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Abstract

The main aim of this thesis is to find the relationship between the moments of the empirical
covariance matrix £ and the moments of the true covariance matrix C'. In chapter 2, we treat
some [ree probability theory and then review the results given by Bouchaud & Potters. In chapter
3, we provide the details to the diagrammatic method given by Sengupta & Mitra’s paper. Then,
we give a recurrence formula to compute the moments of the empirical covariance matrix £ based
on their results. In chapter 4, we developed the diagrammatic method further and give explicit
formulae to compute the moments based on results from combinatorics and representation theory.
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Chapter 1

Introduction

In many situations, we want to know the correlations between multiple variables. It is typically
done by computing the empirical covariance matrix £ = X¥I from the data matrix X, where X
is N x T, N is the number of the variables and T is the number of observations.! In the above
arguments, we actually assume that there is a true covariance matrix ', such that the data in

matrix X satisfies

E(XiXjs) = Cij. (1.1)

Under this assumption, we know if we have an infinite munber of observations for a fixed number
of variables, that is the ratio ¢ = N/T tends to zero, then E converges almost surely to the
true covariance matrix . In real world, we do not have infinite data, but we are able to use a
huge amount of data to achieve a very good pointwise estimation of ' through equation (1.1).
Sometimes, the number of variables that we are interested in are also very large such that 0 < g =
N/T < 1 is not very close to 0.

In this case, equation (1.1) still have a good estimation, but if we think of £ as a whole, we shall
observe some bias effects. These bias effects could be presented by comparing the eigenvalues of
the empirical covariance matrix E and the true covariance matrix €. Since we are dealing with
covariance matrices, so they are symmetric positive semi-definite. Therefore, the eigenvalues of
covariance matrices are distributed on the positive part of the real-line. Suppose Ay,..., Ay are
the eigenvalues, then we could define

N

. 1 o
Flz) = FZJL{I“,,

i=1

If we think F* as a cumulative distribution function, then it defines a probability measure on IR,
say p. We call such probability p as the spectrum of the covariance matrix. By computing the
spectrim of E and ', we could see the bias effect. In figure 1.1, we illustrate several cases.

Also in the figure 1.1, we observed that when N gets large, the spectrum seems to look continuous.
This motivates us to study the behaviour of the spectrum when N tends to infinity, as it would be
much easier to study the continnous spectrum. So for a covariance matrix with large N, we could
use the continuous spectrum to describe the spectrum of a covariance matrix.

In order to study the behaviour when N tends to infinity, we need to use the random matrix theory.
Roughly speaking, random matrix is a matrix such that all its entries are random variables, or
equivalently, a matrix-valued random variable. The empirical covariance matrix F, is a typical
random matrix. We could thought all the entries of the data matrix X as a random variable, and

al T, r r . I Bl B B
hence E = X%{ is a N x N random matrices. The true covariance matrix ' could be thought as
a constant random matrix.

An important tool from random matrix theory is called the Stieltjes transform. In brief, for a

“We assume that the data matrix X has already been centered.
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Figure 1.1: Empirical cdf (cumulative distribution function) compared with actual, for different
models and different values of ¢ = N/T as indicated. In each case three realisations of the random
matrix are shown, indicating some dispersion around a theoretical mean, as follows. (i) equal; (ii)
2 or 3 with equal probability; (iii) nniformly distributed on [ﬁ 2): (iv) oxponontnlh distributed
of unit mean. All the models exhibit the same basic pattern, in which the highest eigenvalues are
overestimated and the lowest ones underestimated (i.e. empirical spectrum has too much dispersion
around the actual spectrum), with the effect decaying rather slowly as g is reduced to zero.

random matrix A, the Stieltjes transform of A equals to

oo
Z e

where 7(A*) is called the k-th moment of A. The k-th moment is given by

r(AF) = —n (A% ZA

i=1

where As are the eigenvalues of A. Note that in this case, As are all random variables. The Stieltjes
transform, if it is converged, can be used to compute the spectrum of the random matrix, which
will be discussed in chapter 2. If we are interested in the relationship between the spectrum of £
and the spectrum of ', since Stieltjes transform encodes the information about the spectrum, we
could study the relationship between the moments of £ and the moments of €. This is the main
topic of this article.

As we have mentioned, the main object that we are interested in are the empirical covariance
matrices E. More specifically, we assume that the data matrix satisfies:

E(Xit Xjs) = CijDys. (1.2)

This is a more general form compare to the equation (1.1), we can get equation (1.1) by setting
D to be the identity matrix. The matrix D is called the true temporal covariance matrix, in this




case, C' is also called the true spatial covariance matrix. Another important assumption that we
are making is all the entries Xt of X is Gaussian distributed. This property allows us to use the
Wick’s theorem to study the moment, and will lead us to some interesting results.

In chapter 2, we will first treat some free probability theories. Free probability theory is the gener-
alization of the classical probability theory, which studies non-commutative random variables, for
example, random matrices. We will define and study all the terminologies and tools we mentioned
above in the language of free probability. Another important reason to use the free probability
theory is the concept of freeness. Ireenees is the generalization of the concept of independence
from the classical probability theory. If the data matrix X satisfies the equation (1.2}, then we
can write the empirical covariance matrix & by
1 or r 1
E= M (1.3)
T

where the entries of Xy are independent Gaussian random variables. To decompose this structure,
we need to use the property of free non-commutative random variables. After we decompose the
structure, we will finally get the results given by Bouchaud & Potters [1] on the moments.

