
Imperial College London

Department of Mathematics

Simulations of calibrated Local Stochastic

Volatility models

Author: Minyuan LI (CID: 02278349)

A thesis submitted for the degree of

MSc in Mathematics and Finance, 2022-2023



Declaration

The work contained in this thesis is my own work unless otherwise stated.

2



Acknowledgements

First of all, I would like to to express my gratitude to my supervisor Dr. Wolfgang Stockinger, for
all the support and guidance throughout the project.

I would also like to thank the QRFX team at JP Morgan & Chase, for helping me build a
better understanding of the topic I work in.

Last but not the least, I would like to extend my gratitude towards my family, friends and the
Mathematical Finance department at Imperial College of London, for all the encouragement and
the support throughout the year.



Abstract

We study local stochastic volatility models (LSVMs), a type of stochastic processes that models
market share price dynamics. The volatility term in a LSVM consists of a local volatility component
as well as a stochastic volatility process. This makes LSVMs state-of-the-art models in option
pricing, since they have a better ability to reproduce the market implied volatility surface than pure
local volatility models or stochastic volatility models. In this report, we discuss some theoretical
and numerical challenges in the calibrated LSVMs, and focus on the simulation scheme of the
calibrated dynamic. Since the calibrated LSVMs can be viewed as a special case of the McKean-
Vlasov stochastic differential equations, we introduce the particle method discussed in [1, Chpater
11.6], a numerical scheme that simulates dependent trajectories at each time step. Furthermore,
we discuss and compare several existing methods to estimate the volatility term in the calibrated
LSVMs by implementing the particle simulations based on these methods. Finally, we include
stochastic interest rates in the LSVMs and study a numerical example in the Foreign Exchange
market.
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Introduction

In the ground-breaking paper [2], Black and Scholes derive the vanilla option pricing formula
assuming that the share price follows the simplified dynamic on a fixed time interval [0, T ]:

dSt = rStdt+ σStdWt,

with an initial value S0 ∈ R+, a constant risk-free rate r ∈ R, a volatility component σ ∈ R+, and
W = (Wt)t∈[0,T ] is a Brownian motion defined on the filtered probability space (Ω,F , (Ft)t∈[0,T ],Q),
where Q is a risk neutral measure.

The simplified assumption on constant volatility, however, fails to capture behaviours observed
in the market. When we calibrate the Black-Scholes option pricing formula to the market prices of
vanilla options, we obtain a non-constant implied volatility surface with respect to the expiration
time and the strike. Furthermore, with a fixed expiration time, the empirical relationship between
the implied volatility and the strike resembles an upwards skewed smile, known as the volatility
smile. This indicates that deep out-of-the-money options have higher implied volatility values than
the at-the-money options with the same option terms.

Extensive research has been done to capture and model the implied volatility smile. A Local
volatility model (LVM) assumes that the volatility component can be modelled by a deterministic
function of time and share price (assuming zero risk-free rate):

dSt = σ(t, St)StdWt,

where σ : [0, T ] × R+ →: R+ ∪ {0} is known as the local volatility function. Several LVMs with
parametric forms of σ are considered in practice, including the displaced diffusion model in [3],
which is able to include partial volatility smile in the model. A non-parametric form of the local
volatility function that allows an exact replication of the market volatility smile was introduced
by Dupire in [4]. Such local volatility function can be computed via the Dupire’s formula, and
the model is able to reproduce market prices of any set of arbitrage-free European vanilla options.
However, the downside of such model is that it may introduce some unrealistic behaviours in the
share price dynamic, and the smile tends to flatten out for options with longer maturities.

On the other hand, a stochastic volatility model (SVM) introduces volatility smiles by assuming
that the volatility component follows some non-negative stochastic process:

dSt =
√
vtStdWt,

dvt = b(t, vt) + σ̃(t, vt)dBt,

for some measurable functions b : [0, T ]×R+ → R and σ̃ : [0, T ]×R+ → R+∪{0} which are regular
enough so that the volatility process has a unique solution. Some common stochastic volatility
models include the Heston model in [5], where the volatility follows a Cox–Ingersoll–Ross (CIR)
process

dSt =
√
vtStdWt,

dvt = µ(v̄ − vt)dt+ ξ
√
vtdBt,

with some positive real constant µ, v̄, ξ, and (Bt)t∈[0,T ] is a Brownian motion (correlated to
(Wt)t∈[0,T ]). Other well-known examples include the Stein-Stein model [6] and the SABR model
[7]. Although SVMs are better at capturing volatility smiles with the presence of the stochastic
volatility processes [8], it is difficult to achieve a perfect fit to the market given a small finite set
of parameters.
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A Local Stochastic Volatility Model (LSVM) includes both local volatility and stochastic volatil-
ity components when modelling the dynamic of the share price:

dSt = σ(t, St)
√
vtStdWt, (0.0.3a)

dvt = b(t, vt) + σ̃(t, vt)dBt, (0.0.3b)

where the leverage function σ : [0, T ]×R+ → R+ ∪ {0} is a non-parametric deterministic function
and v = (vt)t∈[0,T ] is a non-negative stochastic process as in SVMs. LSVMs are considered as the
state-of-the-art models in option pricing [9]; The stochastic volatility component incorporates a
rough volatility smile, whilst the local volatility component allows an exact calibration to any set
of arbitrage-free European vanilla options, given that the calibration condition proposed in [10] is
satisfied:

σ2
Dup(t, x) = σ2(t, x)EQ[vt|St = x],

for t ∈ [0, T ] and x ∈ R+, where σDup : [0, T ] × R+ → R+ ∪ {0} is the Dupire local volatility
function. LSVMs have become popular modelling tools in financial institutions due to its desirable
features in reproducing the market volatility smile, which is crucial for activities such as hedging
and exotic option pricing.

We add the condition to (0.0.3) and obtain the calibrated LSVM:

dSt =
√
vt

σDup(t, St)√
EQ[vt|St]

StdWt,

dvt = b(t, vt) + σ̃(t, vt)dBt.

One of the challenges in the calibrated LSVMs is its well-posedness. As pointed out in [11], it
is difficult to prove whether there exists a unique solution of the stochastic differential equations
in general, and it still remains an open question. Furthermore, it is numerically demanding to
simulate the calibrated LSVMs due to the presence of the conditional expectation term EQ[vt|St],
which cannot be obtained explicitly.

The main focus of this project is to introduce the particle method, a numerical method that
can be applied in simulating the calibrated LSVMs, and discuss several methods to approximate
the conditional expectation EQ[vt|St]. The particle method was first introduced in [1, Chpater
11.6, page 280] for the calibrated LSVMs, and it involves simulating N interacting particles and
using their empirical distribution to approximate the conditional expectation. However, since at
each time step we only observe N particle realisations, the way to approximate the dependency
between the share price and the volatility is less straightforward.

Several different methods have been proposed to estimate the conditional expectation. [1] dis-
cusses the approximation by the Nadaraya-Watson estimator, where it estimates the joint density
of St and vt by some continuous regularising kernel functions. On the other hand, [11] views the
conditional expectation as a function EQ[vt|St = ·] : R+ ∪ {0} → R+ ∪ {0}, and directly approxi-
mates it by a weighted sum of exponential kernel functions. Moreover, [12] partitions N realised
particles into l bins B1, . . . , Bl, l ≪ N , and estimate EQ[vt|St = x] by EQ[vt|St ∈ Bi] for x ∈ Bi,
i = 1, . . . , l. We will discuss and implement each method in detail, and provide a short comparison
among the three methods.

The rest of the report is structured as follows. In Chapter 1, we introduce the LSVM calibration
condition in more detail as well as the McKean-Vlasov equation, a tool in the particle simulation.
From Chapter 2 to 4, we introduce and discuss the three different simulation methods for the
calibrated LSVMs. In Chapter 5, we provide a comparison among the three simulation methods.
We conclude the report with Chapter 6, where we discuss the simulation of the calibrated LSVMs
with stochastic interest rates in the Foreign Exchange market.
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Chapter 1

The LSVM calibration condition
and McKean-Vlasov SDEs

Let the stochastic process S = (St)t∈[0,T ] be the dynamic of a share price defined on a filtered
probability space (Ω,F , (Ft)t∈[0,T ],Q) for a fixed time T > 0. For simplicity, we assume that the
market has zero interest rate for the following discussions with the exception in Chapter 6. Recall
that in the local stochastic volatility model (LSVM), S evolves with the following dynamic under
the risk neutral measure Q:

dSt =
√
vtσ(t, St)StdWt, (1.0.1a)

dvt = b(t, vt)dt+ σ̃(t, vt)dBt, (1.0.1b)

with non-random initial values S0 and v0 in R+, two (correlated) Brownian motionsW = (Wt)t∈[0,T ]

and B = (Bt)t∈[0,T ], and some real-valued functions b : [0, T ]×R+ → R, σ̃ : [0, T ]×R+ → R+∪{0},
and σ : [0, T ] × R+ → R+ ∪ {0}. The function σ is known as the leverage function, and it is es-
tablished in [10] that for an exact calibration to the market, the leverage function needs to satisfy
the condition

σ2
Dup(t, x) = σ2(t, x)EQ[vt|St = x],

where

σ2
Dup(t, x) =

∂tC(t, x)
1
2x

2∂2
xC(t, x)

, (1.0.2)

for all t ∈ [0, T ] and x ∈ R+. C(t, x) denotes the market price of a vanilla Call option, with the
expiration time t and the strike x. The function σDup : [0, T ] × R+ → R+ ∪ {0} is known as the
Dupire local volatility, which can computed using the vanilla option prices in the market with finite
difference method.

We write the calibrated LSVM as follows:

dSt =
√
vtSt

σDup(t, St)√
EQ[vt|St]

dWt, (1.0.3a)

dvt = b(t, vt)dt+ σ̃(t, vt)dBt. (1.0.3b)

We are interested in simulating the above dynamic based on an approach called the particle method,
a numerical scheme that involves simulating dependent paths at each time step. The particle
method is often used as a numerical approach to approximate the solution to the McKean-Vlasov
SDEs governed by for some d-dimensional stochastic process (Xt)t∈[0,T ]:

dXt = β(t,Xt,Pt)dt+ σ(t,Xt,Pt)dWt, (1.0.4)

where (Wt)t∈[0,T ] is a n-dimensional Brownian motion, given some initial value x0 ∈ Rd, functions

β : [0, T ] × Rd × P(Rd) → Rd and σ : [0, T ] × Rd × P(Rd) → Rd×n, where P(Rd) is a set of
Borel probability measures in Rd. Note that the drift and the volatility terms are dependent on
(Pt)t∈[0,T ], the probability distributions of Xt at some time t. For simplicity, if the drift and

the diffusion terms do not explicitly depend on time t, we write β : Rd × P(Rd) → Rd and
σ : Rd × P(Rd)→ Rd×n instead.
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Notice that the calibrated LSVM in (1.0.3) can be seen as a special case of McKean-Vlasov
SDEs, with Xt = (St, vt) for t ∈ [0, T ], a 2-dimensional Brownian motion (Wt)t∈[0,T ], and

β(t, (St, vt),Pt) = [0, b(t, vt)]
T , (1.0.5a)

σ(t, (St, vt),Pt) =

[√
vtSt

σDup(t,St)√
EQ[vt|St]

0

0 σ̃(t, vt)

]
. (1.0.5b)

This observation suggests that the particle method may be considered as a feasible numerical
scheme to simulate the calibrated LSVMs. In the following subsection, we first introduce McKean-
Vlasov SDEs and the particle method in more detail, and give a numerical example of McKean-
Vlasov SDE simulations with the particle method. Finally, we discuss some theoretical properties
of the McKean-Vlasov SDEs and the challenges presented in the context of the calibrated LSVMs.

1.1 The particle method and the McKean-Vlasov SDE sim-
ulations

McKean-Vlasov SDEs were first introduced in [13]. As shown in (1.0.4), both the drift and the
volatility terms have a complex dependency not only on the value of Xt at time t ∈ [0, T ], but
also on its distribution. This complex structure creates difficulty in applying classical numerical
schemes that simulate each path independently, since the prior knowledge on the distribution of
Xt, t ∈ (0, T ] is unknown.

