (FNN) with r−1 ∈ {0, 1, . . .} hidden layers, where there are di ∈ N units
in the i-th hidden layer for any i = 1, . . . , r−1, and activation functions σi : Rdi → Rdi , i = 1, . . . , r,
where dr := O, if

f = σr ◦Lr ◦ · · · ◦ σ1 ◦L1,

where Li : Rdi−1 → Rdi , for any i = 1, . . . , r, is an affine function Li(x) := W ix + bi,x ∈ Rdi−1 .
We shall denote the class of such functions f by Nr (I, d1, . . . , dr−1, O).

Figure 1.1: Feedforward neural network Nr (3, 4, 4, 2)

Figure 1.1 describes the architecture of a feedforward neural network with two hidden layers,
where activation functions have not been shown. The edges between two layers in the plot refer
to a weights matrix, which contains a set of learnable parameters. During the training process,
the parameters are changing towards a direction that minimises the loss. Now we explain the
activation functions and loss functions in neural network.

Activation functions

Activation functions often play a crucial role by introducing the non-linearity to the network,
enabling the model to capture complex patterns. They are designed with various motivations.
Here we list the definition of activation functions that used in this paper:
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• Rectified linear unit (ReLU)

g(x) = max{x, 0}, g′(x) =

{
0, x < 0

1, x > 0
, range[0,∞).

• Sigmoid (Logistic, σ)

g(x) =
1

1 + e−x
, g′(x) = g(x)(1− g(x)), range(0, 1).

• Hyperbolic tangent (tanh)

g(x) =
ex − e−x

ex + e−x
, g′(x) = 1− g(x)2, range(−1, 1).

• Softmax

gi(x) =
exi∑N
j=1 e

xj

,
∂gi
∂xj

(x) =

{
gi(x) (1− gj(x)) , i = j

−gi(x)gj(x), i ̸= j
, range(0, 1].

• Softplus

g(x) = log (1 + ex) , g′(x) =
1

1 + e−x
, range(0,∞).

Loss functions

In deep learning, the loss function is also known as the objective function, which is a crucial
component used to quantify how good the model output is compared to the actual values (ground
truth). Considering the neural network as a model with a large number of parameters that turns
inputs into outputs, the goal of training the model is to optimise the parameters in the direction
that minimises the loss function. The choice of the loss function depends on the type of problem
being addressed by the neural network. The most frequently used loss functions are Mean Squared
Error (MSE) for regression tasks and Cross Entropy loss (CE) for classification class. However, for
our probabilistic forecasting model, we will use the negative log-likelihood function instead.

Training

The training process of a neural network is to minimise the empirical loss over the model param-
eters. The parameters are changing at a specified pace, hence the learning rate. The updating of
parameters rely on "backpropagation", a scheme to calculate the gradient information and use it
to adjust the parameters in the direction that minimising the empirical loss.

Backpropagation

The main idea behind backpropagation is to compute the gradients of the loss function with
respect to the model’s parameters during the forward pass, hence from inputs to outputs. Then,
we can update these parameters in the opposite direction of the gradient during the backward pass,
hence from outputs to inputs. The gradient represents the direction and magnitude of the change
required to minimize the loss, and could be obtained by algorithmic differentiation, a technique
used to efficiently compute the derivatives of functions with respect to their inputs.

Now we explain explicitly about the gradient computation in backpropagation. For neu-
ral network fθ ∈ Nr (I, d1, . . . , dr−1, O), the neural network parameters are defined as θ :=(
W 1, . . . ,W r; b1, . . . , br

)
, with activation functions gi for i = 1, . . . , r between the layers. Here

we use ai−1 and zi to denote the input and output data flow of the ith linear layer Li, hence

zi =
(
zi1, . . . , z

i
di

)
:= Li

(
ai−1

)
= W iai−1 + bi,

ai =
(
ai1, . . . , a

i
di

)
:= gi

(
zi
)
, a0 := x.

Additionally, the so-called adjoint δi =
(
δi1, . . . , δ

i
di

)
∈ Rdi is defined as

δij :=
∂ℓ

∂zij
, j = 1, . . . , di, for i = 1, . . . , r.
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Based on the chain rule, the gradient computation in backpropagation can be expressed as

δr = g′
r (z

r)⊙∇ŷℓ (a
r,y) , (1.2.1)

δi = g′
i

(
zi
)
⊙
(
W i+1

)′
δi+1, i = 1, . . . , r − 1, (1.2.2)

∂ℓ

∂bij
= δij , i = 1, . . . , r, j = 1, . . . , di, (1.2.3)

∂ℓ

∂W i
j,k

= δija
i−1
k , i = 1, . . . , r, j = 1, . . . , di, k = 1, . . . , di−1, (1.2.4)

where ⊙ refers to the component-wise Hadamard product, and we can utilise the above gradient
information to update the parameters in our model.

1.2.2 Recurrent Neural Network and LSTM

Recurrent Neural Network (RNN) is a class of neural network that has been widely used in sequen-
tial modelling tasks[22], from machine translation to weather forecasting. Compared to feedforward
neural network, data will not be inputted at once in RNN model, but will be processed recursively.
The architecture of Recurrent Neural Network helps to handle the sequential pattern of the input
series, allowing the past information persists over multiple time steps. This feature could be crucial
in modelling because temporal transaction data in financial industry often presents autocorrela-
tion. In this subsection we first explain the generalised architecture of RNN, then the introduction
of Long Short-Term Memory network follows.

Recurrent Neural Network

Figure 1.2: Unfolded structure of Recurrent Neural Network (RNN)1

The core characteristic of RNN is the ability to maintain an hidden state which acts as a
summary of information from previous time steps. As shown in the unfolded structure of RNN in
Figure 1.2, the internal state is updated at each loop, combining the current input and the past
information. Mathematically, this can be expressed in the recursive form of

h(t) = ν
(
h(t−1),x(t); θ

)
, for t = 1, . . . , T, (1.2.5)

where h represents the internal state, with x being the input and θ being the model parameters. In
the book Deep Learning written by Goodfellow et al.[22], they present a forward pass example, in
which there are two linear layers L1 and L2 , with a Hyperbolic tangent (tanh) activation function
in between and a Softmax function before the output ŷ(t),

h(t) = tanh
(
L1

(
h(t−1),x(t); θ

))
, (1.2.6)

ŷ(t) = softmax
(
L2

(
h(t); θ

))
. (1.2.7)

Finally, we insert the model output ŷ(t) and ground truth label y(t) to the loss function. To get the
total loss, repeat the procedure for all x(t) and sum up the losses in each time step. For example,

1Page 370, https://www.deeplearningbook.org/contents/rnn.html
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if we choose to the negative log-likelihood function as the loss function, recall equation 1.1.4 in the
previous section, the total loss becomes

Ltotal =

T∑
t=1

L(t) = −
T∑

t=1

log pM

(
y(t) |

{
x(1), . . . ,x(t)

})
, (1.2.8)

where pM is the conditional probability under model M.

Long Short-Term Memory (LSTM)

The LSTM network[23] is also a Recurrent Neural Network but with a explicitly designed architec-
ture of the repeating module. The purpose of proposing the LSTM network, as the name suggests,
is to enhance both long-term and short-term memory after a long period of inputs. After updating
the internal state for a number of time steps, traditional RNN often suffers from exploding and
vanishing gradient[22], a phenomenon in backpropagation that the gradient is too large or too small
to effectively update the model parameters. The problem was explained in depth with analysis of
the backpropagated error signal in Hochreiter’s paper[24]. Figure 1.3 describes how information
runs through the LSTM module.

Figure 1.3: Unfolded structure of Long Short-Term Memory (LSTM)2

In LSTM module, the crucial components are the cell state and the gates, which determine the
information flow through time. One gate often consists of a sigmoid layer and a pointwise multipli-
cation operation. Recall that the output range of sigmoid function is (0, 1), therefore, it plays as a
"gate" to control the proportion that should be let through. In this way, the LSTM model learns
to give way to those most useful messages when handling the long-term dependencies. Normally
there are three gates in the module, from left to right, which are capable to add information to or
remove information from the cell state:

• Forget gate. At time t, the LSTM module receives the cell state ct−1, hidden state ht−1 and
input xt. The forget gate gives the proportion ft of the information that ct−1 should remain,
using the transformed ht−1 and xt as input. We use W f

h , W f
x and bf to represent the linear

transformation before the sigmoid function in forget gate,

ft = σ
(
W f

h · ht−1 +W f
x · xt + bf

)
. (1.2.9)

• Input gate. Compared to the forget gate, the input gate gives the proportion it of how much
information in input xt is added to the cell state. We use W i

h, W i
x and bi to represent the

linear transformation before the sigmoid function in input gate,

it = σ
(
W i

h · ht−1 +W i
x · xt + bi

)
. (1.2.10)

• Output gate. Once we have obtained ft and it, we can update the cell state to ct. The
aim of output gate is to filter out what we prefer to output rather than sending out the full
information from cell state ct,

ot = σ (W o
h · ht−1 +W o

x · xt + bo) . (1.2.11)
2https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Finally, we formularise the update of cell state in Figure 6 by

ct = ft · ct−1 + it · tanh (W c
h · ht−1 +W c

x · xt + bc) , (1.2.12)

where W c
h, W c

x and bc represent the linear transformation of input xt before being added to the
state cell.

1.2.3 Multi-head attention Transformer
Transformer architecture, or the self-attention mechanism, was first introduced by Vaswani et
al. in their paper "Attention is All You Need"[14]. Although the carefully designed LSTM suc-
ceeded handling the long-term dependencies, its recurrent nature prevent the LSTM network being
trained effectively because the update of current state depends on the previous state and cannot be
parallelised. The contribution of attention mechanism improves the computational efficiency and
the ability to receive long input sequence. Attention mechanism revolutionizes Natural Language
Processing, series prediction and various areas by avoiding the need for recurrent connections to
process sequential data. Multi-head attention is a variation of original self-attention mechanism,
and in this subsection, we start with self-mechanism first.

Phillip Lippe describes the attention mechanism in his tutorial notebook[25], "the attention
mechanism describes a weighted average of (sequence) elements with the weights dynamically
computed based on an input query and elements’ keys". That is to say, the model with attention
learns to focus more on some important elements in the input sequence. Normally there are four
essential parts in the attention block:

• Score function: fattn

The score function defines a method to calculate the similarity score between the input
elements. Then after computing the scores, a softmax layer process the results into the
aggregation weights. One frequently used similarity metric is the dot product, which we
choose in this paper.

• Queries: Q ∈ RT×dk

A query is acting like an request to ask for the similarity scores of current element. Parameters
T and dk indicate that the input contains a sequence of dk-dim elements at length T . The
length could vary since the architecture runs in parallel.

• Keys: K ∈ RT×dk

The keys are what the queries compare with, so they must be in the same shape. A key is
the projection of the corresponding value. For example, in machine translation, the key can
be the word embedding.

• Values: V ∈ RT×dv

The values are the feature vectors we need to aggregate by the output weights.

Figure 1.4: Self attention mechanism with scaled dot-product similarity3
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Figure 1.4 illustrates the components of an self-attention block using the scaled dot product as
the score function. The queries Q and keys K are first sent to the score function to calculate the
dot product. Then, for sequential prediction tasks such as stock price forecasting, it is necessary to
apply a mask on the scores in order to prevent the leakage of future information. Finally, the values
are aggregated according to the weights calculated on the left. The computations in self-attention
block can be summarised as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V. (1.2.13)

However, aggregating by a single vector of attention weights only provides one aspect of the
sequence, which might not be sufficient to express the information inside. One way is to extend
the attention mechanism to multiple heads.

The multi-head attention first transforms the inputs, hence queries Q, keys K and values V ,
into separate parts independently. The transformations are usually parameterised by some linear
layers. That is to say, the multi-head attention block could optimally preprocess the inputs through
a set of learnable parameters to help extract the information from several aspects. Suppose the
number of the separate parts is H, and we will finally get H aggregated outputs called heads.

