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Abstract

"Greek Hedging is a legacy approach”. This approach once justified by lack of data and compu-
tational power is starting to fade away as we enter the era of machine learning. Greek Hedging,
almost exclusively used in many financial institutions to quantify risk is a consequence of conven-
tional pricing models. However, the GFC aftermath gave birth to a new idea which is indifference
pricing, a framework under which the price of an instrument is given by the hedge the position
that the trader will implement. This approach being model-free essentially allows one to both price
and hedge without having to rely on any kind of pricing models.

In 2018, Buehler et al. [7] publish a paper in which they show how training neural networks
alongside indifference pricing can be used to price any portfolio of liabilities in a tractable model
which is able to incorporate transaction costs. This ability to price any kind of liabilities is a
breakthrough as we do not need some convoluted analytical pricing model for the valuation of
complex instruments, especially when there is no consensus on the pricing.

Such an instrument is for instance, an autocallable which is one of the most popular structured
products in the world. In essence, the holder sells a barrier in exchange for coupons in the future.
The key issue with the product is that they are notoriously hard to hedge as the gamma (change
of delta to the spot) can be very high around the barriers and hence hard to manage. There are
many models in this space like Heston, Local volatility, ete. and the emergence of Rough Volatility
models such as rough Bergomi have promised a more parsimonious volatility model that looks
more like the real world.

Keywords: Rough Bergomi, Neural Networks, Long Short Term Memory, Volatility Skew, Auto-
callables, Deep Hedging
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Introduction

In 2014, Gatheral et al. [17] postulate that *Volatility is rough”. This observation motivated by
Comte and Renault’s work [9] on the Fractional Stochastic Volatility model would then give birth
to a range of new volatility models attempting to capture this so-called "roughness”. One of them
is the rongh Bergomi model as introduced by Bayer et al. [3] in 2016. This model has gained a
lot of traction over the past few years as it is able to accurately capture implied volatility surfaces
consistent with market data. Unfortunately, the initial simulation approach they suggest is slow
which malkes the model less tractable. It was later refined in Bennedsen et al. [!] who propose a
method called the "Hybrid Scheme” which greatly improves the simulation time. Thanks to its
improvement, we are now able to study the model’s in-depth and investigate its applications to
various products available within the financial space.

One particular product is of interest to us: the autocallable usually abbreviated as autocall. The
autocall is one of the most popular structured products in the world and to this day offers no
consensus on its valuation and its hedging. To this end, we are keen on investigating rough
Bergomi against other famous model such as the widely known Black Scholes and against Heston,
which is the model we will consider as our benchimark.

Unfortunately, as we just hinted, autocallables are very hard to value in practice. Effectively,
its complex path-dependence generates issues when it comes to pricing and hedging. Essentially,
the autocall is a product that contrary to other more classic (or certain exotic) options has the
special feature of early redemption. In other words, under certain conditions, the instrument can
terminate before it reaches maturity. This varying maturity feature has created many issues when
using standard methods to value the product. With that in mind, we believe that straying from
conventional valuation methods should lead to interesting results.

As a matter of fact, traditional valuation models are commonly used to price all kinds of products,
usually doing so under the risk-neutral measure. However, in practice, markets are subject to
various market imperfections such as liquidity constraints or transactions costs - which is not
captured by those pricing models. These imperfections lead traders to manually adjust their
hedges which does not always lead to the most optimal hedges. In this search for optimality,
Halperin [17] propose a

where this model doesn’t make any any guesses or assumptions about the structure of the data it
is given.

In 2018, Buechler et al. [7] publish a paper in which they show how training neural networks
alongside indifference pricing can be nsed to price any portfolio of liabilities in a tractable model
which is able to incorporate transaction costs. This ability to price any kind of liabilities is a
breakthrough as we do not need some convoluted analytical pricing model to price complicated
instruments, especially where there is no consensus on the pricing. What's more, this approach is
able to encode the trader’s risk preferences according to some optimal constraints relevant to our
problem.

The goal of this thesis is to combine deep hedging alongside indifference pricing with a pricing
model such as rough Bergomi to simulate stock prices and see empirically how the valuation and
hedging behaves. We will specifically discuss in this thesis how to formalize this idea.

In this thesis, we shall first motivate the rough Bergomi model and provide the theoretical pre-
requisites in chapter 1. We will show how the model is constructed and calibrate it using real
market data with SP 500 calls. In chapter 2, we detail our market setting rigourously and define




indifference pricing and its framework. In chapter 3, we present two types Artificial Neural Net-
works, Feedforward Neural Networks and a specific case of Recurrent Network, the Long Short
Term Memory. These two types of Neural Networks will be used in our training. Concretely, we
will compare our results under the two models and see which would be suitable to handle our task.
Then, in chapter 4, we discuss Autocallables and the issues in their pricing and hedging. Finally,
we present the results in chapter 5 under three different models: Black-Scholes, rough Bergomi

and Heston.




Chapter 1

Theoretical prerequisites: the
rough Bergomi model

1.1 The history of volatility

Volatility is in essence a key parameter to consider when modelling derivatives. But the term
volatility is commonly abused and could mean a variety of things, from historical/realized to
implied volatility, and from present to forward implied volatility, these notions are all different and
one needs to apprehend which notion is discussed in a given context. One stylized fact observed
from European options is that implied volatility, in the sense that it is the volatility extracted from
market prices under a given model, is not constant over time and strikes. In equity markets, it is
known as skew as implied volatility resembles a skew as shown in fig. 1.2. This notion gave birth
to the volatility surface’ as demonstrated in [10, Page 48]) in fig. 1.1.

In 1973, Black and Scholes [31] publish what will be known as the most famons model to price
options. This model, although very tractable which helped tremendously increase its appeal, relies
on assumptions that are not compatible with markets. One of them being that volatility is constant
but as we saw, the implied volatility surface in markets destroys this assumption. To overcome
this challenge, Dupire et al. [13] proposed to model the volatility as a function of time and spot
price. This approach known as local volatility gained a lot of traction, proving easy to calibrate.

However, because the wvolatility is a deterministic function of time and spot price, this model
completely fails to price options such as forward starting options and cliquets which are sensitive
to forward volatility. This was discussed by Mazzon and Pascuccl [25] and Wilmott [31] who show
that in a local volatility model, forward skews are typically flat: therefore pricing cliquets or other
options with exposure to forward skew will result in a typically lower price than those involving
stochastic models and will almost surely misprice the option. The flat volatility coming from the
fact that because of the dependency of the volatility on the underlying price, the spot moving
higher has a higher probability i.e as time goes by, the volatilities and the skew will eventually go
down hence leading to a flat forward volatility.

Therefore, in the attempt to capture the randomness of the volatility, stochastic volatility models
have been popularized and are nowadays used both by practitioners and academics. In those
models, volatility is neither constant nor deterministic but instead, it is a stochastic process.
Among the many models, Heston [15] is popular for its tractability; providing a closed-form solution
for the European call.

Unfortunately, Heston just like the other stochastic volatility models fail to replicate the observed
skew and other volatility shapes observed in real markets. This disadvantage led academics and
practitioners to look at volatility with a more granular approach. One model that followed was
proposed by Bergomi [7]. In Bergomi’s model, forward variance is a stochastic process and volatility
skew was accurately captured for the case of SP 500 and other indices. Following this observation,
Bayer et al. [3] have introduced rough Bergomi (rBergomi) a model that is driven by fractional

!Also sometimes called cube due to its cubic shape as demonstrated in the Figure




Brownian motions and presented as an extension of the Bergomi model in the way the forward
variance is captured.

Average profile of implied volatility surface

Implied volatility

Figure 1.1: Average Implied volatility profile of SP500 options as March 1999 demonstrating this
notion of volatility cube/surface

implied volatility
(=] [ [ = [
h (=] [= N E =

=
=
'

75 100 125 150 175 200 225 250
strike price

Figure 1.2: Implied volatility levels as of September 2, 2022 after market close, extracted from
Apple call option prices, expiring September 23, 2022. As we can see, implied volatility decreases
with strike and displays a skewed shape, hence the name "skew”.
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1.2 Fractional Brownian Motion

In 1968, Mandelbrot and Van Ness [21] introduce for the first time the concept of fractional
Brownian motions. In their initial paper, they introduce this process as a sum of integrals of
Brownian motions. Throughout this paper, we consider a probability space (Q,F, (F;)i=0,F)
where F is the natural filtration generated by a standard Brownian motion.

Definition 1.2.1 (Fractional Brownian Motion). A fractional Brownian motion (fBm) is a Gaus-
sian process {WH ¢ = 0} with mean zero and autocovariance function:

1 . . )
E(WHW) = S5 + s — |t = s*), t.s cR. (1.2.1)

where H € (0,1) is called the Hurst parameter or the Hurst index.

Remark 1.2.2. For H = % the covariance function reads:

vl

E ( 'L"r"t_"l’ W

) = min(t, s)
which then simplifies to a standard Brownian Metion.

Proposition 1.2.3 (Stationary increments). Consider the process ¥ = W — WH ¢ > 0. A
direct consequence of its definition as per eq. (1.2.1) is that Y and W1 have same covariance.
Because both processes are Gaussian (by linearity), then they are equal in distribution and:

p=WH —wHE LW,

Proposition 1.2.4 (Self-similarity). Consider the process Zy = WH . t = 0 for some fized a > 0.
Using again the same arguments as in proposition 1.2.5, we obtain the equality in distribution:

Zy = u::{ g H H"!H
Proposition 1.2.5 (Correlation of the increments). Let (WH)es0 be a fBm with Hurst index
H £ (0,1). Then its increments are:
(i) Positively correlated for H > %
(i) Independent for H = } and simplifies to o standard Brownian metion.

(iit) Negatively correlated for H < %

In particular for H > 1, WH ezhibits long-range dependence:

.
SOEWH (W, - W] =50

n=1

Remark 1.2.6. As it is pointed out in [32], if H < 3, the fBm is "counterpersistent” in the sense
that it is likely to decrease in the future if it was increasing in the past and vice versa. On the other
hand, if H > % then the fBM is "persistent”, it will likely keep trending in the same direction as
previous values.

Proposition 1.2.7. Let ['lv-t-"!H),;_u be a fBm with Hurst index H € (0,1) Y {%} Then WH is not
a semi-martingale nor it is a Markov Process.

Remark 1.2.8. A direct consequence from proposition 1.2.7 is that we cannot apply classic ana-
lytical pricing methods such as PDEs or Fourier transform to models involving fBm.

Theorem 1.2.9 (Kolmogorov continuity theorem and Holder continnity). Let X : (X;)i~q be a
stochastic process. If there exist positive constants o, 3, K such that:

lEHX! _ XB|I.\] < K|t — S|1+.’}

Then there erists a modification X of X that is a continuous process i.e a process X (X:]::»u such
that:

11




o X is sample-continuous
e F(X; =X, =1
In particular, X is v-Hélder continuous for every « € (0. f)

Corollary 1.2.10 (Continuity of fBm). The fBm W¥ admits continuous medifications and for
any v € (0, H) this modification is v-Hélder continuous on each finite interval.

1.3 Bergomi model

1.3.1 Motivations

Pricing instruments depending on forward volatility such as cliquets or forward starting options
requires to have a model that captures it. A stylized fact from markets is that vanilla options tend
to exhibit a non-constant-shaped implied volatility slope. In the equity market, implied volatility
is characterized by a skewed shape for example. Hence vanilla options have exposure to this skew
and this additional risk is usually exhibited when trading spreads. The implied volatility term-
structure is hence used to trade the options under Black Scholes. But how does one get that for
forward starting options? The same approach leads us to incorporate the market implied forward
volatility term-structure and this risk is known as forward skew.

However, because the forward option market is usually less liquid than the vanilla one, it is not
always possible to have a complete surface for all strikes at a given maturity T for strikes at date
t; which complicates the pricing of those instruments under the Black Scholes framework.?.

Bergomi has introduced in [5] a model that overcomes this problem by capturing forward variance.

1.3.2 Dynamics for the Bergomi model
Consider the forward variance given by dynamics:
deT (1) = w(T — )T (1)dW

where W, is a @-Brownian Motion and w is in the form w(7) = we ", For simplicity, we will

drop the J notation but unless specified otherwise, the Brownian Motion is associated to the @

4

measure.

Applying Ito’s lemma to d€7 (¢) and integrating between 0 and t then yields:
€T () = £7(0) exp {we_hT_tJX; - Euze_“‘T_”E[Xf]} (1.3.1)

where X = (X;);>y is an Ornstein-Uhlenbeck process of the form:
dX, = —k X, dW, ~dW,. X, =0

which solution is well-known and given by:
t ’
X::/ A
0

. To compute X's second moment, we use Ito’s isometry which yields:

t
E(X) = / e T3 g
0

1— 9_2“

2k

2There exist standardized cliquets for which one can obtain some market consensus data from which one can
extrapolate a fairly accurate idea of where the market is pricing forward skew
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Bergomi's one-factor model is then similar to the GBM but with a stochastic forward volatility. 1t
is completely characterized by the following dynamics:

dS; = Si(r — q)dt + Se/&(t)dZy, Sp =0,
d&(T) = w(T — t)&(T)dW; (1.3.2)
A(Z, W), = pdt,

In the N-factor Bergomi model, the forward variance reads:

N i . :
iy=£"o)¢ (me e‘”-"‘""*"dw-’:) (1.3.3)
i=1 0

where £ is the stochastic exponential and is given by £(X;) = exp(){, - Xy — %{)&}!) where X is

assumed to be a continuous semimartingale.

