GRIGORIEV_ZHENYA_1818380.p
df

by Zhenya Grigoriev

Submission date: 06-Sep-2022 03:43PM (UTC+0100)
Submission ID: 185749704

File name: GRIGORIEV_ZHENYA_1818380.pdf (2.51M)
Word count: 18209

Character count: 86655

Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

General Signature Kernel For Time
Series Modelling

Author: Supervisor:
Zhenya Grigoriev Thomas Cass

A thesis submitted for the degree of
MSc in Mathematics and Finance, 2020-2022

September 2022

Declaration

The work contained in this thesis is my own work unless otherwise stated.

Abstract

The dissertation presents a study on the application of the general signature ker-
nel [CLX21] to modelling financial time series data. We conduct a thorough review
of the concept, design a practical model and carry out a series of experiments to
validate the proposed approach and demonstrate its advantages. Furthermore, we
explore the idea of static kernel approximation applied to the proposed model to
achieve better computational efficiency and discuss its advantages and shortcom-
ings. The empirical results have been collected by running the experiments on the
popular time series classification benchmark UEA datasets [Bag+18], as well as on
the Bitcoin time series and technical indicators data studied earlier by [Mud+20].
The proposed general signature model implementation outperformed the baseline in
most of the cases, whereas the same model with static kernel approximation showed
adequate performance while achieving significant data dimensionality reduction.

Contents

1 Introduction

2 Theoretical foundations
2.1 Supervised learning Lo
2.1.1 A brief introduction to linear classifiers
2.1.2 Limitations of linear models
2.2 Kernelmethods
2.2.1 Keydefinitions o
2.2.2 Properties of a kernel function
2.2.3 Examples of kernel functions
2.3 Supportvectormachine
2.3.1 Kernelised support vector machines
2.3.2 Allowing for misclassifications
2.3.3 Support vector regression0
2.3.4 Computationalcost
2.4 Kernel approximation methods
2.4.1 Gaussian kernel approximation
2.5 Path signature and its applications
2.5.1 Definition of the signature
2.5.2 The signature kernel Lo

3 Model design
3.1 Considered general signature kernels
3.2 GaussianQuadratureo e e
3.3 Numericalsolution o
3.4 Static kernel approximation and themodel

4 Experimental Results
4.1 UEA time series classification,
4.2 UEA classification - static kernel approximation
4.3 Bitcoin price prediction with a range of technical indicators
4.4 Bitcoin price prediction with a range of technical indicators - static
kernel approximation.o

5 Conclusion

i

[y

NV Ny U WwWw

19
19
21
22
23

26
26
28
30

39

41

Appendices

A

Al
A2
A3

A4

B.1
B.2

C1

50
51
Proof of theorem2.2.1 51
Proofof theorem 2.2.2o o 51
Derivation of an alternative feature mapping [2.4.2] for random Fourier
features 51
Derivation of the signature kernel PDE [2.5.4] 52
53
General signature kernel using Beta-distributed random variable . . . 53
Quadrature rule for Beta-weighted general signature kernel 53
54
Bitcoin price prediction using technical indicators 54
C.1.1 Experimentl 55
C.1.2 Experiment2 56
C.1.3 Experiment 3 - static kernel approximation 57
C.1.4 Experiment4 - variations of random Fourier features for Rayleigh
kernel function o 59

iii

List of Figures

2.1

2.2

2.3

3.1

4.1

4.2

C.1
C.2
C.3
C4
C.5

C.6

The example of a binary classification problem, where the labels y; €
{ Blue, Red } and ¢; = (21, 22),x;; € [—1,1]. The two classes are lin-
early separable, possible separating lines are shown in orange and

purple. 4
The XOR problem showing that classes A and B cannot be separated
by a straightline. 5

An example where one of the blue points is located in the red cluster.
In this case it might be beneficial to ignore the model prediction error
on that particular point in order to ensure the model generalises well 10

The diagram displays the model components which are used to train
and test the proposed model. L L 24

Predicted vs. actual Bitcoin price for time intervals I (a), II (b) and III
(C) . o e 34
Predicted vs. actual Bitcoin price for 7 (a), 30 (b) and 90 (c) days ahead 36

Experiment 1 plots of Bitcoin price forecast for intervals I, Il and Il . 55
Experiment 2 plots for 7, 30 and 90 days price forecast 56
Predicted vs. Actual price for Sig-PDE and Const models 57
Predicted vs. Actual price for Uniform and Rayleigh models 58
Predicted vs. Actual price for Rayleigh kernel. (a), (b) are 3 and 6

random Fourier features respectively 59
Predicted vs. Actual price for Rayleigh kernel. (a), (b) are 9 and 19

random Fourier features respectively 60

iv

List of Tables

3.1
3.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Hyperparameters definition of the data transformation step of the model 24

Hyperparameters definition of the static kernel approximation step of
themodel

Main parameters and dimensions of the datasets used for classifica-
tiontask

Accuracy scores (%) computed using eq. (4.1) of the different models
considered. The performance metrics of Sig(n) and Sig-PDE models
are taken from the [Sal4+21], whereas the rest are computed using
the implementation of the models considered.
Accuracy scores (%) for the model with static kernel approximation,
as well as dimensionality reduction comparison of accuracy scores
with the general signature kernel without static kernel approximation
intable4.2

Description of the features used for each of the forecasting horizons:
1 (EOD), 7, 30 and 90 days. Refer to [Mud+20] for details.

Forecasting the end of day price using the time intervals [, Il and III de-
scribed in the paper [Mud+20]. Results for the benchmark model are
taken from table 5 of the paper for the LSTM network which seemed
to perform best amongst the models the authors considered.

Forecasting the Bitcoin price 7, 30 and 90 days ahead using the Inter-
val III and respective features described in table 4.4. Results for the
benchmark model are taken from table 6 of the paper for the SANN

Confusion matrix for the Bitcoin price direction forecasting in experi-
ments 3 and 4. The cells TN, FN are the number of True and False neg-
atives obtained as part of the evaluation - where the model predicted
the price decrease, and the actual price decreased and increased re-
spectively. In the second column we have numbers of False and True
positives - these are when the model predicted price increase, and the
real price decreased and increased respectively. Confusion matrix is a
useful tool for classification model assessment which is we use it for.

This table compares the Uniform general signature model with the
benchmark results from [Mud+20]. In the test we predict EOD price
for the next day on different date intervals.

v

27

29

30

32

35

35

37

4.9 This table compares the Uniform general signature model with the
benchmark results from [Mud+20]. In the test we predict prices for

7,30 and 90 day horizons. oo oo o o 38
4.10 MAPE scores on BTC data for Interval III and various general signa-

ture kernels. 6 random Fourier features have been used. 39
4.11 MAPE scores on BTC data for Interval III and various general signa-

ture kernels. 6 random Fourier features have been used. 40

vi

Chapter 1

Introduction

Forecasting financial data has been proven difficult and the world of cryptoassets
is no exception. There have been multiple attempts to do this and there is no sin-
gle correct approach. Some researchers create the case for using the fundamental
pricing theory to do this [Gba+21], [Det+18], [Det+21], while others argue for
using the traditional quantitative finance modelling [SKA21], [CF19]. Finally, there
is a large group of researchers who employ Machine Learning (ML) to the task of
cryptocurrency price forecasting [AG19], [JL18].

The focus of this thesis lies in the third type of forecasting methodologies, in par-
ticular we will be looking at the generalisation power of Support Vector Machine
(SVM) model in classification and prediction tasks. A valid question to ask is if there
have been any previous successful attempts to apply SVMs to learning financial data.
Indeed there are examples in electricity markets [Shi+15], commodities [Xie+06],
currency markets (FX) [USCO7] and, of course, equities [CLN12]. In fact, to vali-
date the proposed model empirically, we compare it against the results of the paper
[Mud +20] which surveys different machine learning models for the task of learning
cryptocurrency data.

SVM is an example of the so-called "Kernel method” where a kernel function is
designed in a way to exploit the information that can be gained by mapping the
input space to a potentially infinite-dimensional space without explicitly computing
this mapping. This creates an opportunity for promising research in the area of
appropriate mappings and their inner products for different kinds of data, such as
graphs [Vis+08], text [Mar+11] or even video streams [ZPC11]. Another promising
direction in the area of machine learning is application of the Signature feature
mapping. In their celebrated paper [LLN16] demonstrate the benefits of using the
path signature for the regression problem where the input is a stream of data. The
same approach has also been applied to financial data [Gyu+14], and, more recently,
used with the powerful concept of kernel machine learning via the signature kernel
[Sal+21].

Kernel methods also have their downsides - great expressive power of the model
comes at a high computational cost. Combined with the computational overhead to
evaluate the signature kernel, it renders the methodology inapplicable for large data
sets. Kernel methods approximation is an active field of research, see, for example
[Wan+15], [Liu+21], and it seems possible that methods proposed in the literature

1

will be applicable to the signature kernel setup as well.

The goals of this work are two-fold: firstly, we would like to introduce the reader to
the novel concept of the general signature kernel [CLX21] and walk through one of
the ways to implement it in practice. Moreovet, we provide a systematic comparison
between the general signature kernel and the less flexible signature-PDE kernel dis-
cussed in [Sal+21] using the real-world data, as well as demonstrate the benefits of
using the signature kernel learning on the dataset of Bitcoin prices and other tech-
nical indicators. We also discuss the shortcomings of the signature kernel approach
and explore the directions that can be taken to alleviate them.

In what follows we provide a brief technical description of the methods (chapter 2),
which we use to discuss the model design and components (chapter 3) and, finally,
demonstrate the competitive advantage of the proposed solution via experiments
using the benchmark dataset (chapter 4).

Chapter 2

Theoretical foundations

2.1 Supervised learning

In a supervised learning problem, we are provided with pairs of samples (z, y) where
xz € RY are observations that are used to predict a target variable y'. When the tar-
get variable y € S where § is a finite set, we call this a classification task (binary
classification when |§| = 2), whereas the case of y € R is referred to as a regression
task. The goal is to come up with a model f;(z) which would accurately repre-
sent the relationship between the observations and the target variable. Such model
usually depends on some parameters /, and we are given a set of N training ex-
amples {z;,u },i = 1,...,N that are used to calibrate these parameters so as to
make predictions fy(z;) as close as possible to ground truth y; (known as learning).
Once calibrated, the model can be used to estimate the value of the target variable
i = fa(2') for observations =’ outside the training dataset (known as inference).

2.1.1 A brief introduction to linear classifiers

Consider the simplest binary classification problem depicted in fig. 2.1, where the
classes of points are clearly separable by a line (hyperplane for more than 2 dimen-
sions). In such cases we say that the classes are linearly separable and can define
the hyperplane that separates them via H = {x € R” 1wz +b=0}. Given such a
hyperplane H parameterised with w and b we can define the simplest classifier

f(x) = sign(w’ = +b) (2.1

If we label classes as y; € { —1,1}, the classifier is correct when f(x;) and y; have
the same sign. Considering the example in fig. 2.1 again, intuitively, the orange line
separates the points "better” than the blue one. Although they are equally good on
the training set, we may hypothesise that the blue line would perform worse on the
unseen examples as it is skewed towards one of the classes. This motivates us to
introduce another measure of "goodness” of a classifier. Let the functional margin of
an example (x;,y;) be v = y;(w'x; + b), which implies that classification is correct

o fix the notation, we use bold vectors unless this is obvious from the context.

3

1 X
) X
=X
x x %
T Y; IX T
-1« x\ 1
pd
—14

Figure 2.1: The example of a binary classification problem, where the labels y; €
{Blue, Red } and z; = (x1,x2),2;; € [—1,1]. The two classes are linearly separable,
possible separating lines are shown in orange and purple.

if v, > 0. If we normalise the functional margin by the magnitude of w, we obtain
the geometric distance d(H,x;) = 7;/||w]|| from the hyperplane to the data point.
Our goal is to find a hyperplane which splits the training set "somewhere in the
middle”, i.e. maximises the geometric distance from all the points in the training set
(ot, equivalently, minimises ||w]|| subject to classifying the points correctly). We can
formulate this as an optimisation problem

min w' w

w, b
st y(w'z +0)>1 (2.2)
i=1..,N

Using the method of Lagrange multipliers [CS08] the problem can be transformed
into its corresponding dual

N N N
1
max W(a)= E % =3 E E Yy (T,)
i=1

i=1 j=1
N (2.3)

5.t Zyﬂ:tf =10

i=1

= l, ;"\'r, y; 2 0

By solving (2.3) for the optimal e and finding w and b from the primal constraints,
we get the optimal hyperplane parameterised by (w*, b*).

Definition 2.1.1 (Support vectors [CS00])
The optimal solution must satisfy

af(y((w*,) +b6*)—1)=0, o =20
which implies that when the functional distance ~; of a sample ; is greater than 1 then

«; = (), meaning that only the closest data points to the hyperplane contribute to the
solution w;. These data points (x;,y;) for which «v; > () are called support vectors.

4

1 X
A B
o~
2 0.5
R=
B A
_T T T *
0.5 1
Input 1

Figure 2.2: The XOR problem showing that classes A and B cannot be separated by a
straight line.

Note, it is not strictly necessary to transform the optimisation problem (2.2) to its
dual (2.3) since we could solve (2.2) immediately. However as we shall see later, the
key reason for this is that solution of the dual (2.3) only depends on the input data
via the inner product {z;, z;), which will help us generalise the method to non-linear
problems.

