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Abstract

Convertible arbitrage is a popular hedge fund strategy that has brought considerable profits to
convertible arbitrageurs over the past two yvears. Dynamic delta hedging is an essential part of
this strategy, through which the delta-hedged position becomes insensitive to underlying stock
price movements, but will be exposed to the issuer's credit risk and interest rate risk. There-
fore, Arbitragers may want to consider to hedge credit risk in addition to equity exposure. CDS
are widely-used for hedging credit due to their low basis risk and cost-effectiveness, but lack of
availability and liquidity issues prevent them from being applicable to every convertible bond as a
general hedging tool. Moreover, in modern default studies, scholars have pointed out that credit
risk and equity are correlated, but there has been no systemically well-developed model integrating
this correlation. Therefore, we want to explore alternatives to CDS that reflect the credit-equity
correlation in the credit-hedging process.

In this thesis, we propose equity as an alternative instrument, demonstrate its correlation with
credit risk, and introduce a delta hedging strategy adjusted for this correlation. Additionally, we
compare the hedging effectiveness of equity and CDS by developing hypothetical hedged portfolios
and back-testing in our universe.

keywords: Convertible arbitrage, Dynamic delta hedging, Credit hedging, Credit-equity cor-
relation.
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Introduction

The convertible bond market saw another heyday in 2020, with a rapid expansion in market size
as corporations rushed to shore up balance sheets in the wake of the COVID-19 pandemic, and
elevated equity volatility made convertibles a relatively attractive instrument. However in 2022, in-
creased geopolitical tension, rising inflation and more restrictive central bank policies cansed both
interest rates and credit spreads to widen, while equity prices fell. Broad credit indices spiked, with
the Markit CDX North America High Yield Index reaching 584.661 bps' on 16" June, and the
Markit iTraxx Europe Crossover index hitting 628.154 bps! on 14" July. The convertible bond
market has been more volatile with increasing sensitivity to credit risk as falling equity prices
cause convertibles to become more 'bond-like’. Most convertible bond issuers are classified as non-
investment grade as their credit ratings are evaluated to be lower than BBB-, which puts their
investors under significant credit risk. [1]

One simple way that investors hedge credit risk is by buying CDS protection on underlying fixed
income securities to transfer credit exposure to a third party, but the CDS market has become
much smaller and less liquid over time, so it is harder for investors to hedge the credit risk of
convertible bonds. Alternative credit hedging methods are thereby very important, and my thesis
explores one of these: using equity to hedge convertible bonds with credit risk.

Dynamic delta hedging is a trading strategy aimed at reducing the risk associated with the price
movement of the underlying equity, by simultaneously taking an offsetting position in the under-
lying stock and adjusting positions constantly to keep the portfolio delta-neutral. While the Black
Scholes model has been widely used to compute delta for dynamic delta hedging, there has been no
systemically well-developed model for delta hedging with credit-equity correlation incorporated,
especially for hybrid securities that are sensitive to, and correlated with, both credit and equity
markets, such as the hybrid securities convertible bonds.

The valuation of convertible bonds depends on four main factors, interest rate dynamics, un-
derlying stock price evolution, volatility of the stock price and the credit risk of the underlying
company. (2] Because of the hybrid features, convertible bond investors are exposed to both the
credit risk inherent in the straight bond portion and the market volatility of the share price of
the underlying, as it impacts the value of the embedded conversion option. The number of shares
that need to be traded to offset the exposure to the stock is defined as the hedge ratio, the size of
which is determined by delta. Delta measures the sensitivity of a security’s price to its underlying
stock price. When a position in a convertible bond is delta hedged, the exposures remaining are
to credit, volatility and interest rates. The presence of credit risk brings considerable uneertainty
to the valuation of convertible bonds. Hence for securities that are credit-sensitive, other hedging
strategies can be used to reduce the volatility of a convertible bond position, in addition to the
Black-Scholes delta hedging.

There are plenty of strategies with various hedging instrments that are widely used to control
and reduce credit exposure, such as hedging directly by buying a CDS protection on the same
reference entity, nusing ASCOTSs, straight bonds, or hedging by utilizing the correlation between
the underlying companies and some companies covered by CDX index. Although these strategies
and traditional credit hedging methods enable investors to offset more risk than delta hedging
alone, one problem is that they all ignore the credit-equity link. It's worth highlighting that the
correlation of credit with equities has picked up in the last decade and remained relatively high

'Data source: Bloomberg Finance L.P.




over the past few years. [3] Considering that convertible bonds are susceptible to both equity and
credit risk, and the correlation between credit and equity is not negligible, the performance of
convertible bonds can neither be fully attributed to movements in equity or credit markets, nor
can it be considered a simple addition of the effects under two risks. Also, we are not convinced
that the reduced volatility has reached the minimum, or that there is no opportunity to reduce it
further. We believe that a credit-adjusted delta will effectively capture this correlation and deliver
better results by reducing the variance of the delta-neutral portfolios to a lower level.

The purpose of this thesis is to present an alternative credit hedging method as proposed above and
incorporate credit-equity correlation into the classic dynamic delta hedging strategy to decrease
the convertible bond wvolatility associated with underlying share price movement and changes in
creditworthiness. By comparing its results with the classic delta hedging strategy and various
credit hedging strategies that are widely used in the industry, we can explore under which circum-
stances it effectively reduces the variance of the hedged portfolio.

The rest of the thesis is organized as follows. In Chapter 2, the capital structure model for com-
panies with debt and equity is introduced. In Chapter 3, different valuation models are presented
for convertible bonds, such as the structural model and reduced-from model, and two numerical
approaches to solve the valuation problems are provided. In Chapter 4, various approaches that are
used to hedge credit exposure either directly or through correlation are introduced and compared,
relevant hedging instriments involved are CDS, ASCOT, straight bonds, CDS index and equity.
In Chapter 5, potential functional relationships between credit and equity are discussed, such as
a linear functional form, exponential functional form, and other functional forms incorporating
more variables. In Chapter 6, the effectiveness of this new hedging method is analysed by using
back-testing, where both unhedged and hedged portfolios of different strategies are developed to
assess and compare the effectiveness of hedges in terms of volatility reduction for convertible bond
issuers with CDS or with no CDS contracts. In Chapter 7, the conclusion and limitations of the
new approach proposed in this paper are discussed.




Chapter 1

Convertible Bonds

Convertible bonds are a typical category of hybrid security, equipped with features from both eq-
uity and fixed income. The conversion option makes convertible bonds more complicated by adding
features from financial derivatives. They can be regarded as corporate bonds with additional con-
version rights, as bondholders are entitled to convert the bonds into equity at some specific number
called the conversion ratio, which is specified in the prospectus at issuance. The conversion option
not only allows bondholders to obtain exposure to stock price appreciation but also makes investors
face limited downside risk assuming the company does not default, as the value of a convertible
bond decreases less than its underlying share price drops because of the positive convexity features.

1.1 Valuation of Convertible Bonds

Taking European convertible bonds as an example, the value of a convertible bond at maturity is
the greater of its conversion value and the face value of a straight bond of the same seniority and
features, i.e.

V(S,T) = max{C,S. FV}

Alternatively, convertible bonds can be viewed as straight bonds with face value N and call options
on the conversion value with strike price N. The options will be exercised when the conversion
alue exceeds N, ie.

V(8,T) =N + max{C,.5 — FV,0}

From the perspective of put options, holding a convertible bond is equivalent to taking a long
position in the underlying stock and a long position in the underlying conversion value put option,
the strike price of which is equal to the bond principal N, i.e.

V(S.T) = C,.8 + max{FV — C,.S,0}

1.2 Categories of Convertible Bonds

Convertible bonds can be divided into many sub-categories according to different dimensions. For
example, by the type of conversion. Voluntary convertible bonds are one of the products we are
most familiar with, where bondholders are able to convert at their own discretion. On the contrary,
mandatory convertible bonds are forced to convert into common equity at some specified range of
conversion ratios at expiry. For some more exotic products, such as contingent convertible bonds
(CoCo), the conversion is automatically triggered when certain conditions are satisfied. In this
case, the payoll of the bonds becomes path-dependent on the underlying stock price evolution,
which makes the valuation of such bonds more difficult. Again, we will focus more on voluntary
convertible bonds.

The next dimension is the restriction around conversion rights. Just like ordinary options, there
are FEuropean convertible bonds, where conversions only happen at bond maturity, American con-
vertible bonds, where the bondholders have the discretion to exercise the conversion options at any




time before or at maturity, and Bermudan convertible bonds, where conversions occur on specific
dates before maturity, or exactly at maturity. In this thesis, American convertible bonds are our
main interest.

1.3 Why Are Convertible Bonds Attractive Investments?

Convertible bonds attract different types of investors because of their hybrid nature, which enables
investors to access the potential unlimited equity appreciation with limited exposure to downside
losses, making convertible bonds a competitive investment product for investors. Moreover, con-
vertible bonds are less correlated with other asset classes, thus adding them to a portfolio may
increase the expected returns without adding more risk due to diversification effects.

If we divide investors into different categories based on their investment preferences and prod-
ucts of interest, convertible bonds are quite attractive for different investors for different reasouns.
The long-only convertible bond investors are the main type of investors, who dominate the market,
their mandate is to invest in convertible bonds and not to hedge, as this gives positive convexity,
equity-like exposure on the upside, but bond-like exposure on the downside. For hedge funds and
arbitrageurs, if there is a price diflerence between convertible bonds, the underlying stock and other
related securities, they can benefit from exploiting the difference by buying low and selling high,
which is known as convertible arbitrage. For fixed-income investors, adding a convertible bond
position to their portfolio allows them to have equity exposure without deviating from a client’s
investment mandate, such as investing in fixed-income products only. As a result, it may bring a
higher return to the investment portfolio. [4, 4.3]

On the other hand, for bond issuers, convertible bonds can be a cheaper source of financing
compared to corporate bonds because of the lower coupon rate, which effectively reduces the cost
of capital, especially for those growth companies that are capital-intensive. The lower coupon
rate is compensated by embedded conversion rights at the holders’ direction. Typically, issuing
new shares increases the total number of shares outstanding, thereby diluting the rights of exist-
ing shareholders and causing share prices to fall upon announcement. The options embedded in
convertible bonds are able to delay the conversion time, effectively delaying the dilution of earn-
ings. Therefore, there would be a smaller announcement effect on the share price if financing by
issuing convertible bonds instead of issuing additional shares. What's more, issuing convertible
bonds can effectively help businesses save taxes due to the tax shield that comes with debt interest
payments. [4, 1.2.2]

1.4 The Convertible Bond Market

The convertible bond market has been expanding since the 1990s. Prior to the financial crisis in
2008, the convertible bond market grew steadily, with Asset Under Management (AUM) peaking
at around $580 billion? in 2004 and global issnance volumes peaking at $167 billion? in 2001,

During the financial crisis in 2008, due to the contagion effect caused by Mortgage-Backed Se-
curities (MBS), convertible markets suffered a devastating blow, with AUM reducing from $540
billion? to around %270 billion? in 9 months. What's worse, there was almost no new issuance in
the year following the financial crisis from late 2008 to early 2009. The situation did not improve in
the following two years. Starting in 2013 however, resilience kept showing in the convertible bond
market because investors have been attracted by the record-low interest rate in the financial market.

It was not until 2012 that signs of recovery eventually appeared in the convertible market, which
was driven by rising interest rates, higher volatility and massive issuance of new convertible bonds
in 2012, where the global issuance increased after 2007 for the first time. After that, there was
positive net issuance each year from 2013 to 2020, and 2020 saw the largest global new issuance
since 2001, at around $159 billion?.

The ontbreak and pandemic of COVID-19 in 2020 caused high volatility in the financial mar-
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Figure 1.1: Global convertible bond market value.

ket, which essentially activated the convertible markets. At the same time, companies hit by the
pandemic started to recapitalize and aimed to seek a cheaper source of financing, which makes
convertibles bonds an ideal approach to raising rescue capital. Also, central banks set interest
rates at very low levels to simulate consumption, so the financing terms for companies were very
attractive. Low interest rates also led to strong demand from major market participants, such as
hedge funds. As a result, global convertible issnance hoomed and has even climbed to its historical
high water mark since 2007, with ten new issuances per week at some point post-COVID over
2020. [2]

This upward trend continued into 2021 but did not persist any longer in the following year, instead
an unusually long quiet issuance period has shown in 2022. Commodity futures prices experienced a
dramatic increase as a result of the Russia-Ukraine war that broke out in late February of 2022, the
whole world was experiencing unusually high inflation and many economies even showed signs of
recession. The rising interest rates, widening credit spreads and falling stock prices led to negative
performance in the convertible bond market. The poor performance has started to cause outflows
from convertible-focused funds, leading to a large decrease in the cumulative NAV of funds. The
uncertain risk environment is another factor that caused the quiet issuance of convertible bonds.

Generally speaking, when markets are very volatile, the issuance of new securities, such as [POs,
new convertible bonds, and new straight bonds, becomes fairly quiet. Investors tend to be very
cautions about committing their capital to a new issue when the market is going through turbulent
price moves hecause it is very difficult to price a new deal as the daily prices are quite unstable.
The quiet issuance period in 2022 has been longer than usual. The western sanctions on Russia
for its invasion of Ukraine led to a surge in the oil price level, which in turn gave rise to persistent
inflation. To ease the inflationary problem, central banks implemented contractionary monetary
policy by raising base interest rates and shrinking the money supply in the market. This mone-
tary correction also discouraged people from consumption and investors from lending out money,
resulting in a low ebb for corporate fundraisings, with a 25% slide in the first half of 2022. [5] At
the same time, the financial market suffered from turbulence due to the rising price level, which
made companies delay planned IPO and equity financing undergo a fall in price. The slowdown
also happened in the high-yield bond market, the global issnance slipped compared to the pre-
vious year. However, markets move in cycles, although the convertibles market is going through
such a long quiet period, it is more likely that there would be a lot of new issuance in the near future.

'Reprinted by permission. Copyright ©2022 Bank of America Corporation (“BAC"). The use of the above in
no way implies that BAC or any of its affiliates endorses the views or interpretation or the use of such information
or acts as any endorsement of the use of such information. The information is provided “as is” and none of BAC or
any of its afliliates warrants the accuracy or completeness of the information.

?Data source: M. Youngworth. Global convertibles primer. Global convertibles, BofA global research, 2021
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Chapter 2

Capital Structure Models

In this chapter, the capital structure of a company is predicted by structural models, and the
probability of default will be modelled as an endogenous wvariable using option pricing theory.
For simplicity, the simplest capital structure is used, assuming that the company has only a zero
coupon bond in liability and the residual claim, equity.

2.1 The Merton Model

One of the most widely used structural models that use a company’s capital structure to model
its debt wvalue is the Merton model [6] introduced by Robert Merton in 1974, Many assumptions
are required for this Black-Scholes-type pricing model, such as those on a firm’s value dynamics.

2.1.1 Geometric Brownian Motion

As one of the eritical assumptions, Merton assumes that firm value follows a continunous stochastic
diffusion process described by the following stochastic differential equation.

dV; = (aV; — e)dt + oVidW,, (2.1.1)
where:
e o is the instantaneous expected rate of return on firm value V' per unit of time
e o is the instantaneous volatility of return on firm value per unit of time
o W = (W});~g is the standard Brownian Motion process

e crepresents the total net cash flow the firm pays to its investors (for example, dividends paid
to shareholders and interest payments to bondholders) and cash received from new financing.
A positive e indicates cash ontflow whereas a negative ¢ refers to cash inflow.

Merton applied the simplest possible capital structure, assuming that the company has only equity
and a risk-free zero coupon bond on its liability, so in its balance sheet, the value of assets equals
the value of equity and the value of the zero coupon bond. Under these assumptions, Merton
modelled underlying assets value A, follows Geometric Brownian motion, assuming a constant
interest rate and the only source for uncertainty is from volatility o of assets’ return.

