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Abstract

Due to enormous computational costs tremendously rising with the number of traders, multi-agent
reinforcement learning algorithms have not been widely adopted in algorithmic and high-frequency
trading. However, the widely-used mean-field theory in the literature that aggregates participants
makes strong assumptions about a centralized system where all the agents are effectively indistin-
guishable and can access complete information. Furthermore, the existing literature only focuses
on deriving the Nash equilibrium, which may not attain even with provable properties for existence
and uniqueness.

To address these issues, we release these assumptions and attempt to propose a decentralized
mean-field games (DMFG) model-free learning framework with minimal information available to
agents within feasible computational costs. By design, each self-interested agent is myopic and
chooses its optimal trading strategy without prior knowledge of the underlying dynamics and
its opponent. This simulation-based decentralized learning algorithm offers a more reasonable
approximation to the actual financial market. We examine our modified DMFG algorithm with
the theoretical Nash equilibrium for three optimal liquidation problems consisting of 1) single
agents, 2) trading crowds, and 3) multiple trading ecrowds distinet in risk aversion and market
power.

The difference between the performance of the theoretical Nash equilibrinm and DMFG equi-
librinm offers some interesting intuitions and insights we should be aware of when designing our
reinforcement learning algorithms. Besides, we believe this paper also provides some exciting
hypotheses to investigate for future research.
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Introduction

Optimal liquidation is one of the most extensively studied problems in algorithmic and high-
frequency trading. Such an optimal liquidation problem falls into the category of the classical
portfolio optimization by Merton in 1975 [1], where the single agent seeks to maximize the expected
profit by trading between a risky asset and a risk-free bank account, with more generalizations in
1992 [2]. Further, Cartea, Jaimungal and Penalva address the issue stemming from the potential
price impact and the limited liguidity in the market within a short time interval, which suggests
that the agent may need to consider spreading its order over time instead of putting its inventory as
the market order all at once as well as a certain sense of urgency to get rid of these shares during the
trading process. Many other examples and modifications including liguidation with and without
temporary and/or permanent market price impacts as well as with limit and /or market orders can
be found in his textbook [3].

While most of the literature on optimal execution focuses on the single agent setting and
provides explicit optimal trading strategies, the optimal trading strategies may be deficient in
practice as the interaction with other market participants is neglected (e.g., see the evidence of
crowding in [4]). To this end, more and more researchers have extended their attention to the multi-
agent system over the past couple of decades (e.g., see [5, 6, 7, 8]). In particular, Neuman and Voss
studied the phenomenon of crowding in financial markets with exponentially decaying transient
market price impact in [9]. An extended but simplified setting of the competition between major-

minor agents !

was investigated by Huang, Jaimungal, and Nourian in [10]. Further, a general
form of the mean-field games between K sub-populations with different beliefs was proposed by
Casgrain and Jaimungal [11]. Moreover, Casgrain, Ning and Jaimungal provided a Deep Q-learning
algorithm to solve the Nash equilibria for the multi-agent setting [12].

Nevertheless, one of the critical limitations of the existing literature on high-frequency trading
is that the Nash equilibrium is not necessarily attained even with provable properties for existence
and uniqueness [13, 14]. In other words, reaching the Nash equilibrium relies heavily on the
introspective-thinking assumption for each agent. Besides, strong assumptions including identical
and homogeneous agents, global mean-field information (or full information 2) are usually required
to explicitly solve the mean-field games. Sometimes, the individual agents’ are assumed to be
negligible for simplifying the original problem, as we may see in [11]. These prompted us to shift
our attention to reinforcement learning dynamics in which self-interested agents engage with each
other and receive feedback to revise their strategies (e.g., see [15, 16, 17]). In particular, these
learning dynamics do not assime a centralized system where all the agents learn the same strategy
and are indistingnishable from each other.

To address this issue, we present a decentralized mean-field Games (DMFG) model-free learning

The major agents correspond to the financial institutions with relatively larger market powers, lower transaction
costs and large inventories to liguidate within seme time interval [0, T] based on its fundamental analysis. The minor
agents correspond to the individual high-frequency traders with smaller market powers, higher transaction costs and
small initial inventories at the time stage 0.

2For example, the full information about the dynamics of the underlying and the action of each agent is observahble
to all the other participants as a result of the introspective-thinking process.




algorithm based on (18] for non-communication Markov multi-agent games over a finite horizon
with minimal information available to agents within accessible computational costs. In particular,
each agent only has access to their private state information, i.e., their cash and inventory processes,
plus the public state information such as the asset price process and current time stage ¢. Further,
model-free means they do not know a model of the underlying state transitions probabilities or
the market impacts, even including themselves. We then compare the performance of the DMFG
algorithm with the theoretical optimal trading strategies and Nash equilibria. In the context of
the generalized optimal lignidation problem, we observe significantly different behaviors and offer
some intuitions and explanations to offer some tractability of the DMFG algorithm. These insights
suggest some exciting topics for subsequent research.

In chapter 1 of this thesis project, we first introduce Merton's classical optimal liguidation
problem in section 1.1 and solve the extended version using the HJB equation in section 1.2.
Then, we present one practical extension of the classical problem to show the limitation of the
HJB equation method. Afterward, we review the Gateaux derivative in section 1.3 as the general
method in the high-frequency trading literature for solving the optimal execution problems in
chapter 4.

In the second part of the paper in chapter 2, we start by introducing the stochastic games in
section 2.1 as a framework for representing dynamic multi-agent interactions. Then we discuss the
existing provably convergent learning algorithms with gradually less and less information observable
for the agents. Finally, we would reach the Decentralized Mean-Field Game (DMFG) framework
proposed by Subramanian et al.[18]

Next, we present our generalized optimal liquidation problem in chapter 3 under the context
of the mean-field games based on Casgrain and Jaimungal [11]. Based on this generalization, we

propose three examples, inclnding
e optimal liguidation for a single agent,
e trading with crowds,
e (the most general case) mean-field games with the same true belief,

inspired by [19, 9, 11], respectively. We then provide the theoretical and DMFG solutions for each
problem presented above in chapter 4 and chapter 5. In particular, we compare and investigate the
performance between the theoretical Nash equilibrium and DMFG equilibrium for each example

and offer some exciting explanations and topics for future research.




Chapter 1

High-Frequency Trading and
Mean Field Game

High-frequency trading is an essential class of algorithmic trading, which refers to any form of
quantitative trading strategy that computer programs execute automatically. In recent years, au-
tomated algorithmic trading algorithms across electronic trading platforms have developed rapidly
and attracted the attention of numerous researchers. In particular, optimal liquidation is one of

the most extensively studied problems in high-frequency trading.

1.1 Introduction to Optimal Liquidation

Suppose an agent holding a large amount of stock for a risky asset in the financial market decides
to liquidate these shares as suggested by its fundamental portfolio analysis. Therefore, the agent
needs to find an optimal liquidating strategy to address this target by the suggested time stage T°
to maximize its expected return with a sense of urgency of getting rid of these shares during the
time interval [0,7]. Given the fact that the market does not always provide infinite liquidity to
absorb a large market order at the best available price, the faster the agent liquidates its inventory,
the more significantly negative market price impact it would incur on the market, and hence the
poorer prices it would obtain at execution.

To model the trade-ofl between the market impact (and thus execution cost) and the risk of
future price uncertainty, let vy = 0 (or < 0) denotes the rate at which the agent buys (or sells)
its shares at time f, and thus the agent buys wdt (or sells —vidt) amount of shares within the

infinitesimal time interval df, the agent seeks to maximize its objective function
T
Ro(v) = E X%—q’r’(s%—@q%)—er-b/ (qt)2dt (1.11)
0

given some strategies v := (1,219, € A and the dynamic processes

€

dgf = wdt, qf =q

dSY = —Nydt +adW,, St =58 . (1.1.2)
dXY = v (SY — cv)dt, XY =X,

where

® v := (4 )se(o,T) Tepresents the (positive) rate at which the agent trades (lignidation rate) and

is what the agent can control,




® " := (g )eejo,r) represents the agent’s inventory process controlled by wv.
o 5= (5¢)tejo,r) represents the fundamental price process controlled by v.
e X" := (X{)ie0,1 represents the agents cash process controlled by v.

e A represents the admissible set of strategies consists of F-predictable non-negative bounded

strategies to exclude repurchasing of shares and keeps the liquidation rate finite.

In the objective function Ry, ®, ¢ > 0 implement a penalty on the agent’s terminal and running
inventory, respectively. In the price process 5%, A > 0 models a linear transient price impact.
Whereas in the cash process XV, ¢ > 0 models a instantaneous transaction cost of the agent’s

trading strategy v on its execution price.

1.2 Hamilton-Jacobi-Bellman Equation

1.2.1 General Hamilton-Jacobi-Bellman Equation

One of the most well-known algorithmic trading methods to solve this optimization problem is to
apply the Hamilton-Jacobi-Bellman (HJB) equation. To do so, we first define the general time-
indexed performance criteria by

PY(x,) = E

T
Glzr) 7/ F(.z.‘s,:/,,.)ds] , (1.2.1)
t

where x := (x);¢9 1 is the vectorized state process such that z; := (t, g, S}’, X}') represents the
information observable to the agent by time stage . Without loss generality, we denote J; as
the filtration generated by the vectorized state process observable to the agent x; thronghout this

paper. Formally,
Fi=0 ((zu)uejo) - (1.2.2)

In the context of the previous optimal liquidation example, function G and F' correspond to

G(or) i= X7+ qf (S — Bap)., (1.2.3)
F(xyv) = ()7, (1.2.4)

as we defined within the objective function 1.1.1. Intuitively, the performance eriteria provides a
score of the current state z; for the agent given the filtration JF;.

Secondly, by defining the time-indexed optimal performance criteria

P(xe) = sup PV (x4), (1.2.5)
reA
we obtain the time indexed analog of the original optimization problem in section 1.1. In particular,
P(x¢) wonld provide the score of the current vectorized state x; if the optimal admissible strategy
is executed since time stage (.

Notice that the optimal performance criteria definition implicitly indicates the overlapping
sub-problem feature and optimal sub-structure property. More precisely, the optimal performance
criteria P(x;) at current time stage ¢ would equal to the performance that optimally executed
between (t,t + dt) plus the expected optimal performance criteria P (x4 4¢) conditional on F; at
the future time stage t+dt given x; 4 from x;. Formally, one may obtain the dynamic programming

principle stated as follows.




Theorem 1.2.1 (Dynamic Programming Principle). The optimal performance eriteria in equa-

tion (1.2.5) satisfies

Plzs) = sup E¢ [P(z.)], (1.2.6)
ve A

forany 0 <t<s<T.

Remark 1.2.2. Note that even though we denote sup,. 4 with a slight abuse of notation, the
selected v = (Vt)iepo.m would only affect the performance between (t,s) as R(x.) represents the
optimal performance criteria of the state =, given the optimal admaissible strategy executed since

time stage s.

Then, take the infinitesimal perspective of the dynamic programming principle in theorem 1.2.1

using [to's lemma at £, we obtain that

dP(xs) = (0¢ + L7 VP (24)dt + diag(D.P(z:) ) ot dW,, (1.2.7)
where £V represents the infinitesimal generator of z,, D, P(z;) := (&;P(z;)), with diag(v) repre-

sents the diagonalized matrix for some vector v = (v',--- ,v™) such that

NPlxy)
diag(D.P(x:)) :=
aup(-r! ]

and e represents the vectorized volatility part of the corresponding stochastic differential equa-
tions. In the context of the previous optimal liquidation example in section 1.1, the volatility term

in equation (1.2.7) can be simplified as
(D P(z:))" o, =(0,0,00:P(x:),0), (1.2.8)

since only the price process S*’s dynamic involves non-zero volatility part as shown in the equa-
tion (1.1.2).
Combining the equation (1.1.2) and theorem 1.2.1, we would conclude the the Hamilton-Jacobi-

Bellman (HJB) equation (also known as the Dynamie Programming Equation) as follows.

Theorem 1.2.3 (Hamilton-Jacobi-Bellman equation). The optimal performance eriteria in equa-

tion (1.2.5) satisfies

P(xy) +sup,e g {LYP(xy) + FY(z)} =0
Plrr) =Glxr)

(1.2.9)

Remark 1.2.4. In this subsection, we only provide the intuition behind the proofs of theorem 1.2.1
and theorem 1.2.3. Interested readers are highly recommended to consult the textbook [3, chap 6]

written by Cartea, Jaimungal and Penalva.

1.2.2 Solve the Classical Optimal Liquidation Problem

Given the general form of the HJB equation in theorem 1.2.3, we may solve the optimal liguidation
problem defined in section 1.1. In fact, this problem is an extended exercise in [3, E.6.1]. In this
subsection, we will provide a sketched solution to attain the optimal trading strategy v* using the

HIB equation.
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First, given the objective function defined in equation (1.1.1), we can write down the HJB

equation in the context of this example as

0P +sup,. 4 {:/(S — ev)OxP +vd, P — wdsP + %02(‘355-?3} =0

. (1.2.10)
P(T.X.q,8) =X +q(S— dq)

Regard the performance criteria P as given, we may solve the optimal trading strategy »* as

. SOXP+ 3P — \sP
v = 20T . (1.2.11)

Hence, by plugging equation (1.2.11) back into equation (1.2.10), one can remove the sup,. 4 term
of the first equation and attain a partial differential equation (PDE) bound with the terminal
condition by the second equation. That is, the key to solve the optimal trading strategy v* is to
solve the optimal performance criteria P, which requires to provide an ansatz (i.e., guess) to solve
the PDE. In this example, we will make the ansatz as

P(t, X.q,8) = X + ¢S + h(t, q), (1.2.12)

for some function h € C2(R).

