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Abstract

Dividends are a share of earnings that a company can pay to eligible shareholders. They may be
paid annually, semi-annually, or quarterly and are often paid in cash (called “cash dividends”),
but may also be in the form of additional shares (called “stock dividends”). This study focuses on
the more common cash form that provides a challenging modelling problem.

Letting S = (S;)cr, denote the share price process and 0 = 7y < 7; < ... be a series of dividend
dates which we will infer as being both the ex-date and date of payment. On the dividend date 7;
a cash payment of d; is paid to the holder of one share. In the absence of outside factors such as
jump risk or tax-imbalances, the security price must drop an amount equal to d; on the dividend
payment. That is

S5, =85_-—d;

i - 3
El T;

where 7,7 is the time just before the arrival of the dividend. Theoretically this can be seen by basic
no-arbitrage arguments and is seen in practice at the open of trading on the ex-date.

This random drop in price is not captured in conventional equity models where dividends are
often accounted for as an additional rate. Overlooking dividend risk is crucial, particularly in the
current climate where the dividend payments of companies have fluctuated following the Covid-19
pandemic causing many trading desks to experience losses.

In the wake of this volatility, products incorporating dividends as an underlying have seen an
increase in interest. Investors can now access a number of dividend products including futures,
vanillas, swaps and more heavily structured products requiring the joint modelling of the share
price process § = (S; )ser and dividend payments.

This thesis focuses on two methods to approach the joint modelling problem. Firstly, the blended
dividends framework of H. Buehler [1] and then the particle method of J. Guyon and P. Henry-
Labordere[2], [3]. The EURO STOXX 50 index is used as a running calibration example, after
which we use calibrated models to price an example structured dividend product, the knock-in

dividend swap with payoff Lumin, ;. -, S.<E (erf:‘Tl._Tzf d_j).

Much of the first chapter follows the work of [1]; the second, [4]; and third, [3]. Concerted effort
has been made to understand and add detail to the proofs of theoretical results, and to build
implementations of these models.
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Figure 1: Plot exhibiting correlation between the EURO STOXX 50 index and annualised dividend
payments.
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Chapter 1

Blended Dividends in Equity
Modelling

As mentioned, the modelling of dividend products requires understanding of the joint distribution
of the price process S and dividends. Weaker assumptions on this relationship will be detailed in
later sections but for now we introduce the most referenced approach in practitioners literature,
the ‘blended dividends’ framework introduced in [1]. In truth, there is no joint distribution in
this model, as the dividend payment is assumed to be an affine function of the stock price. The
simplicity of the assumption results in a tractable and rich framework which we will use as a
benchmark. Further extensions of the blended framework have been made to give dynamics to the
dividends [5], [6] though these approaches are not studied in detail here as the particle method
discussed in later sections subsumes these approaches.

Throughout this project we assume the dividend is paid on the ex-date. Though this is not true in
practice, the drop is observed at the open of the ex-date meaning mathematically this assumption
is feasible. In practice, time scaling can be used to account for the life-cycle of a dividend payment.
A brief introduction to dividends and their terminology is given in A.1.

1.1 The Blended Dividend Framework

We work under the usual stock and bank-account setting with stochastic basis (2, Foc, (Fi)iz0. F),
where P denotes the ‘real-world” measure.

Using previous notation, the cash dividend d; is assumed to be an affine function of the stock
price. This structure is motivated by the economic observation that short term dividends are more
predictable than longer term dividends that are thought to behave proportionally to the respective
equity.

The dividend delivered at time 7; is assumed to have cash valne
dj=5.-6j+a

where we refer to ; as the proportional part of the dividend payment and a; as the cash part
(note the abuse of terminology, the whole dividend is still delivered as cash, though this is just the
‘cash’ part of the blended structure). Assuming the stock price only jumps due to dividends, we
then have on ex-date 7; that the share price must drop according to

i

Sp =8, -(1—8;) —ay (1.1)
A consequence of this seemingly basic assumption is that the share process must conform to a
particular structure which will be much of the focus of the following section.

For ease of notation we omit including credit risk in this model, but note a simple extension to
include hazard rates is readily achievable. We assume interest and borrowing rates are deterministic




and known in advance, denoting r = (rs)«>: to be the interest rate process, pt = (fts)s>+ to be the
repurchase agreement rate and

P, T) := exp™ Ji 7

to be the price of the T-maturity zero-coupon bond at time ¢.

The Forward

We start by deriving the fair price (strike) of the forward contract F(¢,T") where ¢ is the current
time and T is the maturity.

Assume that # falls between two dividend payments such that ry) < < 774, and at t we purchase
7 units of stock, financed by shorting 7.5, worth of bonds. Note that borrowers are not entitled
to dividends and must pay them to the lender, so by holding stock we earn repo proceeds and
dividends that at time 7)) are equal to
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At this point we reinvest the proportional proceeds in the stock and cash part to pay down our
debt. The presumption of differentiating between case and proportional parts is a noted sticking
point of the reasoning but is necessary for tractability. In practice, a blending scheme is chosen
at the discretion of traders with a suitable choice of a; such that the stock price has a negligible
probability of becoming negative and that the long run proportional part may take precedence. In
view ol this, our assumption is reasonable in the long term.

By reinvesting all proceeds, at time T we hold
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units of zero coupon bond. We choose 7 =[] 1— ;) exp™ I¥ wads in order to deliver one

_y:!(f_f'\'_T[
unit of stock, so the time T bond position is
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By nullifying this bond position we obtain the following succinet formula for the forward.




Proposition 1.1: Blended Dividend Forward

Defining the “proportional growth factor”

R(,T) i= exph’ ra—p)ds I a-5»
jit<r;<T

the fair forward price in the blended dividends framework is given by

F(tT)=R(tT)S:— > R(r,T)ay (1.2)
gt =T

We note the nuseful property that for s < 7 < ¢,

R(s,t) = expls e mdn T (1= By). excps (Tomhi I (-5 =R(s.7)R(7;.1)

kis<TR=Ty kerTiTe =t

and for convenience we define the abbreviations Ry := R(0,T) and Fr := F(0,T). We also note

o
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making it apparent that the blended dividend forward can be seen as the time T-value of a correc-
tion to the current stock price and that this correction is equal to the present value of all future
cash dividends. Intuitively this makes sense, as these future cash flows are (in this case, given no
credit risk) gnaranteed so the forward must be adjusted to reflect this. Similarly the proportional
growth factor I is adjusted by the proportional shifts in stock price due to dividend payments.

Stock Representation

We now consider the implications for the stock price process given the form of the forward #(¢t, 7).
Given that 5 must be non-negative in the absence of arbitrage, the forward F(t,T) as in (1.2) for
some maturity 7" > # must also be non negative giving

R(tT)S,— Y R(r;,T)a; >0
JitsT; <T

Assuming the dividend blended structure is well defined, R(t,T) is strictly positive leading to the
following result.

Proposition 1.2: Blended Dividend floor for the Stock price

The share price at time ¢ cannot fall below floor D, that is
Sy = D, (1.3)

where process D = (Di)g<y, Dy = EJ:!(T_,‘ W‘:‘Jﬁ is the present value of future cash

dividend proportions.

This result leads us to an important observation in modelling in this framework. Given that there
are future cash flows e, the floor process D brings a deterministic structure where the stock price,
unlike preceding models such as Black-Scholes, is not entirely stochastic. In view of this, it makes
sense to restrict modelling to the remaining random part of the stock process which we will see
can be represented by a local martingale process X.

With the assumption that the stock price only jumps due to discrete cash dividends, the general
‘No free lunch without vanishing risk’ (NFLWVR) argument of [7] can be applied to the stock




process between ex-dates. Taking the two ex-dates around ¢ to be 1y < ¢ < 7541, the we have
NFLWVR if and only if there exists an equivalent measure {J to P’ and local (J-martingale process
Y = (Yi)sel0,7y4,)» such that

Y; Tr (ra—pa)ds
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Using relation (1.1) repeatedly and that ¥, = 1 we find
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In view of no-arbitrage, local martingale ¥ must maintain the non-negative condition on the stock
price process S. We first consider this condition in the simplified setting with r = 0, p = 0 and
3; = 0 for all j, so have
- Vi
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As the share price cannot fall below the dividend floor (1.3), we have
Y,
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the result that a local martingale M with unit mean that is bounded below by I € [0,1] can be
written as My = M;" (1 —1) +1 where M7 is another non-negative unit mean local martingale, we
write ¥ in terms of some non-negative local martingale X as
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Using this representation and proceeding iteratively we find
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Which leads to the general form

Sg:Xg (S[]—Z(Tt‘j)— Z ('t‘j fOerO
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In the case of nonzero interest rates, repo rates and proportional dividend parts we have the
following.