L-J| 9.

Y+ oW,

[
N
[~

logA; = logAy + (r —

Since W = (W)= is a Brownian motion process, W; is distributed as a Gaussian with mean zero
and variance t, so we can write
W =i -N(0,1)

and hence

1.
In A = ln As + (r— ;ozj AT =)+ ovVT —t-N(0,1)
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Equivalently,
Ap = A, - (T3 )T+ VT=EN(O,1) (2.1.3)

Assets Value

Figure 2.1: Firm value dynamics under Geometric Brownian Motion

At bond maturity T, bondholders either get the principal value (F'V') of the bond or the asset value
of the firm, whichever is smaller. With the residual claim, shareholders will get the remainder.
If asset value ends up less than the liability level, all assets are first liquidated to pay out the
company’s debt obligations because bondholders have higher seniority in claims than shareholders.
Although all assets are used to repay debt obligations, not 100% of the bondholders are able to
get full repayment, so the company fails to meet its financial obligation and defaunlts on its debt.
So in this case, the value of equity is zero. If asset value ends up greater than the liability level,
the company will be able to make the full amount of debt repayment and shareholders will get
whatever is remaining. Therefore, the value of the company’s equity and debt at maturity are:

Dy =min(FV, A7),  Ep = max(Ar — FV,0) (2.1.4)

The value of equity at maturity of the bond is quite similar to the payoff of a standard European
Call option, where the Call option is in the money when the underlying asset’s value rises above
the face value of the bond. This shows that equity can be regarded as an analogue of a Call option
on asset value with the face value of the bond as the strike level. Using the Black Scholes option
pricing formula, the value of equity is:

E, =N (d))A; — N (dy) Xe T8 (2.1.5)

Indt + (r+2)(T—1)
where dy = i ( TJB and do=dy —ovT —1t
= —

Parameters in the functions are:
e [ is the market value of equity at time t
e A is the asset value of a firm at time t
e X is the face value of a zero coupon bond
¢ 7 is the risk-free interest rate
e o is the volatility of return on assets

e N denotes the cumulative distribution function of the Gaunssian random variable

13




With a constant volatility level o and constant risk-free rate r, equity value at time t can be derived
using equation (2.1.5). Then the value of debt is derived using the accounting equation:

Di=A  E (2.1.6)

Combining equations (2.1.2), (2.1.5) and (2.1.6) above, Merton further concluded a closed-form
solution for evaluating the value of debt.

In the structural model, default is treated as an endogenous variable, which happens when as-
set value is lying below the liability level.

T
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Asset
Value

Default Point
EDF

>

Today 1 Year

Source: Stephen Kealhofer, Quantitying Credit Risk I: Defanlt Prediction (2013)
Figure 2.2: Irequency distribution of assets value and probability of default.
[7, Page 31]

Figure 2.2 illustrates the asset value dynamics and probability of default, assuming the company
has a single debt liability, equity, and no other obligations. The x-axis represents the investment
horizon of a bond which matures one year from now, the y-axis represents the market value of
asset value. Asset value follows a lognormal diffusion process, the more volatile the process is, the
more likely that the assets will end up with an extreme value. The dotted line represents the face
value of the bond that needs to be paid back at maturity, when asset value falls below this value,
the company is incapable of making the whole amount of payment and will default. The curve at
one year shows the probability of asset value ending up with different values, where the area under
the dotted line and colour shadowed by black refers to the likelihood that default happens in one
year. Therefore, the probability of default is associated with the market price of assets, the face
value of the liability and the volatility of asset return. The lower the asset value or the higher the
liability or the higher the volatility, the more likely that default will happen.

The coupon rate of a bond compensates the bondholders for the credit risk they have exposure to,
namely the possibility that a company will not be able to fulfil its debt obligations. Therefore, the
credit spread should be the effective coupon rate such that the market value of bonds is equal to
the present value of all future cash flows made by issuing companies, incorporating the likelihood
of default and possible recovery, discounted at the risk-free interest rate.

1 D
explrrisky xT) =Dr = C'Sz—[flog (Ff;) - } (2.1.7)
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Suppose we have a zero coupon bond with $1 million notional. If we are given the initial bond
value, initial asset value, risk-free interest rate and volatility of asset value as inputs, it is possi-
ble to derive a functional relationship between equity value and credit spread. The initial equity
value Ey can be derived by subtracting the initial bond value from the initial asset value. We
assumed that the asset value follows Geometric Brownian Motion, so following equation (2.1.2)
with Monte Carlo Simulation, we are able to predict its value at maturity as Ap. Then we can
apply equation (2.1.4) to compute the final debt value Dy, finally, credit spread C'S is derived by
equation (2.1.7).

2.1.2 Monte Carlo Simulation

Monte Carlo Simulation is a mathematical technique to obtain an estimate for unknown events,
by assigning multiple values to a variable to get multiple results and averaging the results.

The basic procedure to simulate the value of a European call option can be summarized as follows:
¢ Generate sample paths of the underlying asset price.
e For each simulated sample path, evaluate the payoff of the option.

e Take the sample average of the payoff over all sample paths and multiply with a discount
factor to derive the option price.

According to Merton, equity can be viewed as a European Call option on the asset value of the
underlying company, with debt face value as the strike price, so Monte Carlo simulation is also
applicable in valuing equity. In detail, we follow the algorithm below to simulate the credit spread
under varied initial asset value Ajp.

Algorithm: Valuation of Convertible Bond with Monte Carlo Simulation
1. Generate a N(0,1) variable Z.
2. Set Agpar — Ar = As(rAt + o4V ALZ;), where

o Af = % defines the time interval in the discrete model
e o, is the volatility of the asset price

e 1 is the constant risk-free interest rate

3. The asset price path (A Jn<t<7 can be generated by starting from Ay and repeating (1) - (2)
N times.

4. Set ending equity value by Ep = max(Ay — FV,0)

5. Repeat (1) - (4) M times independently to get Er,......ET,,.

= Er +....tEr
6. S("t b‘]" = %,

—rT

7. Multiply the average by the disconnt factor e, the result is the initial equity value Ey

8. Compute initial bond value by Dy = Ay — Ey

9. Derive credit spread using formula (2.1.7), here we assume Dy = F'1 and ignore any default
att =T

Figure 2.3 shows the relationship between credit spread and three key model inputs - initial debt
value Dy, initial equity value Ejy and volatility of return on assets o 4. Here I assume the company
holds a single debt obligation, a zero coupon bond with maturity of five years, initial value Ay fixed
at $100 in subfigure 2.3(a) and 2.3(b), whereas spanning over interval [10, 20, ...,300] in 2.3(c). The
annual risk-free rate r is static at 2%, and annual volatility on asset price o4 is fixed at 40%. In
subfigure 2.3(a), with a fixed Ap, the credit spread is wider if a greater percentage of the company
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is financed by debt compared to equity, this makes sense as a heavily leveraged company tends to
expose its stakeholders to more credit risk. In subfigure 2.3(b) we analyse the impact of o4 on
credit spread with initial debt and equity level fixed at Dy = 60 and Ey = 40 respectively. The
upward curve shows that credit spread increases with volatility of asset value o4, which makes
sense again since higher volatility implies higher default risk for bondholders. In subfigure 2.3(c),
with a fixed Dy at 60, the higher F is, the lower the credit spread is. Intuitively, investors of a
less leveraged company face less eredit risk, thus requiring less yield compensation so we expect
the credit spread to be narrower.

One limitation of the Geometric Brownian Motion process is that the model cannot generate
paths including jumps. A Geometric Brownian Motion is a typical diffusion-type process with a
continuous path. In reality, the firm value might not be continuous all the time, if default happens,
the stock price might experience a sudden drop thus becoming discontinuous:

§t=8"(1—n) (2.1.8)

where S~ refers to the stock price before default, S* refers to the stock price after default, and 7
represents the loss on the stock price due to default with 0 < n < 1. However, a random variable
that follows a Geometric Brownian model is gnaranteed to have the feature of continuity, therefore,
it fails to capture the extreme movements and price dynamics, so may not be realistic when taking
the likelihood of default into consideration.

2.1.3 Jump-Diffusion Process

Merton introduced the Jump-Diffusion model in 1976, as indicated by its name, a jump-diffusion
model combines a diffusion process and a jump process to capture the discontinuous behaviour in
the price dynamics. In this approach, the diffusion process is modelled by Geometric Brownian
motion and the jump process is characterized by the Poisson process.

A jump-diffusion process (X,}];~ has the form: [8]
X: = X[} —.r.{g —.R1 =+ Jg = )i; + Jf
where

e [; is the Ito integral part:

¢
I =[ UedBy
0
t
R :f Quds
0

e J; is the pure jump part, which is a pure jump process with Jy = 0 (e.g. Poisson process
Ng).

e [, is the Riemann intergral part:

Besides, X; satisfies the PDE:
dX
2L — pdt + odW; + YdN,
)i.g_

where Y = ¢ —1, Z~ N (O,r}g) and N; is a Poisson process with intensity A.

To get a more realistic prediction for future credit spread, we assume that the value of the under-
lying assets follows a jump-diffusion process with additional parameters characterizing the price
jump due to default:

e Mean of jump size, m = 0
e Standard deviation of jump, v = 0.1

e Intensity of jump, i.e. number of jumps per year, A = 1
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Figure 2.4: Firm value dynamics under Jump-diffusion model

Figure 2.5 shows the predicted results for credit spread and its relationship to initial debt value,
volatility level, initial equity value and ending equity value by assuming the asset value follows Ge-
ometric Brownian Motion and a Jump-diffusion process respectively. Because the jump-diffusion
model is able to capture extreme movement, the asset paths generated by this model are more
volatile, leading to a higher credit spread than Geometric Brownian Motion. This has been recon-
firmed in these charts. If we set other variables such as Dy, Ejy, E, o as fixed, for any arbitrary
value that the x-axis takes, the credit spread in the right charts is always higher. The relationship
between credit spread and those variables is expected to be less stable as well, this is shown by the
wider confidence interval in Table 2.1.

Asset Paths 95% Confidence Interval
Geometric Brownian Motion (0.0252,0.0262)
Jump-Diffusion (0.0263,0.0276)

Table 2.1: 95% Confidence Interval of credit spread.

18




—e— Geometric Brownian Motion / mp Diffusion

0.08 - /./ 0.08 Jump

0.07 0.07
- o
3 A 3
£ 006 i £ 006
("] / v
- =
5 0.05 § < 0.05
o g
~ 0.04 / “ 004

0.03 ‘/ 0.03

10 20 30 40 50 60 70 8 90 10 20 30 40 S50 8 70 B0 90
DO DO

(a) Relationship between credit spread and initial debt value.

—e— Geometric Brownian Motion Jump Diffusion

0175 - 0.175 -

0.150 - 0.150 -
® W
£ 0125- g 0125
W w
% 0.100 ‘//‘/ % 0.100
S 0.075- o J 0.075

0.050 - /'/ 0.050

.'/'
0.025 -o—" , , 0.025 . , ,
02 0.4 06 0.8 0.2 04 0.6 0.8
sigma sigma

(b) Relationship between credit spread and volatility level.

009 -\ —— Geometric Brownian Motion 0.09 - Jump Diffusion
008- \ 0.08
h=] \ o
g 007- @ 0.07-
& \ &
L 006- \ + 0.06 -
=] e
[ a
5 005 N S o00s
0.04 - —— 0.04 -
0.03 T o 0.03 -
0 50 100 150 200 0 50 100 150 200
E0 EO

(¢} Relationship between credit spread and initial equity value.

009 -\ —— Geometric Brownian Motion 0.09 Jump Diffusion
008 -\ 0.08-
® \ B
L ]
@ 007- Y @ 0.07-
& \ &
w 0086 w 0.06
% $
2 005- 5 0.05-
0.04 - . 0.04 -
-
.
003 o T— 00 ! i I
50 100 150 200 250 50 100 150 200 250
ET ET

(d} Relationship between credit spread and end equity value.

Figure 2.5: Model results for Geometric Brownian Motion and Jump-Diffusion Processes.

19




2.2 Probability of Default

The structural model regards default as an endogenous variable, it happens when asset value is
lower than the bond obligations at maturity, so the probability that companies default at maturity
can be defined in a straightforward way as:

Probability of default = P (Ap < D)
2
=P (logfl[} + (r— %)T + oA Wr < logDr>

—log(#2) — (r — )T

=P | Wp <« —=%
TA
—log(42) — (r — 2T
O ety 7 Bk s )
O’A\/f
o [ Lo Aoy 4 (p— 2T
B U’A\/T
= B (~dy) (2.2.1)

where Z is a random variable that follows the standard normal distribution, ®(-) is the cumulative
density function for the standard normal variable Z:

1 *
D(r) = \/?/ ) e

a4 refers to the volatility of underlying asset value, Vj is the company’s asset value at the initial
time and can be computed using (2.1.6) at ¢ = 0:

—2

2 g

Vo=Ao =Dy + Ey

where by (2.1.5):
Ey=N{dy) Ay — N (dy) Xe 1) (2.2.2)

From [té’s lemma,

., 0E o
opky = WUA Vo

= N(d1)oaVa [9] (2.2.3)

For a company with publicly traded shares, o can be estimated from the standard deviation of the
time series of share returns and Ey can be computed as market capitalization at t = 0, that is the
number of shares outstanding times the stock price at t = 0. 0,4 and V}; are the only two unknown
variables on equations (2.2.2) and (2.2.3), so they can be solved by combining two equations with
input values of £y and og. Further, the probability of defanlt can be computed using (2.2.1).

Let’s look at a sample company Yandex, often referred to as "Russia's Google”, the largest tech-
nology company in Russia with a market share of over 42%, mainly providing Internet-related
products and services, such as a search engine. The Russia-Ukraine war and the Western sanctions
have led to Yandex's share price plummeting by about 75% from November of 2021, and their
American Depositary Receipts (ADRs) being halted from trading on 28" February 2022 because
of volatility. [10)]

Yandex has 323.2 million shares outstanding and has issued convertible bonds with $1.125 bil-

lion in face value, which mature on 3¢ March 2025. On 25" February 2022' the last business
day before the trading of its ADRs were halted on the Nasdaq exchange, its share price decreased
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to $18.94 per share, with historical volatility o rising to 1.38 if measured using a 30-day rolling
window. Ejp = 84.48% of Ay, assuming an environment using the 10-year Treasury rate at 2% as
a proxy for the risk-free rate. Combining equations (2.2.2) and (2.2.3), the probability of default
on this day was approximately 59.90%. Figure 2.6(b) shows the predicted probability of default
for companies with the same volatility and interest rate as that of Yandex on 25" February 2022,
with initial equity value Ej spanning over 10% to 100% of initial asset value. The black arrow
annotates where Yandex would be on the chart with an equity funding ratio of 84.48%.

—— sigma e = 1.3814

Yandex (E0 = 94.55%)
On 25 Feb, 2022

20 a0 60 80 100
Initial Equity Value

(a) Probability of default on a5th February 2022, after the war.

—=— sigma_e = 0.44

Probability of Default
=
5

Yandex (E0 = 94.55%)
0On 31 Dec, 2021

?Irl - ”J ﬁll'l ‘:!I[! 100
Initial Equity Value

(b) Probability of default on 31°" December 2021, before the war.

Figure 2.6: Relationship between the initial equity value and probability of default.

To see the impact of the war on the probability of default, if we look into days before the war,
for instance on 31" December 20212, where stocks were traded at $60.50 per share, with og at
0.44 if nsing a 30-day rolling window and Ey = 94.55%, measured in percentage of Ap, similarly
probability of default is solved as 0.24%. Figure 2.6(a) shows the result for the probability of
defanlt on this day and the result for Yandex is annotated with an arrow.