Remark 1.2.5. This example is a classical optimal execution problem with regularly defined
objective functional and dynamics. But in general, making up the ansatz would be one of the
main obstacles to solve the single-agent optimal execution problem using the HJB equation. The
limitation will mainly be discussed in section 1.2.3.

Plugging the equation (1.2.12) into equation (1.2.11), we obtain

25 - Mgt dgh

7 S0 (1.2.13)
and hence the equation (1.2.10) can be simplified as
=25 + Aq)? + dedyh + (45 — 20q)d,h + (,h)2 =10
( q) edeh + ( q)0,h +(0,h) N (1.2.14)
h(T,q) = —bg?
Again, we need to make the ansatz for the function h as
hit.q) = folt) + qf1(t) + ¢° f2(t). (1.2.15)
so that the equation (1.2.14) can be simplified as
(28 = Aq) + (fu(t) + 20 f2 (1)) +de(fo(t) + a1 (8) +¢*f5(1) = 0
(1.2.16)

folf)=0, AT) =0, fo(T)=-0

for any q. Via grouping the first equation in 1.2.16 by ¢ and realizing that each coefficients terms

of ¢ need to be zero, we attain the following ODE system

A2 —ANfo(t) + 4F2(8)? +dcfy(t) =0, fo(T) =
—ASA—2Xfi (t) + 8S folt) + Af1(t) folt) +4ef,(t) =0, fi(T)=0 (1.2.17)
482 +ASfy(t) + fL(t)2 +4ef(t) =0, folT) =0

11




which solves

 de® £ A(20 + \)(t—T)

PO = e s N T (1.2.18)
_2S(t—T)(20 + )
A Ry Ty ST6Y Y (1.2.19)
t) = 25— T) 1.2.20
)= S mee+ N (1.2.20)
for any ¢. It follows that
v, X, q,8) = —25+q(20 + M) W(t, X, q.S) €[0,T] x B* x B, (1.2.21)

e+ (t—T)(2D + A

Remark 1.2.6. The restriction over S in equation (1.2.21) results from the restriction of the
admissible trading strategy space 4. As the HJB equation is not the main focus of this paper,
we would not dive into the technical details. Interested readers may check the convexity in the
objective function (or the performance criteria) if the price process goes to negative for verification

purposes.

1.2.3 Limitation of Hamilton-Jacobi-Bellman Equation

Inn this subsection, we will attempt to solve an extended optimal liquidation problem which is the
simplified version of [19] by Neuman and Voss in 2022.

consider the optimal liquidation problem described in section 1.1, but with persistent transient
price impact decaying gradually over time at some exponential resilience rate p > (. Formally, we

have the same objective function as in equation (1.1.1) but the dynamic processes becomes

dgy = widt,  qf = qo

AYY = —pYdt + dndt, Y =y
dSY = —dYy¥ + odWs, SY =S,
dX] = v( Sy —eve)dt, X§ =Xy

(1.2.22)

where Y} corresponds to the transient price impact that persists and decays gradually overtime
at some exponential resilience rate p > 0. In particular, the transient price impact process Y can

be derived as

t
Yy = e“"y—“r/ e Pt=wy du, 0<t<T. (1.2.23)
8

for some initial value y € . Note that the extra factor Y raises an extra argument for the
performance criteria P because it cannot be canceled in the SDE system. That is where the
complexity is introduced.

Following the similar process in section 1.2.2, we obtain the HJB equation as

P +sup,eq {v(S — e)OxP +vd,P + (Y — Av)(0sP + &y P) + $0%9ssP} =0
P(T,X,q,Y,S) =X+q(S—®q)
(1.2.24)

and thus

o _ SOXP + 9P — AP + dsP)

2% P ' (1.2.25)

12




However, notice that the key difficulty to solving the equation (1.2.24) is that ¥ is implicitly
related to S but does not explicitly affect P at terminal time stage T". Intunitively, the agent should
not care about the market impact process ¥ by terminal stage T either, as the agent will exit the
market by that time. Still, the HJB equation is solvable in theory, but because of this feature,

making up the ansatz for the P becomes exceptionally challenging. !

Remark 1.2.7. Note that this extension is only a simplified version of [19], let along the multi-

agent version of the optimal liquidation problem as we may see in [9, 11] 2.

1.3 Gateaux Derivative

While the HJB equation provides a convenient framework to solve a massive class of single-agent
optimal exeention problems, making up the correct ansatz is one of its main limitations, as we
indicated in remark 1.2.5. Further, the complexity of solving the PDE would massively grow when
we extend the classical optimal liquidation problem, which brings nus incapable of solving it. In
contrast, the Gateanx derivative offers a more general methodology to solve the most regularly
defined algorithmic and high-frequency trading problems (e.g., see [19, 9, 11]). Therefore, in this
section we would provide a review for the Gateaux derivative.

Definition 1.3.1. Given a function F': U — R for some locally convex topological vector spaces

U, the Gateaux derivative (F(v),a) at v in direction o € U is defined as

(F(v),a) 1= lim 22T = F), (1.3.1)

e—+0) €
If the limit exists for all o € {7, then we say that F' is Gateanx differentiable at ».

Intuitively, consider the objective functional Ry (v) for the action process v := (14 )sej0.7). Then
the Gateaux derivative (Ry(r), ) describes the change of the wvalue if the agent tries slightly
different action vy + ey for certain time stages between [0,77. Therefore, following the analog
of the derivative in the Euclidean space, the agent should attain the critical strategy v* when
(Ra(v*),a) = 0.

Based on the Gateaux derivative, one would now be equipped with the tool to solve the most
optimal execution problems in the high-frequency trading literature. In chapter 4, we will present

the details of using the Gateaux derivative to solve the the generalized optimal liquidation problem.

! Alternatively, one may still solve the PDE of the P numerically. However, this has been out of the scope of this
paper. Thus, we would not investigate it.

23imilarly, one may still solve the multi-agent optimal liquidation problem by extending the HIB equation to the
so-called Nash-HIB equation. However, this has been out of the scope of this paper. Thus, we would not investigate
it either.

13




Chapter 2

Stochastic Game and

Reinforcement Learning

While optimal liquidation problems have arisen in financial modeling, we have witnessed the ex-
citing development of reinforcement learning in solving general multi-agent stochastic games in
recent years (e.g., see [20, 21]). Meanwhile, we also discussed the limitation of the existing algo-
rithmic trading methodologies in the previous chapter. Therefore, we are motivated to extend our
attention to reinforcement learning, focusing on multi-agent stochastic games.

In the following of this chapter, we will start by introducing the general framework for rein-
forcement learning and then discussing the existing provably convergent learning algorithms with
gradually less and less information observable for the agents. These additional restrictions provide
a better approximation for the financial market in reality, where trading agents are only offered

minimal information.

2.1 Introduction of Stochastic Game

Stochastic games (also known as Markov Games) have been widely studied and used (e.g., see
[22, 23, 24]) for solving multi-agent interaction problems since 1953 by Shapley [25]. For the setting
of this paper, an N-player stochastic game can be characterized formally by (X, X7, A7 . p.4) jen,

where

1. The set of private states X' consists of the private state ] € X7 containing the information

that is observable for the agent j at time stage ¢, for any € [0, 7],

2. The set of global states X consists of the global state z; € X' containing the information of

all agents in the system at time stage t, for any t € (0,77,

3. The set of admissible actions A’ = [A'f)g;::uj consists of the action 17/ = [V'j]:eju__f e A
that the agent j can choose, where A{ represents the set of admissible actions for the agent

j at time stage ¢,

4. The immediate reward function v : X x A — R, where A := ]_[f?:l A, corresponds to the
immediate reward received for the agent j at each global state x; after the system executes

the actions of all agents v, := (v},--- , ") at time stage ¢, for any ¢ € [0,77,

5. The transition probability p(z; 1|z, ) corresponds to the probability of transitioning from

global state x; to 7141 given the joint action vy executed at time stage t, for any ¢t € [0, 7],

14




6. The discount factor 4/ € [0,1] corresponds to the discounted accummlation of the future
reward to the current utility of the agent j.

It then follows that the target of the agent j is to find the strategy v7* = (:/f‘*)!&j[,__f that
maximizes its objective function, Le., the expected sum of discounted future immediate reward, at

time stage £ = 0, given by
Ry(zed) = E |3 (4 - (2 1) (2.1.1)

for some partition of the time interval [0,7]. Here =7 := (1, ... 2771 it o wN) denotes the
joint opponent action of all the agents in the system except for the agent j, and {xg ~ pg, T441 ~
p(-|z,07), t € [0,T]} denotes the state process at each time stage t with py € A(X) as the initial

state distribution.

Remark 2.1.1. The discount factor + is usually restricted within [0,1) in the literature when
T = oo to avoid the potential divergence of Rj). But as we only focus on the optimal liquidation
problem within finite terminal time T" < oo, this hyper-parameter 4 has no particular restriction.

Remark 2.1.2. Uunlike the optimal liquidation problem defined in section 1.1, the "optimal” is
actually ill-defined in the context of multi-agent stochastic games. Precisely, the "optimal” outcome
of the agent j might not follow its opponent’s optimal wishes, especially in zero-sum games. To
reconcile this conflict, we will introduce two related but distinct lines of research in the following

sections.

2.2 Centralized Q-learning

While a Q-learning based algorithm for attaining Nash equilibria in general stochastic games was
firstly introduced by Hu and Wellman [26], one of the first attempts to apply Deep Q-learning
in solving such a multi-agent optimal liquidation problem is Jaimungal’s Nash-DQN [12]. The
primary focus is to solve the Nash equilibrium and study the properties without a prior knowledge
of its dynamics.

In order to do this, they first define the objective function for each agent j as

T
Ri(xo, v/ iv ) = E | Y () (zv)iv, )| (2.2.1)

t=0
following the stochastic process {zo ~ pu, 41 ~ p(-|lze,w6), ¢ € [0,T]} as defined in 2.1.1 so that
each agent j can attain its utility Rf,(a:[}. vl p7 ) at time stage £ = 0, given their opponent joint
action » 7. In other words, the target of agent 7 is now to obtain an action v* that optimizes
their objective function, but also as a function of v, for all j € 9. In the end, those agents’

action processes would form a Nash equilibrium, which can be formally defined as follows.

Definition 2.2.1. A collection of admissible actions »* := (', ... | ™*) forms a Nash Equilib-

rium if
Ri(zo. ;0 < R (g, vhs 077 (2.2.2)
for all admissible strategies 1 and for all 7 € 9.

Next, they extended the Bellman equation for Nash equilibria to fit into the reinforcement

learning framework. To do this, they applied the dynamic programming principle to the agent j's
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objective function R{(xe, ;v /"), which results in

R (2, 7% 079%) = max {19 (ze 1) 0, 7Y+ E ) ey R @ w0 } ,
e (¢ ) Jhax, (Te,vpiv ) S N L CAS )
=

(2.2.3)

for all ¢ € [0,7]. Without loss generality, here we abuse the notation R] as the expected total

reward [rom time stage t to the terminal time stage T'.

That is, for any time stage f, the agent j's objective function RJ in the Nash equilibrium at
time stage £ is equal to the maximum of all possible summations of the current immediate reward
7 and the expected value of the future total reward R among all admissible actions 1, € .47,
which follows the Nash equilibrinm v afterward until terminal time stage 7". Here, the next state
x; is influenced by the current action uf via the transition probability p(-|;1.‘t,vf,u;j], and hence
the future total reward R would also vary depending on the selected current action v]. Therefore,
this new Bellman equation for Nash equilibria is satisfied simultaneously at Nash equilibria for all
j € M by definition.

Furthermore, the authors considered vectorizing the notation for conciseness and consistency
in the reinforcement learning literature. That is, by denoting the vectorized expected total reward
function Rz, ") := (R'j(;r!_.u*)).,;&m, they defined the stacked Nash state value function V (x;)

as
Vi(xy) = (VI (2))jem = (R (x,0%)) jem (2.24)
as well as the stacked Nash Q-function as
Qs v}) = 1w, vf) +diag(V)E,,  pifwews) V()] (2.2.5)

with = (r1);em, v = (77 )jem, and diag(v) denotes as the diagonalized matrix for some vector

v=(vt,-- ,v") such that

U1

diag(v) :=
Un
By definition, the Nash Q-function @ represents the expected value of the objective function may

take, given the current state x, and arbitrary current action vy, but following the Nash equilibrium

action »* since after time stage t. Therefore, the reinforcement learning problem would be well-

defined once the meaning of "optimal” in the context is well-defined.

Definition 2.2.2 (Nash Operator [12]). Consider a collection of N concave real-valued functions
flw) == (fi(u!,w)), where f7 : U7 x 47 — R. The Nash operator Ny ey @ flu) = flu*),
where the Nash equilibrium value u* := arg A, oy f (1) such that

Fu, w3y < fu* ul), Yul el WieN. (2.2.6)

That is, the Nash operator corresponds to simultaneously maximizing each of the f7 in their first

argument 1! for a sufficiently regular collection of functions f.

Therefore, we obtain a relationship between the Nash value function V' and the Nash Q-function
@ inborn from the definition of the Nash operator as V() = My, .4, @(x¢, 1), hence the Bellman
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equation for Nash equilibria in equation (2.2.3) can be rewritten as
V() = Nuea, Qzevy) = Nyca, {r(znv)) + diag(VE,, op( e [Vze)] ) (2227

and hence v* = (v¢)se0, 1), Where v = arg N, e, Q(re, 1), In other words, it is sufficient to
obtain the Nash Q-function to obtain the Nash equilibrium v*, which is sufficient to provide the

update function and loss function as we will see in chapter 5 for details.