Figure 1.5: Multi-head attention mechanism with scaled dot-product similarity4

Figure 1.5 demonstrates the multi-head attention mechanism, which is similar to the self-
attention, but with h independent copies in parallel. Starting with the initial transformations,

Qi = W i
Q ·Q+ biQ,

Ki = W i
K ·K + biK ,

V i = W i
V · V + biV , for i = 1, . . . ,H,

(1.2.14)

the transformed parts are then sent to the score function, the same module in the self-attention
block, to generate heads,

headi = Attention
(
Qi,W i, V i

)
, for i = 1, . . . ,H. (1.2.15)

In the end, concatenate all heads together as the multi-head attention, which will be the input of
the output network,

MultiheadAttention(Q,K, V ) = concat
(
head1, . . . , headH

)
. (1.2.16)

In the paper "Attention is All You Need", Vaswani et al. give the full architecture of Trans-
former network, which is shown in Figure 9, containing an encoder and a decoder. The core
structure of encoder and decoder is nothing but the multi-head attention block we have introduced
above. The encoder-decoder framework is commonly used in language translation model because it
is required to translate from one language to another through word embedding. However, in some
series prediction tasks there is no embedding needed, a well designed decoder could be sufficient
enough.

3The figure originates from paper "Attention is all you need".
4The figure originates from paper "Attention is all you need".
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1.3 Universal approximation theorem for distribution
The magic power of neural network has been shown in many successful works, in an empirical
way. However, people still keep curious about the theoretical commitment of the neural network
approximation. Fortunately, existing papers have proven some neural network universal approxi-
mation theorems for functions under specific assumptions[6, 26, 27]. In this section, we focus on the
"universal approximation theorem for expressing probability distributions" proposed by Yulong et
al.[28]. They proved that, given a target distribution π and a source distribution pz both defined on
Rd, under some assumptions there exists a deep neural network g : Rd → R with ReLU activation
such that the push-forward g#pz is arbitrarily close to the target measure π. The detailed proof is
presented on their paper[28], and we summarise the main theorem results to show the theoretical
background of distribution forecasting with neural network.

Given a discrepancy measure D(p, π) which evaluates the difference between two probabilistic
measures p and π, the approximation task can be formulated as

inf
g∈GNN

D (g#pz, π) , (1.3.1)

where D(p, π) is typically defined in the form of integral probability metric (IPM) with FD being
a certain class of witness functions,

D(p, π) = dFD
(p, π) := sup

f∈FD

|EX∼pf(X)−EX∼πf(X)| . (1.3.2)

In the paper, Yulong et al. discuss the universal approximation theorem on three discrepancy
measures:

• Wasserstein Distance
W1(p, π) = inf

γ∈Γ(p,π)

∫
|x− y|γ(dxdy),

where the witness class is chosen as the class of 1-Lipschitz functions
FD :=

{
f : Rd → R : Lip(f) ≤ 1

}
.

• Maximum Mean Discrepancy (MMD)

MMD(p, π) = sup
∥f∥Hk

≤1

|EX∼pf(X)−EX∼πf(X)| ,

where the witness class is chosen as the unit ball of a reproducing kernel Hilbert space
(RKHS) FD := {f ∈ Hk : ∥f∥Hk

≤ 1} .

• Kernelized Stein Discrepancy (KSD)

KSD(p, π) = sup
∥f∥Hk

≤1

EX∼p [Tπf(X)] ,

where the witness class is chosen as FD := {Tπf : f ∈ Hk and ∥f∥Hk
≤ 1}, for Tπ being the

Stein-operator defined by Tπf := ∇ log π · f +∇ · f .

Theorem 1.3.1 (Universal approximation theorem for distribution). Denote π and pz as the target
and source distributions respectively, and assume that pz is absolutely continuous with respect
to the Lebesgue measure. Then under the specific assumptions on π and kernel function k for
each discrepancy measure, for any given approximation error ϵ, there exists a positive integer n,
and a fully connected and feed-forward deep neural network u = FNN

({
W ℓ, bℓ

}L+1

ℓ=1

)
of depth

L = ⌈log2 n⌉ and width N = 2L = 2⌈log2 n⌉, with d inputs and a single output and with ReLU
activation such that dFD

(u#pz, π) ≤ ϵ.

The upper bound of n is given explicitly on each discrepancy measure according to the specific
assumptions on target distribution π and kernel function k. These theoretical results are shown in
the appendix A.1 of this paper.

Although the assumptions are sometimes too strict to achieve in practice, the theorem at least
informs us the potential of learning distribution expression using neural network. In other words,
if the historical features could sufficiently determine the distribution of the forward return, then it
is possible for a finite neural network to forecast under some assumptions.
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Chapter 2

Probabilistic forecasting for intraday
FX rate movements

This chapter focuses on predicting the distribution of future movements in Foreign Exchange rate.
In the world’s largest financial market, the price of a currency pair could change dramatically
every minute. Therefore, it is worth modelling the intraday movements in a more scientific way
so that investors are able to monitor the risk and the potential arbitrage closely. We formalise
the prediction problem in the first section, including an analytical investigation on some empirical
data. Then the second section introduces our approaches toward the problem. We start with the
LSTM-based model, which is a variation from the DeepAR model proposed by Salinas et al.[20],
and continue to our Transformer-based model, which is one of the contributions of this paper. In
the last section, we set up experiments to evaluate the predictive power of the models. Several
accuracy metrics are also defined to compare the performances between the LSTM-based model
and the Transformer-based model.

2.1 Problem description

Foreign Exchange market runs 24 hours a day except weekends, with four major trading sessions,
Sydney (9p.m. to 6a.m.), Tokyo (0a.m. to 9a.m.), London (7a.m. to 4p.m.) and New York (1p.m.
to 10 p.m.), which are shown in Figure 2.1 with UTC time format. However, it is not realistic
for a human trader to monitor the market movements 24 hours a day, and Przemysław et. al[29]
also note that the market liquidity varies from time to time. They conclude this by an analysing
the spread of currency pairs in different hourly intervals, which means the trading performance
could be affected by the time factor. Therefore, people are trying to develop predictive models
for optimal trading. The purpose of predicting the intraday movements of a target currency pair
is to first analyse the quantitative patterns in the trading flow, and then derive an automated
trading strategy from the predictions. To formalise the prediction problem, we begin with some
brief investigation on the data.

Figure 2.1: Four major FX trading sessions (UTC)

We use {s}t=0...N to represent the Foreign Exchange rate series and {x}t=1...N to be the return
series, defined by xt+1 := st+1−st

st
. Figure 2.2(a) shows the historical 5min rate chart of currency

pair USDJPY, which we use as an example in this paper, in recent 10 years. The value of the
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(a) 5min Foreign Exchange rate (b) 5min return in basis points (bps)

Figure 2.2: Foreign Exchange rate and return of USDJPY from 2013 to 2023

rate means how much one should pay in Japanese Yen to trade for one United States Dollar.
The plot indicates that Foreign Exchange rate could change dramatically over different periods
of time, like the soaring trend in 2015 and 2022 or the relative less volatile period from 2017 to
2021. The movements are driven by either the effects of currency policies, global economy, market
microstructure, etc. From Figure 2.2(b), the 5min return chart (in basis points), we also observe
that the large movements are clustering together in those volatile periods. This phenomenon is
called "volatility clustering", which was first observed by Mandelbrot (1963), that "large changes
tend to be followed by large changes, of either sign, and small changes tend to be followed by
small changes."[30] Specifically, if we split the window by every 2 years, we can calculate statistical
results accordingly in each period, such as the expected value, variance, skewness, kurtosis, positive
ratio and negative ratio. Given the definition as below:

• Expected value (mean) µ := E [X] .

• Variance: σ2 := E
[
(X − µ)

2
]
.

• Skewness µ̃3 := E
[(

X−µ
σ

)3
]
.

• Kurtosis κ := E
[(

X−µ
σ

)4
]
− 3.

• Positive ratio p+ := E
[
11{X≥0}

]
.

• Negative ratio p− := 1− p+.

These numerical results in each period are shown in Table 2.1, describing the statistical charac-
teristics of return distributions. From the table we can see the statistical characteristic of returns
varies a lot in different periods, indicating that the distribution of return is also changing from
time to time.

Mean Variance Skewness Kurtosis Positive Negative
2013 - 2015 0.022728 14.489453 -0.009868 1.105282 0.516817 0.483183
2015 - 2017 -0.00079 16.164099 0.002713 -0.199531 0.51121 0.48879
2017 - 2019 -0.003848 8.56508 -0.001225 -0.178429 0.514193 0.485807
2019 - 2021 -0.003781 7.412371 0.012091 -0.839723 0.516593 0.483407
2021 - 2023 0.016616 10.735019 -0.075978 4.797739 0.524627 0.475373

2023 Jan - Jun 0.033741 21.775505 0.014367 1.784595 0.515993 0.484007

Table 2.1: Periodic statistical results of USDJPY 5min return (in bps) from 2013 to 2023

The magnitude of mean value reflects the overall trend in that period, whereas the variance
shows how volatile the movements are. Skewness and kurtosis could be used to examine the
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symmetry and tail property. In most periods, the skewness values are close to zero, while the
kurtosis values have seen some significantly high periods in 2013-2015, 2021-2023 and the first half
of 2023. These results indicate that the 5min returns are likely to have a symmetric and heavy-
tailed pattern in a great amount of time. Therefore, it could be beneficial to model not only the
absolute value of return, but also the statistical characteristics through distribution forecasting.
In this paper, we hope to build a forecasting model with statistical inference to predict the return
distribution dynamically.

Without loss of generality, we continue to express the forward return in xt+1 := st+1−st
st

, which
means the change of price from t to t+1. Recall that in statistical inference, we need to assume a
statistical model initially, and suppose it is parameterised by βt+1 at time t. In this way, we can
define fβt+1

(·) as the density function of forward return xt+1.

Assumption 2.1.1. The distribution parameters βt+1 of the forward return xt+1 is Ft measurable.

The basic assumption of the forecasting model is that the distribution of the asset’s future
movements is only dependant on the historical data. The proposed neural network models in this
paper simply take a fixed length lookback window of the return and features series as the input at
time t to predict the distribution parameters βt+1 of the forward return xt+1.

Figure 2.3: USDJPY 5min return histogram from Jan 2013 to Jun 2023 (bps)

Assumption 2.1.2. The forward return xt+1 is modelled by normal distribution N
(
µt+1, σ

2
t+1

)
,

hence βt+1 = (µt+1, σt+1).

To support our hypothesis, we plot a histogram of the 5min return from Jan 2013 to Jun
2023 in Figure 2.3. Even the normal distribution might not be the best probabilistic model to
fit the forward return because it often fails to characterise the heavy-tailed property, which is
commonly observed in financial data, we still choose to use it for simplicity in parameters and at
least, the symmetric pattern we discovered in Table 2.1 could be properly expressed. Figure 2.4
describes an example of the forecasting model that uses historical data to predict the parametric
estimation of the forward return at time t. Each row on the left refers to one input feature vector
with length T , where T indicates the lookback window size. The output of the model is simply
defined as the estimated parameters according to which statistical distribution you are predicting,
for example, the normal distribution in our assumption. Next we give the generalised definition of
the probabilistic forecasting model used in our paper.

Definition 2.1.3 (Probabilistic forecasting model). Let {x}t=1...N be the return series and {z}t=1...N

be the features series. Given length T , for T < t0 < N , probabilistic forecasting model M at time
t0 takes the fixed size lookback window of (xt0−T+1, . . . ,xt0) and (zt0−T+1, . . . ,zt0) as the input,
and outputs the estimated distribution parameters β̂t0+1 of the xt0+1.