Figure 2.7 shows the relationship between initial equity value Ey, volatility of share returns og and
probability of default for a general company with arbitrary Ey and og value. Yandex is annotated
with its equity financing ratio and probability of default on the two days we discussed previously.
The chart re-affirms that the probability of default increases with the volatility of share returns
o, and the default is less likely to happen if the ratio of equity to assets is high.

'"Data source: Bloomberg Finance L.P.
2Data source: Bloomberg Finance L.P.
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Figure 2.7: Relationship between £y, o, and probability of default.

We have seen how a structural model captures the probability of default as a parameter endogenous
to the model. This model highlights the intrinsic link between the value of a company’s equity
and debt. It is this link, which we can see empirically in the correlation between stock prices and
credit spreads, that we go on to further explore in this thesis as a means to hedge credit risk in
convertible bonds.
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Chapter 3

Valuation Models For Convertible
Bonds

Convertible bonds are corporate bonds with an additional embedded equity option, which enable
them to be converted into shares at a predetermined number. In this thesis, we assume that
investors are rational when making investment decisions, so they always act in a way that maximises
their own utility. Because of this embedded option of conversion, the bondholders are entitled to
convert the bond into equity at their discretion. More precisely, the conversion happens only when
the stock price is greater than the conversion price under the assumption of rationality, which
makes the final payoff equal to the greater of conversion value and face value.

Vr = max(FV,C.57)

The payoff is similar to that of a Call option. Because convertible bonds can be converted at
the holders’ discretion at any time before or at maturity, this makes the valuation of convertible
bonds similar to that of American options. Numerical methods are widely used when solving
option valuation problems, especially the three well-known classical parametric models: the tree
models, the finite difference method, and the Monte Carlo Simulation method. To be specific,
the tree models are intuitive methods to value both American and European options. Finite dif-
ference methods find the option’s price by solving some differential equation that the derivative
satisfies. The method can be divided into the explicit scheme, implicit scheme and Crank Nicol-
son scheme. Compared with the others, Monte Carlo simulation is more flexible. The aim is to
determine the option value by taking the average of a sufficiently high number of underlying prices.

In this Chapter, we first focus on pricing convertible bonds using a structure model presented
by Goldman Sachs (1994) and solving it numerically using a binomial tree model with the Cox-
Ross-Rubinstein parametrization method. Then we move to a reduced-form model proposed by
Ayache et al (2003), applying the finite difference method to solve partial differential equations,
and comparing the result of varying default assumptions on our models.

3.1 The Structural Model

In the structural model, the probability of default is treated as an endogenous variable, it occurs
when the asset value of the underlying company lies below the barrier of total ontstanding financial
obligations. The structural model focus on the capital structure of a company, since equity and
bonds can be viewed as claims on the underlying assets, they can be interpreted in terms of options
in the structural model.

Because of the mixed behaviour of convertible bonds, the difficulty in the valuation process is
how to treat the inseparable bond and equity components with the appropriate credit spread,[11]
as credit spread is a key variable that has an impact on bond value and there is a considerable link

between credit spread and underlying stock price.

Goldman Sachs (1994) assumed that convertible bonds would either end up like pure equity or
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pure corporate bonds and proposed a way to interpret the hybrid behaviour by introducing the
probability of conversion. Since the pure bond and pure equity components are subject to differ-
ent credit risks, as a hybrid security, the discounted rate applied for pricing a convertible at each
node of the pricing tree should be between the risk-free rate and risky interest rate, specifically
a risk-free rate plus the credit spread adjusted for the probability of conversion. We applied this
strategy when using backpropagation in a binomial tree model.

3.1.1 Binomial Tree Model

The Binomial tree model was first proposed by William Sharpe in 1978 and formalized by Cox,
Ross and Rubinstein in 1979, with the assumption that the market is frictionless and arbitrage-
free, and the underlying stock price follows Geometric Brownian Motion. In addition, we assume
that interest rates and the volatility of stock returns are known constants, and any uncertainty
brought by default is fully priced in the credit spread, which is a known constant as well, so that
the movement of the future stock price is the only uncertainty we need to capture.

In the Binomial tree model with Cox-Ross-Rubinstein (CRR) parametrization method (1979),
time grids over the interval [0, T are defined by

T
{0, A, 2A8, . (N - 1)AL. T}, Ar:¥

where N is the number of total time nodes in the time interval.
In a similar manner, space grids over space interval [3,,”-“_. .?,,m,,.] are defined by

Smaz — Smin
{Smin: Smin + A8, Spin + 288, 8 + 2(N —1)As, 8500} As= ————
2N -1
Spt is the stock price at time n and state k, and refers to the k** possible stock price level at time
n, and
gl _ St with probability ¢,
h Sk with probability g4

where 1 and d are the up and down factors of stock price movement, with CRR parametrization
method, are defined as:

u=e

VAL g = VAL

The condition ud = 1 makes our binomial tree recombine, which reduces the complexity of our
numerical scheme as this condition makes the number of nodes increase linearly as the number
of time steps increases rather than exponentially. The probability pair (g,, gq) measures the
risk-neutral probability of moving upward and downward, where

_ er,ﬂ! —d 1
qu = w—d ' ba = qu

Therefore, the value of the underlying share price dynamics at time n and state k are given by
Sy = SpuEdk = Squn Tk, n=0,1,...N, k=0,1,..n

For simplicity, we assume that the underlying stock pays no dividends and the convertible bond
is a zero coupon bond without any call or put provisions. The value of convertible bond when the
stock price is S} is defined as V)"

The valuation process of a convertible bond is similar to that of an American option, which is
valued by rolling back the values through the tree and comparing them with what the holder
would get upon conversion.

First we define the payoff function g(-) for a convertible bond, under the assumption of no de-
fault risk, the conversion happens only if the conversion value is greater than the bond floor, which
is the value of an equivalent straight bond:

(e oN Py Y
g(sn) = §max (CoSEV) n= N -
max (C).S;, By) n< N
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where B} denotes the value of bond floor when the underlying stock price is S}.

We start from maturity, compute the value of a convertible bond at terminal time n = N, which is
the greater of its redemption value and its conversion value, simply the payoff function g(-), where

VN =g(8Y), where k=0,1,...N (3.1.2)

Then we loop backward in time for n = N —1, N — 2, ...,0. The conversion option is exercised if
the conversion value is greater than that of the equivalent straight bond, so the conversion payoff
at time n is:

Vi:l._ conv _ g (Si-l)

If investors use their right to convert bonds into stocks, the convertible bonds are equivalent to
stocks after conversion, and investors have no credit exposure, so the risk-free interest rate should
be used as the discount rate. If investors do not exercise the option and thus cannot share the
potential stock price appreciation, then holding a convertible bond is just like holding a straight
bond, which is subject to credit risk. So in this case, it should be discounted at the risky rate,
which equals the risk-free rate added with credit spread C'S:

Trisky =7+ C8

Therefore the risky rate should be used when computing the value of the straight bond in (3.1.1),
where B} at time n is computed as the average present value of the straight bond at two connected
future nodes, discounted at the risky interest rate. [12

rrosias (1 1
Bi‘ —e (r+C8) At _Bi-l+l o _Biai»ll.
2 2
Meanwhile, we should also clarify conversion probability p. At maturity, p is defined to be one
at nodes where conversion happens, and zero otherwise. Moving backwards in time, p takes the

average probability of two connected future nodes, i.e. [13]

n+1 rn+1

T Dy TP
P = -

2

Since the conversion probability p at each node is between () and 1, and convertible bonds have
hybrid features from both equity and straight bonds, it is reasonable to use a credit-adjusted
discount rate y, which is interpolated from the risky and risk-free interest rates with respect to the
likelihood that conversion happens. [13]

y=rp+(r+e)(l—p)

Therefore, if the conversion option is not exercised, the value of a convertible bond at time n is the
expected value of two connected future nodes with risk-neutral probability, discounted by one-time
step by e V2t where y is the credit-adjusted discounted rate.

snhold _ —yAt ntl el
Vi =e ( W Vi )

q T GdV

Hence, the value of a convertible bond when stock price s = S} is the maximum of conversion
payoff and holding value:

V= max (L"g.“m“", L'}rl._hoid) where n=0,1, . N —1
k=0.1,...n (3.1.3)
where (. is the conversion ratio defined at issuance of the convertible bonds. Then we use this
backward induction algorithm to work back along the binomial tree at all nodes until we reach

time 0 and get the required time-zero convertible bond value V.

The algorithm for pricing the convertible bond using the binomial tree models is given below:
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Algorithm: Valuation of Convertible Bond with Binomial Tree Model
1. Set the initial parameters:

e Sy Initial underlying stock price

e T Maturity time in years

e r: Annual risk-free rate

e (. Conversion ratio of convertible bond
s F'V: Face value of the convertible bond
e ('St Credit spread

e N: Number of time steps
2. Calculate the up and down factors u and d
3. Calculate the risk-neutral probabilities ¢, and g4
4. Work out the underlying stock price at the maturity time
5. Calculate the convertible bond payofl and conversion probability at maturity time T" by (3.1.2)

6. Using for loops to work backwards from node N to node 0, calculate convertible bond price
and conversion probability at each node by (3.1.3)

7. Repeat until we reach n = 0, we return the initial value Vi’

Numerical Result

Figure 3.1 Shows the relationship between convertible bond value and initial stock price when
credit spread is fixed at C'S = 3%. Here we assnme volatility on share returns is constant at og
= 20%, risk-free rate r = 2%, the convertible bond has a conversion ratio €. = 1 and redemption
value at maturity equal to bond principal FV' = 100. With a fixed credit spread, the convertible
bond price increases with Sy. When Sy < 60, convertible bond is regarded as "busted”, where the
equity option value is so low that the convertible is essentially a straight bond. Whereas when
Sy 18 high enough, the slope of the curve is approximately one, which implies a high correlation
between convertible bond and equity, it means the conversion is quite likely to happen so that the
convertible bond is almost equity-like.

150 -
140 -

130

Value of Convertible Bond

20 40 60 80 100 120 140
50

Figure 3.1: Value of convertible bond derived by binomial tree model.

To see the impact of the credit spread as well, we set 'S as a variable with value spanning over
1%, 2%, ..., 9%], result is shown in figure 3.2. When Sy is very low, holders will hold the "busted”
convertible bonds so they are equivalent to straight bonds, the wider the credit spread, the lower
the bond price, so the curve shilts downward. However, because we assume that there is no credit
risk in equity, the payoff of convertible bonds is almost the same as that of stock at a fairly high
share price, and the impact of credit spread on its price is negligible. Therefore, we can observe
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Figure 3.2: Relationship between initial stock price, credit spread and value of the convertible

bond.

from the chart that as the stock price rises, the distance between the curves gradually becomes
smaller, this is because the price of the convertible bond is less affected by credit risk.

We use real-world data to calibrate the model. The 2025 Convertible bond issued by Yandex
has conversion ratio C, = 3,329.17 and face value F'V" = 200,000. To calibrate the model we use
data from this company, on 24" February 2022': stock price Sy = $18.94 with volatility op =
50%, the bond will mature on 3¢ March 2025 so time to maturity 7" = 3.02 when expressed in
years and credit spread C'S = 20%. We assume a 2% risk-free rate r. Using this model, Yandex's
convertible bond price is 55.35% of its face value, which is slightly lower than 58.635%, the last
price of the day. This is because we assume the simplest convertible bond structure that has no
coupon payment or provisions. In fact, the coupon payment of Yandex's convertible bonds is made
semi-annually at a coupon rate of 0.75% and it has an embedded call provision which enables early
redemption by issuers, both of these features impact the value of convertible bonds.

3.2 The Reduced-Form Model

In the reduced-form model, default is not longer an endogenous variable defined in terms of a
company's balance sheet structure, but is modelled by some exogenous hazard rate process.
Ayache et al (2013) argued that the extreme assumptions that stock price will collapse to zero
immediately or be totally unaffected upon default are unrealistic, and the splitting of convertible
bonds into two distinet components is questionable. Instead, the market must gradually react to
defanlts, which should be reflected in the falling stock price, with losses on equity price at some
value between 0% to 100%. Moreover, they proposed to model credit risk by a stochastic model
assuming an explicit correlation between credit and equity, and proposed to model the stock price
dynamics by a process:

ST =8"(1-19)

where St denotes stock price after default, S~ denotes stock price before default, and 7 is a
number between () and 1, representing the percentage that the company’s stock price drops by
when default happens. [14] For simplicity, we assume a convertible bond with no provisions and
underlying stock paying no dividends.

'Data source: Bloomberg Finance L.P.
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3.2.1 The No-Default Model

For convertible bonds with no credit risk, the valuation process is quite similar to solving the PDE
for American options. Here we assume the interest rate r is known. Under the assumption that
the underlying stock price follows Geometric Brownian Motion with infinitesimal expected return
rdt and variance o2, its dynamics are described by:

% = rdt + odW, (3.2.1)

where W} is a stochastic variable following the standard Brownian motion process. Applying Ito’s
lemma on the value of a Call option V(5,t), we have:

dv =

av.av 1
a8 ot 2 052 " o8

N2y At
gV OV L O ) dt + o582V aw (3.2.2)

If we construct a delta-hedge portfolio for a short position of one Call option V', then we need
to simultaneously buy % number of shares to keep this portfolio delta neutral. [9] Payoff of the
hedged portfolio over infinitesimal time interval [t,f + Af] is:
av
All = —AV + —AS
as

Plug in discrete versions of equation (3.2.1)and (3.2.2), we have:

av 1, 8%V
All = [ —— — =o25° At 3.2.3
( o 2° 052) (3:2:3)

Notice that the stochastic variable W; is offset, so there is no uncertainty in the payoff of the
portfolio. By the no-arbitrage principle, the return of the hedged portfolio should equal the risk-
free interest rate, thus:

rlIAt = All (3.2.4)

combining (3.2.3) and (3.2.4), we obtain the well-known Black Scholes partial differential equation
upon simplification:
v 1, PV
AT

) v [fa? OV av
LVi= =5 = (73 75z T8 "")

v
—F‘SE—FL =0

Define LV by

Suppose a convertible bond has three provisions under its indenture: a convertible provision enti-
tles the holder to convert it into common shares at a predetermined number C'., a call provision
allows the issuer to call back the bond at B, and pay the redemption value to holders earlier than
scheduled maturity, and a put provision enables the holder to sell the bond to the issuer prior to
maturity at B,. Intuitively, to maximise one’s payoff, the holder will either sell back the bond
and get prepayment when the current interest rate rises above the coupon rate on the bond or
convert the bond into common shares when the stock price increases. On the contrary, the issuer
will either make repayment at B, if they call back the bond when there is a low interest rate in
the financial markets or repay the holder at maturity if the conversion provision expires. Hence,
the price of a convertible is unbounded, bounded by put constraint, or bounded by call constraint.

Therefore, the valuation of a convertible bond is the solution to the following constrained problem:

LV =10
subject to the constraints:
max (Bp, CrS)
max (B, Cr5)

IA IV

with terminal constraint:
V(S,t =T) = max(F, C,.5)
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In detail, the linear complementarity problem can be divided into three cases:

- B, =C.5:
LV =0 LV >0 LV <0
(V- max(B,,C.8) =0 | v | (V- max(B, C,.9) =0 | v| (V- max(B,,C.S8)) >0
(V—-B.)=0 (V—B:)=0 (V—B,)=0
- B. <C.8:

V= (,',. S

3.2.2 The Default Model
The Partial Default Model

The partial defanlt model can be regarded as an extension of the TI model suggested by Tsiveriotis
and Fernandes (1998). Recall that convertible bonds have both equity and bond characteristics,
Tsiveriotis and Fernandes (1998) suggest that the valuation of convertible bonds can be split into
two parts with different credit risks, the equity part, which has zero default risk and the fixed
income part, which is subject to issuers’ credit risks. [15] The value of the convertible bond V} is
equal to the sum of the two components:

Vg = Eg - Hg

where E; refers to the equity part and By refers to the fixed income part. Therefore the value of
the convertible bond is the solution of a pair of coupled partial differential equations.