In chapter 3, we deal with the resolvent matrix. which is defined by

(=z)

It contains more information than the Stieltjes transform, and the Stieltjes transform is just the
trance of the resolvent matrix. In Sengupta & Mitra’s paper [2|, they gave a result on the resolvent
matrix, equation (30). In their paper, they mentioned a diagrammatic method from quantum field
theory to deal with the resolvent matrix. However, they did not provide any details about this
method. In Burda et al.’s papers, [3][4], they also mentioned this method and gave more details.
However, the derivation still relies heavily on the arguments from quantum field theory. We give

a more detailed treatment to the diagrammatic method, to make the approach understandable to
anyone with a non-physics background. In the end of chapter 3, we derive a recurrence formula
based on Sengupta & Mitra's result, and we shall see this gives the same result as Bouchaud &
Potters's result.

In chapter 4, we will extend the diagrammatic method and apply it to compute the moments of
E in terms of €' and D. We translate the problem of computing the moments to the problem of
counting the non-crossing partitions of the set [k], for some & € N. In order to solve the counting
problems, we will borrow some tools from combinatorics. We are going to establish several one-to-
one correspondences, and finally convert the counting problem to a solved problem of representation
theory, and its solution is given by Goulden & Jackson [5].




Chapter 2

Free Probability Theory

In classical probability theory, a random variable is a measurable function
f: 00— K

from the measure space ({2, A, P) to the field K = R or C. We could add or multiply any two
random variables, this is due to the ring structure of K. More specifically, let L'(K) be the set of
all random variables with finite expectation, then L'(K) is a K-algebra. The properties of space
of functions usually depend on the properties of the target space. Another important property
of LY(K) comes from K is the commutativity of multiplication. Suppose we change the field K
to some matrix spaces, for example, the general linear group GL(k). GL(k) has natural topology
structure, and hence, it can induce a Borel measure on GL({%) and then we could define GL(k)-
valued the measurable function on 2. This kind of random variables are not commutative under
multiplication due to the non-commutativity of GL(%).

Free probability theory was initiated by Dan Voiculescu [G]. It is a more general theory of non-
commutative probability, which does not have the underlying event space €. Many basic notions
can be discussed in a purely algebraic context. The idea freeness from free probability theory is
the analogy to the independence from classical probability theory, which will be very useful to us
to study the product in (1.3).

In this chapter, we give a quick introduction to the free probability theory and then use it to derive
the results achieved by Bouchaud & Potters on moments in [1][7].

2.1 Non-Commutative Probability Space

We first treat some basic operator algebras.

Definition 2.1.1. A =x-algebra (A, %) consists of a C-algebra A and an operutor x: A — A such
that for all XY € Aandc € C

L (X+Y) =X"+Y*;
2. (XY) = Y*X*;

9 1% =1;

JoX" =X

5. (cX)* =TX".

A linear functional 7: A — C is #-linear if for every x € A, we have T(A*) = 7(A). A non-
commutative probability space (A, *,7) consists of a *-algebra (A, *) and a *-linear functional T
such that for every X,Y € A, we have

1. 7(1)=1;
2. 7(X*X) < 0; (Non-negativity)




3. 7(XY)=7(YX): (Trace ariom)
4. T(X*X) =0 #f and only if X = 0. (Faithfulness)

We often just write (A, ) for a non-commutative probability space. The elements in A are called
random variables, T is called trace.

Generally, the last two axioms of non-commutative probability space could be removed, but all the
examples that we are going to consider satisfy all these axioms.

Example 2.1.1. (Classical random variables) Consider a sample space Q) we use L™~ to denote
the space of all random variables defined on Q such that all their moments are finite. This is
actually a very strong condition, but most of the classical rmandom variables that we are going
to consider are Gaussian or derived from Gaussian, thus, this condition is satisfied. Complex
conjugation plays the role of the x-operator and the usual expectation E(-) plays the role of trace.
Hence (L™~ ,E) is a non-commutative probability space, even though it is actually commutative.

Example 2.1.2. (Deterministic matrices) Consider the space of all N x N complexr valued ma-
trices denoted by My (C). It is a -algebra, where the x-operator is given by the matriz conjugate
transpose, X* = XT. We use normalized trace defined by 7(X ) := %tr (X) as the trace operator.
The reason to normalize it is we want it maps the identity matriz Iy to 1. It is easy to check
that %tr(-) satisfies all azvioms to become a trace. Hence, (My(C),7) forms a non-commutative

probability space.

Example 2.1.3. (Random matrices) Consider the space L™ & My (C), this could be thought as
a N x N matriz with all its entries are random variables from L™ 7. It is a C-algebra, its structure
15 induced by the tensor product of two C-algebras. As a result, both L™~ and My (C) have natrual
monomorohisms to L™ @ My (C) given by L™ 3 X — X @In and MN(C) 3 A— 1@ A Since
the multiplicative identity of L™~ @ My (C) is 1@ Iy, the trace operator is given by
T(X) = lEitr (X)= Ltr ({X)).
N N

(-} means the empirical average of the realization matrices of X, could be thought as taking the
expectation to all the entries of the random matriz X. () is the same as E(-) when we apply it to
the classical random variables. We use the same letter T as the trace operator from the M, case,
this is because two trace operators agree on the image of My (C) under the natural monomorphism
mentioned above. One can check that T satisfies all the azioms and then (L™=~ @ My(C),7) is a
non-commutative probability space.