The particle method, on the other hand, offers a feasible way to simulate processes with such
dynamics. As opposed to the standard numerical scheme, the main step in the particle method
simulates N dependent particles (trajectories) simultaneously, and uses the empirical distribution
of the particle realisations at time t as an approximation of the distribution ofXt. More specifically,
we approximate Pt by PN

t :

PN
t :=

1

N

N∑
i=1

δXi,N
t

,

where δx(·) is a Dirac function centred at x, and Xi,N
t is the value of ith simulated particle at time

t. To illustrate the simulation procedure, we present the particle method on McKean-Vlasov SDEs
introduced in Chapter 10 of [1] with a numerical example.

1.1.1 Numerical example

Consider the following SDE:

dXt = (Xt + EXt)dt+XtdWt, X0 = 1,

with a Brownian motion (Wt)t∈[0,T ]. Consider N particles {(Xi,N
t )t∈[0,T ]}Ni=1, where each particle

follows the dynamic:

dXi,N
t = Xi,N

t dt+

(∫
xdPN

t (x)

)
dt+Xi,N

t dW i,N
t ,

=

Xi,N
t +

1

N

N∑
j=1

Xj,N
t

 dt+Xi,N
t dW i,N

t ,

where {(W i,N
t )t∈[0,T ]}Ni=1 are N independent copies of (Wt)t∈[0,T ] and Xi,N

0 = 1 for i = 1, . . . , N .

Denote biN (t,Xt) = Xi,N
t + 1

N

∑N
j=1 X

j,N
t , where Xt = (X1,N

t , . . . , XN,N
t ). We simulate the SDE

over the time interval [0, T ] as follows:

1. Discretise the interval [0, T ] into M time steps {tk}Mk=0, and set the number of particles N .

2. Initialise Xi,N
0 = 1 for all i = 1, . . . , N .

3. Set k = 1 and biN (t,Xt) = Xi,N
0 + 1

N

∑N
j=1 X

j,N
0 for all t ∈ [0, t1], i = 1, . . . , N .
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4. Update N particles {Xi,N
t }N1=1 from tk−1 to tk using the Euler-Maruyama scheme:

Xi,N
tk

= Xi,N
tk−1

+ biN (tk−1,Xtk−1
)(tk − tk−1) +Xi,N

tk−1

√
tk − tk−1Z

i,N
k ,

where Zi,N
k , i = 1, . . . , N are i.i.d. standard normal random variables.

5. Compute biN (t,Xtk) = Xi,N
tk

+ 1
N

∑N
j=1 X

j,N
tk

for i = 1, . . . , N . Set biN (t,Xt) = biN (t,Xtk) for

all t ∈ [tk, tk+1]. Interpolate and extrapolate biN (t,Xt) for t ∈ [tk−1, tk].

6. Increase k by 1. Repeat steps 4, 5 until k = M .

In this simplified example, we are able to compute the analytical mean EXt by solving an
linear ordinary differential equation dEXt = 2EXtdt with X0 = 1, and obtain EXt = e2t for
t ∈ [0, T ]. Figure 1.1 shows 10 particle trajectories that are randomly selected from N = 1000
particles over time interval [0, 1], simulated with M = 100 equal-sized time steps. It can be seen
that the empirical average trajectory follows the true mean closely.

0.0 0.2 0.4 0.6 0.8 1.0
Time

0

2

4

6

8

10

12

14 True Mean
Simulated Mean

Figure 1.1: 10 randomly selected particle trajectories, the average of simulated trajectories and
the trajectory of the true mean.

We see that the particles interact with each other in the simulation steps. Moreover, it is
established in [14] that under the conditions that guarantee the well-posedness of the SDEs, as the
number of particles N approaches infinity, the particles possess the chaos propagation property ;
that is, at any positive time t ∈ (0, T ], {Xi,N

t }Ni=1 become independent and PN
t converges Pt in

distribution, given that each particle is independent at time zero. In the context of the option
pricing, the chaos propagation property and together with the Law of Large Number allow us to
estimate option prices by taking the average of the (discounted) option payoffs at expiration T :

Ĉ(T,K) =
1

N

N∑
i=1

(Si,N
T −K)+ (1.1.2a)

P̂ (T,K) =
1

N

N∑
i=1

(K − Si,N
T )+. (1.1.2b)

In the next section, we discuss some theoretical properties of the McKean-Vlasov SDEs, includ-
ing the conditions that guarantee the SDEs’ well-posedness, and further point out some theoretical
challenges in the calibrated LSVMs.

1.2 Challenges in the calibrated LSVMs

Recall the McKean-Vlasov SDE in (1.0.4):

dXt = β(t,Xt,Pt)dt+ σ(t,Xt,Pt)dWt, X0 = x0. (1.2.1)
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Assuming that the drift and the diffusion terms have no explicit dependence on time t, the asso-
ciated particle system can be written as:

dXi,N
t = β(Xi,N

t ,PN
t )dt+ σ(Xi,N

t ,PN
t )dW i,N

t , (1.2.2a)

PN
t =

1

N

N∑
i=1

δXi,N
t

, (1.2.2b)

for i = 1, . . . , N , where {(W i,N
t )t∈[0,T ]}Ni=1 are independent copies of the Brownian motion (Wt)t∈[0,T ].

We assume that the initial values of the particles Xi,N
0 = x0, i = 1, . . . , N , for some constant

x0 ∈ Rd. It is important to understand whether such SDE is well-posed; that is, under which
conditions the SDE has a unique solution. We quote the Assumption 3.1 in [15] that guarantees
the well-posedness of the above McKean-Vlasov SDE:

Assumption 1.2.1. Assume that the Brownian motions {(W i,N
t )t∈[0,T ]}Ni=1 are independent and

n-dimensional, and functions β : Rd × P2(Rd) → Rd and σ : Rd × P2(Rd) → Rd×n in (1.2.1) and
(1.2.2) are Lipschitz, that is, there exists a constant L ≥ 0 such that

|β(x,m)− β(x′,m′)|+ |σ(x,m)− σ(x′,m′)| ≤ L(|x− x′|+W2(m,m′)),

for any x, x′ ∈ Rd, m,m′ ∈ P2(Rd). | · | denotes both the Euclidean norm of Rd and Frobenius
norm on Rd×n, depending on the context.

In the assumption, P2(Rd) represents a subset of Borel probability measures P on Rd that
have finite second moments, and W2 is defined as the 2-Wasserstein metric, a distance measure
between two probability measures in P2(Rd). The technical definitions of P2 andW2 are provided
in Appendix A.1 and A.2. This assumption guarantees the well-posedness of the McKean-Vlasov
SDE in (1.2.1) and its associated particle system in (1.2.2), and we refer readers to Chapter 3 in
[15] for more details of the proof.

However, in the case of the calibrated LSVMs with the drift and the diffusion terms defined
in (1.0.5), the conditional expectation E[vt|St] in the denominator of the diffusion term fails to
satisfy the Lipschitz condition. This creates difficulty in understanding whether such SDEs are
well-posed, and it has been an active research topic. [16] investigates the well-posedness of some
two-dimensional McKean-Vlasov SDEs that are similar to (1.0.3):

dSt = b1(St)
h(vt)

E[h(vt)|St]
dt+ σ1(St)

f(vt)√
E[f2(vt)|St]

dWt,

dvt = b2(vt)dt+ σ2(vt)dBt,

with functions b1, b2, σ1, σ2, h, f and (correlated) Brownian motions (Wt)t∈[0,T ] and (Bt)t∈[0,T ].
However, the authors only manage to establish the existence and uniqueness of the stationary
solution with strong assumptions on b1, b2, σ1, σ2, h, f . [9] imposes some regularisations on the
calibrated LSVMs and proves the well-posedness of the regularised system under some further
assumptions, and [17] proves the existence of the calibrated LSVMs with assumptions on the
parameters in the stochastic volatility process. Furthermore, [11] discusses the well-posedness of
the calibrated LSVMs with the regularised conditional expectation using the Reproducing Kernel
Hilbert space, and we will discuss this method in more detail in Chapter 3. However, the well-
posedness of the calibrated LSVMs in general remains unclear.

On the other hand, there are further challenges presented from the numerical point of view.
Unlike the example (1.1.1) which involves estimating expectations in the drift term, approximating
conditional expectations E[vt|St] in the calibrated LSVMs is less straightforward. It requires the
simulation scheme to take into account the dependency structure between vt and St, t ∈ [0, T ]
at each time step. In the next three sections, we discuss three different methods to approximate
the conditional expectation in the numerical scheme. We then present the simulation results by
comparing the implied volatility curve of vanilla options from the simulation of the calibrated
LSVMs to the one from the market.
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Chapter 2

Simulations of the calibrated
LSVM with the regularising kernel
method

The simulation method of the calibrated LSVMs presented in this chapter is introduced in Chap-
ter 11.6 of [1]. It approximates the density of the particles (St, vt) for t ∈ [0, T ] by continuous
regularising kernel functions. We first introduce the method and the full simulation algorithm,
and then present and discuss the simulation results in two different markets. Finally, we give a
short discussion on the parameter choices in the regularising kernel functions and its impact on
the simulation result.

2.1 The regularising kernel method

Recall the calibrated LSVM in (1.0.3) under the risk neutral measure Q:

dSt =
√
vtSt

σDup(t, St)√
EQ[vt|St]

dWt,

dvt = b(t, vt)dt+ σ̃(t, vt)dBt,

and its associated particle system:

dSi,N
t =

√
vi,Nt Si,N

t

σDup(t, S
i,N
t )√

EQN
t [vt|St = Si,N

t ]
dW i,N

t ,

dvi,Nt = b(t, vi,Nt )dt+ σ̃(t, vi,Nt )dBi,N
t ,

with Si,N
0 = S0, v

i,N
0 = v0 for i = 1, . . . , N , and {((W i,N

t )t∈[0,T ], (B
i,N
t )t∈[0,T ])}Ni=1 are indepen-

dent copies of (W,B), where W = (Wt)t∈[0,T ] and B = (Bt)t∈[0,T ]. To estimate the conditional
expectation under the empirical measure QN

t for t ∈ (0, T ], an intuitive approximation could be:

EQt [vt|St = x] ≈ EQN
t [vt|St = x]“=”

∑N
i=1 v

i,N
t δ(Si,N

t − x)∑N
i=1 δ(S

i,N
t − x)

,

where δ(·) is a Dirac function centred at zero, and x ∈ R+. However, note that the probability
measure QN

t is discrete, and the denominator in the above expression has value zero for x /∈
{Si,N

t }Ni=1, therefore it is not well defined.
A solution is to estimate the conditional expectation with the Nadaraya-Watson estimator,

that is, we replace the Dirac function δ(·) by a continuous regularising kernel function δt,N (·) with
some bandwidth h. A common choice is to use the probability density function of standard normal
random variable as the regularising kernel:

δt,N (x) =
1

h
K
(x
h

)
=

1√
2πh

exp

(
− x2

2h2

)
.
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The choice of the bandwidth h typically has an impact on the simulation results. As a starting
point, we select h = S0N

− 1
5 in reference to [1], and in a later section we provide a more detailed

discussion on the impact of h on the simulation results.
For completeness, we briefly explain how to approximate the Dupire function σDup from the

market vanilla option prices. Recall that as in (1.0.2), the Dupire function is defined as

σ2
Dup(t, x) =

∂tC(t, x)
1
2x

2∂2
xC(t, x)

.

We use a matrix of market vanilla Call option prices with various expiration times and strikes to
compute the numerator and denominator through finite difference:

∂tC(t, x) ≈ C(t+∆t, x)− C(t, x)

∆t
, (2.1.3a)

∂2
xC(t, x) ≈ C(t, x+∆x)− 2C(t, x) + C(t, x−∆x)

(∆x)2
. (2.1.3b)

For any other strike values and expiration times, we apply cubic interpolation in strike and linear
interpolation in expiration time if the strike value and the expiration time falls inside the ranges
that are available in the market; otherwise, we apply flat extrapolation.

Based on the above approximation, we derive the following particle system:

dSi,N
t = Si,N

t σDup(t, S
i,N
t )

√√√√ ∑N
j=1 δt,N (Sj,N

t − x)∑N
j=1 v

j,N
t δt,N (Sj,N

t − x)

√
vi,Nt dW i,N

t , (2.1.4a)

dvi,Nt = b(t, vi,Nt )dt+ σ̃(t, vi,Nt )dBi,N
t , (2.1.4b)

with initial values Si,N
0 = S0 and vi,N0 = v0, i = 1, . . . , N .

Although we are able to apply the particle method to the above system up to this point, notice
that in (2.1.4), we need to recompute the values of every kernel function for each particle at each
time step. In other words, it takes O(N2) evaluations at each time step to update all N particles,
which is untractable for large value N . Therefore, a few considerations are introduced to improve
computational efficiency.

