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Abstract

This thesis focuses on a new class of volatility models that are based on Schrddinger’s bridge
construction [l] Unlike the calibration of any existing stochastic volatility models, the volatility
parameters are not modified. Instead, a drift term is added to the model dynamics which would
alter its original probability measure. The new probability measure is defined such that the model

is exactly calibrated to market option prices.

Another main objective of this thesis is to incorporate rough volatility into the model. Due to the
non-Markovian nature of fractional Brownian motion, we would need to apply theories outside the

domain of It6 calculus and provide original proofs to obtain a rough volatility version of the model.
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Introduction

In derivatives pricing, the following stochastic equation is widely accepted by practitioners as the

standard to model the dynamics of price prossess S:

{ng = ,U.gSg dt + G’gSg{ﬂ'Vg (001)

where g is the drift term and o the volatility term.

In the Black-Scholes model, the volatility process is modelled as a constant. Along with a constant
drift term, process S folllows a geometric Brownian motion which gives one of the very first
mathematical equation to compute theoretical value of an option. For many years, the Black-
Scholes models have become an industry standard of option pricing due to its closed-form solution
and simplicity. However, the assumption of constant volatility has always been under criticism,
as the non-constant implied volatility surface (see Figure 1.1) clearly violates the assumption.
Therefore, it leads to the development of volatility modelling and has since become one of the
most important topics in modern quantitative finance. Volatility is modelled as stochastic processes
which follow particular dynamics, such as Heston, CEV, SABR etc. Model parameters are then

calibrated to fit the implied volatility surfaces.

Another improvement of volatility modelling is inspired by the belief that volatility has long-
memory features. Comte and Renault [2] proposed to model log-volatility using fractional Brow-
nian motion, with Hurst parameter H € (%,1]. However, the idea of long-memory is soon re-
placed by rough volatility, with H € [0, }), as Gatheral, Jaisson, Rosenbaum (3] and Fukasawa [4]
demonstrated its capability to explain stylised facts of volatility historical time series. Despite
the non-Markovian nature of fractional Brownian motion (fBM), recent developments in numerical

implementations have lead to increasing popularity of rough volatility models in the industry.

In this paper, we will introduce a new class of stochastic volatility models constructed through
entropy-minimalisation, similar to the construction of a Schrodinger’s bridge. The idea is pio-
neered by Avellaneda [5] and properly formalised for its application in volatility models by Henry-
Labodere [1]. The aim is to minimise the relative entropy with respect to a reference probability
measure (Wiener measure), such that the calibrated measure follows a distribution implied from
market prices. This method can be applied to any chosen SVM and the new model can be exactly
calibrated to implied volatility surfaces. Other than that, Guyon adopted this idea in an attempt
to solve the joint SPX/VIX smile calibration problem and successfully calibrate a model to both
instruments |6, 7], which is not achievable by any stochastic volatility models. The next part of

this paper aims to show that this method can be applied to rough volatility models.




Chapter 1

Motivations

1.1 Volatility smile

Implied volatility is an important metric in option trading widely used by traders. Different to
historical volatility, its value is directly inferred from the market price of an option. The observed
option price is treated as an input to the Black-Scholes formula whereas the volatility is the only
unknown in the equation. A root-finding algorithm, such as Newton-Raphson, is then applied to

the Black-Scholes formula which outputs the implied volatility.

The volatility smile refers to the shape of the curve produced by plotting the implied volatility
against the strike price of an option. The smile is commonly observed in many options and can be
explained by the changing implied volatility as option moves more I'TM or OTM. This contradicts
the assumption of the Black-Scholes model, as volatility is supposed to be constant across strikes

given the same expiration.

Market IV surface

Time ta maturity = 0.019

(a) (b)

Figure 1.1: (a) The SPX call options implied volatility surface as of August 12, 2022, The implied
volatility is computed using the py_vellib library in Python. (b) This is an illustration of the
volatility smile.




1.1.1 Local volatility

Due to the presence of volatility smile, we realise that log-returns are not normally distributed,
hence we need to find a way to incorporate skewness into the model. A natural extension of
the Black-Scholes model is to replace the constant volatility term with a deterministic function
of time t and asset price S, which is deduced directly from the implied volatility surface. The
local volatility function is specifically chosen such that implied volatility from the model resembles
the implied volatility surface. The idea is known as local volatility model (LVM), which was first
introduced by Dupire [8] in 1994. With local volatility, the dynamies is now moderated to:

dS; = ,U.S;df + Ty, (f, S;)dﬂjt

where o (+) is the local volatility term.

To calibrate the model to a volatility surface, i.e. E[(Sy — K)"| = C(T, K), Dupire came up with

a formula for the instantaneous volatility:

| 92C(TK)
2 - or
oi(T,K) = K2 POTK) (1.1.1)
aK?

where C(T, K) is the market price of a call option with matwrity 7" and strike K.

Local volatility surface Market 1V (markers} vs Local Volatility (surface)

(a) (b)

Figure 1.2: (a) This is the local volatility surface calibrated to market prices. The derivatives
are interpolated using a cubic spline using scipy.interpolate (b) The surface is compared
to available market prices which shows that the surface resembles the volatility smile in short
maturities.

In theory, it does not involve any complex computations and the local volatility surface should
match the implied volatility surface of vanillas, especially the skew in short maturities. As seen
from Figure 1.2, there are some gaps and spikes which seem to violate the trend of the plot. This
is because the volatility surface constructed from Equation (1.1.1) does not guarantee an arbitrage

free surface. In this example, we adopted the approach of simply removing values in which the time




or strike derivatives are negative, which explains the gap. However, there are more sophisticated

methods, specific to the data, which can eliminate the arbitrage of the surface.

Other than that, without proper volatility dynamics, local volatility underestimates the forward
smile and leads to flattening of the forward volatility curve. Therefore, it is not suitable to price
complex products that depends on forward volatility such as cliquet options. Moreover, the model
is only consistent with present prices, which mean it has to be re-calibrated quite frequently such

as hourly.

1.1.2 Stochastic volatility

An alternative to local volatility is to model the volatility as a stochastic process. This is known

as stochastic volatility models (SVM), and its dynamic is generally given by:

dS; = Sya,dW,, d(W,Z), = pdt
da; = blag )dt + o(as)dZ;

(1.1.2)

where b(-) and o(-) are the drift and diffusion coeflicients with ¢ > 0, a; > 0 and p € (—1,1).

By modelling the volatility, we can introduce additional parameters to better capture market
characteristics. This provides a much more realistic market dynamics, unlike local volatility which
is purely constructed to fit present prices. Therefore, it is much more capable of modelling the
term structure of volatility and producing a more realistic forward volatility curve. One of the

SVM that we will focus on in this paper is the Heston model:

{ng = Sg \/adih. d{H. Z}; = pdf
day = k(6 — a;)da, + o\/a,dZ,

(1.1.3)

where # is the rate of mean reversion, # the long term mean, o the volatility of volatility and vy
the initial volatility. These are collectively known as the Heston parameters and are restricted
to positive real numbers. Unlike most SVMs, it has a semi-closed analytical formula for vanilla

options (Appendix A.1).