2.2 Moments and Spectrum
Definition 2.2.1. For a random variable X € A, we define its k-th moment to be 7(X*) for any
ke M.

In classical probability theory, we could compute the k-th-moment of a random variables X though
T(X*) = / dpy,
C

where py is the probability measure of X on C. For a deterministic matrix A, we assume it is
self-adjoint, that is A* = A. Hence, A is diagonalizable and we have

N
r(Ak) = %tr (A%) = A,

i=1

where As are the eigenvalues of A and are all real. We can also write the above sum into
+oo
] R dF,,
— 0o

N

. 1

/1(:1’3) = FZ ]].[xf,\‘.}.
i=1

where




Note that #4 could be thought as the cumulative distribution function of some probability measure
4 on C, more specifically, on the real line. This measure is called the spectrum of A.

Now, as for the random matrix case, we want to define the spectrum of a random matrix A €
L= & M, (C) such that A is sell-adjoint. By analogy to the previous case, we are looking for a
probability measure p4 such that for any &k € N

A e [T
T(A )_?lh.tr(fl )= xdpra.

r o0

We integrate it over the real line since A is self-adjoint, or equivalently, hermitian. Hence, its
eigenvalues are real-valued random variables.

Consider a polynomial p € C[z], then 7(p(A)) defines a linear functional on C|[z]. This functional is
actully bounded on the closed interval [—p(A). p(A)] where p(A) := ||[[A][,p[| 2>, the essential norm.
The detail of this part could be found in [8], section 2.5.1. The boundedness allows us to use the
Weierstrass approximation theorem. The bounded linear functional p — 7(p(A)) can be extended
to Cu(|—p(A), p(A)]), the space consists of all continuous functions defined on [—p(A), p(A)]. There-
fore, according to Riesz—Markov—Kakutani representation theorem, there exists a unique Radon

measure g4 such that
+oc +oo
f plz)dpy = 1*'—/ Pl )dpng,

&0 — oo
where M are the realizations of A and is deterministic. Since we have 7(Ix) = 1, pi4 is a probability

measure. We call such measure the spectrum of A. This result has a general version for the self-
adjoint random variables of an arbitrary non-commutative space, see [8] for the details.

2.3 Stieltjes Transform

In order to compute g for a hermitian random matrix, we need to use the Stieltjes transform.

Definition 2.3.1. The Stieltjes transform of a probability measure p on R is a compler-valued

function defined by
+oo 1
0= [ —dute)

Note that g, is regular at all points that is not a support of u, in particular, g, is regular on C\ .

If j¢ comes from a random wvariable A and the support of ji4 is bounded, then g, ,(z), or we can
write as g4 (z), is regular at infinity, and hence outside a disc of sufficiently large radins, we can

expand
oo o I.‘;‘. o0 A;‘. 1
9/1(2J=] S () =Y 1) =r(,,_A). (2.1)
. 2 2% 2

k=0

We define the resolvent matrix of the hermitian matrix A to be

1

Gal2) = —.

(2.2)

More precisely, since A is hermitian, we can write A = OAO* where A is real-valued diagonal
matrix and we have OO* = I. Therefore,

1 = A
Ga(z) = Ao (Z(W)) o"

is well-defined. Note that ga = 7(G4).

The Stieltjes transform has inverse formulae, we could recover the measure by the inverse Stieltjes
transform. The following formula is called Sokhotski-Plemelj folmula, we could use it to recover
the density function f.(z) of

fulz) = l lim Img(z — ib). (2.3)

T b—0t




The derivation of this formula could be found in [1] or in [8]. If one does not comfortable with

Dirac measure, for a discrete measure we could recover its cumulative distribution function F),(x)
by
N 1. * ,
F,(zr) = = lim Imgla — th)da. (2.4)
.

The derivation of this formula could be found in [9], chapter 13. Note that the existence of inverse
fomula suggests that the if we know all the moments of a random variables, then we know its
spectrim.

Now let A be a N x N hermitian random matrix, with eigenvalues A1, ..., Ay. Note that s are
real-valued classical random wariables. Then we have

aalz) = ZT;M]

k=0
el
_ Oy EEL
- Z Nzkt+l
k=0

By equation (2.4), we get

1 g 1 (& 1
Fylx) ;bl_l‘rzr}l+ . Im i—l,lh_ (Z 7{1%)\() da

i=1
+ N

1 * b
= E lim ———da

Nm o ob—o0t f_x ; (a— A\)? + b2

N

1 MN—=x T
= E 1 § — arctan — + -

N por __1( ety 2)

N
1
= E (;Zl{m,}) : (2.6)
i=1

We have a very important theorem on Stieltjes transform, that is the Stieltjes continuity theorem

Theorem 2.3.2. (Stieltjes continuity theorem) Let p, be a sequence of probability measure on R
and jto, an additional probability measure on B. Then p, converges to i~ weakly if and only if
limy, oo @, (2) = 0, (2) for all z € C with positive imaginary part.

Proof. Omitted. See [10], Theorem 4.14. O

This theorem would be very useful when we need to discuss the large random matrices.