2.1.2 Limitations of linear models

Consider the classical example in fig. 2.2 which demonstrates the shortcomings of
linear models introduced above.
The input data space is

X ={(xy,29) s v, 22 € {0,1}}={0,1}°

which we would like to separate into classes Y = { A, B}. Whilst it is clearly im-
possible to find a straight line which separates the classes A and B, does this simple
example invalidate the classifier introduced above? Not necessarily. If we could
find a mapping ¢(z) from the input space X to a higher-dimensional feature space
‘H where the data points could be separated by a hyperplane, we could still use the
developed methods.

In the next chapter we would like to explore the properties of the feature space
H, different feature mappings ¢(z) and how this affects the optimisation problem
(2.3). In particular, the relationship between (x;, ;) and its feature space adaptation

{o(x;), d(x5)).

2.2 Kernel methods

In this section we are going to outline the basic properties of the feature space,
introduce the notion of a kernel function and connect it with the inner product of

two feature mappings (¢(x;), ¢(x;)) discussed in the previous chapter. Specifically,

5

we shall see how complex feature mappings ¢(-) can be implicitly used in learning
algorithms via the use of corresponding kernel functions. In what follows we define
the input space X’ to be a subset of R™ for simplicity, however presented results can
easily be extended to C" [SS].

2.2.1 Key definitions

First we would like to introduce a few important concepts related to the feature space
H. We mostly follow [CS08] for definitions, however there is extensive literature on
kernel methods in machine learning, e.g. [SS], [SC04].

Definition 2.2.1 (Inner product)
Let H be a vector space over R. A function (-,)y : H x H + R is called inner product
on H if

* (o fi+mofo, o) = a1, 9)u + oo, g)u
* {f.on="19.)
* ([N =0and (. [)»=0,fandonly if f =0

Definition 2.2.2
The norm can be defined using the inner product: ||f||y = /{f, [)u

Definition 2.2.3 (Hilbert space)
A Hilbert space H is a vector space endowed with the inner product with additional
properties

* (Complete) Every Cauchy sequence { h, },., of elements of H converges to an
element h € H, where Cauchy sequence is such that

sup ||y —hml| = 0, asn — oc

T

* (Separable) For any ¢ > 0 there is a finite set of elements hy, ..., hy of H such
that forall h e H

min ||h; — h|| < €
3

For the purposes of this work we will require our feature space H to be a Hilbert
space.

Definition 2.2.4 (Kernel)
A function operating on the input space k : X x X' — R is called a kernel if there exists
a Hilbert space ‘H and a feature map ¢ : X — H such that Vr, 1’ € X

k(x,2") = (d(x), o(2))n

Example 2.2.1
Consider a two-dimensional input space X C R? and the following feature map

Ve = (21,20) € X, 02— ¢x) = (;L‘f, ;1:3, \/5;1:1;1:2) CR*=H

The feature maps the inputs in such that linear terms in the input space become quadratic
in the feature space. The inner product in the feature space can then be evaluated as
follows:

(B(x).9(2)) = (2% 22 V2xi), (2%, 32,v/222))
= 222? + %32 4 2xi22 = (z2 + §2)”
= (z.,2)’

We call the function k(z,z) = (z,2)? a kernel function with the corresponding feature
map ¢ and feature space H.

Note that in this example we show it is possible to evaluate the inner product be-
tween two vectors in the feature space (¢(z), ¢(2)) without explicitly computing the
transformation ¢(-). Later, we consider examples where the feature space H is infi-
nite dimensional, making it impossible to perform the transformation from the input
space X to the feature space H explicitly. The kernel function is very important in
this case as it allows us to compute the inner product of two feature vectors even in
such spaces.

2.2.2 Properties of a kernel function

One reasonable question to ask is, given a kernel function k(") is it possible to find the
feature space # such that the evaluation of the kernel would match the evaluation
of the inner product in this feature space?

Definition 2.2.5 (Gram matrix)
Consider the inputs 1, ...,x, € X C R and a function k : X? — R, the Gram matrix is
the n x n matrix G with elements

Gij = k(x:, ;)

The function k(-) is called a kernel function and the matrix G is referred to as a kernel
matrix.

Definition 2.2.6
A matrix G € R"*" is called positive semi-definite if Ve ¢ R"*

¢'Ge=>"cic;Giy >0
i,j

The kernel function k : X x X + R is called positive semi-definite if it is symmetric
and the corresponding Gram (kernel) matrix formed by restriction of the domain to any
finite subset of the space X is positive semi-definite.

7

The following theorem connects positive semi-definite functions and kernel func-
tions.

Theorem 2.2.1
Any kernel function defined as in 2.2.4 is positive semi-definite.

Proof See Appendix A.1

In [2.2.1] we presented one example of a kernel function and have just shown how
kernel functions and symmetric positive semi-definite matrices are related. A natural
question to ask is, how could we construct expressive kernels for use in complex real-
world problems? It turns out, we can compose simple kernel functions to obtain
more complex ones. Below we detail some of the transformations that can be used,
but the list is far from complete, and, essentially any transformation that preserves
the property of positive semi-definiteness of the kernel matrix would be sufficient.

Theorem 2.2.2
Consider an input space X, valid kernel functions k, k,, k, on X and 3 > 0 € R, then

* (sum of kernels) 3k and k, + k, are valid kernels on X

* (product of kernels) k, x ko is a valid kernel on X

Proof See Appendix A.2

This remarkable fact allows us to define new kernels using combinations of positive
semi-definite functions which are guaranteed to provide the inner product in a fea-
ture space H between features ¢(z), where the feature map ¢(-) does not even need
to be specified explicitly.

Definition 2.2.7 (Kernel trick)

Given a learning problem formulated in terms of the inner product, we can avoid ex-
plicitly computing feature mappings ¢(-) in high dimensions by finding an appropriate
kernel function k(- -) which, when evaluated on members of the input space, is equiva-
lent to the inner product of their feature mappings.

2.2.3 Examples of kernel functions

We now outline a few important examples of kernels that are used in practice and
can be constructed using the ideas from the previous section.

Example 2.2.2 (Polynomial kernel)
Let x,2' € R", d > 1€ Zand ¢ = 0 € R. The polynomial kernel can be defined as

k(z,z') := ({x, ') + ¢)?
Other important examples of kernels include

* (Gaussian) k(z,2’) :== exp (—”J;—f”j) o >0

8

* (Exponential) k(x, ') := exp ({x, "))

So far in the discussion above we considered X’ to be a subspace of R", however this
is not required in general. This work is mostly concerned about kernels on paths
in R” (we define the notion of a path in later sections), but there are examples in
the literature where kernels are defined on arbitrary objects, such as in the space of
strings [Mar+11] or graphs [Vis+08].

A few kernel functions will be very relevant to our work. Firstly, it is the Gaussian
radial basis function (Gaussian RBF) described above, which is a key building block
in the final model presented in the chapter 3. Secondly, the Global Alignment Kernel
(GAK) [Cut+07] is a popular baseline for any new kernel where the input space is
time-series data, for example, [Sal+21] compare the performance of their method
with GAK.

Thanks to the Kernel trick [2.2.7] we can now compute the inner product between
feature vectors (¢(x;), ¢(x;)} by evaluating a kernel function on the members of the
input space itself (z;,z;). Next we would like to revisit the linear classifier model
described in section 2.1.1 and see how it model can be "kernelised” to make decisions
by computing the inner product in the feature space.

2.3 Support vector machine

One key observation for discussion in this section is that the dual optimisation prob-
lem [2.3] only depends on the inner product of the features, not the features them-
selves. Equipped with the ideas derived in the previous section, we aim to improve
the linear model by utilizing the machinery of the Kernel trick [2.2.7].

2.3.1 Kernelised support vector machines

If the input data is not linearly separable in the input space, we can map it to a
(usually higher-dimensional) feature space where it is linearly separable and com-
pute the inner product between features. The optimisation problem eq. (2.3) can
therefore be reformulated as

N NN
] 1 X

max Wia)= Zm 3 Z Z!’!f?!jfi':f}'j‘I"(iff-. ;)
i=1

i=1 j=1
N (2.4)

S.t. Zyx'f:ff =10

i=1

i=1,...,Nao, =0

where a valid kernel function %(-, -) replaces the Euclidean inner product between
two elements of the input space {x;, z;).

As we can see, the kernel trick is a very powerful concept, allowing to lift the input
space to a potentially infinite-dimensional feature space. It is, however, important to
keep in mind potential dangers of this approach.

9

Figure 2.3: An example where one of the blue points is located in the red cluster. In this
case it might be beneficial to ignore the model prediction error on that particular point
in order to ensure the model generalises well

Example 2.3.1

Consider the example training data in fig. 2.3. One of the blue data points is clearly
located in the red class cluster. With the kernel trick, we might be able to find a higher-
dimensional feature space where all the red and blue points are linearly separable. That,
however, might reduce the model’s generalisation power, i.e. the model may overfit to
the data. A better forward might actually be to misclassify this training example (z;, x;)
in order to keep the decision boundary simple and dimensionality low. We shall now
discuss how the optimisation problem [2.4] can be modified to facilitate this.

2.3.2 Allowing for misclassifications

The classifier described above maximises the margin between the classes of data
points. This approach is sometimes overly optimistic as real-world data is not always
linearly separable. In order to have a model that performs well on the training
examples we would need to employ a complex kernel function which would likely
result in the model overfitting to the training data. This line of thinking led to the
introduction of the so-called soft-margin classifiers, which are essentially allowed to
make an error. We meodify the primal optimisation problem defined in eq. (2.2) to
introduce the slack variables &,

N
. T 2
mp w6
= (2.5)
S.L _I‘}I(w I; + b) 2 1 - Ei

&>0i=1,.,N

The regularisation parameter (' is usually chosen from a wide range of values and
tuned for the problem at hand by looking at the prediction results.

2.3.3 Support vector regression

Recall that a regression task generalises a classification task by requiring the model to
estimate a continuous-valued function instead of returning an output from a finite

10

set. Generalisation of the SVM classifier to the regression problem is achieved by
introducing an e-wide tube around the estimated function. The goal is to find the
optimal parameters such that the estimated values lie at most ¢ distance away from
the actual y; observations. In other words, when e.g. predicting the price of an asset
we would like to make sure the model forecast is not more than ¢ away from the
actual price.

Instead of modelling the relationship between X and y via f(x) considered ineq. (2.1),
we optimise g(x)

glz)=w'z+b
which leads to the following optimisation problem

min w w

w. b

s.t. - (w'z, +b) <e (2.6)
(wax;+b)—y <e
1= 1..I;'\'r

Similar to the classification case above, we can introduce the slack variables to im-
prove the generalising power of the model

N
min w'w+ C;(Ef +&)
st oy—(w'a,+b)<e +& 2.7)
(w_Ii +b) -y S e+ éi
£.6,>0,i=1,.., N

A detailed discussion of this problem, as well as associated derivations, can be found
in [CS00].

2.3.4 Computational cost

The optimisation problems [2.5] and [2.7] are usually solved with the sequential
minimal optimisation [Zhi+08] —a method which achieves the asymptotic time com-
plexity of O(n®), meaning that the model scales poorly with the number of training
examples. However, for linear SVM optimisation problem, algorithms have been de-
veloped [Joa06] to achieve a much more favourable complexity of O(n). In what fol-
lows we explore methods that maintain the generalisation capabilities of a kernelised
SVM, but nonetheless avoid using kernels explicitly to keep the computational cost
manageable.

11

2.4 Kernel approximation methods

Kernel SVMs are not the only models that suffer from scalability issues. In fact,
any kernelised machine learning method would be affected as it usually involves
computing the NV x N kernel matrix introduced in definition 2.2.5 and inverting it
which, done directly, takes O(n?) time and O(n?) memory. Different approaches
have been proposed to alleviate this issue, such as sketching [Wan+15], low-rank
matrix approximations [Ful4] and random Fourier features [RRO7]. In this thesis,
we shall focus on the latter approach.

2.4.1 Gaussian kernel approximation

One solution to the scalability problem appeared in the seminal work of Rahimi
et. al. [RRO7] which proposes an approximation scheme for the Gaussian kernel
function [2.2.3] instead of calculating it exactly. With a randomised map = : R”
R the authors transform the input feature set X € R” to a lower-dimensional space
R4 and replace the kernel evaluation in eq. (2.4) with its approximation k(r,y) =
z(x) "2(y). After the transformation, they are able to use a linear solver [Joa06], and
reduce the computational complexity of the model to O(nd?) time and O(nd) space,
where d < n.

The theory behind random Fourier features builds on the following classical theorem
characterizing positive definite kernel functions.

Theorem 2.4.1 (Bochner [RR07])
A continuous shift-invariant kernel k(x,y) = k(z —y), k : R? x R? = R is positive
definite if and only if it is the Fourier transform of a non-negative measure. That is

kle—y)= / ei"“’T”_"”];L(dw) =E,[e"
R

T{J:—y]l (2.8)
where ;1(w) is a non-negative finite measure.

To clarify how this theorem [2.4.1] can be used in practice, we apply it to the ubig-
uitous Gaussian kernel as an example.