Remark 2.2.3. Note that the main difference in the intuition between equation (2.2.3) and equa-
tion (2.2.7) is that the previous Bellman equation selects the cwrrent optimal action v/ for each
agent j € 9N with the opponent’s joint action v =7 regarded as given, whereas the latter includes
1

both the agent j's current action v; and the opponent’s joint action v, into the consideration

and regards the joint "optimal” action vy as the Nash eguilibrium at each time stage (.

In other words, the Nash Bellman equation in equation {2.2.7) does not distinguish the action
of the agent j or the joint action of the opponent —j anymore. The Nash equilibrivun v is obtained
directly given the Nash Q-function (Q(a+,v))iep,7). That is, the Nash equilibrium & is governed
centrally by the global Q-function that regards the global state z; and the global action v as its

arguments as a whole. Intuitively, a global processor controls all the agent’s actions in the system.

2.3 Independent and Decentralized Q-Learning

Although the Nash Deep -Learning presented in section 2.2 provides a concise learning algorithm
to obtain the Nash equilibrium, one of the critical questions is whether a Nash equilibrium can
be realized or not during the interacting process between these self-inferested agents in the multi-
agent stochastic games. This reflects the obstacle revealed in equation (2.1.1) that agents cannot
attain their "optimal” strategies beforehand without a prior opinion (or model) on their opponent’s
strategy.

When there exists a Nash equilibrinm, the centralized learning algorithm would identify and
provide the equilibrium strategies relying on an introspective decision-making process. However,
many empirical studies suggest that such a thinking process is not sometimes realized, even re-
peatedly plaved in games (e.g., [22, 14]). Nagel in 1995, for instance, presented a well-known
empirical experiment played among a class of students for submitting an integer between 1 and
100 independently, and the student who chose the number closest to the 2/3rd of the average of
the whole class would be the winner. The introspective thinking process that controls the actions
of the whole class globally would expect the students to pick 0. However, the empirical results
show that students would choose non-zero numbers, and not even close to zero, such that their
average ended up around 20 to 30, even if the game was played repeatedly many times [13]. That
is to say, the introspective thinker would always lose the game. In contrast, players who observed
the chosen numbers and reacted by picking numbers closer to the winning number would achieve
convergence to equilibrium along the process (also see in [22]).

Notice that one of the key differences is that the students have not engaged in any forward-
looking strategy, but engaged with each other and recetved feedback: to revise their strategies during
the repeated game process [14]. In particular in equation (2.1.1), each agent j has and keeps
updating the prior assumption about their opponent’s strategies 7, / over time ¢ € [0,7]. Hence,
the target of each agent j in this context is to find its optimal action 1/* such that its objective

function

RY(wev') =By jprs | D7) 1 (xes0,7) (23.1)




is maximized given their prior assumption. Nevertheless, during the repeated game process, the
agents would observe their opponents’ actions at time stage ¢ and re-estimate their models for
estimating what their opponents will act in the next time stage t + 1. Such a non-stationary

feature increases the complexity of solving such a problem.

2.3.1 Fictitious Play

Since it was introduced by Brown in 1951 [27], fctitious play provides a class of stylist independent
learning dynamics that proved to be convergent in repeated zero-sum stochastic games [22, 28, 29].
This type of learning dynamics requires that each agent in the system erroneously assume that its
opponent plays according to a stationary strategy only depends on the current state z;. In fact,
those agents are essentially playing an auziliary stage-game at each stage t.

Formally, each agent j involves in the auxiliary stage-game which can be characterized as
(X, X!, Al QI (z,,-))jer at each stage t € [0,T]. The fundamental difference from the original
stochastic game deseribed in section 2.1 is that the reward function in this context is the Q-
function (7 (x¢,-) : A — R at current state ;. That is, each agent j is making their decision at
each stage time ¢ directly with the discounted future reward, but conditioned on their own belief
(or, model) 7,7 on the opponents’ strategy for current state x, as a weighted empirical average.

In particular,

vt = argmaxE,_; . |Q [.?;_.rzf;ﬁ!_'j),] (2.3.2)
stna. ;
w] €A

where the Q-function @ (zy,-;,”) under the belief &, ” following the dynamic programming

principle can be rewritten as

(e e 50 — i (e g 4 : ) iy i .
Qg vfio ) =0z v 7)) +97 max {lh-z,ﬂwpqug__ogﬁ [Q'(-r1+1.~”z+1ryz+1)]}

Vi €Al
(2.3.3)
and the belief of the agent j follows the incremental update rule as in [22] via
i (2) = 0 (2) + o) (u;jl 0) (2.3.4)

for any t € [0,T]. Here, a,, € [0,T],¥t is some vanishing learning rate with ¢;(x) indicating the
number of visits to state x by £. Such a vanishing learning rate indicates that the agent j would
weight less to their current belief than the observed action if the state has not been visited many
times.

Here, one can quickly notice that the update rule assumes that the private state space X7 =
X, %], and even identical over all time stage t, as well as that the state space X" is finite for any
t € |0,T]. Further, while the identicality and finiteness of the state space X' might be acceptable
when modeling the financial market, such an updating rule may be problematic when the action
space /A7 is contignous in our optimal liquidation problem. Mainly, the practitioner would run
into a dilemma: either the search space is too large to ensure visiting all state-action pairs at least
once if we discrete both the state space and action space according to the market unit, or this
independent learning dynamics cannot be applied in the financial market.

Inspired by the intuition of the weighted-average updating rule and the potential computational
issue, here we suggest modelling the estimated opponents’ strategies via a neural network ?r,‘;, which
will provide a distribution of opponents’ actions given the state x. Since such a neural network
is trained by observing the historical opponents’ action, the neural network can produce a quasi-

weighted-average distribution even over the contiguous action space, with some modification over
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either the network structure or training process or historical data. Further, we can set the neural
network to be updated at each time stage ¢ so that it fits into the fictitious play set-up.

2.3.2 Decentralized Q-learning

Even though fictitious play provides a simple and stylist learning algorithm with minimal informa-
tion available to agents, the requirement that each agent erroneously assumes that the opponents
play according to stationary strategies is sometimes unrealistic, especially in the financial market.
Another way to address the non-stationarity issue, on the other hand, was proposed by Leslie,
Basar and Ozdaglar in 2021 [30]. Instead of assuming fictitions stationary strategies, they sug-
gested a two-timescale adaptation Q-learning dynamic for each agent, introduced by Leslie and
Collins in 2005 [14, 31| and originating in Fudenberg and Levine in 1998 [14]. In particular, agents
would infer their opponents’ actions through an estimate of their opponents” local Q-function, thus
generating an estimate of the value function to infer their own continuation reward afterward.
Formally, the learning algorithm in this context can be characterized as follows. Iustead of

forming a belief about the opponents’ strategies, the agents can estimate their local Q-function
Gy (27) 5= By s s [Q (v (2.3.5)

to infer their opponents’ actions. Note that here the opponents’ strategies w—/ is the frue strategies
which are non-stationary over the time stage . As a consequence, the agent j in this context is
not able to form about w7, Correspondingly, Leslie et al. suggested a updating algorithm in [22,
Table 1] that has shown to be provably convergent. In particular, the local Q-function is updated

incrementally as
Gt (T v]) = @ (xe,v]) + ol (rh + 2700 (20) = ] (2e,0]), (2.3.6)

with the anxiliary value function estimates as

), (e) = 0} (z¢) + ﬁ'{fud@i(:l‘!)[Trffff(:r!) — i (1)) (2.3.7)
for all agent j € M and any time stage ¢ € [0, 7). Here o (x4), 37 (z¢) € (0,1) are some diminishing

learning rates as defined in section 2.3.1 for updating the local Q-function and value function.

Remark 2.3.1. Though the updating rule in equation (2.3.6) is not explicitly revealed from
equation (2.3.5), the agents in this context can infers their opponents’ strategies and establish
provably convergent Nash equilibrium. Surprisingly, the critical intuition and reasoning behind
this are exactly where the issue of non-stationarity comes from. In other words, it is because
the true local-Q function involves the unknown true opponents’ strategies 7r;  that the estimated
local-Q function can reveal such a true o, 7 from the estimation over time £ € [0, 7). Despite the
fact that this would slow down the update of the value function and Q-function estimate in nature
as in general [32, 33|, this does help weaken the dependence between the configuration of the stage

games.

2.3.3 Decentralized Mean Field Game

Independent learning (e.g., fictitious play) and decentralized Q-learning provide a form to solve the
multi-agent stochastic games instead of a centralized system where all the agents are effectively
indistinguishable and learn the same policy. However, they either require prior knowledge (or
assumption) about each opponent’s strategies or an extremely long time to converge, even for a

simple two-player zero-sum discrete game. In particular, the fictitious play also strictly specified
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the learning pattern (i.e., erroneously assume each opponent’s strategy is stationary, for each agent
7). Besides, the independent learning in general demands the complete information of the system
to be accessible to each agent. That is, each agent will be able to observe the individual action
of its opponents. Even if we modify the learning pattern as a function of the mean-field action p
only, it still requires to obtain all the agents action first to compute the current mean-field action.
All of the limitations above are not practical in the financial market.

Notice that obtaining the exact equilibrium action ¥ at time stage t in the independent and de-
centralized learning requires the complete information of its opponent’s current action z;, 7 as well.
This arises the so-called ‘chicken-and-egg’ problem as described in [18]. Motivated to address this
problem, Subramanian, Taylor, Crowley and Poupart in 2022 proposed a new mean-field system
called Decentralized Mean-Field Games (DMFG) in that paper. They relaxed the strong assump-
tions of the centralized system where agents are indistinguishable and learn the same strategy,
and obtained a stronger performances compared to common baselines with minimal information
playing in several well-known multi-agent playground in reinforcement learning literature.

Formally, the learning algorithm in the DMFEFG framework can be characterized by the updating
rules we presented in the previous subsections. Neither focusing on the global nor local Q-functions,
the new updating equation emphasizes the mean-field action Q7 (xy, 1], ps), where p = () ieo T

corresponds to the mean-field actions as we indicated in the first paragraph.
Qi (@, i) = QYwe vl i) + ol (] + 78] (x0) — Qe v i), (2.3.8)

with similar setting as we have described in equation (2.3.6), except that here, the mean-field
action gy is not observable until the time stage ¢ + 1. To this end, each agent needs to predict the

current mean-field action p; by
fif (w6, pie 1) = fj[il':s#:‘-;), Wie M. (2.3.9)

Remark 2.3.2. The theoretical support behind the approximation of the mean-field Q-function
to the global-Q function via the local-Q) funetions can be found in section 5.1 and for details in
[34].

The DMI'G algorithm provides a more practical framework than most existing centralized
and decentralized learning methods, especially in the financial market setting where the market
participants are neither identical nor simply predictable and observe minimal information (public
market information plus the turnover and cash inflows and Outflows inferring the last period mean-
field action). Further, the actions of the market participants, particularly some large financial
institutions, are sometimes not negligent. Those advantages inspired us to implement the new
mean-field system by Subramanian et al. to solve our optimal liguidation problem.

However, note that this DMFG algorithm equips a pair of (Q7,97, f7) for each agent j € N
to learn during the training process. This feature does incur tremendous computational costs as
the amount of the population size N increases, especially if these estimations are trained given a
pair of neural networks. This computation cost is both out of the thesis’s physical capability and
unfavourable for financial practice. To address this issue, we proposed a modified DMFG learning
algorithm in chapter 5 with acceptable computational costs that mainly related to K < NV instead
of N, and provided a comparison with the theoretical Nash equilibrium derived using Gateaux

derivative in chapter 4.
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Chapter 3

Generalized Optimal Liquidation
Model Set-Up

3.1 Population of Agents

Consider the mean-field game described in [11] where the financial market consists of a population
Nof N = 0 rational heterogeneous agents trading a single asset S. The total population 0N can be
split into K < N disjoint sub-populations {k; }.cq, each of which has N, agents with a specific
investment objective and a particular market impact on the traded asset.

Each of the agents j in the k-th sub-population K, starts with a random amount Q'["i;k of asset
following a certain distribution F*(-) varies according to their sub-population, and only controls
the amount purchased or sold of the underlying asset at a continuous rate v/ = (J/f]!;::“r_']“: over a

fixed trading period [0, 7] from a set of admissible strategies

T
Al == vl piprogressively measurable s.t., E / [V:i]ud..‘:‘ <D0 (3.1.1)
0

Here 27/ > 0 (#7 < 0) indicates the rate of buy (sell) orders the agent places in the market and we
denote A := ]_[:'=l I and v = (vh, .- ,1’N) € A for notation convenience.

Different from Casgrain and Jaimungal, we assume that every agent in the market holds the
identical and true belief over the asset price process §¥ to simplify our analysis. In particular,

every agent in the market knows that the risky asset 8% = (57 ):c(0,1) is defined as

Sy =r-Yr 0<t<T (3.1.2)
where F' = (F),z[0,7) denotes some unaffected price process in H? following the Vasicek process
with some &, > 0 as

dFy = k(n — F;)dt + odW;, (3.1.3)

and Y = (Y}”);¢ (0,7 denotes an aggregated linear and exponentially decaying price distortion from
the unaffected price process F following the SDE
e
dYY = —pYudt =Y \ewfdi, (3.1.4)

k=1

where p corresponding to the resiliency of the price distortion, Ay > 0 corresponding to the scale
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of market impact of each sub-population Ky, and #f := DieK, ! correspending to the average
trading rate of all agents within sub-population Kj.