2.4 Limit and Marcéenko-Pastur Distribution

Definition 2.4.1. Suppose we have a sequence of non-commutative probability space (An,mn) and
an additional space (A, T ). We say that a sequence of random variables X,, € A,, converges in
the sense af the moments to a random variable X« € A tf for any k € N, we have
b b
T(Xp) — T(X).
Note that the convergence of arbitrary moment implies that gx (.) converges to gy _(z) for |z
sufficiently large, then by identitiy theorem, we could conclude that gx, . converges to gx._(z)




for all z that is regular. Now suppose X,, and X, are all self-adjoint, then by Stieltjes continuity
theorem, convergence in the sense of moment of X,, is equivalent to convergence of their Stieltjes
transform and is also equivalent to the weak convergence of the measures induced by X,,.

By this construction, we are able to talk about the asymptotic behaviour of a random matrix
when its dimension is large. We had seen from equation (2.6), the spectriun of a finite dimensional
hermitian random matrix is discrete. But we could take the limit of its Stieltjes transform and
then use inverse Stieltjes transform to get, ideally, a continuous density.

, where X is N x T real-
valued random matrix satisfies each its column and row are Gaussian. Since the (i, j) entry of
E E; =T'Y,X;X;; = Ej;, hence F is an symmetric random matrix. In [11], Maréenko and
Pastur gives a result on the spectrum of F when the true covariance matrices C' and D are all
identity matrices, then equation (1.2) becomes

Recall that the empirical covariance matrix is given by E = %

E(Xi!){_].s) = 5(;-

When taking the limit, we also assume that the ratio N/T stays as a constant and denoted it by
q.
Theorem 2.4.2. (Maréenko-Pastur law) The limit of Stieltjes transform g(z) of empirical covari-

ance matriz satisfies
1

a(z)

=z—14+q—qzg(z), (2.7)

where g = NJ/T < 1 is a constant. Hence, we could solve g(z) and get

z—(1—g)—+/2—Ap /2 — A (2.8)

2qz

glz) =

for all z & (A—, \y) where
A= (1£ /)%

Furthermore, by inverse Stieltjes transform, we can get its density

where A_ <z < Ay (2.9)

A complete derivation of this theorem could be found in [1]. Note that equation (2.8) is not the
only solution to the equation (2.7), which branches to choose is also discussed in [1], section 4.2.3.

os
14 —3:0.25
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Figure 2.1: (i) Marcenko—Pastur density for ¢ = 1,0.5,0.25,0.1. (ii) Cumulative distribution
function, for these values of 1, and estimate obtained empirically, for three different realisations of
the underlying matrix. In each case N = 100.
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2.5 Freeness
Now we want to deal with the equation (1.3), that is
g XXt C:XoDXTC3
T T
where the entries of X are independent Gaussian variables. According to Marcenko-Pastur law,

we know how to deal with XpXI. To understand the product above, we need the concept of
freeness.

Definition 2.5.1. Two random variables X.Y € A are free of for any finite collection of polyno-
mials pr.... Pus iy ..., qu € Clz] satisfies for any 1, 7(p;(X)) = 0 and 7(g:(Y)) = 0, we have

T (Hp(-(xmr)) =0.

Two sequences of random variables X, and Y, are asymptotically free if for any finite collection
of polynomials p1,....pn,q1,...,qn € Clz] satisfies for any i, 7(pi(Xn)) = 0 and 7(q:(Yn)) = 0,

we have
T (Hp(-(xumf(:r’“)) —0

a5 1 — 00,

Suppose we have two sequences of real symmetric random matrices 4,, and B,,, where A,,, B,, are
n ¥ n then we could write A,,, B, into

An = UM UL . Ba=VaALVY,

n'n

where U/, V;, are n x n orthogonal random matrices, and A,,, A}, are nx n diagonal random matrices.
Then for any collection of traceless polynomials p;, ¢;

T (H p,(Au)q(-(Bu)) =7 (H pi( AU v“q(-(A;JV,Tr.f“) :

By observing this, we notice that if the sequence of random matrices UL V;, tends to zero matrix,
then A, ., B,, are asymptotically free.

In order to apply this result to empirical covariance matrix E, we need some knowledge of Haar
measure.

Definition 2.5.2. A fopological group G is a topological space that is also a group at the same
time. The group operation and inverse operation are continuous under the topology it is equipped
with.

A measure H on a topological group G is called the Haar measure over the Borel sigma algebra, if
H(gJ)=H(J) for any g € G and J C B(G).

Every locally compact topological group has a finite Haar measure, and such measure is imique up
to multiplication by a constant, details can be found in [12], chapter 9. From now on, we assume
the Haar measure H satisfies H({G) = 1, then H defines a probability measure.

The group of orthogonal matrices O(n) is a typical locally compact topological group, hence, it
has a unique Haar measure 1.

Proposition 2.5.3. Suppose X € O(n) is Haar distributed, then for any deterministic vector
ve S Xu s uniformly distributed on the sphere S"~1.

Proof is Omitted, see [13], chapter 10.

Two vectors drawn uniformly from S™ are orthogonal almost surely as n tends to infinity. In fact,

the inner product of any pair of distinet vectors with unit norm tends to zero as the dimension
“

tends to zero. In [13], they had also argued that the eigenmatrix of £ = % is Haar distributed.

Therefore, the white £ is free to any deterministic matrix, and any two deterministic matrices are

also free.

11




2.6 Results Given by Bouchaud & Potters
Definition 2.6.1. Let A be a random matriz, we define the T-transform to be

Talz) = Z A7) _ zga(z) — 1.

PL
k=1

Note that 7T is invertible for large z if A is not traceless. Hence 7 ~1(#) exists for small £. Hence,
this allows us to define:

Definition 2.6.2. We define the S-transform to be
t+1
Alt) = ——
tT, Lz
Let us see an important example.