Example 2.4.1 (Application of theorem 2.4.1 to the Gaussian kernel)
Let h(:) : z — e~ Ny (0, 1)and A = = —y, then

E[h(2)h(y)7] = Bule™ %e= V) = B, [8] = / plw)e B
R4

1 1T T
= y e v “el Adu
(2m)z Jma

:(l)d/ e*%(WwawaTAfATﬂ]*%ﬂTAdw
2w)z Jre

1 . .
e—307A f a3 lw—id)Tw=id) g ,
R

B (27):

[SIE

2

ey
—3ATA _ omsle) (@) TV =k(z—y)

—e =g Vv

12

where h(x)* is a complex conjugate of h(x). This simple derivation uses the definition of
the multivariate standard normal pdf and shows us how to approximate the Gaussian
kernel function [2.2.3] for o = /2.

In order to replace the complex exponential parts in the approximation, we introduce
the following

zu(x) = V2cos(w 'z + b)

2.9
b~ U(0,27) (2.2)
Now we can finally define the random map z(z) : R” — R¢ by setting
1
Wz\'ﬂl“}
szz{d-}
z(x) = vd)
ﬁzwﬁ]
such that
szw(2. () ZZ(U& w; T+)r)(()‘j(w y+b)
(2.10)
IZ(M w; (& —1y))
~ E,fcos(w (x —)] =]Ew[ei“’-r"e_i“’-ry] =k(z,y)
Example 2.4.2 (Alternative embedding)
[RRO7] provide an alternative feature mapping z
.y |eos(w)
fu(r) = I;‘:';"liﬂ.-(wz-_:l,‘):| 21D

The derivation of the Gaussian kernel using this approximation can be found in the
appendix eq. (A.1). It has been shown [SS15] that the map Z has a superior L, conver-
gence to the true kernel function as well as uniformly lower variance than the mapping
introduced in eq. (2.10).

Example 2.4.3 (Laplace kernel)
An approximation of the Laplace kernel

klz.2)=e¢" =+ (2.12)

can be derived similarly, using the w ~ Cauchy(c) distribution with scale parameter o
by using the theorem 2.4.1 [Sch21].

13

[RRO7], which introduced random Fourier features, received the NeurIPS Test-of-
Time award in 2017 and the method has been recognised as one of the most popular
ways to alleviate the performance bottleneck of kernel methods, making it possi-
ble to compare SVMs and Gaussian Processes with Deep Neural Networks (DNN)
using the same data benchmarks. In the Gaussian kernel example above a data-
independent sampling approach is used which naturally applies to streaming data.
At the same time, multiple extensions of the approach have been proposed which use
the distribution of data, for example leverage score sampling [Li+21], re-weighted
random features [RR0O8]. [Liu+21] provides a detailed survey of the current state
of research in the area.

To summarise, we shown that it is possible to replace the evaluation of a shift-
invariant kernel with the feature map approximated using Monte Carlo simulation.
In turn, this can be used to avoid large computational complexity which arises when
solving the optimisation problems [2.5] and [2.7]. To reiterate, the ideas introduced
here are useful beyond just SVMs, as other kernel methods also tend to suffer from
the computational complexity induced by storing and inverting an n x n Gram ma-
trix.

2.5 Path signature and its applications

2.5.1 Definition of the signature

Let’s define a continous path to be a function Y : [a,b] — R where we set o =
0,b = 1 for simplicity. Consider now an integral of a continuous path Y : [0, 1] — R
against a path of bounded variation? X : [0.1] — R?. The integral is well-defined
on any [s,t] C [0, 1] and denoted by

,, Joylax;
/ Y, dX, = : € R? (2.13)
’ [fydax?
where (X!, ..., X?) and (Y, ..., Y9) are the components of d-dimensional paths. Fur-

thermore, if X is continuously differentiable, then eq. (2.13) is the standard Rie-
mann integral which can be written as
dX

d d
/ Y.dX, = / Y, X, du
(8 [
where X, = X

Let’s consider a sequence of indices I = {iy,...,ix } € {1, ...,d} which determine the
integration over a simplex

AF j={(t1 o te)a <t < <t <D}

[, b

2A continuous path X as defined above is said to have a finite I-variation if ||z|[;_,. :=
SUPITEA[s 4] Z;‘;; [l#(tes1) — z(ti)|[1 < oo, where Alfs,] is the set of partitions of the interval. The
space of continuous paths with bounded variation is denoted by C*~*"([s,], RY).

14

Then the integral of X with respect to itself can be written as

/ AX . dX :/ Xi L Xikdtdty = S(X)E,
<t <. <tp<h '

a <t St<h
k=0,1,2,..
is i €{1,....d}
(2.14)
The expression above defines the signature of level k.

Remark 1
By convention, S(X)), = 1 € R, whereas S(X)}, = X, — X, € R is the increment of
path X over the interval [a,b]. S(X)?, is a d x d matrix with elements

b

(/ rﬂXfldX,i) ije{l,...d}
a<i1<iz<hb

In general, S(X)*, is a k-tensor with d* entries

Definition 2.5.1
The path signature of X on the interval [a, b] is the infinite sequence of tensors

S(X) s = (LS S(OE)

= (l/ dXh-.----.\/‘ (I{Xlr'l 8.0 Xm’.k-.---)
a<ty<b asty<..<tp<b

where ® denotes tensor product.
One important fact that allows for efficient computation of the object in defini-
tion 2.5.1 is the rapid decay of the individual terms of the infinite series.

Theorem 2.5.1 (Factorial decay)
The signature terms of the series in definition 2.5.1 decay factorially, that is

L(X)*
‘ / Xmr'l ®...® dXF,;\ ()
<t < Sl

k!
Where L(X) denotes the length of the path X over the interval [a, b]

<

Proof By induction, see [Lyo14]

Due to this fact it is reasonable to consider a truncated version of the signature where
the series is terminated at a level N € IN.

SNX) jap) = (1, f dXy, .. f dX, ® .. ® rﬂX;,N) € TN((RY))3
a<ti<b a<ii<..<ly<b

(2.15)
We provide here two fundamental theorems which demonstrate the properties of
path signatures useful for practical computations. We omit the proofs for brevity as
they can be found in [LCLO7].

3path signature is an element of tensor algebra T (R?)) = @ (R%)®*

15

Theorem 2.5.2 (Chen [LCL07], Theorem 2.9)
Let X : [0,a] — RYand X : [a,b] — R? be two continuous paths, X,Y € C*~%, and
let X Y be their concatenation, then

S(X+Y)=5(X)® S(Y)

Theorem 2.5.3 (Signature solves an ODE [LCL07], Lemma 2.10)
The signature satisfies the following integral equation

b b
S(X)[,,__g,] =1+ / S(X)[u__,.i] RdX, =1+ / S(X)[,I__S] @ X,.Jf&'

In particular, Chen’s relation [2.5.2] allows for efficient practical computation of the
signature of a path X : [0,7] — R? as the tensor product of signatures of its pieces
that comprise the linear interpolation between descrete time points X;, = (£;, ;).

Remark 2 (Applications of truncated signature kernel in data science)

The object described in eq. (2.15) can already be thought of as a feature transformation
of the original path-valued data. For example, [Kid+19] and [LLN16] present machine
learning models which use truncated signature as part of the feature set construction.
However, truncating the signature at a certain level is somewhat arbitrary and leads to
immediate loss of information which motivates further advancements in the use of path
signatures in machine learning that we describe in the next section.

2.5.2 The signature kernel

In section 2.2.3 we saw examples of kernel functions for different types of input
data. We could define a kernel on the space of paths by computing the inner product
between path signatures.

Definition 2.5.2 (Euclidean signature kernel)

The Euclidean signature kernel k, : C'=""([a, b], R?) x C*=""([a, b], R?) — R is de-

fined as the inner product of the signatures of the two paths X € C'~**([a, b], R%) and

Y € Cver([e, d], RY).
ks:(g(X-. }]) = (‘S(X)[u._h]-. ‘S(Y’) [r.'._ri']>

where we let

(*g(X)[u._h]'- ‘S(}/)[rrﬂ> =1+ Z(*Q(X)fit.f}]'- S(}/)ﬁd]>

k=1

16

One practical way of using the kernel would be to compute the truncated signatures
of the input paths X, ¥ [KO16] as defined in eq. (2.15) and calculate their inner
product.

EN (X Y) = (SM(X)iuy-SY (Y)iea) (2.16)

‘sig
Although the use of truncated signature is justified by the theorem 2.5.1, the method
leads to the loss of information as pointed out in remark 2. In [Sal+21] the authors
propose a method to compute untruncated signature kernel defined in 2.5.2.

Theorem 2.5.4 (The signature kernel PDE)

Let X :[a,b) = RL Y : [c,d] — RY be two continuously differentiable paths. Then
kao(X.Y) = u(a,d), and u : [a,b] x [e, d] — R solves the following linear hyperbolic
PDE

% — <X y) with u(a,) = u(-,¢) = 1 217
dsot e tth i(a,) = u(-c) = 1. ,

Proof Please see Appendix A.4
The solution of this PDE can then be approximated with a generic PDE solver, more
details are provided in section 3.3.

Remark 3

The Euclidean kernel defined in 2.5.2 restricts all levels of the signature to have the
same contribution to the final result. To allow for more flexibility an extension to this
idea has been proposed in [CLX21]. For example, it might be useful to re-weight the
terms in the sum by scaling the path X by 0+ 6 = e® € R to obtain

kg (0X,Y) =14+ 3 0(S(X)k . S(YV)E)

k=1

The example in remark 3 demonstrates a rescaled inner product of the form below
with ¢(k) = 1, VEk

where # #£ 0 and ¢ : N* — C, such that f¢ : N* — C is a pointwise product
(Bo)(n) = 8"d(n)
It is necessary to impose a summability condition on ¢(n)

Remark 4 (Summability condition)
The function ¢ : N* — C is such that

C*o(k
Z% < oo for every C' > 0
kel

17

Definition 2.5.3 (The general signature kernel)

Given the two paths X € C' "% ([a,b],RY) and Y € C*([c,d],R?), the function ¢
which satisfies the condition in remark 4 and # # (, the general signature kernel is
defined as

h;]g = (q [ub [r rﬂ)r?(u =1+ Z H‘LO q(X)[u b] q()[r rﬂ) (218)

k=1

Remark 5
When 6 = 1 and ¢ = 1 we recover the Euclidean signature kernel from definition 2.5.2

Remark 6 (Scaled signature equation)
Let # € R and ¢ : N* — C which satisfies the condition in remark 4, then

K2 (X, V) = kS (0X,Y) = k2 (X,0Y)

sig sig sig

moreover; if ¢ = 1 then k¢ (X, V) = k. (X,Y) satisfies

sig sig

d
o e ',
Koig(X,Y) =1+ F)f [7 m}(s t (X Y Ydudv

To summarise, we progressed from the limited information that can be obtained
by truncating the signature of a path and using it as part of a feature transform
to obtain a much richer representation of the two paths via the general signature
transform defined in [2.5.3]. Equipped with this powerful mathematical framework,
we proceed by discussing various forms that ¢ (k) can take, how a numerical solution
of [2.5.4] can be found and, finally, design a model to perform learning and inference
on real-world data.

18

Chapter 3
Model design

In this chapter we combine the instruments considered in chapter 2 to present a
composite model which can be used to solve supervised learning problems with
high-dimensional financial time series.

3.1 Considered general signature kernels
We begin by reviewing the reweighing scheme which motivated the introduction of
the general signature kernel in remark 3.

Remark 7 (Exponentially weighted kernel)
Let € R < 1and 6 = e®, then k% (X.Y) defines an exponentially weighted kernel

sig
and satisfies the integral equation in remark 6, which can be solved by rescaling the
solution obtained from eq. (3.4)

The scaling does not necessarily have to be deterministic, consider a random variable
7 with some probability measure ;» on R which has finite moments E[x*]. Then if
¢(k) satisfies the condition in remark 4 and

(k) = B[z*] = fﬁk(f;L(ﬁ), vk >0

Then the general signature kernel £{, (s, 1) of continuous bounded variation paths X
and Y is well-defined and
‘I;":I;Q(“"'. ’) = <S’(X) [r:,_b] ‘9(};) [r',rﬂ)(.}

= > SN SV) = Y-, [Al S(XV 50
k=0 k=0 (3 1)

— / > 7 S(X) Ly SYE g)dp(r) = / kT, (s, t)dp(r)
k=0

=k [’E"':r'.f;(“"'-!’]]

If the random variable = has a closed-form density, the kernel described in eq. (3.1)
can be computed by using a numerical integration scheme, such as the Gaussian

19

Quadrature with weights w; by running the PDE solver m times where m depends
on the desired precision

/ (g (5.) dpu(m Zu KT (5,1) (3.2)

Remark 8
The same steps could in fact be applied to any integral transform of the form

d(u) = / r(u, z)du(z), where r(u, z) = g(z)*" € C, for some o € R
c

Which include Fourier-, Laplace- and Mellin-Stieljies transforms

The examples below demonstrate the application of this method to moment gener-
ating functions of various random variables.

Example 3.1.1 (Uniform RV)
Suppose © ~ U ([} 1) is a standard uniform random variable, such that its moments

match ¢(k) = . The general signature kernel under this scaling is then

oc

K (5.1) Z X)k SO) = / Xty SO) du()

k= k=0

= E, [k, (s, 1)]

Example 3.1.2 (Rayleigh RV)
Let @ ~ Exp(1), then for the random variable «'/* the moments would coincide with

- k k
Bl /2 :/ K2t gy — T 1) = ok
[7*7] i dx 2 + 5 o(k)

The general signature kernel under this scaling is then

Koy(s.6) = Eq[kT, " (s,1)

sig 510

Note: 7'/? is Rayleigh distributed

For other examples of general signature kernels see Appendix B.1.