However, SVM is harder to calibrate and usually involves numerical algorithms which are compu-

tationally expensive. In the following example (see Figure 1.3), least square minimisation is used

to calibrate the Heston model to market prices to produce a volatility surface.

As seen from the figures, SVM fails to replicate the volatility surface as good as LVM, especially
for short-term maturities. It could not generate enough skew to reproduce the smile curve (see
Figure 1.4), however the model matches market prices with long maturities quite well. Apart
from that, any changes to a single parameter would also require re-calibration of the entire model.
The ATM volatility skew suggested by SVM is also inconsistent with empirical data which can be

approximated by a power law.

In Figure 1.4, the graphs show the comparison of the calibrated LVM and SVM (Heston) against

market implied volatilities at different maturities.
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Figure 1.3: (a) This is the Heston implied volatility surface with parameters ay = 0.083, & = 5.00,
# = 0.090, o = 0.984 and p = —1.00, calibrated through scipy.optimize. (b) When compared
to market prices, it is accurate for long maturities but it fails to capture the extra steepness in
short maturities.

1.1.3 Local stochastic volatility

In an example on Double No Touch option pricing [9, Section 2.2, it is shown that LVM tends to
under-price while SVM tends to over-price. The degree of inaccuracy exceeds that of the bid-ask
spread which clearly shows that both models are flawed in their own ways. An attempt to capture
the advantages of both SVM and LVM gives birth to local stochastic volatility models (LSVM).
In simple terms, a 'mixing’ parameter v € (0,1) is chosen to indicate the weights of local and

stochastic volatility in the model to fit certain option prices.

A popular LSVM is introduced by Lipton [10], which follows a Heston-like dynamics:

das; = Sm(t, St )\/a_gdu"’g, {f(”’, Z}g = pdt
da; = k(8 — a;)da; + v /adZ,
where the parameters are defined exactly as in Equation (1.1.3).

Inn this model, the local volatility function o (¢, ;) is multiplied with the stochastic volatility term
@z, in which + is the 'mixing’ paramater mentioned earlier, and is a multiplication of the vol-of-vol
parameter. The modelling of the vol-of-vol parameter is crucial in LSVM and is a major research

topic in itself.

Remark 1.1.1. When a. = 1, LSVM simply becomes a LVM. When o(-) = 1, then it becomes a
SVM.

The calibration of the local volatility function can be done by setting:

a(t, Se)*Elaf|Si] = or(t, Si)?




Time to maturity = 0.019 Time to maturity = 0.219

(a) (b)

Tame ta matusity = G441 Time ta matusity = 0,843

(3] ()

Figure 1.4: These are the comparison of the calibrated smile from both models in different maturi-
ties. It clearly shows their respective advantage over their counterpart in short and long maturities.

where o (t,5;) is the Dupire’s local volatility defined in Equation (1.1.1).

Similar to local volatility, the surface can be calibrated to all market prices while the 'mixing’
parameter allows us to retain the advantage of improved dynamics described by stochastic volatility.
The main focus of this paper serves a similar purpose to LSVM, a new class of SVM which is based

on martingale optimal transport [1] and allows exact calibration.

1.2 Rough volatility

Fractional stochastic volatility model (FSVM) was first introduced by Renault and Comte (2] by
modelling volatility driven by a fBM. tBM is a generalisation of Brownian motion (BM) which has

correlated increments, characterised by the Hurst parameter H € (0,1) (See Appendix A.2).

A particular case of FSVM with H < 1 is later popularised by Gatheral, Jaisson and Rosen-
baum (3], known as rough volatility, which successfully replicate several empirical properties of

historical volatility time series. This section presents a brief overview of the results from his paper.

1.2.1 Empirical evidence

To measure the simoothness of historical volatility, which is characterised by Hurst parameter H, we
would need proxy spot volatility values' since they are not directly observable. Denote the volatility
values on a time grid [I.’J_.T] with mesh A = % such that oia = gp+ i and op < oA < -+ < TNA.

First, define

'Daily realised variance estimates taken from the Oxford-Man Institute of Quantitative Finance, from 3 January
2000 to 28 June 2022, https://realized.oxford-man.ox.ac.uk/data

10




N

1
m(g,A) = > llog(oxa) — log(ok-1a)|
k=1

Under stationarity assumption and the law of large numbers, m(g, A) can be interpreted as an

th

empirical estimate of the ¢'"* moment of log-volatility increments, E[(logoa — logeog)9]. We also

assume

NS log(q, A) = by as A =0

for some parameters s, > 0 and by > 0.

— * g=05
=0.5
* g=1.0
s g=1.5
* gq=2.0
-1 * g=25
* gq=3.0
Py
<
‘E': -15
-2
]
-
-2.5
L ]
o] 1 2 3 4

log A

Figure 1.5: log m(g, A) against log A

The points on Figure 1.5 can be approximated by a linear fit, which suggests that

E[(logoa — logag)¥] ~ 8%

where ¢, is the slope of the curve associated with the value g.

Finally, the plot of ¢, against ¢ (see Figure 1.6) is again approximated by a linear fit and the slope

gives us an estimate of the Hurst parameter H = (.152.

It is shown by Fukusawa [4] that a model driven by fBM with small H reproduces the ATM

volatility skew and can be approximated by the power law ¢(7) ~ H 2 as 70 (See Figure 1.7).

Moreover, it is a well-established stylised fact that log-volatility increments follow an approximate

11
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Figure 1.6: Values ¢ at different g and its linear fit

Gaussian distribution. Observed data for S&P 500 seems to verify this behaviour and is fitted with

a Gaussian distribution for several lags in Figure 1.8.

1.2.2 Simulation of rough volatility models

In rough volatility models, the process a follows the same dynamics as in Equation (1.1.2) but
with the BM Z; replaced by a fBM Z instead. However, it is shown that the Euler scheme only

converges when H > 1 [11]. which is not applicable to rough volatility.

As a result, when sinmlating rough volatility models, the volatility is usually expressed by a
stochastic Volterra equation of the form, which is directly derived from the fBM representation for

t = 0 in Proposition A.2.4:

t
[(;[ (t — $)7 % o(ag)dW, (1.2.1)

where W; is a standard BM.

This process can be simulated by the Euler-Maruyama algorithm, however the simulation speed
is slow in terms of industrial standard. Jaber and El Euch [12] proposed a fast algorithm which
reduces the algorithm’s complexity from QO(N?) to O(N log N) or O(N log” N) [13]. They approx-
imate the kernel function using a Gauss-Legendre quadrature, tH=3 E?;lwm_l"!.