1.4 Rough Bergomi model

In 2014, Gatheral et al. [17, Section 3.1, page 14| observed that the logarithm of the realized
variance behaves similarly to a fBm. To capture this property in a model, Bayer et al. [3] have
introduced rough Bergomi as an extension of the Bergomi model in the way the forward variance
is captured.

We will go through the derivation of their model in this section.

1.4.1 Deriving the rough Bergomi model under the P measure

First, consider the Mandelbrot and Van Ness representation as we have introduced in section 1.2:

t AWE 0 awE
vH — ¢ s 5 .
Wi =Cn ([71 (t—s)" I&- (-?)“‘) A

'l 2HT{3/2—H .
where &« = H — &+ and where we choose Cyy = v m such that it leads to the same

3
covariance we used to define a fBm in eq. (1.2.1).

Gatheral et al. [17, Section 3.1, page 14] found that increments of the logarithm realized volatility
were proportional to the increments of {Bm:

logoiin —logos = l'/(H"S_A —WHLr>o0

This finding leads us to study the log variance difference:

in Pl t E
logv, —log v, =20Cy (] (“ d_H;}_“ — / T liuq';_n )

, ugwr ! 1 1 o
oy ( ] ==t ) [ — )} du-s)

=20 Cy(M(u) + Z¢(u))

Additionally, we introduce W[ (u) known as a Volterra process:

e vdwY
W) = veH | —— (1.4.2)
t

(w— &)=

In the above, Z;(u) is Fi-measurable, M;(u) and IL‘t-"t[’(i,r) are independent of F;. Iurthermore,

(u—t)2H - ol
My(u) ~ N O,T and Wi (u) ~ N (0, (u —1)2).
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. . 2vCh . . .
Then introducing 17 = —— we can write the realized variance as:

V2H
1, = U exp {nﬁ’f[u] +2vCy Z, (u)}
Using well-known properties of normal and lognormal random variables, we may write:
EF [ | Fi] =vt exp {éjr‘pglli‘.[|'ﬂ-"g|]2 +2vCuZ; [u)}
=u;exp {%nQ(u — ) 0Oy 2, (u]}
We can then rewrite the realized variance in terms of the stochastic exponential:

va = E¥[v.| Fi)E (mi-’f(u)) (1.4.3)

Then under the physical measure P, the model dynamics are given hy:

dsu = Su[ru'udu Ll mdzy[f)‘ S[} > n:
v, = U exp {nﬁ-’f(u] + QrJC'HZt(u)} (1.4.4)
d(ZP,WF), = pdt,

1.4.2 Pricing under measure (Q

Having modeled eq. (1.4.4) under the real-world measure P, we wish now to derive it under the
Equivalent Martingale Measure (EMM) (@, the measure under which a derivative price is equal
to the expected value of discounted future cash flows. A direct consequence is that under this
equivalent measure (J, the discounted asset price is a martingale. Setting interest rates to 0
without loss of generality:

ot = VdZy,

where dZ¥ is obtained by Girsanov’s theorem:

d7% —dzf + M t<u<T. (1.4.5)

Ty

Recalling the process we introduced in eq. (1.4.2) and the model we obtained under the P measure
in eq. (1.4.4), we can rewrite WF:

dWE = pdz" + pdZ" (1.4.6)

where (7, ZF) are two independent standard Brownian motions and the choice p = 1 — p? ensures
independence of the two previous Brownian motions. Z is now the last process for which we haven't
got a expression under the measure {J. A prompt change of measure vields:

dZ% = dZF + v du (1.4.7)

where ~ is a suitable adapted process referred to as the market price of volatility risk.

Rewriting eq. (1.4.6) using eq. (1.4.5) and eq. (1.4.7) reads:
AW = AW, + (pp /V/ou + pyu)du (1.48)
which can be rewritten as:

dWE = dWE 4 x.ds
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Now, that we have obtained an expression of W2, we can rewrite the realized variance in eq. (1.4.3)
under the J measure:

vy =EF [u, | F2|E (?’;ﬁ’f[u])

=E v | Fe)E (n\/ﬁ ] Wy )

'U.—‘?

2
=EF [, | Fy] exp (n\f 2H ] dH - %{u - f]QH)

'U.—‘?

- Y
=1|5P|l'u|fz]5 (?}H'!Q(u)) exp (f! st)

=6u(0) € (nW(w))

where the forward variance
- Y
&(w) = B[ | Flexp | | —"2—ds
i (u—s)7

depends on the past values of the Brownian motion up to time t unlike the one in the Bergomi
model given in eq. (1.3.1). This specification in the rough Bergomi model enables in theory to
correctly capture the evolution of the variance swap curve.

1.4.3 Dynamics of the rough Bergomi model under the ) measure

To summarize, the rough Bergomi model is completely characterized by:

i t
S = Syexp {f VUadZZ — %] i.'“du} (1.4.9)
] 0

- 2 .
v = £.(0) exp {nwfi - %H“H} (1.4.10)
WE=v2a+1 [ s)*dWe (1.4.11)
dZ2 = pdW 2 + /1= p2d W2 (1.4.12)

where v = H — 1 € (=%, 1)\ {0}, H being the Hurst exponent of the fBm as per definition 1.2.1.

Bayer et al. [, page 18-21] have demonstrated that this model is able to fit implied volatility skews
very accurately, which is substantial progress compared to traditional stochastic volatility models.
As a matter of fact, it is well known that models used in the pricing of exotic options like Heston
or SABR struggle to replicate observed volatility surfaces implied from european options.

However, tractability can be a main issue for this model as methods like PDEs or Fourier transforms
cannot be applied as we mentioned in remark 1.2.8. Effectively, the initial approach proposed by
Bayer et al. [, Section 4, page 14- 1('] to simulate the Volterra process W is based on a Cholesky
decomposition and is of order O(n?). This approach can hence prove to be numerically slow. The
next section is dedicated to a new approach called the hybrid scheme which aims to simulate the
Volterra process with another approach that is mumerically faster.

1.5 Simulating the Volterra Process: the hybrid scheme

Recently, Bennedsen et al. [1] have proposed the hybrid scheme and its turbocharged version
implementation [20] is as of today the fastest technique to simulate the Volterra process ﬁt@ It
is of order OQ(nlogn) which is a substantial progress from the Cholesky decomposition method of
order @(n?). To simulate the asset, we will hence use this last implementation.”

We briefly sketch the fundamental principles of this scheme and the reader may refer to Bennedsen
et al. [1] for further details.

*which can be found here: https://github.com/
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We consider a Brownian semistationary process (BSS), introduced in [2], of the form:

i
X, :f glt — s)a dW, (L5.1)

where W is a standard Brownian Motion, g @ (0,00) — [0,00[ and 0 = (o0¢)icr is an (Fi)ien-
predictable process with locally bounded trajectories.

To insure eq. (1.5.1) is well-defined, we assume that g and ¢ are measurable functions that are
scquare-integrable.

When for some a € (7%, %) Y {0}, g behaves like a power-law near zero, then the trajectories of X
behave like the trajectories of a Brownian Motion with Hurst index H = o + % (0,1 {%}

The following assumptions are made on the function g:
(i) For some « € (—%, %) \ {0},
g(x) = Ly(x). x € (0,1],

where Lg: (0,1] — [0, 00) is continuously differentiable slowly varying at 0 and bounded
away from 0. Moreover, there exists a constant C' > 0 such that the derivative L satisfies:

|Ly(x)| < C(1+2"1),2 € (0, 1],
(ii) g is continuously differentiable on (0,00). Its derivative is monotonic and is square
integrable between (1, 00).
(iii) For some 8 € (—o0, —3),

glz) =0z, -

These conditions ensure that g is square-integrable.

We consider now a truncated version of eq. (1.5.1) with the integral starting at 0 as we work with
processes in which the time grid starts at 0. Processes of this form are called Truncated Brownian
semistationary (TBSS) process:

t
Y, :f g(t— s)a,dW, (1.5.2)

where g,0, W are defined as previously.

We define the hybrid scheme to discretize Y; in its integral representation. Consider the grid
gr=1{0,% ., %} Then if the volatility process o is kept constant in each discretization cell,
we can write:

[ nt]| fo ko1 |nt| k-1

0 ==
Y; = Zf glt—s)owdW, = v!_ﬁf L gt —s)dWs =Y
ol A

13
k=1"f"%

k=1 Tn

e If k is small in some sense, for instance define some x > () such that & < s then we can
approximate g as:

k k=1 k
t—s)=(t—s)"Lyl =), t—: —_— = 0
st—9=(t-9°Ly (£). e-se[S22 5\
e If k is large then we can approximate g:

b k-1 Fk
g(f—x]mg(?), f—.?E[ x ;}
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In particular, the discretization MSE is minimized when [!, Proposition 2.8, page 942]:

potl _ (g _yetiy @
b;:(#) . k= r+1

a+1

Finally splitting Y;" between the values up to x and larger yields:
Y=Y (1.5.3)

where:

min(|nt|.x) k kot
Y= ) L (;) 0k f!_L (t—s)*dW.,

k=1

. | nt] ('7; ' '
Y=Y g =)o Wy — Wi s,

k=r+1

We have now derived the hybrid scheme developed by Bennedsen et al.

To see how this is connected to fractional Brownian motions and ultimately to the rough bergomi
model, consider now the Volterra process: W := /2a +1 Jr[:(f —u)rdWr.

To simulate this process, we can use the first-order simulation (& = 1) of the hybrid-scheme we
just outlined. Indeed, we can approximate ¥ as:

t

B e ; b\ °
YV =2+ 1 (] (= —s)dWe+ Y (—*) W, s — wt_i)
o " =1 T n n i

k=2

which is just ¥{" in eq. (1.5.3) with: L,(-) = Lo(-) = Lg(u) = u®, u > 0. In particular,
a=H-j¢€(-37)\ {0}

Hence, we just showed that Y* can be approximated as a TBSS which we can simulate under the
hybrid scheme and achieve a performance of order @(nlogn) instead of O(n®).

1.5.1 Calibration

One strength of the rough Bergomi model is the few mumber of parameters one needs to calibrate
to the market. As a matter of fact, there are 4 free parameters which are H. 5, p, £. In particular,
£ being the forward variance is theoretically observable in the market which reduces the amount
of parameters to 3. Indeed, as there are actively traded variance swaps, one would observe the
market variance swap curve and calibrate accordingly. In practice however, finding variance swap
curve data is not as easy and for this reason, so we also need to estimate £ For our estimation,
we assume that the forward variance curve is constant i.e & (0) = £(0).

As we can see on fig. 1.3, the rough Bergomi model accurately fits the IV profile of SP 500 calls
for different maturities. We have summarized the parameters fitted for each figure in table 1.1.

We also note that the optimal parameters for H/«, p and 7 seem to roughly stay in the same range
even for increasing maturities. In [3, Section 5.2, page 18-20], Bayer et al. find that fitting S&P
options as of February 4, 2010 with parameters H = 0.05,p = —0.9,£ = 2.3 provides an accurate
fit for expiries ranging from T=0.041 to 2.88 (vears). These parameters are quite close to ours
which provides some intuition regarding the parameter calibration. In particular, we note that
that £ fixes the initial forward variance and that H /o controls the decay of the term structure of
the ATM volatility skew.
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Figure 1.3: S&P 500 Implied volatility taken from market call prices (mid) as of 2 September 2022
after market close. Parameters are summarized in table 1.1.

Expiry T H/ v P £ il
September 26, 2022 | 0.06 | 0.09/-0.41 | -0.99 | 0.090 | 2.10
October 14, 2022 | 0.11 | 0.10/-0.40 | -0.99 | 0.085 | 2.08
October 28, 2022 | 0.15 | 0.10/-0.40 | -0.99 | 0.090 | 2.13
Jamuary 31, 2023 | 0.41 | 0.10/-0.40 | -0.99 | 0.105 | 2.11
February 28, 2023 | 0.49 | 0.10/-0.40 | -0.97 | 0.104 | 2.11
August 18, 2023 0.96 | 0.10/-0.40 | -0.95 | 0.130 | 2.08

Table 1.1: Parameters fitted respectively for each plot in fig. 1.3 as of 2 September 2022 after

market close.
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Chapter 2

Problem setting and utility
indifference pricing

Pricing instruments is important and hedging them is probably as much. Usually, analytical models
are developed in a way that they rely on risk factors that influence the price of an instrument.
Sometimes, these models need to be calibrated to the market and one has to reverse engineer
said implicit risk factors such as implied volatility even though they are not state variables in
the model. In section 1.1, we have discussed the many limitations that models offer when pricing
financial instruments.

In the attempt to overcome these limitations, a new approach gained traction which states that
the price at which a contingent claim should be sold is equal to the cheapest hedge that the trader
will implement in order to hedge the claim. Formalized, this concept is called indifference pricing,
it is the price the hedger of the claim needs to charge to be indifferent between taking the position
and not taking it. In this chapter, we shall formalize this idea.

2.1 Market setting in discrete time

First, let us define our market setting. We consider a discrete-time market with horizon T" € ¥ in
which we assume that the market is made up of d € N risky assets, which prices are denoted by
S:= (8¢ )i=0,1,...7 With §; = (S;1,...,S.4) and assume that they form an adapted, non-negative
stochastic process on a filtered probability space (€1, F, Fy, P) although, we are not required to
make assumptions on the equivalent martingale measure. Our portfolio of claims that we aim to
hedge is denoted by a random variable Z which is F; measurable. Z, is referred to in the finance
literature as the contingent claim and in our setting, it represents the autocallable that we aim
to hedge with this thesis. It is important to note that this approach is model-free and it will not
require any pricing model, or any sensitivity-approach such as computing greeks.