Remark 3.1.1. Note that by assuming the unaffected price process F' follows the Vasicek process,
we implicitly assume that € H?2, where H? represents the class of all (special) semi-martingales PP
which ensures the existence of the canonical decomposition P = M + A, for some local martingale

M and a predictable finite-variation process A = (At);c .7 such that

T 2
E[[M]7]+E (f dAS) < oo, (3.1.5)
"]

This specific feature would turn out to be critical to solve the examples in chapter 4.

Hence, the agents j in the sub-population K is able to keep track of their inventory process as

0" = (¢ )iepo,7) such that

. t
q;;) _ Q[}}_k. _/ J'fidﬂ_. (316)

0

as well as their accumulated cash process X7 = (Xf)!;:-[}__q--, such that

t
Xy =] —(8Y + exvl Jvlds, (3.1.7)

0
where ¢* > 0 corresponds to the instantaneous transaction cost for each sub-population k. Fur-

ther, each agent only observes the information generated by the paths of the asset price process
(St)ee o, 1), their own inventory process (Q’:"”J Jee(o,r) and accumulated cash process (){g"1 Jeelo,T)-
To sum up, for an agent j € Ky, it is tracking its inventory process and accumulated cash

process as

dg/’ =vidt, ¢f =" (3.1.8)
dX] = —(S" + cpf idt, XY =0, (3.1.9)

and observing the price process

dSY = (r(n— F)) + pY, + 3 _ #F)dt +dM,, S = S,. (3.1.10)

ke
Further, we denote agents’ private state process as o’ = (w‘f)!—:j[}__r = (r,S;‘_.Xf,qf)!;_;[,__T; and
global state process & = [:l:f],;_ju__f = (t, SV, X4, @t )eefo,r). where X; := (X}, - _.XEN] and q; ==

(g, ,qgm'] for notation convenience.

3.2 Objective Functions

With the above environment set up, the market has been transformed into a multi-agent game
where each agent chooses their own trading policy to maximise an objective function, while simul-
taneously considering the impact of other agents’ trading policies. Therefore, the problem has been
shifted from finding the "optimal” trading strategy for each agent i to finding the Nash Equilibrium
considering all of the market participants. Specifically, each agent j within a sub-population K

chooses a trading policy ¥ to maximise an objective function (total expected reward at time 0)
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R} defined as

T
Ri(w v3) =K | XY + gh” (S;: - (I);.q%w) - @/ (i y2dul (3.2.1)
1]

And following the similar operation in [11],

T T
T\’,'["l(:/-"i.:/_-]] =E f —(8Y + cpri Yo dt + q}'“) (9'{—- — ‘P;.q%;“)) — (6;‘.[ [q%—iw 2 du (3.2.2)
0 0

where @ > 0 and ¢* > 0 are hyper-parameters describing the cost of liquidating all the leftover
inventory at time T" and the running risk aversion of holding inventory during the game as we did
in the lectures, whereas —j is used for convenience to refer to all other competing agents to agent
j. For example, v=7 = (o1, 0771 01, V) indicates the action policies of all other agents
in the population.

In the next section, we will present the theoretical solutions and the sketched proofs for three
different scenarios consist of the case of optimal liquidation for the single agent [19] when k& = 1 and
N =1, the case of trading crowds [9] when k = 1 and N > 1, and the general case of mean-field
game with the same belief [11] when k > 1 and N > 1, with some modifications for each example
to fit in our model set-up.

Note that neither T\’,[”} nor r: for all + < T can be explicitly derived without full information
x of the environment. Further, the derived theoretical solutions do not gnarantee whether the
self-interested agents would reach the Nash equilibrium as we indicated in section 2.3. These
limitations motivate us to construct and examine our modified decentralized mean-field Game

()-learning algorithm in chapter 5 with the theoretical performance in the cases above.
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Chapter 4

Algorithmic Trading and

Mean-Field Game Solutions

4.1 Preliminary: Signal of the Vasicek Process

Before we dive into the details, it would be convenient to first decompose the the unaflected price
process I’ as suggested in remark 3.1.1.
Since F follows the Vasicek process, we know that the closed form solution for the SDE described

in equation (3.1.3) is [35].
t
Fy = Fe ™68 (1 — e~ols=9) 4 o/ e s W, (4.1.1)

for any 0 < t < s < T. Hence the Vasicek model F, as a semi-martingale in H* [36], can be
decomposed into F' = M + A, such that
Ay = Fe7 7 (1 — em=ls1) (4.1.2)

&

t
M, :a/ e I dw,, (4.1.3)

for any t € [O_.T]. Therefore, we may obtain
dA, = k(n — Fy)e ™= s, (4.1.4)

given the filtration information F; up to time stage ¢, for any 0 < § < s < T. Intuitively, dA,
provides the signal indicating the trend of the unaffected price F' given the current price F;. In
particular, if the current price is greater to the mean it is reverting to, i.e., I3 > 7, then there is a
downward pressure on the unaffected price amplified by the speed of reversion x. And vice versa.

This equation (4.1.4) would turn out to help solve the optimal liquidation and the trading with
crowds problems, as we will see in the following subsections.

4.2 Optimal Liquidation for Single Agent
In this subsection, we provide the optimal trading strategy obtained by the Gateaux derivative

when there are only one sub-population and a single trading agent, i.e., the scenario when K =1
and N = 1.




First, to simplify our analysis, we may rewrite the objective function in equation (3.2.1) as

T T . T .
/ —(f‘!—yg’)v,dr—/ mﬂdr—qT(S;—@q;)—@/ (g dul (4.2.1)

0 0 0

Rolv) =E

to fit the single agent case. This objective function, as designed, matches [19, eqn. 2.6] with slight

difference in the notation.

Remark 4.2.1. Note that though the transaction cost ¢ > 0 does not generate the temporary
price impact as it is in the setting of Neuman and Voss, it provides the same paid price deduction
from the perspective of the agent. By the nature of the temporary price, the transaction cost ¢ in

my paper serves the same property as the temporary price impact in Neuman and Voss.

Therefore, we obtain the exact same forward backward SDE system described in [19, Lemma
5.2).

Lemma 4.2.2 (A simplified version of Neuman and Voss's Lemma 5.2 [19]). The control v € A
provides the optimal liquidation strateqy if and only if the processes (1, XV, YV, ZV) satisfy the
following coupled linear FBSDE system

dgf  =wdt, gy =q
AYY = —pYPdi — Mvgdt, Y =

i [ 8 :‘. [}‘ J'V ) (4.2.2)
dy, =% (df} — YY" —dzy" +dhl, —20q; dt), vr= 25— LYY

dzZ¥  =uvdt —dN;, Z¥ =0

for suitable squre integrable martingales M= (J‘}g]!;:'[}__f' and N = (Ji'}),ﬁ-[}__r. Furthermore, the
FBSDE system in equation (4.2.2) has a unique solution.

Proof. See appendix A.1.1. O

This solution to the equation (4.2.2) in this paper is a specific case in [19]. Therefore, by [19,
Theorem 3.2], we have the following theorem.

Theorem 4.2.3 (A simplified version of Neuman and Voss's Theorem 3.2 [19]). Denote the auz-

iary matric

L=| ", , | € RV, (4.2.3)
v = 0 %
0o 0 1
and the functions S(t) := [Si;(t)]1<ij<a and G(t) := (Gi(t))1<i<a such that
S(t) = el (4.2.4)
A(t) == [i - n] S(8), (4.2.5)
fort > 0. Further, let
w(t) = ( Ga(t) 5. '*(”)_1 () = G2 Saa®) _ Gut)
o G (t) S1.a(t) TG0 Saalt) - Ga(t) (4.2.6)
w(t) = Ga(t) Sia(t)  Galt) valt) = Gy(t)
2 ' G;A}[f 9.1 .1(f G;(f] E G:‘}(”
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fort > 0. Then under the assumption that F' follows the Vasicek process, there exists a unique
optimal strateqy v* € A such that

vi =vg(T —t) [ul(r —t)gt + (T — )Y

L k= F) 'Uu}(r—f]fTP_""”_IJS.L'H(T_S)d.q—/Tp—h"#i—tj(;:i(T_'q)dg (4.2.7)
2c I t Saal(T —1t) : Ga(T —1t)

Proof. See appendix A.1.2. O

Remark 4.2.4. Although the optimal trading strategy »* depends on the current unaffected
price F; given the filtration Fy, but given the parameters in table 5.1 and table 5.2 during the

experiments, the impact is oblivious. More analysis in that can be found in section 5.2.1.

4.3 Trading with Crowds

In this subsection, we provides the Nash equilibrium obtained by the Gateaux derivative when
there are only one sub-population but N > 1 trading agents, i.e., the scenario when K =1 and
N =1

First, to simplify our analysis, we may rewrite the objective function in equation (3.2.1) as

Ry, v 7)) =K

. . : T )
Xy +ap” (S5 - @af) o [ (a7 )Qdu] : (43.1)
0
to fit the trading with crowds case. Again, we can quick realize that the objective function described
in equation (4.3.1) matches to what is defined in (9, eqn. 2.6], with slightly difference in the
notation.

Similarly, we obtain the following forward backward SDE system as described in [9, Lemma
2.5].

Lemma 4.3.1 (A simplified version of Neuman and Voss's lemma 2.5. in [9]). A set of controls
(11);em yields the unique Nash equilibrium if and only if the processes (v1, XV YV Z¥") for

Jj €M, satisfy the following coupled linear forward backward SDE system

dgy  =vldt, qf =¢
dYy —pYrdt — &3 gvidt, Y¥ =y
i =1 (djf} —dYy —dzy +dil, —2pq0 dt), vy = Ty — LVF

dzy’ = pZYdt + jvldt—dN,, Zy =0

(4.3.2)

for suitable squre integrable martingales M7 = (X1} Jeepo,r) and Ni= (i\wr"f)g.—:ju,_T‘_. j€MN. Further-

more, the FBSDE system in equation (4.3.2) has a unigue solution.

Proof. See appendix A.2.1. O

To solve the FBSDE system, we would need to obtain the averaged version of the Nash equi-
librium (7,7, Y?, Z¥) first, which motivates us to obtain the decoupled version of equation (4.3.2)

as follows.

Corollary 4.3.2. The mean-field controls v yields the uniqgue Nash eguilibrium if and only if the
mean-field process (7,§,Y", Z7) = %Egem(fﬂﬁ'iw YV, ZYY satisfy the following coupled linear
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forward backward SDE system

di?  =wdt, g =g

dYP = —pYPdt — dndt, Y] =y

v, =& (dF, —dYY —dZ7 +dM, — 2¢q7dt), vp = 2gf — LYE
dZP = pZldt + Audt —dN,, Z§ =0

(4.3.3)

for suitable squre integrable martingales M= (A"—f:):eju__l"j and NV = (J\_J})teju:f. Furthermore, the

FBSDE system in equation (4.3.3) has o unique solution.

Proof. See appendix A.2.2. O

To solve the equation (4.3.2), we need to first solve the equation (4.3.3), which again is a specific

case in [9]. Therefore, by [9, Proposition 2.9 |, we have

Corollary 4.3.3. Denote the auxiliary matriz

0o 0 —1 0
- 0 —p A 0
L=|"y , av-y , € s, (4.3.4)
o 2e 2eN 2
U

and the functions S(t) := [Si; (1)) 1<ijea and G(t) = (Gi(t)1<i<q such that

S(t) = ekt (4.3.5)
alt) = [

= i
-

L 1 o] S(t), (4.3.6)

fort = 0. Further, let

R S Ga(t) Sia(t) ! sy Ga(t) Ss1(t) _ Gi(t)

Pol) = (1 Gs(t) ~_4.~1(f)) it = Ga(t) Spa(t)  Galt) (4.3.7)
na(t) = Ca0) Baa(®)  Got) oy Calt)

R Ga(t) Syalt)  Gal(t) ’ Ga(t)

fort > 0. Then under the assumption that F follows the Vasicek process, there erists a unigue
Nash eguilibrium v* € A, where A = {er:m vl g Aj}. such that

5} =50(T — 1) [al(r NG (T — Y

LEm=F) (o [ ste 0 S0a(T = 5) —/T (s GalT = s) A
o (l.i(f f]/! € §4__4(T_f]d'q ¢ ¢ (:;H(T_f]dx

Proof. See appendix A.2.3. O

Remark 4.3.4. Note the similarity between theorem 4.2.3 and corollary 4.3.3. The only difference
comes from the third and forth rows of the base matrix L and L. Specifically, L = L when N = 1.

Intuitively, one may regard the mean-field process (7, 7", Y?, Z%) as a giant representative of
the sub-population executing the mean-field action 7 producing the price impact Y7 while tracking
its own mean-field process §°. However, its action would be slightly influenced by its component
agents. Hence, you may regard the representative as a single agent optimal liquidation problem
as we solved in theorem 4.2.3, with slightly difference as a result of the interactions within its

component agents.
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Therefore, following the Neuman and Voss in [9, prop. 2.9], we obtain the following theorem.

Theorem 4.3.5. Denote the auziliary matric

0 -1 0
L= _% _ﬁ % = RHXH, (_lgq)
0 % ]

and the functions S(t) := [Si;(t)]1<i <3 and G(t) := (Gi(t))1<i<s such that

S(t) := et (4.3.10)

() = [i “1 n] S(t), (4.3.11)

fort = 0. Further, let

wolt) == (1 _ G4 (t) S30(t) )_1 vy (8) = Gy(t) S31(t) _ G (t)
v Go(t) S55(t) EAENT S3a(t)  Galt) (1.3.12)
w(t) = G3(t)

Ga(t)

for t > 0. Then under the assumption that F' follows the Vasicek process, there exists o unigue
optimal Nash equilibrium v* = (v"")jem € A such that
ud* 1 o

vl =vo(T — 1) [m(r -4~ Ty T
G (T —

LR =F) T ety Saa(T — s) _f" (ot Gs(T = 5)
72(' (‘i,ﬂf f)]! [ 73373(:{__“{18 | [ 7@:;(T—f] d.‘? (_1'31'3)

1 . T San(T—s) o [TGiT—s) o
‘%(””‘” C ST G

Proof. See Appendix appendix A.2.3. O

Note that since ¥¥" is deterministic (see also in appendix A.2.4) with finite variation, we know
that the integral part with respect to d¥, in equation (4.3.13) can be simplified further to a form
with only ds term. However, since Y7 is needed to know beforchand to compute the »9*, the
current form would be simple enough for numerically obtaining 1#* and actually produce less

errors due to floating point. Hence, we would regard theorem 4.3.5 as it is.