Finally, we formalise the optimisation problem of the probabilistic forecasting model Mθ, with
the optimal parameters denoted by θ̂,
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Figure 2.4: Working flow of the probabilistic forecasting model

θ̂ := argmin
θ∈Θ

L
(
xT+1:N ; β̂T+1:N

)
, (2.1.1)

where the estimated normal distribution parameters is produced by

β̂t+1 = (µ̂t+1, σ̂t+1) := Mθ (xt−T+1:t, zt−T+1:t) , (2.1.2)

and the loss function L is defined as the negative log-likelihood

L
(
β̂T+1:N ;xT+1:N

)
: = −l

(
β̂T+1:N ;xT+1:N

)
= −

N−1∑
t=T

log
(
fβ̂t+1

(xt+1)
)
,

= −
N−1∑
t=T

log

(
1

σ̂t+1

√
2π

e
− 1

2

(
xt+1−µ̂t+1

σ̂t+1

)2)
.

(2.1.3)

2.2 Model framework

In section 2.1, we have formalised the optimisation problem in equation 2.1.1, showing the optimal
parameters θ̂ in forecasting model M are achieved by minimising the negative log-likelihood loss
function. Recently, the deep models are increasingly used in a wide range of areas for its power-
ful potential in representing complex patterns over massive data. Several successful architectures
of neural network have been developed for time series tasks, such as the Recurrent Neural Net-
work (RNN), Long Short-Term Memory (LSTM), Transformer and other typical models. In this
paper, we consider to use LSTM and Transformer these two advanced architectures as the prob-
abilistic forecasting model. Specifically, the LSTM-based model is a variation from the DeepAR
model proposed by Salinas et al., which was used to make predictions on three non-financial public
datasets, "parts", "electricity", and "traffic"[20]. The main contribution of this paper is to pro-
pose the Transformer-based probabilistic forecasting model for Foreign Exchange rate movements
prediction, and compare the results with the LSTM-based model over several parameters settings.

2.2.1 Long Short-Term Memory (LSTM) model

Recall that Long Short-Term Memory (LSTM) network is a type of recurrent neural network
(RNN) architecture designed to handle the vanishing gradient problem and capture long-range
dependencies in sequences. Distinguished applications have been seen in the fields of language
modelling, machine translation, time series prediction, etc. Financial sequence is sometimes auto-
correlative, which means that the information from several periods ago would be beneficial for
predicting the future movements. Therefore, we first introduce the LSTM-based model in this
subsection and set it as a baseline neural network model.

We start with 2.1.2, which describes that the model Mθ taking the historical data from a fixed
length lookback window and outputing the estimated parameters for the distribution forecasting
of the forward return. In LSTM-based model, which we introduce in the first chapter, the inputs
are fed recursively to the neural network. Then at time t, the model outputs the cell state ct and
hidden state ht, and sends them again to the neural network as part of the input at time t+ 1.
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Figure 2.5: Unfolded forward computation structure of LSTM-based probabilistic forecasting model
for normal distribution prediction

The unfolded forward computation structure of the LSTM-based probabilistic forecasting model
is shown in Figure 2.5. We should note that there is only one LSTM cell block in the training and
the unfolded LSTM cell blocks are only for intuitive explanation. Each input sample is defined as
a T -length lookback window of the historical features, such as price and other technical indicators.
However, in recurrent structure, they are not fed into the model at once, but step by step. The
forward computation at time t relies on previous results. We notice that the model takes three
streams of input at time t, which are the input feature vector inputt, cell state ct and the hidden
state ht. The dimension of the feature vector is dependant on the features number, while the
dimension of ht and ct should be the same and be set as a hyperparameter. In this paper, we set
the dimension to be 64. At the very beginning, the cell state and hidden state are not defined
because there is no previous output from the LSTM block. Therefore, by convention, we initialise
c0 and h0 with zero vector.

The computation insides the LSTM cell block goes the same as the computation from equation
1.2.9 to equation 1.2.12. At time t, the model use the three streams of input to give the output
of a new cell state ct+1 and a new hidden state ht+1. Both of them are passing forward, but
only the hidden state ht is used to produce the output. For probabilistic forecasting task, the
output is defined as the parametric estimation, hence the estimated parameters µ̂t+1 and σ̂t+1

in our assumption 2.1.2. The network architectures for predicting µ̂t+1 and σ̂t+1 from ht+1 are
simple and independent, and both of them contain a ReLU activation layer and a linear layer. An
additional Softplus layer is placed before the output of σ̂t+1 for shifting the sigma value to positive
according to the definition in normal density function. Finally, after sending the whole sample
step by step to the model, we obtain a sequence of predicted parameters (µ̂t+1, σ̂t+1) with length
T . Substituting the predicted values to the loss function in 2.1.3, we can calculate the conditional
probability fβ̂t+1

and the loss of the sample. The model could be updated through the gradient
computed from the batch loss by some optimisation algorithms like stochastic gradient descent
(SGD).

In summary, LSTM have significantly advanced the field of sequence modeling and analysis
by addressing the limitations of long-term dependency handling in traditional RNNs. However,
the increased complexity and computational demands call for a balance between the model’s po-
tential and practical feasibility. As the architecture of neural network continues to evolve, it’s
crucial to explore some new variations, such as Transformer-based models, that offer competitive
computational efficiency than LSTMs.

2.2.2 Multi-head attention Transformer model
Transformer network has created a new era of sequence modeling and natural language processing,
revolutionizing how we approach tasks like machine translation, content generation, series predic-
tion, and more. With the attention mechanism and parallel processing capabilities, Transformers
have quickly risen to prominence and demonstrated unparalleled performance in various domains.
However, to our best knowledge, this is the first time of Transformer-based probabilistic forecasting
model being used to predict the distribution of intraday movements in Foreign Exchange market.
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In this subsection, we propose the multi-head attention Transformer-based model as an advanced
probabilistic forecasting model in this paper.

Similar to the LSTM-based model, the Transformer-based remains to be a sequence to se-
quence model, which is, from a sequential input (inputt−T+1, . . . , inputt) to sequential outputs
(µ̂t−T+2, . . . , µ̂t+1) and (σ̂t−T+2, . . . , σ̂t+1). We should address that although both of them are se-
quence to sequence model, the execution manners are different. Recall that LSTM models receive
inputs recursively, and at time t, the LSTM cell uses the previous output of hidden state ht and
cell state ct as part of the input, then forward them to produce the output at next stage. Like
any RNN model, this kind of recurrent nature obstructs the parallelism. In comparison, as an
advantage, the Transformer-based models can execute simultaneously on all the temporal input
elements, which greatly improves the learning efficiency.

Figure 2.6: Architecture of multi-head attention Transformer-based probabilistic forecasting model
for normal distribution prediction

However, one advantage of recurrent model is the capability to retain the sequential information
in the input series. This capability could be essential because in most temporal sequences, the
elements are not totally independent, but somehow dependent on the previous status. If we do not
involve the sequential or temporal information in the feature set, then according to the architecture
of Transformer, the elements are treated independently, causing the loss of causal information. In
the paper "Attention is All You Need" by Vaswani et al., they mention that one way to make use
of the order of the sequence is to inject some information about the relative or absolute position of
the elements in the sequence. They propose to add "positional encodings" to the input embeddings
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by sine and cosine functions of different frequencies,

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
, (2.2.1)

PE(pos,2i+1) = cos
(
pos/100002i/dmodel

)
, (2.2.2)

where dmodel is the embedding dimension, pos is the position and i is the dimension. In this paper,
we use "time encoding", which is also defined as sine and cosine functions, but in two dimensions,
to realise the similar thing. We will give the formal definition of "time encoding" feature in the
following section.

Before sending the input to the framework, we should add a temporal mask to prevent infor-
mation leakage. Considering the sequence to sequence prediction model, what we would expect is
that the predictions µ̂t0+1 and σ̂t0+1 are not using any future information beyond time t0, hence
the predictions are only using (inputt−T+1, . . . , inputt0), where t is the current time and t0 is some
time in the lookback window.

In chapter 1, we introduce the multi-head attention mechanism starting with the initial trans-
formation 1.2.14, which is a linear layer with a weights matrix W and a bias b, and this form
originates from the "Attention is All You Need" paper. However, we discovered that only using
a simple linear layer may cause the gradient explosion in training. The reason behind is that we
are using the negative log-likelihood loss 2.1.3 instead of mean squared error (MSE) or some other
common loss functions. Therefore, according to a random initialisation of the neural network’s
parameters, the ultimate outputs µ̂ and σ̂ is largely affected by the scale of input vector if there
is no scaling process in between. Then, there is a chance that the likelihood being close to zero,
causing extremely large value in the loss function. To this end, we introduce the "Tanh" activation
function to the initial transformation before the multi-head attention part. Recall that the "Tanh"
function maps the input to the range [−1, 1], which limits the scale of the value passing through.
In our experiments, adding a "Tanh" layer successfully avoid the gradient explosion caused by the
sensitivity of negative log-likelihood loss function.

After the initial transformation, queries Q and keys K are sent to the multi-head attention
block to compute the similarity scores. The scores are then used to aggregate the values V in the
"Add & Norm" part shown in Figure 2.6, where the heads are concatenated together. Finally, the
aggregated results are sent to two different networks for µ̂ and σ̂ predictions, the same procedure
we have introduced in the LSTM-based model.

2.3 Empirical results

After setting up the architecture of probabilistic forecasting model, this section focuses on the
application to some empirical datasets. Starting with the subsection "Data preparation", we first
describes how we use the raw 1min spot price data to generate structured feature data, and followed
by the parameters setting in the training of LSTM-based model and Transformer-based model. At
last, we evaluate how good one model works by comparing the training loss and some accuracy
metrics on the predicted results.

2.3.1 Data preparation

The empirical data used in this paper is downloaded from histdata.com [31] in 1min frequency.
The raw data downloaded from the website only contains four prices, "open", "high", "low" and
"close". Since Foreign Exchange market opens 24 hours a day except weekends, the 1min trading
periods are consistent in most of the time. In this case, we simply ignore the "open" column
because it should be identical to the "close" price of last period if the periods are consistent.
Therefore, we only use "high", "low" and "close" values in this paper.

Aggregate to lower frequency

The raw data comes in 1min frequency, but in this paper, we choose to use 5min frequency instead
to control the input window length. For example, if we set the input as the information of past
3 hours, then for 1min frequency, we need 180 intervals, however, the number can be decreased
to 36 if we use 5min frequency instead. For neural network models, larger input means there are
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more parameters and computations to conduct, not only making the training process slow but also
causing the overfitting problem in some cases. In other words, a longer lookback period can be
inserted to the model at the same cost if we aggregate the data into a lower frequency. In fact, one
can flexibly aggregate the data in any frequency beyond 1min, the highest frequency that provided
by raw data.

The aggregation processes of the original data "high", "low" and "close" price from 1min to
5min frequency are defined as

high5min
t := max

(
high1min

t−4 , . . . , high1min
t

)
, (2.3.1)

low5min
t := min

(
low1min

t−4 , . . . , low1min
t

)
, (2.3.2)

close5min
t := close1min

t . (2.3.3)

Equations 2.3.1 to 2.3.3 show that we can use vector
(
high5min

t , low5min
t , close5min

t

)
to express the

interval (t− 5, t]. Therefore, we could split one hour into 12 pieces, and report the quotes every 5
minutes. We will construct our feature set on the 5min quotes.

Features construction

Traditional technical indicators in financial trading are calculated from historical prices and vol-
umes, such as the moving average, MACD, VWAP and other so called "momentum factors" and
"inverse factors". Unfortunately, the historical volume data is not applicable for Foreign Exchange
market because of the nature of an OTC market. Przemysław et. al[29] note that the market
liquidity varies in a single day, explained by an analysis on the spread of currency pairs in different
hourly intervals. Inspired by that, we introduce the "high minus low spread" as the value of "high"
price minus "low" price, a feature that reflects the liquidity. Figure 2.7 gives the hourly average
of the "high minus low spread" for USDJPY currency pair from 2013 to 2023. It is clear that the
largest spread is discovered in 1p.m. to 3p.m., when the London session overlaps with the New
York session. While the smallest spread is discovered at around 9p.m., when the New York market
is going to close.