To hedge the claim Z, we trade in S using an BE%valued F-adapted stochastic process § :=
(0¢)e=n1, -1 with & = (8¢ 1. ..., 8¢ a).

Here §} is the agent’s position in asset i at time t. Because the hedging strategy is self-financed, we
may need some cash at inception py € R which can be interpreted as the price of the claim Z, sold
at inception. Additionally, we assume that for any trade size r € B, trading incurs proportional
transaction cost k;|z|S; for some constant k; € R.. Thus, the strategy’s terminal wealth Vp(d) is
given by:

T

Vr(é) = (- S)r — Cr(d)

where




represents the replicating strategy’s P&L and:

d T
Cr(9) =3 i (|au,(-|su_(- S i — G nilSioni + |5T1:(-|ST__(-)
i=1 t=2

is the total cost incurred at the liquidation of the self-financing strategy 4. It is important to note
that 7 is not necessarily a function of the terminal asset, St but can be a function of the entire
path. Hence, this method provides a systematic approach to valuing and hedging complicated
payoffs such as autocallables without having to delve into complicated pricing models.

Finally, our terminal P&L is given by:

P&L(Z,po,6) :=po+ Vo — Z

The agents seek to optimize their PL with respect to § according to their risk preferences. Define a
loss function £: B — R that models the agents risk preferences, their goal is to ultimately minimize
their loss at maturity:

inf E[{(~Z +py+ (8- S)r - Cr(9)] (2.1.1)

We shall discuss which loss function will be used to model risk preferences in section 2.4. Further-
more, we will discuss in greater detail how we wish to tackle this minimizing problem with Neural
Networks that we will present in chapter 3.

2.2 Convex Risk measure

In essence, in a complete and arbitrage-free market, for our claim Z, there exists a unique replication
strategy d and a fair price py € B such that —Z + py + (6 - §)p — Cp(d) = 0 holds P-a.s. However
in practice, transaction costs and other market frictions are inherent to markets which nullifies the
previons assertion. To overcome this issue, we need to define an acceptable price such that the
overall position becomes acceptable in light of the various costs and constraints. This optimization
problem is formulated through the use of convex risk measures which we recall their definition
next.

Definition 2.2.1 (Convex Risk Measure). A convex risk measure is a function p: ¥ — R which
satisfies the following for each X, Y € X:

(i) Decreasing Monotonicity: If X <Y, then p(X) = p(Y).
A portfolio with a better position has less risk.

(ii) Convexity: p(AX + (1- A)Y) < Ap(X) + (1 - A)p(Y) for 0 < A < 1.
The risk of two Portfolios added together is less or equal to two separate portfolios risk
added together (Diversification).

(ili) Translation invariance: If m € B, then p(X + m) = p(X) - m.
Adding cash to a Portfolio will reduce its risk by as much.

2.3 Indifference Pricing

Let p: X — R be a convex risk measure and let H be the set of restricted trading strategies such
as liquidity, asset availability or trading restrictions, we write the optimization problem:

T(X) = (Sig,fip(X—(ﬁ-SJT—CT(ﬁ)) (2.3.1)

The following proposition found in |7, Section 3, Proposition 3.2, p.7] justifies the use of convex
measures.

Proposition 2.3.1. 7 is moenotone decreasing and cash-invariant. If Cr and H are convex, then
7 18 conver and is hence a conver risk measure.
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We define an optimal hedging strategy as a minimizer § € H of eq. (2.3.1) As Buehler et al. [7]
have shown, indifference pricing can be used alongside deep hedging.

Defining the indifference price p(Z) as the hedger of the claim Z needs to charge to be indifferent
between position -Z and not taking the position (i.e (). The indifference price p(Z) is then solution
to w(—Z + py) = 7(0) and by translation invariance, py = p(Z). In short, the indifference price
can be expressed as the difference between the optimization problem with claim Z and claimless,
ie:

p(Z) =n(-Z) —=(0) (2.3.2)

Remark 2.3.2. Under no transaction costs and no trading constraints, p coincides with the price
of a replicating portfolio (if it exists).

2.4 Exponential Utility Indifference Pricing

As we have seen in eq. (2.1.1), we wish to find some loss function, £: B — R that encodes the
agents risk preferences. A number of candidates can be used such as the quadratic loss {(z) = z°
or absolute loss {(x) = |z|. Utility functions are a popular set of functions to tackle this problem as
they provide a parameter to tune risk preferences accordingly, they have been covered extensively
in the literature (e.g [33], [L1]). Suppose our loss function to be modeled according to some utility
function U: B — R such that £{X) = —U(z). U is assumed to be strictly concave and increasing
so that —U becomes strictly convex and decreasing.

Exponential utility is a special case within utility functions that renders indifference pricing con-
venient to use as we will show in this section. The exponential utility function is given by:

Un(z) := —exp(—Ax), relR (2.4.1)

where A > 0 is the risk-aversion parameter. Then denoting q:=q(Z) € R the indifferent price of
the claim Z under the exponential utility, q must solve:

;1:15 E:U((HS St — C’T(ﬁ))] = ;BEII:. :U[q —Z4+ (8- 8)p — C'T(HF))]

sup Elexp(=A((3 - S)r — Or(3))] = sup Elexp(-\(q = Z+ (8- S)r = Cr(3))]

Elexp(—\(—Z + (8- §)r — C1(d))] 242
SUPsey Elexp(—=A(—Z + (6 - )r — Cr(d
Kp(Ag) =
P = sk Elexp(— N0 - S)7 — Or(0))]
q= ! log (Sllpae'ﬁs Elexp(—=A(—=Z + (6 - S)r) — C’Tm]])
AT supge 5, Elexp(=A((6 - §)7 — Cp(d))]

The purpose of this section is to show that q coincides with p as defined in eq. (2.3.2). As we have
obtained an explicit expression for q, consider the entropic risk measure p:

1
plX) = Y log Elexp(—AX)]

Then going from eq. (2.3.2):

21




pZ) =w(=2Z) —=(0)

it p(=2 +(3-S)r) = jnf p((6 - S)r)

1 1 infsey Elexp(—A(—Z + (6 -5)7)]
- Jg( infscp Elexp(—A(d - S)7]

R (Hllpf‘&u EU(-Z+(3- S)""”) -
N e supgy E[U (3 S)7] d

We have now proven that p coincides with q.

This last equation tells us that to find the indifference price, we need to solve the hedging problem
with utility function U7 with claim Z and claimless. Hence, in the case of deep learning, we would
need to train the network twice with and without claim Z. However, in practice, we find that the
optimum strategy without claim 7 reduces to 0 i.e not hedging the absence of claim, which seems
intuitive. This entails that concretely, we only need to train the network once.

In the context of exponential utility, the indifference price is then given by the estimator:

1
i = —1 243
p=log ( )




Chapter 3

Artificial networks: FNN and
LTSM

3.1 Introduction

Deep Learning is a branch of machine learning that uses artificial neural networks (ANN) to solve
some optimization problem. ANNs have gained a lot of traction in the past decades, namely due
to the increasing computational power at hand. Despite the numerous research papers that were
published and the progress that was made over the last decades, neural networks were still not
as much of a popular research topic® in the 90s. The late 2000s and early 2010s saw important
breakthrough in the fields of speech and image recognition with Krizhevsky et al. [22] and Hinton
et al. [1Y] that vastly popularized neural networks as a cross-industry application.
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Informally, the idea behind deep learning - in this case feedforward neural networks - is to design
a function f = (f1,..., fo): R — RY that converts [ € N inputs, into O € N outputs in some
optimal way. This is known as the optimization problem and in the case of hedging, we call it the
hedging problem.

The optimization problem is quantified through a loss function £ in the sense that we optimize the
loss funetion according to some conditions relevant to our problem.

lat least, not as popular as now
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A famous example is the regression problem where given @ = (z]'),n € N,7 € I samples of our
input variables - also known as "features” - we aim to predict y = (y"),n € N "labels”, hence we
try to match the output of f such that it is as close as possible from labels y.

Usnally, in this regression problem, we choose squared loss £(j,y) = (§j — y)? and we seek to
minimize the average loss, known as empirical risk:

In this chapter, we shall formalize these ideas and we will present two models involving neural
networks, Feedforward neural networks and Long Short Term memory.

3.2 Feedforward neural networks (FFN)

This section is inspired {rom Deep Learning lecture notes [27]. We present in this section the
building blocks of Feedforward neural networks.

3.2.1 Architecture

Definition 3.2.1 {Feedforward neural network). A function f : R’ = R is a feedforward neural
network (FNN) with r—1 € {0, 1, ...} hidden layers, where there are d; € N units in the i-th hidden
layer for any ¢ = 1, ...,7 — 1, and activation functions o;: R% R, i=1,...r whered, := O, if

f=or.0L,0...0010 Ly,

where L;: R%—1 — R%, for any i = 1,...,7, is an affine function

Lizx) = Wiz +b, ek,

parameterised by weight matrix W*# = W1, ]j21 4 k=1, 4, , € Rdi*di-1 and bias vector b' =

(b, "'-‘b:J.) € R%, with dy := I. We shall denote the class of such functions f by

No(lody, oyde1, 0501, 0 0).
If oi(x) = (g(z1)s .o g(za)) o = (21,0, 70.) € RY, for some g : B — B, we write g in place of
o;.

The architecture of the FNN is completely characterized by:
¢ the hyperparameters: r,d,,...,d,
e the (actual) parameters: weights W', ..., W and biases b', ..., b,
e the activation functions: o4, ...,

Remark 3.2.2. [t is key to consider composition since building functions this way will generate
non linearity which is central for neural networks. A short intuitive illustration to understand
this concept is to consider a FNN with multiple layers, endowed with a linear activation function,
then a FNN would just behave like a single-layered FNN since the sum of linear functions is
essentially another linear function?.

Proposition 3.2.3 (Number of parameters). The number of parameters that characterise f &

NI dy,.dr1,0; 01, ..., 0) is (assuming that o1, ...,0, involve no additional parameters):
Z(di—l + 1)d;
i=1

23ee for further details: nttps:
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Figure 3.2: Graphical representation of a neural network with r = 3,1 = dy = 4,d; = 6,ds =5
and O = d; = 3 (source from Deep Learning lecture notes).

3.2.2 Activation functions

As introduced in definition 3.2.1, the activation function o; of the i-th layer is applied to the i-th
affine function L; which is in turn applied to the one plus i-th layer until this process reaches the
last layer. As we've discussed previously, non-linearity is key for neural networks and hence most
activation functions are non-linear (again, linear activation funections would only achieve linearity).

We can break down activation functions into two types: one-dimensional and multi-dimensional
ones. Provided are some examples of common activation function, respectively as per fig. 3.3 and
fig. 3.4.

3.2.3 Universal approximation theorem

Before delving into the technicalities of feedforward networks, we will first justify their use. The
universal approximation theorem states that any "reasonable” function can be approximated by a
suitable neural network. Let us formalize this idea.

First, we recall some theoretical prerequisites from topology. Let K < ! be compact and we shall
remember that K is compact if it is both closed and bounded. For any measure f: B! — R, the
sup norm reads:

||f||.sup,K = sup |f(1)|
we K

and, for any p > 1, the LP norm reads:

1 lleecrey == (/K If(.lr)I”d.r)y

Furthermore, we denote by LP(K,IR) the class of measurable functions f: K — R such that
| fllze () < oc. The following theorem is adapted from Leshno et al. [23, Theorem 1 and Proposi-
tion 1].
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Activation Definition Derivative Range Smoothness

—A—* Identity (Id) glx)=x g'ix)=1 R c™®
—
Sigmoid 1 /
e N - = 1- 0,1 c=
(Logistic, o) g =1 gx)=g)(l-gx) 0.1
[ L. 0, x<0 ,
— 1 Heaviside (H) glx) = g(x)=0,x#0 {0,1} none
1, x=0
/ Hyperbolic ef—e . 2
— == =1- -1,1
7 tangent (tanh) g(x) prape g'(x) g(x) ( ) c=
F.lectiﬁed‘ r 0, x<0
— 1 linear unit g(x) = max{x, 0} glx)= [0,00) C
(ReLU) 1, x>0
Parametric rec- 0= ax, x<0 @ x<0
=t tified linear &= x  x=0 g'x) = { ’ R cC
unit (PReLU) a>0 L x>0
. x_
F?xponen?lal ) = a(e*-1), x<0 . gW+a x<0 Cla=1
— = linear unit X, x=0 gkx)= (—a,00) Ca#l
(ELU) a0 L x>0 '
1
—T1 = X r = ~o0
Softplus g(x) =log(l +e%) g(x) T3e= (0,00) C
"/_/L' Gaussian glx)= e g'(x)=-2xg(x) (0,1] c*

Figure 3.3: Non-exhaustive list of one-dimensional activation functions (adapted from Wikipedia).

Theorem 3.2.4 (Universal approximation theorem). Let g: R — R be a measurable function such
that:

(a) g is not a polynomial function,

(b) g is bounded on any finite interval,

(¢) the closure of the set of all discontinuity points of g in R has zero Lebesque measure.
Moreover, let K C RY be compact and € > 0.

(i) For anyu e C(K,R), there exist d € N and f € Ny(1,d,1;g,1d) such that:

e = Fllsup,xc < €

(i) Let p = 1. For any v € LP(K,R), there exist d € N and h € N3(1,d, 1; g, Id) such that

P4
m

v — fllercr

Remark 3.2.5. It is important to note that theorem 3.2.4 holds only for networks with a single
hidden layer. In practice, this theorem is usnally extended to deeper networks.