First we denote an estimate of the leverage function as:

σ̂(t, x) := σDup(t, x)

√√√√ ∑N
i=1 δt,N (Si,N

t − x)∑N
i=1 v

i,N
t δt,N (Si,N

t − x)
. (2.1.5)

Notice that at each time step, many particles take values that are close to each other. Therefore,
it is reasonable to consider the following: At each time step, instead of computing (2.1.5) at every

particle value, we select a grid Gt from {Si,N
t }Ni=1 with |Gt| ≪ N , and only compute σ̂(t, x) for

x ∈ Gt; For particles that are not in Gt, we apply cubic interpolation to obtain σ̂(t, x).
The size of Gt is set to be |Gt| = max(N1

√
t,N2), with N1 = 30, N2 = 15 in [1]. As time

increases, the distribution of particles tend to have a larger variation, therefore more grid points
are used in the computation. The grid points in Gt can be be chosen as equally-spaced values that
covers the range of the set {Si,N

t }Ni=1.

Furthermore, since the value of δi,N (Si,N
t −x) is negligible when the distance between x and Si,N

t

is large, in the numerator and the denominator of (2.1.5), we only consider to sum up the terms
when the kernel function returns a value greater than a pre-determined small positive threshold η.
That is,

σ̂(t, x) = σDup(t, x)

√√√√ ∑
i∈Dx

δt,N (Si,N
t − x)∑

i∈Dx
vi,Nt δt,N (Si,N

t − x)
,

where Dx = {i ∈ {1, . . . , N}|δt,N (Si,N
t − x) > η}. As a rule of thumb, we set η = 10−3.

The full simulation algorithm of the calibrated LSVMs using the regularising kernel method is
presented in Algorithm 1. The inputs of the algorithms include the number of particles N , the
expiry T , the number of time steps M , the Dupire volatility function σDup, initial values S0, v0,
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Algorithm 1: Simulation of the calibrated LSVMs with the regularising kernel method

Data: N , T , M , σDup, S0, v0, η, ρ, δt,N (·)
∆t← T/M ;

Si,N
0 ← S0 for i = 1, . . . , N ;

vi,N0 ← v0 for i = 1, . . . , N ;
k ← 1;
σ̂(t, x)← σDup(0, x)/

√
v0 for t ∈ [0,∆t];

while k ≤M do
tk ← k∆t;
for i in 1, . . . , N : do

(Zi,W i)
i.i.d.∼ N

(
[0, 0],

[
1 ρ
ρ 1

])
;

Si,N
tk
← Si,N

tk−1
+
√

vi,Ntk−1
Si,N
tk−1

σ̂(tk−1, S
i,N
tk−1

)
√
∆tZi;

vi,Ntk
← vi,Ntk−1

+ b(tk−1, v
i,N
tk−1

)∆t+ σ̃(tk−1, v
i,N
tk−1

)
√
∆tW i;

Gtk ← equal-spaced grid covering the set {Si,N
tk
}Ni=1, with |Gtk | = max(N1

√
tk, N2),

N1 = 30, N2 = 15;
for x in Gtk do

Dx ← {i ∈ {1, . . . , N}|δtk,N (Si,N
tk
− x) > η};

σ̂(tk, x)← σDup(tk, x)

√ ∑
i∈Dx

δtk,N (Si,N
tk

−x)∑
i∈Dx

vi,N
tk

δtk,N (Si,N
tk

−x)
;

for i in 1, . . . , N : do

σ̂(tk, S
i,N
tk

)← cubic interpolation;

σ̂(t, Si,N
tk

)← σ̂(tk, S
i,N
tk

) for t ∈ [tk, tk+1];

k ← k + 1;

the threshold η, the correlation ρ between Brownian motions W and B, and the kernel function
δt,N (·) with bandwidth h.

In the next sections, we apply the simulation on the calibrated LSVMs in the Black-Scholes
and Heston markets respectively, and assess the quality of simulations by comparing the implied
volatility curves from the simulated models to the one in the market.

2.2 Black-Scholes market with the regularising kernel method

In the Black-Scholes market, we assume that the true share price dynamic has a constant volatility:

dSt =
√
vtStdW̃t, S0 = 1, (2.2.1a)

vt = 0.1024, t ∈ [0, T ], (2.2.1b)

where (W̃t)t∈[0,T ] is a Brownian motion under the risk neutral measure.
Under this setting, the constant volatility implies the flat Dupire function σDup(t, x) =

√
vt =

0.32 for t ∈ [0, T ], x ∈ R+. We perform simulations on two calibrated LSVMs with different
dynamics in the volatility process. The first one has the dynamics

dSt =
√
vtSt

σDup(t, St)√
EQ[vt|St]

dWt, S0 = 1, (2.2.2a)

dvt = 0.1
√
vtdBt, v0 = 0.1024, (2.2.2b)

where (Bt)t∈[0,T ] and (Wt)t∈[0,T ] are independent Brownian motions. We refer this model as the
‘simple LSVM’, since the dynamic of volatility is similar to the true dynamic in (2.2.1). We define
a second calibrated LSVM:

dSt =
√
vtSt

σDup(t, St)√
EQ[vt|St]

dWt, S0 = 1, (2.2.3a)

dvt = λ(v̄ − vt)dt+ γ
√
vtdBt, v0 = 0.1024, (2.2.3b)
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where (Bt)t∈[0,T ] and (Wt)t∈[0,T ] are correlated Brownian motions with correlation ρ = −0.315.
The parameters are assigned with values λ = 1.05, v̄ = 0.0855, γ = 0.95. We refer the second
model as the ‘complex LSVM’, since the volatility follows a rather different dynamic to the one in
the market. We are interested to see whether both calibrated LSVMs are able to reproduce the
market vanilla option prices through the particle simulations with regularising kernels, regardless
of the differences in the underlying models.

Remark 2.2.1. Notice that the volatility in the complex LSVM follows a CIR process with
positive mean reversion level, and such CIR process will theoretically stay non-negative for any
positive initial values. However, the discretisation in time steps could result a negative volatility
with non-zero probability. Therefore, we adopt the full truncation Euler scheme for the volatility
process in the numerical implementation proposed in [18]. More specifically, we update particles
as follows:

1. Discretise the interval [0, T ] into M equal-sized time steps {tk}Mk=0, and set ∆ = T
M .

2. Initialise Si,N
0 = S0, v

i,N = v0 and σ̂(0, Si,N
0 ) = σDup(0, S0)/

√
v0 for i = 1, . . . , N , and set

k = 1.

3. Generate N i.i.d. bivariate normal random variables (W i, Bi) ∼ N
(
[0, 0],

[
1 ρ
ρ 1

])
for i =

1, . . . , N .

4. Update Si,N
t and vi,Nt for i = 1, . . . , N from tk−1 to tk by full truncation Euler scheme:

Si,N
tk

= Si,N
tk−1

+
√

(vi,Ntk−1
)+σ̂(tk−1, S

i,N
tk−1

)Si,N
tk−1

√
∆W i,N , (2.2.4a)

vi,Ntk
= vi,Ntk−1

+ λ(v̄ − (vi,Ntk−1
)+)∆ + γ

√
(vi,Ntk−1

)+
√
∆Bi,N , (2.2.4b)

where (vi,Ntk−1
)+ = max(0, vi,Ntk−1

).

5. Update the leverage function σ̂ by the regularising kernel method.

6. Increment k by 1. Repeat steps 3 to 5 until k = M .

The convergence rate of the full truncation Euler scheme is further studied in [19], where the
authors establish the strong convergence in Lp with order 1

2 for 2 ≤ p < ν − 1, where ν = 2λv̄
γ2 is

the Feller ratio and is assumed to be strictly greater than 3. We will use this convention without
explicitly stating in all numerical schemes that involve CIR volatility process.

We assess the quality of the simulations by comparing the implied volatility curves of vanilla
options obtained from the simulated LSVMs to the market volatility level. The implied volatility
is defined as the volatility level in the Black-Scholes vanilla option pricing formula, so that the
formula would produce the same price as observed in the market, given the same term conditions.

To compute the implied volatility curves from the simulation of the calibrated LSVMs, we first
obtain N share prices {Si,N

T }Ni=1 at expiry T , and compute the estimates of vanilla option prices
with respect to a list of strikes. This is done by taking the average of the (discounted) payoffs at
time T as in (1.1.2). Finally, we use out-of-money Call and Put options to compute the implied
volatility at a given strike level, where we use root finding algorithms in Python Package.

Figure 2.1 shows the implied volatility curves at expiry T = 1 obtained from N = 105 particles,
with M = 1000 time steps. In the case of the simple LSVM, the implied volatility curve follows the
market curve closely. In the complex LSVM, however, although the implied volatility curve has
an overall similar shape, the deviation from the market curve is visually observable at small strike
values. Table 2.1 displays the absolute errors in the implied volatility curve in percentage at three
strike levels, as well as an overall average absolute error across the entire strike grid. Notice that
the error in the complex LSVM is approximately one order larger than the one from the simple
LSVM.

Recall that the LSVMs are calibrated to the market through the local volatility component
σ : [0, T ] × R+ → R+ ∪ {0}, known as the leverage function. Figure 2.2 plots the estimated
leverage functions at time T , σ̂(T, ·) : R+ → R+ ∪ {0} in both calibrated LSVMs. We observe two
different behaviours: the estimated leverage function of the simple LSVM roughly stays constant
at value 1, whilst the one of the complex LSVM has an inverted shape. This difference is mainly
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caused by different behaviours in the volatility processes. In the simple LSVM, the volatility
process stays roughly constant at the initial values v0, which is very similar to the one in the
underlying market. Therefore, in this case, we expect the estimated leverage function to be close
to 1. On the other hand, since the volatility process in the complex LSVM is rather different from
the one in the market, we expect this difference is adjusted in the calibration through the leverage
function.

One way to improve the simulation quality is by adjusting the bandwidth parameter h in the
regularising kernel functions. We will defer the discussion to a later section. At this stage, we can
see that the simulation of the calibrated LSVMs with the regularising kernel method is able to
reproduce a roughly similar implied volatility curve.
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Figure 2.1: Market volatility level and the implied volatility curves from the calibrated LSVMs at
T = 1 in the Black-Scholes market using the regularising kernel method, with N = 105, M = 1,
and kernel bandwidth h = S0N

− 1
5 .

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 ave. absolute error
Simple LSVM 0.07717 0.03189 0.05199 0.19035
Complex LSVM 0.6337 1.196842 0.42911 1.22968

Table 2.1: Absolute error in % of implied volatility curves in the Black-Scholes market with the
regularising kernel method.

In the Black-Scholes market above, it is known that the market volatility is constant. We now
move on to the Heston market, where the market has non-constant volatility.

2.3 Heston market with the regularising kernel method

In the Heston market the volatility follows a CIR process, which introduces more complexity than
the previous Black-Scholes market. We assume that the true dynamic of the share price evolves
according to the following system of SDEs:

dSt =
√
vtStdW̃t, S0 = 1 (2.3.1a)

dvt = κ(θ − vt)dt+ ξ
√
vtdB̃t, v0 = 0.1024, (2.3.1b)
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Figure 2.2: Estimated leverage functions in the simple and complex LSVMs at time T = 1 over
strike K.

with κ = 1.5768, θ = 0.0484, ξ = 0.5751. The Brownian motions (W̃t)t∈[0,T ] and (B̃t)t∈[0,T ] are
correlated with correlation ρ = −0.7.

We first generate market prices of vanilla options with a range of strikes and expiration times
using the full truncation Euler scheme. The number of simulations is chosen to be 5 × 105. The
synthetic prices are used to approximate σDup and the market implied volatility curve at T = 1.
Note that since we need to approximate second order particle derivatives with respect to strike in
σDup, the grid of strikes needs to be fine enough for an accurate approximation.

Use the information from the synthetic market, we apply Algorithm 1 to simulate the calibrated
LSVMs. As in the Black-Scholes market, we consider two LSVMs: a ‘simple LSVM’ with similar
choices of parameters as in the true market:

dSt =
√
vt

σDup(t, St)√
EQ[vt|St]

StdWt, S0 = 1, (2.3.2a)

dvt = λ(v̄ − vt)dt+ γ
√
vtdBt, v0 = 0.1024, (2.3.2b)

where the parameters λ = κ = 1.5768, v̄ = θ = 0.0484 and γ = ξ = 0.5751. The Brownian motions
(Wt)t∈[0,T ] and (Bt)t∈[0,T ] are correlated with ρ = −0.7. The second model ‘complex LSVM’ has
the same form as in (2.3.2), but with a different set of parameter values: λ = 1, v̄ = 0.0144,
γ = 0.5751 and ρ = 0.