Example 2.6.1. By equation (2.7), we have

1
=z—1+4+qg—qgza(z).
o2) q — q29(2)
By substituting w foralz), we get
m = z—1- QT('Z]
2T(z) = (1+qT(2)(T(z)+1)

By substituting T 1(t) for z, we have

THOT(T ') = Q+qT(T HONTT(#) +1)
THt) = (1+gt)(t+1)
By rearranging, we finally get

t+1 1
Sp-ix,xr(t) = T 1o qt (2.10)

The most important property of S-transform is the following:

Theorem 2.6.3. Let A, B be two free random variables, then we have

Sap(t) = Salt)Sa(t). (2.11)

We omit the proof, one can found a complete proof in [1].

This multiplicative property could be passed to T-transform. According to equation (2.11), we
have
t+1 t+1
= 1.8
T () T4 (1)

which implies

Tag()Sp =Ty (1) (2.12)
Then we have
Tap(2) = Ta(T, ' (Tas(2)))

Ta (Ti3(Tap(2))Se(Tan(2)))
= Tal(z88(Tas(2))) (2.13)

12




Now we are ready to deal with the empirical covariance matrix £ = T_lC';_X[}DXgC% as we had
discussed. By trace axiom, we have Tg(z) = Tp-10x,pxr(z), and hence true for S-transform,
then by freeness, we get

Se(t) = S(:(f)ST-JX”DXI'II (1)

L[ (XoDXE a L ((DX§Xo k
N T =T T '

This can be concluded by

Note that

Tr-1x,pxr(z) = E?’%—lax"{'x.‘(.?).
By taking the inverse, we get
-1 _ g1
Tr= xyoxr () = Tpoapxr , (at)-
By definition of S-transform, we have
t+1
Sp-ix,pxr(t) =

-1
17,

1DX|'f'X..(qu

gt+qgqt+1 1
gt gt +1 7}‘_}‘DX,'f X”(‘?t)

t+
= zf n fST—lax,'{'x.. (¢t)

L
= gf fSD(qHST"X,'f X, Lgt).

1

P Finally, we derive

By similar argument as Example 2.6.1, we can get S‘]"flx"ll'x“(qr) =

Sc(t)Splqt
Splt) = ((1%};(“ (2.14)

We had seen that by using S-transform, we can decompose the structure of equation (1.3). By
expanding equation (2.14), we have

f+1 _ f+1 1
tTZN) TSN gt T, at)
Te't) = qtT (OTS ()

Ts "(Te(2)) qTe(2) Ty (Te(2)Ts (Te(z))

Telz = 7T; S . 2.15
77s(2) v (qTE(m}?l(TEun) (219)

This result is given by Bouchand & Potters in [1], equation (17.44). By expanding the left hand
side into Laurent series and compare the coefficient on both side, we could compute the moments
of E in terms of the moment of C. But this is very difficult to do this, since this formula involving
the computation of functional inverse of a Laurent series.

The special case when D is trivial would be much easier. One can check that the S-transform of
the identity matrix is —2. Then by rearranging equation (2.15), we will get

" =% ()

In the language of Stieltjes Transform,

z

20p(2)=Zac(Z), where Z = —————,
e ae I —q+qzge(z)

(2.16)
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This is one of the main result of Bouchaud & Potters [7][1]. We could expand it and get the
equation (17.10) from [1].

o0 b [es) ke 0 ] ki
Zr(i ) :Zr(;_ ) (l_qzr(j )\ o1

k=1 k=1 =1

This can be used to compute the moments of £ by comparing the coefficients, and we get

r(EY) = 7(C)

r(E) = 7(C) +qr(C)?

r(E®) = 7(C*) +3¢r(CH7(C) + ¢* (O3,
But this method still be very slow, since the calculation involve the computation of functional
composition of power series.

Recall that the resolvent of the empirical covariance matrix should be

I = (E*)
Gelz) = <21N — Iil){XT> = 2 TR for |z| sufficient large, (2.18)

Suppose the equation (2.16) also holds for the resolvent matrix®, that is

-

2Gp(2) = 26 (%), where = ———— .
1—q+q20g(z)

(2.19)

We can rewrite it and get
2G0(z) — I = (1 — g + qz98(2))CGr(2). (2.20)
If we write 7(E*) as G}, we will achieve a self-convolutive recurrence: expanding the above and
equating terms in 27k
k
Gry1 = CGy —qzr((;j)cc;'g._j, k= 0. (2.21)
i=1
This gives a more clear form to see how the moment is compute, and we will use this to compare
the other methods that we are going to mention later.

YThis is indeed true, from private communication with Bouchaud
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Chapter 3

Diagrammatic Method

We had seen the Bouchaud & Potters’ result on the moments and the resolvent. There is another
result on the resolvent matrix derived in Sengupta & Mitra’s paper [2].

In their paper, they using the techniques from physics and the Feynman diagrams, and found that

Gg should satisfies
Iy

Iy = Ctr ( - )
N TS L T D (0GR (=)

Unfortunately, Sengupta & Mitra did not give the details of this method. In Burda et al.’s paper

[3][4], they gives more details about this method, and give the following equations

Gel(z) =

(3.1)

, - Iy o — e (O (-~
QE('-]fms Y(z) = Ctr (DGg.(z)),

Ir

Q‘E«(Z’]:m,

Yu(z) = Dtr (CGe(z)).