Remark 3.2.6. Another important observation is that theorem 3.2.4 does not inform on how
neural networks f and h look like, it only guarantees their existence. Similarly, it does not inform
on how many hidden units the network should have, hence the parameter tuning of the network is
up to the discretion of the tuner.
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Activation Definition Derivative Range Smoothness

i 1-g; , i=]
Softmax  g;(x) = Zf‘i'” i=1,...d agix) _ | 8 xX)(1-gi(x)), i=] ©, 1) o
4=

e W —mgx),  i#)
1, x;>max;;;x;
Maxout  g(x) =max(x,..., X4} %0 _ ‘ s R C
! 0, xj<maxjz;Xx;

Figure 3.4: Non-exhaustive list of multi-dimensional activation functions (adapted [rom
Wikipedia).

3.2.4 Loss functions

To quantify and minimize the risk, we use a loss function defined as:

Definition 3.2.7.
i:R® 5 RO

Given input x € BT and output value y € RO, if x and v are a realisation of a joint random vector
(X.,Y) with X random input vector and Y random output vector, then when the distribution is
known, we seek optimal [ by minimizing risk

E[t(f(X),Y]

In practice, the distribution is unknown hence the use of the empirical risk instead:
1 & -
L(f) = EZIF"(f(w )y (3.2.1)

3.2.5 Minibatch

Instead of using all samples to compute L£(f), we use minibatch, a randomly drawn subset of
samples. This helps tremendously to cope with large numbers of samples.

Consider the FNN fy := f € N,.(I.dy,....d,_1,0). parametrised by the weight and bias vector
0= (W', . , Wbl .. b

Then, instead of considering eq. (3.2.1), we define minibatch risk as a function of #.

1 L
Lp(8):= 75 > fe(z').y") (3.2.2)
y: % fo(z').y
where £p averages over any subset, minibatch, B < {1, ..., N} of samples.

Remark 3.2.8 (Batch Size). The number of samples in a minibatch is called the batch size.

3.2.6 Epochs

The number of times the network passes through the entire dataset is called epochs. Each epoch
is divided into smaller datasets: minibatches. The tuning of epochs is somewhat complicated. On
the one hand, an excess of epochs can produce overfitting which defeats the purpose of neural
networks. On the other hand, a shortage of epochs will cause the model to be underfitting which
means that the model hasn’t learned enough. Hence, finding the right number of epochs is essential
to training the network.

3.2.7T Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is one of the most common method when it comes to min-
imizing the empirical risk. Optimizing a function by seeking its minimum leads us to naturally
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consider deriving the function. Let us consider first Ordinary Gradient Descent to introduce the
concept:

Consider first the problem of minimising a generic differentiable objective function F : B — R4,

The natural approach is to compute the Hessian of F' but in practice, it is not always feasible.
However, we can compute an approximation using the differential equation:

da(t)

— = ~VF@(1), t>0 (3.2.3)

with initial condition &(0) € RY. This equation defines the so-called gradient flow (z(¢));>¢ of F
(Santambrogio [30]). Under certain assumptions on F, which guarantee the existence of a unique
minimiser and are stronger than mere convexity, it can be shown that =(t) tends to the minimiser
as t— oo([30, Remark 2.1]). We can use this result by discretizing eq. (3.2.4) which reads:

2t =20 | _Gpz), t>0 (3.2.4)

where 1/ is the increment amplitude, which is called the learning rate in machine learning. Rewrit-
ing the previous equation reads:

z(t+n) =z(t) —nVF (@), t>0

This Euler approximation motivates (ordinary) gradient descent, which is an iterative algorithm
that progressively seeks a minimiser with gradient updates given some initial condition g

Trew = Totd — NV F(Toa(t)), >0 (3.2.5)

We have derived with eq. (3.2.5) an algorithm that seeks to minimize our generic differentiable
function F.

Now going back to our FNN, fy, that we defined in subsection 3.2.5. While we could think to use
this algorithm to minimize £(f,;) as defined in eq. (3.2.1), it can be in practice computationally
costly with large datasets, while gradient descent applied to £(f,) may also lead to an overfitted
network f,. To circumvent this limitation, we introduce stochastic gradient descent (SGD).

In SGD, we randomly split the training data into minibatches that are used successively to compute
gradient updates. As outlined previously, after each minibatch, the output is fed to the next
minibatch as input and the the parameter vector 0 is updated each time:

8,‘ = 9,-_1—17?953,(9,-_1]. ?j:1.....;|.'. (326]
where Lp, (@) is the minibatch empirical risk corresponding to minibatch B; defined in eq. (3.2.2).

This procedure is then repeated over the number of epochs defined in the beginning, with new
minibatches, while initialising with the last value of the previous epoch.

3.2.8 Backpropagation

As we've outlined in the previous section, being able to compute the gradient is essential to SGD and
while there are a number of techniques to perform this computation, they often display limitations
that we do not want in deep learning. The arguably most common technique is finite differences
which is a linear approximation of the derivative over a small step size A > (:
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However, as one might have already noticed, this approximation is purely linear and does suit
highly non-linear functions, often the case in deep learning.

To compute the gradient of a FNN, we will use backpropagation instead. Recall the FNN fy €
NI, dy,..ndo1,0,0,...,0.). Suppose that we are training this FNN by SGD and assume for
simplicity that o; is the component-wise application of a one-dimensional activation function
git B = R, forany i =1,..,r

As we want to minimize eq. (3.2.2) and because of linearity of the gradient operator, we will only
need to study the minimization of the loss function ¢( fa(x'), y').

We introduce below some helpful recursive notation. For = € B?,

' = (2.2 ) = Li(a ) = Wia T + b i=1,.,r
a' = (ay,...ag,) = g;(z') i= T
a' =
so then fy = a” and E'(fg(mi) = f({a",y) and introduced the adjoint 8 = (81, .‘-,5,(.1‘) £ Rds by:
. Al
& = .{ —, i=1..4d;
Dzy,
for any i =1,...,1.

Remark 3.2.9. The chain rule is central to backpropagation. Consider differentiable G: RY — R
and F = (Fi,...,Fy): RY = R? and define H =Go F: RY - R

The chain rule states:
d

OH, oG, OF, R B
aa_-i“”)_Zayj(y]mim’ T = (11, 2a) Y= (s Va)s

j=1

Proposition 3.2.10. Using the chain rule and the adjoints we introduced earlier, we can derive
a backward recursive procedure for the components of Vel(fa(x),y):

& =gl ()0 Vylla",y)

o' =gl(z') o (W' +1)/a" T, i=1,..,r—1,
o oi . .
b =d;, i=1,..,nj=1..d,
ar i ie1 o o o
oW, =diay ", i=1l..rnj=1..di,k=1,..di-1,

where @ stands for the component-wise Hadamard product of vectors.

3.3 Long short-term memory (LTSM)

Long short-term memory (LSTM) is a special case of Recurrent Neural Networks (RNN). RNN
are known - unlike FNN - to remember their input. They are hence more viable solutions for path
dependence than FNN, as we will show later for the case of antocallables.

In 1986, Rumelhart et al. [29] publish an article on a new learning procedure which will give birth
to RNN like we know them today®.

*although it is important to note that this is a living theory that is still evolving today as we know it
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3.3.1 Generic Recurrent Neural Networks

RNN are derived from FNN. Unlike the latter, where the information moves in a straight line with
the output being exclusively fed as input to the next layer until the last layer is reached, RNN save
the output of the previous layer and feeds it back into the model (the information does not go in
one direction only).

Because of this feature, the algorithm is able to refain the information learned by the model and
can continue to learn to achieve the correct prediction during backpropagation. fig. 3.5 illustrates
this mechanism with the information stored and then fed back like in a loop.

(a) Recurrent Neural Network (b) Feed-Forward Neural Network

Figure 3.5: FFN feed the information in one straight line, but in RNN information is fed like in a
loop which enables the model to remember past predictions [, Figure 2, page 6].

However, RNN are subject to one major issue which is referred to in machine learning as Vanishing
Gradient®.

Vanishing Gradient occurs during gradient descent when backpropagation is used to compute
the gradient. Recall from eq. (3.2.6) that the parameter vector 6 is updated after each minibatch.
However, in some instances, the gradient will be very small®, preventing the weights to be updated.
And because the chain rule is used in backpropagation to compute the gradient, this problem is
exaggerated. Indeed, in an N-layer network, to compute the gradient of the early layers, N small
numbers will be multiplied together which will essentially cause the gradient to vanish.

In the case of RNN, as the information is fed back to the model, this canses multiplications of
gradients but because the gradient is already very small, this causes the gradient to become even
smaller.

We provide an example to illustrate this idea adapted from [25].
Consider the function fy := f € Ni.(I,d1, ..., d,—1,O) parametrised by vector 6 := (W?, . W™, bl b")
just like we defined previously for a FNN but this time let fy be the function we want to learn

through our RNN algorithm.

Define y; € R and z; € R to be respectively the output and the input of the layer. We provide
a stylized description of a generic RNN through the recursive equation: y; = fy(z;—1,yi-1)-

lexploding gradient produces the same issues as well and it is caused by the same reasons as Vanishing Gradient
“hence the "vanishing” qualifier
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To compute the gradient, we take the differential of y:

dy =V folyi—1, xi)dd + Ny fo(yi-1, z:)dyi—1
=Vofolyi-1,zi)df + Ny folyi-1,2:) (Ve folyi—z, wi1)d0 + ¥V fo(yi-2, wi1)dyi—2)
=Vafolyi-1,z:)d0 + Vy folyi-1,2:) (Vo fo(yi-2, 2i1)d0 + Vy folyi-2, 2i-1) (Ve fo(yi—3, zi-2)d0+
Vo folyi-a, wi—s)dyi-z)
=(Vafolyi 1, 2:) + Vyfolyi 1, 7:)Vyfolyi 2, i1) - Vyfolyr,w2) Jdf + ...

i—1 times

It is straighforward to see that successive multiplication of gradients will only accentuate the
problem when the gradient is small, causing it to eventually vanish.

3.3.2 LSTM

Vanishing gradient has been well documented in the machine-learning literature and the LSTM

algorithm has been designed to circumvent this issue. We will present now its fundamental mech-
anisms.

LSTM is a special case of RNIN, and we specify here the achitecture based on the work of Hochreiter
and Schmidhuber [20]. While RNN might be able to handle short term memory, as the gap
between savec information and the new one increases, so does the inability of RNN to connect the
information. The LSTM architecture has been designed to handle long-range dependence and thus
complicated path-dependence and it is perhaps right now the most popular RNN. It has produced
very good results in multidisciplinary tasks such as speech and handwriting recognition (16, Section
10.10.1].

RNN and LSTM differ only through the number of layers present in the repeating module as shown
in fig. 3.6.

Define y; € R® and z; € R? to be respectively the output and the input of the layer. The LSTM
layer can be summarized with the recursive equation:

(1, Ct) = forgrn (Te—1: Y11, Ci—1) (3.3.1)

where Cy € R° is the cell state vector at time t with ¢ € N units and 051y is the parameter of the
LSTM layer. We sketch in what follows the basic mechanism of the LSTM layer, more details on
the algorithm and the LSTM layer can be found with Goodfellow et al. [16, Section 10.10.1] and
Hochreiter and Schmidhuber [20].

(i) Forget gate layer: Given y;—1 and ¢, the lorget gate f; outputs a number between 0 and
1 to cell C;_q:

fi= U.-,iy(L_f(3I:—1.-il':))

where Lp is the affine function parametrised by weights and biases, introduced in defini-
tion 3.2.1 and oy, is the sigmoid activation function shown in fig. 3.3.

(ii) Deciding which information is stored in the cell state: Given y;_, and z;, the input

gate i, outputs a number between 0 and 1 and a new vector,(; is created that outputs a
number between -1 and 1.

i! = G.si;r(Lx(gft— 1+ ‘1-‘!”

Cy = tanh(Le(ye—1. 7))
where tanh is the hyperbolic tangent activation function shown in fig. 3.3.

(iii) Updating the cell state Cy: Then, the cell state C; is updated by combining the old and
new information.

Ct = fiCeo1 +ieCy
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Figure 3.6: In a standard RNN (top image), the repeating module contains a single layer whereas
in a LSTM (bottom), it contains four interacting layers. Source: Christopher Olah, used with

permission.

(iv) What information to output: Finally, the output is filtered by an output gate which
returns a value between () and 1 and the output produced by the output gate is then multiplied
by a tanh function that bounds values between -1 and 1.

0 = U.si;r(-Lo(y!— 1.t ]]

yi = op o tanh(Cy)
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Chapter 4

Description of Autocallables and
their use

Autocallables - also referred to as Autocalls - are very popular structured products that provide
a redemption feature meaning investors will recover their notional once the underlying breaches a
given Autocallable Barrier.

There are several variants for Autocallables - each displaying this redemption mechanism - which
provide additional features, whether it is a memory coupon, worst/best of options ete. For the sake
of this thesis, we will focus on a typical Autocallable with a downside consisting of a down-and-in
put whose barrier is observed continuously. In the first section, we will cover the basic mechanism
of Autocalls and then focus on this example in detail.

4.1 Mechanisms and features

4.1.1 Coupon and Redemption

In the case of an Autocall, there are two features which are shared by (almost) all the different
ariants and that are Redemption and Coupon. As such, in this section we will first describe those
mechanisms:

An Autocall pays a periodic coupon to the investor as long as the underlying price is above the
Coupon Barrier. On the other hand, the product will be redeemed to the investor if the underlying
breaches the Autocall Barrier.