4.4 Mean-Field Games with the Same True belief

Inn this subsection, we provides the analysis by the Gateaux derivative when there are K > 1 sub-
populations and N > 1 trading agents in total, i.e., the general scenario of our model set-up when
K > 1and Ni > 1 for any k. Although this is a simplified version of Casgrain and Jaimungal
in [11] to some degree, note that the extra feature on the exponentially decaying transient price
impact process Y also extends the complexity of solving the problem.

Note that for each agent j € 9, the analysis for the concaveness of the objective function
in equation (3.2.1) does not differ from the trading crowds scenario. Therefore, similarly to the
argument in section 4.3, it admits a unique maximizer characterized by the critical point at which

the Gateaux derivative vanishes for any direction in 47,

Lemma 4.4.1. A set of controls (1) ;em yields the unique Nash equilibrium if and only if the
processes (11, XV YV, 2", for j € Ky, satisfy the following coupled linear forward backward
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SDE system

dgy’  =vldi, Xy =i
. - A B
Yy = —pYrdi =3, ¢ Z:‘exk vpdt, Yy =y (4.4.1)
dv/ = l (d}f} —dY¥ — riZ“J * dﬂf":" - ZQk.q;’Jdt] . V= %q%" — Ztlk Y}
M") - ”J Far \ =g It — d;‘i’f"r, d“) =0

for suitable squre integrable martingales Mk = (Jil’gj‘g)zej[}_Tj and NI = (J{’f'g);‘—:‘[}_rj, j € Kg.
Furthermore, the FBSDE system in equation (4.3.2) has a unique solution.
Proof. See appendix A.3.1. |

Similarly, we obtain the following forward backward SDE system as follows.
Corollary 4.4.2. A set of sub-mean- ﬁF‘d controls (7%)cx yiclds the unique Nash equilibrium
if and only if the mean-field process (v*, r}" Yot zety = \%k x-‘.:,tk(rﬂ_.q""’_.Y"_.Z"J) satisfy the

following coupled linear forward backward SDE system

dgy”  =vkdt, g =q*
dY7" = —pVP dt — 3, Ak dt, Y =
: p Z; e Mk y ) ) (4.4.2)
ok = ZL (dh _dYP —dZP AN — 264 dr] vh= 2 - Lyx
dz" P+ ofdi— AN, ZY =0

for suitable squre integrable martingales M= (;1}1)!;:-[};- and NI = (J\_:});E-[}:T-. Furthermore, the
FBSDE system in equation (4.3.3) has a unique solution.

However, notice that we may still unable to solve the FBSDE system in corollary 4.4.2 as it is
still coupled indicated by the }_’!‘_’k term. To this end, denote the distribution (or weight) of each
sub-population Ky, as

J\
pe= o CY =1, (4.4.3)

ke

we finally obtain the following decoupled FBSDE system.

Corollary 4.4.3. The mean-field controls v yields the unique Nash equilibrium if and only if
the mean-field process (0,37, Y7, Z7) := Y .4 P g7 YT 27 satisfy the following
coupled linear forward backward SDE system

g =wmdt, @=q

dYy = —pYydt —wdt, Y=y

dv, & (dF, —dYY —dZ7 + dM, — 26q7dt), p= 2qf - LYK
dz? = pZPdt + Lodt —dN,, Z¥ =0

(4.4.4)

Remark 4.4.4. Notice that the distinet pairs (Ng, Ap) over all k& € R becomes an obstacle when
we decouple the FBSDE in equation (4.4.2). To this end, we have to define the mean-field strategy
v as the weighted average over the K sub-populations weighted by their sub-population size N
and market price impact A, for each k € R Similar to our intuition in remark 4.3.4, this modified
structure can be viewed as a giant representative executing the mean-field action &' with some
market price impact A, or the mean-field action # as we defined above, but re-scaled to an stan-
dardized space. However, bear in mind that A is not constant with respect to (#*)c 4. Therefore,

we decide to recommend the second interpretation and notation.
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Notice the similarity of the decoupled FBSDE in corollary 4.4.3 and corollary 4.3.2. Hence, we
can immediately obtain the following result with A = L.

Corollary 4.4.5. Denote the auriliary matriz

0 0 -1 0
— 0 —_ 1 i
L:= ¢ .r_Jp _{N—]_J N c R‘-]X‘-l, (440)
[ 2c 2eN 2c
o 0o L

and the functions S(t) := [S;;(t)]1<i j<s and G(t) := (G;(t))1<i<s such that

S(t) =™ (4.4.6)
G(t) = [1 ~L o 0] S(8), (4.4.7)

fort > 0. Further, let

_ . G4(t) Sy a(t) - - - Ga
t) = (l Gl §4:4(f]) =g

Gyt
B Gl‘}[r

- (4.4.8)
Sy

§4 4

t
t

Galt) (8) Gy

B2(t) : T Galt)

) S1,2(t)
) S1,4(t)
fort > 0. Then under the assumption that F' follows the Vasicek process, there exists a unigque
Nash equilibrium v* € A, where A := {Z-j’:‘_ﬂ v e A-j}. such that

v =00(T = 1) [(T = gl + 0a(T = ¥

) ’ T (1] SNl 4.4.9
4 k(n— 1) 3a(T — ) /T e—rls—1) 5_4__:1({ — S)dﬁ _ /T e~ Hls=t) (“_7'3({“ — 'q)ds ( )
t Sya(T—1) t Gs(T —1)

Remark 4.4.6. Note that the result in corollary 4.4.5 gives limited insight about the unscaled
mean-field trading strategy #'. Thus, we did not implement and plot it as the benchmark for the

major-minor example in section 5.2.

Notice that the resulting Nash equilibrium 7* in corollary 4.4.5 is deterministic, snggesting that
the FBSDE systems proposed in corollary 4.4.2 and lemma 4.4.1 can be solved progressively and
the results wonld be deterministic as well.

As proposed in corollary 4.4.2 and indicated in [11], such a coupled FBSDE system is too
complex to solve explicitly. One widely used approach in the mean-field games, as proposed by
Casgrain and Jaimungal, is to restructure the finite-agent game into a infinite-agent game, such
that N — oo with pg € (0,1) unchanged. Instead of solving the individual trading strategies, this
approach would solve the finite sub-population representative mean-field game with scaled price
impact. In particular, each negligible individual in the infinite-agent game would behave closely
to its sub-population’s mean-field actions within some boundary e in the equilibrium, and such
a Nash equilibrium is called e-Nash equilibrium. After that, the attained Nash equilibrium can
be shown to be an well-defined approximation for the Nash equilibrium of the finite-agent game,
within some error-tolerance ¢ > (. However, as it is out of the scope of the paper, we would not
dive into the details of solving this e-Nash equilibrium but instead suggest interested readers to

consult 9, 11| for more details.
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Chapter 5

Decentralized Mean-Field Game

Solutions

Although the mean-field game method provides a straightforward solution for most of the regularly
defined optimal execution problems, the mathematical complexity becomes a barrier for practition-
ers to apply the technique in the industry. Further, even though the existence and uniqueness of the
Nash equilibrium can be shown, the FBSDE systems are sometimes too complex to solve explicitly,
while infinite-agent games are somewhat not precisely what we want. Also, it does not guarantee
whether the game process would achieve the Nash equilibrium during the game. Therefore, moti-
ated by [12, 18], we considered and modified the decentralized learning algorithm to simulate the

learning process and reached the quasi-Nash equilibrium with acceptable computational cost.

5.1 Framework and Algorithms

To characterize the mean-field game problem as a multi-agent stochastic game (S9, A7, 17, p,4) cn,

we must first discretize the objective functional in equation (3.2.1) and equation (3.2.2) into

T
RYW v ) =B |XF g (S5 @ear”) - on D_(ar )t
t=0 (5.1.1)
T

T
=B |3 (8¢ +awdidt+ (85— tuah”) - Y5 )t

t=0 t=0

where df > () is a fixed real number, and then define the function r = (ry, -+ ,ry ), in which
i Sx AR (5.1.2)
provides the reward for each agent j at each state z; given every market participator’'s action
v = (v, 7), such that
T
Ry’ v ) =E > (v v )| (5.1.3)
t=0

Here the state process x follows {zg ~ po, zey1 ~ p(-|ze, 1), 1 € [0, T} with py € A(X) as the
initial state distribution, as we introduced in chapter 2.

Remark 5.1.1. Notice that while the range of selections for r provides an extra degree of freedom

in solving the multi-agent games, the choice we made may also impact the learning efficiency and
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sometimes even the convergence (e.g., see reward shaping in [37, 38]). A concrete and related
example can be found in the course project by Somner-Bogard and Wang [39].

Following the majority of the literature (e.g., see [12]), here we define the reward function r!

P —(8% + v Wi dt, itt<T : _
™z, 1,0 1) = o . . . YO0<t<T (5.14)
—(SY + ey v dt + g (SY% — gy ), otherwise

for any j € M, to characterize the immediate reward when ¢ < T as well as the terminal reward
when t = T". Theoretically, the agents j would be able to capture the jump of the terminal reward

governed by the extended Bellman equation for Nash equilibria (»7+*,79*) in [12, eqn. 3.1]

R (W, % g) = r}mxj{r'j(vf,v;"’*;‘r!]—lezHNp{.pz:,,lJ [R':H[u-j‘*,u_'j‘*;;r')]}, (5.1.5)
veA]

. Sfod i [T .
where by abuse of notation, we denote R{ (27, v 1z, ) := E {E;:! r(z,,1d

N T )] as the expected
total reward since after time stage t given v and state process z, and v~/ left as fixed at the
perspective of the agents j. Following the literature in reinforcement learning, here we define the
value function as

V'.‘j(‘l‘.‘;] . R‘lj(u‘j"*,u_'j'*;:r};) (5.1.6)

which represents the value of each state z; at their Nash equilibria, as well as the state-action value

function, also often called the Q-Function, as
Q' (zeive) =1 (ze100) + Eu o) [V (2041)] (5.1.7)

which represents the value of each state-action pair (x4, ) at their Nash equilibria. Hence in [12],
the target is to approximate such global functions V := (V1,--. ,V¥)and Q := (Q',--- ,QV), s0
that every agent at current state x; is controlled by these global functions to select their actions
v} all together that maximizes the @ function. But as we discussed in section 2.3, agents j would
not be able to make the decision based on the Q-function without the knowledge of v/,

To address this issue, we decompose the Q-function (¥ into the mean-field Q-function Q7 as

1

Q-‘(:xt,uf,u;-]) = -1

Z Q (v ) = QY (g1, ), (5.1.8)
k#j

where )/ represents the the pairwise local interactions between agents j and agents k. A concrete
proof of the approximation in equation (5.1.8) can be found in [34].

However, this approximation does not fully address the problem raised by the minimal informa-
tion requirement because the agent j is still unable to make its decision on 1 based on 7 without
knowing the mean-field action 7 ahead of time. Iurther, note that observing the mean-field action
7z at time stage ¢ is not feasible in practice as the agents j itself has not selected its action vf at
time stage t.

Therefore, inspired by [18], we proceed with a further approximation in the mean-field Q-
function @7 such that

Q (vl i) = By [ e 7)) (5.1.9)

where

i = 5z, ) (5.1.10)

32




is the predicted mean-field action for time stage ¢ estimated with the private state z; and observed
mean-field action y;_q, for some functions {f" bees. Different from [18], here we denote Q“ as the
mean-field Q-function for the agents j in the sub-population KCy.

Intuitively, this modification should not significantly affect the DMFG performance. In the
context of mean-field optimal liquidation problem presented in this paper, the individual agents i
and j in the same sub-population X, are not necessarily distinguishable, in the sense that each of
them have precisely the same structure of the objective function (i.e., same risk aversion hyper-
parameters ¢y, Py in equation (3.2.1)), and the same market price impact Ap. Therefore, assuming
that the agents failing in the same sub-population should behave under the same logic is appro-
priate.

Remarkably, the agents in the same sub-population would not behave exactly the same given
their distinct private information 7 and individual prediction towards the current mean-field action
ji . In particular, their inventory process ¢/ would introduce the variation between the decisions
cross the agents within the same sub-population. This reasoning should also apply the same when

predicting the current mean-field action ,ﬁ.;'_'_l‘ In particular, we have

ﬂ]-'§+1 = ) # ) = TS

for ¢ # j. Note that this distinction is almost surely guaranteed by the randomized initial inven-

tories.

Remark 5.1.2. Notice that the equation (5.1.9) is still ill-defined as there are infinitely many
possible linear combinations of {vj },; to form a given predicted mean-field action #/. However,
recalling the intuition from the decentralized learning introduced in section 2.3.2, this relationship
is sufficient to provide an appropriate updating rule as we proposed as follows. Need to note that

the updating rule for contignous action space would be slightly different from the discrete case.