We compare the implied volatility curves from the simulations of the calibrated models to the
one from the market at T = 1. Figure 2.3 plots the curves, with the number of particles N = 105

and the number of time steps M = 1000.

Both implied volatility curves from the calibrated LSVMs capture the overall shape of the
true market curve, although there exists some gaps in between. The absolute errors between the
calibrated implied volatility curves and the true one is summarised in Table 2.2. Unlike the case
in the Black-Scholes market, the error size is indistinguishable between the simple LSVM and the
complex LSVM.

Recall that in the regularising kernel functions, we choose the kernel bandwidth to be h =
S0N

− 1
5 . From the expression (2.1.5), it can be seen that h has an influence on the summations

in the conditional expectation, which is a crucial term in the simulation process. We move on to
investigate the impact of h on the simulation result in the following subsection.
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Figure 2.3: Market volatility level and implied volatility curves from the calibrated LSVMs at
T = 1 in the Heston market using the regularising kernel method, with N = 105, M = 1, and
kernel bandwidth h = S0N

− 1
5 .

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM 0.32595 1.20573 2.04098 1.43884
Complex LSVM 0.51804 1.58091 0.63448 1.18096

Table 2.2: Absolute error in % of implied volatility curves in the Heston market with the regular-
ising kernel method.

2.4 Impact of the bandwidth h on the simulation results

From the discussion above, we can see that the particle method with regularising kernels roughly
provides a feasible way to simulate the calibrated LSVMs. However, as shown in Figures 2.1 and
2.3, there exists some gap between market implied volatility curves and the ones from the calibrated
models. We are interested to see whether it is possible to improve the simulation results by tuning
the hyper-parameters in the algorithm. In this subsection, we focus on the choice of bandwidth h
in the regularising kernel functions and investigate its impact on the simulation result.

We see that the bandwidth h controls the particle weights in estimating the conditional expecta-
tion in (2.1.4). More specifically, when we use regularising kernel method to estimate E[vt|St = x],

with a relatively large h, some weights are distributed to the particles with the components Si,N
t

that are further away from x; On the other hand, with a smaller h, only a few particles that have
Si,N
t close to x are assigned with majority of the weights. Therefore, it is crucial to see how the

simulation results are impacted by the choice of h.

Figure 2.4 graphically shows the quality of the simulations in the Black-Scholes market when we
use different values in the bandwidth. We denote h0 = S0N

− 1
5 to be the default bandwidth used

in the previous sections. In the left subfigure, the calibrated LSVMs are simulated with h0

2 , and

the right one is with h0

5 . Table 2.3 summarises the absolute errors between true implied volatility
curve and the ones from the calibrated models.

From both the figure and the table, we observe that the simple LSVM is less susceptible to the
choice of the bandwidth and maintains the relatively low level of average absolute error. However,
we see a significant improvement in the complex LSVM when we use a smaller bandwidth.

Similar comparisons are done in the Heston market in Figure 2.5 and Table 2.4. In the left
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Figure 2.4: Market volatility levels and implied volatility curves from the calibrated LSVMs at
T = 1 in the Black-Scholes market using the regularising kernel method, with N = 105, M = 1.
Left: Bandwidth h = S0N

− 1
5 /2; Right: Bandwidth h = S0N

− 1
5 /5.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM, h0 0.0772 0.0319 0.0520 0.1904
Simple LSVM, h0/2 0.0279 0.2476 0.1272 0.1237
Simple LSVM, h0/5 0.0559 0.2804 0.2001 0.1562
Complex LSVM, h0 0.6337 1.1968 0.4291 1.2297
Complex LSVM, h0/2 0.0968 0.4667 0.1841 0.4677
Complex LSVM, h0/5 0.2894 0.4035 0.2074 0.2534

Table 2.3: Absolute error in % of implied volatility curves in the Black-Scholes market with various
bandwidths in the regularising kernel functions. N = 105, M = 1000.

subplot, the LSVMs are calibrated with h0

3 , and the right one with h0

10 , and we observe reduction
in the average absolute error in both cases. Notice that the gap is still observable between the
market implied volatility curve and the simulated ones, and further reducing bandwidth to h0

10 gives

a similar average absolute error as in the case of h0

3 . However, in the right subplot, we observe
that the implied volatility curves from the two calibrated models stays very close to each other.

One possible explanation for the observations above could be the noise in approximating the
Dupire function σDup from the synthetic market. Recall that the denominator in the Dupire
function requires estimations of ∂2

xC(t, x), a second order partial derivative of the vanilla Call
option prices with respect to the strike x. To obtain an estimate, we used the finite difference
method as described in (2.1.3), which may be prone to small noise in the synthetic market prices
C(t, x). The two LSVMs may be calibrated to a dynamic that deviates from the true market
dynamic due to the noise in the Dupire function estimation. However, since they both use the
same estimated Dupire function, we expect to see that the implied volatility curves from the two
calibrated models stay close, which is indeed the behaviour in the right subfigure in Figure 2.5.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM, h0 0.32595 1.20573 2.04098 1.43884
Simple LSVM, h0/3 0.9798 1.3090 0.8382 0.7314
Simple LSVM, h0/10 1.0674 1.2577 0.2237 0.7433
Complex LSVM, h0 0.51804 1.58091 0.63448 1.18096
Complex LSVM, h0/3 1.2197 1.2075 0.5322 0.7107
Complex LSVM, h0/10 1.2282 1.2152 0.5869 0.7463

Table 2.4: Absolute error in % of implied volatility curves in the Heston market with various
bandwidths in the regularising kernel functions.
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Figure 2.5: Market volatility levels and implied volatility curves from the simple and complex
LSVMs at T = 1 in the Heston market using regularising kernel method, with N = 105, M = 1.
Left: Bandwidth = S0N

− 1
5 /3; Right: Bandwidth = S0N

− 1
5 /10.

In summary, from our numerical results, a bandwidth smaller than S0N
− 1

5 tends to give a
better simulation result. However, if the bandwidth is very close to zero, we effectively turn the
kernel functions back into Dirac functions, which should be avoided. Furthermore, a shortcoming
of small bandwidths is that it misses the dependence between the volatility and the share prices
outside a small region [11]. In other words, when we look at the particles used in the approximation

of the conditional expectation EQ[vt|St = x], only very few particles with Si,N
t close to the value x

are assigned with the most weights, whilst δi,N (Si,N
t −x) is close to zero for the others. In the next

two sections, we introduce two alternative methods that have been developed for the simulation of
the calibrated LSVMs.
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Chapter 3

Simulations of the calibrated
LSVMs with the RKHS method

Recall that the main difficulty in simulating the calibrated LSVM is to compute a good approxi-
mation for the conditional expectation EQ[vt|St = ·]. To address the downside of the regularising
kernel method, we present an alternative method that uses Reproducing Kernel Hilbert Spaces
(RKHS). This method is proposed and developed in [11], which involves finding a function to
directly approximate the conditional expectation.

Without delving into technical details, the RKHS space H is a Hilbert space of real-valued
continuous functions f : X ∈ Rd → R for some d ∈ N. A positive symmetric kernel function
k : X × X → R exists uniquely for each RKHS space, such that for any x ∈ X , the inner
product with the kernel function has the property ⟨f, kx⟩H = f(x) for every function f ∈ H, where
kx(·) := k(x, ·) .

We are interested in the conditional expectation EQ[vt|St = x] for t ∈ [0, T ], and since (St, vt)
is a continuous non-degenerating random variable for t ∈ (0, T ], we first define a few quantities
using its joint density. Fix t ∈ (0, T ] and denote qt(·, ·) as the joint probability density function of
(St, vt) ∈ X × X , where X = R+. Furthermore, we assume that (St, vt) has finite second moment
for any t ∈ (0, T ] and the function E[vt|St = ·] ∈ H. Define a function on X :

cqt(·) :=
∫
X×X

ks(·)vqt(s, v)dvds

=

∫
X×X

ks(·)vqt(v|s)qS,t(s)dvds

=

∫
X
ks(·)

∫
X
vqt(v|s)dvqS,t(s)ds

=

∫
X
ks(·)EQt [vt|St = s]qS,t(s)ds,

where qS,t : X → R+ ∪ {0}, qS,t(s) =
∫
X qt(s, v)dv and qv,t : X → R+ ∪ {0}, qv,t(v) =

∫
X qt(s, v)ds

are the marginal probability density functions of St and vt respectively, and qt(·|s) : X → R+∪{0},
qt(v|s) = qt(s,v)

qS,t(s)
is the conditional probability density of vt given {St = s}.

Define an operator Cqt on functions f ∈ H:

Cqtf =

∫
X
ks(·)f(s)qS,t(s)ds,

and we have the following relationship:

cqt(·) = CqtEQt [vt|St = ·]. (3.0.2)

To simplify the notation, we drop the Qt on the expectation and write E[vt|St = ·] instead when
there is no ambiguity. Both cqt and Cqt are well defined when Assumption K◦ in [11] is satisfied:
the kernel k(·, ·) is continuous on X × X , and there exists a constant C > 0 such that 0 <
k(x, x) ≤ C(1 + |x|2) for any x ∈ X . We wish to invert the operator Cqt to obtain an expression
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for E[vt|St = ·], however, this invertability is not guaranteed in general. Notice that the operator
Cqt is symmetric and positive semi-definite, that is, for any functions f, h ∈ H, we have:

⟨h, Cqtf⟩H = ⟨h,
∫
X
ks(·)f(s)qS,t(s)ds⟩H

=

∫
X
⟨h, ks(·)⟩Hf(s)qS,t(s)ds

=

∫
X
h(s)f(s)qS,t(s)ds,

where we used linearity in the inner product and the properties of kernel functions in the RKHS.
Therefore, ⟨h, Cqtf⟩H = ⟨f, Cqth⟩H, and ⟨f, Cqtf⟩H ≥ 0 for all f ∈ H. Using the positive semi-
definiteness in the operator Cqt , one way to invert the equation (3.0.2) is to apply a similar regu-
larisation as in the ridge regression: we add a regularisation term λIH with some λ > 0, where IH
is the identity function in space H. We cite from [11, Section 3] that this adjustment is justified
by Hellinger-Teoplitz theorem: for any λ ≥ 0, the spectrum of the operator Cqt + λIH is greater
that λ. Therefore, for λ > 0, (Cqt + λIH)−1 exists with norm ∥(Cqt + λIH)−1∥ ≤ λ−1.

We would expect that the conditional expectation E[vt|St = ·] is well approximated bymλ(·; qt) :=
(Cqt + λIH)−1cqt(·) when λ stays close to zero.

It turns out that mλ(·; qt) is the optimal solution of the optimisation problem

argmin
f∈H

{
E(vt − f(St))

2 + λ∥f∥2H
}
.

Moreover, recall that the conditional expectation E[vt|St = ·] can be interpreted as a function that
gives the best estimate of the value vt given the information of St:

E[vt|St = ·] = argmin
f∈L2

E(vt − f(St))
2.

This supports the intuition that mλ(·; qt) would be close to E[vt|St = ·] with small positive λ.
Furthermore, recall in Chapter 1 that one of the challenges in a calibrated LSVM is its well-

posedness. A main result achieved in [11, Section 2] is that if we replace the conditional expectation
in (1.0.3) with its regularised version

dSt =
√
vtSt

σDup(t, St)√
mλ(St; qt)

dWt,

dvt = b(t, vt)dt+ σ̃(t, vt)dBt,

for initial values S0, v0 and a constant λ > 0, the Lipschitz continuity can be proved, and well-
posedness follows. However, this result is only justified with some positive fixed regularisation
parameter λ, and cannot be generalised to the limiting case where λ→ 0.

Nevertheless, [11, Section 4] proposes that the function mλ(·; qt) can be written as a sum of
weighted exponential kernel functions, which can be computed in the simulation. In the next sec-
tion, we introduce the representation of mλ(·; qt) in the particle system and describe the algorithm
used in simulating the calibrated LSVMs with the RKHS method.