Ayache et al (2003) [14] further incorporated default risk into the valuation of convertible bonds
by assuming a recovery rate i on the value of the bond, where 0 < R < 1, so redemption value on
bond upon default is:
B =RX

where B is the immediate post-default bond value, and X is the bond value prior to default, for
coupon hond X = FV. What's more, Ayache et al (2003) assumed default risk is diversifiable and
incorporated default risk into the valuation of convertible bonds by assuming the probability of
default on an infinitesimal time interval [t,t + At) conditional no default in [0, t) is given by

P(reltt+dt)|r¢[0,) = pdt

where p = p(S,t) is a deterministic hazard rate on interval [t,t + df) Similarly, if we construct a
delta hedging portfolio with a long position on one convertible bond V' and a short position on 3
shares, payoff of the hedged portfolio is:

=V — {:15

Applying Ito's lemma with hedge ratio 3 = Bs to eliminate the stock risk from the portfolio, we
have:

a= [V 750V

at 2 052
where ofdt) indicates the terms that go to zero faster than di. Consider the loss on bond upon
defanlt, equation (3.2.5) becomes:

} dt + oldt) (3.2.5)

oV 2§29V
dll = | — + dt — pdt(V — RX) + o(dt 3.2.6
[ at 2 3}92} pli( ) +oldt) (3-26)
The assumption on diversifiable default risk gives:
E(dIl) = rIldt (3.2.7)

Combining equations (3.2.6) and (3.2.7), we have:
oV vV arS? 9%V

ot P95 T T2 as2

—(r+p)V+pRX =0

Define , , 262 g2
av AV 028282V
LY :=——r5— —
4 a ' Cas 2 0%

+(r+p)V —pRX
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The Total Default Model

The Total defanlt model assumes that the stock price collapses to zero immediately npon defanlt,
similar to the derivation of the partial defanlt model, we have:
v | 0’5V

e b T TG

dt — pdt(V — RX — BS) + o(df)

and by setting hedge ratio § = Bs we have:

av ( ) gav a28? 2V
W e
ot PIoas T T3 852

—(r+p)V+pRX =0 (3.2.8)

and the price of the convertible bond is
T
V =FVexp —[ (r{u) +plu)(l — R))du
t

T
= FVexp |i—[ (r(u) + C'S(u]]du]
t

where credit spread C'S = p(1 — R) can be thought as an analogy of expected loss (E'L) expressed
in terms of probability of default (POD) and loss given default (LG D) as

EL=FPOD. - LGD

It is obvious that equations (3.2.8) and (3.2.2) will have different solutions, so the change in
assiption on underlying stock price upon default will also change the valuation of convertible
bonds.

3.2.3 The Hedge Model

The Hedge Model can be regarded as a general application of the partial and total default model,
where Ayache et al (2013) [14] assumed the stock price upon default as a gradual collapse process
with coefficient 5, where 0 < 5 < 1 and

St =8 (1-n5)

7 indicates the percentage of loss on stock if default happens, the partial default model is the
case when 17 = 0, where the stock price is unaffected by default, and the total default model
corresponds to the case when i = 1, where stock price immediately drops to zero. Investors can
choose to convert even upon default with conversion value C'V as:

CV =C.8" =08 (1-n)

By applying a similar approach of constructing a hedged portfolio and assuming diversifiable default
risk, we have:

262 52V
dll = [Vz + UTF(')QE } dt — pdt (V' — VanS) +pdt max(C,.S(1 —n), RX)
and 262 52
ag“ 8 <V ;
Vi+ (r+pn)SVs + 5 ggz — TPV pmax(C,.S(1—n), RX) =0
Defining:
a? . 0°V
MV =V, — (392 g T )SVs = (r —pw)

The linear complementarity problem for the hedge model is similar to that of a risk-free bond,
with £V in equation (3.2.1) changed to

MV = pmax(C,8(1 — 5), RX)
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3.2.4 Finite Difference Method

The Finite Difference Method provides an approach to solve a PDE numerically by approximating
the derivatives in a discrete manner. There are three specific finite difference methods: the explicit
scheme, the fully implicit scheme and the # scheme. The explicit scheme approximates the first
time-derivative by the forward difference,

a1 sn+1 s

v (Sp. ) = Vi — W

or AT

whereas the fully implicit scheme applies backward difference,

av Vi — et
— (5. n) = k'R
ar (S, ) AT

Both of them approximate the first and second-order spatial derivatives by central difference.

av |/ A
E (Si' s Tn] = 2 T

OV g oy Vi m AW,

ggz kT Ar?

The # scheme can be regarded as a weighted average of the explicit scheme and the fully implicit
scheme with weights 1 - 8 and # respectively. When # = 0.5, we have the Crank-Nicolson scheme.

All of the three schemes are convergent, but the explicit scheme is conditionally stable, which
put some constraints on how we can define time and spatial grids point, as the stability requires
At < aAS? for some constant «. [16] The implicit scheme is unconditionally stable but requires
solving variational inequality by matrix inversion, which is difficult to implement. The stability of
the Crank-Nicolson scheme is also guaranteed but involves a more complicated calculation process.
Moreover, it is generally used to handle the non-smooth initial conditions at the coupon reset date
in actual practice.

In this section, we provide the discretization of differential equations for convertible bonds un-
der three cases discussed in the previous section, solving them by a fully implicit scheme. [11]

Fully Implicit Scheme

First, we define 1 = T"—t to change the PDE into an initial value problem, then the Black Scholes
PDE becomes:

ar

f3s

21’/
Q2

a8

(8,7) = rS=— (S.7) +rV (S,7) =0 (3.2.9)

(S 1) — %HS? w

as
Similar to the algorithm of the binomial tree method, we define a set of grid points in the time
domain and space domain: [0, T] X [$,1in, Smaz] Dy

T S]n'\x - Smin
At = —, Sri=m —m4—————
N o M
with values:
tn = ndt, n=01,..., N
Sp = Spin + EAT, E=0,1 LM

Then we apply the implicit scheme, approximate the first time derivative to V by backward differ-
ence and approximate the first and second spatial derivative to V' by central difference, the finite
difference approximation of equation (3.2.9) becomes: [17, Chapter 2|

r sn—1 2 21n Sy fsn mno _§/n
Vil -V et (SR Vil - 2V VY _rguh-ﬂ Vil

sy V=0
AT 2 Ax? k 2Ax "
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By rearranging terms, it becomes:

AT a? (8PP A AT .
Vit = ( G Y rs;:) ity + (1 v LG rA‘r) v

Ma? 2 2T Ax?
At a}(SP)? AT N o
- (A.].‘Q 2 Q&Trsi Vi
= AV + (1= BYVP —CRV, (3.2.10)
where
. . At At . . At . . At At
no._ _2;an\2 _gn no._ __2ronye B mo_ 20 gny? L .qn
Ay = 07(S)) AL rSp NS By - o (S)) A2 rit, v =0 (SE) A2 rS&'—QL\.r

The recursive relationship (3.2.10) holds for £ = 1, 2,..., M-1, if we define value of V{J* and Vj} by
boundary conditions (3.2.11), then the iterative matrix is:

[][ _ Ln] Ve grynel —

where
o o o - 0 0
-’4-,1‘ B{l C{a 0 .. 0 0
n AQA Bé& ;ﬁl n
= '
Moz Bl Ciioa 0
0 Ay Biion Cira
0 0 o 0 0 0 0

If we define payofl of the convertible bond at time T as:
g(S7) = max(C,.S7, F'V)
with boundary conditions:
Vismin) = FV, V{smaz) = Cr8max (3.2.11)
then for any v € (0,7T), the value of the convertible bond at time 7 is:

V(r,8,)= sup Eg [e-”’f—“g(sf)] (3.2.12)

reTr

where 7y p is stopping times between f and T. Equation (3.2.12) can be written in a discrete
way: [18]
V" = maxle "ME (V| Fu)L g (S0))

which is equivalent to
min (V" — e "ME (VT F) LV —g(Sa)) =0
Written in matrix form, it becomes:
min (([I - L"] V") = B"V" "L V" — ") =0
Here V" can be solved numerically by applying Jacobi method [19] or Ganss-Seidel method [20]

on variational inequality. The PDE for the partial default model, the total default model and the
hedge model can be solved mumerically by discretizing PDE in a similar manner.
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Parameters Value

Risk-free interest rate r 2%
Volatility on underlying equity & 20%
Time to maturity T 1
Face value of convertible bond FV 100
Conversion ratio €. 1
Minimum stock price Smin 0
Maximum stock price sy, 150
Number of time grid points N 1000
Number of spatial grid points M 150
Probability of default p  30%
Recovery rate R 30%
Loss on equity upon default . 30%

Table 3.1: Model Parameters for the convertible bond.

Numerical Result

We then follow the fully implicit scheme to solve for the value of the convertible bond with the
value of market and option parameters as shown in table 3.1. Figure 3.3 shows the relationship
between bond value and underlying stock price, which is aligned with the result delivered by the
binomial tree model, a higher stock price implies a more valuable convertible bond while a lower
stock price might make the convertible bond busted.

Comparison between the risk-free bond and defanltable bond with equity under the total default
model and the partial default model is shown in Figure 3.4. We can see from the chart that the
red line (no default model) is higher than the other two lines when stock price is lower than 100,
which makes sense as bonds subject to no eredit risk normally are more valuable. The purple
line (partial default model) is higher than the blue line (total default model) becanse hoth equity
and bond are likely to default under the total default model, whereas only bonds are subject to
credit risk in the partial default model, therefore in the former case, investors have less credit risk
exposure, which effectively makes the bonds more valuable. When the stock price is very high,
the conversion probability is very high so that convertible bonds can be regarded as stock. With
greater credit spread, defanltable bonds have a lower price than risk-free bonds.

Figure 3.3: Value of convertible bond with no credit risk.

The loss in stock price immediately after default can be thought of as a result of the correlation
between equity and credit risk. To see the influence of this correlation coefficient on the convertible
bond price, we solved the PDE for the total default model under a fully implicit scheme with respect
to different 7 levels, the result is shown in Figure 3.5(a) and Figure 3.5(b). For 5 value less than
0.70, higher eta (loss on stock price upon default) corresponds to a lower convertible bond value,
whereas for 5 greater than 0.70, the pattern has reversed. If we look at this threshold, when n=0.7,
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= No default
. —— Total default
c Partial default

Figure 3.4: Value of convertible bond under different default assumptions.

if default happens, convertible bondholders have two options, either continue holding the bond and
receive recovery amount R - F'V' = 30, or convert the bonds into common equities with conversion
alue C'V = C.5 (1 —n) = 30, then bondholders are indifferent between two options. For 5 <
0.7, C'V becomes the maximum, so it is optimal to convert the bonds, which implies that the
conversion option embedded in bonds is more valuable, thus increasing the value of the convertible
bond. On the contrary, when n > 0.7, the stock price drops too far upon default, so the recovery
alue of the bond is able to cover more loss. Figure 3.5(c) illustrates the impact of recovery rate
R on the convertible bond value. The bond value increases with R because a higher recovery rate
indicates lower loss given default.
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Figure 3.5: Value of convertible bond under hedge model.
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Chapter 4

Evaluation of Methods of Hedging
Credit Exposure

In the introduction, we noted that credit is one of the key factors driving the valuation of con-
vertibles, and that in 2022, with the severe equity market pullback following two years of high
convertible bond issnance, much of the convertible universe has inereased in credit sensitivity. Fur-
thermore, as global interest rates have started to rise in 2022, credit spreads have followed suit.
This can be seen broadly in the moves higher in the Markit CDX North America High Yield Index,
shown in Figure 4.1.

00
Markit CDX North America High Yield Index
800 { CDX HY CDSI GEN 5Y SPRD Corp )

Basis points

017 2018 2019 2020 2021 2022

Source: Bloomberg L.P.(2022)
Figure 4.1: Markit CDX North America High Yield Index.

Under these conditions, it may be increasingly valuable for convertible investors to consider ways
of hedging credit exposure in convertible bonds. Below is a discussion of some of the methods
investors could use to do this.

4.1 Direct Hedges

4.1.1 Credit Default Swap

A Credit Default Swap (CDS) is a contract between two parties that enables the transfer of credit
risk arising from holding the underlying asset, known as the reference entity. Protection buy-
ers make periodical payments to protection sellers until the CDS expires or defaults, whichever
happens first. In the event of default, the protection seller is obliged to buy the reference bond
at its face value. This means that the transfer of value to the protection buyer will be equal to
the difference between the face value of the reference obligation and the recovery rate il a default
occurs. An investor holding a long position in the reference obligation combined with a CDS will
receive the full principal amount of the bond without any losses whether default happens or not,
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apart from in the exceptional circumstance of a ‘double default’, i.e. the situation that both the
reference entity and the CDS counterparty simultaneously default. In this thesis, we ignore the
possibility of double default, as the likelihood is extremely small.

Because of this explicit link between bonds and CDS, CDS spreads and credit spreads — defined
as the difference in yield between a given bond and the risk-free asset of the same maturity — with
the same reference entity should be very close. Indeed this is the case, as shown by Houweling and
Vorst (2001) and Hull et al (2003), who both showed that price discrepancies between bond spreads
and CDS premia are within around 10 bps.[21] Therefore, investors can buy CDS protection to
hedge the change in bond value caused by the change in the eredit risk of the company. For this
reason, CDS contracts are widely used to tailor credit exposure or hedge against credit risk. [22]

Payment
( n case of credit event)

CDS Seller

CDS Buyer _ Reference Entity

Reference obligation

ong credit exposure Upfront payment Short credit exposur Asset seller
Periodical coupon payment  Own underlying t

Figure 4.2: Mechanism of CDS.

There are however downsides to trading CDS to hedge credit risk. CDS contracts are not standard-
ised and trade Owver The Counter (OTC), so inevitably, there are liquidity issues and counterparty
risks. Typically, investors trade CDS with maturities less than 10 years, with 5-year CDS being
the most liquid tenor, which can lead to problems such as maturity mismatches. Also, it is often
the case that convertible bonds are not listed as reference obligations for CDSS, which introduces
basis risk. These risks reduce the hedging effectiveness. [23]

4.1.2 Asset Swapped Convertible Option Transaction

Asset Swapped Convertible Option Transactions (ASCOTs) are effectively an option on convert-
ible bonds. They are used to split a convertible bond into two components: a corporate bond
and an option to convert the convertible bond into shares of the issuing companies. An ASCOT
cousists of an American call option with a floating strike price and an asset swap. Typically, three
participants are involved in this structured strategy, an ASCOT buyer, an ASCOT seller and a
financial intermediary.

Investors who want to hedge credit risk and retain exposure to equity volatility may consider
buying an ASCOT. They would sell the convertible bond to an intermediary and buy an American
call option on the convert, which allows them to buy back the bond when they wish to convert it
into equity. Investors who want to retain credit exposure to enhance yield will become ASCOT
sellers. They will buy the bond and enter an asset swap option as the fixed leg to exchange pay-
ment with some financial intermediaries, where they make the fixed conpon payment and receive
the Hoating payment at a floating rate equal to the addition of the relevant interest rate and the
Asset Swap spread (ASW). ASW is the spread that makes the initial value of an asset swap zero,
where the initial value is computed by adding up all discounted future cash flows, hence the ASW
depends on credit risk. This is how the fixed leg maintains credit exposure. The third entity
involved is typically a financial intermediary, these are the counterparties between ASCOT buyers
and sellers. They write an American call option on the bond and buy the bond from ASCOT
buyers at a discount, then enter an asset swap as the floating leg, paying the floating rate and
receiving the fixed coupon rate on the convertible bond. [4]

ASCOTs provide investors with the option to hold convertible bonds without credit exposure, it is

popular for people who think convertible bonds are undervalued and expect the underlying value
to rise. Because of the structure, ASCOTSs are sensitive to both the volatility of underlying shares

a7




Fixed coupon payment American Call

——) )

ASCOT Seller Asset Swap Financial Intermediary ASCOT Buyer
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Figure 4.3: Mechanism of ASCOT.

and to credit risk, which makes them a perfect tool to hedge the credit risk of convertible bonds.
ASCOTs offer a credit hedge when credit sellers are unable to trade with CDS due to counterparty
risk concerns or when there is no CDS market available.