To formulate our modified DMFG algorithm based on [18] in the contiguous action-state space
setting, we first construct pairs of neural networks (Qg, 1:';;". f¥) parameterized by § € © for esti-
mating (Q*, V¥, f*) defined previously. In order to approximately satisfy the equation (5.1.9), our

objective is turned to minimize
E [HQg(ar;.v:.ﬁ.;) — 7 (adv) = Vi (s v i) | } : (5.1.11)

over all v/ € A7, for any j € M. Intuitively, this equation measures the gap between the estimated
mean-field Q-value of the current state and action pair (z, J'/'!'i s i) and the estimated state value
of the next time stage ;4 if 1 is executed, and should diminish when Q¥ — Q¥ and V¥ — V¥,

Except for the fact that the equation (5.1.9) is ill-defined, the equation (5.1.11) is also not
tractable as the transition probability p(rip1|ze, 1) is unknown to the agents for all £. To this
end, we rely on the simulation-based stochastic gradient decent method established on the insight
from [30] (and also see [12, 18]) to search for # € © with the loss function

B
1 e i o N o 2 _
L) =5 ,§ l @5t i) = vy m) = Vi s s i )| (5.1.12)
=

where b = 1,2,--- | B corresponds to the sampled batch from the observed state-action triples
{(;1'f),r/;f,;xf),ri. zpy1)} for each update with some batch size B € N.

This updating rule, in turns, provides

v/ (e, 7] ) = argmax {Qfé(:r:_.vf.-vf)} (5.1.13)

u;’ A,

33




given current state a; and predicted current mean-field action 7 for execution during the training
process.

One common obstacle in reinforcement learning, as in our algorithm, is to find the » that
maximizes the C}f function at each time stage ¢ in equation (5.1.5), given our contignous action

space AJ. In general, there are three methods to work around that.

e Discretize the Q-function. That is, randomly draw M admissible actions {:/f__m € Al bmen

and compute {Q&'(;lr!,vf__m, g].'f__m ) bmear. Then, we select the largest Q-values and regard

" ek G s
" = argmax{ Q" (ze,14 1, i ) m<r-
m<M

e Train another Q-function maximizer. That is, at each iteration of the Q-function, we sponta-

neously train another Q-function maximizer gq (z;, i) = argmax ; Q“'(;l:t,uf, fif ), so that
7

e Assume the Q-function to be strictly convex with an explicit global maximizer. Then we

automatically obtain i at each time stage t during the training process.

While the first and second tricks provide better estimation, they sacrifice the convergent efli-
ciency significantly as both involve tremendous computation at each iteration step. Hence, similar
to [12], we decompose the Q-function Q% into a sumumation of edvanced funetion A% and value

function such that
Qi(xd v i) = ViF(2)) + Ak (2] v, i) (5.1.14)
where fiz measures the optimal gap between Q':; and 1:;;’7". In practice, the A* is usually assumed
to preserve the linear quadratic form as in
ik g0 gy il
Ay v, ) = — g (g, ) — 13| o, 5.1.15
olze v, i) 6 (T ) t ol id) (5 )
for some positive definite matrix funetion 24(-, ). It follows that

fdak ]

ot = vl (e, i), (5.1.16)

Remark 5.1.3. The third trick is usually designed for vector-form actions in the reinforcement
learning literature (for example see [12, section 4]). But notice that the action v] € R in this

paper. Therefore, the equation (5.1.15) boils down to

Akl vl pdy = =(x], i) - (o, i

A=t
|

X

s

for some parameter ¥y(-,-) € I > 0. Although it may seem over-simplified, the performance,
as seen in the section 5.2, is satisfactory. Besides, we also tested several other convex functions
(e.g., even-ordered polynomials up to 10) and the performance turns out to bhe no significant

improvement.

The algorithm 1 below provides a pseudo-code of the actor-critic procedure for the decentralized
mean-field game Q-learning algorithin. We apply the decentralized mean-field game Q-learning
updates in [18] to the model-free mean-field framework with some modification in the update
equations, where the neural networks for approximating the value functions V7 and mean-field
Q-function ()7 are set to be identical among each sub-population &;. Further, the agents j only

observe their local state z7 and have only access to the previous global mean-field action i.
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Algorithm 1 Actor-Critic for Decentralized mean-field Game
Input: # Episodes E > 0, Minibatch Size B > 0, Terminal Time 7", Time Step dt.
Input: Exploration Nose {o}, : o), > O}f?:l
1: Initialize Replay Buffer D, Parameters {(9%,9@,9?}&\;}( for the critic Vi, the actor Q. and

mean-field estimate fg. parameterized by (951'1.9%‘(},9?').

2: Initialize the first observed mean-field action ) for each agents j to a uniform distribution.

3: while Episode < E do _

4: Obtain the current state xj, for each agents j.

5 while t < T do &t can be extracted from x;, and start from #; > t; =0

6: For each sub-population k, obtain the estimated mean-field action fif = (ji,) ek, based
on observed mean mield action p,—1 for all agents j in the sub-population.

7: For each sub-population k, obtain action (¢}) e, from the argmaxug{ng(.lrf,pf,ﬁ.g)}
at the current state o for all agents j in the sub-population.

8: Execute the joint action v = (v},--- ,v/¥). Observe the rewards v, = (r},--- ,r¥) and
the next state x¢ = (z},- - ,.1.‘;'\") and the current observed mean-field action pi.

9: Store yy = (4,0, 7y, 2441 ) in D.

10: Sample D' = {y;}2 | from D.

11: For each sub-population k, update the parameter 9?,’ of the mean-field network using a

mean square error between the observed and estimated mean actions g and g for all agents
j in the sub-population.

12: For each sub-population k, update the parameter # of the eritic network using stochas-
tic gradient descent over the loss B;-sz;ep’u{y;z}ﬁv(y-‘gi’) for all agents j in the sub-
population.

13: For each sub-population &, update the parameter 65 of the actor network using stochas-
tic gradient descent over the loss B;HE_U&'D'U{_U‘}£Q(y‘9$’95) for all agents j in the sub-
population.

14: Set the next state as the current state = < =}, ; and the observed mean-field action
A

15: end while

16: end while
17: Return #% = (9‘/“,9{,—,9’}) for k< K.

5.2 Experiments

In this section, we study the performance of our modified DMEFG algorithm in the three optimal
liquidation problems described in chapter 4. The parameters we used for the environment can be
found in table 5.1. Further, all the agents are trained given the same algorithm as described in

algorithm 1.

Table 5.1: Asset price process, and environment parameters.

dt T p Sy & o
0.1 10 1 10 05 10 1

Each experiment in this subsection was run consecutively in training and evaluation phases.
The training process follows the algorithm 1, but with a decaying probability €; € [0.1,0.99] at the
i-th iteration to explore some random action #F for each sub-population K at each time stage
t € [0,T]. After the training process, we would evaluate and record the performance of these agents
for 200 games. In the following subsections, we present and analysis the performance of our agents
for each of our experiment, compared with the theoretical optimal strategy or Nash equilibrium
derived in chapter 4.

The training processes were run on a 1 GPU physical machine with 8 GB GPU memory and

took roughly 0.2 days, 2 days and 3 days for each experiment, respectively. To remain a relatively
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acceptable training speed, the network structure was designed as a fully connected neural network
with 5 hidden layers each containing roughly 20-50 nodes. This network structure, however, would
potentially introduce some issues, which we would analyse in section 5.2.2 and section 5.2.3 in
details.

For the following examples, we would abuse the notation of the objective function to denote
the accumulated rewards received by time stage ¢ as R, and thereby the reward process as R =

(R:J:'r_fu__Tf -

5.2.1 Optimal Liquidation for Single Agent

In this experiment, we studied and compared the performance of the DMFG algorithm with the
theoretical optimal trading strategy we derived in section 4.2.

For this example, we assume a single major agent (N, = 1) with relatively large price impact
Ap = 0.15 and relatively small transaction cost ¢; = 0.15. Further, although we assume the agent
to be patient in the sense that ¢ is set to be 0.05, it indeed has a demand to liquidate its inventory
within the time interval [0, 7] as we described in chapter 1, otherwise it would be forced to liquidate
its left inventory gr by time stage ¢ at the cost @ = 2. The summary of agent-related parameters
can be found in table 5.2.

Table 5.2: Agent-related hyper-parameters for optimal liguidation problem with major (single)
agent.

K e @ o N Elg Vg
Major Agent | 0.15 0.15 2 0.05 1 20 3

After training for 1000 games, the DMFG agent was evaluated in the execution phase for 200
games, and achieved 94.25% average final reward compared with the optimal trading strategy
derived in section 4.2, Here we preseuts the performance in figure 5.1.

The DMFG agent not only learned to liquidate its inventory by the terminal stage T" but also
learned to liquidate it faster during the beginning, even though there is still an obvious gap between
the optimal and the DMI'G trading strategies shown in figure 5.1a. However, given our relatively
simple, fully-connected network structure, we did not expect our DMFG agent to be as sensitive
as the theoretical result. Given that the Q-learning algorithm is model-free, i.e., the agent does
not know the underlying dynamics, such a performance is satisfactory.

Based on this experiment, we conclude that the DMFG algorithm with our modifications de-
scribed in section 5.1 (e.g., the assumption about the advantage function A) is applicable to the
optimal liguidation problem. This result encourages us to bound forward to more general mean-
field examples in the following subsections.

5.2.2 Trading with Crowds

In this experiment, we studied and compared the performance of the DMFG algorithm with the
theoretical Nash equilibrium derived in section 4.3.

For this example, we assumed the trading crowds with N = 5 trading agents with relatively
stnall price impact A = 0.15 and relatively large transaction cost ¢ = 0.3. Even though Ay has the
same value as Ay in table 5.2, note that it only defines the price impact of the sub-population as
a whole, while each individual trading agent would only have Az /Ny = 0.03 as its price impact.
Further, we also assumed these minor agents to be patient in the sense that ¢ is set to be 0.05.
However, we assumed that they did not necessarily have the demand to liquidate all of their
inventories by the terminal time stage T. Instead, we set @ = 0.5 which is slightly greater the

transaction cost e. Intuitively, the terminal penalty can be interpreted as the expected value of
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Figure 5.1: Performance comparison between DMEFG and theoretical result in single agent setting.
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(a) The red region is a plot of 200 trajectories of the DMFG mventory process g™, 0 < n < 200
for the trading agent. The red line is the averaged DMFG inventory process over the 200
trajectories g. The blue line is the theoretical optimal inventory process q"'.
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(b) The red region is a plot of 200 trajectories of the DMFG reward process R"™, 0 < n < 200 for
the trading agent. The red line is the averaged DMFG reward process over the 200 trajectories
R. The blue line is the theoretical reward process RY  in Nash equilibrium.




the terminal inventory if the agent j need to solve it immediately, with the value of holding the
stock to the future into consideration. The summary of agent-related parameters can be found in
table 5.3.

Table 5.3: Agent-related hyper-parameters for optimal liguidation problem with trading crowds
{minor agents).

K A ® o N Elg Vg
Minor Agent | 0.15 0.3 0.5 0.05 5 5 3

This time, we trained the DMFG agents for 10000 games and then tested their performance
in the evaluation phase for 200 games. The tested performance at each training step is plotted in
figure 5.2. Here we fixed the initial inventory g, = (3,4,5,6,7) for better visnalization despite we

randomized it during the training process.

Figure 5.2: The averaged terminal reward on evaluation phase at each training step in trading
crowds setting.
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Different from the performance in section 5.2.1, however, the trading agents in this scenario
did not achieve the theoretical result as we have observed previously in figure 5.3. In particular,
the final reward ratio is presented in table 5.4.

Table 5.4: Minor {Crowds) Agents Performance Ratio

Initial Inventory 3 4 5 6 7
Minor Agent 79.63% 97.223% 99.92% 95.33% 86.50%

This performance is not surprising if we investigate the DMFG inventory process presented in
figure 5.3a. Contrasting from our analysis in section 5.1, the minor agents in the crowds did not

select significantly different trading strategies over the 200 evaluation trajectories given distinct
1

private information z! = (t_.S;_.qi’j,g]f) for each agent j. This results in the quasi-parallel

inventory processes as the red lines indicated in figure 5.3a. This quasi-parallel feature would

not disappear when we enlarge the variance of the initial inventories. Specifically, the terminal

INote that the agent's action (/g given its own private information does vary over agent j = 1,--- , 5. In particular,

it tends to sell more when it currently has larger inventory g/. However, this difference in the infinitesimal time
period does not produce a lundamental difference on the inventory process g/,

38




Figure 5.3: Performance comparison between DMFG and theoretical result in trading crowds
setting.

Inventory Process

Inventory g

Time Stage U

(a) The red region is a plot of 200 trajectories of the DMFG inventory process 7", 0 < n < 200

for all trading agents j = 1,--- , 5. The red line is the averaged DMFQ inventory process over

the 200 trajectories ¢’ for each trading agent j. The blue line is the theoretical inventory process

7" in Nash equilibrium for each trading agent j. The green line is the mean-field inventory

process ' averaged from the 5 DMFG inventory processes ¢, for j =1,---,5. The yellow line
3

el

is the theoretical mean-feild inventory process g " in Nash equilibrium.
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(b) The red region is a plot of 200 trajectories of the DMFG reward process RY™, 0 < n < 200
for all trading agents j = 1,--- , 5. The red line is the averaged DMFG reward process over
the 200 trajectories RY for each trading agent j. The blue line is the theoretical reward process
R* in Nash equilibrium for each trading agent j. The green line is the mean-field reward
process RY averaged from the 5 DMFG reward processes RI, for j = 1,---,5. The vellow line
is the theoretical mean-feild reward process ™" in Nash equilibrium.




inventories would have a smaller variance compared with that of the initial inventories, but it
would definitely not reach zero for each agent j as we expected in the theoretical Nash equilibrium
result indicated from the blue lines in figure 5.3a.