3.1 The RKHS method in the calibrated LSVMs

We first write the associated LSVM particle system with the regularised conditional expectation:

dSi,N
t = Si,N

t

σDup(t, S
i,N
t )√

mλ(Si,N
t ;QN

t )

√
vi,Nt dW i,N

t ,

dvi,Nt = b(t, vi,Nt )dt+ σ̃(t, vi,Nt )dBi,N
t ,

with Si,N
0 = S0 and vi,N0 = v0 for i = 1, . . . , N , where QN

t denotes the empirical distribution of

{(Si,N
t , vi,Nt )}Ni=1, and mλ(·;QN

t ) is the solution of the optimisation problem

argmin
f∈H

{
1

N

N∑
i=1

(vi,Nt − f(Si,N
t ))2 + λ∥f∥2H

}
, (3.1.2)
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for some λ > 0. By the RKHS representer theorem in [20], mλ(·;QN
t ) can be written as a weighted

sum of kernel functions centred at each particle Si,N
t :

mλ(·;QN
t ) =

N∑
i=1

αikSi,N
t

(·),

where αi, i = 1, . . . , N are the weights, taking values in R.
One issue related with this representation is computational inefficiency. The number of weights

αi to be optimised grows linearly with the number of particles N , and at each time step, it takes
O(N) time complexity to evaluate kSi,N

t
(Sj,N

t ), j = 1, . . . , N for each particle. These features

make the computation time untractable when we increase the number of particles.
An effective solution to improve computational efficiency is to reduce the number of the kernel

functions in the summation. When the number of particles N is large, many realised {Si,N
t }Ni=1

at each time step are close to each other, and so are their corresponding kernel functions kSi,N
t

(·).
Therefore, we can choose an positive integer L ≪ N , select L points Zj

t , j = 1, . . . , L among

{Si,N
t }Ni=1, and only use the kernel functions centred at these L points to approximate the condi-

tional expectation:

E[vt|St = ·] ≈
L∑

j=1

βjkZj
t
(·),

where β = [β1, . . . , βL]
T is a vector of weights, taking values in RL.

Note that we can further write expressions in vector and matrix forms: Let K be a N × L
matrix, with K(m,n) = kZn

t
(Sm,N

t ) = k(Sm,N
t , Zn

t ) for m ∈ {1, . . . , N} and n ∈ {1, . . . , L}, and
we have:

Kβ = [

L∑
j=1

βjkZj
t
(S1,N

t ), . . . ,

L∑
j=1

βjkZj
t
(SN,N

t )]T .

Furthermore, note that

1

N

N∑
i=1

(vi,Nt − f(Si,N
t ))2 =

1

N
(vN

t −Kβ)T (vN
t −Kβ),

where vN
t = [v1,Nt , . . . , v1,Nt ]T , and

∥
L∑

j=1

βjkZj
t
(·)∥2H = ⟨

L∑
j=1

βjkZj
t
,

L∑
j=1

βjkZj
t
⟩H

=

L∑
j=1

L∑
l=1

βjβl⟨kZj
t
, kZl

t
⟩H (Linearity of inner product)

=

L∑
j=1

L∑
l=1

βjβlkZj
t
(Zl

t) ⟨f, kx⟩ = f(x)

= βTRβ,

where R is a L × L matrix, R(m,n) = k(Zm
t , Zn

t ), m,n ∈ {1, . . . , L}. The objective function in
(3.1.2) can be written in the matrix form

argmin
β∈RL

{
1

N
(vN

t −Kβ)T (vN
t −Kβ) + βTRβ

}
.

We solve the optimisation problem by the first order differentiation. The optimal β̂ needs to satisfy
the condition:

(KTK +NλR)β̂ = KTvN
t ,

and this can be solved using Numpy packages in Python.
To effectively represent the empirical distribution of the simulated particles, we choose the

points Z1, . . . , ZL to be the equally-spaced quantiles of the set {Si,N
tk
}Ni=1.
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Using the expressions and quantities defined above, we summarise the particle simulation for
calibrated LSVMs using the RKHS method in Algorithm 2. The inputs of the algorithm are: the
number of particleN , the expiry T , the number of time stepsM , initial values S0, v0, the correlation
between share price and volatility process ρ, the Dupire function σDup, the regularisation parameter
λ, the kernel function k(·, ·) and the number of kernel functions L.

Algorithm 2: Simulation of the calibrated LSVMs with the RKHS method

Data: N , T , M , S0, v0, σDup, λ, k, L, and ρ
∆t← T/M ;

Si,N
0 ← S0 for i = 1, . . . , N ;

vi,N0 ← v0 for i = 1, . . . , N ;
k ← 1;
σ̂(t, x)← σDup(0, x)/

√
v0 for t ∈ [0,∆t];

while k ≤M do
tk ← k∆t;
for i in 1, . . . , N : do

(U i,W i)
i.i.d.∼ N

(
[0, 0],

[
1 ρ
ρ 1

])
;

Si,N
tk
← Si,N

tk−1
+
√

vi,Ntk−1
Si,N
tk−1

σ̂(tk−1, S
i,N
tk−1

)
√
∆tU i;

vi,Ntk
← vi,Ntk−1

+ b(tk−1, v
i,N
tk−1

)∆t+ σ̃(tk−1, v
i,N
tk−1

)
√
∆tW i;

Z1, . . . , ZL ← L points selected among Si,N
tk

, i = 1, . . . , N by equal quantiles;
R← (k(Zm, Zn))m=1,...,L,n=1,...,L;

K ← (k(Si,N
tk

, Zm))i=1,...,N,m=1,...,L;

v← [v1,Ntk
, . . . , vN,N

tk
]T ;

β ← Solve (KTK +NλR)β = KTv;
for i in 1, . . . , N : do

mλ(Si,N
tk

;QN
t )←

∑
j∈L βjk(Zj , S

i,N
tk

);

σ̂(tk, S
i,N
tk

)←
σDup(tk,S

i,N
tk

)√
mλ(Si,N

tk
;QN

t )
;

k ← k + 1;

In the next two sections, we present the simulation results of the calibrated LSVMs using the
RKHS method. As in Chapter 2, we study the quality of the simulations in the Black-Scholes and
Heston markets by comparing the implied volatility curves from the simulated models to the one
from the market.

3.2 Black-Scholes market with the RKHS method

We use the same Black-Scholes market as in (2.2.1), with constant volatility vt = 0.1024 for
t ∈ [0, T ], and consider to simulate two calibrated LSVMs: a simple LSVM

dSt =
√
vtSt

σDup(t, St)√
E[vt|St]

dWt, S0 = 1,

dvt = 0.1
√
vtdBt, v0 = 0.1024,

with independent (Wt)t∈[0,T ] and (Bt)t∈[0,T ], and another complex LSVM

dSt =
√
vtSt

σDup(t, St)√
E[vt|St]

dWt, S0 = 1,

dvt = µ(v̄ − vt)dt+ γ
√
vtdBt, v0 = 0.1024,

with ρ = −0.315, µ = 1.05, v̄ = 0.0855 and γ = 0.95. We wish to see whether the RKHS
simulation method is able to cope with different volatility processes and reproduce the implied
volatility curves.
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We apply the Algorithm 2 with N = 105 particles, the number of time steps M = 1000, T = 1,
regularisation parameter λ = 10−5, and we use the default number of kernels L = 40 referenced
from [11]. The kernel function kx(·) is selected to be the probability density function of a normal
random variable, centred around the mean x with variance 5. We compute the implied volatility
curves using out-of-money Call and Put options. Figure 3.1 plots the market implied volatility
curve and the ones obtained from the simulated models. We see that the three curves stay very
closely to each other. Table 3.1 summarises the absolute errors in the implied volatility curves
in percentage. Notice that the average error is comparable with the ones in Table 2.3 using the
regularising kernel method with bandwidth h = h0/5.
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Figure 3.1: Market volatility level and implied volatility curves from the calibrated LSVMs at
T = 1 in the Black-Scholes market using the RKHS method, with N = 105, M = 1, L = 40 and
the regularisation parameter λ = 10−5.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM 0.0077 0.0302 0.0085 0.1318
Complex LSVM 0.0698 0.3369 0.3560 0.2695

Table 3.1: Absolute error in % of implied volatility curves in the Black-Scholes market using the
RKHS method.

We see that in the market with flat volatility, the RKHS method manages to simulate the
calibrated LSVMs and reproduce the implied volatility curves with decent accuracy, regardless of
how the volatility process is different from the market. We now move on to assess the performance
in the Heston market with non-constant volatility surface.

3.3 Heston market with the RKHS method

As in Chapter 2, we consider the same Heston market:

dSt =
√
vtStdW̃t, S0 = 1

dvt = κ(θ − vt)dt+ ξ
√
vtdB̃t, v0 = 0.1024,

with κ = 1.5768, θ = 0.0484, ξ = 0.5751, ρ = −0.7, where ρ represents the correlation between
Brownian motions (W̃t)∈[0,T ] and (B̃t)∈[0,T ]. We simulate two calibrated LSVMs with different
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volatility dynamics. Note that the simple LSVM is chosen with a similar but slightly different set
of parameter values as the market:

dSt =
√
vt
σDup(t, St)√

E[vt|St]
StdWt, S0 = 1, (3.3.2a)

dvt = µ(v̄ − vt)dt+ γ
√
vtdBt, v0 = 0.1024, (3.3.2b)

with µ = κ = 1.5768, v̄ = θ = 0.0484, γ = ξ = 0.5751, v0 = 0.1024, and ρ = −0.5. The complex
LSVM shares the same form as the simple LSVM in (3.3.2), with parameter values: µ = 1,
v̄ = 0.0144, γ = ξ = 0.5751, v0 = 0.0144 and ρ = 0.

We apply Algorithm 2 with the regularisation parameter λ = 10−7, the number of particles
N = 105, the number of time steps M = 1000, T = 1, the number of kernels L = 40 and the same
choice of kernel functions as in the case of the Black-Scholes market. Figure 3.2 plots the implied
volatility curves from two simulated models, along with the market implied volatility curve. Table
3.2 summarises the absolute errors in the curves.
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Figure 3.2: Market volatility level and implied volatility curves from the calibrated LSVMs at
T = 1 in the Heston market using the RKHS method, with N = 105, M = 1, L = 40 and
regularisation parameter λ = 10−7.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM 1.1816 1.3517 0.0866 0.8803
Complex LSVM 0.6724 0.8135 0.1226 0.6969

Table 3.2: Absolute error in % of the implied volatility curves in the Heston market using the
RKHS method.

From the plot, we see that the implied volatility curves from the calibrated models capture the
general shape and trend. Furthermore, it is plausible to see that the average absolute error in the
implied volatility curves from the RKHS method has roughly the same size as in the reproducing
kernel method with the optimised kernel bandwidth.

Recall that the regularisation parameter λ plays an important role in the RKHS method. We
wish to keep it close to zero to obtain a better approximation of the conditional expectation E[vt|St]
for t ∈ [0, T ], whilst the theoretical behaviour of the calibrated LSVMs as λ → 0+ is unclear. In
the next section, we investigate the impact of the regularisation term λ on the simulation results.
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3.4 Impact of the regularisation parameter on simulation
results

We first study how the regularisation parameter λ impacts the average absolute error in implied
volatility curves in the Black-Scholes market with the simple LSVM. We select a range of regu-
larisation parameter values λ = 10−i, i = 2, . . . , 7, and for each value of λ, we fit the LSVM with
number of particles N = 104 and compute the average absolute error in the implied volatility
curve. We then repeat the procedure for 50 times, and compute the mean and standard deviation
of the average error for each λ. To reduce the noise in the result, we ensure that for all values of
λ in each iteration, the LSVM simulation is run on the same random seed.

Figure 3.3 plots the mean and standard deviation of the average absolute error in percentage
of the implied volatility curve over the regularisation parameter λ. We see that the error stays
relatively constant when λ ∈ [10−7, 10−5], increases slowly as λ increases from 10−5 to 10−3, and
eventually takes a jump when λ reaches 10−2.

Furthermore, notice that decreasing λ does not reduce the standard deviations of the error. In
the Black-Scholes market, it is reasonable to argue that the error stabilises as λ approaches zero
from the right, which coincides with the observations in [11, Section 5].
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Figure 3.3: Average absolute error vs. the regularisation parameter λ in the Black-Scholes market
with the RKHS method.

In the Heston market, where the market implied volatility is no longer flat, we observe some
different behaviours. The simulation of the simple LSVM defined in (3.3.2) fails when λ ≥ 10−6,
with N = 105 particles, the number of time steps M = 1000 and T = 1, whilst the method is
able to reproduce the implied volatility curve of the complex LSVM under the same settings with
λ ≥ 10−6. By further examining the simulated share prices in the simple LSVM at time T = 1, we
observe some extreme positive and negative values. Recall that the underlying share price and the
volatility processes are correlated with ρ = −0.5 in the simple LSVM, whilst there is no correlation
in the complex LSVM. This may suggest that the error in estimating the conditional expectation
may be magnified when the LSVM has some strong correlation between the share price and the
volatility processes, and this could lead to some abnormal behaviours in the share price simulation.