Theorem 1.3: Blended Dividend Stock Price

In the absence of credit risk, all arbitrage-free stock price processes for S can be written in
the form
S = (F, — D) X: + D, (1.4)

or alternatively when discounted,

St .
E:S[}XI_UU (1.5)

where X = (X, )p<. is some non-negative local martingale and where:

. oaj = =2 represent the growth rate-discounted time 0 value of a future cash dividend
73

proportions «;
. Sh=8— Zj:[}m_) o =Sy — Dy is the “nner spot” or part of equity value not due
to the present value of future cash dividend parts

Proof. By repeating the arguments above with S: := S¢/R: the discounted stock process with
respect to the growth-rate discount factor that pays dividends o, the desired result can be
achieved. O

The previous theorem is the central result to this framework and allows for the separation of the
“pure” stock process X from other characteristics of the stock. By construction X should not carry
any dividend-paying structure and (though credit risk is not considered in this work) indirectly X
is not required to incorporate credit risk. If X were to carry default risk and become zero it would
not directly imply the termination of future cash dividend payments. Therefore X can be seen to
purely model volatility risk and we can adjust the structure of accepted market practices.

European Options

As the representation (1.4) for S is an affine transformation of the “pure” process X we will see
that pricing a European option on § translates to pricing on the pure process.

For a maturity 7" > 0 and strike K > 0, the market European call is given by

C(T,K) == P(0, T)E®[(S7 — K)"]

We observe

C(T.K) = I}(O,T)IE'Q[((FT — Dr) Xt + Dr — K)Jr]
K — Dy

= P(0,T)E®[(Fr — Dr)(Xr — mﬂ
= P(0,T)(Fr — Dr)E?[(X7 — ﬁ)ﬂ
= P(0,T)(Fr — Dr)C(T, ﬁ

where C(T, k) := E¥[(X7 — k)] is the pure call with “relative strike” k. By rearranging in the
opposing fashion we can find the reverse relation.




Proposition 1.4: Blended Dividend European Call

The price of a European call option on stock price S can be expressed as

C(T, K) = P(0,T)(Fy — Dy)C(T, =—2L (1.6)
Fr— Dy
and reversely,
1
C(T, k) = C(T, (Fr — Dy)k + Dy) (1.7)

P0,T)(Fr — Dr)

J

With P(T, k) := EC
put-call parity

(k —Xp)T] and as X is assumed to be a martingale, we have the following by

C(I k) —P(T, k) =Xo—k
which leads to similar formulae for the put and the usual put-call parity for the stock price process.

An interesting consideration from the call formula (1.6) is the value of calls with strike K < Dr.
We know the ‘dividend floor’ Dy imposes a lower bound on the stock price so calls with such a
strike must have a constant and deterministic value. Indeed, by considering the pure stock call
with a negative strike is equal to a forward on pure process X, which by construction is = 1, we
see that the value of such a market call is equal to the discounted forward value P(0, T)(Fr — D).

This feature highlights how some of the regular no-arbitrage conditions may be altered in the ‘pure’
setting. A summary of common no-arbitrage conditions are noted below

Result 1.5: No arbitrage constraints on pure proce

Assuming pure call prices C(T, k) are given for maturities 7" > 0 and strikes £ > 0. Then
X is a strictly positive martingale (and hence we have no arbitrage) if and only if

« The forward is preserved C(T,0) = F{¥ = 1.

+ Absence of strike arbitrage 07, C(T, k) = 0

. Calendar spreads are positive, drC(1, k) = 0

Local and Implied Volatility

The formulas (1.6) and (1.7) give a way to translate market prices into prices on the “pure” stock
process X. The marginals of X for quoted maturities 7" can then be recovered using the well-known

formula PC(T, )
1y T,k
v k==
Assuming a unique solution to
dX
_x: =o(t, X,)dW, (1.8)
Dupire’s [8] local volatility function
o orC(T, k)
up t! . = l»'i l'g
Dupl!: ) = T o1 By 7— (1.9)

can then be used to reprice the pure calls C(7T, k) = EX[( X1 — k)T] for all maturities T and pure
strikes k. This then translates into the stock process S repricing observed market prices.

As in the conventional approach the implied volatility ox (T, k) of ‘pure’ process X can be found
by solving

BS(ox (T, k), T, k) = C(T, k) (1.10)
where BSE(e, T, K') is the regular Black-Scholes call formula defined in appendix A.2. Using this
implied volatility gives the following relation to the market call price

C(T. K) = P(0.T)(Fr — Dr)BS (UX(T, K—Dr K- DT)

T
-FT‘_DT), "Fr—Dr
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1.2 Numerical Example

We now give a numerical example of implementing the blended dividends framework in a basic local
volatility model (1.8) for ‘pure process’ X. This study provides a benchmark for later numerical
studies and is also a useful insight into the blended dividend framework. Using result 1.5 and the
‘pure’ form of implied volatility it is possible to mark implied volatility [reely in the via interpolation
as in Gatheral [9]. We proceed similarly building a parameterised volatility surface and then using
the well known implied volatility form of Dupire's local variance formula (1.9),

drw
vy = : (1.11)
1— 2w+ (-1 -1+ 235 w)2 + 10,0

k_

where w(y, T) = o x (T, k)*T is the Black-Scholes total implied variance and y = In Yl
B

The Data

EURO STOXX 50 Index Options (OESX) data provided by Eurex with settlement prices for 12
Angust 2022 is used for numerical studies thronghout this report, with index dividend futures
(FEXD) and options on dividends (OEXD) data used in later sections. The spot price of EURO
STOXX 50 on 12 August 2022 was 3776.81. Dividend payments on EURO STOXX 50 ETFs occur
quarterly and are paid in cash form. The dividend is quoted in points of the index after calculating
the gross dividends paid by index constituents adjusted by their weighting. The figures below show
the distributions of historical dividend payments in terms of ratio to the spot price before ex-date
and as the raw number of dividend points that are paid. The inclusion of this figure is to provide
reasonable estimates for a blending scheme.
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Figure 1.1: Distribution of EURO STOXX 50 dividend payments, quarterly and annually

Method

Building a robust forward curve and volatility surface without access to industry resources is in
itself a challenging problem. To achieve reasonable estimates, SSVI surfaces of [10] are nsed. A
coustant rate of r = 0.005 is assumed and the repo rate p is optimized for each maturity to ensure
convergence of call and put implied volatilities and define a ‘proxy’ forward curve. The approach
taken is summerised below




Implied BSvar %

Algorithm 1.6: Calibration of local volatility blended dividend model

1. Clean raw exchange data - remove outliers, change maturities to year fraction con-
vention, ete.

2. Use regular Black-Scholes formula (A.2) with » = 0.005 and find constant repo rates
p using the following constraint recursively through maturities

argming,cir, , 1 (Zﬂs‘ an(Ti, K) —os .,..t(r,-_.ff))
K

jt is then defined to be a piecewise constant function with steps at maturities, inter-
polate r — p with a Cubic Spline and store to be used as a forward curve.

3. With approximation to the forward curve, define a blending scheme a;, 3; then use
(1.7) to compute ‘pure’ call and put prices for pure strikes k. Apply transformation
y = Ink to get log-moneyness strikes, solve analogue of (1.10) to get ‘pure’ implied
vols ox (1, y) in terms of log-moneyness y.

4. it power-law SSVI parameterization with parameters v, 17, o, p to find approximation
wagyt(y, T3y, m,0,p) = w(y,T), check static no arbitrage conditons for parameters.

5. Compute Monte Carlo call prices C(T,y) = E¥[( X1 — e¥) "] using (1.11) and wssv1,
interchange into implied volatilities and optimize parameters .1, o, p.

6. Store blending scheme, forward curve and SSV I parameters. Simulate X and inter-
change to S using (1.4) for pricing.

Calibration

Dividend payments are modelled to be paid quarterly, starting with e, = 25, 3;, = 0 (100% cash,
0% proportional). This scheme then changes linearly to have a, = 0, 4. = 0.0075 for j > 21,
that is cash parts become zero and proportional parts become the historical mean after 5 years.

The table below summarises the calibration to the market implied volatilities for a number of
maturities.

H Implied variance (%) | Sep 2022 Dec 2022 Mar 2023  Jun 2023  Sep 2023 Dec 2023

Avg. |Mkt — MC 0.59 0.75 0.73 1.43 1.76 1.90
Mazx. |Mkt — MC| 1.12 1.29 1.32 2.30 3.16 3.46
Implied variance (%) || Jun 2024 Dec 2024 Dec 2025 Dec 2026 Dec 2028 Dec 2030
Avg. |Mkt — MC|C 1.96 2.01 212 2.07 1.93 2.05
Max. |[Mkt — MC 3.57 3.74 3.83 3.85 3.72 3.84

Table 1.1: Implied volatility repricing

Maturity: December 2023 Maturity: December 2025
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Figure 1.2: Repriced volatility surfaces using Monte Carlo for December 2023 December 2025
maturities
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Pricing

Pricing of the Knock-in dividend products with payoff Luin, iy, v, si<i (ZfJ-EIT].TZI d_.,;) are com-

puted by Monte Carlo simulation.