These examples demonstrate how we can design weighting schemes for the general
signature kernel using various random variable distributions. A simple implication
of that is we can learn the optimal distribution (or weighting scheme) as part of the
model training process. We consider the choice of general signature kernel form to
be the first building block of our model. We use Const, Uniform and Rayleigh labels
for the kernels defined in [7], [3.1.1], [3.1.2] respectively.

20

3.2 Gaussian Quadrature

To calculate general signature kernels we need to be able to approximate the value
of the integral mentioned in eq. (3.2), or, in general, the integral of the following
form

w(z)de = Z wi f(&) = Z w; f(&;)

1=() =0

Where the integrated function f will typically be the solution of the scaled signature
equation: f(f) = F,fxq(X, Y), and w(x) € L'(a,b) is a positive weight function.

The standard way of approximating this integral is via the Gaussian Quadrature
method [SMO03]. Although the Quadrature Rule is commonly defined for the interval

[-1,1], we can convert the limits of integration to any interval [a.b] in the following

way
/f’ o) fl f(b—n.{_'_n.—t—b) dz "
r)dr = —0 — | 5=
o 1 2 2 dg

where — = —— (3.3)

T

b _ _
so that flx)de = b 5 a Z w; f (%& + HTH)
@ i=0

Example 3.2.1 (Uniform RV)

Change of limits can be applied to compute the general signature kernel £, (s.t) with
¢(k) = t. Applying the transformation eq. (3.3) to the results in example 3.1.1 we
obtain

kg (s t) = /Rﬁxgs!rf1~—21; (£I+l)

=0

where f(0) = ki, (X.Y) and w;. & are the weights and abscissae for the standard

Quadrature Rule.

Example 3.2.2 (Rayleigh RV)
Going back to the example where &(k) = (%)!. As discussed in example 3.1.2, we need
to evaluate the integral of the following form

}‘f“}()_ 'ixq ‘ I_ o lr(erlz(dl

=2 f(:fﬁ)‘fﬁf‘_il dr = 2 w; f(&)
where ¢,12(z) = 2ze™ is the probability distribution function of Rayleigh rv. ='/%,

f(x) is the evaluation of scaled signature kernel f(f) = E’ZIQ(X Y) and the weight

21

function in the definition of Quadrature Rule becomes w(z) = xe . The standard
Quadrature Rule cannot be applied in this case as the integral limits and the function
to be integrated are different, however this case is treated in great detail in [Shi81],
where explicit tables for Quadrature weights w; and abscissae &; for the integral of the
form [f(x)xe=*"dx can be found.

Quadrature rule for Beta general signature kernel can also be derived but is omitted
here for brevity, see Appendix B.2.

3.3 Numerical solution

The solution to the kernel signature PDE introduced in theorem 2.5.4 can be ob-
tained by applying a simple finite difference approximation [Sal+21] which we dis-
cuss here.

We let

Di={a=w<u1 < ...<Up1 <U,=0b}
and
Di={c=w<n<.<Up1<tm=d}

be the partitions of the time interval of the input paths X and Y. Using the forward
difference approximation on the grid P, = D; x D; we discretise the differential
operator

2 du(s,t) _2 u(s, t + At) — u(s,t) _2 u(s, t + At) _2 u(s,t)
Js ot T s At " s At ds \ At

_uls+ As b+ Al) —uls, t + Al) B (s + As, t) —uls, t)
o AsAt AsAt
Recall that the signature PDE states [2.5.4]
f)gﬁ;.',;fg
Asot

= kuy(s,) (X, V)

a2k
? bis and taking unit step size At = As = 1

By using the discretisation above for the =
dsit

we obtain
u(s + As b+ Al) —u(s, t + At) —u(s + As, t) +u(s, t) = u(s, !,)(XS., }"},)
so that
u(s + As, t + At) = u(s, t + At) + u(s+ As, t) — u(s, t) (l — (Xg Y}))
leading to the following approximation
fi:(-u.,-_l.‘ Vis1) = Fz:(-u.h vjs1) + F:"(-u.,_l, v;)
— k(ug,) (1= (X — Xu Voo, — Vo))

T4l

(3.4)
Further improvements to the accuracy of the scheme, such as central difference ap-
proximation and dyadic refinement of the grid are discussed in [Sal4+21], as well as

plots showing the numerical error distribution.

22

Remark 9 (Computational complexity of the signature kernel)

Note that the computational complexity of calculating the signature kernel is O(DI?)
for D-dimensional paths X of length [for the original signature kernel and is further
exacerbated in the general signature case by the integral approximation via the Quadra-
ture Rule. This is prohibitively expensive for long time series and motivates the research
done as part of the following chapter:

3.4 Static kernel approximation and the model

The signature kernels discussed in [KO16], [Sal+21], [CLX21] provide a way to
compute the kernel of the paths of values in R” lifted from the input space to the
feature space by the static kernel, such as linear [2.2.1], Gaussian [2.2.3] or Laplace
[2.12]. In this section we explore if it is possible to apply the kernel approximation
ideas from section 2.4 to the signature learning framework and whether we can gain
any performance benefits by doing this.

Recall the definition of the signature kernel in theorem 2.5.4. The inner product
(X,Y) is the static kernel on paths. In the case of the Gaussian or Laplace kernel,
we can approximate this function using the random Fourier features mapping

s _ Faig (3, (X, Y) & kg (5,)R(X) "R(Y
gsot e\ X Y) = Eag(s, 1)))

where A(-) is one of the mappings defoned in section 2.4.1

= || s [
ﬁzwu(ﬁ} I

that are applied to embed the input from R” into a lower-dimensional R?, d < D in
order to reduce the complexity of the signature kernel computation to Q(dI?).

Remark 10

Note, the computational complexity of the general signature kernel combined with the
RFF kernel approximation is still dominated by the quadratic term in the length of the
time series.The proposed solution demonstrates the possibility to compute the general
signature of the random feature embeddings as well as reduce the dimensionality of the
data as much as /D while maintaining a comparable model performance as presented
in the empirical results section.

We now outline the final algorithm for the proposed model, which combines the
ideas developed in parts [3.1], [3.2], [3.3] of this chapter. The schematic diagram
of the algorithm can be found in fig. 3.1.

» The first step is data pre-processing, apart from splitting the data into training,
validation and test sets it includes the transformations detailed in table 3.1.

23

XY Data XY Static Kernel | k(X, ¥ Signature PDE
E—
Pre-processing Approximation Calculation
kg (X,)
Model SVM Training cX Integrating PDE
-
Decision or Inference Solutions

Figure 3.1: The diagram displays the model components which are used to train and
test the proposed model.

Table 3.1: Hyperparameters definition of the data transformation step of the model

Name | Description | Values

scale input paths scaling {0.01,0.1,1}

add_time adding time axis True, False

add_lead lag | adding lead-lag features (see [3.4.1] for defini- | True, False
tion)

» The pre-processed D-dimensional data is then fed to the static kernel approxi-
mation module which embeds the data into a lower d-dimensional space using
a feature map. This transformation admits the hyperparameters in table 3.2.

» The general signature kernel implementation is selected from the Const [7],
Uniform [3.1.1] and Rayleigh [3.1.2] options.

» For Uniform and Rayleigh the developed quadrature formulae are used, the
number of nodes (precision) implicitly set to be 16.

* Finally, scikit-learn SVC/SVR implementation allows to configure the reg-
ularisation parameter C' € {1, 10,...,10* } which is used in the optimisation
problem [2.5].

Note that scaling the path by v is essentially equivalent to applying a Const weighting
kernel with the scaling parameter 6 = v, see [2.5.3].

Definition 3.4.1 (Lead-lag transformation)

Givenastream (X,,)" € R” the lead transformation f(X ***)*" is a stream of (X;,, X,,)
where j = 2i and k = 2i — 1, whereas the lag transform will work in the opposite
direction, namely (X;,, X,) where j = 2iand k = 2i + 1.

Next we evaluate the ideas discussed in this chapter using the benchmark and finan-
cial data.

24

Table 3.2: Hyperparameters definition of the static kernel approximation step of the

model

Name | Description Values
rff_features | the dimensionality of the target space {vD 2.2

rff metric the distribution of w in z,,() Laplace, Gaussian

rff use offset

rbf_sigma

the flag which controls whether z,,(-) [2.9]
(when set to True) or Z,() [2.11] is used
Gaussian/Laplace static kernel o parame-
ter

25

True, False

[1073,1072,...1,2)]

Chapter 4

Experimental Results

In this chapter we would like to first demonstrate the advantages of the general
signature framework over the original signature PDE approach in [Sal+21]. In the
original signature kernel paper it was shown that the signature PDE is superior in
performance to the alternative models, such as truncated signature from [KO16] and
Linear, RBF [2.2.3] and GAK [Cut+07] kernels.

Our first goal is to consider the same classification problem on the benchmark UEA
[Bag+18] datasets as presented in the original signature PDE paper [Sal+21] and
showcase the advantages of the general signature kernel kernel in the ability to
generalise. Additionally we would like to compare the best results achieved for each
of the datasets with a version with the static kernel approximation that uses the
random Fourier features approach.

In the second set of experiments we consider the problem of BTC price forecasting
using the high-dimensional time series of factors - something that general signature
kernel should be able to take advantage of - which was outlined in [Mud+20].
The authors surveyed several machine learning models for the task at hand and
concluded that Long short-term memory (LSTM) model outperforms others in the
majority of cases.

4.1 UEA time series classification

Problem setting

In section 2.3 we discussed the use of support vector machines for classification
problems. The authors of [Sal4+21] apply SVC model with various kernel functions
to the problem of classifying the UEA time series. In this section we aim to demon-
strate the advantages of using the general signature kernel for this classification task
by running the model on the same benchmark. Some of the datasets from the orig-
inal collection have been omitted due to their extremely large size which causes
memory and processing power issues on a regular PC. However, we believe that any
results obtained from running on the selected datasets are generic and given a more
powerful machine we would have been able to replicate them across other datasets.
All datasets are of the following structure

26

Table 4.1: Main parameters and dimensions of the datasets used for classification task

Dataset Name Train Size, N Test Size, N Length, M/ Classes, L Features, D

BasicMotions 40 40 100 4 6
Libras 180 180 45 15 2
NATOPS 180 180 51 6 24
ERing 30 270 65 6 4
RacketSports 151 152 30 4 6

* X -a N x M x D tensor, where N is the total number of samples, M is the
length of each sample in time steps and D is the number of features sampled
at each of the time intervals.

* Y - a vector of size N, where each value represents a class from {1,..., L }.

Datasets
The subset of considered data includes the following datasets

* BasicMotions: 3D data from accelerometer and gyroscope of a smart watch
device recorded for 10 seconds, while doing one of four activities - running,
walking, resting and badminton

» Libras: 45-frame recording of hand movement represented as a bi-dimensional
curve, where each sample is a hand movement type in the official Brazilian sign
language

» NATOPS: the 3D coordinates of 8 sensors on the body of an air traffic controller
who uses hands to display various commands on an airfield

* ERing: consists of 65 4-dimensional observations of measurements of an elec-
tric field tracked by a ring prototype. Each series in the dataset corresponds to
one of 6 finger shapes.

» RacketSports: the X, Y, Z coordinate of the gyroscope recorded by a smart
watch device while playing squash and badminton. 4 classes represent various
strokes in each of the sports

For the exact breakdown between train/test set as well as dataset dimensions please
refer to the table 4.1.

Hyperparameter tuning

In this experiment we aim to match the setup described in the original signature pa-
per [Sal+21] and only add the hyperparameters related to the general signature ker-
nel. The train and test split is recommended by the UEA benchmark methodology as
shown in table 4.1, and we tune the hyperparameters using a 5-fold cross-validation
grid search on the training set.

27

The hyperparameters include: add time, add lead lag, scale the input time se-
ries by a factor [3.1], as well as the standard kernel parameters, C and RBF o
taken in the range {10°10%,..,10*} and {107%,1072,...1,2} respectively. Since
the general signature kernel uses the same static kernel, the hyperparameters are
the same with the addition of a scaling constant e’ for the Const kernel, where
i€+ {5752 .5 5}

Methodology

To assess the performance of the model we chose the accuracy score metric, which
computes the fraction of correct predictions on the test set displayed in percentage
units.
1 n—1
accuracyly, j) = Y 1y, (4.1)

=0

The metric was chosen because the datasets we worked with are balanced in terms
of the distribution of classes.

Results and discussion

The results of the experiment described above can be found in the table 4.2. It is
clear that the general signature kernel provides superior performance to the original
signature Sig-PDE and the truncated signature kernel Sig(n) in all considered scenar-
ios. We do. however, see varying performance amongst the general signature ker-
nels alone, but there is consistency in the performance of the exponentially weighted
scaling[7] and the uniform RV[3.1.1] scaling schemes. Notably, the training accu-
racy score of the exponentially weighted constant scaling is consistently higher than
the alternative models, however this does not seem to be the case for the test set,
which susggests that the model might be overfitting to the dataset and additional
regularisation is required. We believe that prior to choosing the scaling parameter of
Const kernel it is worth doing exploratory data analysis to see the scaling effect on
individual terms of the signature kernel.

4.2 UEA classification - static kernel approximation

Problem setting

In this section we would like to demonstrate the dimensionality reduction achieved
by using the approximated static kernel as described in fig. 3.1 and compare the
performance of the proposed model with the results from section 4.1. Since we need
at least a few dimensions before we can reduce them, the Libras dataset is excluded
as it is only 2-dimensional (max 4-dimensional with lead-lag transformation).