However, illiquidity is a problem for all ASCOT products, as asset swaps are non-standardized
products traded OTC and there is heterogeneity in the transaction terms and conditions of finan-
cial intermediaries. So it might be costly and time-consuming to match the counterparties in terms
of their willingness and capability, and to unwind the positions. These reasons contribute to why
ASCOTs exist on only a small proportion of the convertible bond market. Estimates around 3.5%
of convertibles globally have tradeable ASCTO markets.

4.1.3 Non-Convertible Bonds

Another hedging instrument that can be used are corporate bonds, without embedded equity op-
tions, namely "straight bonds”. Straight bonds are bonds that pay regular coupon payments and
the principal payment at maturity, without any equity option embedded. For convertible bonds
where we want to eliminate credit risk, we can use straight bonds issued by the same underlying
company with the same seniority in the claim. The implied spread calculated given the market
price of the straight bond can be used as an estimate for the credit spread of the company. We
simply enter an opposite position in credit exposure by trading straight bonds to offset the credit
risk of the hedged portfolio. To hedge the credit risk of a long position in convertible bonds,
investors need to short sell the related straight bonds. Compared to credit derivatives, straight
bonds have better liquidity, which makes the transaction easier.

Figure 4.4 shows the distribution of average borrow rate over bonds. The borrow rate on bonds is
quite high compared to the expected return from a convertible arbitrage position, with an average
value of around 1% ! for cross-region corporate bonds in a universe of 4725 corporate bonds from
23 regions. We can see from Figure 4.5 below that, for convertible bonds universe with valuation
discounts ranging from around 4% cheap to around 3% expensive over the last five years, paying a
nearly 1% borrow rate to short sell straight bonds against convertible bonds is often not practical,
as with an average convertible life of around 3.5 years, paying 1% borrow rate will offset a large
proportion of expected profits from the trade, unless the valuation discount narrows quickly.

IEstimated at 5% August 2022 using investment bank borrow desk data.

?Reprinted by permission. Copyright ©2022 Bank of America Corporation (“BAC”"). The use of the above in
no way implies that BAC or any of its affiliates endorses the views or interpretation or the use of such information
or acts as any endorsement of the use of such information. The information is provided “as 8" and none of BAC or
any of its afliliates warrants the accuracy or completeness of the information.
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Figure 4.4: Histogram of straight bonds borrowing rate over bonds.
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Figure 4.5: Convertible bond returns over the last five years.

4.2 Correlation Hedges

4.2.1 CDS Index

CDS indices are the most liquid products in the CDS market and the market for CDS indices has
grown steadily, accounting for around 50% of the market compared with the single name CDS. [24]
In recent years, more and more CDS indices are traded via clearing houses of exchanges.

Investing in the CDS indices is equivalent to holding a portfolio of single-name CDS contracts,
where investors can take a long or short position on the credit risk of some specific markets or
sectors. This structure provides an easier and less costly way for investors to gain broad credit
exposure or hedge credit risk through the correlation between convertible bonds and underlying
reference entities in the asset pool. Index components are reconsidered and updated periodically
to ensure good liquidity and maintain an approximately constant duration. When a credit event
happens, the entity is removed from the index, and the notional is reduced as well. [24]

The good liquidity narrows the bid-ask spread, so CDS indices have lower transaction costs, which
makes them more attractive than single-name CDS and bonds for hedging credit exposure. Also,
the high liquidity gives potential to a larger trade size, which enables investors to take a large
position at their discretion. Since most convertible bonds do not have associated CDS, hence com-
panies are very likely to be not covered directly by CDS indices. To hedge credit exposure, one
can take an opposite position on CDS indices covering the same sector or market, and the credit
risk can be hedged by the correlation between the convertible bond and the market.
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However, hedging credit by CDS indices involves basis risk. Basis risk refers to the probabil-
ity of loss incurred by an imperfect hedge, i.e. losses are not exactly offset by the hedge. A credit
hedge can be effective when the convertible bond is highly correlated to the reference entities of
index components, but this is not always the case. High basis risk occurs when the correlation is
weak or there are no close matching indices for the underlying bonds. Moreover, a CDS index is
not guaranteed to pay out of the convertible bond company defanlts. Similar to CDS, duration
mismatch is another common problem when hedging credit using CDS indices. [25]

4.2.2 Equity Hedge

Hedging credit risk using equity is the alternative strategy that we have proposed in this the-
sis, which is structured by offsetting the risk in security price associated with the shift of credit
spread, combined with the correlation between credit risk and the stock price of the security issuer.

Using equity to hedge credit risk removes one sort of basis risk: the hedge is specific to the
bond issuer. However, it introduces another: the number of shares in the credit-equity hedge is
not fixed but is defined through correlation, so we classify it as a correlation hedge. Compared
to the direct hedge with credit derivatives, equity has better liquidity as it is exchange-traded.
Compared to the direct hedge with straight bonds, equity typically has a far lower borrow rate.
Compared to indirect hedge with CDS indices, equity has lower basis risk, as it is working directly
on the same underlying. Most importantly, many companies do not have CDS or straight bonds,
so these options do not exist.

Credit hedge options | Liquidity | Cost | Basis risk | Likelihood of being paid | Availahility?
CDS Low Low Low High 16%
ASCOT Low Low Low High 4%
Straight bond Medium | High Low High 27%
CDS index High Low High Low -
Equity High Low | Medinm High 100%

Table 4.1: Summary of different credit hedging options.

Table 4.1 draws a comparison among all the hedging instruments we introduced in this chapter.
From the results, it seems that currently there are no perfect strategies on the market for hedging
credit risk, and these widely used instruments will more or less bring some other side effects, such
as increasing other risks or inereasing costs. The problem with direct hedge by credit derivative is
caused by their poor liquidity and lack of availability, problems for straight bonds are in their ex-
pensive borrow cost, problems for correlation hedge is in high basis risk. Equity outperforms many
of these instruments in the above metrics, and all convertible bond issuers have underlying equity.
Inn this regard, using equity as an instrument to hedge credit risk is a strategy worth exploring.

!The percentages in the column " Availability” are measured based on our convertible bond universe, which
includes 425 convertible bonds across sectors and regions.
?Estimated by investment bank analysts.
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Chapter 5

Hedging Credit Exposure with
Equity

From the capital structure model we discussed in Chapter 1, equity and bonds can both be regarded
as claims on a company’s assets, therefore the credit risk associated with bonds will impact the
value of equity. Because bondholders have priority in the claim, they get paid prior to shareholders
upon liquidation. Shareholders have the residual claim on the company’s assets, so they will get
whatever is left. If the credit risk that a company is [acing increases, i.e, the probability of default
increases, then equivalently it is more likely for the asset value to end up lying below the debt
level, and therefore more likely that no value will be left for shareholders.

The Efficient Markets Hypothesis states that prices fully reflect all information available to the
public. If credit markets are pricing an increase in credit risk, this should also be reflected in stock
prices. The link between credit and equity has been shown theoretically in Figure 2.3(c) where the
implied credit spread increases as the equity value drops. We also demonstrate this empirically
below in Figure 5.1, which shows the negative correlations between the overall credit quality of the
underlying basket and the broad U.S. equity market.

®  —— y=-1.801x+0.002, R-squared=-0.82

S
2
&

.

10.0%

0.0%

-10.0%

CDX HY CDSI GEN 5Y SPRD Corp

-20.0%
-125%-10.0% -7.5% -5.0% -25% 00% 25% 50% 7.5% 100%
SPX Index

Source: Bloomberg L.P.(2022)
Figure 5.1: Scatter plot between S&P 500 Index and Markit CDX North America High Yield
Index.

5.1 Relationship Between Hazard Rate and Credit Spread

The two main components of credit risk are the probability of default, or the hazard rate, and loss
given default (i.e. 1 - recovery rate). Credit spreads and CDS spreads, which we treat equivalently
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from here given the results from Houweling and Vorst (2001) and Hull et al (2003) referenced in
Chapter 4, encompass both of these components of credit risk.

When a company enters into default, the main source of uncertainty for investors is the loss
caused by the potential default, which is the expected loss. A risk-neutral investor will require
compensation for this potential loss, for example, they are able to purchase bonds at a price with
greater discount, or equivalently, there is a wider credit spread. Therefore, expected loss expressed
as the percentage of the redemption value of the bond can be thought as an approximation for the
credit spread. If we divide time into infinitesimally small time intervals with length df, in each
discrete time step [f,¢ + dit], the expected loss in this interval is:

EL=h-(1-R) (5.1.1)
where h is the hazard rate defined by:
hi=P(reltt+dt) | r¢[0,1)
and h is assumed to be static on each infinitesimally small time interval. R is the recovery rate

under default. So the credit spread is roughly proportional to the hazard rate.

The assumption of a constant hazard rate is unrealistic because the capital structure of a company
varies with the value of its underlying assets, which we model as following Geometric Brownian
Motion or a jump-diffusion process. It is more appropriate to describe the hazard rate using
a stochastic process. Ayache et al (2013) proposed modelling the stochastic hazard rate by a
parsimonious model to reflect the negative correlation between credit spread and stock price.[11]

S\ 7P
he = "I[}(?:}) (5.1.2)

where hy is the hazard rate estimated at S = Sy and the future hazard rate h; is decreasing
with S; increasing, and vice versa. p is a positive number representing the ratio of the stock’s
jump-diffusion volatility to the spread volatility.[26] Combining with equation (5.1.1), we have:

CS,=h, (1 R)

S\ P
= hy (S’_u) (1-R)

where CS denotes the credit spread. Taking the logarithm of both sides of the equation, we have:

S
log (C'S) = —plog (q—‘) + log (ho(1 — R))
oy
= —plog S; +log (S{hy(1 — R))
= —plog Sy +¢ (5.1.3)

for some constant ¢. This suggests that the relationship between credit and equity can be written
as an explicit functional form as equation (5.1.3). Therefore, using historical CDS quotes as a
proxy for credit spread and the stock price of underlying companies, fitting a linear regression
model enables us to find an estimate for p. [26] Then if we can estimate the base hazard rate ho,
we are able to model the future hazard rate.

5.2 Credit-Equity Correlation

On the basis of (5.1.2), we propose two possible models that have different requirements on input
data. The first one is called the level model, which requires specific value of credit spread (denoted
as C'S) and equity value at time t:

(CS:. St)
The second one is called the return model, which requires returns over a specified period for
arbitrary time t. We used 21 trading day returns:

( 'S, S, )
CSyn’ Se-n1
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These two models are compared by their prediction results of CDS with real CDS market data.
Note that we use CDS data to give an estimate of the market price for the credit spread for a
company at a specific tenor.

5.2.1 The Level Model

As illustrated in the previous section, credit spread is roughly proportional to hazard rate, so
equation (5.1.2) can be written as
CS S\
LA (—‘) (5.2.1)

C'Sy B So

Rearranging the terms in the equation, we have:

log CS; = —plog S; + log (C'Sy - SE)
—plog §; +¢

where ¢ = g(Sy, CSy, p) for some function g. Note that it is aligned with equation (5.1.3).

In the level model, we fit a linear regression model on historical data (log CDS;, log S;) and esti-
mate parameters (p, e).

Take Deutsche Lufthansa AG as a sample company with available data for both convertible bonds
and CDS. Lufthansa is a German airline company, mainly providing air transportation services
worldwide, which recorded a 63% drop in full-year revenues in 2021 amid Covid hit to air travel
and is expecting recovery on loosening Covid-19 restrictions. Below is a chart showing the time
series of Lufthansa’s stock price and CDS level for several years from 1% January 2017 to 26
August 2022. Here we selected H-year CDS for the regression analysis since it has a long available
history and the most complete data compared to other tenors.

cDS Equity

= LHAGR CDS EUR SR 1¥ D14 A = LHA GR Equity
700 - — LHAGR CDS EUR SR 3¥ D14
. LHAGR CDS EUR SR 5Y D14
600 - —— LHAGR CDS EUR SR 7Y D14
LHAGR CDS EUR SR 10Y D14

el
n

CDS lev
=

Date Date

Source: Bloomberg L.P.(2022)
Figure 5.2: Historical stock prices and CDS levels of Lufthansa under several tenors.

An inverse linear relationship can be observed from the scatter plot of log value of equity and CDS
(Figure 5.4), which suggests the regression function to take the form:

logC'S; = —plog Sy + ¢
Data is split into training and testing datasets, where the training dataset consists of data from
1% January 2017 to 31%F December 2020, and the testing dataset nuses data from 1°* January 2021
to 26 August 2022. We fit a linear model on training data and verify the robustness of the model

by using testing data. The regression line is:

log C'S; = 9.33 — 1.531log S;
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Source: Bloomberg L.P.(2022)
Figure 5.3: Historical stock prices and 5-year CDS levels of Lufthansa.

Linear regression (in-sample) Linear regression (out-of-sample)

A, — bglCDS)=-1.53l0gl5)+0.33 6.5 3 - — log|CDS)=-153l0g(S)+9.33
T
l -
‘fr
55 -
z
8 g
R
= 45-
35-
16 18 20 22 24 26 28 30 16 18 20 22 24 26 28 30
Log(s) Log(s)

Figure 5.4: Linear regression on stock prices and 5-year CDS levels of Lufthansa, level model.

where p should be the negative slope, so p = 1.53. We assess the fitness of the regression model
by examining R-squared and Mean Squared Error.

Using CDS with different tenors for the regression analysis will have different slope coefficients in
the regression function, which leads to different values of p in the hazard rate model. We estimated
the value of p for each tenor of CDS by fitting the linear regression model, the results are shown
in table 5.1.

Tenor | Slope | Intercept | R-squared | MSE | RMSE
1 - 3.37 11.40 0.44 2417 | 0.11
3 - 222 9.50 0.53 2605 0.12
5 - 1.53 8.33 0.65 2489 | 0.12
7 - 118 7.78 0.59 2778 0.12
10 - 1.01 7.52 0.52 3179 | 0.13

Table 5.1: Out-of-sample fitness for all-tenor CDS, level model.

Figure 5.5 shows the result of p for each CDS with tenors 1, 3, 5, 7, and 10 years. The pattern
shows that there might be a negative linear relationship between p and tenor, where:

p=a+bxtenor

for some constants a and b. So credit spread can be written as a function of stock price and tenor,
ie.

CS = f{Equity, tenor)
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Figure 5.5: Relationship between p and tenor, level model.
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Figure 5.6: Relationship between R-squared and tenor, level model.

Figure 5.6 shows the relationship between R-squared and tenor. When the tenor is 5 years, R-
squared has reached its maximum, which makes sense because H-year CDS has the most data
available with a long history and R-squared is increasing with the sample size.

45




Relationship Between p and Credit Sensitivity

Recall that in (5.1.2), p is defined as the ratio of the stock volatility to the spread volatility.
Back to the level model, alternatively we fix (Sy, CDSy) at the price of 2" February 2017 and pre-
dict CDS using the optimal estimates for parameters (p, ¢}, where ¢ is a function of p, Sy and CDS.