Ge. in above is the diagrammatic dual of g, which we will explain it later, it is defined by

, It o
= ——————=— ). 3.3
Ge <I’1T—z‘l)LT)L> (3.3)

In these papers, however, they still omit quite a few details, which can be difficult for readers who
are unfamiliar with the quantum field theory.

In this chapter, we use the same diagrammatic setting as the one in [3], and using completely
combinatorial and mathematical langnage to derive this result.

3.1 Diagrammatic Structure for Resolvent

Firstly, by linear algebra, for an arbitrary k& € N, the (i, 7) entry of {E"'} is

<‘E&.>f_] - Z <b1’i’ilE’fl’fz Y _E.1,k72[-k71_b1,-k71_3;> : (3.4)
LN ig—1)E|N]E-1
Similarly, we have
(CH);; = > Cit,Cirig =~ Ciy a1 Cir_rj- (3.5)

Note that (3.4) and (3.5) have similar summing terms. How these terms related depends on the
specific probability measure. Since we had assumed that the entries of X are Gaussian distributed,
we can study the expectation though Wick’s theorem [1].
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Theorem 3.1.1. (Wick’s theorem) Suppose X1,...,Xon are zero mean multivariate Gaussian
random variables. Then we have

(X1 Xowy = > [ x5y, (3.6)

parings pairs

where pairing pairs means summing over all the possible combinations of distinct pairings in the
form of product.

By applying Wick’s theorem to equation (3.4), we can expand

<bi‘>l? T_Ji Z <)ii!1)£51!1)ii1!2)ii2!z "')ixk_ltk)i_-j!k>

D SEED D | 6 S

(i1,..0ig—1)E[N]5~1 parings pairs

(1t )E[T]*

The diagrammatic method is a way to enumerate these pairing pairs, and these pairing pairs could
be grouped into a "non-planar” group and "planar” group, which they have different behaviours
when N, T tends to infinity with N/7T remains as a constant ¢.

Diagram setting We use black circles and white circles to represent the spatial indices and
temporal indices respectively. We use @ o to represent an element from X and o e to represent an
element from X7T. We nse solid lines and dashed lines to connect two circles that have the same
spatial and temporal index respectively. To make the diagram complete, we add two end points to
the diagram that are currently meaningless. This notation would be very helpful to counting the
trace in the sum and study the structure. For example, if k = 4, we have

&9 0---0 &—8 G---0 &— G---0 &—® G---0 e—e
1 1 f]_ fl 11 11 fg fg 12 12 f;g f;g 13 13 f4 f4 J J

Now we use solid arcs and dashed arcs to pair these Xs. If we want to pair X;; with X;.., we
use a solid arc to connect their spatial indices, and we use a dashed arc to connect their temporal
indices. For example,

(Xithi:i!:i> {Xi1!1Xi1!2> {szthizi:i> <Xi:i!:X.'f!:> (3.7)

can be expressed by the following diagram

Figure 3.1: The diagram representation of equation (3.7)

By our assumption (X,3X.s5) = Co-Dgs, a solid are will give us a C;; and a dashed line will give
us an Die. The above diagram give us

(’Yi‘:iﬂtltli("ililﬂtltz C'iZ‘ZDtZEIi C'i:i.liD! ata- (3.8)
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Now we remove all the indices on the diagram to denote the sum runs over all the possible indices
with fixed i, 7. Then we have

ED, = X X

i1,eig_1 indexed
1,0t diagrams

indexed i1, ig—1
diggrams ..t

- ¥

indexless
dingrams

This allows us to write (Gg);; as the following series

&=t

1

Note that the power of z equals to the number of solid horizontal lines and the power of T" equals to
the number of dashed horizontal lines. So we can omit the coefficient in the front of the diagrams,
we can recover it as we like.

3.2 Structure of a Single Diagram
In Figure 3.1, one dashed-loop could be given by #;,ts,t3,t;. It corresponds to the product

Dy 4, Dy s, Dy, from equation (3.8). This allow us to write our expression in the form of trace. If
we summing equation (3.8) over all possible indices and take the coefficient in Gg into account, we

get

1
I_-"l Z(C’ff:ic'f:ﬂ.'ﬁ)(Dflanh!zD!z!;c J("f]r'] (’rfzx'z-D! ats-

1 . .
= =t (D% (D)t (C)? ) City Ciyj

T
N 3 2 . C .
= (D) T(D)T(C)* Y CiyCuyj. (3.9)
Consider the following identity
(CFth2) = (CF)a(CR)1y + -+ + (C*)an(CF2) . (3.10)

We could write equation (3.9) as

¢7(D*)T(D)T(C)(C?),;. (3.11)
If N, T tends to infinity and we keep N/T = g as a constant, the above limit would not vanish.

Note that, in general, a solid loop will give us a 7(C?), hence contribute a coefficient N and a
dashed loop will give us a 7(1"), hence contribute a coefficient 7. Therefore, the limit of a single
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diagram does not vanish if it has the same number of loops as the power of the % in the front of
the diagram.

The terms for (:E:"}(_] consists of three diagrams

d-o -8 6-0 &-8

! T *

foy Vo
b-od Be-0
The first two diagrams have enough loops, but the third one just have one loop. Hence the last one
would vanish. Note that the last diagram has self-intersection, we call such diagram non-planar.
We note that the diagram will vanish if and only il it is non-planar. Therefore, g equals to the
infinite sum of all planar diagrams.