Dividing [0,¢] into equal intervals At with 0 =#y < ¢, < --- < t, =t , the fast algorithm for the

simulation of Equation (1.2.1) is given by:

12




0.0012

o * %)
—— Power law fit
0.001
0.0008
o
% 0.0006
0.0004
0.0002
0 0.2 0.4 0.6 0.8 1 1.2 1.4
T
Figure 1.7: ATM volatility skew and its power law fit ®(7) ~ 7~ %348,
ArH+3 AtH-7 i i
@, = ag + by, + ———Fola,_ )W, — W, _)
k [(H_E] k—1 [(H_E k—1 k k—1
1 =N
tFELD EZW A Hi(tion) + i)
=1
fork=1,---.,n
where
blag, ,) s —ay
Hi(ty-1) = —=2(1— e %) + e Y Hy(1g o)

Hi|
Tt 1) = e " Mola VAW, — Wi, ) +e "3 Tt y)

fork=2--,n
with Hy(tg) = 0 and J;(tg) = 0.

1.3 Joint calibration problem

Volatility index was first invented as a benchmark to quantify market’s expectations of volatility
in the near future. Due to its high negative correlation to the market, its deriviatives are widely

used by traders to hedge the short term volatility of their portfolios or even as pure speculation.

13
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Figure 1.8: Histogram of log-increments for various lags (a) A =1, (b) A =5, (¢) A = 25, (d)
A =125 and their normal fit (blue line).

1.3.1 VIX index

One of the most popular volatility index is the CBOE volatility index (VIX), which is designed
to measure the expected 30-day volatility of SPX options. Its corresponding derivitive products,
such as futures and options, also commenced trading in 2004 and 2006 respectively. The payoft of
VIX futures at expiry 77 is defined as:

. 2
2 iy
V'{XTl = _—’_T-z — T]_IE:TI [].Og(

Sr,
Sn,

where Ty = 17 + 30 days and S; the price of S&P 500 index at time ¢.

The choice of measure P may seem arbitrary, but the price is actnally model-independent since it
can be replicated by options with expiry 7. The corresponding call option of VIX with expiry T}
and strike K is defined like any other ordinary options, (VIXq, — K)*t.

1.3.2 SPX/VIX joint calibration

Due to its popularity, the futures and options market of VIX index has reached a level of liquidity
that existing models for its underlying options would need to be calibrated to VIX options as well.
However, it presents a huge challenge for researchers and practitioners to build a model which
jointly calibrates SPX and VIX options, especially for short maturities. This is known as the joint

calibration problem.

The large negative skew of short term ATM SPX options is inconsistent with the relatively low

14




implied volatility of ATM VIX options. In most cases, to account for lower implied volatilities for
VIX, one lowers the vol-of-vol which in turn diminishes the skew for SPX [6]. This created an
issue for many existing models which fail to fit both prices at the same time. In recent years, some
models have attempted to incorporate jumps to offer extra degrees of freedom which decouples
the ATM skew of SPX and VIX [14]. Gatheral et al. [15] also proposed the quadratic rough
Heston model, which is consistent with the strong Zumbach effect, i.e. the conditional dynamics of
volatility depends on both historical price and volatility path. However, these models only resulted

in an approximate fit which still have room for improvements.
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Chapter 2

Schrodinger’s Bridge on Stochastic
Volatility

In this chapter, we present a new class of stochastic volatility models proposed by Henry-Labordére [1]_.
in a more detailed manner. Similar to local volatility, it can be perfectly calibrated to a volatility
surface and is achieved by shifting the Brownian motion in a certain direction. The drift term is
determined by a concave optimisation problem which closely resembles the Schrédinger’s bridge

problem.

2.1 Schrodinger’s bridge problem

Before moving on to volatility models, it would be appropriate to briefly outline the original
Schrodinger’s bridge problem. In a thought experiment introduced by Erwin Schrédinger in
1932 [16], he considered a large number of Brownian particles with initial empirical distribu-
tion pro which migrates to a different distribution p; at a later time £. He questioned how the
particles are most likely to be transported to this new distribution. The aim is to find a new equiv-

alent probability measure PP that minimises the relative entropy, also known as Kullback-Leibler

divergence:
i T dlP
H(P||PY) = EF |log — (2.1.1)
dPo
where PV is the Wiener measure, % he Radon-Nikodym derivative and a new probability measure

[ with marginal p,.

T - S€ C odi .-h i Ih n 4 .h‘l.-. . I‘h 1o i i I.: il . .(.-. i 4
The use of Schrodinger’s bridge is not only restricted to its original application. In fact, many
problems involving the evolution of distributions can be formulated as a Schridinger's bridge

problem, such as deep generative learning [17] and evolutionary biology [18].

2.2 Brownian motion
Consider a stochastic process X under P?

16




dX, = dW;

where W} is a Brownian motion with respect to measure P

We aim to find a drift term A; such that the resulting process matches a marginal distribution
at time 7" under measure PP by construction of a Schrodinger’s Bridge. Let us define the entropy

minimisation problem

inf H(P||P" 2.2.1
pe iy 1 (EIFT) (2.21)

where M(u) = {P ~P": X¢p S p}t and H(-|P") is defined in Equation (2.1.1).
By Girsanov Theorem, for all M(u) 3 P ~ P, the new dynamics under P are defined as
dX, = \dt + dW,

where Wi is a Brownian motion with respect to the measure IP.

The Radon-Nikodym derivative is given by
dP r 1T
— =ex AdWe +< [ A2ds
{ﬂa[} exXp (‘A b b QA s U8
Since the expectation of a martingale is zero, we have

inf H(P|[F') = inf E¥
Pe M) PeM(u)

IR
ff A2 ds (2.2.2)
2 ]

This constrained optimisation problem can be simplified to a unconstrained optimisation problem
by convex duality [19]. We can consider a Lagrangian multiplier, a potential f, subjected to the
constraint P € M(u) <= EF[f(Xr)] — E*[f(Xr)] = 0. This gives us the 'dual’ problem:

T
inf { ap w75 [ Aids—f(xT)l—wﬂxTu}
f 0

AEAg T eL1(p)

T
= up { m (g [ Aids—fuﬂl—wf(xﬂ]}
0

feLi(p) |A€A0r

= sup {u(0, Xo) — E*[f(Xr)]} (2.2.3)
feLll{p)

where u(t, ) '= infaca, , E¥[3 ftT AZds + f(X7)|X: = 2] and A 1 is the space of control A in the

interval [t, T] such that the controlled diffusion admits a unique square integrable strong solution.