While the individual trading agents did not produce the ideal result, the mean-field represen-
tative we specified in remark 4.3.4 still performed nicely. In particular, the DMFG mean-field
process § started with g, = 5 would overlap with that of the individual trading agent with initial
inventory ¢} = 5, as shown by the green line and the mid blue line in figure 5.3a. Further, notice
that both of them would liquidate their inventories by the terminal time stage 7. Also, such a
mean-field inventory process achieved the highest performance ratio at 99.92% among other indi-
vidual inventory processes. In fact, one way to interpret the plot is to regard the other individual
inventory processes as quasi-parallel to the mean-field one.

Remark 5.2.1. Note that the green DMFG mean-field inventory process is still significantly dif-
ferent from the yellow theoretical mean-field inventory process indicated in figzure 5.3a. As we
discussed before, we did not expect our DMFG agents to be as sensitive as the theoretical result
given our relatively simple fully connected network structure. Intuitively, the agents were encour-
aged to maximize the accumulated rewards RY, it received by the terminal stage T. Therefore,
once it achieves a relatively maximized terminal rewards R% on average within a certain threshold,

the learning process would slow down.

Nevertheless, recall that we have shown in section 4.3 (also rigorously in [9]) that the Nash
equilibrium in the trading with crowds scenario is unigue. Further, it has also been jointly proved
by [30, 18] that the DMFG algorithm should converge, though the algorithm has been slightly
modified in this paper. That is to say, the DMFG learning algorithm should provide the theoretical
performance as we have seen in section 5.2.3 as long as it converges to an equilibrinm. Therefore,
it is natural to ask why the individual trading agents cannot produce a similar inventory process
to the theoretical result as we derived in section 4.3.

There are several hypotheses to explain this empirical result. The first straightforward expla-
nation is that the 10000-game training process does not appear to be large enough for convergence.
But note that 10000 games mean 10000 x 100 data points as each game has 100-time stages, as
well as that 1000 games are large enough for the single agent case to converge. This does not
provide a convincing explanation for us.

Besides, one may argue that the modified DMFG learning algorithm cannot inherit the prop-
erties from (30, 18] and hence does not guarantee a provably convergent result. It does provide a
plausible explanation considering the empirical example we suggested in section 2.3. That is, this
empirical result supports that the existence and uniqueness of the Nash equilibrium do not neces-
sarily guarantee convergence, as suggested by Nagel's empirical experiments in 1995 [13]. However,
as the proof of the convergence of this modified DMFG algorithm is out of the scope of this paper,
we would not provide further proof for our DMEG algorithm, given the limited time available for
the thesis project. Instead, we would leave this as an open problem for future studies.

Apart from the explanations provided above, one another hypothesis appears more promising to
us. Recall the theoretical Nash equilibrium derived in theorem 4.3.5. Notice that the required input
is (t, ff;,q"J \ (1_’!‘_ Jte(o,7)); Whereas our input is (t_.St_.q"j,,e].t]. In particular, even it our model-free
agents find a way to decompose S; into F; and M, from its experiences of playing the games for
10000 games and find a perfect pattern to predict p; given ps 1 so that they can produce Y; up

to filtration F;, notice that they have a built-in inability ? to compute Y7 given the information

Note that in theorem 4.3.5, however, ¥ is able to compute beforehand due to the introspective thinking process
(or E¢[¥7] in [9] given a general signal process A). In the terminology of RL literature, we say that each agent
j is_controlled by a centralized system. Since the centralized system has access to complete information, Yr (or
E¢[Y7]} can be computed beforehand and provided for each agent j at time stage t. This also explains why the
Deep Q-learning method for the trading crowds scenario by Casgrain, Ning, and Jaimungal in [12] works.
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by time stage f. Therefore, in general, they will never be able to converge to the theoretical Nash
equilibrium as we derived in theorem 4.3.5.

On the other hand, this hypothesis also explains why the mean-field representative (or, the
individual trading agent with initial inventory g = 5) produces a 99.92% terminal reward divided
by the mean-field theoretical terminal reward. Recall the theoretical mean-field Nash equilibrium
derived in corollary 4.3.3. The required input is (¢, Fy, G, ¥: ), which can be represented by our input
(t, S, qé’n .ft¢). That is, instead of learning the individual Nash equilibrium, the neural network for
the sub-population learned the mean-field "optimal” strategy given the private information, with
a slight approximation to the individual "optimal” strategies up to the filtration ;.

Note that the logic behind the section 5.1 is still holding. To our knowledge, there are two
ways to fix this hypothetical problem.

Firstly, one may consider constructing two neural networks for each sub-population instead
of only one. While both of the neural networks would be designed and trained as what we have
designed in algorithm 1, the second neural network would take the estimated mean-field process
Y = (}h’t)!—r_j[}__r generated by the first one as its input at the beginning stage t = 0 or during each
time stage ¢ € [0,7] for each game. Intuitively, the first neural network serves the function of
group cognition as defined in [40]. In contrast, the second one provides the desired optimal trading
strategies given their group cognition.

The new network structure retains linearity to the sub-population amount regarding the com-
putation cost, except that it may arguably violate our assumption that each individual has minimal
information, as the information within the sub-population level has been revealed to the second
neural network in some sense. Specifically, the neural network for group cognition aggregates the
private information of each agent j during the training. It then reveals it by providing the second
neural network the estimated sub-population price impact process ¥ up to filtration Fr.

As we mentioned at the beginning of section section 5.2, the second method is to investigate
the fully connected feedforward network structure. Since we have noticed that the main issue
arises from the incapability to compute the exact ¥ = (1_’:):&:[}.1": given Fi, a recurrent neural
network, such as the LSTM [41] and/or the multi-head attention [42] should be considered, in the
sense that to help the trading agents either realize that Y7 is deterministic (which is only valid
given our Vasicek process), or estimate the future mean actions (py, py41,--- . g7 ) given the history

(b1 pos oo s e—1)-

Remark 5.2.2. Such a modification, as we will argue in section 5.2.3, may turn out to be insuf-

ficient in the general case when there are K > 1 different sub-populations.

Unfortunately, both methods are out of the scope of this paper, given the limited time and
the available physical machine. Therefore, we did not carry out the implementation to test our
hypothesis and left it as one of the open problems for our future studies.

Based oun this experiment, we conclude that the modified DMFG algorithm may not be able to
perform perfectly at the individual level for each sub-population but is satisfactory at the mean-
field level. TIurther, we offer some analysis and several possible explanations for this outcome.
Although the result is not ideal, these attempted explanations still provide some support for our

following experiment and the subsequent research.

5.2.3 Major-Minor

In this experiment, we studied the performance of the DMFG algorithm for the general case in
our model set-up. In particular, we set the K = 2, with a single (N} = 1) trading (major) agent
in the first sub-population Ky, and a trading crowds of (Ny; = 5) minor agents in the second

sub-population K. This experiment is motivated by the model presented in [10]. In this scenario,
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we cannot provide a theoretical Nash equilibrium as shown in section 4.4. However, we may still
utilize some insights from previous theoretical results to evaluate our modified DMFG agents’
performance.

For this example, we assume the single major agent with relatively large price impact A; = 0.15
and relatively small transaction cost e; = 0.15, whereas the trading crowds with N = 5 minor
agents with relatively small price impact Ay = 0.15 and relatively large transaction cost ¢, = 0.3.
Again, note that the major agent has larger market price impact becanse A only defines the price
impact of the sub-population as a whole. The market price impact of each individual trader in the
trading crowds is only Az/N, = 0.03.

Further, both sub-populations were assumed to be patient in the sense that ¢1 = @2 = 0.05.
However, the major agent has a demand to liquidate its inventory within the time interval [0, T
as described in chapter 1. Otherwise, it would be forced to liquidate its left inventory gr by time
stage ¢ at the cost @1 = 2, while the minor agents do not, given their ®» = 0.5 which is only
slightly greater than their transaction cost cy. In other words, only the major agent was required
to liquidate its inventory by terminal stage T, which is more realistic as different trading agents
may have their fundamental analysis to decide whether to liquidate the shareholding for a specific
underlying stock. Agents in different sub-populations do not necessarily need to make the same
decision to liquidate their inventory within the next hour (e.g., T = 1 hour).

The summary of agent-related parameters can be found in table 5.5.

Table 5.5: Agent-related hyper-parameters for optimal liquidation problem with major-minor
agents

k A c @ ¢ Ni Elg] Vg
Major Agent | 0.15 0.15 2 0.05 1 20 3
Minor Agent | 0.15 0.3 0.5 0.05 5 5 3

We trained the DMFG agents in this example for 10000 games and then tested their performance
in the evaluation phase for 200 games. Again, we fixed the initial inventory for q[ﬁ‘ = (20) and
q[j;’ = (3,4,5,6,7) for better visualization despite we randomized it during the training process.
But in this scenario, we cannot provide a theoretical result for comparison as we did in the previous
two examples. Similar to section 5.2.2, we regard the DMFG learning dynamics converges by

around 4000 given the evaluation plot in figure 5.4.

Remark 5.2.3. Note that the agent 7 = 5 in figure 5.4 starting with a lower terminal reward but
ending with a higher one among the trading crowds during the training process, mainly because it
has the largest initial inventory ¢ = 7 and learns to liquidate its inventory by the terminal stage
T.

Firstly, most characteristics of the major and minor agents’ performances as in section 5.2.1 and
section 5.2.2, especially the quasi-parallel feature, remain as we expected. Further, notice that the
major agent converges faster than the minor agents, which contradicts our intuition as the minor
agents have five times more training data set than the major agent. That is, each of the minor
agents’ private information and learning experience contributes to the minor-agent sub-population
neural network. In contrast, the major-agent neural network ounly receives one at a time. This
outcome, in turn, supports our hypothesis in the previous section if we admit that our modified
DMFG algorithm can only learn the mean-field representative’s value function and Q-function.
Recall the remark 4.3.4, the giant representative not only needs to learn how to react according
to its opponent’s actions, but also how to coordinate with its component. This extra feature adds
difficulty for the representative to converge.

While, the hypothesis in section 5.2.2 suggests that the outcome of the DMIFG algorithm may
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Figure 5.4: The averaged terminal reward on evaluation phase at each training step in major-minor
setting.
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not converge to the Nash equilibrium, the DMFG learning dynamics still provide some interesting
results.

First, both major agent and minor agents are competing to each others. Due to the existence
of the minor agents who are also liquidating and create a downward pressure toward the market,
ie., a larger Y;, hinted by theorem 4.2.3 and theorem 4.3.5, we know that both the major and
minor agents have a trend to sell more it ¥; increase. Intuitively, if there exists a large Y; given F,
i.e., the trading agents know there will be a downward pressure over the price, their best responses
would be sell more if they originally decide to sell.

Secondly, note that the existence of the opponent sub-populations results in the intention for
both the major and minor agents to liquidate more aggressively compared with their performances
in section 5.2.1 and section 5.2.2. In particular, we observed that the major and minor agents
tend to liguidate earlier than the terminal stage 7" as they did separately in the previous example.
Besides, as indicated in figure 5.5 ® , both of them significantly tend to sell slightly more than their
initial inventories. Specifically, both the major and the mean-field representative of the minor
agents tend to terminate their investment account by 7" with roughly —1 share held on average.

Further, notice that there exists competition during the training process as well. Based on
theorem 4.2.3 and theorem 4.3.5 (also hinted in [10]), we may imagine that the Nash equilibrium
should be that both major and minor agents liquidate their inventories all together by terminal
time stage T'. However, in figure 5.5, we observe that the major agent converge first by liquidating
all its inventory by time stage T (figure 5.5a), and then the lignidating actions of the minor agents
push the major agents to liguidate and exit the market early (figure 5.5b).

This outcome is not surprising. The extra liquidation from the minor agents amplifies the
market price impact Y; for each time stage . Suppose the minor agents’ strategies are observable
to the major agent, i.e., the major agent knows there would be an extra downward pressure except
for what it itself causes. It is reasonable for the major agent to liquidate faster than the minor
agents.

However, the fact that the major agent converges early revealed the major agent’s strategy

and market impact to the minor agents. Therefore, we observed from figure 5.5¢ that the minor

*For example, one may notice that the inventory processes are significantly less than 0 cross all training steps,
and there is always a relatively large drop for each agent at the terminal stage T in the reward process, indicating
that the terminal penalty is not negligible.
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agents start to liquidate faster as well, given the same logic presented above, which in turn pushes
the major agent to increase its liquidating speed and exit the market even earlier, as we can see
comparing between figure 5.5¢, figure 5.5d and figure 5.5e. This competition lasts until the major
agent cannot offer a faster liquidation, given its large amount of initial inventory and its opponents’
limited market impact *. On the other hand, recall that the major agent’s strategy converges faster.
The minor agents can then form their optimal strategies based on the major agent's trading-speed
limit, with the trade-off between liquidating speed and transient price impact also considered.
Finally, as indicated in figure 5.5e and figure 5.5f, This competition terminates, and the DMFG
algorithm reaches an equilibrinm. Presumably speaking, it is not the Nash equilibrium. And
unfortunately, there is no winner in that equilibrinm.

The outcome, from our perspective, is hard to understand. Note that by design, as claimed
in [22, 30, 18], the agents learned with minimal information, and are oblivious the existence of its
opponents. In other words, it shows that the local-) functions revealed the existence of opponents.
On the other hand, the result also provides some insight for solving the section 4.4, combined with

the theorem 4.2.3 and theorem 4.3.5.