Denote the Coupon Barrier, B and Autocall Barrier, Byo. Formally, we define the Coupon and
Redemption using the same notations as per [, Chapter 12.1, page 187]) :

Coupon(t;) = Notional - C' - 1{1‘?:-:{:.):»3(-} ']l{:m\x,=1 +_1 Ret(t;)<Bac} (4.1.1)
Redemption(t;) = Notional - C - W get(r,)>Bac ) Wmax;_y o1 Ret(t;)<Bac}

where #;,(i=1,2,...,n) represents each observation date. C is the Coupon Level expressed as the
coupon in terms of the percentage of the notional and Ret(t;) := S(¢;)/S(0) is the underlying
(where S(f;) denotes the spot price at time t;) return between time t; and time ty = 0.

In plain english, a Coupon will paid to the investor on each Observation if the Underlying price
is above the Coupon Barrier and if the product hasn't autocalled on the said Observation date or
before.

Similarly, a product has not autocalled on date f; if the underlying price hasn't breached the
Autocall Barrier on date #; as well as on each observable date before.
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Remark 4.1.1. Some autocallables have the mention "Reverse Convertible”. What it means is
that they provide a guaranteed Coupon i.e the Coupon Barrier is set to 0, hence the Autocall Re-
verse Convertible will pay a Coupon on every Observation date provided that it hasn't autocalled.

4.1.2 Barrier observation
There are 4 main types of barriers.

e American/Continuous: The barrier is observed continuously. Hence, if the underlying price
breaches (i.e goes below) the barrier at any given time, then the barrier is breached.

e European: The barrier is observed at maturity. Hence, only if the underlying price breaches
(i.e goes below) the barrier at maturity, then the barrier is breached.

e Daily /Close-to-close: The barrier is observed daily. Sometimes, it is also referred as close-to-
close since the barrier is observed daily on the close. Hence, if the underlying price breaches
(i.e goes below) the barrier at the close during the lifetime of the product, then the barrier
is breached.

e Periodic: The barrier is observed every period. The most popular periodic observations are
quarterly i.e the barrier is observed every 3 months, semi-annually and yearly. Usually, they
are observed on the close.

For example, on June 07 2022, the S&P 500 (" GSPC ticker in Yahoo Finance) closed at 4,160.68.
Hence, if a barrier is observed daily /Close-to-close on the S&P 500, then the underlying would
have breached this barrier as long as the barrier was above or equal to 4,160.68.

4.1.3 Adding downside with a Down-and-in Put

As one might have already realized from the specifications in eq. (4.1.1), this product doesu’t
have any downside since nothing is paid in the worst-case scenario. Hence, an Autocall with no
downside might pay very low coupons or even sometimes no Coupon at all. In practice, investors
seek high level of coupons and as such they are ready to give up capital protection in exchange
for higher conpons. This usnally translates for the investor into being short a Down-and-in Put
(DIP). As one might recall, a DIP is a Put with a Barrier, where the latter can be observed in a
certain number of ways which we outlined in subsection 4.1.2.

In the case of a European Barrier (Barrier is observed at maturity), the investor is short a DIP
with maturity equal to the product maturity. This entails that if the underlying price at maturity
ends up below the DIP Barrier, then the investor's capital is no longer protected as he will not
fully retrieve the notional they invested. Instead, they will receive the performance of the asset
(meaning that if the asset ends up at 0, then the investor's money will be completely lost). In
subsection 4.1.4, we carry out an in-depth analysis of the payoff in all possible scenarios with this
DIP feature.

4.1.4 Product Payoff with possible scenarios

Early redemption

e On each observation date!, if the underlying price is equal or superior to the Antocall Barrier
on a given observation date, then the product is redeemed and the investor receives:

Final Payoff = 100% + Coupon
e Llse, product continues and:
If the underlying price is equal to or superior to the Coupon Barrier:
Intermediary Payoff = Coupon

Else:
Intermediary Payoff =0

LAgain can be continuous, daily, quarterly etc.
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Redemption at maturity (in case of no early redemption)

¢ If the underlying closes at or above the Protection Barrier, redemption at:

If the underlying closes at or above the Coupon Barrier, redemption at:
Final Payoff = 100% + Coupon
If the underlying closes below the Coupon Barrier, redemption at:
Final Payoff = 100%

e If the underlying closes below the Protection Barrier, redemption at:

If the underlying closes at or above the Coupon Barrier, redemption at:

Redemption = Notional - Ret(ts;nq1) + Coupon

If the underlying closes below the Coupon Barrier, redemption at:

Redemption = Notional - Ret(ffinal)

1204

100 4

804

60 1

Payoff

401

204

T T T T T
0 25 50 75 100 125 150 175 200
Stock Price

Figure 4.1: Autocall payoff at maturity with Protection Barrier = Coupon Barrier = 70, Autocall
Barrier 120, Coupon level = 20. This figure clearly shows that the final Payoff can be broken down
into a combination of a DIP to model the downside and a digital call to model the upside with the
coupon being paid.

4.2 Pricing Approach

The Autocallability feature automatically redeems the product if the underlying breaches the
Autocall Barrier which implies that this product has varying maturity. To model this property,
different approaches have been used in the industry. Deng et al. in [12] have studied the PDE
approach where they used finite difference to approximate the derivatives involved in the Black-
Scholes PDE. Alm et al. in [1] derive a Monte Carlo algorithm that greatly reduces variance using
one-step survival techniques.

While these methods provide interesting approaches to value the antocallable, there is no consensus
on how this popular product should be priced. For this reason, indifference pricing using neural
networks would present itself as a new valuation method while being able to easily incorporate
market [rictions. However, we are still interested in having a benchmark to value these instruments
and to so we will be valuing Autocalls using standard Monte Carlo techniques as we outline in this
section thereafter.
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4.2.1 Monte Carlo

A standard way to price products is to use Monte Carlo Simulation. Essentially, we can summarize
the pricing method as follows:

(i) Simulate price paths under a given model.

(ii) For each simulation, compute the Cash Flows perceived by investing in this product.
(iii) Discount the Cash Flows and take the average across all simulations.
(iv) The product value at time ( is this average.

Hence to value the autocallable numerically, we use the same approach. This is summarized in
algorithm 1.

Algorithm 1 Monte Carlo Algorithm to price a generic antocall under a given model

T + number of steps

N « mumber of sinmlations

Generate stock path: S, t € {0,T}, n € {0, N}
forn=1,2,...,N do

Vi, + 0
for t=0,1,....,T do
DF(r,t) «— e "t > Discount Factor
if t < (T-1) then = During Product lifetime
if B < S' < B¢ then © Product pays a Coupon and does not Autocall
V“ — L'“— C 'S[)
Vi — Vo, -DF(r,t) & Discounting CF
else if S}' <= B¢ then > Product does not Pay a Coupon
V, —V,+0
else if By <= 5] then > Product has Autocalled and pays a final Coupon
V,—V,+8 - C
Ve + Vo -DF(r,t)
break
end if
else = At Maturity, if no early redemption

].r”“ — 1-’“ e S[) - mm(h’ - Stnl N 0] ].[_5'?(‘3(.} T ]]'{52‘>Bf'} C S[}
Vi — Vi -DF(r,t)
end if
end for
end for

return vV, = M

4.2.2 Static hedging: breaking down the product into a combination of
options

Static hedging can also be used to value a portfolio of derivatives, and has been advocated in Carr
and Madan's famous paper on valuing variance swaps and its extensions [%]. A static hedge in
essence does not produce perfect replication but it can provide a good and fast approximation. In
the following, we study an example of a generic antocallable with periodic coupons and downside
as we presented in subsection 4.1.3. The AC BRC can be broken down into a sum of options and
a Zero Coupon Bond. Concretely, the investor is:

¢ Short a Down-and-in Put (DIP) with Strike = 100% on the downside.
e Long a Zero Coupon Bond that pays a guaranteed Coupon at maturity.

e Long a strip of conditional digital calls to model the Coupon and Autocallable feature.

Remark 4.2.1. As long as this product doesn’t cross the DIP Barrier, this product is 100% capital
protected.
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4.3 Hedging issues

As we hinted in the thesis introduction, autocallables are in fact challenging product to hedge as
grecks around barriers usually explode or change signs. We shall use the replication derived in
subsection 4.2.2 to highlight these issues.

4.3.1 Downside: replicated by a DIP

First consider the downside represented by a short DIP. We provide in fig. 4.2 the delta associated
with the position. As we can see, the short put has a delta that jumps and in this case - although
it can attain even higher values for lower barriers and other option parameters. Effectively, the
delta reaches gradually double the value of a vanilla put and then instantly goes to 1 once the DIP
barrier is breached at 0.5.

Short PDI Price vs its derivative
- Short DIP Price

20 - ~Short DIP Delta
_ BS Vanilla Put Price
15 - ——— BS Vanilla Delta Put
10
Vi
[l
= o5
I B
0.0
-0.5
-1.0 -
0 ":tlj 0 éS 0 %}IZ 0 ‘5 1 &IIZ 125 1 %.IJ 1 .%5 2 -ICII:
spot price

Figure 4.2: Price and delta for a short European put with r = 0,0 = 0.3, 7 =1, K = 1 and price
and delta for a short DIP with the same specifications and a barrier Bpp = 0.5.

4.3.2 Upside: replicated by a strip of digital calls

Second, consider the upside, modeled by a strip of conditional digital calls to model the coupon
and early redemption feature. We provide in fig. 4.3 the price and delta for a European digital
call under Black-Scholes. As one can see in our example, the delta of the digital call quickly
accumulates a lot of leverage around the barrier. Effectively, the hedger of the option has to be
short more than the amount of notional he has on the position. Once the barrier is breached, the
delta falls very quickly so the hedger has to unwind quickly all the delta accumulated. This is
even more accentuated when the option gets closer to expiry where the delta explodes even more
around the barrier.

The underlying reason why the delta reaches values as high is because of the discontinuity of the
payoff of the digital call which is either 0 or 1, depending whether the spot price is lower or higher
than the barrier. One way to smooth out the payoff is to consider a call spread. Indeed, consider
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Figure 4.3: Price and delta for a long European Digital Call with v = 0,0 = 0.1, Bpjgita = 1.3
and price and delta for a call spread with the same specifications first strike &y = 1.28 and second
strike ky = 1.32 with notional:m where width = ky — k1. In the top figure, the option has
maturity left T=1 and in the bottom figure, it has maturity left T=0.1.

the digital call payoff:

Payoff Digital Call =11, g}
4.3.1
:hml{(ST—s—HJ*—(ST—H)+} ( )

e—ll €

where I is the Barrier of the digital call.

To approximate the digital call payoff, we may find a small ¢ such that the call spread payoff
roughly matches the digital call payoff such as in fig. 4.4. The difference between the two strikes
(the € in eq. (4.3.1)) is called the barrier width and it is the notional that the seller of the option of
the option will have on his call spread position. If the barrier width is 0.05 for instance, then the
seller of the option of the position will be effectively long 20 call spreads. The larger the width,
the more conservative the seller of the option of the option is.

Long digital call vs call spread payoff

10 - —— call spread
=== digital call

o
o

Payoff
] [
1= h
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Figure 4.4: Payoff for a long European Digital Call with barrier H = 1 and payoff for a Digital
Call spread with first strike ki = 0.95 and second strike ko = 1 with notionﬁ.l:ﬁ = 20.
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While this is an improvement as shown in fig. 4.3 with a delta that is lower with a call spread
than the digital call, it is however still very high. In our example, when the expiry is in T=0.1
years, then the seller of the option is effectively short 8 times the notional around the barrier. This
behavior around the barrier is also observed for the vega which is also a very important risk factor
in the case of the digital call. As shown in fig. 4.5, the vega changes sign before and after the
barrier which means that the trader might have to take a completely opposite position as the one
they had before. This is even more accentnated as the option gets closer to its expiry.

Traditionally, the antocallable is hedged as a combination of options where the hedge is imple-
mented through the greeks. However, as we have just seen, the behavior of barrier and digital
options around the barrier using a greek approach is very challenging and requires to actively
monitor the portfolio of options for each barrier and important risk factor.

Hedging the autocallable with the deep hedging method alongside indifference pricing would entail
that the hedging is not an approximation anymore. In other words, the seller of the option no
longer has to monitor the barriers for each risk factor. In addition, it is straightforward able to
incorporate market frictions such as transaction costs inherent to markets. What’s more, because
the hedging is done through neural networks, theoretically, the selling/buying of derivatives would
be fully automated. In the next section, we will discuss our results obtained from deep hedging.

Vega digital call vs call spread, T=1 Vega digital call vs call spread, T=0.1
2- — Vega Digital Call P — \fega Digital Call
=- Vega Call Spread - = Vega Call Spread
1 1

Values
Ty

0.0 0.5 10 15 20 0.0 D5 Lo 15 20
spot price spot price

Figure 4.5: Vega for a long European Digital Call with r = 0,0 = 0.1,7 = 0.1, Bpigita = 1.3. The
right figure is for an option with expiry T=1, the left is with expiry T=0.1.
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Chapter 5

Deep Hedging Autocallables:
numerical results

5.1 Model setting

5.1.1 Neural Networks

In hidden layers, ReLU (as shown in fig. 3.3) has become the default activation function. We
decide to choose hence ReLU for the hidden layers and Softplus (shown in fig. 3.3) for the output
activation function as a smoothed version of ReLU and as a function that is not bounded on the
upside. Concretely, f has architecture:

f € N4(2,100,100, 100, 1: ReLU, ReLU, ReLU, Softplus).