28

Table 4.2: Accuracy scores (%) computed using eq. (4.1) of the different models con-
sidered. The performance metrics of Sig(n) and Sig-PDE models are taken from the
[Sal+21], whereas the rest are computed using the implementation of the models con-
sidered.

Kernel Sig(n) Sig-PDE Const Uniform Rayleigh
NATOPS N/A 90.6 95 93.3 93.3

Libras N/A 74.4 76.1 73.3 74.4
RacketSports N/A 91.4 92.7 93.3 92.0
ERing N/A 93.3 96.7 93.3 93.3
BasicMotions N/A 97.5 100 97.5 100

Training accuracy

Kernel Sig(n) Sig-PDE Const Uniform Rayleigh
NATOPS 88.3 93.3 87.8 88.3 95.5

Libras 81.7 81.7 87.7 88.3 87.7
RacketSports 80.2 84.9 82.2 86.2 82.9
ERing 84.1 92.2 92.6 92.2 91.5
BasicMotions 97.5 100 100 100 100

Testing accuracy

Hyperparameter tuning

In addition to the hyperparameters of the first experiment we can now also tune the
kernel approximation hyperparameters described in table 3.2.

Methodology

We follow the same methodology as in section 4.1 to evaluate the performance of the
model and also record the ratio between the input space and the approximated space
dimensionality (including dimensions added via lead-lag and time transformations).

Results and discussion

The results of this experiment can be found in table 4.3. We first observe the model
score varies across different datasets, in fact, in most of the cases the performance
is reduced within 15% of the original accuracy of the full kernel, however for the
ERing data the drop in performance is around 30%. It is worth to point out that the
proportion of the training set is prescribed to be much smaller for ERing than for any
other dataset, see table 4.1. Because the precision of random features approximation
is bounded by the number of samples [RRO7], this particular dataset suffers most.

On the other hand, for the remaining datasets we see a dramatic decrease in the data
dimensionality from D to d of up to 80% with only about a 10% decrease in perfor-
mance. The proposed general signature kernel still seems to outperform the original
Sig-PDE kernel, but it is difficult to choose a particular implementation because, for

29

Table 4.3: Accuracy scores (%) for the model with static kernel approximation, as well
as dimensionality reduction comparison of accuracy scores with the general signature
kernel without static kernel approximation in table 4.2

Kernel
Dataset Sig-PDE . Const .
Accuracy, % Reduction, % Accuracy, % Reduction, %
’ Dim. | Acc. ’ Dim. | Acc.
NATOPS 83.9 76.0 10.0 78.3 79.2 10.8
RacketSports 77.0 57.1 9.3 75.7 57.1 7.9
ERing 66.7 60.0 27.6 61.4 80.0 33.7
BasicMotions 95.0 78.6 5.0 97.5 78.6 2.5
Results for the original signature kernel and Const general signature
Kernel
Uniform Rayleigh
Dataset Accuracy, % Reduction, % Accuracy, % Reduction, %
’ Dim. | Acc. ’ Dim. | Acc.
NATOPS 82.8 76.0 6.2 85.0 76.0 11.0
RacketSports 72.4 57.1 16.0 74.3 57.1 10.4
ERing 67.9 60.0 26.4 64.0 80.0 30.0
BasicMotions 95.0 57.1 5.0 97.5 57.1 2.5

Results for the Uniform and Rayleigh general signature

example, Rayleigh model displays a better accuracy score, but also suffered most
from the static kernel approximation.

To conclude, the results seem promising, as the approximation looks to achieve com-
parable results to the baseline while reducing the dimensionality of the input data
set, however additional empirical evidence is required to demonstrate that it is data-
independent and universally applicable. In a later section 4.4 we test the proposed
model on the regression problem as well.

4.3 Bitcoin price prediction with a range of technical
indicators

Problem setting

The goal of this section is to compare the predictive performance of the model
suggested in chapter 3 with the recently published research surveying multiple ap-
proaches for the problem of forecasting the times series of Bitcoin prices using var-
ious technical indicators [Mud+20]. In their work, Mudassir et. al. argue that
machine learning models are better equipped to deal with the non-stationarity and
high volatility of the price time series than traditional time series models.

30

To demonstrate this they collect a large dataset of predictor variables X and estimate
the value of a target variable y at a future time point s, i.e. g[t + s] = f(X[t], X[t —
1],..., X[t — n]), where ¢ is the current time, s is the forecast horizon taken to be 1
(end of day (EOD)), 7, 30 and 90 days and n is the lookback window chosen to be 30
days. They conduct a few regression and classification experiments and compare the
performance of the artificial neural network (ANN) and its stacked version (SANN),
support vector machine (SVM) and long short-term memory (LSTM) network on
these tasks. According to their results, LSTM and SANN are the two top performers,
which agrees with what other authors have shown previously [MRC18], so our aim
is to test if the general signature kernel provides any advantages to the traditional
machine learning setup.

Dataset

The authors of [Mud+20] use https://bitinfocharts.com/, the publicly available
source of cryptocurrency data to collect more than 700 features based on price,
technical indicators and information about the transactions in the blockchain. They
proceed by applying the random forest machine learning model to determine feature
importance and filter the dataset to only leave the subset of features with relatively
high importance scores, low cross-correlation metric and no multi-colinearity. The
feature selection step is performed for each of the s future forecast horizons and the
authors find that the subsets of important features for each of the horizons are not
necessarily the same.

The missing data points have been imputed via linear interpolation or by choos-
ing the most frequently occurring value for categorical data. The values have been
normalised using the MinMax transformation to keep them between 0 and 1, impor-
tantly, this was done without leaking any future information by fitting the MinMax
transformer on the training window only. The data was further split into three time
periods: Interval I from April to September 2013, Interval II from August 2015 to
March 2017 and Interval III from March 2017 to November 2018. Each of the in-
tervals is posing a distinctive challenging task for the forecasting model e.g., sharp
reversion of the market in 2018 or a strong trend in the beginning of 2017, and
the remaining dataset was split 80/20 into train and test parts. We follow the same
methodology and describe the final feature set used in table 4.4.

Hyperparameter tuning

In this chapter we used almost the same set of hyperparameters as in the previous
one. The only difference is the lead lag hyperparameter which was always set to
False to avoid leaking the future data during model training. In addition to that,
there was no time series scaling except for the MinMax scaling as described in the
Dataset section.

31

Table 4.4: Description of the features used for each of the forecasting horizons: 1 (EOD),
7, 30 and 90 days. Refer to [Mud+20] for details.

Features Description EOD 7 30 90
median_transaction fee30trxUSD | 30-day and 7-day triple | * o
moving exponential

median_transaction_fee7trxUSD
price90emalUSD
size90trx

transactions

price30wmaUSD
price3wmaUSD
price7wmaUSD
price90wmaUSD
median_transaction_fee7USD
mining_profitability
sentinusd90emaUSD

top100cap

difficulty30rsi

difficulty90mom
hashrate90var

transactionvalueUSD

median_transaction_feeUSD

smoothing of the median
transaction fee of BTC

90-day exponentially
moving average price
90-day triple moving
exponential ~ smoothing
block size

The number of sent
and received Bitcoin
payments

The 3-day, 7-day, 30-day
and 90-day weighted
moving average price of
Bitcoin in USD

The 7-day median trans-
action fee

The profitability in
USD/day for 1 terahash
per second

The 90-day exponentially
moving average of the to-
tal Bitcoin sent daily

The ratio between the
top-100 Bitcoin holders
and the rest

The 30-day relative
strength indicator and
90-day momentum of the
average mining difficulty

The 90-day variance of
the computational power
of the Bitcoin network
The daily median trans-
action value of Bitcoin in
uUsD

Median transaction fee
received by the miners
who verify the transaction

32

Methodology

In order to assess the model performance we use the mean absolute percentage
error (MAPE) metric calculated with eq. (4.2) and represented in percentage terms.
To match with the authors of the paper [Mud+20] we also include mean absolute
error (MAE)[4.3] and mean squared error (MSE)[4.4]. A model with lower errors is
desirable, but ultimately it is up to the researcher to choose the appropriate metric
for the task at hand. We would like to pay particular attention to the MSE to see
how large the outliers in the model forecasts are compared to the actual data, as
well as MAPE due to the fact it is easy to compare percentage errors across models
and experiments.

Remark 11 (Regression model assessment metrics)

MAPE(y, §) Z |*”*|r B (4.2)
=0 ’f‘
MAE(y,9) Zwl — i (4.3)
=0
1 n—1
MSE(y,§) = — — i) :
(v.9) =~ > (v = 9) (4.4)

=D

Results and discussion

In the first experiment we compare the EOD price forecasts for intervals I, II and
IlI, in this case the Benchmark model is the LSTM network as it performed best in
the paper (see table 5 in [Mud+20]). We observe immediately (see table 4.5) that
the Interval II was challenging for any of the Signature kernel models, the errors
are much higher across the board than the benchmark error. During testing on this
dataset we also noticed several instances of the learning algorithm failing to con-
verge, which could be the reason for poor performance. Our intuition is the dataset
imputation/construction added noise to the data, so numerical methods such as PDE
solver and integration were imprecise. As for the rest of the data, it is clear that the
Signature kernel is better or comparable in terms of generalisation power. For the
Interval I, the Unifrom general signature seems to be performing the best, whereas
Interval III is split between Sig-PDE and Rayleigh. We can also observe that MSE
errors for Signature kernel models are slightly higher which could mean the model
does not generalise well to the presence of outliers in the data. For comparison of ac-
tual vs predicted data see fig. 4.1, where the models with lowest errors are included,
otherwise refer to section C.1.1 in Appendix for other plots.

For the next experiment the authors fixed the time interval to III and considered the
comparison of forecasts of the price of Bitcoin for 7, 30 and 90 days ahead. The
models are assessed using the same set of metrics as in the first experiment, how-
ever this time the Benchmark model is chosen to be SANN as it clearly outperforms
the others in the paper (see table 6 in [Mud+20]). The results are presented in the

33

table 4.6. Looking at the 7-day forecast horizon it is difficult to choose which model

Bitcoin prices

1000

800

@
2
3

Bitcoin prices

&
2
8

200

Bitcoin prices
3

Dataset: BTS_intervall_1_feat, Model: signature pde uniform_rv

=== Predicted average price
—— Actual average price

a 10 20 30

Days

(a) Price prediction for EOD in the Interval I using the Uniform model

Dataset: BTS_interval2_1_feat, Model: signature pde const

=== Predicted average price
—— Actual average price

200

300 400
Days

(b) Price prediction for EOD in the Interval II using the Const model

Dataset: BTS_interval3_1_feat, Model: signature pde rayleigh_rv

500

--- Predicted average price
—— Actual average price

] 50 100

150 200 250
Days

(c) Price prediction for EOD in the Interval III using the Rayleigh model

Figure 4.1: Predicted vs. actual Bitcoin price for time intervals I (a), II (b) and III (c)

34

Table 4.5: Forecasting the end of day price using the time intervals [, II and IIT described
in the paper [Mud+20]. Results for the benchmark model are taken from table 5 of the
paper for the LSTM network which seemed to perform best amongst the models the
authors considered.

Metric Intervals Benchmark Sig-PDE Const Uniform Rayleigh
I 2.20 1.49 1.43 1.33 1.53
MAE II 6.55 10.54 1098 17.30 17.41
111 62.90 5.54 6.12 12.96 6.11
I 3.01 4.16 3.67 2.32 4.39
MSE 11 10.55 199.62 105.68 215.00 197.54
111 135.76 50.16 5895 133.86 67.35
I 0.93 0.63 0.69 0.56 0.621
MAPE, % 11 1.98 1.88 1.87 5.77 5.78
111 3.61 2.44 2.47 3.65 2.32

Table 4.6: Forecasting the Bitcoin price 7, 30 and 90 days ahead using the Interval III
and respective features described in table 4.4. Results for the benchmark model are
taken from table 6 of the paper for the SANN model.

Metric Horizon Benchmark Sig-PDE Const Uniform Rayleigh
7 16.32 13.69 13.71 16.55 33.56
MAE 30 77.12 81.46 8247 68.96 83.02
90 72.23 63.26 64.20 65.24 62.51
7 36.33 3412 3414 27.17 125.79
MSE 30 156.30 173.84 174.85 156.10 190.61
90 140.00 220.27 212.77 216.07 205.12
7 2.88 2.95 2.96 3.47 4.97
MAPE, % 30 345 3.06 3.17 2.57 3.08
90 4.10 3.63 3.65 3.90 3.53

performed the best, since the Benchmark is better in terms of MAPE, but Uniform
has a lower MSE. When we consider the 30-day and 90-day forecasts it becomes
clear that Uniform and Rayleigh are the top models for these horizons respectively.
This experiment shows the ability of the general signature kernel to generalise to
high-dimensional datasets with non-trivial relationship between the variables. In-
terestingly, the peformance of Sig-PDE and Const models is very similar for this test,
certainly more similar than for the same time window in table 4.5. It looks like bits
of relevant information about the interaction between time series are getting lost
due to the constant (although learnable in case of Const) factorial decay term at
each of the signature levels. For reference, we present the plots detailing the actual
vs. predicted price in fig. 4.2 for the top performing models for each of the time
horizons. Plots for all models can be found later in section C.1.2 of the Appendix.