Figure 5.7 demonstrates the change in credit-equity relationship with respect to p. Observing
the chart, we found that p has a connection with convexity and companies with a higher p param-
eter present greater convexity in the credit-equity relationship.

For companies with a higher p, when the stock price is low, the CDS spread increases by a larger
amount for a 1% decrease in stock price, which means a company with a higher p is more sensitive
to credit risk. According to the capital structure model, all else equal, a lower stock price means
a lower equity component of the capital structure, and the theoretical model shows this means
higher credit spreads.

600 -
. data
Fitted line (p + 10%)
500 —— Fitted line (p)
. —— Fitted line (p - 10%)
- (s_0, cds_0) on
400 - ® 035012017
A 300 -
u .
200 - ’
(5.0, CDS_0) = (8.975, 149.193)
100 '

=]

5.0 15 10.0 12.5 15.0 17.5 20.0 225

Equity

Figure 5.7: Relationship between credit and equity with varied p, level model.
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5.2.2 The Return Model

Alternatively, if we evaluate the credit-equity relationship on a return basis using some fixed time
period, say 21 trading days, equation (5.1.2) can be written as

CSia Sim\ " -
= 5.2.2
Cs, So (522
for some positive q. Divide equation (5.2.1) by (5.2.2), we have:
'S, S \7* _
=k 5.2.3
S (SHL) 623

note p is different from the p used in the level model and it should be some [unction of p in the
level model and g, we denote it as p here for coherency. By rearrangement, the equation becomes

1 ( CS, ) 1 ( Si ) log k
) = — 0 - 1 v
S\ S a PO S ) 7™

This suggests that we can fit a linear regression line on historical return data (log (%) .log (%))

and estimate parameters (p, k) by minimising the squared errors.

Linear regression (in-sample) Linear regression (out-of-sample)
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Figure 5.8: Linear regression on stock prices and S-year CDS returns of Lufthansa, return model.

Tenor | Slope | Intercept | R-squared | MSE | RMSE
1 - 2,52 0.03 0.73 1015 | 0.08
3 -1.94 0.01 0.70 1682 | 0.10
5 - 145 0.01 0.70 2127 | 0.11
7 - 1.14 0.01 0.65 2355 0.11
10 - 0.99 0.00 0.62 2490 | 0.12

Table 5.2: Out-of-sample fitness for all-tenor CDS, return model.

Figures 5.9 and 5.10 show a comparison between the level and return model in terms of relationship
between p, R-squared and tenor. For this particular company, the return model seems to have
better model fitness since R-squared values dominate the level model at each tenor.

If we apply a similar regression approach and find the value of p for compaunies with both convert-
ible bonds and liquid CDS, we can look at some potential factors for p. Figure 5.11(a) shows the
relationship between p and D /I ratio, the points are quite scattered and the low R-squared (0.0119
for the level model and 0.0346 for the return model) indicates a lack of relationship. We want to
understand this further so look at filtering by sector and find that there is some relationship, as
R-squared increases in both models (0.2391 for the level model and 0.4250 for the return model).
As shown in figure 5.11(b), we exclude the capital-intensive companies in sectors such as utilities,
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Figure 5.9: Relationship between p and tenor, comparison between level model and return model.
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Figure 5.10: Relationship between R-squared and tenor, comparison between level model and
return model.

finance and airlines to avoid liquidity and debt market troubles. We can observe a positive trend
which indicates a higher p is associated with a higher D/E ratio. To see the relationship between p
and credit-worthiness, we plot p against the mean CDS spread as shown by Figure 5.11(c). When
CDS spread increases, p increases as well. CDS levels are higher if there is higher credit risk, which
means that for the same share price change, if the eredit risk is higher, the CDS spread will also
move more.

In general, scatter plots between p and other metrics are more scattered under the level model and
more concentrated under the return model with a higher R-squared value, which indicates that
the return model has better performance in estimating the value of parameter p.

5.2.3 Credit as a Function of Equity and Tenor

Instead of running a linear regression on each tenor to solve for multiple regression lines, we can
directly assume a linear function between daily stock price, CDS price and CDS tenor on training
data, then simultaneously solve for parameters of the function by minimising the sum of squared
errors to get an estimate of the p variable at each tenor. As a result, the optimal estimates of
parameters are:

[a.b. | = [2.29986, —0.0887, 8.9827]
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Hence the functional relationship between CDS, equity and tenor can be approximated using the
optimal parameters:

p = 2.2998 — (.088T x tenor
log(C'DS) = —plog(S) + 8.9827 (5.2.4)

Figure 5.12 and 5.13 show the result, as the tenor of CDS increases, p decreases, which indicates

p vs tenor
—— p = -0.0887 tenor + 2.2998

Figure 5.12: Functional relationship between p and tenor.
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— tenor=3
8
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&
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Figure 5.13: Functional relationship between CDS, equity and tenor (CDS and equity are in
logarithm scale).

a flatter line, so at the same equity level, the predicted CDS spread will increase. This makes
sense, as there will be more uncertainty in the longer holding period, thus CDS with longer tenor
normally have a wider spread.

50




Chapter 6

Systematic Analysis of Credit
Hedging with Equity

In this chapter, we perform back-testing on companies with convertibles by forming delta hedging
portfolios with different hedging strategies. We then draw a comparison among those strategies
by comparing statistics on each portfolio to find the best approach to hedging credit risk and the
environment in which that method will produce the best hedge. We formed four portfolios for
performance comparison.

Portfolio 1: The Unhedged Portfolio

Portfolio 1 is a portfolio with an initial holding of $1 million of convertible bonds. We hold this
without trading or hedging until the end of the data set. The price of the convertible bond changes
every day, and the profit and loss (P&L) of portfolio 1 comes from changes in the price of the
convertible bonds:

P&L, = Return from convertible bond

= Convertible bond price x Quantity of convertible bond in portfolio

Portfolio 2: The Portfolio with Dynamic Black-Scholes Delta Hedge

In portfolio 2, we bought $1 million of convertible bonds and held with dynamic delta hedging
until the end of the data set to make the hedged portfolio delta neutral, according to the Black-
Scholes model, which does not incorporate credit risk. Dynamic delta hedging is a strategy that
involves creating an offsetting position by trading the underlying shares to reduce the volatility of
securities associated with price movement in underlying shares, aimed to keep the hedged portfolio
delta-neutral. The P&L comes from the change in price of the convertible bonds and proceeds
from dynamic delta hedging.

P&L; = Return from convertible bonds + Return from delta hedge

The hedge ratio is defined as the comparative value of equity hedge with the aggregate size of the
convertible bond, delta is a good measure of it as delta measures the sensitivity between the value of
the convertible bond and underlying stock price. The hedge ratio can be computed by multiplying
the Black-Scholes delta with the conversion ratio. Short selling the stock requires entering into
a position by borrowing stocks first and then selling them, thus borrow cost is inevitable. The
borrow cost is caleulated by:

Borrowing days

— »% Number of shares
365

Borrow cost = Stock price x Borrow rate x

The return from delta hedging consists of the proceeds from selling shares minus borrow cost.

Return from delta hedge = AStock price x Number of shares — Borrow cost
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Portfolio 3: The Portfolio with Delta Hedge and Credit Hedge

In portfolio 3, we bought $1 million of convertible bonds and held until the end of the period,
delta hedging by selling underlying stocks, credit hedging by buying CDS protection under the
same name, assuming no credit-equity correlation. The P&L comes from the change in the price
of convertible bonds, proceeds from selling stock and CDS protection, i.e. credit hedging. Credit
hedging is a strategy to flatten the moves in the valuation of a portfolio due to moves in the credit
curve by trading CDS protection. For a specified shift in CDS spread, the value of our un-hedged
portfolio will move by the total value of convertible bonds times the dollar credit sensitivity of
convertible bonds with respect to the eredit curve. We want to offset this amount with a position
in the CDS. To match the credit sensitivity of the convertible with CDS, we need the dollar credit
sensitivity of CDS, the return from the credit hedge is:

Return from credit hedge = CDS notional required
x ACDS level x CDS dollar CRO1

And the P&L of portfolio 3 is:

P&L; = Return from convertible bonds + Return from delta hedge + Return from eredit hedge

Portfolio 4: The Portfolio with Credit-Adjusted Delta Hedge

In Portfolio 4, we bought $1 million of convertible bonds and held until the end of the period, delta
hedging using delta adjusted for credit risk. In Chapter 5, we assumed the credit-equity correlation
by:

log(C'S) = —plog(S) +¢

and p can be written as a function of tenor, where

p=a+b x tenor

Therefore the price of the convertible bonds can be expressed as a function of credit and equity,
where credit is a function of equity and tenor.

V = f(S,CS) = f(S. g(S. tenor))
for some function f and g. Applying the chain rule, the sensitivity of convertible bonds to the
underlying stock price is:
dv. oV v 9 Credit
dS — 85 " 9Credit S
= Delta — CRO1 x %oxp(—plog.@ +c)

= Delta + Delta Adjustment

Because delta is conventionally defined as the change in a security price for a 1% change in the
price of the underlying assets, the delta adjustment needs to be scaled for an equivalent stock price
change. So the delta adjusted for credit is:

Credit-adjusted Delta = Delta + Delta Adjustment x 1%S
= Delta — C'R01 x %exp(fplogS +c) x 1%S
Multiplying this amount by the conversion ratio gives the credit-adjusted hedge ratio. The P&L of

portfolio 4 is the sum of returns from holding convertible bonds and returns from a credit-adjusted
delta hedge.

P&Ly = Return from convertible bonds + Return from credit-adjusted delta hedge

The performance of the above four portfolios is compared by some statistical metrics such as
anmualized return, annualized volatility, the Sharpe ratio and maximum drawdown. We measure
the hedging effectiveness of different strategies by measuring how much the variance of the hedged
portfolio has been reduced.
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6.1 Companies with Convertible Bonds and CDS

We take Deutsche Lufthansa AG as a representative for those companies with CDS data. Lufthansa
is a German airline company mainly providing air transportation services. As in Chapter 5, We
collected its data and split it into training and testing datasets, then used the training dataset (2¢
January 2017 - 31" December 2020) to estimate the functional relationship between credit, p and
tenor, and used testing dataset(4'® January 2021 — 27 August 2022) to compare the performance
of the four portfolios. Four charts in Figure 6.1 show the performance in each portfolio in terms
of cumulative return (R), daily return (r), high water mark (HWM) and drawdown (DD), where:

r

R, = NAV,
NAVy

Ty = .H! - .H.!_]_

HWM; = max H;
D<s<t

DD; = Ry — HWM;
Then we anmualized return and volatility by:

253
R annualized = (1 + By )= '

2
5o 2l —7)
O Annualized = V 202 T Daily where O Daily = \/ ?

We draw a comparison of these four portfolios on their hedging effectiveness and the results are
shown in Figure 6.1 and Table 6.1. We can see that the return on the convertible bond is generally
negative due to the impact of the ongoing pandemic in 2021, but the performance has become
worse since March this year, due to the war between Ukraine and Russia. With a series of negative
effects on the economy, such as inflation, recession and volatility, convertible bond returns are
further sinking into the negative.

However, the hedging effect of our hedged portfolios did moderate this negative trend to some
extent, which is reflected in returns and drawdowns, as they are not as negative as the unhedged
portfolio. Besides, volatility has been greatly reduced. Hedging the uncertainty on convertible
bonds from stock price movement alone improves results a lot, with credit hedging it improves
still further. For Lufthansa, if we ignore the link between credit and equity, and hedge the credit
risk by purchasing CDS protection and transferring the credit risk to a third party, we can see
from the charts and table below that we will achieve the best performance, as portfolio 3 has the
highest annualized return, the largest Sharpe ratio and the smallest maximum drawdown. If we
incorporate credit-equity correlation into our hedging strategy and hedge credit risk by selling an
additional amount of stock on top of the amount required by the classic delta hedging strategy,
then we can achieve the best variance reduction effect becanse annualized volatility is greatly re-
duced to its minimum level in portfolio 4. It is worth noting that the return of portfolio 4 is worse
than the return of portfolio 3, or even 2. Of this return, -0.03% is from additional borrow cost.
This is something we want to explore with a broad universe of bonds.

Anmualized Return | Annualized Volatility | Sharpe Ratio | Max Drawdown
Portfolio 1 - 0.1109 0.1684 - 0.7774 - 0.3357
Portfolio 2 - 0.0590 0.0646 - 1.2233 - 0.1581
Portfolio 3 - 0.0224 0.0581 - 0.7289 - 0.0975
Portfolio 4 - 0.0725 0.0569 - 1.6168 - 0.1607

Table 6.1: Performance comparison for Lufthansa.

6.1.1 Results From Back-Testing

We start by looking at the companies that have CDS to explore the general relationship between
credit and equity which is applicable to all convertible bonds, even to those that do not have CDS.
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(d) Portfolio 4: The portfolio with eredit-adjusted delta hedging.
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Figure 6.1: Performance comparison for Lufthansa.
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According to the Efficient Market Hypothesis, the liquidity of CDS is very important because its
price can reflect all public information under the efficient market. For companies that do not have
liquid CDS, we do not classify these companies as 'having CDS’, as the trading of CDS is not
sufficient to be of good use.

To define what we mean by ‘liquid’, we calculate the percentage of days in the testing dataset
that the change in CDS is less than 1 bp for all companies in our universe that have both con-
vertible bonds and CDS. In that case, we can see from 6.2(a) that most companies have this value
greater than 90%. As shown in Figure 6.2(b) and 6.2(c), the percentage of companies with changes
in CDS less than 1 bp in the past several days is reduced if we look in a longer window. We decided
to use a 21-day return, discarding all CDS that do not move by more than 1bp over a 21 business
day period more than 10% of the time. This was our threshold to determine if a company had
sufficiently liquid CDS. This left 65 convertible bonds where the company had liquid CDS data
available.

To draw a general conclusion, we ran this back-testing for the 65 convertible bonds in our universe
where the company had liquid trading CDS. Here we filtered the company universe by excluding
those companies where CDS does not change (i.e. A CDS < 1 bps) more than 10% of the time
when using 21-day returns and removed exchangeable, cross-currency and mandatory convertible
bonds to simplify the calculation and keep the formula of the hedge ratio consistent. In this chap-
ter, we denote the annualized volatility in the fours portfolios as oy, oy, o3 and oy.

Figure 6.4(a) shows the volatility in all portfolios and assesses the hedging effectiveness by compar-
ing volatility with and without various hedges. We can observe from the charts that all bonds show
a variance reduction when Black-Scholes delta hedged, as o2 is significantly lower than o1. Delta
measures the sensitivity of the convertible bond value to the underlying stock price movement. The
bonds with the highest delta see most variance reduction, as shown in Figure 6.4(f), where pro-
portional of volatility eliminated by Black-Scholes delta heding is defined by 1 — 22, This indicates
that the effectiveness of Black-Scholes delta hedging is positively related to delta, as expected.
The variance-reducing impact of credit hedging is positively related to the CDS level, as shown in
Figure 6.4(g). where proportional of volatility eliminated by credit hedging is defined by 1 — £2.
This makes sense, wider credit spreads mean greater credit risk, and wider credit spreads tend to
be more volatile, this can be seen in Figure 6.3, the volatility of CDS level increases with median
CDS. In the cases where the CDS level is tight, adding a credit hedge will not have significant
impact as there is hardly any credit risk. Hence we expect an effective variance-reducing impact
for low delta convertible bonds with wider CDS spread.

500
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Figure 6.3: Scatter plot of median CDS spread and volatility of CDS spread.

Figure 6.4(c) shows the annualized returns in four portfolios, the returns of the hedged portfo-
lios are in much lower magnitude than the unhedged portfolio 1, indicating that various hedging
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Portfolio 1 | Portfolio 2 | Portfolio 3 | Portfolio 4
Average annualized return - 4.6% 0.4% 1.1% 0.6%

Table 6.2: Average annualized returns in four portfolios.