Maturity 3yr 3yr YT yr
Boundary 20% 80%  90%  80%
MC Price 5L.52  23.77 TL.15  33.80
MC0.95 CI £ || 3.53 295 546 5.50

Table 1.2: Knock-in Dividend pricing

Example simulation paths
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Figure 1.3: Example path ol a blended dividend scheme
Remarks

It is noted that the blended dividend approach is less prone to numerical instabilities by separating
stock price characteristics like credit risk and the dividend paying structure from the pure process
X. Indeed this was found to be the case with suceesstul calibration volatilites up to the error of
the calibrated SSVI surface.
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Chapter 2

LSVM and the particle method

Dupire-type local volatility models like (1.9) of the previous section are the standard reference
for pricing exotic trades in equity modelling. However, there are downfalls to this type of model.
Mostly notably exotic option risks not captured by model including volatility-of-volatility risk,
forward smile risk, and spot/vol correlation risk. A local volatility model is a special case of a
stochastic volatility model (which in turn is a ‘hybrid’ model) and the generalisation to these
models is necessary to have more control when pricing exotic trades. Though, the cost of moving

to hybrid modelling is that the method of simulation and calibration must be updated to account
for more complex dynamics.

In this section we first introduce a general local stochastic volatility model (LSVM) and discuss the
theoretical underpinning of it's calibration. We introduce McKean-Vlasov SDEs and the particle
method from a theoretical standpoint before giving an practical implementation in a basic LSVM
setting with Heston dynamics and without discrete dividends. The inclusion of dividends will come
in the final chapter.

2.1 Calibration of Local Stochastic Volatility models
We define the general local stochastic volatility model (LSVM) as:

% = (ry — pe)dt +vpo(t, S)dWE, dv, = a® (£, v,)dt + bY (£, v, )dWE  dlWS WYY, = pS vt
’ (2.1
where vy is a (possibly multi-factor) stochastic volatility term with it's own dynamics. As usual, r
represents the interest rate process and p is repo rate, that may or may not be inclusive of dividend
yield, depending on modelling assumptions. The inclusion of o(t, 5;) is again crucial and is what
defines this model as ‘local’. Vanilla products are highly liguid and are important in the hedging
of exotic products, therefore our models must be able to reprice (or calibrate to) these options. It
is well-known that stochastic volatility models generate smiles of implied volatilities but the local
function o(t, S¢) ensures that we have an ‘infinity’ of parameters to attain a good calibration.

The calibration condition

Dupire’s original formula (1.9) is built on the idea of finding a local volatility function o(t, S) :
B2, — R that exists, is unique and reprices observed market marginals given some dynamics of the
volatility process such as (1.8). The extension to stochastic volatility models changes the dynamics
of the volatility process and calls for a new representation of the local volatility derived by Dupire
in [11]. As these models are of the family of hybrid models we will refer to this new term as the
‘hybrid’ local volatility to distingnish from the usnal (now fully written to include drift terms)
Dupire local volatility given by

FE (T, K) + K(rr — pr) 52 (T, K) + urC(T. K) |

2 2.2
1-[\/2 rﬂ( (I ) [ )

O'Dupin.-(f: 3)2

x»é'
n
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We will see that the new hybrid local volatility opybeia(t, s) can be written as a combination of
TDupire (1, §) with additive or multiplicative adjustment terms. These adjustment terms can be
written as conditional expectations of the processes associated to the hybrid model. Though later
numerical studies will not include stochastic interest rates, we give a more general result due to [4]
for a hybrid model including stochastic rates. That is, in addition to the local stochastic volatility
dynamics of (2.1), the interest rate process r satisfies:

dre = d (t,rg) + b (£, )dWD,  d(WS W, =pS7dt,  d(W', W), = pidt (2.3)

and define discount factor Dy := exp(—f“T reds). We refer to this model as the “stochastic
interest rate - local stochastic volatility model” (SIR-LSVM), that, to calibrate to observed market
marginals, has a hybrid local volatility given by the following result.

Proposition 2.1: Local volatility of LSV-IR models

The LSV-IR model defined above with local volatility oppyu.ia(t, S), is exactly calibrated to
market smiles for all (£, 5) € Ry if

E9[(rr—rG)Dor 1 {ap 20y
- 1 050
K5 (T.K)

~ E9Dorv2 | St = K|/EQ[Dor | St = K]

TDupire (T) K)2

Otiybria(f, 5)° (2.4)

T=t
K=s

and 7% := —97 InE¥[exp(— f[}T reds))].

Proof. (Due to [11], [4]) Define P(t, s) := Dy, (s—K )" as the discounted call payoff, #(z) = &L ()"
to be the Heaviside step function about 0 and é(z) = %9(1) the dirac delta function. Since P is
not smooth for all § we apply the Ito-Tanaka formula taking derivatives to be understood in the
sense of distributions, giving

dP(T, Sr) = 0¢P(T, Sr)dT + d,P(T, St)dSr + %a‘f_(r, S7)PdSrdSt

—TTD(},T(ST — K)+dT =+ -D[},TBEST — K)((?"T — HT)STdT + ‘i,';ﬂ'(T, ST)STdH'J‘f?)

1 ; .
+ 5 Do78(ST — Kwio(T,Sr)dT
= ?"TD[)‘T]].{ST>K}I‘.!£T — D[),T]l{Sv;->KHJ-TSTdT+ EKZD[)‘T(J)[ST - K )1.»%17(1", S']'*szT

+ D[)‘T ]].{ 5,1.>K}1,'10'(T, ST)STdH‘Jf?

We apply E¥[.] to both sides. By an analogue of the dominated convergence theorem E2[dP(T, S7)] =
dE2[P(T, S)] and assuming the diffusion term is a true martingale, we have

{ﬂEQ [P(T, ST)] = EITTD[},T]]-{Sq->K}KdT—D[P,T]1{Sq >KHJ]’*S'}“dT

+ %HZDU‘THE(ST — K)oko(T, Sy)2dT]

Observing the left-hand side is equal to dC(T, K') = dpC(T, K)dT as this is the difference of two
strike K market calls over a short time period dT", by substituting and dividing through by dT°,
the above yields

1. . ) .
(’)TCY(T,K) = KEQ[T'TD[)‘T]].{57.>K}]—,€J.T1EQ[D[}‘TST]I{S,I >K}]+§KJG'(T, ST)ZIEQ[D[)‘TG(ST—_& )‘i,’%]

We recall the well-known properties dx C(T, K) = —E%[Do, 115> x} ], 9% C(T, K) = E¢[Do r5(Sr—
K)| (proof in A.3 and note
C(T, K) = E%[Dox (St — K)8(St — K)| = E¥[Do 0 S76(St — K)] — KE®[Do76(ST — K))
=E9 Dy rSr1l 5, k) — KOxC(T, K)
= E%DyrSrl{s,>ry) = C(T.K) — KogC(T, K)

13




Using these relations and properties of the conditional expectation we have,
OrC(T, K) = KE2[Dy g (re—18) s, 1)) — r3KxC(T, K) — pr (C(T, K ) — Ko C(T, K))

E%(Dy vk | Sp = K]
E'G[D[}__T | ST = f{]

+ % o(T, K 03C(T, K)

Rearranging we find

rC(T, K) — K(r — pr)dyc + C(T, K )prC(T, K) — KE® Dy p(rp — r9) 1s,~ 1))

(T, K)? = TSPy Fom—e
: 0o e -y E2[Dg rvi|Sr=K]
320 C(T K) = fD.f.y |57 I:Kf
_ E%Dur | Sr=K] oo (T, K)? — E%[(rr — r'7) Do 71 5,5 k})
= IE'Q[_D[}:T‘U% | ST — _{{] Dupirel £ %f\, 3;{2 (T _{f)
which gives the desired result. O

Using the above result but assuming deterministic rates, we have the following general local stochas-
tic volatility model that will be used for the remaining part of this thesis

ds 5 T s -
5 = (= )t + wonyna (b S)AWS, Dyp = e I (2.5)
dv, = a® (v )t + B (¢, 0)d WY (WS Wy, = pfvdt

l""]:hlpir{.-(:rv K ]2

_ _Zbupine( T K| 2.6
E%w3 | St = K| 7=t 20

2
Thybrid ( 5)

For simplicity we do not consider discrete dividends at this point but will add this notion in later
sections. In order for market marginals to be calibrated we require the local volatility to have the
form (2.6), which differs from the regular Dupire local volatility as the denominator depends on
joint density p(t, s,v") of (Si, v:) under measure . Writing the conditional expectation in terms
of density p,

E%wd | Sp = K| = fu’fp(T. v s = K)dv'

B —
B /HQM{PM
p(T, K)
1 o
N m[“ (T, K ) dv
_ f ‘LH'Q?,](]-—.~ f\’,‘i,"]{f‘u’

T [p(T, Ko )dy
Hence we can rewrite the local volatility function
| [ p(T K, v)dv' |

rbric t, s, = el T W e ————|
UH_\lnl( 8 P] Uann(( 1 ]\/ fi.'zp(f. .K_.‘!,")di."..r.