Figure 2.7: Hourly average of "high minus low spread" for USDJPY from 2013 to 2023

Sometimes it would also be beneficial to include some cross-asset information such as the data of
relative rates and indices, but this destroys the self-contained property in constructing the feature
set. For simplicity, we only consider features derived from the historical data of our target asset,
hence the USDJPY currency pair as an example in this paper.

We conclude the constructed features for our probabilistic forecasting model in four classes:

• Z-score features

The Z-score, also known as the standard score, is a statistical measure that quantifies how
far a particular data point is from the mean of a dataset in terms of standard deviations.
In financial area, people often calculate the Z-score according to a historical window so that
there is no information leakage in calculation. That is, to standardise the original value and
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Description Definition Class
feature_1 high price

Z =
x− µx

σx
,

computed in z-score window
Z-score

feature_2 low price
feature_3 close price
feature_4 high minus low spread
feature_5 EMA (close, span=5)
feature_6 EMA (close, span=20)
feature_7 EMA (close, span=30)
feature_8 EMA (close, span=60)
feature_9 high price

Rt =
xt − xt−1

xt−1
Returnfeature_10 low price

feature_11 close price

feature_12

feature_13

feature_14

high price

low price

close price

Std =

√
E
[
(x− µx)

2
]
,

computed in z-score window
Volatility

feature_15 dimension 1 (sine)
T1 = sin

(
hour · 60 +minute

24 · 60
· 2π

)
Time

feature_16 dimension 2 (cosine)
T2 = cos

(
hour · 60 +minute

24 · 60
· 2π

)
Table 2.2: Definition of the forecasting model input features

compare the data points from different scales. In this paper, we mainly apply the computation
of Z-score on price related features, such as the spot price, spread, exponential moving average
(EMA), etc. The exponential moving average is a statistical calculation that helps smooth
out fluctuations and noise in time-series data, which is commonly used in finance, defined as

EMAt = α · xt + (1− α) · EMAt−1,

where α is the decay factor that controls how the importance of data decays through time.
There are a few ways to define the decay factor, and we choose to use

α = 2/(span+ 1), for span ≥ 1,

where span can be explained as how many periods you are looking at since the importance
over the span periods could be ignore. The widely used technical indicator MACD is also
defined as the subtraction of two EMA with different decay factors. Therefore, we hope by
providing the original version of EMA, the neural network could acquire information beyond
MACD. The Z-score features gives the model information of the level or the location that
current price stays at. Furthermore, we won’t need the batch normalisation before sending
those features to the neural network, and the length of the historical window can be a
hyperparameter set by the user.

• Return features
In the feature set, the return features are simply defined as the recent movement in "high",
"low" and "close" prices. Volatility clustering is a common phenomenon in finance, which
describes that a large movement is likely to be followed by another large movement. At
least in predicting the magnitude of next 5min return, it should be somehow informative.
The return features are sent directly to the model rather than being normalised because the
distribution of financial returns is often heavy-tailed, which means that in the normalisation
or computation of Z-score, some large movements would become extreme values which are
harmful in training.

• Volatility features
Similar to the Z-score class, the calculation of the volatility features is also based on a his-
torical window. It is simply taken as the variance of the return, the second central moment
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in a specific period. Since we are predicting the distribution parameters, specifically, we
assume to use the normal distribution as the underlying statistical model, where the param-
eters are (µ, σ), the first and second central moment of the future return. Considering the
auto-correlation and volatility clustering, it is worth involving any statistical information.

• Time features

Finally, we encode the intraday time stamp in two dimensions using the sine and cosine
functions, and the encoding can be seen as a method of positional encoding in Transformer
architecture 2.6. Recall that even though Foreign Exchange market opens 24 hours a day,
the trading volume can be different from time to time. For example, London session often
witnesses the most active and volatile trading activities compared to other sessions. Then,
a simple idea is that, we might expect a larger σ in our parameters estimation during the
active trading periods, and time features give that information. In addition, the usage of
sine and cosine functions retains the cyclical nature of the time, for example, 11p.m. is close
to 0a.m. in this encoding system. For intraday time representation, we transform the hour
and minute to a two-dimension feature (T1, T2) by

T1 = sin

(
hour · 60 +minute

24 · 60
· 2π

)
,

T2 = cos

(
hour · 60 +minute

24 · 60
· 2π

)
.

Finally, we give the explicit definition of the 16 features derived from the historical price data
in Table 2.2.

2.3.2 Parameters setting

This paper focuses on forming the whole processing flow of the proposed framework, from data
preparation, model forecasting to strategy backtesting, using the asset of USDJPY currency pair
as an example.

Training/test dataset

We select the historical price data from 2013-01-01 to 2023-06-30 as the whole sample, and split
the dataset into a training set and a test set. The training set starts from 2013-01-01 and ends at
2020-12-31, while the test set starts from 2021-01-01 and ends at 2023-06-30. According to Figure
2.2, the training set covers both highly volatile and slightly volatile periods, and the test set begins
with a low volatility and also experiences the high volatility recently.

Features construction

There are several window sizes we did not specify in previous section. One is the length of the
sequential input to the probabilistic forecasting model, which we call the lookback_window. An-
other one is used to calculate the "Z-score" class and "Volatility" class features, which we call the
historical_window. We summarise them in the following Table 2.3.

Parameters Value
lookback_window 36× 5min (3 hours)
historical_window 5× 288× 5min (5× 24 hours)

Table 2.3: Parameters in features construction

Model architectures

Although we have shown the detailed architecture of the LSTM-based model and the Transformer-
based mdoel in Figure 2.5 and Figure 2.6, there are still several parameters about the neural
network we need to specify. In LSTM-based model, we should define the LSTM_layers, which is
the number of stacked LSTM layer, and the hidden_dimension, which is the number of neurons
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in representing the hidden state and cell state. In multi-head attention Transformer-based model,
we should define the Transformer_layers, which is the number of stacked Transformer layer, and
the heads_num, which is the number of heads that used in computing the multi-head attention.
These parameters are specified in Table 2.4.

Parameters Value
LSTM_layers 3

hidden_dimension 64
Transformer_layers 3

heads_num 4

Table 2.4: Parameters in model architectures

Forecasting period

In our negative loglikelihood loss function defined in Equation 2.1.3,

L
(
β̂T+1:N ;xT+1:N

)
= −

N−1∑
t=T

log

(
1

σ̂t+1

√
2π

e
− 1

2

(
xt+1−µ̂t+1

σ̂t+1

)2)
,

where N is the length of the lookback window and label xt+1 is defined as the forward return of
a specific forecasting period. We investigate the model performance on predicting the distribution
of the forward return over the forecasting_period parameters listed in Table 2.5.

Parameters Value
forecasting_period 5min, 15min, 30min, 60min

Table 2.5: Parameters of forecasting period

Training process

Finally, we specify the training parameters such as the learning rate, batch size, training epochs
as well as the dropout probability in the output networks. The dropout layers are added after the
linear layers in the output networks. We conclude them in Table 2.6.

Parameters Value
learning_rate 0.001
batch_size 64

training_epochs 5
dropout_prob 0.1

Table 2.6: Parameters in training process

2.3.3 Results analysis
In this subsection, we train the LSTM-based and Transformer-based probabilistic forecasting mod-
els on USDJPY currency pair over 5min, 15min, 30min and 60min forecasting periods and AUDJPY
currency pair over 5min. Then utilise some metrics such as negative loglikelihood loss, directional
accuracy, root mean squared error (RMSE) and 95% covered ratio, which are useful and intuitive to
evaluate how good the probabilistic forecasting is. We will compare the Transformer-based model
and the LSTM-based model under the same data and parameters setting. By setting up a few
thresholds for labels, we discover that the models do better in predicting the larger movements.
Furthermore, we also investigate the average performance of the models in an hourly analysis,
evaluating how well the models work in different intraday hours.

Unlike the point estimation model, whose output prediction could be defined straightly as
the target return, the probabilistic forecasting model produce somehow ambiguous output that
represents the estimated parameters of a selected statistical distribution. Therefore, our motivation
is that, by introducing some handcrafted accuracy and error metrics, we could better interpret the
predicted results. Now we first explain the definition of each proposed metric.
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Metrics definition

• Negative loglikelihood loss (NLL)

Recall that we have formalised the optimisation problem in Section 2.1, in which we train the
model to minimise the negative loglikelihood loss. This could be the most straight forward
way to score the model because this error metric is what we use for training. The likelihood
function indicates how likely to observe the given sample data under a statistical assumption.
For example, the statistical assumption in this paper is to use the normal distribution, where
the parameters are powered by our forecasting model. The likelihood value closer to 1 means
the more accurate the model predicts in term of distribution. Then similarly, the negative
loglikelihood loss (NLL) is taking the opposite value of the logarithmic likelihood,

NLL : =
1

M
L
(
β̂1:M ;x1:M

)
= − 1

M

M−1∑
t=0

log

(
1

σ̂t+1

√
2π

e
− 1

2

(
xt+1−µ̂t+1

σ̂t+1

)2)
,

(2.3.4)

where M represents the size of test dataset. The opposite and logarithm transformation
projects the [0, 1] range of the likelihood to the [0,∞) range of the NLL. NLL indicates the
model should be better if the value is closer to 0.

• Directional accuracy (DA)

This is a handcrafted metric proposed in this paper. For each time step, the probabilistic
forecasting model transforms the input features to two parameters (µ̂, σ̂), while directional
accuracy (DA) only considers the correctness of µ̂ in term of its sign comparing to the ground
truth label. We summarise this as

DA := E [11µ̂·label≥0] , (2.3.5)

and the condition that µ̂ · label ≥ 0 means the µ̂ has the same sign as the label, hence being
correct in predicting the direction of the future movement.

• 95% covered ratio (95% CR)

This is also a handcrafted metric proposed in this paper. This time, we consider both µ̂ and
σ̂, but not in term of direction. We choose to analyse what is the ratio of the predicted µ̂ that
falls into the range [µ̂−2σ̂, µ̂+2σ̂]. In normal distribution N (µ, σ), the range [µ−2σ, µ+2σ]
accounts for around 95% probability, and that is the reason we call this metric "95% covered
ratio". Mathematically, the 95% CR is defined as

95% CR := E [11µ̂−2σ̂≤label≤µ̂+2σ̂] . (2.3.6)

Although this metric might not be as intuitive as the directional accuracy, it provides a more
comprehensive aspect from both µ̂ and σ̂. We could understand the 95% CR in a way that,
if the value is closer to 95%, then possibly the model fits better.

• Root mean squared error (RMSE)

Root mean squared error is one of the most commonly used metrics in a wide area, quantifying
the average distance between the model outputs and the ground truth labels. However, the
tricky point is that, we only have one sample, the given label, for each predicted normal
distribution N (µ̂, σ̂) so that this is also a metric that barely looks at µ̂. To apply the RMSE
metric, we have to assume that the label represents the "mean" value for its true underlying
distribution. Then we can finally define the RMSE in Equation xx,

RMSE :=

√√√√ 1

M

M∑
i=1

(labeli − µ̂i)
2
, (2.3.7)

where M is the size of the test dataset.
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USDJPY - 5min forecasting period

From this part, we train the LSTM-based and Transformer-based probabilistic forecasting model
over different forecasting periods, and evaluate the out of sample (on test dataset from 2021 to
2023) model performance through the metrics of negative loglikelihood loss (NLL), directional
accuracy (DA), 95% covered ratio (95% CR) and root mean squared error (RMSE). Specifically,
we set a series of thresholds for labels and run the same metrics analysis on the selected samples.
Finally, we analyse the hourly performance to see if there is any advantageous period for intraday
trading.

We start with 5min forecasting period, which means the model uses the lookback window of
constructed features to predict the distribution of next 5min return. Given the ground truth labels,
we plot the true 5min returns as well as the predicted normal distribution parameterised by (µ̂, σ̂)
in Figure 2.8 (for LSTM-based model) and Figure 2.9 (for Transformer based model). The way we
illustrate the distribution is to shadow the 95% confidence range [µ̂ − 2σ̂, µ̂ + 2σ̂] in blue, which
intuitively describes how the distribution is fitted to the ground truth labels.