Furthermore, if we strengthen the correlation ρ in the simple LSVM to −0.7 as the one in
the underlying market, we fail to find a λ that would allow successful simulations under the same
setting (N = 105, M = 1000, T = 1). One could try to increase the number of particles and the
number of time steps, however this could lead to significant increase in computation time, making
the method undesirable comparing to other alternatives.
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To summarise, the particle simulation with the RKHS method offers an alternative way to
approximate the conditional expectation EQ[vt|St] in the calibrated LSVMs. However, as discussed
above, the simulation method may encounter some difficulty when the LSVM has strong correlation
between the share price dynamic and the volatility process in the Heston market. Furthermore, note
that as shown in Algorithm 2, the method involves several matrix multiplications and inversions,
which may become computationally expensive with increasing number of particles.

In the next section, we present a third method to approximate EQ[vt|St] in the simulation of the
calibrated LSVMs. As opposed to the RKHS method, it can be applied with high computational
efficiency.
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Chapter 4

Simulations of the calibrated
LSVMs with the bin Monte Carlo
method

Recall that one of the challenges in applying the particle method on the calibrated LSVMs is to
estimate the conditional expectation E[vt|St] appropriately and efficiently. As St is a continuous
random variable for any t ∈ (0, T ], at any positive time step, the probability of any two particles

(Si,N
t , vi,Nt ) and (Sj,N

t , vj,Nt ) having the event {Si,N
t = Sj,N

t , i ̸= j} is equal to zero. This creates
difficulty in using the empirical distribution of the realised particles to estimate the conditional
expectation EQ[vt|St = Si,N

t ], since there will be exactly one value vi,Nt corresponds to the event

{St = Si,N
t }.

In the paper [12], the authors propose a simple but effective approach called the bin Monte
Carlo method. The method groups the values of St into several bins, and computes the conditional
expectation of vt given the bin St falls in. More specifically, we partition the range of St values into
l bins: (b1, b2], (b2, b3], . . . , (bl, bl+1], for some b1 ≥ 0 and bl+1 < ∞. The conditional expectation
are approximated as follows:

EQ[vt|St = x] ≈ EQ[vt|St ∈ (bi, bi+1]],

where x ∈ (bi, bi+1].

Suppose we set bi = x− ϵ and bi+1 = x+ ϵ for some small ϵ > 0. As the number of bins grows
to infinity, ϵ→ 0+ and the boundaries of the bin collapse to the value x. This intuitively justifies
the approximation in the asymptotic sense. By grouping the particles into bins, it allows us to use
the empirical distribution of the realised particles to estimate the conditional expectation, since
each bin contains more than one particle:

ÊQ[vt|St ∈ (bi, bi+1]] =
1

NQ̂[St ∈ (bi, bi+1]]

N∑
i=1

vi,Nt 11Si,N
t ∈(bi,bi+1]

, (4.0.1)

where Q̂[St ∈ (bi, bi+1]] is an estimate of the probability that the share price falls in the bin (bi, bi+1]
at time t. This probability is determined by the number of bins and the bin type. Two widely
used conventions for the bin types are equal bin-width method, where all the bins have the same
width, and equal bin-frequency method, where each bin contains approximately the same number
of particles. More specifically, at each time t, denote S̄1,N

t and S̄N,N
t as the the smallest and the

largest realised particle values for the share price. The equal bin-width method has the following
boundary rule and Q̂[St ∈ (bi, bi+1]]:

bt,1 = S̄1,N
t , bt,l+1 = S̄N,N

t , bt,i = bt,1 +
i− 1

l
(bt,l+1 − bt,1), i = 2, . . . , l,

Q̂[St ∈ (bi, bi+1]] =

N∑
i=1

11Si,N
t ∈(bi,bi+1]

,
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whilst the equal bin-frequency method has the boundaries and Q̂[St ∈ (bi, bi+1]] as follows:

bt,i = S̄
⌊ i−1

l N⌋,N
t , i = 1, . . . , l + 1,

Q̂[St ∈ (bi, bi+1]] =
1

l
.

Different choice of bins affects the convergence of the simulation result. In the context of the
calibrated LSVMs, the distribution of St for any t ∈ [0, T ] tends to have higher density around the
mid-values, and we wish to obtain a more accurate approximation where the density of St is high.
Therefore, in the simulation examples, we present the result with equal bin-frequency approach,
since it tends to have smaller bin width in the area where St is more concentrated.

We present the full algorithm with the bin Monte Carlo method in Algorithm 3. The input
of the algorithms are: the number of particles N , the expiry T , the number of time steps M ,
initial values S0, v0, the Dupire function σDup, the correlation between share price and volatility
processes ρ and the number of bins l.

Algorithm 3: Simulation of the calibrated LSVM with Bin Monte Carlo method

Data: N , T , M , S0, v0, σDup, l, ρ
∆t← T/M ;
k ← 1;

Si,N
0 ← S0 for i = 1, . . . , N ;

vi,N0 ← v0 for i = 1, . . . , N ;
σ̂(t, x)← σDup(0, x)/

√
v0 for t ∈ [0,∆t];

while k ≤M do
tk ← k∆t;
for i in 1, . . . , N : do

(U i,W i)
i.i.d.∼ N

(
[0, 0],

[
1 ρ
ρ 1

])
;

Si,N
tk
← Si,N

tk−1
+
√

vi,Ntk−1
Si,N
tk−1

σ̂(tk−1, S
i,N
tk−1

)
√
∆tU i;

vi,Ntk
← vi,Ntk−1

+ b(tk−1, v
i,N
tk−1

)∆t+ σ̃(tk−1, v
i,N
tk−1

)
√
∆tW i;

b1, . . . , bl+1 ← i−1
l

th
quantile of {Si,N

tk
}Ni=1;

Sort particles {(Si,N
tk

, vi,Ntk
)}Ni=1, and assign each of them to a bin (bi, bi+1];

for each bin (bi, bi+1], i in 1, . . . , l: do

EQ[vt|St ∈ (bi, bi+1]] =
l
N

∑N
i=1 v

i,N
t 11Si,N

tk
∈(bi,bi+1]

;

for i in 1, . . . , N : do

σ̂(tk, S
i,N
tk

)←
σDup(tk,S

i,N
tk

)√
EQ[vt|St∈(bj ,bj+1]]

, Si,N
tk
∈ (bj , bj+1];

k ← k + 1;

In the next two sections, we apply the algorithm in the Black-Scholes and the Heston markets,
and assess the simulation performance through the implied volatility curves.

4.1 Black-Scholes Market with the bin Monte Carlo method

We consider the same Black-Scholes market as in Chapter 2, with constant volatility vt = 0.1024
for t ∈ [0, T ], and the same simple and complex LSVMs in (2.2.2) and (2.2.3). We apply Algorithm
3 with input parameters N = 105, M = 1000, T = 1 and select the number of bins l = 20. Figure
4.1 shows the market implied volatility curve and the ones from the simulations of the calibrated
models at time T = 1. Table 4.1 summarises the absolute errors in the implied volatility curves.
Visually, the simulated implied volatility curves almost perfectly matches the market volatility
except some slight deviations at small values of the strike. The result of the average absolute error
is remarkably favourable: The error is almost halved in both simple and complex LSVMs compared
to case with the RKHS method.

It is also worth noting that the method is very efficient: Unlike the regularising kernel method
and the RKHS method, the simple approximation of the conditional expectation in the bin Monte
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Carlo method does not involve complex computations, thus make it very fast. We will have a
more detailed discussion regarding the computational speed in a later chapter. Despite being fast,
the bin Monte Carlo method is able to reproduce the implied volatility curve in the Black-Scholes
market with high accuracy. We move on to see its performance when the market has a different
volatility dynamic in the Heston market.
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Figure 4.1: Market volatility level and implied volatility curves from the calibrated LSVMs at
T = 1 in the Black-Scholes market using the bin Monte Carlo method, with N = 105, M = 1 and
the number of bins l = 20.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM 0.0574 0.0037 0.0147 0.0505
Complex LSVM 0.0509 0.0995 0.0680 0.1428

Table 4.1: Absolute error in % of implied volatility curves in the Black-Scholes market with the
bin Monte Carlo method.

4.2 Heston market with the bin Monte Carlo method

We consider the same Heston market, simple and complex LSVMs as defined in Section 2.3, and
apply Algorithm 3 with the number of particles N = 105, M = 1000, T = 1, and the equal
bin-frequency method with the number of bins l = 20. Figure 4.2 and Table 4.2 summarise the
simulation result. The size of magnitude of the average absolute errors are in the same order as
the previous two methods, and the implied volatility curves from the simulated models capture
the downwards skewed shape as the one in the market.

Notice that unlike the case with the RKHS method, the bin Monte Carlo method does not
experience any difficulty in simulating the calibrated LSVMs with strong correlation between the
share price and the volatility processes.

When applying the bin Monte Carlo method, one needs to choose the number of bins. We move
on to see whether the simulation results can be improved by a different choice of the number of
bins.
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Figure 4.2: Market volatility level and implied volatility curves from the calibrated LSVMs at
T = 1 in the Heston market using the bin Monte Carlo method, with N = 105, M = 1 and the
number of bins l = 20.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM 1.5067 1.0294 0.5382 0.9081
Complex LSVM 1.3634 1.0951 0.4564 1.0055

Table 4.2: Absolute error in % of implied volatility curves in the Heston market with the bin Monte
Carlo method.

4.3 The impact of the number of bins on simulation results

We focus on the impact of the number of bins on LSVM simulations in the Heston market with
equal bin-frequency method. Recall that in the equation (4.0.1), the number of bins l determines
the number of estimates we compute on the conditional expectation at each time step. The larger
the l, the smaller the bin width, but the fewer particles in each bin. Therefore, it is important
find a balance in between: we wish to have a large number of bins so that each bin is smaller in
width, but on the other hand, we wish to have a decent amount of particles within each bin for a
good estimation. In the extreme case where we select the number of bins to be equal to the size
of the particles, each bin will contain exactly one particle. The estimated value of the conditional
expectation in each bin is effectively the realised volatility of the single particle, which is very noisy
and should be avoided.

Figure 4.3 plots the simulation results with different numbers of bins. The left subplot uses
l = 50 bins and the right one is with l = 200 bins. Table 4.3 summarises the absolute errors in
implied volatility curves from the simulations. We see that in both cases the accuracy is improved
comparing to the base case l = 20. Visually, we observe that the two simulated implied volatility
curves from the calibrated LSVMs are very close to each other. Note that similar to Figure 2.4 in
the regularising kernel method, there exists a gap with the similar size between calibrated curves
and the market curve, which may be caused by the noise in approximating the Dupire function.

It is worth noting that there is a slight difference in the simulation accuracy between the cases
with the number of bins l = 50 and l = 200, and this difference is small. However, the number of
bins directly impacts the simulation time. To see this, we record the average simulation time over
7 runs of a calibrated LSVM under the Heston model with N = 1000 particles, the number of time
steps M = 1000 and T = 1 over various numbers of bins l. Figure 4.4 shows such relationship. We
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Figure 4.3: Market volatility level and implied volatility curves from the calibrated LSVMs at
T = 1 in the Heston market using the bin Monte Carlo method, with N = 105 and M = 1. Left:
the number of bins l = 50; Right: the number of bins l = 200.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM, l = 20 1.5067 1.0294 0.5382 0.9081
Simple LSVM, l = 50 1.2589 0.9241 0.3831 0.7674
Simple LSVM, l = 200 1.1528 1.1469 0.4698 0.7133
Complex LSVM, l = 20 1.3634 1.0951 0.4564 1.0055
Complex LSVM, l = 50 1.2095 1.0622 0.5196 0.7400
Complex LSVM, l = 200 1.0657 1.1264 0.5202 0.6601

Table 4.3: Absolute error in % of implied volatility curves in the Heston market with the bin Monte
Carlo method.

see that the computation time grows linearly with the number of bins used. Therefore, depending
on situations, it may be worth considering to trade a fraction of accuracy for a faster computation.