Return from additional borrow cost | Return in portfolio 4
Median - 0.0070% - 0.4547%
Min - 1.2236% - 16.6085%
Max - 0.0003% 25.3871%

Table 6.3: Impact from additional borrow cost in portfolio 4.

strategies reduce variance on convertibles effectively as we expected. Figure 6.4(d) displays the
annualized return series in the two credit-hedging portfolios and Table 6.2 shows the average per-
formance, where portfolio 3 has an average return higher than portfolio 4 by around 0.5%.

The way we treat transaction costs impacts this difference. In these back-tests we have included
borrow cost. This is a frictional cost of hedging that is present for stocks, but not for CDS. There-
fore even if we were able to perfectly replicate the exposure of a CDS hedge with equity, the equity
strategy would face an additional layer of costs via borrow that the CDS did not face, so we expect
returns to be worse for portfolio 4. The impact of borrow for the additional quantity of short
shares used in portfolio 4 is displayed in table 6.3.

However, there are an additional set of costs that we did not consider in this thesis, due to
lack of available data. That is: the bid-ask spread. For these back-tests, we ignored this factor
and assumed all securities are traded at the close price, i.e. assuming zero bid-ask spread. This
trading cost for convertible bonds would affect all portfolios equally, so we are not introducing any
bias into the comparison by ignoring it. Bid-ask spread on CDS will only affect portfolio 3, and
can be a significant factor. Bid-ask spread for stocks is much lower than for CDS, as liquidity is
much greater, particularly in the relatively liquid universe of names that we are considering in this
thesis. While portfolios 2-4 all face the bid-ask spread in stocks as they all delta hedge, portfolio 4
shorts more shares than portfolio 2 or 3, so this impact should be higher for portfolio 4. Overall,
we expect this introduces a bias into our results that unfairly benefits portfolio 3 over portfolio 4.
This is an area into which we would like to do more research, though it is outside the scope of this
thesis.

Generally, credit hedging delivers better performance as measured by variance reduction for some
bonds but adds more volatility to the hedged portfolio for the other bonds. Therefore, we propose
that credit hedging will lead to a greater reducing impact under certain circumstances and split
our universe into categories of convertible profiles.

Classification by Delta

The first criterion is delta. We divided convertible bonds into three categories, convertible bonds
with a median delta lower than 30% are in the same group, namely ‘low delta’. The "high delta’
group consists of convertible bonds with a median delta greater than 80% and the 'balanced delta’
group is for those convertible bonds with median delta between 30% and 80%. The effectiveness of
hedging is determined by the level of variance reduction, which is measured by the statistic metric
F:

F=

S,

where @=3,4 (6.1.1)

If I is less than 1, it indicates that variance in the credit-hedged portfolio is greater than that
of portfolio 2, so we managed to further reduce variance successfully by including a credit hedge
using CDS or equity. Conversely, if I is greater than 1, it means the credit hedge does not work
well, as there is no improvement observed in variance reduction. F=1 indicates that convertible
bonds are not sensitive to credit risk, so adding the credit hedge to our model has no difference in
the impact on overall volatility.
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Figure 6.4: Back-testing results for companies in our universe that have CDS.
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Credit hedge with CDS | Credit hedge with Equity
Delta | Count | Median 95% C1 Median 95% C1
Low 3 0.960 (0.939,1.011) 1.004 (0.765,1.147)
Balanced | 21 | 0.982 | (0.679,1.524) | 0.984 | (0.869,1.101)
High 7 1.000 (0.794,1.114) 0.994 (0.911,1.098)
Total 31 0.983 (0.769,1.343) 0.994 (0.905,1.069)

Table 6.4: Median variance reduction by credit hedging for convertible bond profile classified by
delta.

We compare the performance of two credit hedge methods and their results are shown in Table 6.4.
Generally, credit hedging shows more variance reduction when there is considerable uncertainty
brought by credit exposure. We can see that when using CDS to credit hedge, F rises as the delta
increases and F is close to 1 for companies in the high delta group. This means that the credit
hedge works well under a low delta and it has barely any reducing impact under a high delta,
which is aligned with our expectation. A high delta indicates a high likelihood that the convertible
will be converted to equity, and a low likelihood that it will be redeemed for cash. It means the
embedded conversion option is deep-in-the-money. Such convertibles have low sensitivity to credit,
due to the low likelihood that a holder will redeem for cash. This explains why the credit hedging
strategy does not have a significant influence on reducing portfolio variance. Conversely, for low
delta convertibles where the embedded conversion option is deep-out-of-money, the likelihood that
the holder will redeem for cash is high, so the credit sensitivity is high. Hence, credit hedging
strategies should have more impact on performance for convertible bonds with low delta, all else
equal.

The results for equity hedge under low delta (show in Table 6.5) are different from our expec-
tation, we believe this is due to the small sample size as there are only three companies in the
low delta’ group after filtration. Recall in chapter 4 we presented a table (4.1) to compare several
widely-used credit hedging instruments in various dimensions, where the number of companies
that had liquid CDS only occupies 16% of our universe. This lack of availability posed constraints
on our sample size, which thereby introduces noise to the result. This can be seen in the wider
confidence intervals for this group, and we note that X of the 3 bonds saw a variance reduction
that was within the 95% confidence intervals.

Another reason for this result may be the narrow credit spreads. In general, the magnitude of
variance reduction is influenced by the credit risks implied by both CDS levels and credit sensitiv-
ity of the convertibles. For the two bonds that we do not show reduced variance when credit hedged
using equity, although both have reasonable sensitivity to credit, both companies are of very low
credit risk, with median CDS level over the last five years lower than 60 bps. The back-test for the
convertible of Takashimaya Co Ltd has a delta hedged volatility of only 1.3%, it is very hard to
reduce the variance of such a position. For both Dexus Finance Pty Ltd and Takashimaya Co Ltd,
their credit spreads are so low that the impact to delta when adjusting for credit is very small,
so the resultant differences in variance were very small. For JetBlue Airways Corporation where
there is some credit risk with around 106 bps as 5-year median credit spread, we see a reduction
in variance in portfolio 4, as we would expect. For these three convertible bonds in the 'low delta’
group with low to moderate median CDS level, while low delta implies high credit sensitivity, CDS
hedging is less impactful when CDS spreads ave low, as there is not much credit risk. Meanwhile,
equity, a more volatile hedging instrument is used to proxy CDS and hedge the credit risk of con-
vertible bonds, which may introduce more uncertainty to our portfolio.

Comparing the last two columns we can see that I is generally smaller under CDS hedge, this
means the variance-reducing impact from credit hedging using CDS is better than using equity.
Generally, CDS is regarded as the primary choice of credit hedging. As a direct hedging tool,
using CDS perfectly hedges the credit risk of convertible bonds with the basis risk as low as

LCRO1 of a convertible bond measures the credit sensitivity of a convertible bond’s value to a 1 bp change in its
credit spread
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Company ISIN Median CDS | CRO1' | Vol 1 | Vol 2 | Vol 3 | Vol 4
JetBlue Airways Corp | US477143AP66 106.18 -0.03 [14.42% | 9.47% | 9.25% | 8.30%
Takashimaya Co Ltd | XS1915588559 29.24 -0.03 | 3.03% |1.30% | 1.28% | 1.30%

Dexus Finance Pty Ltd | XS1961891220 63.95 -0.03 | 6.49% | 5.72% | 5.75% | 5.00%

Table 6.5: Volatility for low delta convertible bonds

possible. Equity is considered a correlation hedge, given that we do not know the exact num-
ber of shares that need to be traded at any point during the holding period to offset the credit
risk. A prerequisite of a good hedging result is that we are able to estimate this nnmber accurately.

Classification by D/E ratio

The second criterion is the Debt-to-Equity ratio, in this case, we divided convertible bonds into
two categories, those with a high D/E ratio (greater than 50% quantile of convertible bonds in the
universe, 134) and with a low D/E ratio (less than 50%). The result is shown in table 6.6, where
variance is reduced to a larger degree for companies with large D/E ratio. This indicates that an
effective variance-reducing impact will be perceived for convertible bonds from a highly leveraged
issuer. This makes sense since a highly leveraged firm with a high D/E ratio is more sensitive to
credit risk, so adding a credit hedge is able to further reduce the variance.

Credit hedge with CDS [ Credit hedge with Equity
D/E ratio Count | Median 95% CIL Median 95% CIL
Low 13 0.991 (0.848,1.183) 1.004 (0.904, 1.043)
High 12 | 0929 | (0.781,0.983) | 0.961 | (0.799,1.162)
No D/E data available 6 - - - -
Total 3l 0.983 (0.850,1.053) 1.002 (0.884,1.069)

Table 6.6: Variance reduction by credit hedging for convertible bond profile classified by D/E
ratio.

6.1.2 Should We Hedge Credit Exposure Using CDS or Equity?

Variance reduction results show that although using equity as a credit hedging tool can effectively
reduce the variance, the overall hedging effect is not as good as using CDS. The structure of CDS
enables it to perfectly match the credit exposure of the bond. This perfect hedge removes a great
deal of the uncertainty in the payoff of holding CDS-protected bonds with the same reference
identity, leaving exposure to interest rates and equity volatility as the dominant remaining fac-
tors. Conversely, an equity hedge is considered a correlation hedge, the hedging performance is
influenced by the accuracy in periodical estimation of the unknown hedge ratio adjusted for credit
risk, which is a less than perfect hedge. This will introduce basis risk to the risk basket. Although
adding CDS to a portfolio will inevitably increase counterparty risk and raise concerns about lig-
uidity issues, CDS remains the primary cost-eflicient product for managing credit exposure if it is
available for bond creditors.

However, the majority of companies that issue convertible bonds do not have CDS available,
or it is not sufficiently liquid to use as a hedging tool. Therefore, it is very important to look for
cost-effective alternatives to CDS for one’s hedging needs in the turbulent credit market. Regard-
ing its ability to effectively hedge credit risk with cost as low as possible, ample availability and
good liguidity, equity can be used as a substitute to hedge credit risk in the absence of CDS.
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6.2 Convertible Bonds Without CDS

6.2.1 Determine the Relationship Between Credit and Equity

For companies that do not have CDS, we want to estimate an appropriate credit spread for the
convertible bond. The first and simplest method for doing this is to use credit spreads estimated by
investment bank analysts. Generally, estimates for credit are more stable than CDS market prices.
It remains a question as to whether these more stable estimates provide a better or worse reflection
of creditworthiness than CDS pricing. Generally, there is some evidence that market prices move
with more volatility than company fundamentals. For stocks, the famous paper Market Volatility
and Investor Behavior by Robert Schiller [27] commented on the excess volatility found in stock
prices relative to simple present value efficient market models; it’s possible that credit markets
also exhibit more volatility than company fundamentals suggest they should, in which case more
stable credit estimates may actually be a better descriptor of company credit risk. This paper does
not intend to make any statements about this, other than that it is unclear whether more stable
estimates are more or less useful than credit market pricing in this exercise.

For companies that have CDS, we computed their p value in Section 6.1.1. The histogram be-
low (6.5) shows the distribution of p with companies after filtration with a median value of 1 and
a mean value of 1.2. Note that the distribution of p is right-skewed, and we have the mean that is
greater than the median, this means the most common values will be overestimated if using mean
as an estimate. So we assume p is fixed at 1 and use it to back-test the credit-adjusted delta hedge
for the convertible bonds issued by companies that do not have CDS.

Count

Figure 6.5: Histogram for p values.

Recall that we introduced two models estimating the credit-equity relationship in Chapter 5. In
the return model, intercept log k is very close to zero. For simplicity, we assume it to be zero ( so
k = 1) and effectively have only one parameter p left that needs to be estimated. To reduce the
company-specific impact brought by parameter ¢ in the credit-equity relationship, we predict the
return of credit spread rather than the level of credit spread. Recall that the relationship between
returns of credit spread and stock returns defined in the return model is:

tog (30} = _pog (2t
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To compute the credit-adjusted delta, we apply the chain rule:
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Where: .
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When stock price changes by 1%, the change in credit spread is:
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St r I
=CSy- (—p) 35 % 1%

)
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x 1% % S;

So alternatively, the credit-adjusted delta can be computed by

Credit-adjusted Delta = Black Schole’s Delta + CRO1 x C'S; x (—p) x 1% (6.2.1)

6.2.2 Requirement of an Estimate for Credit

We test for the robustness of the p(tenor) functional relationship defined in Chapter 5 in the
testing data and compare the results of predicting the credit spread using different approaches.

e Approach 1: Applying functional relationship defined in (5.2.3) to the testing dataset and
compute implied credit spread directly.

¢ Approach 2: Predict credit spread using a rolling window of 21 trading days with the
optimal Least Square parameters estimated in the previous rolling window, i.e. 21 trading
days prior to the prediction time interval. In this case, parameters are re-parametrised in
each window, so [a, b, €| are dynamic for testing data in different windows.

log C'S; = —plog St + ¢

e Approach 3: Predict return of credit spread using a rolling window of 21 trading days
with the optimal Least Square parameters estimated in the training dataset. Parameters are

expected to be static.
C5; ) ( S ) .
loo [ ——— | = —Flos + log(k
s (Csz—m e Si-n g()

e Approach 4: Predict return of credit spread by using a rolling window of 21 ttrading days
with the optimal Least Square parameters re-parametrised in the previous rolling window,
80 parameters are dynamic.

CS, i s, ) .
1 = —pl + log(k
o8 (C'S:—m) pios (Sz—m og(k)

where p and k denotes the dynamic parameters with value reparameterized in each window, p and

k denotes the static parameters with value estimated in the training dataset.

The charts below show the real CDS data and our predicted result and the fitness result is stored
in Table 6.7. Figure 6.6(a) and 6.6(b) show the in-sample and ount-of-sample prediction results,
where we can see that the out-of-sample prediction result deviates quite a lot from real CDS data
with even reversed patterns. This is also shown in Table 6.7, where relative the maximum MSE
is observed when applying approach 1 with a negative R-squared. Note that the R-squared is
evaluated on the testing dataset rather than the training dataset. In the definition of R-squared,
it measures how well is the data is explained by the fitted model, and

, RSS
RP=1- TGS
RSS = Y - Y

> (v-¥)
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TSS =Y (Y;-Y)
i=1
ESS = Z (}H’( — 1_')
i=1
where TSS is defined as the total variation in data, ESS and RSS are defined as the variation in
data explained and winexplained by the fitted model, so R-squared is no longer equal to the square
of the correlation coeflicient, thus is not gnaranteed to be bounded by 0 and 1 when the model is
evaluated separately on training and testing data. [28]

CDS predicted by different approaches | Relative MSE | R-squared
Approach 1 1.925 -2.148
Approach 2 0.155 0.746
Approach 3 0.277 0.547
Approach 4 0.231 0.622

Table 6.7: Out-of-sample prediction result.

Figure 6.6(c) compares the result from approaches 1 and 2 and we find that the prediction outcome
is closer to the true CDS, which implies prediction using a rolling window helps us to capture the
true pattern. Figure 6.6(d) compares the result from approaches 2 and 4 to see the impact of ¢
parameters, where CDS predicted by level (green line) lies closer to real data, which indicates that
approach 2 outperforms approach 4 in terms of model fitness and the ¢ parameter does improve
our model performance. This is also shown by model fitness metrics, as approach 2 has higher
R-squared and lower MSE than approach 4. Also, reparameterization improves the model fitness
as well. Figure 6.6(e) and Table 6.7 draw a general comparison of all approaches by showing the
result by visualization or by statistics metrics. Among all approaches, predicting CDS using a
rolling window of 21 trading days with the impact of the ¢ parameter dominating the prediction
outcome, with the highest R-squared value and the lowest relative MSE.