17




Consider u(f, z) as the value function of a stochastic control problem. As a direct result of the

Feynman-Kac theorem, we can deduce that u(tf, z) is the solution to the Hamilton-Jacobi-Bellman
(HJB) PDE:

. 1.,
Oy + E?)fu + /\\:l?lE; {E)\f + Mdgup =0

u(l,r) = f(x)

Differentiating with respect to As shows the infimum is attained at A} = —d,u(f, z). Re-substituting
Af gives a Burger's like PDE:

1. 1 ;
Oy + Er’)fu — 5((’311:]2 =10
By applying the transformation u = — log U, the PDE now then takes the form of the heat equation:
1.,
U + a0 =0
d; 5%
U(T,z)=e 1

which has a unique solution U(t,z) = Ele” W) |Wwo = z] by the Feynman-Kac theorem. There-

fore, the dual problem (Equation (2.2.3)) can be written as

sup {—log Ele™/ "W = Xo] - B[]}
fell(u)

We let f* be the unique solution of the above equation, differentiating with respect to potential

[, we obtain the following equation:

(= —? 32

eI dg = ,u.(d..r)P% (2.24)

Proposition 2.2.1. [I, Proposition 2.2] The dynamics of Brounian motion X under the measure

P can be written as:

dX¢ = B log Ble™ " WO\ W0 = z]dt + dW, (2.2.5)

such that X¢ £ woand f* as defined in Equation (2.2.4).

The problem can be easily extended to fit multiple marginals, it will be explained in Section 2.3

in the context of volatility models for betting understanding.

18




2.3 Stochastic volatility models

To apply the idea of Schrodinger’s bridge in volatility modelling, let us first consider a one-

dimensional SVM of the form

dS; = Sg{lg{ﬂ"-’}[}. {f(H“'[}, Z[}}! = p{ff

day = blag)dt + c(a!)dZP

To calibrate the model to market instruments, we derive the marginals (j;)1<i<, from the mar-
ket values of Call options with maturities 77 <X Ty < --- < T, and strike K, where p;(K) =
i C(T;, K). This is the risk neutral distribution of 5; such that E*[S;] = Sp.

Similar to Section 2.2, we introduce drift terms )\gl’], )\iu’] to the Brownian motions respectively
under new measure . We then decompose the process into intervals [T;-1, T3], each associated
with its own optimisation problem and a potential fi. Due to the Markov property of X, the

calibrated SVM is the concatenation dynamics over the intervals [1;-1, T3]
Theorem 2.3.1. [, Proposition 3.1] For each interval, we define the optimisation problem as

, F P
P s {—logERle SO LSS g L )
.fu&Ll(iluJ-A-:e'fI"

-1.Tq}

Therefore, for all t € [T;_1,T;], the dynamics is given by

dS1 = Sg it ng s d ( H. 1}1 = pdf

—£:(S)— [y, ALds,

day = (blas) + (1 — p*)o(a,)*d.log E¥0 e St a])dt + o(a)dZ,

such that St, S i, for 1 <i < n.
Proof. See Appendix A.3 O
Remark 2.3.2. The integral f;‘_l A,dS, is introdunced to retain the martingality of process S i.e.

7
EY| ; AdS) =0 = )‘:\;J{T‘_l__T,J =0 < Sigqr,_, 1) Is a P — martingale
i—1

2.4 Joint calibration problem

Inspired by recent works in related research [20, 21], Guyon successfully constructed a model which
can be jointly calibrated to SPX and VIX smile by transforming it info a martingale optimal
transport problem [6, 7]. The model is perfectly calibrated to SPX smiles at maturities 77, T =
11 + 30 days, and the VIX future and smile at maturity 77.

Denote SPX prices with maturity 75 as S; and VIX future with maturity 77 as V. Let us derive

the marginals (g1, V, p2) from market prices similarly by taking the second derivative of strikes.
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The goal is to perform the same entropy minimisation (Equation (2.2.1)) but on P{p1, V. p2), a

set of probability measures PP such that:

S2 .
St ~pi V&py, EP[SS1V] =S, EFL(GIS, V] =V

where L(z) = 7TZET, log(z), i.e. the formula for VIX futures as defined in Section 1.3.1.

To dualise this optimisation problem, we would need a set of Lagrange multipliers ( fi. fi-, fo, Ag, Ap)

to satisfy all the constraints, i.e.

P € Pur, Vipz) <= EF[£i(S:)] — E*[£(S:)] = 0,
EF[fr (V)] = E*[fr(V)] =0,
EF[As(S:,V)(S2 — 81)] =0,

E¥ |AL(S1L V(L= — V)| =

By similar arguments in Section 2.2, there is a nnique solution infpp(,, v ., {H (P|PY) + EF[]} =

- 1();;1&:[’“[9_'] and the problem can be dualised into:

RO F I Ff A e TG @A fa g Sar?
sup { _ 10g1|£|?' [P f1lS1)= fv (V)= fa(S2) —Ag(S51,V)(S2— 51) AL{SJ:"J(LS] v
(frfvfa, B Ap)

~ B {f(8)] - EV[fv (V)] - E®[£2(S2)]}

2.5 Implementation

In this section, we will outline the steps required for the implementation of this model, suggested
by Henry-Labordére [1]. We then provide details on the techniques, adopted from various articles

on numerical algorithms.

2.5.1 Procedures
Single marginal

In practice, market prices are only available for a limited number of strikes, K, , K. Therefore,

fi can be defined as a function of the strikes:

where wy, are the weights for each strike K.

Therefore, the optimisation over function f; has now been reduced to the optimisation over w € R,

The optimsation problem (Equation (2.2.3)) can be performed by gradient descent and the gradient
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with respect to w, is given by:

H’:n (0~ S[h a[}) - E“[[Sfﬁ - j{n )+]

where W, is the solution of the following PDE:

A+ L% — (1 — {32]rf(a]Qr'},,uf}u'Irt-’n =0

(2.5.1)
1""”’(1 (Tlr'qr r'l) = ['? - -’k’n )+

Algorithm 1. [1, Section 3.3] Gradient descent
1. Initialise the weights w'® € RY, step size 7 € R and set wyq = w'®).

2. Solve PDE (A.3.1) and (2.5.1) for each strike K,,. Then store the solutions as u(t, s, a) and

Wal(t, s, a) respectively.
3. Compute gradient V,, from W,(t, s, a), with

(Vi)a = Wal(0, S, a0) — E*[(Sr, — Ka)*]

4. Update wnew = wotd — NV and set weights wotd = whew.

5. Repeat steps (2) - (5) until w converges.

After performing the gradient descent algorithm, set f; = f“‘] and compute A} from «™ (¢, s, a).

By Girsanov Theorem, the price of an option with payoft ®; at t < 11 is then given by:

T
o

EP [@ e fi(Sm)—Jo ™ Alds)

EF[®,] = _
. EP° [ /i (Sn)=Jo" Azds)

where the expectation on the right hand side is computed by Monte Carlo under the original

e
measure E¥

Multiple marginals

To calibrate the model to multiple marginals, we would need to solve the optimisation problems
P; in Theorem 2.3.1 for each sub-interval [T;_1,T3].