3.3 Dualization

Let us go back to the Figure 3.1, the outermost layer could be decomposed by equation (3.10). By
rearranging the terms in equation (3.11) according to Figure.3.1, we obtain

N 3 5 .
T ([r(D))r(C)* O] [T(D)C]}”. (3.12)
Note that
I 7(C)2 .
H(CF (DY) = == 30| (DD,
i iy
T(C')? .
= (T] tr Z(Dz):tﬂ Dy,
ty

1 v v - s

= gn Z ([r(C)D] - [r(C) D)), Dee (3.13)
ty
Equation (3.13) looks like a mess, but its diagrammatic representation is straight forward.
=TT e ;I’ ™
- . ; iR
e ’ “a N f’ "
,I 5 ' \

’f \\ : \.

/ Y ; .

' \ ) 1

) a——— e \ =] o i &
1 .r{’ ‘\\ /’ ‘\‘ “ 121 f/’ ."\\ ";' ~\\ i3
G---0 Q &---0 Q b---® — > G---0 Q b---0 Q &---0
ty ty iy iy to ta iy ia 1ty sy ty ty iq i1 to ta s ia 13 ity

Figure 3.2: Operation tr (D)

This decomposition inspires us to consider the diagrammatic dual of Gg. We switch all the black
circles, solid lines, and solid arcs with white circles, dashed lines, and dashed ares respectively.
Note that since for a single diagram, its number of solid lines and its number of dashed lines are
not the same, we had better switch their positions in equation (2.18), that is

I

Hence, we find G, equals to




. v

!I—“\ I’—“\ !’—-‘\ ! -
G---0 4+ G-06—86-0 —+ G-06W5-06—Bb-0 + o-¢ (] &-0 4+

The argnment above suggest us to consider tr (Ge. D), and its diagrammatic representation is

e s N 4 o > \

- ~ ) ’ A

’ - A h ’ N l
\ U \

‘ - \ ! - -
e e L DY o . e . 1 ' - v
G-t + b-odBt-0 + C-06 V-0 BE-06 + -6 d-0 &-0 +

According to the delinition given by the equation (3.2), we could give the diagram of

X(’_-j = [C'T.l' (Dng ))

ij

= C‘(‘.J;['.l' [DgE‘w),

that is

] 1

i

Note that, the diagrams above do not have tail lines, this is because we want to get the right power
of z and T. ¥ is the series of all diagrams that its outermost layer only have one arc. For the
diagram that has multiple arcs, we use the same methods we have used to deduce the equation
(3.12). More specifically, by equation (3.10), matrix multiplication could be explained by the fol-
lowing diagram

Therefore, Gg is the geometric series respect to 3. This proved the first part of equation (3.2).
By applying a similar argument to the diagrammatic dual Gg, of Gg, we could get that Gg, is the
geometric series of the dual of ¥, which is ¥, = Dtr (CGg). This complete the proof of equations
(3.2).

3.4 Recurrence Formulae for The Case D = It

By substitutions, equation (3.2) becomes equation (3.1), that is

Iy

Iy — Ctr (é)
Iy — Ctr I — Dtr (CGg(2))

If we set D to be the identity, then we have

Ge(z) =

1

G(z) ' =2l — (1 -T2 (CG(2)))  C. (3.14)
If we write
Gy = (E")
for short, following equation (3.14), which rearranges to
(1—qr(CG(2)) (2G(z) — I) = CG(z), (3.15)
By comparing coefficients, we deduce a self-convolutive recurrence for the (Gr):

'
Gip1 =CGr+qY 7(CG;1)Griaj. k=0 (3.16)

i=1
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Recall that in the end of last chapter, we had another recurrence formula, equation (2.21), that is
k
Gip1=CGr+gq > 7(G))CGr_j, Kk =0.

=1

It is hard to see that they will generate the same moments, but they are actually the same. To
show that (3.15) and (2.20) give the same answer, write ¢ = 7(G(z)) and v = 7(CG(z)) and take
the trace of (3.15) to give
(1—q7)(zg—1) = .
Hence
¥ =(2g—1)/(1 —q+qzg),
and so
(1—gv)(1—g+gz2g9)=1

which is what is needed to show that the two agree.




Chapter 4

Explicit Formulae

We had seen that <E3"> could be represented by the sum of planar diagrams. We are going to
extend the diagrammatic method and obtain a more straightforward and quicker way to compute
the moment. 7( E¥). We are going to see that, hy deforming the planar diagrams, we can transfer
the problem of computing the moment into the problem of counting the non-crossing partitions.
And each case in equation (1.2) correspond to a specific counting problem. And then we will use
some technique from combinatorics and representation theory to solve these problems.

4.1 Non-Crossing Partition

If we take the trace of the diagrammatic representation of Gg, there should be only loops in all
diagrams. Again, we use the diagram in Figure 3.1 as the example. If we take the trace of equation
(3.11), we simply get

¢*r(D*)7(D)7(C)*r(C?).

To obtain its diagram, we can not just add an arc to Figure 3.1 since an extra arc will increase the
power of C' by 1. We should "glue” the two outer horizontal lines instead. But by doing this, the
last dashed loop labeled by #; would be left alone. The connection of the outer lines suggest that
we should consider a "circular” structure, which motivate the following construction.