1After all, the market price impact caused by the minor agents is limited given their relatively small initial
inventory. But bear in mind that the total inventory of the trading crowds is 25 > 20.
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Figure 5.5: Performance comparison between DMFG and theoretical result in major-minor setting.
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Conclusion and Subsequent

Problems

In this thesis project, we introduced optimal liquidation in high-frequency trading and multi-agent
reinforcement learning in stochastic games. Specifically, we have implemented and presented a
modified decentralized mean-field games algorithm for acceptable computational costs. Further,
we compared the theoretical results from the high-frequency trading literature with our modified
DMFEG algorithm and offered some intuitive explanations and hypotheses. We believe our thesis
project has opened up fruitful directions for future research on developing the individual-population
paired DMFG framework and the recurrent neural network based DMFG framework. Besides, we
believe this interdisciplinary project between high-frequency trading and multi-agent reinforce-
ment learning provides a concrete methodology to examine our learning techniques in finance and

improve their trackability for practice purposes.
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Appendix A

Technical Proofs

A.1 Single Agent

Lemma A.1.1 (Lemma 5.1 [19]). For v € A, we have

T T T
(Ro(v),a) =E |if ¥ (I‘} -V — f e P Npeds — 2ewp + 2(,-")] qids + 2®q7 — FT) d.t]
0 t y

(A.1.1)

Proof. Here, we provide a sketch of proof from [19, Lemma 5.1] as a practice. This proof will be

useful for the other two cases in chapter 4.

L - t Ut E o t
Let € > 0 and v, € A. Note that X/ = XV —¢ [, sds and Y} T — YV 1 [, aesds. Next,

compute that

Rolv +ea) — Rolv)

T T T
=€k / o (j", -Y) - / e P hods — 201y + 2:7-')/ qtds +2®gy — Fr | dt
1] t i
. T oot T T o gt 2 T 2
— K / (f E_'”‘S—t']('t,,d..‘i) cvpet + r.'f nfd.f + (,-‘J/ (f n,gd.s‘) dt — @ f cveclt
0 0 0 0 0 0

(A.1.2)
Then, recall the definition of Gateaux derivative, we divide the above equation by € and take the

limit to 0, hence we would obtain the desired result after applying Fubini’s theorem twice. O

A.1.1 Proof of Lemma 4.2.2

Proof. Here, we provide a sketched proof of lemma 4.3.1 following the proof in [19, Lemma 5.2.

as a practice learning to solve the single agent problem using Gateaux derivative.

By lemma A.1.1, we first set (Ry(v), a) =0, ie.,

T T T
f ay (1‘; —YY - f e~ =0 \yods — Qev, + 24‘;] ¢ ds + 20gY. — I"T) dr] =0, (A.1.3)
1] t i

for all v € A,

E

Necessity: Assume that % maximizes Ry, l.e., equation (A.1.3) is satisfied. Then, by tower
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property,

E

T . T
[ vy (FE -Yy —E [ el )yt d.e] — ey
0 t
T - -
+E, {mﬁf g ds + 20g% — FT]) df] =0,
¢

for all & € A. Hence, it implies that

(A.1.4)

T T
Fr— Y —E U ﬁ_"“"“J)w:dS] —2er} + Es {2@] ¢ ds +2&gy — f‘T] =0 (ALDH)
t t

with dP @ ds-a.e. onX x [0,7].

Next, define two auxiliary square integrable martingales

T T
M, = E, |i2<-5/ q¥ ds + 2®qy — FT:l . Ny =E f P_"("_”)\u:dx] (A.1.6)
t 0
and square integrable process
. L ¢ —~
zZl = f e P DAv ds — e N, (A.LT)
0
for all £ € [0,T]. Then, we obtain
. . — t -
F, =YY +20 —2cu, + M, — 2@] g ds =0, (A1)
0
which implies
® 1 - At it ¥ bt
dvj = 5 (di—t — vy’ —dzy +diL, — 26q) dt)
1

- (df} —dYY —vrdt — dN, + AN, — 26q" dr) (A19)

b
=

=
e
Il
|,_.

(3]
~

. C- T e . 1.
Fp—pYy —Z5 + My — 2(&/ g dt | = —gp — —Y§
0 c 2c

Sufficiency: It would be sufficient to show that the Gateaux derivative is zero suppose that
(v, XV, Y, Z") is a solution to the FBSDE in equation (4.2.2) and v € A. Here, we would skip

the proof and suggest the interested to read the Neuman and Voss's original paper for detail. O

A.1.2 Proof of Theorem 4.2.3

Proof. By the theorem 3.2 in [19], there exists a unique optimal strategy +* € A, such that for any

signal process A, we have
v =0T — 1) [ua(T = g + va(T = )Y
Lo T Sas(T =) T s - s) (A.1.10)
T E (1.3[f— t)E; |;/z mdﬁls —E; [ mdﬂs .

Further, by remark 3.1.1 and equation (4.1.4), we know that the signal process (A.)<.c7 for the

Vasicek process is deterministic given the filtration F; up to time £. Hence, we can eliminate the
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expectation operator E;[-|, and plug the equation (4.1.4) into equation (A.1.10), so that

v =uy(T — 1) [ul(r —1)g" 4+ ua(T —1)YY

[ T S4a(T = 3) T Gy(T - 9)
N %(i,;i[ft)/! m{m,ﬁf! A,

=0g(T =) [0a(T = )" + va(T — 1),

U )] '“.‘}(T_r)fTP—h'{.ﬁ—!J"q4::i[T_'g)dlg_fTP—h'(.ﬁ—lJG:i(T_Igjdlg
2c ' + S.;_.;(T*f) + G‘;g(Tft)

(A.1.11)

A.2 Trading with Crowds

To solve the mean-field problem, we first need to decompose the jointly ageregated transient price

impact Y¥ into the summation of Y and Y¥ 7 as

t
el 1 — A —pl g— i
VY = e 4 / e P LT g
0

N N
oy ¢ (A.2.1)
}r!v_..l — N —' lﬁ_n! n iz] ﬁ—.rJ{.s—!JV:dS
N N —Jo
=]
so that §¥ = F; — Y —Y» ' vt € [0,T).
Lemma A.2.1. For v/ € A we have
) o T ; o T A
(R, v™7),al) =E / o] (f’} -y Yy —] ﬁ_m"’._”¥:}""dﬁ — 2c1]
0 t 4
(A.2.9)

T .
+2¢ [ q" ds + 2®gy — FT) dr]
u

Proof. Here, we provide a sketch of proof following the hint in [19, Section 9] as a practice. Note
that the proof is skipped as it is regarded as trivial by Neuman and Voss, but it is not as trivial
as it is to me.

Notice that each agent j characterize its best response by maximizing its objective functional
regard the opponents’ action v~7 as given. The Nash equilibrium is achieved when all the agents
provide their best responses. Therefore, for each agent j, we are only interested in the Gateaux

derivative with respect to 2/ only. Following the similar computation in lemma A.1.1, we obtain

T T ) A )
/ ! (F _ Ya»-’ _ Y"'_J _] e pls—t) i de _ el
t i t t N t
] t ‘4
T J J
—Qqﬁf gy ds +20gn — Fp | dt
u

Ry, v77),af) =E

(A.2.3)

A.2.1 Proof of Lemma 4.3.1

Proof. Here, we provide a sketched proof of lemma lemma 4.3.1 following the guidance in [9,

Lemma 2.5.] as a practice learning to solve the mean-field problem using Gateaux derivative. Note
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that the proof is skipped as it is regarded as trivial by Neuman and Voss, but it is a great practice
for the proof of lemma 4.4.1.

By lemma A.2.1, we first set (_R'["'}(u-f_.u‘-f),n--f') =10, ie.,

T T . A p
[ R [ 2 / P_{JH_!JV”JO!S — 2c1]
0 t :

T
_2¢f ¢ ds + 20qy — FT) dr] =0,
u

for all af € A/, Ome should quickly notice the similarity between equation (A.1.3) and equa-
tion (A.2.4).

E

(A.2.4)

Necessity: Assume that »+* maximizes 'R,[’} given 7, i.e., equation (A.2.4) is satisfied. Then
by tower property,

F—Y? —E

EN S . T
f e P® J¥:/;i'- ds| — 2e1”" + Ey 2(&[ gy ds+2®gp — Fr| =0 (A.2.5)
¢ ¢

1

with dP @ ds-a.e. onX x [0, 7.

Next, define two auxiliary square integrable martingales

Jﬁ’f =K,

T ) T ) )
2@/ 07 ds + 20y — FT] . NI =T, U p‘f"-“‘uug-*d.q] (A.2.6)
i ]

and square integrable process
. t . . -
zZ0 = f e P i ds — eP' N/ (A.2.7)
0
for all £ € [0,T]. Then, we obtain
¢

F,—Y¥ +27" —2cl™ + Mj — 2¢ f g ds =0, (A.2.8)
)

which implies

i 1 N - - L opd
it = o (dh _dYY —dzY £ dM — 26¢ dr)
A2.9)
PP B T Y & e 1 (
vy :E(fT_p T — Zt —M%—E@ﬁ q; {J!r):?f‘r‘T _EI%'

Sufficiency: The proof of the sufficiency would be similar to that of appendix A.1.1 with slightly
change from single person to 4., as we did above. Therefore, here we would skip the proof and

leave it as an exercise for whoever reads to here. O
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A.2.2 Proof of Corollary 4.3.2
Proof. By definition. For example,

dp, = Z 7

et

1 - o et Tri et
= ;Z (dfz —dY} —dZy + dM; — 2¢q; df) (A.2.10)

Ciem

1 - i
= 5, (dF = dY)” —dZ} + dM, - 26g/ dt) .

And similarly for the other processes. O

A.2.3 Proof of Corollary 4.3.3

Proof. First, notice that the matrix § and the vector G defined in corollary 4.3.3 are deterministic.

Hence, recall the equation (4.1.4) and by [9, Lemma 2.5, we would obtain

ot =io(T —t) {al(r— 0 + (T — )Y

‘ T8, 5(T — T G (T — (A.2.11)
G et (g gy [ 20Ty [T G
2c t S.;__.;(_r—f) t G;g(f—f]

Note that such a 7} is deterministic over timestamp ¢ € (0,7). Thus by corollary 4.3.3, both "

and Y7 are deterministic. Those implies that

N , - 1 Vi
v =up(T —t) |0 (T — t)gy WIT
) i o g“(f 5) o / Gi T— v
1 (U(I ﬂ/t e g (@A —d¥) = | =y (dA dy?)
i ) 1 o,
=(T —t) | (T —t)g) — ————Yr

2G,(T—1) T

T . T v ¢
_L(W(T_ﬂ Saall =9) gz Lﬂ)dﬂ )]

2c ¢ Sas(T —1) ¢ Ga(T —
- [ . g 1 i
=uy(T —t) -i"l(f—ﬂf?: - mh‘
(m—F) [ B Saa(T—s) G3(T — s)
2 (1 T=0), Sur=0® "), mr-n®
. Sap(T—s) o  [TGs(T—s) o
— — | w(T —1¢ dY, — dY
(U( ) ¢ Sas(T : ¢ Gy(T —t) ‘)]
(A.2.12)
O
A.2.4 Proof of Theorem 4.3.5
Proof. Similar to appendix A.2.3. O

A.3 Mean-Field Games with the Same True Belief

Suppose the agent j belongs to the k-th sub-population. To solve the mean-field problem, we first

need to decompose the jointly aggregated transient price impact ¥ into the summation of Y,

ol




YY" and vv "

; PV : .
Y:b — eln! + == e—p{.s—tjyi d.?
Ni Jo

A ! : M [ :
ZE E / e Pt ylds + E K / e P Hyids
‘ Nie Jo )

N 0 ek,

Fod
Y = et +
b igiieky,

Lemma A.3.1. For i’ € A, we have

T . T A .
f af | F,—YY — f e Pl Zpdds — 2¢,0]
0 t Ni.

T )
_Qq-'a&.[ ¢ ds + 2®pq% — P}) df]

B

—j),n\f) —E

{'Rf}(rﬂ, v

Proof. Similar to appendix A.2.1.

A.3.1 Proof of Lemma 4.4.1
Proof. By lemma A.3.1, we first set (R} (v7,077),a!) =0, Le.,

T T A .
f ay | £, — Y — f e Pt Zpdds — 2¢1]
o : J'\"j‘.

T .
—zq.a&.f ¢ ds + 2@y — PT) dr] =0,

u

E

for all o/ € A/,

(A.3.1)

(A.3.2)

(A.3.3)

(A.3.4)

Necessity: Assume that »** maximizes R}, given v™7, i.e., equation (A.3.4) is satisfied. Then

by tower property,
T
(s_t) Mk
_{"; _ th _ lE! / e—;;{.s—!)_vj‘
t J\‘;‘

with dP @ ds-a.e. onX x [0, 7.

Next, define two auxiliary square integrable martingales

T N N
Mj* =, {2@.] ¢ Cds + 20,4 " — P}] .
i 1]

and square integrable process

) t

Z;'J' ik ::f e Pt ypdtdg — P"!J\?f"k

: Il :
0

for all ¢ € [0,T]. Then, we obtain

. - t -
Fy—Y? + 207 F — 20" + MiF — 24, / g ds = 0,

0
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0 T .+ .
J{f‘*de] — 2e,0]" + K, |i2e;-‘h; / g7 ds + 2048 — FT] =0
t

(A.3.5)

T
Ni* =K, U P_f’{"_‘J)\;‘.r/i=“d.e] (A.3.6)

(A.3.7)

(A.3.8)




which implies

vt = o ((uft —dyy —dzy "+ bt — 20,q)" dt)
. . A3.9)
1 -k etk o &y - 1 . (

vt = — (r‘T —pYE — Z¥ R+ NE - 20 / qy df) =g - —v
2¢y, o e 2¢y,
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