Figure 2.8: 95% confidence range for 5min USDJPY return distributions by LSTM-based model

Figure 2.9: 95% confidence range for 5min USDJPY return distributions by Transformer-based
model

From Figure 2.8 and Figure 2.9 we discover that, LSTM-based model is producing larger 95%
confidence intervals, or we could interpret as larger σ̂, with the evidence that the blue area in
LSTM-based figure is greater than that in Transformer-based figure. While the common pattern
is that for those extreme movements happened in 2022 and 2023, both model cannot cover them
in their 95% confidence ranges. So far, it is still unclear to tell which model works better without
quantifying the performance.

The motivation of this paper is to first set up a probabilistic forecasting model, and then use
the predictions to form a trading strategy. Generally speaking, the large movements, in both
directions, are profitable if we have a good predictive model, but equivalently, there are more risk
exposures for making wrong decisions. Therefore, we come up with the idea of setting a series of
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Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 2.462 0.5 0.922 3.558
0.5 0.777 2.747 0.516 0.9 4.03
1.0 0.593 3.082 0.517 0.869 4.594
1.5 0.453 3.439 0.518 0.832 5.208
2.0 0.352 3.788 0.519 0.793 5.829
2.5 0.273 4.164 0.519 0.751 6.508
3.0 0.213 4.553 0.52 0.71 7.215
3.5 0.169 4.949 0.519 0.67 7.926
4.0 0.136 5.353 0.519 0.634 8.657
4.5 0.109 5.804 0.52 0.595 9.43

Table 2.7: Evaluation metrics for USDJPY 5min return distributions by LSTM-based model

Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 2.404 0.505 0.946 3.548
0.5 0.777 2.635 0.519 0.930 4.021
1.0 0.593 2.915 0.519 0.909 4.586
1.5 0.453 3.225 0.518 0.880 5.202
2.0 0.352 3.538 0.514 0.846 5.824
2.5 0.273 3.883 0.508 0.803 6.504
3.0 0.213 4.249 0.506 0.755 7.213
3.5 0.169 4.627 0.503 0.707 7.924
4.0 0.136 5.031 0.498 0.658 8.656
4.5 0.109 5.476 0.494 0.607 9.429

Table 2.8: Evaluation metrics for USDJPY 5min return distributions by Transformer-based model

thresholds for the ground truth labels, and analyse the performance on the selected samples whose
label magnitude exceeds the thresholds.

The ten thresholds are defined in the unit of basis point, ranging from 0 to 4.5. For example,
to select the samples with threshold at 2.5, we should filter out all the samples with the absolute
labels greater than or equal to 2.5. We also calculate the proportion that the selected samples are
taking in the whole test dataset. Four proposed metrics NLL, DA, 95% CR and RMSE are then
applied accordingly. We summarise these results for LSTM-based model and Transformer-based
model in Table 2.7 and Table 2.8.

Note that we start with threshold at zero, which means no limitation on the labels, and of
course the proportion of the whole dataset equals to 1. The proportion drops when the threshold
increases so that we could focus on the tail performance on both sides.

For negative loglikelihood loss (NLL) metric, the metric that be straightly used as the loss
function in our forecasting models, Transformer-based model achieves better performance than
LSTM-based model in all threshold settings. However, both LSTM and Transformer models see a
worsening trend when the threshold increases. The same pattern is also found in metrics of 95%
CR and RMSE. One possible reason is the impact of extreme values. Since we are using the "mean"
value m̂u and "variance" σ̂ to evaluate the probabilistic prediction performance, we assume that
the samples are more likely to get closer to m̂u according to the property of normal distribution.
However, we are now setting a specific threshold that filters out those "higher" returns, and in
many cases they are somehow "extreme" to their underlying distribution and causes the bias. This
kind of "bias" could significantly affect any metric evaluating the distance between predicted µ̂
and the true return label such as root mean squared error (RMSE).

Overall, the Transformer-based model outperforms the LSTM-based model in metrics of NLL
and 95% CR, and presents a slight advantage in RMSE, while the results in directional accuracy
(DA) metric looks quite interesting. Transformer-based model starts with better DA in lower
threshold settings, but the accuracy drops when the threshold rises. In comparison, the directional
accuracy of the LSTM-based model keeps getting better with the increasing thresholds. We could
interpret the results in a sense that the Transformer-based model generally performs better in
forecasting the distribution, while the LSTM-model looks to have a potential in predicting the
direction of larger movements.
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Furthermore, as a highlighted part, we also conduct an analysis on time effect. The trading
activities in different sessions could vary a lot according to our previous discussion on Figure 2.7.
Recall that the feature set involves the time encoding, from which the model could possibly learns
something about the time effect. We are curious to figure out how the models would perform on
each one hour period.

Before getting into the same metrics evaluation for hourly periods, we would like to first inves-
tigate the statistical characteristic of each period. The results are shown in Table 2.9.

Hour Mean Variance Skew Kurtosis Positive Negative
0 -0.08 16.88 1.272 -70.94 0.512 0.488
1 0.085 13.263 -0.006 0.507 0.52 0.48
2 0.006 12.143 0.033 1.137 0.512 0.488
3 0.008 14.624 -0.171 9.168 0.527 0.473
4 0.018 7.146 0.014 0.579 0.53 0.47
5 0.042 5.922 -0.007 0.55 0.529 0.471
6 0.035 7.679 -0.009 0.574 0.526 0.474
7 0.021 12.494 -0.022 0.37 0.527 0.473
8 -0.023 14.631 0.005 -0.124 0.514 0.486
9 -0.01 15.232 0.029 -0.996 0.515 0.485
10 0.044 9.147 -0.004 0.54 0.518 0.482
11 0.019 8.539 -0.009 0.394 0.516 0.484
12 0.048 11.65 0.054 2.379 0.52 0.48
13 -0.007 40.919 0.016 -0.549 0.515 0.485
14 -0.027 26.891 0.022 -0.554 0.509 0.491
15 0.038 22.479 -0.036 0.61 0.514 0.486
16 0.03 13.805 -0.048 1.187 0.519 0.481
17 0.008 8.877 -0.01 0.558 0.521 0.479
18 0.037 7.967 0.025 1.241 0.531 0.469
19 -0.022 8.229 0.041 -1.202 0.515 0.485
20 0.059 4.797 -0.01 1.344 0.528 0.472
21 -0.097 4.176 -0.153 -8.187 0.517 0.483
22 0.206 7.545 1.498 58.896 0.593 0.407
23 0.036 6.955 0.031 0.729 0.53 0.47

Table 2.9: Hourly statistical results of USDJPY 5min return (in bps) from 2021 to 2023 (UTC)

Here we want to show that the performances on each period are not consistent. From the
empirical analysis in Table 2.9, hour 22 has the largest "mean" value while hour 13 has the largest
"variance", reflecting that the trading activities in the market keep changing in a day. Recall
that in UTC time zone, hour 13 is the overlapping part of London session and New York session,
in which a large number of trades happen. Hour 22 often witnesses a low liquidity because of
the closure of both the London market and New York market. Therefore, we choose to plot the
evaluation metrics for hour 13 and hour 22 in Figure 2.10 and Figure 2.11 as an example.

Figure 2.10: Evaluation metrics for hour 13 and hour 22 for 5min USDJPY return distributions
by LSTM-based model
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Figure 2.11: Evaluation metrics for hour 13 and hour 22 for 5min USDJPY return distributions
by Transformer-based model

From the plots, it is not difficult to see the directional accuracy (DA) soars up in hour 22, even
if other metrics remain getting worse as the threshold shifts. The blue bars in the figures indicate
the proportion of the samples selected by the thresholds. It should be convincing to see there are
more larger movements happened in hour 13 than hour 22 because in Table 2.9 the variance in
hour 13 is 40.919, while the value is only 7.545 in hour 22. The motivation of showing the two
figures is to address the fact that the probabilistic models could have some advantageous hours,
which might be beneficial for automatic trading.

So far we have finished the discussion about the performance of LSTM-based model and
Transformer-based model on USDJPY with 5min forecasting period. Conservatively speaking,
the Transformer-based model performs no worse than LSTM-based model, and especially in some
metrics such as negative loglikelihood loss (NLL) and 95% confidence ratio (95% CR), it shows
even better performance. To conclude, considering the computing efficiency, the Transformer-
based model could be qualified as an alternative probabilistic forecasting model other than the
LSTM-based model in this case.

AUDJPY - 5min forecasting period

In the previous part, we have discussed about the performance of the probabilistic forecasting
models on USDJPY currency pair. As a supplement of the experiments, and to exhibit the flexi-
bility of the proposed models, we consider to train the AUDJPY currency pair based on the same
methodology in USDJPY with 5min forecasting period. Similarly, we present the results in the
order of 95% confidence range, evaluation metrics, hourly statistical results and some hour sample
analysis.

Figure 2.12: 95% confidence range for 5min AUDJPY return distributions by LSTM-based model

We plot the 95% confidence range in blue and the true labels in red. Figure 2.12 shows the
results of probabilistic forecasting on AUDJPY currency pair in out of sample period predicted
by LSTM-based model, while Figure 2.13 refers to the Transformer-based model. Both models
are trained for 5 epochs with the parameters setting described in subsection 2.3.2. The blue 95%
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Figure 2.13: 95% confidence range for 5min AUDJPY return distributions by Transformer-based
model

confidence shadow area in Figure 2.12 seems still larger than that in Figure 2.13. According to
the previous analysis of USDJPY currency pair, this could be caused by the over estimation of the
volatility parameter σ̂ in the predicted normal distribution. We still need more numerical results
to quantify this.

The evaluation metrics for LSTM-based model and Transformer-based model are computed
and illustrated in Table 2.10 and Table 2.11 respectively.

Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 2.819 0.505 0.925 4.461
0.5 0.858 2.961 0.515 0.912 4.811
1.0 0.731 3.121 0.517 0.897 5.2
1.5 0.619 3.297 0.518 0.879 5.62
2.0 0.522 3.487 0.519 0.857 6.073
2.5 0.435 3.698 0.519 0.83 6.572
3.0 0.363 3.918 0.52 0.8 7.091
3.5 0.302 4.151 0.519 0.766 7.631
4.0 0.252 4.393 0.517 0.729 8.187
4.5 0.21 4.642 0.516 0.69 8.764

Table 2.10: Evaluation metrics for AUDJPY 5min return distributions by LSTM-based model

Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 2.766 0.508 0.946 4.449
0.5 0.858 2.883 0.518 0.937 4.802
1.0 0.731 3.017 0.52 0.926 5.192
1.5 0.619 3.167 0.521 0.912 5.615
2.0 0.522 3.33 0.521 0.896 6.069
2.5 0.435 3.512 0.52 0.875 6.569
3.0 0.363 3.705 0.52 0.85 7.09
3.5 0.302 3.909 0.519 0.821 7.631
4.0 0.252 4.123 0.517 0.787 8.187
4.5 0.21 4.349 0.515 0.749 8.764

Table 2.11: Evaluation metrics for AUDJPY 5min return distributions by Transformer-based model

Metrics negative loglikelihood loss (NLL) and root mean squared error (RMSE) are loss indica-
tors, which means "smaller is better". Directional accuracy (DA) and 95% confidence ratio are two
handcrafted metrics, and the higher score in DA means the higher chance to win the directional
bet, while a good 95% CR score should get close to 95%. According to the criteria above, we find
that the Transformer-based model outperforms the LSTM-based model in most cases, except for
the DA metric with label threshold 4.5. Even though in term of RMSE metric, two models are
close to each other, Transformer-based model still keeps slight advantage in small thresholds.
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Now we continue to investigate the statistical characteristic of AUDJPY currency pair on an
hourly basis in Table 2.12.