Algorithm 2. [1, Section 3.5] Multiple marginals calibration

1. Simulate M paths of (S;i’i]‘] , a%‘])lg-,m ar using Monte Carlo under PV

2. Compute the Radon-Nikodym derivative for each path:

g e TIEED-L AT
GT]‘ =

(3} ()
e u{T,,._.S.I.“ ar, )

3. Solve PDE (A.3.1) defined in [7%,T1] and store the solution as u(t, s, a).

21




4. Solve the following optimisation using gradient descent:

sup
f2eL(pa) ‘U'

Z('S;“u 1,59, a?)))

5. Simulate M paths of (S}i’l . a%'])1<_;< ar using Monte Carlo under P,
6. Update the Radon-Nikodym derivative for each path:

— [ (S = fr2 AV ds

all — @ &
T 1 (TSP al?))

7. Repeat steps (3) - (6) until it reaches the last sub-interval [T;, 1,7, ], to obtain the value of

G, .
The price of an option with payoff ®(St,,---,S7,) is then given by:
]EP[‘I’] Z(v(;l g{f . _.S;fj']]
1—1

2.5.2 Numerical PDE

Solving the PDE is an important step in the implementation of this model. Presented below are
the two main approaches to obtain a numerical solution of a PDE and Equation (A.3.1) will be
used as an example for both approaches.

Finite differences

In this approach (22|, the contimious solution of a PDE is being approximated by a discretised

function. The derivatives are approximated by some finite difference operators.
Definition 2.5.1. The finite difference operators relevant to PDE (A.3.1) are defined as follows:

O(At) difference operator in time:

(f + Af) —ult)

Dy ult) = Af

O(Axz?) difference operator in z:

—3u(z) +4u(r £ Ar) —u(r £ 2Ar)
2Ax

Dfu(t) =

u(r — Ax) — 2u(r) +ulx + Ax)

D, u(t) = N2

O(AzAy) difference operator in z, y:

Dwu[l y) = —=lu(z — A,y — Ay) —u(r — Az, y) —u(z+ Az, y) + 2u(z,y)

1
2A 12
—u(r,y — Ay) —ulz,y + Ay) + ulzr + Ar,y + Ay))
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Dy u(x,y) = ﬁ[—u(.r —Ar,y +Ay) +ulr — Az, y) +ulzr + Az, y) — 2u(z,y)

+ulz,y — Ay) +ulr, y + Ay) —u(r + Az, y — Ay))
Algorithm 3. Finite differences
1. Discretise a grid [0,77] % [Syin. Smas] X [@min: @mae] With intervals Af, AS, Aa.
2. Denote t; = iAt, S; = Syin + jAS, ay, = a,in + kAa.
3. Evaluate u(T1,s,a) = fi(s) for all s in grid [Smin, Smaz]-

4. Iterate u(ti, S;,ar) backwards in time using the difference operators:

1 .. 1 .
u(tioq, S ar) =ult;, S, a,) + At (ESfafDm,.u + Erf(a;‘.]zf_)““u + po(ag)ags; Deau

+ blag) Dgu = 5 (1 7)o (ax)Dy1)?)

Remark 2.5.2, When function u is at the boundaries of the grid, for example w(t:, Smin, @maz ).
the respective backward or forward difference operators on each spatial direction should be chosen

carefully.

Backward SDE

Suppose the PDE {A.3.1) admits a unique solution Y} = u(t, s,a). By [td's formula, Y; follows the

dynamics [23]:

dY; = (deu+ L)dt + (o} V) - AW,
= (%(1 — pH)(e(a)dau)?)dt + (0} V) - AW

b Sia; 0 v Aot IW W
where o; = . Vu= an = .
! pola)) +/1—p2ola)/ dyu ! Wit

S

Define X; = ' |, Ze = o}Vu and f(t, Xe, Ve, Ze) = =3
(g

equivalent to solving the following Backward SDE:

(1 — p?)(o(a)dau)?, solving the PDE is

dYy = —f(t, X, Yy, Zy)dt + Z, - AW,

Since Y7 is known, this SDE can then be solved backwards [24] using an Euler scheme to acquire
the solution pair (¥:, Z) which solves the PDE.

Algorithm 4. Backward SDE

1. Divide [0,T1] into 0 = ty,t1,- -, = 11 with interval At.
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2. Simulate path X1, = (St,,ar,) under P and set AW, = W,, — W,,_,.
3. Ewaluate the function at terminal time 11, i.e. Ye, = fi(Sny).

4. Iterate ¥; backwards in time by the following equations:

. Loy
2y, = EM}:.&W:J}_:._;]

Vi, =E[Yy + flticr. Xeo Ve Zo, )| L]

i-1 -

The estimation of conditional expectation E[-|F;,_, ] is first investigated in the context of American
option pricing [25]. Nowadays, Malliavin’s calculus remains a popular option to evaluate the
expectation. However, to avoid complication, we will present both parametric and non-parametric

method to estimate the expectation.

In the non parametric approach [26, Section 3|, we replace Y;, = v(W,,). Then by conditional

expectation, we have:

E[5,(We, . )u(Wy,)]

EWelWes = = = gw ]

where d,, is the Dirac measure at w.

In the one-dimensional case, this can be computed by Monte-Carlo simulations by the following

formula using integration by part:

Al
| N )y Wes, Y
WEy:Lli.ff“,:n.-"'(”'t. = -

1

E[v(W:)|[ Wi, , = w] =

N wah
1 F) . ti_
N =1 ]lu-'jfi] >w tio1

However, in the multi-dimensional case, the Dirac measure is ambiguous and there doesn’t seem
to be a direct way to evaluate this integral. Therefore, we introduce the next method.

In the parametric regression approach [26, Section 4], we first simulate N paths of (X!"”)K_-,;c N.
Then estimate E[Y;,

Fi._.] by a set of deterministic basis functions ¥, _, m (X, _,):

E[Y,

M
‘}_!u—l] = Z a.!l—]-.”‘?f‘:.lifil.ua('th—])

m=1

These functions are chosen such that the first element 10, | m should mimic the real conditional
expectation. Then, one should complete the basis to obtain the other basis functions such that it
is orthogonal to the distribution of X;,_,. The coefficients o, _, m» are then computed using least

square minimisation:

N ‘s M (.
Z |}’I{,‘IJ - Z a“u—]-.m??".li.,}i]._m (X!\—l )|2

j=1 m=1
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2.5.3 Limitations

In an attempt to implement the model, there are a few difficulties that I have encountered:

e As the calibration is based on an entropy minimalisation on the reference measure, the base
model plays a huge role if it can be exactly calibrated since the volatility parameters are
unchanged. For example, in the Heston model, it would be about correctly modelling the
vol-of-vol parameter. Therefore, only models with a certain volatility term would allow exact
calibration. Guyon also mentioned in an Q&A [27] that choosing the right model might
introduce too many constraints and is something that hasn’t been investigated thoroughly,

hence limiting its practicality.