The next two experiments use the same data setup to address the problem of fore-
casting the direction of the future movement of the price. In particular, the price
data is first converted to classes in {0, 1}, where 0 by comparing the values on sub-

35

sequent days. Since the dataset is essentially the same as in the regression example,

Dataset: BTS_interval3_seven, Model: signature pde benchmark

650
600
w
o
£ 550
£
2
@
500
450 DYy
=== predicted average price
—— Actual average price
o 50 100 150 200
Days
(a) Price prediction for 7 days ahead using the Sig-PDE model
Dataset: BTS_interval3_thirty, Model: signature pde uniform_rv
=== Predicted average price
1000 | — Actual average price
800
g
B 600
£
g
400
200
0 =0 100 150 200 250 300 0
Days
(b) Price prediction for 30 days ahead using the Uniform model
Dataset: BTS_interval3_ninety, Model: signature pde rayleigh_rv
1000
800
0
g
5
£ €00
2
400
--- Predicted average price
200 —— Actual average price
o 50 100 150 200 250 300
Days

(c) Price prediction for 90 days ahead using the Rayleigh model

Figure 4.2: Predicted vs. actual Bitcoin price for 7 (a), 30 (b) and 90 (c) days ahead

36

Predicted price
Decrease | Increase
Decrease TN FP
Increase FN TP

Actual price

Table 4.7: Confusion matrix for the Bitcoin price direction forecasting in experiments
3 and 4. The cells TN, FN are the number of True and False negatives obtained as part
of the evaluation - where the model predicted the price decrease, and the actual price
decreased and increased respectively. In the second column we have numbers of False
and True positives - these are when the model predicted price increase, and the real price
decreased and increased respectively. Confusion matrix is a useful tool for classification
model assessment which is we use it for.

we choose to limit the trained models to only Uniform to save some computing
time. To assess the performance of the classifier we used the accuracy score, F-score
and area under the curve (AUC), which are described in remark 12.

Remark 12 (Classification model assessment metrics)

The accuracy metric presented in 4.1 is commonly used for classification problems, how-
ever if the dataset is imbalanced (in finance this could be a trending time series) different
metrics such as F-score and AUC might be more suitable [Pat+20].

For F-score we need to introduce precision and recall which are calculated using the
confusion matrix described in table 4.7. On the same dataset we prefer the model with
a higher F-score.

TP TP TN
Precision = 75— pp Recall = 7p e P = TR Fp

2 x Precision x Recall
F - .5
score Precision + Recall (4.5)

AUC score is the area under the receiver operating characteristic (ROC) curve plotted
with Recall along the y-axis and Specificity along the x-axis. The intuitive explanation
of the AUC is the probability that the model ranks a random positive example higher
than the random negative one [Man10], it ranges from (to 1 and a value of 0.5 means
the model cannot discriminate between the two classes.

The results of this experiment are presented in the table 4.8 for multiple intervals
setup and table 4.9 for multiple horizons setup. To see where the model ranks
compared to the alternative machine learning solutions, we include the results from
the tables 9 and 10 of [Mud+20] respectively and highlight our model in blue. In
the first experiment the Uniform model ranks fairly well on the intervals I and II,
whereas the scores for interval III suggest the model failed to generalise. Looking at
the regression problem results for the interval III [4.5] we see a similar issue with
Uniform model, which seems consistent. Surprisingly, the training accuracy of the
model for interval Il is close to 89% suggesting that the model performed fairly well
on the training set. One explanation of such discrepancy would be that there is an

37

Metric Interval ANN SVM SANN LSTM Uniform
I 57 55 60 54 56
Accuracy, % I 56 62 65 53 72
I1I 53 56 60 54 40
I 0.72 0.67 0.71 0.63 0.68
F-score II 069 0.74 0.75 0.58 0.83
I1I 061 053 060 0.66 0.56
I 0.51 051 0.56 0.52 0.46
AUC II 0.50 0.55 0.59 0.53 0.62
I1I 0.53 0.56 0.60 0.54 0.50

Table 4.8: This table compares the Uniform general signature model with the benchmark
results from [Mud+20]. In the test we predict EOD price for the next day on different
date intervals.

Metric Horizon ANN SVM SANN LSTM Uniform
7 51 62 53 55 70
Accuracy, % 30 52 52 62 52 71
90 62 54 60 64 40
7 0.65 0.58 038 0.65 0.43
F-score 30 0.68 0.68 0.70 0.68 0.65
90 056 0.66 0.68 0.71 0.23
7 053 0.60 0.51 0.56 0.62
AUC 30 0.50 050 0.61 0.50 0.70
90 0.59 0.57 0.62 0.66 0.28

Table 4.9: This table compares the Uniform general signature model with the benchmark
results from [Mud+ 20]. In the test we predict prices for 7, 30 and 90 day horizons.

imbalance between the training/test data which also seems to affect the benchmark
models from the paper. In the multiple horizons experiment the model seems to
perform quite well on shorted days ahead intervals, but poorly handles the 90 days
ahead window. This suggests that the model captures regularities on a short horizon
better than the long one. It is also worth mentioning that we do not completely
agree with the problem statement as explained in the remark 13.

Remark 13

The goal of the model in the experiments 3 and 4 is to forecast the direction of price
movement at some point in the future using a certain interval of training data. Although
valid, it is not a very practical as the information from the model does not say anything
about the magnitude of the movement and it is not clear how small fluctuations around
an arbitrary value should be handled. A more pragmatic approach would solve this
issue by e.g., defining 3 classes of price fluctuations: up, down and unchanged, or aim
to forecast even more specific cases such as trend direction [AK21], strength [LZR20] or
its speed [Che+22].

38

| Sig-PDE | Const | Uniform | Rayleigh
MAPE, % | 12.24 | 12.60 | 11.76 | 10.06

Table 4.10: MAPE scores on BTC data for Interval I1I and various general signature
kernels. 6 random Fourier features have been used.

4.4 Bitcoin price prediction with a range of technical
indicators - static kernel approximation

Problem setting

In the final set of experiments we include the random Fourier features mapping in
our model setup and consider again the problem of forecasting Bitcoin price for one
day ahead using the methodology discussed in section 4.3. To assess the model we
run the experiments on the Interval III for different general signature kernels with
the number of random features set to 6 (approx. 50% dimensionality reduction).
MAPE scores and qualitative plots are collected.

Moreover, we include a test where we vary the number of random projection com-
ponents and collect the MAPE scores. We have chosen { 3,6, 9, 19 } random features
for this test to assess the performance across the whole range. Note, that the last
option is larger than the number of dimensions we started with, which is 14. It has
been added to show that the random projections can also be used to map input data
into higher dimensions.

Dataset

The dataset used in this chapter is the EOD feature set from table 4.4 which has been
transformed using the same steps as in section 4.3.

Methodology

In order to verify the model performance we use MAPE metric defined in eq. (4.2)
and check the plots of forecasted vs. actual prices.

Results and discussion

Results for each of the signature kernel alternatives are presented in the table 4.10,
Consistent with the experiment in section 4.3, Rayleigh general signature kernel
shows the smallest relative error. In general, we see that model accuracy dropped,
but it is still reasonable, which is impressive considering that the dimensionality of
data reduced by more than 50%.

Qualitative plots comparing the forecast and actual prices for this experiment have
been put in Appendix, please refer to fig. C.4.

In the second experiment we see [4.11] that Rayleigh model with 9 random feature
projections outperformed the rest in terms of MAPE metric. Looking at the plots
[C.6] of the price forecast we observe high variance in the forecasts made by 3

39

Fourier features | 3 | 6 | 9 | 18
MAPE, % | 18.80 | 18.25 | 8.4 | 11.58

Table 4.11: MAPE scores on BTC data for Interval Il and various general signature
kernels. 6 random Fourier features have been used.

and 6-feature models. This is, perhaps, because the sample size is too small for
model calibration for such a low resolution. On the other hand, we see that the
model with 19 feature vectors did not show significant outperformance confirming
the dimensionality of the original dataset is enough to train a good model.

40

Chapter 5

Conclusion

In this thesis we provide the first implementation of generals signature kernel ideas
presented in [CLX21]. We discuss the possible model design choices made during the
practical implementation of the model and, finally, provide a systematic comparison
of the proposed model against the signature kernel introduced in [Sal+21] as well
as other machine learning models mentioned in [Mud+20].

Additionally, we explore the idea of static kernel approximation via the random
Fourier features [RR07]. We use the same benchmark data to test the model with
kernel approximation and outline the benefits and downsides of this approach.
Overall, the general signature kernel (2.5.3) represents a more expressive model
that its original signature counterpart (2.5.4), as confirmed by the empirical results.
In section 4.1 we show that various general signature implementations uniformly
outperform the original signature and truncated signature (2.15) versions. Fur-
thermore, in the regression task discussed in section 4.3, the general signature ker-
nel model performs better or comparable with the best proposed machine learning
model on that particular dataset. These experiments confirm the general signature
framework is universal and flexible, and can be used in many different applications
of multivariate time series modelling.

The main drawback of the general signature kernel approach is the prohibitive com-
putational complexity for large time series, the PDE solution alone runs in O(DI%m)
operations, where D) is the dimensionality of the space, [is the length of time series
and m is the number of nodes in the numerical integration (precision). In section 3.4
we propose a solution based on the idea of random feature mappings that reduces
the cost of storage and compute by as much as /D once the mapping has been ap-
plied. We validate the feasibility of this approach in section 4.2 on the classification
task and section 4.4 on the regression task for multivariate time series. Although,
unsurprisingly, the predictive performance of the model is somewhat reduced (while
remaining adequate), this comes with a large dimensionality reduction of up to 80%
in some cases.

These observations lead to a handful of promising avenues for future research.
Firstly, the general signature kernel relies on sequential numerical integration of
PDE solutions. Any improvement achieved by exploiting the relationship between
these solutions would lead to improvements in the computational cost as this part is
the backbone of the whole model.

41

Moreover, we have considered only a few possibilities for general signature weight-
ing schemes, but as we mentioned in remark 8, the framework which was proposed
by [CLX21] is very generic and allows for other integral transformations. Thus, any
research in finding the relationship between the form of a general signature kernel
and specific properties of the data would be very insightful.

Furthermore, we find the fact that signature kernel performs well on the random
feature mappings insightful. There are quite a few different kernel approximation
methodologies, such as the ones based on sketching [Wan+15], [CCF04], random
feature maps [LIS10], [RRO7], [Liu+21] or sparse variational inference [TO20].
Thus it is reasonable to think that further research in applying these techniques
would lead to the improvement in computational efficiency for the powerful concept
of general signature kernels.

42

Bibliography

[AG19]

[AK21]

[ASR88]

[Bag+18]

[CCF04]

[CF19]

[Che+22]

Robert Adcock and Nikola Gradojevic. “Non-fundamental, non-parametric

Bitcoin forecasting”. In: Physica A: Statistical Mechanics and its Appli-
cations 531 (Oct. 2019), p. 121727. 1ssN: 03784371. pol: 10.1016/
j .physa.2019.121727. URL: https://linkinghub. elsevier . com/
retrieve/pii/S0378437119309859 (visited on 09/04/2022).

Adesola Adegboye and Michael Kampouridis. “Machine learning classi-
fication and regression models for predicting directional changes trend
reversal in FX markets”. In: Expert Systems with Applications 173 (July
2021), p. 114645. 1sSN: 09574174. DOI: 10 . 1016/ j . eswa . 2021 .
114645. URL: https : //linkinghub . elsevier . com/retrieve/pii/
50957417421000865 (visited on 08/31/2022).

Milton Abramowitz, Irene A. Stegun, and Robert H. Romer. “Handbook
of Mathematical Functions with Formulas, Graphs, and Mathematical Ta-
bles”. In: American Journal of Physics 56.10 (Oct. 1988), pp. 958-958.
ISSN: 0002-9505, 1943-2909. pol: 10.1119/1.15378. URL: http://
aapt.scitation.org/doi/10.1119/1.15378 (visited on 09/04/2022).

Anthony Bagnall et al. The UEA multivariate time series classification
archive, 2018. Oct. 31, 2018. arXiv: 1811.00075[cs, stat]. URL: http:
//arxiv.org/abs/1811.00075 (visited on 09/03/2022).

Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding fre-
quent items in data streams”. In: Theoretical Computer Science 312.1
(Jan. 2004), pp. 3—-15.15sN: 03043975. poI: 10.1016/50304-3975(03)
00400-6. URL: https://linkinghub.elsevier.com/retrieve/pii/
50304397503004006 (visited on 09/06/2022).

Alessandra Cretarola and Gianna Figa-Talamanca. “Modeling Bitcoin
Price and Bubbles”. In: Blockchain and Cryptocurrencies. Ed. by Asma
Salman and Muthanna G. Abdul Razzaq. IntechOpen, Aug. 28, 2019.

ISBN: 978-1-78923-913-3 978-1-83881-208-9. DOI: 10.5772/intechopen.

79386. URL: https://www.intechopen. com/books/blockchain-and-
cryptocurrencies/modeling-bitcoin-price-and-bubbles (visited
on 09/04/2022).

Eddie Cheng et al. “Trending Fast and Slow”. In: The Journal of Portfo-
lio Management 48.3 (Jan. 31, 2022), pp. 103-116. 15SSN: 0095-4918,
2168-8656. DOI: 10.3905/ jpm. 2021 .1.312, URL: http://jpm. pm—

43

[CLN12]

[CLX21]

[CS00]

[CS08]

[Cut+07]

[Det+18]

[Det+21]

research. com/lookup/doi/10. 3905/ jpm.2021 .1 .312 (visited on
08/31/2022).