Hour Mean Variance Skew Kurtosis Positive Negative
0 -0.206 23.345 2.02 -87.633 0.497 0.503
1 0.072 23.582 -0.008 0.287 0.518 0.482
2 0.036 24.79 0.044 1.087 0.509 0.491
3 0.016 22.223 -0.078 2.221 0.525 0.475
4 0.023 14.488 -0.013 0.568 0.511 0.489
5 0.058 15.946 0.16 3.534 0.519 0.481
6 0.056 15.097 0.005 0.282 0.52 0.48
7 0.015 20.445 -0.006 0.079 0.515 0.485
8 -0.026 28.067 0.001 -0.076 0.505 0.495
9 -0.075 23.149 0.051 -1.485 0.515 0.485
10 0.028 15.953 -0.0 0.14 0.511 0.489
11 -0.053 15.1 0.011 -0.416 0.502 0.498
12 0.042 17.331 0.011 0.371 0.516 0.484
13 0.002 30.048 -0.003 0.066 0.519 0.481
14 0.016 33.55 -0.003 0.11 0.51 0.49
15 -0.056 37.087 0.019 -0.238 0.509 0.491
16 0.034 21.661 -0.002 0.211 0.519 0.481
17 0.012 14.362 0.009 0.202 0.512 0.488
18 0.024 13.381 0.001 0.455 0.517 0.483
19 0.026 14.209 -0.017 0.861 0.524 0.476
20 0.049 10.243 0.024 0.447 0.518 0.482
21 -0.341 8.86 1.075 -14.637 0.492 0.508
22 0.331 19.078 -0.721 38.771 0.583 0.417
23 0.194 12.253 0.155 3.067 0.536 0.464

Table 2.12: Hourly statistical results of AUDJPY 5min return (in bps) from 2021 to 2023 (UTC)

We note that the three largest variance values are discovered in hour 13, 14 and 15, before the
closure of the London session. This time, we select two hours accounting for the most volatile and
least volatile periods respectively, hence hour 15 with variance at 37.087 and hour 21 with variance
at 8.86, plotted in Figure 2.14 and 2.15.

Figure 2.14: Evaluation metrics for hour 15 and hour 21 for 5min AUDJPY return distributions
by LSTM-based model

In hour 15, there are more large movements since the proportion of labels whose magnitude
exceeds 4.5 is staying high as 37.4%, while in hour 21 the proportion drops to 8.6%. LSTM-based
model shows no advantage at predicting the direction in hour 13, but it achieves higher directional
accuracy (DA) than Transformer-based model in hour 21. In contrast, the Transformer-based
model slightly outperforms the LSTM-based model in directional accuracy in hour 13. These
results indicate that we should not neglect the "time effect" in Foreign Exchange market, and the
two probabilistic forecasting models could perform differently even in the same hour period.

To conclude, the two empirical experiments on currency pair USDJPY and AUDJPY have
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Figure 2.15: Evaluation metrics for hour 15 and hour 21 for 5min AUDJPY return distributions
by Transformer-based model

shown the potential of the multi-head attention Transformer-based probabilistic forecasting model.
Particularly, we also examine the model performances of the 15min, 30min and 60min forecasting
period. The numerical results are attached in the appendix of this paper.

At least, in terms of metrics such as negative loglikelihood loss (NLL), 95% confidence ratio (95%
CR) and root mean squared error (RMSE), Transformer-based model outperforms the LSTM-based
model after 5 epochs of training. Furthermore, considering that the training cost of Transformer
network is far lower than LSTM network because of the parallelism in matrix computation, we
suggest that the proposed multi-head attention Transformer-based model should be qualified as an
alternative framework for time series probabilistic forecasting tasks.
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Chapter 3

Trading strategies

In this chapter, we develop a few daily strategies utilising the predictions from our Transformer-
based probabilistic forecasting model. Specifically, we use the sign of predicted µ̂ as the trading
direction, or in other words, we take long position if the output is positive and short position if
negative. The predicted volatility σ̂ is used to optimise the position by maximising a utility func-
tion. At the end of the day, the daily strategies clear the position and calculate the daily PnL. We
settle the daily PnL in the base currency JPY first, then transform to the quote currency accord-
ing to the instantaneous rate, and backtest the strategies in terms of Annualised Return, Sharpe
Ratio and Maximum Drawdown in the out of sample period from 2021 to 2023. In comparison, we
set "buy and hold" strategy and "20-period moving average" strategy as the benchmarks. These
proposed and benchmark strategies are introduced in the first section of this chapter.

3.1 Strategies establishment

This section introduces the proposed and benchmark strategies of the paper. From data prepa-
ration, feature construction to model prediction, we have fulfilled the probabilistic forecasting
framework. We may now focus on building some automated trading strategies using the predicted
results. For simplicity, we only consider spot trading, that is, we purchase or sale the currency for
immediate delivery. Options are not included.

3.1.1 Proposed strategies

For consistency with the previous variable definitions, we continue to use (µ̂t+1, σ̂t+1) for the output
parameters from the Transformer-based probabilistic forecasting model at time t. To comply with
the risk exposure, we set the following assumption.

Assumption 3.1.1. The maximal exposure is set to be 10 million quote currency for intraday
trading.

Recall that the amount in the quote currency, for example the USD in USDJPY, can be seen
as the the share that one holds the currency pair. Therefore, we can interpret the constraint as
the maximal holdings in a day. Here are two simple strategies we use to examine the prediction
power in trading.

• Directional trading with no scaling

Specifically, the directional trading strategy takes the sign of the "mean" parameter µ̂ in
the predicted normal distribution. If we assume that the model predicts the true underlying
distribution for the forward return, then µ̂ indicates how would be the movement like on
average. For each time step, we have

Positiont =

{
10 m, µ̂t+1 ≥ 0,
-10 m, µ̂t+1 < 0.

(3.1.1)
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• Directional trading with mean-variance scaling

Simple directional trading is too naive to make full use of the predicted results. With µ̂t+1

and σ̂t+1 in hand, we come up with the idea of optimising the position using the classic
"mean-variance" framework.

Our goal is to find out the optimal proportion of the portfolio that should be invested in the
quote currency, noted by πt. Without loss of generality, at time t, we use vt to express the
unit value of portfolio and let st be the foreign exchange rate of the currency pair. Then we
could formalise the one step PnL as

vt+1 − vt = πt · xt+1, (3.1.2)

where xt+1 is the forward return. Fortunately, we have already obtained the predicted
normal distribution N (µ̂t+1, σ̂t+1) for xt+1. We optimise the conditional expectation of the
exponential utility function by

sup
πt∈Π

Et [U (vt+1)] , (3.1.3)

where
U (vt+1) := −e−γvt+1 , (3.1.4)

and γ is the risk aversion coefficient. Then we replace vt+1 in equation 3.1.3,

sup
πt∈Π

Et [U (vt+1)]

= sup
πt∈Π

Et [−e−γvt−γπt·xt+1 ]

= sup
πt∈Π

− e−γvtEt [e
−γπt·xt+1 ]

= sup
πt∈Π

− e−γvt · e−γπtµ̂t+1+γ2π2
t σ̂

2
t+1/2, (3.1.5)

the optimisation problem equals to the minimisation

min
πt∈Π

− γπtµ̂t+1 +
γ2σ2

2
π2
t , (3.1.6)

where the optimal proportion

π∗
t :=

µ̂t+1

σ̂2
t+1γ

. (3.1.7)

Finally, the directional trading strategy with mean-variance scaling can be summarised as

Positiont =

{
min (π∗

t , 1) · 10 m, π∗
t ≥ 0,

max (π∗
t ,−1) · 10 m, π∗

t < 0.
(3.1.8)

Note that for the constraint on the position exposure in 3.1.1, proportion π∗
t should be

truncated to [−1, 1].

3.1.2 Benchmark strategies

The "buy and hold" and "20-period moving average" are two basic strategies we use as the bench-
marks in this paper.

• Buy and hold

"Buy and hold" strategy is a long-only strategy. Investor enters with position in the beginning
of the day, and do nothing until the end of the day. The daily PnL of the strategy only
depends on the initial price and the last price of the day. The definition of the "buy and
hold" strategy could be defined as equation 3.1.9.

Positiont = 10 m. (3.1.9)
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• 20-period moving average

The idea of "moving average" strategy is to distinguish bullish and bearish market, and
investor goes long in bullish and goes short in bearish. The assumption is that, if the price
or rate st stays above the moving average, we identify the market as bullish and vice versa.
For 20-period moving average, we could summarise as

Positiont =

{
10 m, st ≥ ma20,
-10 m, st < ma20.

(3.1.10)

3.2 Backtesting on empirical dataset

We backtest the strategies on the empirical dataset of USDJPY and AUDJPY currency pairs. The
forecasting period is set to be 5min so that each strategy might produce a new position for the next
5min holding period. In this section, we first run the evaluation process for proposed strategies
and benchmark strategies on the whole sample from 2013 to 2023 to see the overall performance
of the model. This is also an intuitive way to see the how severe the overfitting problem is. After
that, we keep a close eye on the out of sample performance. As we close the position in the end of
the day, it is natural to aggregate all the intraday PnLs to a daily one. Several classic metrics are
introduced in the second part of this section to quantify the strategy performance in terms of the
daily PnL series. Finally, we still do some investigation on the intraday contribution to the total
PnL, in other words, the "time effect".

3.2.1 PnL evaluation

At the beginning, we specify four proposed strategies and two benchmark strategies with their
alias in Table 3.2.1.

Strategy Alias
Directional trading with no scaling Strategy 1
Directional trading with scaling γ = 0.01 Strategy 2
Directional trading with scaling γ = 0.05 Strategy 3
Directional trading with scaling γ = 0.1 Strategy 4
Buy and hold Benchmark 1
20-period moving average Benchmark 2

Table 3.1: Specified trading strategies and their alias

We first evaluate the proposed strategies and benchmark strategies on the whole sample data
from 2013 to 2023, where the red shadow area refers to the out of sample period from 2021 to
2023. The daily PnLs are settled in base currency JPY at the end of the day.

USDJPY - 5min forecasting period

In Figure 3.1, strategy 1 and strategy 2 outperform other strategies, achieving around 3 billion
PnL in JPY with a maximal exposure at 10 million USD during trading. Strategy 2 to strategy 4
are directional trading strategies with different risk aversion parameter γ, controlling the scaling
magnitude. Recall that in 3.1.7, the optimal proportion π∗ is also determined by γ, whereas with
the truncating process in 3.1.8, the directional trading strategy with scaling might keep close to
the no scaling version if the risk aversion γ is small enough. That is why we see strategy 2 with
γ = 0.01 is closer to strategy 1 than strategy 3 and strategy 4 with γ = 0.05 and γ = 0.1.

Although the scaling process sacrifices part of the profits, it is still beneficial because the PnL
curve gets smoother after scaling. For example, strategy 3 and strategy 4 are smoother than
strategy 1 and strategy 2. A smoother curve often indicates a less volatile pattern, which is crucial
in risk management.

If we look at the out of sample period from 2021 to 2023 in red zone, there is no significant
discount on the performance comparing to the in sample period from 2013 to 2020. From this we
could infer that our Transformer-based probabilistic forecasting model with 5-epoch training does
not suffer too much from the overfitting problem.
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Figure 3.1: Whole sample strategies comparison in cumulative daily PnL (in base currency JPY)
for USDJPY from 2013 to 2023

AUDJPY - 5min forecasting period

Figure 3.2: Whole sample strategies comparison in cumulative daily PnL (in base currency JPY)
for AUDJPY from 2013 to 2023

For the whole sample PnL evaluation of AUDJPY in Figure 3.2, all of the proposed strategies
perform better than the benchmark strategies. Similarly, we can see the scaling process sacrifice
part of the profits for smoother pattern in PnL. We do not observe significant overfitting problem
in the out of sample period as well.