e When implementing the finite difference method, I realise the solution tends to blow up at
some point of the process. First, I suspect that the stability issue may be attributed to the
violation of the Courant—Friedrichs-Lewy condition. However, even after altering the time
step, the same issue persists. Therefore, the problem itself may be ill-conditioned, which
means the solution is too sensitive to a small pertubation of data. Therefore, it may not be

suitable for this numerical method.

o In adifferent attempt to numerically solve the PDE by a Backward SDE, I try the parametric
regression. Typically, if Yr is a polynomial, then one can start with the original function,
followed by completing the basis. However, the function is a summation of (z — K)" for

different value of strikes, and it is unclear on how the basis functions should be chosen.
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Chapter 3

Schrodinger’s Bridge on Rough
Volatility

In this section, we aim to extend on the Schrédinger’s bridge method in [1] to rough volatility
models with original proofs. Since fractional Brownian motion is neither Markovian or a semi-
martingale, we would require an entire new framework in order to work with these non-Markovian

processes [28].

3.1 Non-Markovian framework

Let us consider a Markov diffusion process X with natural filtration 7 and a continuous function
g. Let us formulate the following stochastic control problem, which is a conditional expectation of

the form

T
Vo= inf Blo(Xr) + [ f(s, XuA)ds| 7] (3.1.1)
EAsT t

Due to its martingale properties, Y; is a deterministic function of Xy, ie. ¥ = u(t, X;). As shown
in Section 2.2, u solves the following HJB PDE:

Aeult, ) + Xigf {b(t, 7, Ae)Dpult,T) + %a(r, T, A Beu(t, T) + ft, 2, 0e)} =0 (3.1.2)

w(T,x) = g(x)

where b(-) and o(-) are the drift and diffusion coefficients of process X respectively which depends

on control A.

However, when the process X is modelled by a fBM, the loss of semi-martingality implies classical
It6's caleulus can no longer be used. The idea of characterising the backward problem with a
PPDE is not as straightforward as the example above, and we would require new techniques to

extend this idea beyond semi-martingales.




In the context of rough volatility models, let us consider the class of stochastic Volterra equations
(SVE) of the form

' '
X, = ){[;—/ h’(f,.q)b(){s)ds—/ Kt s)o( X )dW, (3.1.3)
0 0

where K(t,s) is a deterministic kernel which blows up when t — s.

Denote B(r, s,w) = K(t,s)b(X.) and a(t, s,w) = K(t,s)o(X.) and define the following spaces:

Q= Y0, T, R), Q:=D%[0,T],RY), Q =CY([t,T],R);

A=[0,7]x9Q, A={({tw)€[0,T]xQ:w|ere L

We first make the following assumptions [28][Section 3.3]:
1. Equation (3.1.3) admits a weak solution and E[supyy 7 [X;/?] is finite for p > 1.
2. Foranyt € (s,T], the derivatives até. ;0 exist and ¢ € {3 @ } satisfy the following conditions:

Ko (t — S)H——;

lo(t, 5. w)| < Cp[1 + || T

|0,0(t, 5,w)| < Col1 + [lwll50)(t — )"~

In the case where b(-) = 0, i.e. fBm, Viens and Zhang [28][Section 2.1] suggested that by introducing

an auxillary process ©, we can decompose X as follows:

X,=0. 41!, t<s<T

i Ll
e = ] K(s,r)o(X)dW,, I'= / K(s,r)a(X,)dW,
0 t

where I! is independent of Ff and % = E[X,|F¥] a martingale.

In a more general case where b(-) # 0, O = f[: K(s,r)b( X, )dr + f[; K(s,r)o( X, )dW; is a semi-
martingale instead of a martingale. We can now exploit the (semi-)martingale properties of © and
adopt existing theories to obtain a deterministic function u in Equation (3.1.1) as a solution of
some PPDE.

The function u(t,w) now depends on the path w € € instead of :
T
u(t,w) = inf E[g(wr) ff Fls,we, Ag)ds| F¥] (3.1.4)
A AT +

such that uw e C'42,

Remark 3.1.1. Function u is proven to satisfy certain regularity conditions which is important
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for numerical implementations when X is a fBM [28]. We assume u also has the same properties

for b(-) # 0 so that the following theorems also apply to general rough volatility models.

From now on, denote w; € R as the value of the concatenated path (X @, ©'). = Xpggyl()+

01, 71(-) evaluated at time ¢, not to be confused with the path w € Q.

Definition 3.1.2. Denote d;u as the right time derivative:

A (ult,w)) = im w
510 o]

Denote d,u as the Fréchet derivative with respect to wlj; 7 for some 5 € €

u(t,w+ lye 7)) —ult,w) = (Qoult,n),w) + o[ )

where (t L) (t.0)
wl(t,w + enly ) — u(t,w
(Ouult,w),n) = 1‘1n[1J & T e T il

E—+ €

Proposition 3.1.3. For some A € R and ({,w) € N, the Fréchet derivative has the Jollowing
property:

(Ooult,w), Ay = AMdyult,w).n)

Proof.

w(t,w + eAnly 7)) — u(t,w)

(dyult,w), An) = lim

e—+l) €

Coult,w + el ) —ult,w)
= lim e A

c—+l) A€

Coultw el ) —ult,w)
= A lim ——
Ae—0 pY:

= MAuult,w),n)

As an extension of Dupire’s functional [t6 calculus [29], Viens and Zhang (28] derived the following

the functional 1to’s formula which not only depends on the path Xyg,) but also on O 7).

Theorem 3.1.4. [28, Theorem 3.10]

du(t,w) = Byult, w)dt + ({a_,u(r,w),ét) n %(r‘)wu(f,w), (61, f;g))dr +(Bult,w), 6. dW,

Proposition 3.1.5. The function u (3.1.4) is the solution of the following Hamilton-Jacobi-
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Bellman PPDE:
i+ inf ‘Do, b + = (O, 0 o - J fowe, A =10
& Iy {(_(u, . !,/\} 2(_(.-4,\;.,- Tt A, !/\)) . ( L Wiy !)}

cA T (3.1.5)
wT,w) = glw)

Proof. See Appendix A 4. O

3.2 Fractional Brownian motion

We start off with a simple case by replacing the standard Brownian motion in Section 2.2 with a

fBM. The dynamics of process X under measure PP is then defined as
t
X, = XU—/ K (1, 8)(Ads + dW,)
0
where K(t,s) i a deterministic kernel which blows up as s tends to t.

Theorem 3.2.1. The dynamics of fractional Brownian motion under measure P is given by:

t
X, = Xo+ / K(t,s) (K(T_. )8, log E[e~"®) | FX]ds + dl-t-;)
]

Proof. Similar to Section 2.2, we obtain the relative entropy which is exactly the same as in

Equation (2.1.1). We then arrive at the same dual problem in Equation (2.2.3).