Although this approach is in essence model-free, the number of price paths required substantially
exceeds the available data in the market. To this end, we simulate price paths §,,..., Sy, N € N.

Then, we train f using the exponential utility function for the loss function and specify four
levels of risk aversion A and four levels of transaction costs k, respectively A € {1,5,10,15} and
ke {0,0.05%, 0.5%, 5%}.

The tuning of the hyperparameters is not an exact science and after testing different parametriza-
tions, we decide to train the FNN with 30 epochs and 100 for the minibatch size.

In the case of the LSTM, we specity a single LSTM layer with one-dimensional input with ¢ = 20
units in the LSTM cell where Softplus is the activation function. Then, we train the network over
different learning rates. Unlike the FNN, the LSTM converges slower and separating the training
into two different learning rates ensures faster convergence of the LSTM network. Concretely:

(i) First, we train the network with 10 epochs and mini-batch size 5000. We run ADAM
with a large learning rate=0.01.

(ii) Second, we train the network 10 times with 10 epochs and mini-batch size 5000. However,
this time we Tun ADAM with a smaller learning rate=0.001.

Both Neural Networks were implemented in Google O()ldh()ldf{)l\. w1th a GPU accelerator. \-‘.-"0
pl()\ldf‘ mdr' Hmpporh to lr'pl()durr' the results in ;Ilthllh =
] wg-of-Auteocallables-with lm.ll

5.1.2 Product specification
As for our claim Z, we aim to hedge a simple autocall with specifications:
¢ Autocall Barrier with continmous observations: Bac = 1.3

e DIP Barrier with continuous observations: Bpip = 0.7
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e Product struck at the money: K = 5y =1
o Maturity: T =1 year

e Coupons are paid either at maturity if the product doesn’t autocall during the lifetime of
the product, or paid when the product autocalls

Mathematically, the payoll can be written as:

Z=1ac(So + )+ (1= 1) ((So+ ) = (K = S1) 1prp) (5.1.1)
—_——
(*) .;::J

where

1, ifsup,. St = Bac.
Lac = L
0, otherwise

is the indicator function that outputs 1 if the product has autocalled and 0 otherwise and

TP if infeero,1) St < Bpre,
pre= 0, otherwise
is the indicator functions that outputs 1 if the product has crossed the DIP Barrier and 0 otherwise.

If the product has autocalled, then the product will pay Sy + ¢ i.e the investors will get their
notional back as a well as a coupon on top given by (%) in eq. (5.1.1). However, if the product
hasn’t antocalled (##) during the lifetime of the product, then there are two cases to consider.
Either the DIP Barrier hasn't been breached during the lifetime of the product so the product will
pay at maturity Sy + . The second case is when the product has breached the barrier, so it will
pay Sy + e minus the negative performance of the product. For example, it the barrier has been
breached and the asset is down 30% at maturity, then the product will pay 70% back plus c.

5.2 The hedging strategy

In order to compare the hedge under different model settings, we simulate S under Black-Scholes,
Heston and Rough Bergomi.

In subsection 5.2.1, we aim to investigate which ANN between FNN and LSTM is able to best
capture the right hedging strategy. We also investigate how risk aversion and transaction costs

5.2.1 Handling corner cases

Our goal is to assess whether the two ANNs provide a sensible hedging strategy. With this in
mind, we fiz toy parameters for each pricing model such that we are able to study corner cases.

For each model, we simulate the stock price path with:
So = 1 (values were normalized), 7T =1, r=0,

N = 100,000, steps = 100

Rough Bergomi

In order to simulate the asset price under the rough Bergomi model, we refer to section 1.5 in
which we detail how we use the hybrid scheme to simulate the associated Volterra process. We use
numerical values:

£=06, p=—08 a=—043(or H=007), n=19
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Heston
In the Heston model, the stock price is governed by the following set of stochastic differential
equation:

dS!H = S!H\/Ed'[-t"!l. Sp=s>0,
dV; = k(6 — Vy)dt + oy \/ﬁd'[:l-"f__ Vo = vy =0, (5.2.1)

(WL W2y = pdt,
where r, 0y, 8,19, s > 0 and the correlation parameter p lies in [—1,1]. In eq. (5.2.1), the process
(Vi)i>0 represents the instantaneous variance (squared volatility) of the underlying stock price S
and W', W? are two Brownian Motion with correlation p. & represents the mean-reversion rate i.e
the rate at which V; reverts towards ¢ which represents the long-run average variance of the price.
Furthermore, vy is the initial variance and oy is the volatility of the square root of the variance
process.

To simulate the stock price, we discretize the previous equations and use:

k=3, 6=004 =6 £=06 p=-08

Black-Scholes

First, we recall the stochastic equation governing the Stock Price in the continuous Black-Scholes
setting:
BS -
577 = Spexp(pt +oWi), te][0,1]
where W = (W);c(o,1) is a standard Brownian Motion. To simulate the stock price, we discretize
the previous equation and use:

Numerical Results

As we recall from eq. (2.4.3), we can obtain prices for both FNN and LSTM networks. We compile
prices in table 5.1 for both networks under different risk aversions and transaction costs. As we
expect, prices increase with risk aversions and transaction costs. We also notice that prices under
LSTM are lower to I'NN which is not intuitive at first glance. We will need to delve into more
details to understand why this is the case.

Parameters Black-Scholes Heston Rough Bergomi
Risk Aversion | Transaction costs F'NN LSTM FNN LSTM FNN LSTM
k=0.00% 0.87189 | 0.87089 | 0.93429 | 0.93388 | 0.84793 | 0.84501
P k=0.05% 0.87378 | 0.87189 | 0.93579 | 0.93497 | 0.84974 | 0.84495
k=0.50% 0.88317 | 0.87774 | 0.94222 | 0.94062 | 0.85887 | 0.85062
k=5.00% 0.89125 | 0.89125 | 0.94700 | 0.94700 | 0.87623 | 0.87623
k=0.00% 0.88883 | 0.87839 | 0.94184 | 0.94081 | 0.89020 | 0.86591
P k=0.05% 0.89093 | 0.88107 | 0.94363 | 0.94161 | (0.89089 | 0.86823
k=0.50% 0.90634 | 0.88758 | 0.95597 | 0.95012 | 0.90189 | 0.87G36
k=5.00% 0.94604 | 0.93082 | 0.98166 | 0.98168 | 0.94656 | 0.92172
k=0.00% 0.91666 | 0.88888 | 0.95370 | 0.94660 | 0.93303 | 0.90008
N =10 k=0.05% 0.91811 | 0.89407 | 0.95619 | 0.95110 | 0.93425 | 0.89406
k=0.50% 0.93300 | 0.89983 | 0.96858 | 0.96045 | 0.94342 | 0.90786
k=5.00% 0.97702 | 0.95130 | 1.00022 | 0.99482 | 0.97998 | 0.95010
k=0.00% 0.94156 | 0.91127 | 1.00893 | 0.96123 | 0.96175 | 0.98801
=15 k=0.05% 0.94527 | 0.91020 | 0.98044 | 0.95892 | 0.96079 | 0.98011
k=0.50% 0.95566 | 0.91149 | 1.00880 | 0.97054 | 0.96842 | 0.99089
k=5.00% 0.99666 | 0.96953 | 1.00893 | 1.00443 | 0.99487 | 0.98849
Analytical Price(Monte-Carlo) 0.87152 0.92954 0.84575

Table 5.1: Comparing indifference pricing for the three different models under FNN and LSTM
against pricing the autocall under standard Monte-Carlo simulations.
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Evolution of the hedging ratio across varying levels of spot price

Next, we plot the deep hedging ratio prediction 7 for both networks for across spot price s €]0, 2]
for different level of transaction costs k € {0.00,0.05%, 0.50%, 5.00%} and for A = 10 under Black-
Scholes, Heston and Rough-Bergomi. The various figures showcase how §; evolves with spot price.

Leom Black Schobes A=10 L=o7o Heston A=10 f=0r0 rAergomi A=10
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Figure 5.1: Deep hedging ratio d7y under FNN across different times and transaction costs k €
{0.00,0.06%, 0.50%, 5.00%} for A = 15 under Black-Scholes, Heston and Rough-Bergomi. The
figures showcase how 6, evolves with spot price. Autocallable with B e = 1.3 and Bpyp = 0.7.

Figure 5.1 tells us that the hedging ratio seems to decrease quickly from s=0.7, which is equal to
the DIP barrier, and reaches () when the spot price gets close to the autocall barrier equal to 1.3.
Indeed, as we recall, the autocall knocks out as the autocall barrier is breached which entails that
the hedge is liquidated. However, the behavior preceding the DIP barrier is less straighforward.
In FNN, the hedging ratio seems to attain its peak as spot prices get close to the DIP barrier
displaying a bell curve. The hedging strategy seems to decrease to low values as spot prices get
closer to 0. However, in LSTM, while the curvature of the bell found in FNN is somewhat present,
the peak this time is attained for low spot prices, with a hedging ratio that can exceed 1.

In particular, fig. A1, fig. A.2, fig. A.3 for FNN and fig. A.7, fig. A8, fig. A9 for LSTM given in
the appendix exhibit the evolution of the hedging ratio under different risk aversion parameters
ceteris paribus. For FNN, we observe that a higher lambda will increase the curvature of the bell
curve we observed earlier. For LSTM, this is not as blatant but it does seem that increasing risk
aversion decreases the smoothuess of the hedge, especially around low spot prices and around the
DIP Barrier.

Furthermore, as we recall in subsection 4.2.2, we can approximately replicate the downside of the
autocallable with a short DIP option and the upside with being long a strip of digital calls. We
recognize in fig. 5.1 under LSTM for Black Scholes, Heston and rBergomi somewhat the shape of
the delta of the short DIP (shown in fig. 4.2) represented by a bell curve which is surely accentuated
by the delta of the digital call (shown in fig. 4.3). This bell curve is somewhat mitigated by the
model used and its parameters, for instance in our simulation with Heston, we can clearly see it.
In Black Scholes, it is much smoother.

Evolution of the hedging ratio across two scenarios

To understand this behavior, we plot realized paths for two scenarios A and B where in the first
one, the autocall barrier is breached and in the second one it is not. We then study the hedging
strategy under the two neural networks and we decide to stick with A = 10 as results are more
conclusive under this risk aversion parameter. This is shown in fig. 5.2 and full results can be
found in appendix A.1.2 and appendix A.2.2 with all levels of A.
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We observe that once the Autocallable barrier is breached, the FNN hedging ratio does not nec-
essarily go to 0. This is contrary to our expectations as we predicted that the hedging ratio
would decrease as the spot price gets closer to the Autocall Barrier since the product would then
knock out. This is however observed under LSTM which as we outlined in section 3.3 has the
ability to handle long-range dependence. This makes it a better candidate than FNN for handling
path-dependence.

This example highlights the power that the LSTM offers to price and hedge claims that may or may
not be path dependent. While there is no universal consensus on the analytical models that are
used to value complicated path dependent claims, this approach under LSTM provides a systematic
and tractable way to do so while allowing easily to add market frictions such as transaction costs.
Horvath et al. [21, Section 1] have shown for the case of the Up-and-out call that the LSTM seemed
to accurately capture the hedging ratio and handle the instrument’s path dependence. We have
here extended this result to a more complicated path dependent payoff, doing so under the rough
Bergomi model which captures more realistically the underlying path.
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Figure 5.2: In the top row, Realized paths are plotted for the three pricing models over scenario
B. In the middle row, the hedging strategy is implemented respectively for each model under FNN
and in the last row,the hedging strategy is implemented under LSTM.
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5.2.2 Comparing the calibrated models

We now proceed to compare the models in such a way that they are calibrated to real data - the
SP 500. Products parameters detailed in subsection 5.1.2 are kept the same besides the Autocall
Barrier which we adjust to 1.2 instead of 1.3.

Rough Bergomi

To calibrate rough Bergomi, we use values such that they correspond to a maturity with T=1 year
obtained in our calibration in subsection 1.5.1. Concretely, we use:

£€=013, p=—095, a=-040(or H=0.1), n=2.08

Heston

We use numerical values:
k=617, #=0.03, w=0.04, oy =045 p=-0.78
where the parameters above were chosen such that they empirically maximize the fit to the S&P

500 observed implied volatility shape in the same vein of the calibration we carried out in subsec-
tion 1.5.1.

Black-Scholes

We use numerical values adjusted to our calibrated Heston model:

r}z

b | =

o=s/vy, p=-—

Numerical Results
We now compile prices in table 5.2 for our calibrated models following our previous specifications.