In the next Chapter, we summarises the three methods we have introduced so far, and provide
a short comparisons among them.
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Figure 4.4: Simulation time vs. the number of bins l with the bin Monte Carlo method in the
Heston market, with N = 1000, M = 1000, and T = 1.
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Chapter 5

Comparisons among the
regularising kernel method, the
RKHS method and the bin Monte
Carlo method

We have introduced three different methods in estimating the conditional expectation term E[vt|St]
in the simulations of the calibrated LSVMs, and in this chapter we give some comparisons among
different methods. We focus on computational efficiency, accuracy in the simulation and provide
an overall summary of the three methods in the next few sections.

5.1 Computational efficiency vs the number of particles

Computational efficiency is critical when applying an algorithm in practice. In the simulation
of the calibrated LSVMs, it is important to understand how the computational power increases
with the increasing number of particles N . In the following analysis, we mimic the practical
implementations in the real world with the use of efficient tools in Python packages, including
vectorisations in Numpy and Pandas packages.

We compare the three methods by varying the number of particles N under the same numerical
setting: the same number of time steps M = 1000 with expiry T = 1. All three methods are
tasked to calibrate the simple LSVM in the Black-Scholes market as defined in (2.2.2). Recall
that in each method, there exists a hyper-parameter which further determines how to improve the
computational efficiency: the size of grid |Gt| where the conditional expectations are estimated in
each time step in the regularising kernel method, the number of kernel functions L to approximate
the conditional expectation in the RKHS method, and the number of bins l in the bin Monte
Carlo method. To control the impact from these parameters, we set |Gt| = 40 for all t ∈ [0, T ],
L = l = 40.

Figure 5.1 plots the simulation time in seconds versus the number of particles N . It can be
seen that although all three methods have linear time complexity, the difference among them is
significant. It is evident that the RKHS method has a significant larger slope than the others, and
this leads to a substantial difference in the efficiency with a large N : If we take 200000 particles,
the computation time of the RKHS method is approximately 6 times of the one with the bin Monte
Carlo method. Note that the bin Monte Carlo method is roughly twice more efficient than the
regularising kernel method with larger values N , making it the most time efficient method among
the three.

The high efficiency in the bin Monte Carlo method is mainly attributable to the vectorisation
and DataFrame tools in Python packages, which avoid slow Python loops. However, in the RKHS
method, the algorithm involves several matrix multiplications and inversions. These operations
are computationally heavy and hard to be optimised, which may lead to lower efficiency.

In the next section, we move on to analyse the accuracy in simulations with different number
of particles.
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Figure 5.1: Computation time vs. the number of particles N , with M = 1000 and T = 1.

5.2 Accuracy vs the number of particles

In practice we may consider using a small number of particles N to simulate the LSVMs for a low
computation time. In this section, we study the accuracy of the three methods when the number
of particles is small.

We select a grid of the number of particles N ∈ {500, 1000, 5000, 10000} and apply the three
methods in the Heston market defined in (2.3.1). All three methods are set to simulate the
calibrated LSVM

dSt =
√
vt
σDup(t, St)√

E[vt|St]
StdWt, S0 = 1,

dvt = µ(µ̄− vt)dt+ γ
√
vtdBt, v0 = 0.1024,

with independent Brownian motions (Wt)t∈[0,T ] and (Bt)t∈[0,T ], µ = 1, v̄ = 0.0144, γ = 0.5751,
v0 = 0.0144. The simulations are carried out with the number of time steps M = 1000, the expiry
T = 1 and various N . The parameters in the three methods are set as follows: the regularising
kernel method with the kernel bandwidth h = S0N

1
5 /10 and default grid size |Gt| as defined in

Chapter 2, the RKHS method with regularisation parameter λ = 10−5 and default number of
kernel functions L = 40, and the bin Monte Carlo method with the number of bins l to be 20 for
N ∈ {500, 1000}, and 40 for N ∈ {5000, 10000}. We compare the mean of average absolute errors
in the implied volatility curves over 50 simulations for each N .

Figure 5.2 shows the plot of the mean of average absolute errors in the implied volatility curves
in percentage versus the number of particles N . As the number of particles increases, the error
decreases in all three methods. However, the reduction is more significant in the regularising kernel
method and the bin Monte Carlo method than the RKHS method. The accuracy in the RKHS
method may be improved by the choosing a smaller regularisation parameters λ < 10−5, however,
in our experiment, the simulation with a smaller λ may fail to reproduce the implied volatility
curve in the Heston market given a small number of particles.

In the next section, we summarise the three methods and conclude the chapter.

5.3 Summary

We introduced three different methods to approximate the conditional expectation in the parti-
cle simulation scheme of the calibrated LSVMs. The three methods use different intuitions and
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Figure 5.2: The mean of average absolute error in implied volatility curves in % vs. the number
of particles N .

techniques, which leads to different implementation complexity and calibration accuracy.
The regularising kernel method approximates the density of (St, vt) for t ∈ (0, T ] based on

the empirical distribution of the realised particles. It uses the Nadaraya-Watson estimator for the
conditional expectation estimation by replacing Dirac functions with continuous kernel functions
δt,N :

EQt [vt|St = x] ≈
∑N

i=1 v
i,N
t δt,N (Si,N

t − x)∑N
i=1 δt,N (Si,N

t − x)
.

Furthermore, the implementation of the method is relatively efficient in Python, and the method
is able to simulate the calibrated LSVMs and reproduce market implied volatility curves with
relatively high accuracy even with a small number of particles. However, it is important to note
that the calibration accuracy is sensitive to the choice of the bandwidth in the kernel functions.

On the other hand, instead of approximating any density functions, the RKHS method ap-
proaches the calibrated LSVMs by interpreting the conditional expectation EQt [vt|St = ·] as a
function and the solution of the optimisation problem

argmin
f∈L2

E(vt − f(St))
2. (5.3.1)

It uses the RKHS space H to obtain an approximated solution in (5.3.1) by solving an associated
regularised problem

argmin
f∈H

E(vt − f(St))
2 + λ∥f∥2H.

The solution mλ(·; qt) of the regularised problem can be written as a weighted sum of exponential
kernel functions, where qt is the true bivariate distribution of (St, vt) for t ∈ [0, T ]. Moreover,
[11] establishes the results that if we replace EQt [vt|St = ·] with mλ(·; qt) in the calibrated LSVM
(1.0.3), the well-posedness of such SDEs can be established with some positive fixed regularisation
parameter λ.

However, despite the success in establishing the theoretical results, the RKHS method is more
computationally demanding in practice. Furthermore, as discussed in Section 3.4, it could be
challenging to apply the RKHS method when the underlying LSVM has a strong correlation
between the share price and volatility processes in a market with non-constant volatility surface.
However, this difficulty is not encountered by the other two methods.
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Finally, the bin Monte Carlo method approximates the conditional expectation by partitioning
the particles into l bins:

EQ[vt|St = x] ≈ EQ[vt|St ∈ (bi, bi+1]],

where x ∈ (bi, bi+1], for i = 1, . . . , l.
In contrast to the RKHS method, the bin Monte Carlo method is very computationally effi-

cient. Moreover, similar to the regularising kernel method, the bin Monte Carlo method is able to
reproduce the implied volatility curve with relatively high accuracy using a small number parti-
cles. Together with its high computational efficiency, it makes the bin Monte Carlo method a good
choice to be applied in practice.

So far we discussed the simulation of the LSVMs with zero interest rate. In practice, however,
interest rates play an important role in option pricing. In the next chapter, we discuss the LSVM
simulations with stochastic interest rates and conclude the chapter with a numerical simulation
example.

37



Chapter 6

Simulations of calibrated
SIR-LSVMs

In this chapter, we introduce the calibrated LSVMs with stochastic interest rates (SIR-LSVM)
in the Foreign Exchange market. We first state the SIR-LSVM calibration condition and briefly
explain the particle method for the calibrated dynamic. Finally, we apply the method to simulate
the calibrated SIR-LSVM in a synthetic market and compare the simulated implied volatility curves
to the one from the market. The model and the method in this chapter is referenced from [21].

6.1 SIR-LSVMs with stochastic rates and the calibration
condition

In the Foreign Exchange market (FX), let (rdt )t∈[0,T ] and (rft )t∈[0,T ] be the short rate processes
of the domestic currency and the foreign currency between time zero and a fixed time T > 0.
Define (St)t∈[0,T ] to be the exchange rate process between the domestic and foreign currencies. By
convention, it is interpreted that one unit of the foreign currency is worth St units of the domestic
currency at time t ∈ [0, T ]. We introduce (Dd

t )t∈[0,T ] and (Df
t )t∈[0,T ] as discount factors in the

domestic and the foreign money markets respectively, where

Dd
t = exp

(
−
∫ t

0

rdsds

)
,

Df
t = exp

(
−
∫ t

0

rfs ds

)
.

Consider a SIR-LSVM defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ],Qd), where Qd

is the risk neutral measure in the domestic money market:

dSt = (rdt − rft )Stdt+ σ(t, St)
√
vtStdWt, (6.1.2a)

rdt = gdt + hd(t), (6.1.2b)

rft = gft + hf (t), (6.1.2c)

dgdt = κd(θd − gdt )dt+ ξd

√
gdt dW

d
t , (6.1.2d)

dgft =

(
κf (θf − gft )− ρSfξf

√
gft σ(t, St)

√
vt

)
dt+ ξf

√
gft dW

f
t , (6.1.2e)

dvt = κ(θ − vt)dt+ ξ
√
vtdW

v
t , (6.1.2f)

with initial values S0, v0 take values in R+, rd0 , r
f
0 in R, non-negative parameters κd, θd, ξd, κf , θf ,

ξf , κ, θ, ξ and deterministic functions hd : [0, T ]→ R and hf : [0, T ]→ R. (W,W v,W d,W f ) is a
four-dimensional Brownian motion, with the correlation structure:

d⟨Wt,W
v
t ⟩ = ρdt, d⟨Wt,W

d
t ⟩ = ρSddt, d⟨Wt,W

f
t ⟩ = ρSfdt, d⟨W d

t ,W
f
t ⟩ = ρdfdt,
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where ρ, ρSd, ρSf and ρdf ∈ (−1, 1). The SIR-LSVM is calibrated to the market when the leverage
function σ : [0, T ]× R+ → R+ satisfies the condition:

σ2(t, x) =
EQd

[Dd
t |St = x]

EQd [Dd
t vt|St = x]

(
σDup(t, x)

2 +
EQd

[Qt]
1
2x

2 ∂2C(t,x)
∂x2

)
,

where
Qt = Dd

t (r
f
t − r̄ft )(St − x)+ − xDd

t 11St≥x[(r
d
t − r̄dt )− (rft − r̄ft )],

and r̄dt = − ∂
∂t logP

d(0, t) and r̄ft = − ∂
∂t logP

f (0, t) are the instantaneous forward rates. P d(0, t)
and P f (0, t) are the zero coupon bond prices in the domestic and foreign money markets. The
Dupire local volatility function σDup : [0, T ]× R+ with stochastic rates is defined as follows:

σDup(t, x) =
∂C(t,x)

∂t + x(r̄dt − r̄ft )
∂C(t,x)

∂x + r̄ft C(t, x)
1
2x

2 ∂2C(t,x)
∂x2

,

where C(t, x) is the market price of a vanilla Call option on the exchange rate St, with maturity t
and strike x.

Notice that the domestic and the foreign short rates follow CIR++ dynamics in (6.1.2), and are
able to be calibrated to the market and reproduce the zero coupon bond market prices. [21] gives
more details in how to calibrate the corresponding parameters in the short rate models, which
is beyond the scope of this project. In rest of our discussion, we assume that the parameters
κd, θd, ξd, κf , θf , ξf and the functions hd, hf are known and have already been calibrated to the
market. Given some parameters κ, θ, ξ in the volatility process, we introduce a simulation scheme
using the particle method for the calibrated SIR-LSVM.