A Ty S )
Vi ol Bl [ Adss fO0)FY (3.2.1)

Note that Equation (3.2.1) only depends on the state of X at time 7" and \; is a deterministic
function. Therelore, it is not dependent on previous paths of X and is considered as a simplified
version of (3.1.1) [28, Section 2.2]. By the martingale decomposition of {BM in Section 3.1, we can

write Y; = u(t, (-)%,] such that:

T
u(t,r) = inf II:P[%[ Mds 4 flo+ I)|FX)
t

AEA; T

which gives the following equation:

sup {u(0, 7o) — B [f(X1)]} (3.22)
fe Lt (u)

By exploiting the martingale property of ©, we can apply the standard [t6's formula to obtain a

PDE representation of u instead of writing a PPDE:
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1 . 1.
Ayt + Eff(r,r)iauu + 1§f{ 5)\5 + K(T.t)A\d,u} =0

w(T,z) = flx)

Differentiating with respect to A, gives A} = —K(T',t)8,u. Re-substituting A* gives a Burger’s like
PDE:

1 . 1 .
FRTIES EK(T' )20, 1 — i(K(T, Hiu)? =0

Applying the same transformation u = — log U, we arrive at a heat equation:

a,U + %(K[T,f}r‘)l.{.f]u =0

U(T,z)=e 1)

Re-writing the dual problem (Equation (3.2.2)) with u(t, ) = — 1();_:1I£[P’-“1'J |}_f(] and denoting f*

as the unique solution of this optimisation completes the proof. O

3.3 Rough volatility models
By applying the non-Markovian framework in Section 3.1, we can now extend Theorem 2.3.1 to a
general rough volatility model of the form:

dS, = S;a,dW), AW Z%, = pdt

t t
a; :a.[,—f K(f,s)b(a!]ds—f K(f,s)(f(a!)dZﬂ

o o

where K(t,s) [t—s)H’%.

_ 1
T I(H+3)
Theorem 3.3.1. The dynamics of the calibrated model under the new measure P is given by:
dSy = Sia dWy, d(W,Z), = pdt

i i
a :a.[,—/ K(f,x)(b(at]—(A*]ff"]ds—/ K(t,s)o(ag)dz?

0 0
where ()\*)EQ'] =/1— pu(l()glli[’“[e‘f'(-‘;'f't"-lrfﬂf 4| 7], é,) such that St £ i

Proof. Similar to Theorem 2.3.1, we need to solve the following problem:

supser ({0, So,wo) — EX[f(S1)]}
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where u(t,s,w) = infy ) y@ea, {EF (3 f!T] (A2 - (AP)2ds + F(St)+ f!T Agds|F¢|}. Since © is
now a semi-martingale, we couldn’t apply the same simplification technique in Theorem 3.2.1. We

would need to apply Proposition 3.1.5 such that u solves the following HJB PPDE:

1 ’ 1. oy, "
du+ L+ R li}r_litz}sgp{g[)\‘ 2y E()\MJ)J + MY (8w, Beu + sweA)
+p(Bu, X Ve + /1 — pQ{f)wil.A{QJ&g>} =0

u(T, s,w) = f(s)

1
2

where £% = 35?0?01 + 3 (B, (64, 6¢)) + (Do, by + pswi Bl d4).

Applying Proposition 3.1.3 simplifies the equation:

1 . 1 o
TR T . Loz L tev@ng v A ay
i+ Lu /\f]l}IlEu}hgp{ 2()\ ) 2(/\ ) A (swidsu + plduu, 01) + swid)

+A 1 — p?(awu,&!)} =0

(3.3.1)

Differentiating with respect to )\i” then re-substituting the optimal controls give:

)\gl’] = —Spwdult, Sp w) — pldyult, Sy, w), a¢) — Spwe

NP = =1 = p2(a,ult, S, w), b1

A+ L% — %{{'Lu,&!)g — ésgwf(ﬁﬁu)g — psw; 0, (A, dy)

1, 4. o
_511p{§.¢2wf A? — Pl Adau — p.?ng{f)w,r}g)} =10
A

Differentiating with respect to A gives A} = d.u(t, Sy, w) — <2 (A, ult, St w), o¢). Re-substituting

S

A} then eliminates )\ELJ so that Equation (3.3.1) boils down to the following Burger's PPDE:

dyu + LY — é(l — o)A, 66) =10

It is proven by Di Girolami and Russo [30] that the path-dependent heat equation admits a unique
solution. However, it is not proven for this specific Burger's PPDE. Therefore, we would need to

make an assumption about the uniqueness of solution for this theorem to work. Then by analogy

to Section A.3, the optimal control should be of the following form:
(A*)EQJ = M(loglli[w[P_-f'{s"'J_-r: A-‘”"U}],FI:)
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Conclusion

In this thesis, we started off by exploring the calibration of stochastic volatility and local volatility

models as well as highlight their respective flaws, especially in terms of joint calibration.

We then provided a detailed walk-through of a new class of volatility model based on the construc-
tion of a Schrédinger’s bridge, proposed by Henry-Labordere [1]. To exactly calibrate the model to
market prices, a drift is added to change the probability measure so that the resulting measure is fit
to a market implied marginal. Guyon later applied the same technique and showed evidence that
it is a potential solution to the long-standing SPX/VIX joint calibration problem [6, 7]. Upon con-
firming that volatility is rough by Gatheral et al. 3], we attempted to extend on Henry-Labordére’s
method to incorporate rough volatility models. The comprehensive paper by Viens and Zhang [28]

provided a lot of useful results for tackling non-Markovian process.

Despite the promising potential of the application of Schrodinger’s bridge in volatility modelling.
Implementation has been proven to be complicated and computationally expensive, especially when
rough volatility is being considered, which involves numerical solution of path-dependent PDEs.

Therefore, more research should be conducted to develop more efficient numerical algorithms.




Appendix A

Appendix

A.1 Analytical Heston

One of the advantages of the Heston model over other SVM is the presence of a semi-closed

analytical formula, derived by the method of characteristic functions [31].

The characteristic function of the Heston model is of the form:

\?g( g“ K. a0, 7: (;)) — (,f-'iT-‘.'-"J"'DiT-‘|="Jfl||+(¢']*!t-'-i-‘-"||]

where

[

1 — gedr
Clr, @) = réit + — [(r: — pogi +d)r — 2log -—%
o

2 1_q

Dir.¢) =

t— pogi +d [ 1—ed } P podi + d
g =
o

2 1 — gedr K — pog —d

d=/(podi — &) + 02(¢i + ¢?)

The formula for European call option is then given by:

| —

deh

oo ol — i ol
lﬁ QREH\P(O i) K »9(0]]

C(Sg, K, 09, 7) = =(Sg — Ke ") + -
7

1 10 ieplL

o]

3

This greatly improves the efficiency on pricing European options comparing to Monte Carlo meth-

ods as well as speeds up the calibration process.