Parameters Black-Scholes Heston Rough Bergomi
Risk Aversion | Transaction costs F'NN LSTM FNN LSTM FNN LSTM
k=0.00% 1.00629 | 1.00642 | 1.01325 | 1.01325 | 0.94453 | 0.94363
P k=0.05% 100801 | 100718 | 1.01513 | 1.01401 | 0.94552 | 0.94443
k=0.50% 1.00902 | 1.00902 | 1.01523 | 1.01523 | 0.95219 | 0.95018
k=5.00% 1.00902 1.0090 1.01523 | 1.01523 | 0.95766 | 0.95766
k=0.00% 1.00791 | 1.00859 | 1.01551 | 1.01569 | 0.95524 | 0.95196
=5 k=0.05% 1.00983 | 1.01734 | 1.01731 | 1.01630 | 0.95671 | 0.95262
k=0.50% 1.01659 | 1.01419 | 1.02120 | 1.01956 | 0.96687 | 0.95958
k=5.00% 1.01746 | 1.01746 | 1.02120 | 1.02120 | 0.99089 | 0.99090
k=0.00% 1.0107 1.01083 | 1.01714 10177 | 0.97453 | 0.96658
=10 k=0.05% 101148 | 1.01155 | L.01917 | L.O1STL | 0.97245 | 0.96018
k=0.50% 1.01999 | 1.01727 | 1.02461 | 1.02461 | 0.98280 | 0.965819
k=5.00% 1.02231 | 1.02231 | 1.02461 | 1.02461 | 1.00634 | 1.00237
k=0.00% 1.01095 | 1.01293 | 1.01938 | 1.02565 | 0.98518 | 0.97946
=15 k=0.05% 1.01338 | 1.01356 | 1.02014 | 1.02191 | 1.01335 | 0.97436
k=0.50% 1.02191 | 1.01909 | 1.02517 | 1.02382 | 1.01335 | 1.00921
k=5.00% 102464 | 1.39917 | 1.02624 | 1.02624 | 1.01333 | 1.01025
Analytical Price(Monte-Carlo) 1.00468 1.01040 0.94430

Table 5.2: Comparing indifference pricing this time for our three calibrated models under FNN
and LSTM against pricing the antocall under standard Monte-Carlo simulations.

In fig. 5.3, we have plotted the hedging for our three calibrated models with A = 10 and under LSTM
as we found in the previous section that best results were achieved through these specifications.
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We observe that Black Scholes and Heston exhibit a similar hedging profile while rough Bergomi
seems to display a much smoother profile. This can also be implicitly deducted from the prices we
obtained in table 5.2 as Black Scholes and Heston exhibited a similar range of prices while rough
Bergomi shows much lower prices. As we remember that the indifference pricing can be perceived
as the price of the hedge, we expected this to be reflected in the hedging strategy.

Finally, we have plotted for each model in fig. 5.4 and fig. 5.5 the hedging strategy over two
scenarios. Just like before, scenario A describes a realized path that breaches the antocall barrier.
In B, the barrier is not breached. Although the realized paths are different between each model,
we carefully picked realized paths that are fairly similar.

Inn scenario A, the hedging strategy profile under the three models looks fairly similar. Although one
may note that the hedging ratio is bigger for rough Bergomi which may arise for the calibrations.

In scenario B, the hedging strategy is again somehow similar between Black Scholes and Heston.
However for rough Bergomi, the stock price plunges rapidly below the DIP Barrier (0.7) which
induces a rapid soars in the hedging ratio.
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Figure 5.3: Evolution of the deep hedging ratio §; under FNN across different times ¢ € {10, 50, 90}
and transaction costs k € {0.00,0.05%, 0.50%, 5.00%} for A = 10 under our three calibrated models.
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Conclusion

In this thesis, we have used state-of-the art techniques to tackle an interesting problem: valuing
and hedging autocallables. We first looked at rough Bergomi, a very recent and promising model
to capture a more realistic stock price profile. We then discussed a very recent and fast simulation
method, the hybrid scheme which we used to simulate stock prices. We then used indifference
pricing to value the Autocallable according to some criteria such as transaction costs or risk
preferences.

In our study, we found that the LSTM is an adapted newral network to value complex path-
dependent products such as the autocall. We also compared our calibrated rough Bergomi model
against industry benchmarks such as Heston and Black Scholes and found that the hedging strategy
profile seemed to be fairly similar, although smoother.

Finally, we conclude by stating that our approach has enabled us to easily price and hedge an
instrument over which there is no consensus. We also were able to easily incorporate market
imperfections such as transactions costs which are inherent to market. This is today not easily
done even with the best analytical models.

In essence, this approach should be model free and data driven. An exciting continuation of this
research would be now to apply this framework to real data obtained from traded autocallables
which we did not have access to and assess its viability.
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Appendix A

Deep Hedging under Neural
Networks

A.1 FNN hedging strategy

A.1.1 Evolution of the hedging ratio across varying spot prices
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and transaction costs k € {0.00,0.05%, 0.50%, 580%} for A = 1,5,10, 15 under Black-Scholes,




+=090 Heston A
= FNN with k=0.00%

4 = FNN with k=005%
FNN with k=050%

—— FHN with k=5.00%

e ral

Hestan A=1 t=050 Heston A=1
EL "
—— P k=0.00% —— FNN with k=0.00%
150 —— P weh k=0.05% — FHN with k=0.05%
RN W k=0 50% 2 —— FNN with k=0, 50%
—— PN with k5. 00% — FNN Wit k=5.00%
2 100
B
T o
02s o —
100 ae
oiE 100 13 1% [T ofs 106 13 L7 200
5 [spat price) s [spot price
teow Hestan A=S Leoso Heston A=5
10 NN with £=0.00% 10 —— FHN with k=0.00%

FHN with k=0 05%
FHN with £=0.50%
—— FNN with k=5.00%

—— NN with k=0.05%
—— FHN with k=0.50%
—— FH with k=5.00%

02
o 0o
000 035 00 135 150 175 200 000 035 050 075 100 125 150 175 200
) s (spet price)
Hestan a=10 a=10
— FNNwitn ke0.00% — FHN with kel 00%
e FHN with k=0.05% = FNN with k=0.05%
o8 FHN with k=0.50% FHN with k=0.50%
— FNNwimk=500% —— FNN with k=5.00%
]
H
-]
3
£
5 &
02
oho el oo 150 200 0d0 o2 o0b0 ofs 10 135 180 175 200
s (spot price)
=010 Heston A=15 =050 Heston A=15
w —— PN witn k=0.00% —— FHN with k=0 00%
—— FNN witn k=0.05% 08 — FHN with k=0 05%
10 —— FNN witn k=0 50% —— FHN with k=) 50%

—— FNN with k=5.00% PN with k=5.00%

&
3

oo 035 075 100 135

aso 150 200
s (spot price)
Lonsn Feston A=5
10 - = FNN with k=000%
—— PN with k=0 05%
—— PN with k=0 50%
. s — —— NN with k=5.00%
5
2 0k
]
I
&
0z
uo -—
00 025 050 075 100 135 150 200
5 (spot price)
F=0.90 Hestan A=10
07 FNN with ks 00%
FHN with k=0.05%
ae FNN with k=0 50%
_ FNM with k=5, 00%
ERE
e
s 02
]
2 03-
g oz
e —
ok0 ofs 100 50 175 200
5 [spok price
=090 Heston A=m15
7 = FHN with k=0 00%
= FNN with k=0 05%
[ —— PN with k=0 50%

FNM with lo=5 00%

& (hedge ral

0715 106 135 150
5 (spot price)

50

025

000

Figure A.2: Evolution of deep hedging ratio d; under FNN across different times ¢ € {10, 50, 90}
and transaction costs k £ {0.00,0.05%, 0.50%, 5.00%} for A = 1,5, 10,15 under Heston.




=010 rBergami

& thedge ratio)

FHNwith £=0.00%
FHN with k=0.05%
FHN with k=0 50%
FHN with k=5.00%

oo
600 ais  oso 10 135 150 175 200
5 (spot price)
ribergami A=S
o —— NN with k=0.00%
NN mith k=0.05%
10 FNN witn k=0 50%

B
B

@50 075 160 135
4 [spat price)

rBergomi

atio)

S oos

& thedge

000 015 oS0 075 1C
s (spot price)

rBergami

FHN with k=5.00%

A=10

FHN with k=0.00%
PN with £=0.08%
FHN with k=0.50%

FHN with £=5,00%

=15

FHN with k=0.00%
FHN with k=0.05%
FHN with k=0,50%
FHNwith k=5.00%

El
&
3
&

& (hedge ratio)

a5

rBergomi A=1

NN with k=0.00%
FHN with k=0.05%
FHN with k=0 50%
FNN with k=5.00%

135 1f0 175 200
5 [spot price|

rBergami A=5

—— FHN with k=0.00%
—— NN with k=0,05%
—— FNN with k=0.50%
e FNN with k=5 00%

075 100 125 150 175 200
= (spot price]
rergomi a=10

= FHN with k=0.00%
—— FNN W ke=0.05%

FRN with k=0 50%
= FNN with k=5 0%

875 100 135 150 175 200
5 (spot price)
riergomi a=1s

—— FRM with k=0.00%
—— FNN with k=0.08%

NN with k=0 50%
—— FNN W k=5.00%

ois 100 13 150 175 200
5 [spat price)

&, (hedge ratio)

E

. (hedge ratiol

& (hedge ratio)

F=0.90 rBergomi A

. FHM with k= 00%
" FRM with k=0 05%
. FNM with k=0 50%
o= FRN with lc=5.00%
L]
13

01
w0
000 6k0 07 100 135 150 175 200
5 [spot price}
p=020 rBergomi A=5

—— FNN wRh k=0.00%
—— FNN with k=0.05%

o FNN WEh k=050%
030 FRN with k=5.00%
025

625 50 oFs 100 135 1% 175 200

=090 rBergomi =10

= FNN with k=0.00%
—— FNNWRN k=0.05%
NN with k=0.50%
FRN with k=5.00%

o5
000 -
825 050 075 100 200
5 Ispot price)
t-os0 riergomi A=15

—— FHN Wi k=0.00%
—— FHN with k=0.05%

FHN with k=0.50%
—— FNN WRN k=5.00%

Figure A.3: Evolution of deep hedging ratio d; under FNN across different times ¢ € {10, 50, 90}
and transaction costs k € {0.00,0.05%, 0.50%, 5.00%} for A = 1,5, 10, 15 under Rough Bergomi.




two scenarios

A.1.2 FNN: Evolution of the hedging ratio over the realized paths of

Biack Scnoles Scenano &

A= Black Scnoles

—— FNN with k=0.00%

—— FHN mith k=0.05%

FHN with £=0,50%

—— FNN Wi £=5.00%
«+ Autocall Barmer

0 0z : o6 8 10 ] 02
ritime)
Black Schotes Scenaric A a=is

—— FNN with k=0.00%

—— FNN with kc=0.05%

FHN with k=0.50%

—— FNN with =5.00%
-+ Autocall Barmer

a 06 8 10
Fitime)
Black Scholes Scenario I A=10

—— FHN with k=0.00%
—— FNN with k=0.05%

— FNN with k=4, 50%
—— FHN with k=5.00%

Black Scholes

—— FHN with k=0.00%
08 - = FNNwith k=0.05%

NN with k=0 50%
—— FHN with k=5.00%

Scenaro &

A=5 Black Scnoies

—— PN with k=0.00%

—— NN with k=0.05%

FN with k=0.50%

—— FNN Wit k=5,00%
«+ Autocall Barmier

Black Scholes

Black Scholes

Scenario I

F
— H

Scenario & a=10
H —— FHN with ko=0.00%
—— FHN with k=0.05%
FHM with k=0 50%
—— FNN With k=5.00%
-+ Autocall Bamier

—— FHN with k=0.00%
—— FNN with k=0.05%
NN with k=0 50%
—— FMMN with k=5.00%
e
] ] o0 0z 06 ] 10
+(time)
a=18

—— FNN with k=0.00%
= FHN with k=0.05%

NN with k=0, 50%
NN with =5, 00%

Figure A.4: Evolution of deep hedging ratio ¢; under FNN over realized paths of Scenario A and
B, for transaction costs k& € {0.00,0.05%, 0.50%, 5.00%} for A € {1,5,10, 15} under Black-Scholes.

53




Heston Scenario A A=l Heston Scenario A A=5
—— FNN with ke=0.00% o —— FNM with k=0, 00%
—— FNN with k=0.05% —— FHN with k=0,05%
—— FNN mith =0, 50% 04 —— FNN with k=D 50% 04
—— FNN with £=5.00%

Heston Scenario A A=10

H —— NN with k=0, 00%
—— FHN with k=0.05%
—— FHM mith ke 50%
—— P with =5 00%

—— PN with k=5.00%

+ Autocall Barrier

h Aatecall Barrier 3 ++ Autocall Barrier = .
& -3
% 02 T 0z
o o
a1 a1 a1
00 00 1
u 02 0 o6 e u o 0 oo o 04 s L} o
Fitime) +itime) +(time)
Heston Scananio & a=15 | feston Scenario B A=1 Heston Seanario B A=5
H — ENNwith k=0 0% — FNN with k=0 00% 10 FRM with k=4 00%
—— PN with k=085 —— FHN with k=0 05% FNM with k=0 05%
 ENNwith k-0.50% us —— FNN with kel 5% FNM with kad] S0%
—— FNN with k=$.00% —— PN withk=t 0ot OF PR with =5 00%
+ utocal Barmier ]
T
-3
N =\ _i" 04
&
- a2
105 - 't
oo o ue
] 2 ] ] 1] 10 o0 0z o o o8 '] o0 07 o4 06 8 1o
+ttime} }itime) }ltime)
Feston Scenario B A=10 Heston Scenario B a=15
10
10 —— FNNwith k=0.00% —— FNN wih k=0.00%
h —— FHN with k=0.05% —— FHN with k=0.05%
—— FNNwith k=0.50% 08 ~— FNN with k=0 50%
—— PN witn k=5.00% —— PN with k=5.00%

Figure A.5: Evolution of deep hedging ratio 6; under FNN over realized paths of Scenario A and
B, for transaction costs k € {0.00,0.05%, 0.50%, 5.00%} for A € {1,5,10,15} under Heston.




rBergomi Scenario A A=l

—— NN with k=0 00%
—— FNN with k=0.05%
—— FNN with k=050%
—— FNN with k=5.00%
o utocall Baerier Breached

Fitime)

rBergomi Seenarie A A=15
= FNN with k=0.00%
—— FNN with k=005%
—— FNN with k=050%
—— NN with k=5.00%

Scenario A A=5

—— FNN with k=0.00%
—— FNN with k=0.05%
—— ENN with k=0 50%
—— FNN with k=5.00%
o utecall Barrer Bresched

+itime)

Scenario B A=1

== FNN with k=0 00%
—— FHN with k=0,05%
—— PN with k=D.50%
—— PR with k=5.00%

(hedge ratia)

&

Scenario A A=10

—— FNN with k=0.00%
—— FNN with k=0.05%
—— FNN with k=0.50%
—— FNN with k=5.00%
Autecall Barner Breached

04 06 Gt} ]
(time)
Scenario B A=5
= FNN with k=0 00%
—— FHN with k=0.05%
—— NN with k=0 50%

—— PN with k=5.00%

-+ hutocall Barrier Breached e
B os
I
< a2
&
al 01
0o 0 L
o 02 a4 06 B o o 0z a4 (17 L} ] o0 [} 4 06 a ]
Litimel Litime) +(time)
rBermomi Scenario B A=10 Scenana 8 a-15
—— FNN witn £=0.00% — FHNwEh k=D 0O%
— FNNwiin k=0 05% PN with k=0 05%
—— FNN with c=0.50% —— FNN with k=0 505
—— PN with k=5.00% —— PN wih k=5 0%

Litima) b itima)

Figure A.6: Evolution of deep hedging ratio §; under FNN over realized paths of Scenario A and B,
for transaction costs k € {0.00,0.05%, 0.50%, 5.00%} for A € {1,5,10, 15} under Rough-Bergomi.