=t
==

The dependence of the local volatility on joint density p means the SDE for the stock (2.5) is
an example of a McKean-Vlasov SDE, a group of SDEs where the drift and volatility coeflicients
depend on the law of the process itself. This type of SDE introduces added complexity to the
calibration procedure which cannot be completed using typical Ito diffusion methods. Before
continning to find solution processes to this local volatility condition, we give a brief introduction
to McKean-Vlasov SDEs, some associated results and introduce the particle method, a method for
simulating processes satisfying McKean-Vlasov SDEs.

2.2 A brief introduction to McKean-Vlasov SDEs and the
particle method

Before introducing McKean-Vlasov SDEs, we note the Fokker-Planck or Forward Kolmogorov
equation
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2.2: n-dimensional Fokker-Planck equation

Let n,m € N, if n-dimensional random process X = (X;)s>p is described by SDE
dX; = p(t, Xy)dt + o(t, X;)dW,;

where p(t, X;) is an n-dimensional vector and o(t, X;) is an n x m matrix and W, is
an m-dimensional standard Brownian motion, then the probability density p(t,z) for X,
satisfies the Fokker-Planck equation

o n 2
P _ —Za ool + 3 g Dy anto) ()

Az, 0

with drift vector g = (1, ..., jtn) and diffusion tensor D = %crch_. that is

m

Dyt @) = Za,;‘f:crrﬂtwj

McKean-Vlasov SDEs

McKean-Vlasov SDEs were first studied by Henry McKean in 1966 [12] as a proposed class of SDEs
satisfying differential equations for particle system equations in statistical mechanics, such as the
Vlasov equation.

Assuming the stochastic basis (2, Foe, (Fi)i=0, P) and the same notation for dimensions as above,
a McKean-Vlasov equation for n-dimensional process X is an SDE in which the drift and volatility
depend not only on the current value of random variable X; but also on the probability distribution
P, of X;:

ng :u(f,X:,Pg)df—U(f,X:.Pg]dm, Pf:Lﬁ.“'(Xg), X[}ER“ (28)

Under conditions detailed in [13], existence and uniqueness for a process satisfying (2.8) can be
proved if the vector drift and diffusion functions p(t,z,IP;) and o(t,z,PP;) are both Lipschitz
continuous functions of vector  and a linear growth condition with respect to the Wasserstein
distance, a metric that can be interpreted as a cost of moving between measures, is satisfied. We do
not note these results here as in many cases relating to hybrid modelling, the Lipschitz condition
is not satisfied. More discussion on the existence and uniqueness of our particular model (2.6) is
detailed in the next section.

By rewriting the Fokker-Planck equation (2.7), probability density function p(t,z) of X, is the
solution to

n m
.)g

dplt,x) @ 1
5 = —ZE[;J@(&:{:.P{];}(#.QS]]—§MZ_ r.07, Zoxk (t, . Pr)oji(t, e Py )pl(t. x)

i=1

(29)
with initial condition lim;_, p(t, =) = d(x — Xy). This equation is nonlinear in p(t,.) as pu;(t, @, P;)
and o;,(t. x, ;) now depend on the unknown density p(f,.), hence the reasoning why this group
of SDE are often refered to as ‘nonlinear’ McKean-Vlasov SDEs.

Standard approaches use (2.9) to calibrate hybrid local volatility models. These methods entail
defining a time grid and initial distribution condition on p(ty,.), then repeating the following for
time steps ..t < f141...

. Write the Fokker-Planck equation with p;(t;, =, P, ) and e (f, 2, P, ) defined using the pre-
vious step, solve for joint density p(t;,.) using PDE methods.

. Going forward in time one step, use joint density p(f;,.) to compute the drift and diffusion
terms by numerical integration. Use these as terms as pi(ti41. @, Py, ) and gip(frpr. 2, Py ).

. Repeat previous steps until last required calibration date.
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This approach is effective for hybrid models using a low dimension of driving Brownian motions
but there are some notable drawbacks. Solving the associated PDE is not generally possible for
higher dimensions (m > 3) and time performance is of order

m
(0] (number of time steps x H number of space steps for dimension 1')

i=1

which also deteriorates with an increase of dimension. With this in mind we turn our attention to
an alternative method, the particle method.

The particle method

Introduced in [2], the particle method is a more direct Monte Carlo approach to simulating the
McKean-Vlasov SDE (2.8). Consider the LSV-IR calibration condition (2.4), the computation of
three expectations E2[(rp — r$) Dy rl{s, = k). EQ[Dy rvd | Sp = K] and E¢[Dy 1 | S = K] is
required. For Monte Carlo pricing we require the simulation of paths ri, vy and S5. The particle
method idea is then, instead of simulating path-by-path could we start many simulations at once,
then empirically estimate these expectations at each time step? It turns out that this approach
is indeed reasonable and leads to simultaneous calibration and simulation of processes. The term
particle is used to describe the simultaneous simulation paths as at each time step the dynamics
of simulation 7 is affected by the distribution of N — 1 other simulations. Therefore this method
can be seen as a collection of interacting particles, hence why the particle term is used.

Estimating the McKean drift and diffusion coefficients in this way consists of replacing the law [P
with the empirical distribution

1 N
N 5
P :dexl""
i=1

where X4V = (X;‘N)t;,[} for 1 < ¢ < N are the random ‘particle’ processes simulating X and
N is the number of simulating particles. The particle processes XV are then described by the
classical-type SDE,

dX PN = p(t XN PNt + o (8, XY PN )AWE, Law(XgY) =B,

Note the above represents N x R"-dimensional SDEs (one for each particle), {“r"!i}]_<i<N are [V
independent m-dimensional Brownian motions and P’ is a random measure that is the source of
interaction between one particle and the N — 1 remaining particles. The inclusion of measure PV
also illustrates the need to simulate by ‘time-slice’ and not by path as the knowledge of one particle
position X!‘\' at time ¢ is not enough to determine the dynamics of that particle at a later time
t + ét.

Theoretically, this method is only valid if there is some notion of convergence. In fact, convergence
of the empirical measure P to the true measure Py is due to the chaos propagation property proved
for McKean-Vlasov SDEs in [13], details of this theory are not explored here. Though, in short,
it at £ = 0, the Xé"N are independent particles, then as N — oo, for any fixed ¢ > 0, X;\l are
asymptotically independent and their empirical measure PN converges in distribution toward the
true measure P,. Practically, for any bounded continuous funetion f € C'(R"),

1 N PN 1
N SN 5 | S@hte)da
i=1 e e

where p(t,.) is the fundamental solution to Fokker-Planck equation (2.9).

The importance of this result is that the particle method is the first ‘exact’ calibration method,
in that it is the first method where convergence to the true volatility function increases with
computational effort.

16




2.3 Calibration of a LSVM via the particle method

We return to the calibration of the LSVM (2.1) with deterministic rate and local volatility (now
with shortened notation) given by

i f ; '
p(t, s, v")dv
Oyt 8,p) = Tpupl(t, s vlm

As discussed in the previous section, existing results on the uniqueness and existence of a solution
to the McKean SDE (2.8) require Lipschitz continuity of the drift and diffusion coeflicients. This is
not satisfied for our considered model as the quotient of integrals cannot be bounded as required.
Therefore the existence of a process satistying the local volatility condition for arbitrary arbitrage-
free volatility surfaces is not obvious. The question of existence and uniqueness is challenging
and open, though there have however been numerical studies on the dependence of volatility-of-
volatility which is seen as a critical parameter.