Run Cao, Xun Liang, and Zhihao Ni. “Stock Price Forecasting with Sup-
port Vector Machines Based on Web Financial Information Sentiment
Analysis”. In: Advanced Data Mining and Applications. Ed. by Shuigeng
Zhou, Songmao Zhang, and George Karypis. Red. by David Hutchison
et al. Vol. 7713. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 527-538. ISBN: 978-
3-642-35526-4 978-3-642-35527-1. DOI: 10.1007/978-3-642-35527~
1_44. URL: http://link.springer.com/10.1007/978-3-642-35527~
1_44 (visited on 09/04/2022).

Thomas Cass, Terry Lyons, and Xingcheng Xu. “General Signature Ker-
nels”. In: (2021). Publisher: arXiv Version Number: 1. DoI: 10.48550/
ARXIV.2107 .00447. URL: https : //arxiv.org/abs/2107.00447 (vis-
ited on 06/12/2022).

Nello Cristianini and John Shawe-Taylor. An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods. 1st ed. Cam-
bridge University Press, Mar. 23, 2000. 1SBN: 978-0-521-78019-3 978-
0-511-80138-9. pol: 10.1017/CB09780511801389. URL: https: //www.
cambridge . org/ core/product/identifier /9780511801389/ type/
book (visited on 09/03/2022).

Andreas Christmann and Ingo Steinwart. Support Vector Machines. In-
formation Science and Statistics. ISSN: 1613-9011. 2008. poi: 10 .
1007 /978-0-387-77242-4. URL: http://link. springer.com/10.
1007/978-0-387-77242-4.

Marco Cuturi et al. “A kernel for time series based on global align-
ments”. In: 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing - ICASSP '07. Apr. 2007, pp. [I-413-11-416. pot: 10.
1109/ ICASSP.2007 . 366260. arXiv: cs/0610033. URL: http://arxiv.
org/abs/cs/0610033 (visited on 07/11/2022).

Andrew L. Detzel et al. “Bitcoin: Predictability and Profitability via
Technical Analysis”. In: SSRN Electronic Journal (2018). 1SSN: 1556-
5068. poI: 10.2139/ssrn . 3115846, URL: https: //www .ssrn. com/
abstract=3115846 (visited on 09/04/2022).

Andrew Detzel et al. “Learning and predictability via technical anal-
ysis: Evidence from bitcoin and stocks with hard-to-value fundamen-
tals”. In: Financial Management 50.1 (Mar. 2021), pp. 107-137. ISSN:
0046-3892, 1755-053X. DOI: 10.1111/fima.12310. URL: https://
onlinelibrary .wiley.com/doi/10.1111/fima. 12310 (visited on
09/04/2022).

44

[Ful4]

[Gau83]

[Gba+21]

[Gyu+14]

[JL18]

[Joa06]

[Kid+19]

[KO16]

[LCLOY]

Zhouyu Fu. “Optimal Landmark Selection for Nystrom Approximation”.
In: Neural Information Processing. Ed. by Chu Kiong Loo et al. Vol. 8835.
Series Title: Lecture Notes in Computer Science. Cham: Springer In-
ternational Publishing, 2014, pp. 311-318. ISBN: 978-3-319-12639-5
978-3-319-12640-1. DOI: 10.1007 /978 -3-319-12640-1 _38. URL:
http://link. springer .com/10. 1007 /978-3-319-12640-1_38
(visited on 09/06/2022).

Walter Gautschi. “How and how not to check Gaussian quadrature for-
mulae”. In: BIT Numerical Mathematics 23.2 (June 1983), pp. 209-216.
ISSN: 0006-3835, 1572-9125. pOI: 10.1007/BF02218441. URL: https:
//link.springer.com/10.1007/BF02218441 (visited on 09/04/2022).

Adedeji Daniel Gbadebo et al. “BTC price volatility: Fundamentals ver-
sus information”. In: Cogent Business & Management 8.1 (Jan. 1, 2021),
p. 1984624. 1ssN: 2331-1975. pOI: 10.1080/23311975.2021.1984624.
URL: https://www.tandfonline.com/doi/full/10.1080/23311975.
2021.1984624 (visited on 09/04,/2022).

Lajos Gergely Gyurko et al. Extracting information from the signature of
a financial data stream. July 15, 2014. arXiv: 1307 .7244 [q-fin]. URL:
http://arxiv.org/abs/1307.7244 (visited on 09/04/2022).

Huisu Jang and Jaewook Lee. “An Empirical Study on Modeling and
Prediction of Bitcoin Prices With Bayesian Neural Networks Based on
Blockchain Information”. In: IEEE Access 6 (2018), pp. 5427-5437.
ISSN: 2169-3536. DOI: 10.1109/ACCESS . 2017 .2779181. URL: http://
ieeexplore.ieee.org/document/8125674/ (visited on 09/04/2022).

Thorsten Joachims. “Training linear SVMs in linear time”. In: Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’06. the 12th ACM SIGKDD interna-
tional conference. Philadelphia, PA, USA: ACM Press, 2006, p. 217.
ISBN: 978-1-59593-339-3. DOI: 10.1145/1150402.1150429. URL: http:
//portal.acm.org/citation.cfm?doid=1150402.1150429 (visited on
09/05/2022).

Patrick Kidger et al. “Deep Signature Transforms”. In: Advances in Neu-
ral Information Processing Systems. Ed. by H. Wallach et al. Vol. 32. Cur-
ran Associates, Inc., 2019. URL: https://proceedings .neurips. cc/
paper/2019/file/d2cdf047a6674cef251d56544a3cf029-Paper . pdf

Franz J. Kiraly and Harald Oberhauser. Kernels for sequentially ordered
data. Jan. 29, 2016. arXiv: 1601.08169[cs ,math, stat]. URL: http:
//arxiv.org/abs/1601.08169 (visited on 07/02/2022).

Terry J. Lyons, Michael Caruana, and Thierry Lévy. Differential Equa-
tions Driven by Rough Paths: Ecole d’Eté de Probabilités de Saint-Flour
XXXIV - 2004. Red. by J.-M. Morel Cachan, F. Takens Groningen, and
B. Teissier Paris. Vol. 1908. Lecture Notes in Mathematics. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007. 1sBN: 978-3-540-71284-8

45

[Li+21]

[LIS10]

[Liu+21]

[LLN16]

[Lyo14]

[LZR20]

[Man10]

[Mar+11]

978-3-540-71285-5. DOI: 10.1007/978-3-540-71285-5. URL: http:
//1link .springer .com/10. 1007 /978-3-540-71285-5 (visited on
06/19/2022).

Zhu Li et al. Towards A Unified Analysis of Random Fourier Features.
Feb. 4, 2021. arXiv: 1806.09178[cs,stat]. URL: http://arxiv.org/
abs/1806.09178 (visited on 09/03/2022).

Fuxin Li, Catalin Ionescu, and Cristian Sminchisescu. “Random Fourier
Approximations for Skewed Multiplicative Histogram Kernels”. In: Pat-
tern Recognition. Ed. by Michael Goesele et al. Red. by David Hutchison
et al. Vol. 6376. Series Title: Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 262-271. ISBN: 978-
3-642-15985-5 978-3-642-15986-2. DOI: 10.1007/978-3-642- 15986~
2_27. URL: http://link.springer.com/10.1007/978-3-642-15986-
2_27 (visited on 09/06/2022).

Fanghui Liu et al. Random Features for Kernel Approximation: A Sur-
vey on Algorithms, Theory, and Beyond. July 11, 2021. arXiv: 2004 .
11154 [cs, stat]. URL: http://arxiv.org/abs /2004 . 11154 (visited
on 08/31/2022).

Daniel Levin, Terry Lyons, and Hao Ni. Learning from the past, predict-
ing the statistics for the future, learning an evolving system. Mar. 22,
2016. arXiv: 1309.0260[q-fin]. URL: http://arxiv.org/abs/1309.
0260 (visited on 09/04/2022).

Terry Lyons. Rough paths, Signatures and the modelling of functions
on streams. Number: arXiv:1405.4537. May 18, 2014. arXiv: 1405 .
4537 [math, q-fin, stat]. URL: http://arxiv.org/abs /1405 . 4537
(visited on 05/23/2022).

Bryan Lim, Stefan Zohren, and Stephen Roberts. Enhancing Time Se-
ries Momentum Strategies Using Deep Neural Networks. Sept. 27, 2020.
arXiv: 1904 .04912[cs,q-fin, stat]. URL: http: //arxiv.org/abs/
1904.04912 (visited on 08/31,/2022).

Jayawant N. Mandrekar. “Receiver Operating Characteristic Curve in
Diagnostic Test Assessment”. In: 5.9 (Sept. 2010), pp. 1315-1316. ISSN:
15560864. poI: 10 . 1097 / JTO . 0b013e3181ec173d. URL: https : //
linkinghub.elsevier.com/retrieve/pii/S1556086415306043 (vis-
ited on 08/31/2022).

Eric Martin et al. “String kernel”. In: Encyclopedia of Machine Learning.
Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer
US, 2011, pp. 929-929. 1SBN: 978-0-387-30768-8 978-0-387-30164-8.
DOI: 10.1007/978-0-387-30164-8_790. URL: http://link.springer.
com/10.1007/978-0-387-30164-8_790 (visited on 07/11/2022).

46

[MR99]

[MRC18]

[Mud+20]

[Pat+20]

[RRO7]

[RRO8]

[Sal+21]

[SCO04]

A.R. Meenakshi and C. Rajian. “On a product of positive semidefinite
matrices”. In: Linear Algebra and its Applications 295.1 (July 1999),
pp. 3-6. ISSN: 00243795. DOI: 10.1016/50024-3795(99) 00014-2. URL:
https://linkinghub.elsevier.com/retrieve/pii/S0024379599000142
(visited on 09/04/2022).

Sean McNally, Jason Roche, and Simon Caton. “Predicting the Price
of Bitcoin Using Machine Learning”. In: 2018 26th Euromicro Interna-
tional Conference on Parallel, Distributed and Network-based Processing
(PDP). 2018 26th Euromicro International Conference on Parallel, Dis-
tributed and Network-based Processing (PDP). Cambridge: [EEE, Mar.
2018, pp. 339-343. 1SBN: 978-1-5386-4975-6. DOI: 10.1109/PDP2018.
2018.00060. URL: https://ieeexplore.ieee.org/document/8374483/
(visited on 08/30/2022).

Mohammed Mudassir et al. “Time-series forecasting of Bitcoin prices
using high-dimensional features: a machine learning approach”. In:
Neural Computing and Applications (July 4, 2020). 1SSN: 0941-0643,
1433-3058. DOI: 10 . 1007 / 500521 - 020 - 05129 - 6. URL: https: //
link . springer . com/ 10 . 1007 / s00521 - 020 - 05129 - 6 (visited on
08/29/2022).

Harshita Patel et al. “A review on classification of imbalanced data
for wireless sensor networks”. In: International Journal of Distributed
Sensor Networks 16.4 (Apr. 2020), p. 155014772091640. 1SSN: 1550-
1477, 1550-1477. pol: 10. 1177 /1550147720916404. URL: http://
journals.sagepub.com/doi/10.1177/1550147720916404 (visited on
08/31/2022).

Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Ker-
nel Machines”. In: Advances in Neural Information Processing Systems.
Ed. by J. Platt et al. Vol. 20. Curran Associates, Inc., 2007.

Ali Rahimi and Benjamin Recht. “Weighted Sums of Random Kitchen
Sinks: Replacing minimization with randomization in learning”. In: Ad-
vances in Neural Information Processing Systems. Ed. by D. Koller et al.
Vol. 21. Curran Associates, Inc., 2008. URL: https: //proceedings .
neurips.cc/paper/2008/file/0efe32849d230d7£53049ddc4adb0c60-
Paper.pdf.

Cristopher Salvi et al. “The Signature Kernel Is the Solution of a Gour-
sat PDE”. In: SIAM Journal on Mathematics of Data Science 3.3 (Jan.
2021), pp. 873-899. 1ssN: 2577-0187. pOI: 10.1137/20M1366794. URL:
https : //epubs . siam. org/doi /10 . 1137/ 20M1366794 (visited on
06/19/2022).

John Shawe-Taylor and Nello Cristianini. Kernel methods for pattern
analysis. OCLC: 144618454, Cambridge, UK; New York: Cambridge
University Press, 2004. 1SBN: 978-0-511-21060-0 978-0-511-21597-1
978-0-511-21237-6 978-0-511-80968-2 978-0-511-21418-9. URL: https:
//doi.org/10.1017/CB09780511809682 (visited on 07/03/2022).

47

[Sch21]

[Shi+15]

[Shi81]

[SKA21]

[SMO03]

[SS]

[S515]

[TO20]

[USCO07]

Vincent Schellekens. “Extending the Compressive Statistical Learning
Framework: Quantization, Privacy, and Beyond”. PhD thesis. UCLou-
vain, Aug. 6, 2021. URL: https://schellekensv.github.io/Resources/
thesis. pdf.