13,
T




A.2 LSTM

A.2.1 Evolution of the hedging ratio across varying spot prices
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Figure A.7: Evolution of deep hedging ratio d; under LSTM across different times ¢ € {10, 50, 90}
and transaction costs k € {0.00,0.05%, 0.50%, 5.00%} for A = 1,5,10, 15 under Black-Scholes.
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57




F=010 rBergami A F=050 rBergom| A=1 F=0.90 rBergomi
. —— LSTMwith k=0.00% e —— LSTM with k=0.00%
= === L5TM with k=0.05% === LSTM with k=0 05%
— L5TMwith k=0 50% os — LSTM with k=0 50%
_ o= — LSTMwWRhE=S.00% LSTM RN k=500%  _
g g ]
B 2 o =
o 06 - by
& & -}
% 3 T
< o4 = =
& o 1
0z 02 L
oo oo
600 ais  oso 10 135 150 175 200 000 025 0b0 0Fs 100 135 1%0 LTS 200 000 028 050 07s 10 135 180 175 200
5 (spot price) 5 [spot price| 5 [spot price}
riergomi A=5 t=0s0 rergomi A=5 =090 rilergomi A=5
w —— LSTM with k=0.00% 10 —— LSTM with k=0 00% 10 —— LSTM with k= 00%
— LSTM with k=0.05% —— LSTM with k=0 05% —— LSTM wah k=0.05%
—— LSTMwRh k=0.50% —— LSTM with k=0.50% —— LSTM with ks 50%
— ISTMwithk=S00% _ OF —— LSTMwihk=S00%  _ 08° —— LSTM with k=5 00%
5 ]
2 s 2 g8
8 y
& &
3 Fl
£ a4 £ aa-
& &
02 0z
oo [
000 8235 050 075 100 125 150 17 200 000 825 050 075 100 135 150 175 200
= (spot price] £ (spot price)
l=0s50 rBergomi A=10 f=0s0 rBergomi A=10
10 —— LSTM weh k=0.00%
o —— LSTH with k=0 05%
LSTM with k=0 50%
os LSTM whth k=5 00%

& (hedge ratio)
5

us
0z
a0 | oo
000 035 0580 075 100 135 150 175 200 000 035 050 075 100 135 150 175 200 000 B35 050 OTE 100 135 180 175 200
5 lspot price) s (spot price) 5 (spat price}
Rergami a=15 =050 rBergami a=18 =090 rRargami A=15
as. N —— LSTM with k=0.00% —— LSTM with k=0.00% s ) —— LSTM with k=0.00%
| — LSTM with k=0 05% s —— LSTM with k=8 05% I\ —— LSTM with k=0 05%
—— LETM with k=0 50% —— LSTM with k=0 50% ‘l —— L5TM with k=0 50%
. | LSTM with k=5 00% fl — STMwRRK=SODN [\ —— LSTH weh k=.00%
6 e

& (hedge ratic)
5: (hedge r

150 175 200 000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
5 (spot price) 5 [spat price}

000 025 050

Figure A.9: Evolution of deep hedging ratio d; under LSTM across different times ¢ € {10, 50, 90}
and transaction costs k € {0.00,0.05%, 0.50%, 5.00%} for A = 1,5, 10, 15 under Rough Bergomi.

D8




A.2.2 Evolution of the hedging ratio over the realized paths of two sce-

narios
Black Schoies Scenario & A=1 Black Scholes Scenario A A=5 Black Schales Scenario A i=10
06 i — LSTMwith k=0.00% i —— LSTM with k=0.00% 07 —— LSTM with k=0 00%
— LSTMwith k=0.05% i — LSTM with k= 05% H'r\/\ i —— LSTM with k= 5%
LSTM with k=0 50% LSTM with k=0 50% 06 - 1WA LSTH with k=0 50%
—— LSTM with k=5.00% —— LSTM with k=5.00% v —— LSTM with ke=5.00%

- hutecall Barmier o Autecall Bamer - Autacall Bamer

. (hedge ratie)

o o 4 o6 o o 2 g J o 0 0z o6 L] 0
£ (time) L time)
Black Scholes Scenario A A=15 Black Scholes Scenario B A=1 Black Scholes Scenaric B A=5
a7 i 10
- i — LSTMwth k=0 00% — LsTH wah k=a.00% _AL 10— LSTH weh k=0.00%
— LSTMwrn £=0.05% —— LSTH wrh k=0.05% —— LSTM wen k=0 05% MW
LSTM with k=0.50% 08 LSTH weh k=0.50% LSTM with k=0 50% .

— LSTM with k=5.00% —— LST with k=5.00% —— LT wah k=5.00%

+-+ Autecall Barmier

20 02 a o6 10 20 [+

6 0 0 0z 6 ] 0
F (time) +(time)
Black Scholes Scenario B a=10 Black Scnoles Scenario B a=1s
10
— LSTM with ka0 00% — LSTM weh ka0 00% e
10— LSTMwih ka0 05% —— LSTH with ka0 05% Wy
LSTH with k=0 50% us LSTH with k=0.50%

_ — LSTM with k=5 00% _ —— LSTM with k=3 00% Jm._\_»/\/

Figure A.10: Evolution of deep hedging ratio d; under LSTM over realized paths of Scenario A
and B, for transaction costs k € {0.00,0.05%, 0.50%, 5.00%} for A = 15 under Black-Scholes.
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Figure A.11: Evolution of deep hedging ratio é; under LSTM over realized paths of Scenario A
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GO




Scenario &

—— LSTM with k=0.00%

—— L5TM with k=0.05%
LSTM with k=0 50%

—— LSTM Wit b=5.00%

“es futocall Barmier Breached

0 02 4 6 (] ]
+itime)
rBergon Scenania & a=1s
D35 1 —— LSTM with k=0.00%

i —— LSTM with k= 08%
| H LSTM with k=0.50%
| i — LSTMwan k=5.00%
1 . o Rutecall Barrier Breached

F (time}

Scenario B

rergomi A=10

—— LSTM wih k=000%
—— LSTM wh k=005%
. LSTM with k=0 50%
= LSTM with k=5 00%

rRergormi Scenario A

—— LSTM with k=0.00%

—— LSTM with k=005%

LSTH with k=0 50%.

—— LSTM with =5 00%
++ Autocall Barrer Breached

e
1

s

00 0z 04 o6 a8 19
+itime)
rBergom Seenaric B A=1

~
—— LSTM with k=0.00%
—— LSTM with k=0.05%
—— LSTM wRN k=0 50%
—— LSTM with k=500%
] 0z 4 (13 L] L]
Fitime)
Bergorni Scenana B a=15
= LSTM with k=0 00%
— LSTM with k=0 05%

LSTM with k=0 50%
— LSTMwith k=5.00%

T itime)

(hedge raticl

[

riiergomi Scenario &

—— LSTM with k=0.00%

—— LSTM with k=0 05%

LSTM yeith k=0 0%

—— LSTM Wi k=5 00%
- Autocall Barrer Breached

+time)

riergomni

Scenario B

—— LSTM with k=0 00%

— LSTM with k=0.05%

LSTM with k=0 50%

e LSTM it k5. 00%

(1) 0z 04 06 o8 L]
+(time)

Figure A.12: Evolution of deep hedging ratio é; under LSTM over realized paths of Scenario A
and B, for transaction costs k& € {0.00,0.05%, 0.50%, 5.00%} for A = 15 under Rough-Bergomi.

61




Bibliography

1

=S

=1

=

(10]
(11]
(12]

13
14

13

16
17

(18]

it

Thomas Alm, Bastian Harrach, Daphne Harrach, and Marco Keller. A monte carlo pricing
algorithm for autocallables that allows for stable differentiation. Journal of Computational
Finance, 17(1), 2013.

Ole E Barndorff-Nielsen and Jiirgen Schmiegel. Brownian semistationary processes and volatil-
ity /intermittency. Advanced financial modelling, 8:1-26, 2009.

Christian Bayer, Peter Itiz, and Jim Gatheral. Pricing under rough volatility. Quantitative
Finance, 16(6):887-904, 2016.

Mikkel Bennedsen, Asger Lunde, and Mikko S Pakkanen. Hybrid scheme for brownian semis-
tationary processes. Finance and Stochastics, 21(4):931-965, 2017.

Lorenzo Bergomi. Smile dynamics ii. Awvailable at SSRN 1493308, 2005.

Mohamed Bouzoubaa and Adel Osseiran. Erotic options and hybrids: A guide to structuring,
pricing and trading. John Wiley & Sons, 2010.

Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging. Quantitative
Finance, 19(8):1271-1291, 2019.

Peter Carr and Dilip Madan. Towards a theory of volatility trading. Option Pricing, Interest
Rates and Risk Management, Handbooks in Mathematical Finance, 22(7):458-476, 2001.

Fabienne Comte and Eric Renault. Long memory in continuous-time stochastic volatility
models. Mathematical finance, 8(4):291-323, 1998.

Rama Cont and José Da Fonseca. Dynamics of implied volatility surfaces. Quantitative
finance, 2(1):45, 2002.

Mark HA Davis, Vassilios G Panas, and Thaleia Zariphopoulou. European option pricing with
transaction costs. SIAM Journal on Control and Optimization, 31(2):470-493, 1993.

Geng Deng, Joshua Mallett, and Craig McCann. Modeling autocallable structured products.
In Derivatives and Hedge Funds, pages 323-344. Springer, 2016.

Bruno Dupire et al. Pricing with a smile. Risk, 7(1):18-20, 1994.

Ashkan Eliasy and Justyna Przychodzen. The role of ai in capital structure to enhance
corporate funding strategies. Array, 6:100017, 2020.

Jim Gatheral, Thibanlt Jaisson, and Mathien Rosenbaum. Volatility is rongh. Quantitative
finance, 18(6):933 949, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Igor Halperin. Qlbs: Q-learner in the black-scholes (-merton) worlds. The Journal of Deriva-
tives, 28(1):99-122, 2020.

Steven L Heston. A closed-form solution for options with stochastic volatility with applications
to bond and currency options. The review of financial studies, 6(2):327 343, 1993.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep
neural networks for acoustic modeling in speech recognition: The shared views of four research
groups. [EEE Signal processing magazine, 29(6):82-97, 2012.

62




(20]

(21]

(22]

23

24
29
26
27
28
29
30
31
32
33

34

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neuwral computation, 9
(8):1735-1780, 1997.

B. Horvath, A. Muguruza Gonzalez, and M. 5. Pakkanen. Machine learning and data sciences
for financial markets: A guide to contemporary practices, cambridge university press, to
appear. Data-centric methods. In A. Capponi and C.-A. Lehalle, 2022.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84-90, 2017.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward

networks with a nonpolynomial activation function can approximate any function. Neural
networks, 6(6):861-867, 1993.

Benoit B Mandelbrot and John W Van Ness. Fractional brownian motions, fractional noises
and applications. SIAM review, 10(4):422-437, 1968.

Andrea Mazzon and Andrea Pascucei. The forward smile in local-stochastic volatility models.
Journal of Computational Finance, Forthcoming, 2016.

Ryan McCrickerd and Mikko S Pakkanen. Turbocharging monte carlo pricing for the rough
bergomi model. Quantitative Finance, 18(11):1877-1886, 2018.

Mikko Pakkanen. Lecture notes in deep learning, 2021.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 13101318, PMLR,
2013.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. natfure, 323(6088):533-536, 1986.

Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an overview.
Bulletin of Mathematical Sciences, T(1):87-154, 2017.

Myron Scholes and Fischer Black. The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637 654, 1973.

Georgily  Shevchenko. Fractional brownian motion in a nutshell. arXiw preprint
arXiw:1406.1956, 2014.

A Elizabeth Whalley and Paul Wilmott. An asymptotic analysis of an optimal hedging model
for option pricing with transaction costs. Mathemnatical Finance, T(3):307-324, 1997.

Paul Wilmott. Cliquet options and volatility models. The best of Wilmott, page 379, 2002.

63