We now apply the particle method, replacing the true risk-neutral marginal distribution (J, with
empirical distribution Q. Assuming Heston dynamics and redefining one-dimensional Brownian
motions for the stock and volatility denoted W, B respectively, under @ the NV interacting particles
have dynamics,

dSiN = (ry — p) SV dt + i Vo (e, SV QN AW, d{W, B), = po"dt (2.10)
d™)? = a8 — ("N dt + 00 Vd B! o0, R, 200 > >
with,
! ! |
f}'}\-f%’?')di' Z (9 —s)

0’“:-“:@?) = Gan(r. s ‘V = l'-’an

_— (t,s)

f‘!'”;ﬂ\- f s, ‘i"]{f‘i" \ Z; ]_ 1|( N 23:(9‘ N J

Here the local volatility o(t, s, -@?’] is not proporl\e defined as the empirical densities py give Dlr'l(‘
masses in the conditional expectation as @ is atomic with atoms at particle observations S,
We smooth the density py by replacing thc Dirac functions with a regularizing kernel &; y(.) to
obtain the Nadaraya-Watson estimator, so defining

(i, 8) X 10”(91 M._.'QJ
N\ S 6 Y

By replacing the local volatility in (2.10) with oy we can simulate paths of S.

on(t s, Q) = opupl (2.11)

The Regularising Kernel

We take d; n(z) = h, \
that tends to 0 as N —

) where K is a fixed, symmetric kernel with variable bandwidth fe v
. ln numerical studies we compare two possibilities for the kernel K,

8

« Gaussian: K(z) = \/%e‘i”

31— 27) e

The Kernel density estimate is known to depend critically on the bandwidth h; . Estimators
are found by minimising the asymptotic mean integrated squared error of the Nadaraya-Watson
estimator adding a factor of N~1/?, Taking & to be the sample standard deviation, Silverman’s
well known ‘rule of thumb’ for bandwidth selection is given by

« Epanechnikov: K(x)

. 4 1/5 . .
hrr = (ﬁ) NP5~ 1.06N "5 (2.12)

In (2] the authors consider a financial analogue, without sample standard deviation to save com-
putational time. The suggested bandwidth is

hen = KSoovs ¢ v/max(l, bym) N~

where oy is the variance swap volatility at maturity ¢, fmin = Il and & 22 1.5,
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Acceleration Techniques

Assuming op,,(f, s) is precomputed before carrying out the particle method (say by SSVI para-
metric approximation or by a combination of finite difference and cubic spline interpolation) then
the remaining problem is to calculate hybrid local volatility (2.11) is calculating the Nadaraya-
Watson estimator part that is O(N?) caleulations. Typical choices for the number of particles are
> 10% so the problem of caleulating the estimator efficiently arises.

There are a couple of ideas to improve the efficiency of such a calculation, which are noted below:

» Computing on a smaller grid: the estimator does not have to be calculated as required for
all inputs s. Assuming at time step ¢; you have an array of particle positions [S‘t N e S ]
Define sy, Symax as either the respective minimmm and maximum of the array up to some
threshold «, that is the |V |-th minimum or maximum value. (costly to compute, thongh
it depends if a sorting method is used). Alternatively, one could use the condition

Q(S!, < Smin) = Q(St, > Smax) =1l —a

which may be estimated using the kernel of the previous step or by the prices of digital
options. The estimator can then be computed on a grid Gre = [Swmin, - Smax] Of length
N, << N and be interpolated on the interior of the array and extrapolated for values no in
interval [Sumin, Smas)-

Dlsregardlng simulations: similar to choosing the significant grid points, simulation values
9” that are far from s can be disregarded using the following criteria:

8o, n(SEY —s) < (2.13)

Sorting simulations: [4] suggest sorting the simulations, which does increase efficiency of
computing a grid and disregarding simulations, though this adds a computational cost of
O(N x log(N)).

Restricting the summation range: Assume some time step T for ease of notation. If we
want to sum only over significant values we can invert the bound (2.13) for each simulation
S;:"\' and argument s giving
o N f—
|¢T__]:q.'(7’?]| < 9} —85< |d‘]"__]:.\'(??)|
iN _|5— iN | |5—
S]" - |¢Ti\.'(7?)| <8< S]" - |¢Tim.'(7?)‘

. - N . =i, N . qs . .
We can then define minimum j;ﬁ,‘\‘(ﬁ') and maximum 7 (s) indices satisfying

f—1

LN i N LN
SEN o)) < N (s) < s < Ty (s) < SEY + 155k ()]

that is simulation q}\' only contributes to the kernel functions of argiments

N(s) < s <T7 (s)

Calculating these indices for each particle pair is too computationally costly but defining
iT(x) and jp(s) to be the smallest and largest indices for which 511_3.'[3%‘“' —3) < 5 for at
least one i then we can use the approximation

Zuh] "_.A qt\‘ s)

i=j_(s)

on(t, s, QY

St

using this computation we have can achieve an order O(N x log(N,.)) computation where
Ne < N.

Equally spaced arguments: note further improvements to order O(N') are possible if the
input grid for s is equally space, though they are not detailed here.
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The Basic Particle Method Algorithm

We now have the required tools to set out a general algorithm for the particle method in the case
of a LSVM.

Algorithm 2.3: Heston LSVM calibration with the particle method

1. Define parameters N >> 0, pf"" € [-1,1] and a, 0,0, € R, such that 2af > o2 (by
historical estimation in some cases).

2. Set up a grid of time steps [0, ..., Tiyax] Where Ty, is the final market observed ma-
turity for vanilla options and set oy ({,s8) = ﬂifi[i where vy is the initial value of
the volatility process.

(i) Simulate N processes {S:"Wv,i.';'N}x 1.~ using an Euler or Milstein scheme
between [ty—1,%x] according to:

sy = (r —.Utjq Nt + i Noy (tp_ 1, SEV AW
d(v'N)? = a(f — ("V)2)dt + o0V d B

(ii) Calibrate (compute) local volatility

pup(t, 9) Z( 10: \-(q: x'NI)
\z, V()2 n (80T — )

on(t, s, Q) =

using any combination of acceleration techniques. Store the local volatility as
cubic interpolators and extrapolate flat outside the interval [spyin, Smax|. Set
anlt,s) = on(tr, s) for all t € [t f41).
3. Iterate previous two steps until Tinax
(In practice step 2 (i) is easily parallelizable using multi-threading or a GPU.)

2.4 Numerical Example

We use the EURO STOXX 50 Index Options (OESX) data introduced in chapter 1 and the
algorithm set out above to calibrate to vanilla options. An estimate for the forward curve is again
used by the repo optimisation technique detailed in the previous chapter.

Calibration

The table below summarises the calibration error for a particle method approach with N = 5000
particles, the sorting technique approach for kernel estimation with a Gaunssian kernel and ‘rule of
thumb’ bandwidth selection.

Implied variance (%) || Sep 2022 Dec 2022 Mar 2023  Jun 2023 Sep 2023  Dec 2023
2 2.36 2.44 4.56 3.81 3.75 3.94
Max. |Mkt — M| 3.08 4.74 8.85 6.92 6.96 6.72

[ Implied variance (%) ]| Jun 2024 Dec 2024 Dec 2025 Dec 2026 Dec 2028 Dec 2030
Avg. Mkt — MC] 447 124 118 3.76 3.61 3.52
Max. 5.88 5.59 4.71 4.95 4.26 4.35

Table 2.1: Implied volatility repricing for Heston LSVM using the particle method

Remarks

1. Calibration estimates were heavily aflected by the Nadaraya-Watson estimator. Realistic
results were only found when using a bandwidth estimator using standard deviation which
mitigated computation time saved by any acceleration techniques.
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Figure 2.1: Repriced volatility surfaces using particle method paths for December 2023 December
2025 maturities
2. Volatility parameters were also found to be crucial with convergence of the above example
using o = 0.02, # = 0.1 and a, = 0.01.
The following plots show the distribution of the stock and volatility process at the two maturities
used for pricing in the previous section, December 2025 and December 2027 for the model described
above.
Particle method: 3yr distribution, Gauss Kemel
| |
5 Variance: 19576.07 Mean: 3771 .32 4 Mean: 0.02  Variance: 0.00
I |
H
" {
-
o
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20-
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Sk 55
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00125 00150 00175 00200 00225 00250 00275 00300
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Figure 2.2: Stock and volatility process marginals for December 2025 maturity using particle
method
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Figure 2.3: Stock and volatility process marginals for December 2027 maturity using particle

method
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Chapter 3

Modelling with stochastic
dividends

Much of the content of this chapter follows the work of [3] where the authors set out a general
framework to calibrate a LSVM with a Markov functional type model for the dividends.

3.1 Markov Representation of Dividend futures

We start by modelling the dividend forward curve by considering a Markov-functional approach.
This type of approach is commonly used in fixed income where the matching date of underlying
rates and maturities makes their inclusion a natural choice. The approach was first introduced to
equity markets by Carr and Madan [14] and consists of assuming that some functional f maps a
driving process X to the states of the underlying. If f is known at some future maturity 77, then
the volatility smile for this maturity can be calibrated and the dynamics of f generate smiles for
t<T.

Let (Dy, )¢, e+ be defined on the filtered risk-neutral probability space (., F, (F¢)ier, @), where Dy,
is an Jy-measurable random variable representing the dividend to be paid at time ¢; and 7 is a
(countable) set of dividend times.

We define process H, := E¥[D,, | F] as the dividend forward curve and for brevity we drop the
notation on measure and conditional expectation to E;|[.] for the rest of this section. Note for
t > t;, H, = D, and by definition H, is a martingale.

(Proof: let 0 < s < t, by the tower property Ey [H:| = Eg [E; [Dy,|] = E [Dr,| = Hy).

The crucial assumption of this model is that the dynamics of H; are given by the following func-

tional form:
Hy =K, [Dy] = fi(t. Xy) (3.1)

where X; is a low-dimensional Ito process. Again note by the measurability of Dy, that we have the
boundary condition f;(;, X, ) = D;,. Our goal is to recover f;(t,.) from calibration to dividend
ranilla options.