One interesting pattern in benchmark 2, hence the 20-period moving average strategy, is that,
the cumulative PnL goes down monotonically, which means we are keep making the wrong decisions.
This reflects that possibly, there could be a mean reverting pattern that prevents the trend-following
strategies making profits. However, if we trade oppositely, maybe we could exploit the unique
pattern.
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3.2.2 Out of sample performance
Figure 3.1 and Figure 3.2 have described intuitive performance of our proposed strategies which de-
pend on the probabilistic predictions. Now, we focus on quantifying the out of sample performance
using three classic PnL metrics.

Definition 3.2.1 (Annualised Return). Annualised Return is sometimes recognised as the com-
pound annual growth rate , a measure of average annual growth rate over a period of time. The
metric enables us to compare two strategies with different period length. The Annualised Return
for horizon T is calculated by

AR :=

(
vT
v1

)T/252

− 1,

where vT and v1 represent the ending value and initial value of the portfolio.

Definition 3.2.2 (Sharpe Ratio). The Sharpe Ratio is also recognised as the risk-adjusted return,
which considers both the return and volatility. The formula of annualised Sharpe Ratio is written
as

SR :=
AR− rf
σannual

,

where we assume the risk free return rf = 0. The standard deviation of Annualised Return is
defined as

σannual :=
√
252 · σdaily.

Definition 3.2.3 (Maximum Drawdown). Maximum drawdown is a measure of risk that indicates
the largest percentage decline from portfolio peak value to a trough value over a specific time period,
defined as

MDD :=
vpeak − vtrough

vpeak
.

Assumption 3.2.4 (PnL settlement). The daily PnL is settled in base currency, hence JPY for
both USDJPY and AUDJPY currency pairs.

Assumption 3.2.5 (Return calculation). The maximal exposure is defined in the quote currency,
which should be set as the initial capital. In return calculation, we transform the daily PnL from
base currency to quote currency (USD in USDJPY and AUD in AUDJPY) using the instantaneous
rate at the end of the day, and backtest the percentage movements in quote currency PnL.

USDJPY - 5min forecasting period

Figure 3.3: Out of sample strategies comparison in cumulative daily PnL (in base currency JPY)
for USDJPY from 2021 to 2023
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Figure 3.3 shows the out of sample cunulative daily PnL for USDJPY. This time, only strategy
1 and strategy 2 beat benchmark 1, the "buy and hold" strategy. One of the reason could be
that, a distinct uprising trend in the USDJPY Foreign Exchange rate appears in the out of sample
period, making those "long-only" strategies profitable. If we look at the two benchmark strategies,
we note the cumulative PnL performances are negative correlated, indicating the "mean-reverting"
pattern in short period market microstructure.

Strategy Annualised Return Sharpe Ratio Maximum Drawdown
Strat 1 0.131399 2.199855 0.051151
Strat 2 0.096136 2.373096 0.031606
Strat 3 0.042868 3.156164 0.012098
Strat 4 0.021954 3.079365 0.006485

Benchmark 1 0.084754 1.457981 0.091643
Benchmark 2 -0.005411 -0.058717 0.187636

Table 3.2: Out of sample cumulative PnL metrics for USDJPY from 2021 to 2023

We summarise the numerical metric results for USDJPY in Table 3.2. Strategy 1 has the
highest Annualised Return at around 13.1%, while strategy 3 obtains the best annualised Sharpe
Ratio at around 3.16. With the mean-variance scaling process, strategy 2 to strategy 4 outperform
other strategies in both Sharpe Ratio and Maximum Drawdown. Overall the proposed strategies
certainly achieve better performance than the benchmark strategies.

AUDJPY - 5min forecasting period

Figure 3.4: Out of sample strategies comparison in cumulative daily PnL (in base currency JPY)
for AUDJPY from 2021 to 2023

Figure 3.4 shows the out of sample cunulative daily PnL for AUDJPY. Strategy 1 to strategy
3 achieve higher cumulative PnL than the benchmark strategies. Although the accumulated PnL
of strategy 4 does not appear significant advantage in comparison to benchmark 1, the smoother
pattern in strategy 4 promises that the strategy is less risky than the other.

The numerical metric results for AUDJPY are summarised in Table 3.3. Similarly, strategy 1
has the highest Annualised Return at around 33.1%, while strategy 2 obtains the best Sharp Ratio
by sacrificing part of the profits for the less volatile curve. Strategy 4 shows significant success in
controlling the Maximum Drawdown to a level below 1%, far lower than 91.8% in benchmark 2.

In conclusion, the proposed strategies again outperform the benchmark strategies in all PnL
metrics, showing the potential of the Transformer-based probabilistic forecasting model.
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Strategy Annualised Return Sharpe Ratio Maximum Drawdown
Strat 1 0.330511 4.283139 0.050744
Strat 2 0.272532 4.42483 0.030464
Strat 3 0.110629 4.036591 0.017053
Strat 4 0.05846 3.843874 0.009452

Benchmark 1 0.053018 0.622707 0.089726
Benchmark 2 -0.458353 -0.983776 0.917751

Table 3.3: Out of sample cumulative PnL metrics for AUDJPY from 2021 to 2023

3.2.3 Intraday PnL contribution

We have conducted hourly analysis of the probabilistic forecasting models in Chapter 2, from which
we discover that the directional accuracy (DA) could vary a lot in different intraday periods. The
motivation of this subsection is to analyse how the inconsistency would affect the intraday PnL
contribution. We plot the intraday average PnL contribution in 5min and 1 hour frequencies for
each proposed strategy in Figure 3.5 for USDJPY and Figure 3.6 for AUDJPY.

(a) Strat 1: 5min average (b) Strat 1: 1 hour average

(c) Strat 2: 5min average (d) Strat 2: 1 hour average

(e) Strat 3: 5min average (f) Strat 3: 1 hour average

(g) Strat 4: 5min average (h) Strat 4: 1 hour average

Figure 3.5: Intraday PnL contribution of for USDJPY in out of sample period
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(a) Strat 1: 5min average (b) Strat 1: 1 hour average

(c) Strat 2: 5min average (d) Strat 2: 1 hour average

(e) Strat 3: 5min average (f) Strat 3: 1 hour average

(g) Strat 4: 5min average (h) Strat 4: 1 hour average

Figure 3.6: Intraday PnL contribution of for AUDJPY in out of sample period

Figure 3.5 shows that periods 3-7, 10-12 and 16-0 are more profitable for our proposed strategies
in USDJPY trading. Recall that we investigate the accuracy metrics of the probabilistic forecasting
model in hour 22, where the model achieves directional accuracy (DA) over 60%, causing the
extreme and unrealistic profit in the above analysis. However, this arbitrage could be less practical
for the trading desk because in that period the market is rather illiquid, making the trading riskier
than other other periods. In general, even we exclude the unrealistic trading hour, the strategies
are still capable to generate profits consistently. Furthermore, we find that strategy 2 to strategy
4 scale down the magnitude of the PnL, which explains why we see their cumulative PnLs are
smoother.

Figure 3.6 for AUDJPY looks even more optimistic than Figure 3.5 for USDJPY, with a distinct
shift from the "zero line" to the positive side. We discover that in 1 hour average contribution
analysis, over 20 hour periods are generating the profits in a day. Surprisingly, the mean-variance
scaling process also shifts the average PnL in hour 5 and 19 from negative to positive.

To conclude, these intraday PnL contribution results support the potential of the proposed
multi-head attention Transformer-based probabilistic forecasting model generating profits even
under some simple directional strategies. Furthermore, the "positive shift" in Figure 3.5 and Figure
3.6 reveals that the model has certainly learned something about the "underlying distribution".
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Conclusion and Future Work

In this paper, the main contribution is to propose a multi-head attention Transformer-based prob-
abilistic forecasting model for intraday Foreign Exchange rate trading task, and form a complete
framework from probabilistic forecasting to trading strategies. Our numerical results suggest that
the proposed Transformer-based model outperforms the LSTM-based model, which is developed
from the DeepAR model by Salinas et al., not only in the negative loglikelihood training loss
but also in some other accuracy and error metrics. Furthermore, the paralleled computations in
Transformer neural network allow the model to be trained more efficiently than the LSTM-based
model. In the end, to examine the profitability of the model, we establish a few simple directional
trading strategies that utilises the predicted distribution from the forecasting model. Backtesting
on USDJPY and AUDJPY currency pairs exhibits its great potential in making profits.

At the beginning of this paper, we introduce the concepts of probabilistic forecasting and
fundamental neural network architectures for sequential prediction. Unlike the regression or clas-
sification tasks, the probabilistic models are trained to minimise the negative loglikelihood loss
over a certain distribution class. For simplicity, we select normal distribution as the underlying
statistical model. Our model is aimed to produce the best estimation on the parameters that
characterising the distribution of future return, based on a lookback window of price features. We
construct 16 features in classes of "z-score", "return", "volatility" and "time". Specifically, the
"time" features also play a role as the "positional encoding" in Transformer network, providing
the sequential information in the input series. The Transformer-based model and the LSTM-based
model are trained on the same dataset and both for 5 epochs, with the training period from 2013
to 2020 and testing period from 2021 to 2023. We choose USDJPY and AUDJPY currency pairs as
individual assets, setting the forecasting period to be 5, 15, 30 and 60 min for USDJPY and 5 min
for AUDJPY. The probabilistic forecasting models are evaluated with metrics of negative loglikeli-
hood loss (NLL), directional accuracy (DA), 95% covered ratio (95% CR) and root mean squared
error (RMSE). We also introduce a series of label thresholds to evaluate the model performance
on the selected samples with return magnitude exceeding a specific threshold. According to the
numerical results, the Transformer-based model performs better than the LSTM-based model in
NLL, DA and RMSE for both currency pairs. Time effect is also studied in this paper by analysing
the average performance on each 1-hour period in a day and the results show that some periods
are more advantageous for the models to predict. Finally, we propose four directional trading
strategies developed from the model output, hence the predicted distribution of the forward re-
turn. Compared with two benchmark strategies "buy and hold" and "20-period moving average",
the proposed strategies exhibit distinct performance in Annualised Return, Sharpe Ratio and Max-
imum Drawdown for both USDJPY and AUDJPY with 5 min forecasting period. In addition, we
analyse the intraday PnL contribution and discover the hourly average PnLs are shifted slightly
to the positive side, indicating that the model could have learned some patterns about the return
distribution.

Future areas of research could include variations in Transformer architectures, underlying assets,
forecasting periods and trading strategies. In this paper, we choose a 4-head attention Transformer
network as the model, and adding up the heads number and enlarging the features set could possibly
further improve the performance. Due to page constraints, we only investigate the application on
USDJPY and AUDJPY currency pairs, and we will apply the model to more assets in the future
to better support the conclusion. In some papers, people set a longer forecasting period than us,
which could also be worth looking into. In our view, the volatility estimation from our proposed
model could be beneficial to those volatility strategies including hedging, options trading, etc.
Therefore, the investigation of trading strategies is another area we will explore.
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Appendix A

Theoretical supplements

A.1 Universal approximation theorem for distribution
The following theoretical assumptions and results originate from the paper by Yulong et al.[28].

Assumption A.1.1 (Kernel assumption 1). The kernel k is integrally strictly positive definite:
for all finite non-zero signed Borel measures µ defined on Rd,∫∫

Rd

k(x, y)dµ(x)dµ(y) > 0. (A.1.1)

Assumption A.1.2 (Kernel assumption 2). There exists a constant K0 > 0 such that

sup
x∈Rd

|k(x, x)| ≤ K0. (A.1.2)

Assumption A.1.3 (Kernel assumption 3). The kernel function k : Rd × Rd → R is twice
differentiable and there exists a constant K1 > 0 such that

max
m+n≤1

sup
x,y

∥∥∇m
x ∇n

yk(x, y)
∥∥ ≤ K1 and sup

x,y
|Tr (∇x∇yk(x, y))| ≤ K1(1 + d). (A.1.3)

Definition A.1.4 (L-Lipschitz). sπ(x) is globally Lipschitz in Rd, if there exists a constant L̃ > 0
such that |sπ(x)− sπ(y)| ≤ L̃|x− y| for all x, y ∈ Rd. As a result, there exists L > 0 such that

|sπ(x)| ≤ L(1 + |x|) for all x ∈ Rd. (A.1.4)

Definition A.1.5 (sub-Gaussian). The probability measure π is sub-Gaussian, if there exist m =
(m1, . . . ,md) ∈ Rd and v > 0 such that

EX∼π

[
exp

(
αT (X −m)

)]
≤ exp

(
|α|2v2/2

)
for all α ∈ Rd (A.1.5)

Furthermore, assume that maxi |mi| ≤ m∗ for some m∗ > 0.