Ali Shiri et al. “Electricity price forecasting using Support Vector Ma-
chines by considering oil and natural gas price impacts”. In: 2015 IEEE
International Conference on Smart Energy Grid Engineering (SEGE). 2015
IEEE International Conference on Smart Energy Grid Engineering (SEGE).
Oshawa, ON, Canada: IEEE, Aug. 2015, pp. 1-5. ISBN: 978-1-4673-
7932-8. DOI: 10.1109/SEGE.2015.7324591. URL: http://ieeexplore.
ieee.org/document/7324591/ (visited on 09/04/2022).

B Shizgal. “A Gaussian quadrature procedure for use in the solution
of the Boltzmann equation and related problems”. In: Journal of Com-
putational Physics 41.2 (June 1981), pp. 309-328. 1SsN: 00219991.
DOI: 10.1016/0021-9991(81)90099-1. URL: https://linkinghub.
elsevier.com/retrieve/pii/0021999181900991.

Ndeye Fatou Sene, Mamadou Abdoulaye Konte, and Jane Aduda. “Pric-
ing Bitcoin under Double Exponential Jump-Diffusion Model with Asym-
metric Jumps Stochastic Volatility”. In: Journal of Mathematical Finance
11.2 (2021), pp. 313-330. 1SSN: 2162-2434, 2162-2442. pOI: 10. 4236/
jmf.2021.112018. URL: https: //www.scirp.org/journal/doi.aspx?
doi=10.4236/jmf.2021.112018 (visited on 09/04/2022).

Endre Siili and D. F. Mayers. An introduction to numerical analysis.
OCLC: 0cm50525488. Cambridge ; New York: Cambridge University
Press, 2003. 433 pp. ISBN: 978-0-521-81026-5 978-0-521-00794-8.

Bernhard Scholkopf and Alexander J Smola. Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and Beyond. OCLC:
904718080. Cambridge; Ipswich: MIT Press ; Ebsco Publishing [dis-
tributor, 0. 1SBN: 978-0-262-25693-3. URL: http://ieeexplore.ieee.
org/servlet/opac?bknumber=6267332 (visited on 07/03/2022).

Danica J. Sutherland and Jeff Schneider. On the Error of Random Fourier
Features. June 9, 2015. arXiv: 1506.02785[cs, stat]. URL: http://
arxiv.org/abs/1506.02785 (visited on 09/03/2022).

Csaba Toth and Harald Oberhauser. Bayesian Learning from Sequential
Data using Gaussian Processes with Signature Covariances. July 6, 2020.
arXiv: 1906.08215[cs , math, stat]. URL: http://arxiv.org/abs/
1906.08215 (visited on 09/06/2022).

Christian Ullrich, Detlef Seese, and Stephan Chalup. “Foreign Exchange
Trading with Support Vector Machines”. In: Advances in Data Analysis.
Ed. by Reinhold Decker and Hans -J. Lenz. Series Title: Studies in Clas-
sification, Data Analysis, and Knowledge Organization. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2007, pp. 539-546. 1SBN: 978-3-540-
70980-0 978-3-540-70981-7. pOI: 10.1007/978-3-540-70981-7_62.

48

[Vis+08]

[Wan+15]

[Xie+06]

[Zhi+08]

[ZPC11]

URL: http://link.springer.com/10.1007/978-3-540-70981-7_62
(visited on 09/04/2022).

S. V. N. Vishwanathan et al. Graph Kernels. July 1, 2008. arXiv: 0807 .
0093 [cs]. URL: http://arxiv.org/abs/0807.0093.

Yining Wang et al. Fast and Guaranteed Tensor Decomposition via Sketch-
ing. Oct. 20, 2015. arXiv: 1506.04448[cs,stat]. URL: http://arxiv.
org/abs/1506.04448 (visited on 09/06/2022).

Wen Xie et al. “A New Method for Crude Oil Price Forecasting Based on

Support Vector Machines”. In: Computational Science — ICCS 2006. Ed.

by Vassil N. Alexandrov et al. Red. by David Hutchison et al. Vol. 3994.

Series Title: Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2006, pp. 444—451. 1SBN: 978-3-540-34385-
1 978-3-540-34386-8. DOI: 10.1007/11758549_63. URL: http://link.

springer.com/10.1007/11758549_63 (visited on 09/04,/2022).

Zhi-Qiang Zeng et al. “Fast training Support Vector Machines using par-
allel sequential minimal optimization”. In: 2008 3rd International Con-
ference on Intelligent System and Knowledge Engineering. 2008 3rd Inter-
national Conference on Intelligent System and Knowledge Engineering
(ISKE 2008). Xiamen, China: IEEE, Nov. 2008, pp. 997-1001. 1SBN:
978-1-4244-2196-1. DOI: 10.1109/ISKE.2008.4731075. URL: http://
ieeexplore.ieee.org/document/4731075/ (visited on 09/05/2022).

Shuji Zhao, Frédéric Precioso, and Matthieu Cord. “Spatio-Temporal
Tube data representation and Kernel design for SVM-based video ob-
ject retrieval system”. In: Multimedia Tools and Applications 55.1 (Oct.
2011), pp. 105-125. 1ssN: 1380-7501, 1573-7721. por: 10 . 1007/
s11042-010-0602-3. URL: http://1link. springer.com/10 . 1007/
£11042-010-0602-3 (visited on 09/04/2022).

49

Appendices

50

Appendix A

A.1 Proof of theorem 2.2.1

k(r,x) = Z cic;Giy = Z cicik(xi, ;) = Z{rﬁ,qﬁ(:m). cio(x;))u

i,J i,j i,J

= <Zc‘i(-’}(f:i),zr:‘l}-g-i(:f:ll-)> = ‘ Zfi‘;(i‘(:fff)
H

i K] i

2
=0
H

A.2 Proof of theorem 2.2.2

Fix a finite set of data {z,,...,zy } and let K, K, be the matrices obtained by re-
stricting the kernel functions k|, k, to this data set. Recall that a matrix K is positive
semi-definite iff for any &« € RV, aT Ko > 0, then

* (sum of kernels) o™ (K, + K)o = oT Kja+a” Kya > 0, s0 K, + K, is a positive
semi-definite matrix meaning that %, + & is a valid kernel. For 5k where 8 = 0
just plug 3 in the definition of a positive semi-definite kernel which will not
change the inequality.

» The tensor product of two positive semi-definite matrices & and K is positive
semi-definite [MR99], the result of the theorem follows trivially.

A.3 Derivation of an alternative feature mapping [2.4.2]
for random Fourier features

We begin by defining the alternative map as in [RRO7]

cos(w])

Zu () = [‘S'w.'.n.. (wr_ 1)j| (A1)

We follow by drawing d = § samples from p(w) and compute

51

1 i 2 ! cos(w; x) " cos(w, y)
;Z 2 ()2, (y) = FZ (L‘in(wx_w)} [‘S"a‘fu(wi_y)j|

L
= {—2?2 cos(w, r)cos(wy) + sin(w, x)sin(w, y) (A2)
o odf2

2 T —
=5 cos(w. T —w. 1
d Z (* i -})

= E [cos(w, (z —y)] = k(z,y)
A.4 Derivation of the signature kernel PDE [2.5.4]

}i.’.gig(z‘i'._ f) = <‘S(X).; ‘S(};).r,)

- <1+/b S(X) @rﬂ(){).ufr S(Y)®d(Y)) (2.5.3)

b ol
— 1+ f f (S(X)® X, S(Y)®Y)dudv (by differentiability)

b /i fi (S‘(X) S(Y))N(X,Y)dudv

b d
=1+f f kgig(s, (X, Y)dudv (2.5.2)

By the fundamental theorem of calculus we can differentiate the above first by s and
¢ to obtain:

s 2 .
Pl

:kwxr st X }']
dsor ~ Feis(s: (XLY)

52

Appendix B

B.1 General signature kernel using Beta-distributed
random variable

Remark 14 (Beta RV)
Let m ~ Beta(1, m), the sequence of its moments is
Bk+1,m) Tk+DC(m+1)

S _ A
Bl = B(l.m) T(k+m+1) o)

The general signature kernel under the scaling ¢(k) is

K

&g

(s,t) = Ep [k, (5,¢)]

sig

B.2 Quadrature rule for Beta-weighted general signa-
ture kernel

Remark 15 (Beta RV)
Taking @ ~ Beta(l, m) as in remark 14, we have the following integral to evaluate

1
Rzig(s t) = Br [k (s, 1)] :ﬁ flx) g (x)dx
= ! 1 ((]— =t lr = 1 ! (4,n—1 1
= 73(11?”)/[] Jlz)(l —z)"de = B(l._'m]ﬁ Jly)y™dy

= ! f' 1(1)) (E+1)"d
~ga [,/ (26 0) € 0

n

1 (1

i=()

where g.(x) is the probability distribution function of Beta(1,m) rv., and the weight
function in the definition of Quadrature Rule is w(x) = (x + 1)™~'. Refer to [ASR88],
[Gau83] for the weights and abscissae.

53

Appendix C

C.1 Bitcoin price prediction using technical indicators

54

C.1.1 Experiment 1

Dataset BTS_ imenvall_1_feat. Made!: signature pde beschmark Dataset. BTS | "Ir“N'_l_"N! Medet signatune pie const

0 wa

" —
- g
fom Eom |
L L

| Mo
e m | M
= - e s

Datest: W75 inervall,| feat, Nodist sigatine pee raylegh o Dataset- 0TS imerva] 1 feot, Made: signaturs pée nform ry

)

ol \r

Dalirit: HTS intervals | foat, Nodet signatuse gl rayheigh re

[TETp——

-

B

s : [
Cuataset BT, imeraia_1_feat Mot signatuns pde beachmark Dutasst. GTS_inerali_1 fet. Wedst sipnature pe conss

i
Bme
£

-

FO L rnacand ernge e

Datuses: W7 bnterval]_1 feat, Mot sigratiee poe raylegh o Dataset: OTS_mervaD 1 fest, Modet sgnatirmpde nformey

™ i

- s

= ™
i H
Exe B
i]
ian F Y

- -

B M

- preprry | s e

[3
[

Figure C.1: Experiment 1 plots of Bitcoin price forecast for intervals [, II and III

55

C.1.2 Experiment 2

[rp—

Datases: TS el sever, Modsl: sironue: e Benkhmmark Dot TS, tersal]_seven. Wode: sigromre pde canst
e
i
LI
o
- e nerage e < e waga prea
v st pies iy iy e
- -
Dstaset: TS Irdmreal]_seven, Was: sigraturs pd ragfeish v Dt 15 etersal]_smeen, Wodel sigranure poe vt rv
N -
H
Bu
]
o
- Pedcted arean wagn e
P e
i W r Y)
o
Dlstaset B3 rarval3 thrty semcamars Dkas: TS etorsaly Bty Mokt sgnaturs pé comt
T ——— [s st e
rvge e L] iy —-—
-
1
T
H
-
——
H W B0 s W o £ = 3 5 s 0 0 5 w0 £
oo [
Dt BT iervall thirty. Mk dgnatune pd rinfigh 1y ataget: BTS imsrvas ity o it v
[P ——p—
P iy e | bt e e
e

e
T
o o
Oiatase: TS imervas,rinery. Nodel signatire pse berchmark Dataset. BTS imerall_ninety. Nodsl sgrative pde const
= o
¥
L
i
™
e e
_Contaset: WTS, vervadrivety, Moot sgrnatins peerarpesgh rv i istaset. UTS_mterva_ensty. Nodet sgnatins pee unform, v

[] i payal

h
.|| l|l'|) -

Poveer e g
P p—"

7]
= o

Figure C.2: Experiment 2 plots for 7, 30 and 90 days price forecast

56

C.1.3 Experiment 3 - static kernel approximation

Dataset: BTS_interval2_1_feat, Model: signature pde benchmark

=== Predicted average price
1000 4 —— Actual average price

800

600

Bitcoin prices

200

o 100 200 300 400

Dataset: BTS_interval2_1_feat, Model: signature pde const

--- Predicted average price
1000 4 — Actual average price

200

Bitcoin prices

400

Figure C.3: Predicted vs. Actual price for Sig-PDE and Const models

57

Bitcoin prices

Bitcoin prices

1000

800

600

400

1000

200

600

200

Dataset: BTS_interval2_1_feat, Model: signature pde uniform_rv

-=-- Predicted average price
—— Actual average price

Dataset: BTS_interval2_1_feat, Model: signature pde rayleigh_rv

-=-- Predicted average price
—— Actual average price

200 300 400 500

Figure C.4: Predicted vs. Actual price for Uniform and Rayleigh models

58

C.1.4 Experiment 4 - variations of random Fourier features for
Rayleigh kernel function

1000

Bitcoin prices

Bitcoin prices

Dataset: BTS interval2_1_feat, Model: signature pde rayleigh_rv

-=-- Predicted average price
—— Actual average price

Dataset: BTS interval2_1_feat, Model: signature pde rayleigh_rv

--- Predicted average price
— Actual average price

Figure C.5: Predicted vs. Actual price for Rayleigh kernel. (a), (b) are 3 and 6 random
Fourier features respectively

59

1000

800

Bitcoin prices
-3
2
2

&
2

200

1000

800

Biteoin prices

400

200

Dataset: BTS_ interval2_1_feat, Model: signature pde rayleigh_rv

--- Predicted average price
—— Actual average price

200

300 400 500

Dataset: BTS_interval2_1_feat, Model: signature pde rayleigh_rv

=-=-- Predicted average price
—— Actual average price

0 100

200

300 400 500

Figure C.6: Predicted vs. Actual price for Rayleigh kernel. (a), (b) are 9 and 19 random

Fourier features respectively

60