We take X to be an Ornstein-Uhlenbeck process with dynamics dX; = —kX;dt +dB; and X = 0.
Some nseful Ornstein-Uhlenbeck relations that will be used are given in the appendix A.4. With
these dynamics we have the relation,

t;
B [Dy,] = By [fi(t:, Xe,)| = By | filti, Xpe k70 —f f_m'_sjdb‘.s}
¢
hence the functional relation depends uniquely on the boundary condition fi(t:,.) at ex-date ¢;.

We would like to recover a parametrisation for f using this boundary condition, so we assume a no-

arbitrage parametric cdf F*F for Dy, (ie. E :]ng, \K} = FAK)) to define the functional inverse.
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We can now specify a relation of the inverse of f which in turn specifies our model. Recalling
—2kt
-).

Xe, ~ N(0, =5—
FM(K)=E[1p, <x] = Q(Ds, < K)
=Q(fi(ti, X)) < K)
=Q (X, < f, 't K))
2k,
=Q (Z i l“*‘-‘“)

qw( 2k -1(ri,1())

Vil

Hence we have the relation
SO K) = 1\,"7-‘1’_1(1"’\‘{(1\’]] (3.2)

and as the standard normal quantile function and cdf F& are increasing in K we have that f is
well defined on the domain of strikes.

3.2 Calibration to dividend Vanillas

Vanilla options on realised dividends are readily quoted in the market and, depending on trading
venue and underlying, can have enough liquidity to build a volatility surface for calibration. Two
future dates 17, T, are set (typically T, = 77 + 1 year) and a call option can be defined as

(Y D, - 1{)+]

Ti<ti<Ta

(> filtu X)) —h’)+])

Ty <t <T

chTy Ky =E

(=E

In our case we will stay with EURO STOXX 50 as an example. As mentioned previously, dividends
on this index are paid quarterly with historically the most significant dividend payment in the
final quarter of the calendar year due to the business cycles of index constituents. For that reason
we make the following modelling assumption that one dividend payment Dy, falls between the
maturities 7; _; and T} instead of a sum of random variables. With ¢; to be the proceeding ex-date
before T} we rewrite
CTK) = E[(Dr, ~ K)*] = E[(fulti. X0,) — )]

As touched on in [3], dividend options can be illiquid for out of the money strikes. This leads
the authors to use a low-dimensional SVI parametrisation. We proceed similarly, by assuming
cdf FA(K) comes from a no-arbitrage SVI parametrization X = {SVI parameters} of the Black-
Scholes implied variance o3y (K)t;. By the well-known marginal distribution relation (proof in
appendix A.4) we have HC;}\EKJ = F;(K)—1 where F; is the cdf of the underlying at time 7;. With
fi(0,0) = Eg|D;,] the dividend forward at ¢ = 0 we find the relation

Frifg) =14+ 20
K

=1+ %Bs_mll(rféw(j(]l’}.K.f,-((].(]]]

where,

BS_call(v, k, f:r,T) = ﬁ_"T[fb(d+]f —®(d_)K|
1 )
N

is the Black-Scholes call formula with variance v, strike k, forward f, rate r and maturity . We
introduce the following change of parameters for tractability:
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. log forward-moneyness y := log(%}m)

« Black-Scholes implied variance wgyi(y, ;) = ody(fi(0,0) exp¥)T; = ody(K)T;, which is
directly given by the SVI parametrisation. Note the subseript SVI notation is dropped
during the following calculation for brevity.

So continuing the calculation (relevant BlackScholes relations are given in the appendix A.4) with
the new variables, we have

5 i dBS ow dy ~ oBS
FREY =14 & K (00222 L KL fi(0,0
(K) 3, (0 K Ji0.0) 5 5+ 52 (0 K £(0,0))
T £:(0,0) ow i T
=1+e " oldy) NS e @(d)
LY ow o
= 1T () e (T b (33)

now with

1 w
di=—=(-y+3). d=di-
+ o ) 5/ v —Vw
Relations (3.2) and (3.3) fully define, via the inverse, functional fi(t:,.) for t; € (Ti-1,7i]. As the
maturities create non-overlapping intervals (I;_1,7}];=1 _, we can specify functionals f;(t;,.) for
all dividend dates up to final quoted maturity T7.. We now set out the calibration procedure and
document an implementation with EURO STOXX data.

Algorithm 3.1: Markov-functional calibration on dividend vanillas

1. Define non-overlapping market quoted maturities (T3);-, _ _, and parameters for the
underlying driving process X. Choose a suitable SVI parametrization and make an
initial guess for all sets of parameters X; such that they satisfy associated no arbitrage
conditions.

2. For a maturity T;, calculate market implied vols opj, () for quoted (and
liquid) strikes (Kj)j=p,..,m. Using (3.2) and (3.3) compute and store the pairs
(/7 '(1:. K;), K;) for all K;. The domain of the functional is dependant on driver
process parameters and X;. Hopefully, (dependant on parameter choice) this relation-
ship should give a linear/shallow cubic relationship. Interpolate and pre-compute a
erid to quickly map from inverted values to the strike space.

3. Simulate N (> 10,000) paths X . the Ornstein-Uhlenbeck choice allows this to be
done exactly. Using these paths, compute call prices CT*(K;) for all strikes K; by
Monte Carlo.

4. Use relation CTi(K ;) = BS_call(od;, v (K;)T5. K, £i(0,0)) to compute the Monte-
Carlo implied volatilities ), (/). Optimize the SVI parameters X; according to
a penalisation function, say least squares:

Al = arg ming, Z (oniv e K;) — opiv ke (K;))?
di=0,....m

5. Collect optimal parameters )_\': the functional f;(#;,.) is now defined for all maturities
i=1,...,n and can be computed using the pre-computed grid map.

Numerical Example

We use EURO STOXX 50 options on dividends (OEXD) data and dividend futures (FEXD) with
maturity 1" as a proxy for the spot price fi(0,0). OEXD option maturities are quoted for the final
quarter of each calendar year and take the anmmal sum of that years dividends as an underlying,
hence why our assumption of a single dividend random variable is reasonable in this setting. As
mentioned above, option prices are illiquid for some out of the money options, so we restrict our
sample size to liquid strikes, that is strikes that have seen trading activity in the last business week
and have log-moneyness in the range [-0.5, 0.25]. Similar to previous examples we take r = () and
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optimize the repo rate p to match implied volatilities for call and put options. The deterministic
repo rate g is then interpolated and stored as a proxy to a forward curve.

We take the mean reversion rate of the ornstein-uhlenbeck process to be = 1.0, and initial value
= 0.0. Similar to the above algorithm, we first fit a Heston SSVI surface to the computed volatilities
of all maturities and then fix maturity T° and optimize parameters whilst maintaining no arbitrage
conditions. The results are summarized below with Heston parameter tuples representing (v, o, p)
in the notation of [10].

Maturity Dec 2022 Dec 2023 Dec 2025 Dec 2027
Heston SVI params | (1.72, 0.25, -1.70)  (1.72, 0.25, -1.70)  (1.79, 0.25, -2.16) (2.03, 0.24, -2.81)
Avg. |Mkt — MC| 0.33 0.41 1.08 4.12
Mazx. |Mkt — MC 2.55 2,78 4.37 5.66

Table 3.1: Markov functional Calibration to OEXD

X Maturity: Dec 2025 Maturity: Dec 2027
- Maturity: Dec 2023 - ty: = urity: De
Mt el Mt vod — Wit i
— — Wi — Wl
- = -
-
E 3 2 H
] 8 8
n

o6 =T

! ; -0z (]
log_moneyness keg_maneyness

Figure 3.1: Plot of market implied variance compared to the implied variance of Monte Carlo
simulation prices for call options using the optimal SVI parameters.

Maturity: December 2023

=2 -

» 50 s 100 125 150 175 200
strike

Figure 3.2: Example of interpolating the relationship between f;(t;,.) ! and strikes /; for Decem-
ber 2023 maturity. Given the choice of Orstein-Uhlenbeck parameters, by considering the mapping
of y axis to x axis you can appreciate what random dividend values are generated. For example,
the long term mean (. maps to = 110 dividend points which is inline with historical expectations
of (2.3)
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3.3 LSVMs with stochastic dividends

We now define the following dynamics of the underlying S; with dividend jumps of amount Dy, at
time #;. Under risk-neutral measure (}:

dS, = riSdt + oy dW,, Sy =S,- — Dy, d(W,B) = ps pdt

with r; the deterministic rate, o, the stochastic volatility and B is the Brownian motion associated
with the dividend process. Extensions to stochastic rates are achievable given the efficiency of
the particle method but for simplicity we focus only on the stochastic volatility framework in this
study. Assume we have pre-computed market no-arbitrage volatility curves interpolated for all
strikes i € Ry . The dynamics of volatility o4 are then to be defined to match Vanilla options
with maturities 77, ..., T and defined for all strikes, that is

e I BEQ((S: — K)t] = C"RY(TL,K) K eRy, i=1,...N

Note these maturities are different to the dividend option maturities of the previous section. In
practice maturities of regular vanilla options are much more frequent than their dividend counter-
part and are chosen to not coincide with a dividend ex-date ¢;.