A.1.1 Upper bound of complexity parameter n

The upper bound of complexity parameter n in theorem 1.3.1 depends on the the choice of the
discrepancy measure, along with some restrictions of the target distribution π and kernel function
k. The specific assumptions and the theoretical results for each measure are shown below:

1. Wasserstein Distance

If π satisfies that M3 = EX∼π|X|3 < ∞, n satisfies

n ≤


C
ε2 , d = 1
C log2(ε)

ε2 , d = 2
Cd

εd
, d ≥ 3

, (A.1.6)

where constant C depends on M3.
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2. Maximum Mean Discrepancy (MMD)

If kernel k satisfies assumption A.1.2, then

n ≤ C

ε2
, (A.1.7)

with a constant C depending only on the constant K0 in assumption A.1.2.

3. Kernelized Stein Discrepancy (KSD)

If k satisfies assumption A.1.3 with constant K1 and if π is L-Lipschitz and sub-Gaussian
with parameters L, m, n, then

n ≤ Cd

ε2
, (A.1.8)

where the constant C depends only on L, K1, m∗, v, but not on d.
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Appendix B

Empirical supplements

B.1 Probabilistic forecasting model

B.1.1 USDJPY - 15min forecasting period

Figure B.1: 95% confidence range for 15min USDJPY return distributions by LSTM-based model

Figure B.2: 95% confidence range for 15min USDJPY return distributions by Transformer-based
model
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Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 3.013 0.51 0.925 6.224
0.5 0.872 3.159 0.518 0.914 6.655
1.0 0.752 3.328 0.519 0.9 7.151
1.5 0.645 3.514 0.52 0.884 7.698
2.0 0.554 3.703 0.521 0.865 8.265
2.5 0.474 3.905 0.521 0.844 8.881
3.0 0.405 4.114 0.522 0.821 9.529
3.5 0.349 4.322 0.52 0.798 10.179
4.0 0.301 4.537 0.517 0.774 10.851
4.5 0.26 4.755 0.517 0.75 11.539

Table B.1: Evaluation metrics for USDJPY 15min return distributions by LSTM-based model

Label thrsholds Proportion NLL DA 95% CR RMSE
0.0 1.0 2.956 0.503 0.949 6.131
0.5 0.872 3.073 0.511 0.941 6.564
1.0 0.752 3.21 0.511 0.932 7.062
1.5 0.645 3.363 0.512 0.921 7.611
2.0 0.554 3.523 0.512 0.908 8.179
2.5 0.474 3.695 0.512 0.892 8.795
3.0 0.405 3.876 0.511 0.874 9.443
3.5 0.349 4.058 0.511 0.854 10.093
4.0 0.301 4.246 0.508 0.831 10.763
4.5 0.26 4.441 0.507 0.806 11.45

Table B.2: Evaluation metrics for USDJPY 15min return distributions by Transformer-based model

Hour Mean Variance Skew Kurtosis Positive Negative
0 -0.148 49.446 1.256 -41.895 0.508 0.492
1 0.185 37.489 0.019 0.69 0.514 0.486
2 -0.039 49.483 0.154 -11.105 0.493 0.507
3 0.099 33.077 -1.694 87.974 0.526 0.474
4 0.091 21.105 0.126 3.286 0.531 0.469
5 0.062 17.62 -0.054 0.7 0.53 0.47
6 0.163 23.194 -0.004 1.873 0.533 0.467
7 0.019 39.666 -0.013 0.138 0.523 0.477
8 -0.087 44.215 0.089 -1.306 0.508 0.492
9 0.035 43.168 -0.11 2.563 0.517 0.483
10 0.099 26.188 -0.042 1.006 0.53 0.47
11 0.063 25.411 0.068 1.596 0.509 0.491
12 0.105 38.502 -0.051 1.788 0.523 0.477
13 -0.02 131.099 0.018 -0.735 0.516 0.484
14 -0.033 80.663 0.016 -0.305 0.506 0.494
15 0.124 62.807 -0.107 2.195 0.514 0.486
16 0.054 40.709 -0.211 3.709 0.515 0.485
17 -0.001 25.042 0.0 -0.045 0.52 0.48
18 0.165 24.404 0.124 5.343 0.535 0.465
19 -0.075 24.716 0.294 -4.697 0.513 0.487
20 0.184 13.765 0.1 6.411 0.527 0.473
21 -0.272 14.271 -0.67 -28.778 0.484 0.516
22 0.606 15.816 1.536 29.956 0.608 0.392
23 0.043 19.196 0.008 0.485 0.521 0.479

Table B.3: Hourly statistical results of USDJPY 15min return (in bps) from 2021 to 2023 (UTC)
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B.1.2 USDJPY - 30min forecasting period

Figure B.3: 95% confidence range for 60min USDJPY return distributions by LSTM-based model

Figure B.4: 95% confidence range for 60min USDJPY return distributions by Transformer-based
model

Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 3.426 0.508 0.916 8.874
0.5 0.909 3.53 0.513 0.908 9.295
1.0 0.821 3.648 0.513 0.898 9.762
1.5 0.739 3.778 0.514 0.887 10.274
2.0 0.666 3.91 0.514 0.875 10.796
2.5 0.595 4.057 0.513 0.861 11.378
3.0 0.534 4.203 0.512 0.846 11.968
3.5 0.479 4.353 0.511 0.83 12.574
4.0 0.43 4.508 0.511 0.813 13.203
4.5 0.386 4.668 0.511 0.796 13.855

Table B.4: Evaluation metrics for USDJPY 30min return distributions by LSTM-based model
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Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 3.311 0.514 0.948 8.702
0.5 0.909 3.389 0.519 0.943 9.127
1.0 0.821 3.478 0.519 0.937 9.597
1.5 0.739 3.577 0.52 0.93 10.112
2.0 0.666 3.678 0.52 0.922 10.637
2.5 0.595 3.792 0.519 0.913 11.222
3.0 0.534 3.907 0.519 0.903 11.813
3.5 0.479 4.024 0.518 0.892 12.421
4.0 0.43 4.145 0.517 0.88 13.053
4.5 0.386 4.272 0.517 0.866 13.705

Table B.5: Evaluation metrics for USDJPY 30min return distributions by Transformer-based model

Hour Mean Variance Skew Kurtosis Positive Negative
0 -0.187 95.307 0.554 -14.853 0.515 0.485
1 0.219 74.333 0.022 0.915 0.509 0.491
2 -0.039 113.146 0.264 -10.335 0.498 0.502
3 0.226 53.535 -1.301 51.624 0.523 0.477
4 0.163 39.176 0.167 4.143 0.537 0.463
5 0.15 33.963 -0.136 1.086 0.534 0.466
6 0.356 48.61 -0.113 2.242 0.536 0.464
7 -0.044 84.841 0.023 -0.265 0.513 0.487
8 -0.178 98.5 0.528 -9.839 0.515 0.485
9 0.137 83.459 -0.547 11.079 0.527 0.473
10 0.14 47.777 -0.014 1.23 0.52 0.48
11 0.191 53.412 0.138 2.69 0.516 0.484
12 0.151 85.632 -0.123 1.646 0.532 0.468
13 0.041 281.874 -0.03 0.9 0.519 0.481
14 -0.073 167.897 0.053 -0.628 0.514 0.486
15 0.183 123.674 -0.265 3.772 0.514 0.486
16 0.186 64.656 -0.339 5.003 0.53 0.47
17 -0.066 45.812 0.058 -0.929 0.512 0.488
18 0.393 49.536 0.205 7.883 0.533 0.467
19 -0.152 46.361 0.582 -6.96 0.518 0.482
20 0.367 25.361 0.206 10.01 0.527 0.473
21 -0.443 27.248 -0.832 -23.868 0.447 0.553
22 1.077 32.819 1.388 22.381 0.632 0.368
23 0.051 37.46 -0.004 0.293 0.524 0.476

Table B.6: Hourly statistical results of USDJPY 30min return (in bps) from 2021 to 2023 (UTC)
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B.1.3 USDJPY - 60min forecasting period

Figure B.5: 95% confidence range for 15min USDJPY return distributions by LSTM-based model

Figure B.6: 95% confidence range for 15min USDJPY return distributions by Transformer-based
model

Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 3.808 0.507 0.906 12.647
0.5 0.936 3.881 0.51 0.899 13.058
1.0 0.873 3.964 0.511 0.892 13.514
1.5 0.81 4.056 0.512 0.884 14.012
2.0 0.753 4.149 0.512 0.875 14.514
2.5 0.698 4.248 0.513 0.865 15.048
3.0 0.647 4.35 0.513 0.855 15.595
3.5 0.6 4.455 0.512 0.844 16.158
4.0 0.557 4.561 0.512 0.832 16.734
4.5 0.515 4.675 0.511 0.819 17.347

Table B.7: Evaluation metrics for USDJPY 60min return distributions by LSTM-based model
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Label thresholds Proportion NLL DA 95% CR RMSE
0.0 1.0 3.69 0.496 0.949 12.413
0.5 0.936 3.74 0.498 0.946 12.827
1.0 0.873 3.796 0.498 0.942 13.286
1.5 0.81 3.859 0.498 0.937 13.787
2.0 0.753 3.923 0.498 0.933 14.292
2.5 0.698 3.992 0.498 0.927 14.828
3.0 0.647 4.064 0.497 0.922 15.379
3.5 0.6 4.138 0.497 0.916 15.945
4.0 0.557 4.213 0.498 0.909 16.523
4.5 0.515 4.294 0.499 0.902 17.137

Table B.8: Evaluation metrics for USDJPY 60min return distributions by Transformer-based model

Hour Mean Variance Skew Kurtosis Positive Negative
0 0.046 160.425 -0.001 0.433 0.522 0.478
1 0.104 150.632 0.073 1.139 0.496 0.504
2 -0.004 221.967 0.026 -0.709 0.511 0.489
3 0.489 100.146 -1.592 49.324 0.535 0.465
4 0.236 68.757 0.006 3.281 0.542 0.458
5 0.393 68.604 -0.398 3.132 0.541 0.459
6 0.478 113.204 -0.36 3.016 0.536 0.464
7 -0.194 186.977 0.094 -1.034 0.508 0.492
8 -0.152 226.753 0.787 -13.599 0.509 0.491
9 0.42 140.99 -1.134 20.854 0.533 0.467
10 0.049 94.154 -0.038 0.526 0.508 0.492
11 0.427 133.025 0.112 3.711 0.528 0.472
12 0.189 350.325 -0.214 3.87 0.528 0.472
13 -0.019 449.05 0.01 -0.299 0.519 0.481
14 0.242 332.374 -0.147 1.556 0.515 0.485
15 0.281 242.22 -0.905 13.192 0.514 0.486
16 0.364 116.717 -1.111 18.704 0.543 0.457
17 -0.14 91.148 0.058 -1.716 0.51 0.49
18 0.738 98.674 0.45 18.686 0.537 0.463
19 -0.138 74.962 0.45 -4.003 0.534 0.466
20 0.822 47.52 -0.22 24.693 0.564 0.436
21 -0.596 50.597 -1.099 -21.859 0.406 0.594
22 1.577 74.021 1.477 19.818 0.615 0.385
23 0.093 96.001 -0.18 3.221 0.53 0.47

Table B.9: Hourly statistical results of USDJPY 60min return (in bps) from 2021 to 2023 (UTC)
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