However, the choice of ¢ is quite company-specific, ¢ might vary a lot for different companies,
therefore we should be cautions about the value of ¢ when deciding a general functional relation-
ship between credit and equity that works for all companies in the universe. Considering the
sensitivity of the prediction result to the ¢ parameter, we use approach 4 (predict CDS returns
using a rolling window without the impact of ¢ parameters) as our primary method to predict
credit spread for companies without CDS data in the later sections. However this approach also
has some limitations, for example, it requires CDS data or at least a reasonable and appropriate
estimate for the credit spread 21 days ago to predict the credit spread of today.
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6.2.3 Methods to Estimate Credit

To ensure our prediction method works well, we need to estimate the credit spread 21 days ago
and combine it with a rolling window of 21-day stock returns to predict the current credit spread.
Implied Spread by Bloomberg DRSK Function

The first approach is using 5 year CDS spread implied by the Bloomberg Issuer Default Risk model
Likelihood of Default (DRSK function). [29]

Implied Spread using a Convertible Bond Pricing Model

Another approach is using a convertible bond pricing model to imply credit spread, which requires
estimating volatility. We consider 2 methods for finding this parameter:

¢ by using volatility estimate from investment bank analysts

e by using historical volatility

Numerical Result

We tested these three methods by selecting companies with and without CDS data and imple-
menting our hedging strategies to compare the degree of variance reduction between portfolio 2
and portfolio 4. We performed an analysis of companies with CDS data here, as it allows us to
determine the accuracy of all estimation methods through direct comparison with real CDS market
data and helps us to decide which methods are appropriate for companies without CDS data. In
this chapter, we pick Lufthansa and Umicore to represent the two cases above.

Deutsche Lufthansa AG

1200 +
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800 1

Credit spread

200 4

T T T T T T T T T T
2021-01 2021-03 202105 2021-07 2021-09 2021-11 2022-01 2022-03 2022-05 202207 2022-09
Date
True CDS
Aconveritble bond model impled credit spread ( with 80-day historical volatility)
Aconveritble bond model implied credit spread ( with volatility estimated by investment bank analysts
DRSK

Figure 6.7: [mplied spread comparison: Lufthansa (a company with both convertible bond and

CDS).
Implied credit spread Portfolio 1|Portfolio 2|Portfolio 4|Vol reduction
Convertible model{volatility estimated by investment bank)| 0.165 0.096 0.093 0.938
Convertible model{60-day historical volatility) 0.165 0.095 0.098 1.068
DRSK 0.165 0.096 0.094 0.965

Table 6.8: Annualized Volatility in hedged portfolios: Lufthansa {(a company with both
convertible bond and CDS).

Figure 6.7 and Table 6.8 display the results for Lufthansa, a company with CDS spread data.
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Among them, the implied spread calculated by a convertible bond model with the volatility esti-
mated by investment bank analysts (the green line) best captures the true pattern and has the best
hedging results, where we obtain the smallest I at 0.938 compared with when the credit-equity
correlation is not considered. The spread calculated by a convertible bond model with 60-day
historical volatility as the volatility input (the blue line) is highly volatile, even pushing up the
volatility of the hedged portfolio and may benefit from being stabilized by adding a regularisation
parameter. The implied spread approximated by the 53-Year CDS spread from the Bloomberg
Issuer Default Risk model (the yellow line) is deviating from the true CDS line, it captures the
general trend but smooths out fluctuations thus fails to capture many features that lie within the
real data (the red line) and might lead to some bias if applied to dynamic hedging strategies.

Umicore SA
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Figure 6.8: Implied spread comparison: Umicore (a company with convertible bonds that does
not have CDS).

Implied Spread Portfolio 1|Portfolio 2|Portfolio 4[Vol reduction
Convertible model(volatility estimated by investment bank)| 0.138 0.046 0.046 0.979
Convertible model{60-day historical volatility) 0.138 0.045 0.049 1.268
DRSK 0.138 0.046 0.045 0.966

Table 6.9: Annualized Volatilities in hedged portfolios: Umicore (a company with convertible
bond that does not have CDS).

Figure 6.8 and Table 6.9 stores the results for Umicore, a company without CDS spread data.
Again, the implied spread calculated by a convertible bond pricing model with the volatility esti-
mated by investment bank analysts (the orange line) has the best hedging results, where I is as
low as 0.966 compared with when the credit-equity correlation is not considered, whereas hedging
strategies developed by using credit spread estimated by the other two methods do not effectively
reduce the variance.

6.2.4 Results Analysis

We take Umicore as a sample company for those companies without CDS data. Umicore is a global
materials technology company providing refining, metal and manufacturing services. It issuned a
convertible bond which will mature on 23" June 2025. Here, we predicted CDS using implied
credit spread computed by a convertible bond given daily convertible bond price, volatility param-
eter estimated by investment bank analysts, borrow rate and financing rate with a rolling window
of 21 trading days. We constructed the hedged portfolio similarly to the previous section, table
and charts demonstrating the portfolio performance can be found in A.1.

Again, variance is reduced by applying the Black-Scholes delta hedging strategy to offset the
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risk on the convertible bond price associated with underlying stock price movement. Modifying
delta by taking credit-equity correlation into the calculation, hedging credit by selling an additional
number of shares reduces the variance of the hedged portfolio to an even lower level. Our strategy
works well for this company.

We applied our strategy to the convertible bonds in our universe, filtering out companies with
exchangeable, cross-currency and mandatory convertible bonds. Again, we use F defined in equa-
40.
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Figure 6.9: Back-testing results for all companies in our universe that do not have CDS L

Classification by Delta

The charts shown in Figure 6.9 display the results from back-testing. Similarly to the results in
Section 6.1.1, Black-Scholes delta hedging works well as g, is greatly reduced compared with ;.
o4 is reduced for some bonds but not for all bonds, indicating that the credit-adjusted delta hedge
works under some conditions, such as credit sensitivity and credit risk level. Figure 6.10(a) shows
the histogram of F', where the distribution of F is right-skewed, with a median at 0.915, indicating
that the majority of convertible bonds show some variance-reducing impact brought by the equity
hedge strategy. We find a negative relationship between hedging effectiveness and median delta
from figure 6.10(b) that generally the proportion of volatility reduced by equity hedge is positive
for convertible bonds with smaller delta, and the number becomes negative under a large delta.

If we classily convertible bouds into different groups by delta, table 6.10 shows the result within
each group, where F is less than 1 for low delta and approximately equal to 1 when delta is high.
This indicates that our strategy for hedging credit risk works well for low and balanced delta as
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the variance is reduced compared to the Black-Scholes delta hedge, there is no improvement in
hedging effectiveness when delta is high. For high delta, convertible bonds and equity are almost
perfectly correlated, and convertible bond return is very sensitive to equity but insensitive to credit
risk, therefore adding a credit hedging strategy will not reduce variance. For the balanced delta
bonds, variance reduction effect is lying between that of low delta and high delta, as we expected.

Delta | Count | Median variance reduction 95% (1
Low 25 ().888 (0.793, 1.019)
Balanced | 208 0.915 (0.894, 0.981))
High 45 0.978 (0.839, 1.076)
[ Total [ 278 | 0.915 | (0.909, 0.987) |

Table 6.10: Variance reduction for convertible bonds with no CDS, profile classified by delta.

Classification by D/E ratio

If we classified convertible bonds into different groups by D/E ratio, table 6.11 shows the result
within each group. Results are aligned with convertibles bonds that have CDS, a greater variance-
reducing impact is seen on convertibles with issuer with high D/E ratio and greater credit risk.

D/E Count | Median variance reduction 95% CIL

Low 143 0.965 (0.885, 1.044)

High 138 0.920 (0.865, 0.974)
No D/E data available 9 - -

Total 290 0.942 (0.894, 0.991)

Table 6.11: Variance reduction for convertible bond with no CDS, profile classified by D/E ratio.

We have demonstrated that equity can be used to hedge credit exposures in convertible bonds,
as we see a significant variance reduction on average when altering the standard Black-Scholes
delta hedge to incorporate credit-equity correlation. When selecting a hedge, this ability to reduce
ariance is important, but the cost of a hedging strategy is also important. In Section 6.1.1 we
noted that CDS are relatively low cost. There is no explicit borrow cost for CDS, and although
the bid-ask spread is an important factor, it is likely that proxy hedging credit with equity is more
expensive than using CDS directly. However, for the majority of the universe of convertible bonds,
CDS are not an available instriument, so the question becomes, is the cost of proxy hedging CDS
with equity small enough that this can still be a valid option?

Portfolio 1 | Portfolio 2 | Portfolio 4
Average annualized return | - 9.0% 0.8% 0.4%

Table 6.12: Average annualized returns in three portfolios.

In Table 6.12 we compare the returns from portfolio 2 and 4, where portfolio 4 has an average
return lower than that in portfolio 2, this may be becaunse volatility is reduced at the expense of
return when hedging credit risk using equity. To bring these two dimensions together, we compare
the Sharpe ratio in portfolio 4 to that of portfolio 2. We can see from the table 6.13 that we can
see that Sharpe ratio is reduced for low delta bonds. This is the category that has the greatest
credit exposure, and so the area that can benelit most from credit hedging. The Sharpe ratio is
significantly worse for high delta bonds, which we expected, as we are not expecting to see reduced
volatility and the additional delta hedge will introduce additional cost, worsening returns. For
balanced convertibles, the Sharpe ratio is worse for the credit adjusted delta hedge. This area
requires further research to understand, and we comment on our ideas around this below. We
would also comment that we believe the equity borrow data that we have is quite conservative,
and this could be impacting the Sharpe ratio by dampening the return more than is realistic.
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Delta | Count | Portfolio 2 | Portfolio 4
Low 25 - (.56 - 0.40
Balanced | 208 -0.25 -0.34
High 45 - 0.06 - 0.51
[ Total [ 278 | -025 | -038 |

Table 6.13: Median Sharpe Ratio for convertible bond profile classified by delta.

6.2.5 Discussion and Future Research Direction

We have compared the results of hedging credit risk under different instruments and explored the
circumstances in which they are most effective for hedging.

In Chapter 4, we compared the strengths and weaknesses of these hedging instruments, focus-
ing on the direct hedging instrument, CDS that directly hedges credit risk through transfers to
third parties and equity that utilizes its correlation with credit for their competitive cost-efficiency
and tolerant basis risk. In Chapter 5, we developed closed-form formula to demonstrate the credit-
equity link explicitly and precisely by calibrating the proposed models with historical data. In
Chapter 6, we redefine delta by applying this formula so that the number of shares that need to be
traded as part of a hedging strategy reflects the credit-equity correlation and the credit sensitivity
of the convertible bond. Finally, we evaluate the variance reduction effect by building various
unhedged and hedged portfolios, and back-testing over our universe to compare the remaining
volatility levels in each portfolio. We concluded that a credit hedge is effective in an environment
of low delta and high credit spread, i.e. high credit sensitivity and great credit risk, and the hedg-
ing effectiveness is an overlay of these two factors.

Our choice of hedging tool should be based on the specific circumstance. For instance, when
we have liquid CDS then it is the ideal hedging tool. However, CDS hedge, in spite of excellent
numerical results, is not applicable to hedge credit exposure for many bonds. The first limitation
of this technique is the lack of availability. Indeed, only 16% of convertible bond issuers in our
universe have available CDS. In this regard, CDS is not a universal hedging tool for all convertible
bonds. Moreover, CDS contracts are not standardised and trade OTC, so inevitably this intro-
duces liquidity problems.

So in practice, in the absence of CDS and an environment of low equity borrow cost, an eg-
uity hedge is preferred. However, this may introduce basis risk because of the unknown number
of shares that need to be traded to offset the risk exposure. Under this strategy, the effectiveness
of the hedge depends on our ability to accurately estimate that amount, which is fundamentally
dependent on the effectiveness of our assumptions about the convertible bond, and the stability
of the relationship between equity and credit. We know that the value of a convertible bond de-
pends on the underlying equity price and the creditworthiness of the corresponding issuer, so the
value of convertible bond can be expressed as a function of two inputs, stock price and credit spread.

The work and results of this thesis prompted the deliberation of another important factor, the
sensitivity of volatility to movements in the underlying stock price. As volatility is an parameter
in the valuation of a convertible bond, if this parameter is itself related to stock price moves, the
valuation equation becomes:
V = f (5, CS(5), Vol(S))

where C'S denotes the credit spread and Vol denotes the volatility. To decide the number of shares
traded in the modified delta hedging strategy, we compute the sensitivity of convertible bond price
to price change in the underlying equity. By taking the chain rule, we have:

dv. v L Idv.acs 9V 9 Vol (622
ds a8 dCS as d Vol 48 s

Gamma trading (1)  Credit trading (2)  Vega trading (3)
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Gamma trading is the classic dynamic delta hedging strategy. In this thesis, we only discuss how
to reflect credit-equity correlation into delta hedging but ignored the correlation between volatility
and equity. In (6.2.2), the bond price is negatively correlated to credit spread, and credit spread is
negatively correlated to stock price, so the partial derivative on V to S increases in credit, and term
(2) is positive. An additional number of shares need to be sold to hedge the change in bond price
associated with change in credit spread. However, hecause of the embedded option, convertible
bond price rises with volatility, volatility and stock price tend to move in opposite directions, so
the partial derivative decreases in vega, and term (3) is negative. This implies that we may need
to reduce the equity hedge to offset the price change brought by changing volatility. Term (2) and
term (3) work against each other and it is possible that the impact of (3) outweighs that of (2), such
that we are over-hedging for convertible bonds by selling too many shares. It is potentially those
extra shares we sold that led to an increase in the overall variance in the hedged portfolio, and
reduced the effectiveness of our hedging strategy. This is an interesting potential area of further
research.
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Conclusion

In this thesis, we proposed using equity as an alternative credit-hedging instrument to proxy CDS
and manage credit risk exposure on a hybrid security, convertible bonds. Our strategy is developed
based on the classic dynamic delta hedging using a convertible bond valuation model. We assume
that the value of a convertible bond depends on the underlying equity price and the creditworthi-
ness of its issuer, so the value of a convertible bond can be expressed as a function of two inputs,
stock price and credit spread. A key improvement presented by our model is the inclusion of the
credit-equity correlation and we thereby establish a link between the two original model inputs.
Combining the hypothetical relationships in the explicit functional form using the chain rule, we
derived a formula for delta adjusted for credit risk. We then back-tested our new hedging strategy
on 360 convertible bonds in our universe, comparing results to credit hedging with CDS for the
65 companies that also had CDS awvailable. The hedging effectiveness is assessed hy the degree to
which the variance of the hedged portfolio is reduced.

In general, our model’s performance in reducing variance is consistent with the theoretical re-
sults and our expectations. Therefore we conclude that in the absence of CDS, equity is an
attractive and cost-effective hedging product with effective risk hedging ability, and we expect a
more significant variance-reducing impact in an environment of high credit risk and strong credit
sensitivity. We have also identified an area for further research, namely the impact that of the
relationship of volatility with equity. Further exploration here may produce even better results
in terms of variance reduction, and will very likely reduce the cost of a hedging strategy, as the
negative relationship between equity and volatility will reduce the delta hedge quantity, and so
reduce borrow costs. This then should have an even greater positive impact on the overall Sharpe
ratio.
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Appendix A

Figures and tables

A.1 Chapter 6 Figures

Portfolio Performance and statistical results for Umicore, a company with convertible bond issues
in our universe that does not have CDS.

Annualized Return | Annualized Volatility | Sharpe Ratio | Max Drawdown
Portfolio 1 - 0.0466 0.1378 - 0.4831 - 0.3434
Portfolio 2 - 0.0078 0.0462 - 0.6022 - 0.0941
Portfolio 4 - 0.0160 0.0457 - 0.7894 - 0.0901

Table A.1: Performance comparison for Umicore.
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