In the blended dividend setting of section 1.1 the framework allowed us to calibrate a volatility
surface on the smooth ‘pure’ stock process instead of the actual stock process with blended dividend
jumps. Using analogous no-arbitrage conditions for the pure setting we could then interpolate the
volatility between maturities to build a surface for local volatility modelling. This is not possible in
the case of stochastic discrete dividends. We instead require interpolated call prices on ex-dividend
dates to satisty the condition

e~ o s[5, _ [yt = = Jo' redsg [(Sﬁ - 1{)+] = O™ K)

which depends not only on the risk-neutral marginal distribution of S,—, but on the joint distribu-
tion (S,-, Dy,).

We denote ¥t to be the marginal implied from 7}-Vanillas, by the well-know relation (appendix
Ad)
&

fymkt K=
K) = 557

i

EQ|(Sy, — K)t] = elo 4592, cm(T, k)

In order to mark our model to the market and subsequently define the local volatility o, we work
towards constructing a continuous process that has the same marginals as the stock process at
maturities 7;. Define S:“J to be the price of the forward with maturity 7),. Noting that we are in
a similar setting to that of blended dividends but now with time ¢ cash parts a; = IE?[DL] and no
proportional parts #; = 0, by the result 1.2 we have the forward price

S = Syl rs SN L EE D] te (0T =1, N (3.4)

tti<Th

By construction S:“J is a continuous martingale, which can be seen as it is a linear combination of

dividend forward martingale processes E; [D; ]. We have the boundary condition S;?J = St, and
it has dynamics

de"J _ eJra}" ;-_-:ri.s-o_th:! _ Z e.f:“ . rl.sdlE! [Ug‘] _. e [O_. I_“] ['3.-1)

bt =Ty

For completeness we let o}, denote the volatility vector of the #;-dividend future and W a multi-
dimensional Brownian motion, defining

dE[D; | = obdWP (3.6)

to specily the model generally. In our case, in the previous section we have defined a Markov-
functional form for the dividend dynamics so have WP := B to be a one-dimensional Brownian
motion and that o = de fi(ti, Xi, ).
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Calibration to Vanillas

We now approach the problem of calibrating a local stochastic volatility model with general divi-
dend dynamics 3.6. Given the discontinuities of dividend payments, we alter the modelling problem
to find continuons processes sharing the same market marginals at observed maturities. From this
a local volatility function for the stock process can be constructed. In short, we take the following
steps:

1. specify a continuous process 5 with local volatility J}::IJP (t, 5™ that has the same marginals

as the T, -forward process S:“J at 7,,_; and the market marginal Q’,:"“ at T,,.

2. specify local volatility of the stock price o, as a function of cr]{:::;]p

(n)

Building a local volatility op,,

Consider the pair of consecutive future maturities {7}, 1,7, } and assume that the local volatility
oy is already specified for t < 7,1, meaning our model is already calibrated to vanilla options for
proceeding maturities 17, < ... < 7, ;. We now consider the problem of how we might determine
the dynamies on the future interval [T},_,,T},]. Given our model, the stock process S; jumps on
ex-dividend dates, meaning we cannot build a well-defined volatility surface directly to derive loeal
dynamics in the usual Dupire-like way.

Instead we consider the forward S!{"J that is a continuous martingale with the boundary property
S;f“l’] = Sq,. Given this condition we notice that if we were able to simulate the forward process

S;“J for t € [T;,—y,T,] then the simulated T,, maturity call prices must match the market prices,
that is " )
(,'::md("](:ﬂ“_[\,) = JEEE dleQ[(S'}{“lJ _ 1{)-{-] — (,”"k"(:r“,ff)

for all strikes K € Ry. We will see that simulating the forward is indeed possible, so we also
compute the 7,1 maturity calls in an effort to construct a volatility surface over this interval for
a process without jumps. Computing T, _; maturity call options of process S for a large grid of
strikes K, we have

1 g - — [Tn=1 . dsmd (n -
C',]:md('](fn—l.-h) = Do ! EQ[(S}"‘LI — K )+]
+
Tne1 g0 T p(s)ds T ds g -
=e~ Ta ! 1_-:ri.leQ “qT"_le'flu—l (s)ds E e-Jrh ad lE.T"_l [D!‘I — K

T, 1<t <T,

Using Cmodel(T,, 1, K) and C0dY(T,,, K) = C"™kY(T,,, K), which are known respectively from a
Monte-Carlo computation and the market value of T, -Vanillas, we can derive the Black-Scholes im-
plied volatilities. The volatilites of the respective maturities 7,1 and T, are defined as o (7T}, 1, K)
and o(T,. K) and respectively solve

cmode(p K) = BS_call(o(T,, K)2T,, K, ), a={n—1,n}

By linearly interpolating the variances o(7,,_1, K)?T,,_1 and o(T,,, K )*T),, this specifies an implied
volatility surface for all t € [T},_1,T;,] by
o v E=Tasd) o e
a(t, K)t = (o(T,, K)"T, — (T, -1, K) fxx—l)ﬁ_g(fxx—lvf\) Tt (3.7)

n n—1

Using the interpolation lemma of [10], assuming that both smiles are free of butterfly arbitrage and
a(Tw, K)*T, > a(Th—1, K)*T,— for all strikes K € R4 (which can be checked nimerically) then
there exists an interpolation such that the interpolated volatility surface is free of static arbitrage
for all T,y <t < T),. If this holds we can then specify a process §'":

dgt = Gg::p(f, §t(uj)d”;t.~ te [:ru—l-' Tﬂ]

AO(t, K)

(n) -2
o (tr-’!\) - A n -
Dup K030t K)

(3.8)
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where C'(t, K) = BS_Call(H(i',K)2t,K,S[)) for T, <t < T,. By construction S has the same
marginals as the forward at the end points of the interval, that is §’i'“].‘.J_1 = S;{‘lj_l and therefore
Sy, ~ Q. In conclusion, onr model is calibrated to equity vanilla prices with maturity 7, if
S:“J and §§“] have the same marginals for all t € [T},_1,T,,).

(n)

Building o, from op,,,

By [11], the processes S_,S“J and .C_}!{“J have the same marginals for all ¢ € [Ty, T}], so we have the

calibration condition S;‘lj = S7, ~ Q¥ if and only if the following equation holds:

Sy, ~ Quk for all n = 1,..., N if and only if o, satisfies:

d lns{“) (n - (n oy
EQ [(%) | S!‘ : = h:l = §B|E|u(t:h)z, te [T“_l,]"“] (3q)

By taking oy = a,0(t, S!{“J) for all t € [T,,_1.T,] with a; a multi-factor stochastic volatility model,
by applying Ito’s formula and using dynamics (3.5) we have

dlln §in) ‘n ; ) 1 1 e e (n ;

2
=E® m(eﬂ’ gt K)dWe — Y el T rr}]riH-’!D) | s™ = K
t<t; <Ty

- %= (gﬂ(t,ff)eﬂfa ’“‘I'”I[}(t,fx’)—QU(t,K)IL(t,K)+Ig(t,K))

with
Iy(t, K) = E¥a? | 5! = K]
Lt K) = pspiels " 7o 3 " T g a0, | S = K]

i<t <Ty
b Tn g N . in .
BeK) = Y R o |50 = K]
t<t; t; <Tn
The above is a second-order algebraic equation in o(f, K) that can be solved giving:

Lt K)+ AL K)
o2 [T, “E'”'I[}

olt, K) =

with A(t,K) = (. K) + 2 17 7B 1y (1 K) (K2opy (t K)? — Lt K)).

Here we need to assume that A(f,K) = 0 (which can be checked mumerically). Finally, the
dynamics of S; read
dS; = reSedt +o(t, ST NVadW,, S0 =8, — Dy, Vte [T,1, T, (3.10)

!l

We recognise that (3.10) is a McKean-Vlasov SDE studied in the previous section and the particle
method can be used to jointly simulate and calibrate such a model.