A.2 Properties of fractional Brownian motion

Definition A.2.1. A fractional Brownian motion [I-l",”);_}u is a centered Gaussian processes with

the covariance function:
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]E['L'V!H u:‘f] _ (fQH " .'?2H _ |f _ SluH)

o =

The distribution is characterised by the Hurst parameter H € (0, 1), which determines the "smooth-

ness” of the motion.

11
Remark A.2.2, When H = % the covariance function is 1I£['Ir',-"!2 H-",,z] =t A s. This process is

simply a standard Brownian motion.
Proposition A.2.3. A fractional Brownian motion satisfies the following properties:

Self-similarity: For a fized a > 0, WH ~ aHWH

at
Stationary increments: WH — Wi ~ wH

Dependence of increments: Assume t1 < 81 <tz < sa.

1
E[(W/ —wWHYWH —wWH)) <0 for H € (0.5)

1
E(WH —wHYWE —wHh) >0 for H € (5:1)

Proposition A.2.4 (Mandelbrot-Van Ness representation). For H € (0, %] and let v = % —H, an

alternative version of Mandelbrot-Van Ness representation [32] of the fractional Brownian metion

15 defined as:

Eodw, Yodw,
vH _ s ]
Wi = ’”{Lc (t—s) fﬂ-.(—s)‘-}

2HT(3/2—H) 1o T Bromimi :
T2 T2 and Wi is a standard Brownian motion.

where Cy =

A.3 Proof of Theorem 2.3.1

Proof of Theorem 2.3.1. |1, Section 3.1]
First, rewrite dZ; = pdW, + /1 — p2dW;- where (dW,dWL), = 0.

Then, under measure P, the dynamics become:
dSy = Spar(dW, + AVde),  d(W, Wy, = pdt
dag = b(as)dt + o (ar) (p(dwt A4t 4 VT 2 (aWit + Ai’"dr))

Similar to Section 2.2, the relative entropy to be minimised in P; given by:

T
HE) = B 5 [0+ ()2
0

By the same argument, i.e. Sp, £ == EF[fi(Sn)] — E™[fi(S1,)] = 0, the potential fi is
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introdnced as a Lagrange multiplier which dualise P into:

3“?’_;’1::[.1“”){“((]: Soyag) — EM[f1(S7, )]}

where u(f, s, a) = inf,\al,\__,\cz,\‘.:Az__I_{lEP[%LT] (A2 2 (A2 2ds + f, (S )—LT' Ads|S, = 5,0, = a]}
which solves the following HJB PDE:

A+ L%+ inf sup{ %(AELJ)Q + é(AiQJ)Q + AV (sad a0+ po(a)d,u+ sal) + AR - pPola)d,uy =0
ALY y2) A ! !

w(Ty, s, a) = f1(s)

where £" is the is the infinitesimal generator of the process (S;, a;) under the original measure PV,

Differentiating with respect to )\giJ gives the optimal controls:

MY = (800, + pola)da)ult. Sp,ar) — Spar A

N = —y/1=p2o(a,)d,ult, Siya;)

)
E

After re-substituting )\iiJ and differentiating with respect to A, we see that A} = —(d.+p o J.

- . 1 . .
The optimal value A} forces A ) to become zero, so process S remains a martingale even under

the new measure and is a crucial criteria in this method.

Rearranging the equation admits a Burger’s like semi-linear PDE:

1 . .
Aeu+ L% — 5(1 — P )le(a)d,u)? =0

(A3.1)
w(Ti,s,a) = fi(s)

Solving the PDE and re-substituting the solution u into A} " then results in the calibrated dynamics.

These procedures are repeated on each sub-interval [Ti-1,Ti] for 2 < i < n. The concatenated

dynamics is then exactly calibrated on the interval [To, Th]. O

A.4 Path-dependent HIB
First, consider the function u(t,z) in Equation (2.2.3).
Theorem A.4.1 (Dynamic programming principle). For all s € [t,T:

&

u(f_..?):/\’iﬂf E[ ‘f(}"_.‘l.',,A,)d?"—ﬂ(ﬁ,-ra”ftxl
t

AT
For any arbitrary control A € A, r, the theorem has an equivalent formulation:
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w(t,zy) < lli‘.[fs flryze, A)dr + u(s,.}.‘s]|ﬂx]
t

Now for the function that we are interested in, i.e. u(t,w) in Equation (3.1.4), z € R" is replaced
by a path w € €. For the dynamic programming principle to work in the space, we propose the

following:

Conjecture A.4.2. For all s € [t,T] and u(t,w) € CV2(A):

w(t, we) = /\’inAf IE[/ Flrwe, A )dr + u(s.wﬁ)|}_tx]
Ay t

For any arbitrary control A" € A; 1, it has an equivalent formulation:
ult,w) < IE[/ Slrwe, A\)dr + u(s,we) | F)
t

The path-dependent HIB equation is briefly mentioned in [28, Section 4.3], however the aunthors
did not provide any formal proof in the paper. Therefore, we try to present an original derivation
of the PPDE, based on the derivation of the classical HJB equation in the textbook by Pham [33,
Section 3.4].

Proof of Proposition 3.1.5. For some small positive h such that t < ¢ +h < T, apply the dynamic

programming principle (A.4.2):

t+h
ult,w) < 15[’[] F(8,0, A%)ds 4+ u(t + h,w) | FiY) (A.4.1)
t

Applying the functional It6's formula (Theorem 3.1.4) on the interval [t,t + h]:

t+h . t+h
w(t + how) = ult,w) —f (r‘?,,u(s,w] + £ u(s,w))ds _/ (Bou(s,w), Gex)dWe
t t

where |
E/\“u(r.w) = {r’)wu[t_.wj_.('ﬁ}t:,\u) + §{€3u,.w11(r,u;)_. (e x0, 0 a0))

We then substitute w(t + h,w) in Equation (A.4.1). By setting i — 0 and the mean value theorem,

we obtain the following inequality:
Boult,w) + LY ult,w) + f(t,we, AY) 2 0
Since A is arbitrary, we can write:
Aenlt,w) + /\‘}Ir;_ff_‘{c*"u(r,u) + flt,we, AN} =0 (A.4.2)

a7




Next, let A} be the optimal control, it gives the equality:

otttk
u(t,w) = H:‘.‘[/ Fltwe, ADds + ult + hyw)| FX
t

B_\-' the same arguments as above:

Orult,w) + LY ult,w) + ftwsn M) =0 (A.4.3)

Combining Equation (A.4.2) and (A.4.3), we obtain the HJB representation of the optimal control

problem:

Dy + ;gi{(_f')wvxﬁa.,\_> + E{Uwu_- (Gea 0e0))) + flEtwe, M)} =0

u(T,w) = flwr)
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