To achieve this, we consider N particles {(Si,N
t , vi,Nt , rd,i,Nt , rf,i,Nt , Dd,i,N

t )t∈[0,T ]}Ni=1 with the
following dynamics:

dSi,N
t = (rd,i,Nt − rf,i,Nt )Si,N

t dt+ σ̂(t, Si,N
t )

√
vi,Nt Si,N

t dW i,N
t ,

rd,i,Nt = gd,i,Nt + hd(t),

rf,i,Nt = gf,i,Nt + hf (t),

dgd,i,Nt = κd(θd − gd,i,Nt )dt+ ξd

√
gd,i,Nt dW d,i,N

t ,

dgf,i,Nt =

(
κf (θf − gf,i,Nt )− ρSfξf

√
gf,i,Nt σ̂(t, Si,N

t )

√
vi,Nt

)
dt+ ξf

√
gf,i,Nt dW f,i,N

t ,

dvi,Nt = κ(θ − vi,Nt )dt+ ξ

√
vi,Nt dW v,i,N

t ,

dDd,i,N
t = −rd,i,Nt Dd,i,N

t dt,

where {(W i,N ,W d,i,N ,W f,i,N ,W v,i,N )}Ni=1 are N independent copies of 4-dimensional Brownian
motion (W,W v,W d,W f ). We use the regularising kernel method in Chapter 2 to approximate the
conditional expectation in the calibrated leverage function:

σ̂(t, x) =

√√√√EQd,N [Dd,N
t |St = x]

EQd,N [Dd
t vt|St = x]

(
σDup(t, x)2 +

EQd,N [Qt]
1
2x

2 ∂2C
∂x2

)
,

=

√√√√ 1

p̂(t, x)

(
σDup(t, x)2 +

1
N

∑N
i=1 Q

i,N
t

1
2x

2 ∂2C(t,x)
∂x2

)
,

where

p̂(t, x) =

∑N
i=1 D

d,i,N
t vi,Nt δt,N (Si,N

t − x)∑N
i=1 D

d,i,N
t δt,N (Si,N

t − x)
,

Qi,N
t = Dd,i,N

t (rf,i,Nt − r̄f,i,Nt )(Si,N
t − x)+ − xDd,i,N

t 11Si,N
t ≥x[(r

d,i,N
t − r̄d,i,Nt )− (rf,i,Nt − r̄f,i,Nt )],

with some kernel functions δt,N (·).
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Algorithm 4 summarises the full algorithm in simulating the calibrated SIR-LSVMs. The inputs
of the algorithm include: the number of particles N , the expiry T , the number of time steps M ,
the Dupire function σDup, initial values S0, v0, rd0 , rf0 , parameters in the domestic short rate
model ξd, θd, κd, h

d(·), parameters in the foreign short rate model ξf , θf , κf , h
f (·), parameters

in the volatility process ξ, θ, κ, correlation parameters ρ, ρSd, ρSf , ρdf , and the parameters in the
regularising kernel method δt,N (·), h, η.

Given a market with observable vanilla option prices and zero coupon bond prices, we compute
the Dupire volatility function using the finite difference method as discussed in Chapter 2, and
approximate the instantaneous forward rates similarly:

r̄it ≈ −
logP i(0, t+∆t)− logP i(0, t)

∆t
,

for i ∈ {d, f} and some small time interval ∆t > 0.
In the next section, we apply the algorithm in a synthetic Heston market with stochastic interest

rates, and compare the implied volatility curves from calibrated SIR-LSVM to the market implied
volatility curve.

6.2 Simulation of the calibrated SIR-LSVMs in the Heston
market

We first generate a synthetic Heston market with stochastic interest rates:

dSt = (rdt − rft )Stdt+
√
vtStdW

M
t ,

drdt = κM
d (θMd − rdt )dt+ ξMd

√
rdt dW

d,M
t ,

drft =

(
κM
f (θMf − rft )− ρMSfξ

M
f

√
rft
√
vt

)
dt+ ξMf

√
rft dW

f,M
t ,

dvt = κM (θM − vt)dt+ ξM
√
vtdW

v,M
t ,

with inital values S0 = 1, rd0 = 0.0001, rf0 = 0.0001 and v0 = 0.1024. (WM ,W d,M ,W f,M ,W v,M )
is a four-dimensional Brownian motion, with the correlation structure:

d⟨WM
t ,W v,M

t ⟩ = ρMdt, d⟨WM
t ,W d,M

t ⟩ = ρMSddt, d⟨WM
t ,W f,M

t ⟩ = ρMSfdt, d⟨W
d,M
t ,W f,M

t ⟩ = ρMdf dt,

where ρM = −0.7, ρMSd = −0.3, ρMSf = 0.3 and ρMdf = 0.5. The parameters with respect to the short

rate processes and the volatility process are set to have κM
d = 0.0837, θMd = 0.5469, ξMd = 0.0274,

κM
f = 0.011, θMf = 1.1656, ξMf = 0.037, κM = 1.5768, θM = 0.0484, ξM = 0.5751.
We simulate the calibrated SIR-LSVM as in (6.1.2), assuming that the short rate processes are

fully calibrated to the market. That is, we have κd = κM
d , θd = θMd , ξd = ξMd , κf = κM

f , θf = θMf ,

ξf = ξMf , and the deterministic functions hd(x) = hf (x) = 0 for all x ∈ R.
Similar to the analysis done in the previous chapters, we consider two calibrated SIR-LSVMs.

A simple SIR-LSVM has the same correlation structures and the parameter values in the volatility
process as with the market, that is, ρ = ρM , ρSd = ρMSd, ρSf = ρMSf , ρdf = ρMdf , and κ = κM , θ = θM ,

ξ = ξM . In contrast, a complex SIR-LSVM has a different volatility process and correlation
structure to the market, where we set ρ = 0, ρSd = −0.3, ρSf = 0.3, ρdf = 0.5, and κ = 1,
θ = 0.0144, ξ = 0.5751.

We use the result from Chapter 2 and choose the bandwidth h of the kernel functions to be
h = S0N

− 1
5 /10 to achieve better calibration results. We set the number of particles N = 105, the

number of time steps M = 1000 and T = 1.
Figure 6.1 plots the implied volatility curves from both calibrated SIR-LSVMs as well as the one

from the synthetic market, and Table 6.1 summarises the absolute errors in the implied volatility
curves. We see that both curves from the simulated SIR-LSVMs follow each other and the market
volatility curve closely. Furthermore, the average absolute error in the implied volatility curves
are comparable to the ones in the previous chapters. This suggests that the simulation scheme via
the particle method is able to reproduce a decent implied volatility curve from the calibrated SIR-
LSVMs, regardless whether the volatility process in the model differs from the market dynamic.

This concludes our discussion on the simulation of the calibrated SIR-LSVMs. The next chapter
provides a brief summary and concludes the report.
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Algorithm 4: Simulation of the calibrated SIR-LSVM with stochastic interest rates

Data: N , T , M , σDup, S0, v0, r
d
0 , r

f
0 , ξd, θd, κd, h

d(·), ξf , θf , κf , h
f (·), ξ, θ, κ, ρ, ρSd,

ρSf , ρdf , δt,N (·), h, η
∆t← T/M ;
for i in 1, . . . , N : do

Si,N
0 ← S0;

vi,N0 ← v0;

Di,N
0 ← 1;

gd,i,N0 ← 0;

gf,i,N0 ← 0;

k ← 1;
σ̂(t, x)← σDup(0, x)/

√
v0 for t ∈ [0,∆t];

while k ≤M do
tk ← k∆t;
for i in 1, . . . , N : do

(W i,N ,W d,i,N ,W f,i,N ,W v,i,N )
i.i.d.∼ N

(
(0, 0, 0, 0),

[
1 ρSd ρSf ρ

ρSd 1 ρdf 0
ρSf ρdf 1 0
ρ 0 0 1

])
;

Si,N
tk
← Si,N

tk−1
+ Si,N

tk−1
(rd,i,Ntk−1

− rf,i,Ntk−1
)∆t+

√
vi,Ntk−1

Si,N
tk−1

σ̂(tk−1, S
i,N
tk−1

)
√
∆tW i,N ;

Di,N
tk
← Di,N

tk−1
− rd,i,Ntk−1

Di,N
tk−1

∆t;

gd,i,Ntk
← gd,i,Ntk−1

+ κd(θd − gd,i,Ntk−1
)∆t+ ξd

√
gd,i,Ntk−1

√
∆tW d,i,N ;

rd,i,Ntk
← gd,i,Ntk

+ hd(tk);

gf,i,Ntk
← gf,i,Ntk−1

+

(
κf (θf − gf,i,Ntk−1

)− ρSfξf

√
gf,i,Ntk−1

σ̂(tk−1, S
i,N
tk−1

)
√
vi,Ntk−1

)
∆t+

ξf

√
gf,i,Ntk−1

√
∆tW f,i,N ;

rf,i,Ntk
← gf,i,Ntk

+ hf (tk);

vi,Ntk
← vi,Ntk−1

+ κ(θ − vi,Ntk−1
)∆t+ ξ

√
vi,Ntk−1

√
∆tW v,i,N ;

Qi,N (tk, x)←
Dd,i,N

tk
(rf,i,Ntk

−r̄f,i,Ntk
)(Si,N

tk
−x)+−xDd,i,N

tk
11Si,N

tk
≥x[(r

d,i,N
tk
−r̄d,i,Ntk

)−(rf,i,Ntk
−r̄f,i,Ntk

)];

G← equal-spaced grid values covering the set {Si,N
tk
}Ni=1, with |G| = max(N1

√
tk, N2),

N1 = 30, N2 = 15;
for x in G do

Mx ← {i ∈ {1, . . . , N}|δtk,N (Si,N
tk
− x) > η};

p̂(tk, x)←
∑

i∈Mx
Di,N

tk
vi,N
tk

δtk,N (Si,N
tk

−x)∑
i∈Mx

Di,N
tk

δtk,N (Si,N
tk

−x)
;

σ̂(tk, x)←
√

σ2
Dup(tk,x)

p̂(tk,x)
+

1
N

∑N
i=1 Qi,N (tk,x)

1
2 p̂(tk,x)x

2 ∂2C(tk,x)

∂x2

;

for i in 1, . . . , N : do

σ̂(tk, S
i,N
tk

)← cubic interpolation;

σ̂(t, Si,N
tk

)← σ̂(tk, S
i,N
tk

) for t ∈ [tk, tk+1];

k ← k + 1;
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Figure 6.1: Market volatility level and implied volatility curves from the calibrated SIR-LSVMs
at T = 1 in the Heston market with stochastic interest rates. The simulation is based on the
regularising kernel method, with N = 105 and M = 1000.

Absolute error |σTrue
Impl − σLSVM

Impl | in %

Strike 0.7 1 1.3 Ave. absolute error
Simple LSVM 0.2093 1.4227 0.7408 0.9328
Complex LSVM 0.4223 1.6696 0.7256 1.0600

Table 6.1: Absolute error in % of the implied volatility curves in the Heston market with stochastic
interest rates.
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Conclusion

We introduced and studied the local stochastic volatility model, a state-of-the-art modelling tool
in option pricing which allows an exact calibration to the vanilla options in the market. We briefly
discussed the challenge in establishing the well-posedness of the calibrated LSVMs, as well as the
difficulty in the numerical simulations due to the presence of the conditional expectation E[vt|St],
which is introduced by the calibration condition. Since the calibrated LSVMs can be seen as a
special case of the McKean-Vlasov SDEs, we introduced the particle simulation scheme and focused
on three different methods to approximate E[vt|St], which are the regularsing kernel method, the
RKHS method and the bin Monte Carlo method.

From our numerical experiments, we see that the calibrated LSVMs are able to reproduce the
market volatility curves using the three methods in most scenarios, with some exceptions in the
RKHS method. We further provided a discussion on the comparison among the three methods,
including the computational efficiency and accuracy.

We conclude the report by discussing the LSVMs with stochastic interest rates (SIR-LSVM) in
the FX market, and provided a numerical example to simulate the calibrated SIR-LSVMs in the
Heston market with CIR short rates.

In conclusion, despite the challenge on the well-posedness of the calibrated LSVMs, several
numerical methods are able to provide feasible ways to simulate the calibrated LSVMs and repro-
duce the implied volatility curves. This enables the LSVMs to be an effective and practical tool in
day-to-day option pricing activities.
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Appendix A

Technical Definitions

Both definitions below are referenced from [15, Chapter 2.2] and used in Chapter 1.

A.1 Integrability on the set of Borel probability measures

Definition A.1.1. Let (X , d) be a metric space, and P(X ) be a set of Borel probability measures
on X . For p ≥ 1, define Pp(X ) to be the set of probability measures µ ∈ P(X ) satisfying∫

X
d(x, x0)

pµ(dx) <∞,

where x0 ∈ X is an arbitrary reference point.

A.2 p-Wasserstein metric

Definition A.2.1. The p-Wasserstein metric on Pp(X ) is defined by

Wp(µ, ν) =

(
inf

X∼µ,Y∼ν
E[d(X,Y )p]

)1/p

,

where µ, ν ∈ P(X ), and the infimum is over all pairs of X -valued random variables with given
marginals µ and ν.
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