The Particle Method

We define the system composed of N processes (S:‘N, X;“V,r:;"N),-=1‘___‘N by
dSHY = 80 Ndt + o (8, SPV U ENaW N forall  te [T,oq,T) (3.11)
dXPN = —kXPYdt + dw]Y, d(WiN BWY, = pepedt  (3.12)
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where .
N i N [T, de orads i, N
s (n) _ SN rads _ E : ol 708, XY

t<t;<Ty

the Brownian motions ('L-Vf‘N, B;\') and (Tr-l-’!j“\r,Bf‘N) are independent for all i # j and ox(t, K)
is defined by

Nt K) + \/ N (1 1)+ e 1Y (1, ) (K2a () (8 K2 = I8 (1,K))

on(t, K) = (3.13)

2 [T pods IN (1 T
2 S ‘.rf.s_([‘)\‘ (t, K)
IV, K), IN(t, K) and IY(¢, K) are the empirical measure QY = %Zx‘zln‘qg N N yrNy ana-

logues of Io(t, K), I1(t, K) and I»2(t, K) obtained using the regularizing kernel 6; n. Explicitly they
are given by

S ()2 (K — 5PN
Y G (K - 5P

- N i iNyg - i, N
N . T e Toopids 2 i (Opay ™ )0e N (K — S
fi\(fsf‘) = ﬁSDi\rﬁf* Tads E eJF* ! Z‘—l( D" ) ( )

I (tK) =

N

N L - PN
tti e Ty E::l 01,:\"(1\ - Stt )
N P g - i N
Nt K) = Z Puj}_'";_.:rzaz,:l(f’bﬂjn)dz,:\i(h -5
2 by - N . - N
tt ;< Ty Ei:l ‘J’!,N(f\ - S; )

We now set out the full algorithm of [3], to calibrate a LSVM with stochastic dividends

Algorithm 3.3: Match equity Vanilla prices

)

1. From T1-Vanillas, compnute the local volatility U&m

ity formula (3.8)
2. Then compute the local volatility o(.,.) as given in Equation (3.13) for all £ € [0,77]
using the particle method. This consists in: Building o(t,.):

(a) Set k=1 and set (0, S)) = UEL.EI,(O,SU) for all ¢ € [0, £13).

(t, /) using Dupire's local volatil-

(b) Simulate N processes {S;‘N,ai“w,X:‘N}l<,-<N from ., up to # = %Tl using
a discretization scheme for SDEs (3.11), say, an Euler or Milstein scheme.
(¢) Compute the local volatility o (¢, K') from Equation (3.13).

(d) Set k:=k+ 1. Iterate steps (ii) and (iii) up to the maturity 77.

3. Compute T; call options on Sg,? = STleﬁ;{;z rads _ Yonctien eli? "-"'I”ll*:'%1 [D,,] for all
K (in a grid):
N
L (2 - — LNL(2 -
EQ((SY — k)T = EZ(S.}l LK)t
=1

4. From the implied volatility of S;? at 71 and the market implied volatility at T3,
compute the local volatility G’Eﬁfp(f,f\’) as outlined in the ‘building a local volatility’
subsection. Then compute the local volatility a(f, K') (3.3) in the interval [T}, T3]
using the particle method (see (i)-(iv)). Compute the implied volatility of S%;J =

3 ds T dis
S-plef‘z Tald _ ZT&::!,-::T!; el IEQID!‘.].
5. Iterate up to Tx

3.4 Numerical Example

We use the EURO STOXX 50 Index Options (OESX) data for calibrating vanilla options and the
calibrated dividend model discussed earlier in the section. As in the previous chapter, convergence
of realistic results were only found using a bandwidth requiring sample standard deviation which
lengthened computation time, ultimately meaning less particles and time steps than desired were
used. The following results are from a model with the following parameters:
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Implied put_BSvar %

-}

-}

B

=125

Number of particles N 5000
Number of timesteps 250/ yr
o 0.0, 0.02, 0.1, 0.01
Kernel Gauss

Bandwidth selection

Dividend model

rule of thumb (2.12)
as in sect 3.2

Table 3.2: Stochastic dividend LSVM parameters

Calibration

H Implied variance (%) || Sep 2022 Dec 2022

Mar 2023  Jun 2023 Sep 2023  Dec 2023

Avg. |[Mkt — MC| 3.52 4.67 3.20 3.59 3.66 3.38
Max. Mkt — MC 4.21 7.61 4.38 5.07 4.02 5.77
Implied variance (%) || Jun 2024  Dec 2024  Dec 2025 Dec 2026 Dec 2028 Dec 2030
Avg. |Mkt — MC| 4.94 4.27 4.10 4.05 3.68 3.55
Max. |Mkt — MC| 3.57 5.31 7.53 6.94 6.30 6.47

Table 3.3: Implied volatility repricing

Maturity: December 2023
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Figure 3.3: Plot of market implied variance compared to the implied variance of particle simulations

for two maturities, December 2023 and December

Pricing

2025.

Prices for dividend knock-in product are computed using the simulated particle paths. It is in-
teresting to note that prices for all combinations of maturity and barrier are increased from the
blended dividend framework results of chapter 1. This is in part due to the added volatility of the

particle model used.

Maturity 3vr 3yr yr oyr
Boundary 90%  80%  90% @ 80%
MC Price 57.64  20.02 T4.26 35.68
MC 0.95 CI + 3.11 2.48 4.98 5.66

Table 3.4: Knock-in Dividend pricing for stochastic dividend LSVM
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Figure 3.4: Distribution of simulated dividends for the 3yr and 5yr knock-in swap.




Conclusion

This thesis aimed to introduce frameworks for modelling dividends for the involvement of pricing
structured products.

The *blended’ framework of H. Buehler was introduced in Chapter 1 and recognized for its tractabil-
ity and rich structure. The approach with a basic local volatility model for the pure process X was
found to be efficient for repricing observed smiles. However, limitations included the dependence
on defining a blended structure and the requirement to extend the model in order to give dynamics
to the dividends, which is necessary to accommodate the risks associated to pricing a structured
product.

The ‘particle method’ of J. Guyon and P. H-Labordere was then introduced as a more universal
approach to the hybrid modelling required for pricing such trades. The theoretical motivations
of the method were discussed in Chapter 2 and a framework relevant to dividend modelling was
derived in Chapter 3.

Numerical experiments using EURO STOXX 50 as a running example were noted at the end of
each chapter. Though numerics were affected by using a ‘proxy’ forward curve, the structure of
both frameworks was appreciated. The calibration of the ‘blended dividend’ model in Chapter 1
was only limited to the optimization of the associated SSVI surface. Relevant implied volatilities
and prices were generated to show a reasonable fit of the model and give estimates of pricing
the ‘Knock-in’ dividend swap. Despite the implementation of the particle method being heavily
affected by bandwidth selection, reasonable numerics were achieved and the adequacy of using such
an approach to general structured product modelling was proven.




Appendix A

A.1 Dividends terminology

There are some important dates to be aware of in the life-cycle of a dividend payment. The board
of directors or issuer of the security (ETFs can also pay dividends) announce the details of a
dividend payment on the ‘declaration date’. The ‘ex-dividend date’ is then the trading date on
which new buyers of the security cannot receive the dividend. Typically on the day following the
ex-date, a company will check their records for shareholders eligible for the dividends on what is
called the ‘date of record’ and the dividend is then transferred to eligible holders on the ‘date of
payment’ that is typically a week later.

The drop in share price equal to the dividend amount can be seen by basic no-arbitrage arguments
- say if the drop is less than d;, buy the stock on the close before the ex-date, pocket dividend d;
then resell the position at the open for a profit. The reverse operation could be executed in the
case of a larger drop.

Other important points of note are that the shot seller of a security is obligated to pay dividends to
the lender and that dividend payments exhibit seasonality - the annual frequency that a dividend
may be paid is specific to that company or issuer but the most substantial payments typically
come in the semi-annual quarters of the calendar year. For example EURO STOXX 50 dividend
payments occur quarterly but the semi-annual quarter payments are historically 5x larger than
first quarter and third quarter dividend payments - note this relationship has fluctuated in times
of economic stress, such as 2008-09 and 2020-21.

A.2 The Black-Scholes formula

BS_call(v, k, f;r,T) = e " T[@(d, ) f — ®(d_) K]
1 )
di =7 (mg(%) —‘5) d—dy —

A.3 Local Volatility marginal distributions

i v s 4] i
aC :p(r,r)/ 0T 5)ds

K K OK

ac'
K

= —P(t.T)[p(s. T):=5¢
=P, T)p(T, K)ds
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A.4 Ornstein-Uhlenbeck formulae
(Proof: (finding formulae for X, & X, )

(I(X;_rf’“) = t'cX;r-‘“df + r-.“rf.X,g
= kX,eMdt + eM(—kX,dt + dW])

= eFtd 1-';',_X

Integrating over:

t t
0.8 Xk — Xoeh0 = [ eaw? o xo = [ eHeaw
0 0

t; t;
[f,f{-] . Xﬁ.ﬁ“' —X;_r-.“ :/ (,.:..-,(”_t;lj) _*X:, :XJ(;—ML—IJ_/ (,.—ﬂ-::..—.»J(H.L,:(

t t

Note by ito integral properties and ito isometry,
E[X:]=0

t;
War (Xy,) :/ e Hlti—s)gg — _
0 2k

1 g2kt

So under @, X; ~ V“%.Z where Z ~ N(0,1). )
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