We now contract all horizontal lines into distinct points. Then we place these points as the vertices
of a k-gon in order. We say that two vertices are equivalent if there was an arc connect them.
Since, we are considering the 7 expression, arcs will form loops, thus this gives us an equivalence
relation on the vertices. All the vertices in each equivalence class can give us a convex hull, we use
solid (dashed) lines represent the edges of these convex hulls. We labeling the black vertices and
white vertices respectively by 1,..., k. For example Figure 3.1 becomes

(3]

Glremmmmnaee®
®

—

Figure 4.1: 7(D3)7(D)r(C)*(C?)

To explain the diagram above, we need the definition of non-crossing partition.




Definition 4.1.1. A partition 7 of a set [k] = {1,...,k} is a subset of its power set consisting of
pairwise disjoint subsets whose union is the entire set. The elements in © are called blocks. We
use P (k) to denote the set of all partitions on set [k|.

Let r = (rq,...,7r) be a sequence satisfies vy + 2ry +- -+ kry = k, we say a partition is of r-type
if it has ri blocks of size i.

A non-crossing partition o is a partition of the vertices of a regular k-gon (labeled by the set [k])
with the property that the conver hulls of its blocks are pairwise disjoint. We use NC(k) to denote
the set of all non-crossing partitions on set [k].

Remark 4.1.2. Suppose there are two distinct edges of a non-crossing partition, connect a; to ap
and by to by respectively. Suppose ay < as. by < by and a; < by, then we must have ay < by < by <
ag or @y < as < by < by.

The equivalence classes on black vertices and white vertices give two non-crossing partitions on
[k], and these partitions has some relationship. If we have the solid partition, the dashed partition
is uniquely determined, vice versa. This is called the Kreweras complement [14] and we will see a
formal definition latter. Since the above construction is invertible, therefore, we have a one-to-one
correspondence between all non-crossing diagrams appeared in <Ei"> and NC(k), and hence, we
could write 7( E') into sum of all possible non-crossing partitions.

For a given m € NC(k) of r-type. Suppose we know the information of its Kreweras complement,
say o, is of s-type, such pair of partitions will contribute a term

q1'1+"'+I'k_lT(CY]I'1T(CY2]1'2 T(C‘k']"*T(D)H T(D'ﬁ )Hkl (41)

Then the problem of computing the coefficient in the front of (4.1) becomes a counting problem.

4.2 Special Cases

Marcenko-Pastur case We first deal with the simplest case. The simplest case is when ' and
D are all identities. In this case, the counting problem has been simplified, 7(C™) and 7(D*) all
equal to 1. Therefore, equation (4.1) become ¢", where r runs over all the integers from 0 to & — 1.
After combining the terms, the problem becomes to counting the partitions that has r blocks. This
problem is well-known and has a very nice answer. The number of the non-crossing partition of
set [k] with r blocks is called Narayana number, and is given by

k I
Nik,r) :%(r) (r— 1). (4.2)

Therefore, we have

rEY =1

7(B%) = 1+g¢

(Y = 1+3¢+4°

T(E%) = 1+ 15g+50g° +50¢° + 15¢" + ¢°.

This result is also mentioned in [13] chapter 3. In [15] chapter 2, they give the generating function
of the Narayana number, which is

x K L—2(t+1)— /T 220+ 1) + 22(f + 1)

S OS ONk ) = T . (4.3)

k=1r=1

By modifying this generating function, we will get exactly the same expression as equation (2.8).
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Arbitrary ¢ Now we discuss the case when C' is arbitrary and D = Ir. Consider a non-crossing
partition m € NC(k), we define a sequence (A,..., Ak )x assoclate to m by

\ = |B] -1 if i = min B for some block B € 7;
] -1 otherwise.
We could see that this sequence have the following properties:

L. /\x € {71~0~1~2~}

2. ZA(- for all n < k;

.
3% A=0.

Such sequence is called a Lukasiewicz path [14]. One can see that if we have a sequence (Aq,..., M)
satisfies the properties above, we could recover the partition. The second property, positivity of the
partial sum, guarantees the partition is non-crossing. Hence, there is a one-to-one correspondence
between non-crossing partitions and Lukasiewicz paths.

Consider the following map:

R:(mw)—(Au...., Mo, —L AL A1),

where w € [k +1]. This maps a non-crossing partition with a natural number to a sequence in
{—1,0,1,2,... }H'l with its total sum equals to -1.

It has an inverse map. Consider a sequence

(p1y .o i) € {—1,0,1,2,... }Hl such that Z'”‘* = —1.

Let j be the first index such that Z: A; is the least partial sum. We rearrange the sequence and

gﬂt
k
(ru'_}i+1!'".'r"‘"ji+1.‘ru'1."".'ru'_:,i—l) € {_13031.~2.~" ' } .

The total sum of our new sequence is 0, and all partial sum are all larger or equal to 0 by the
choice of j, hence, this is a Lukasiewicz paths. This gives a inverse map of . Therefore, the image

of R is
{s o) €4=1,0,1,2, 1 S = -1},

and is a bijection.

This bijection allows us transfers our enumeration problem to the enumeration of sequence in
{—=1,0,1,2,... }H'l whose total sum equals to -1. More specifically, we require the sequence have
i r; — 1 for all 4. This is a much easier thing to enumerate, and this equals to

E+1 _ (k+1) .
(rl,...,q) AT L= ) (44)

We need to divide equation (4.4) by k + 1, since R is a map from NC(k) x [k + 1]. Hence, the
coeficcient should be

1 k+1 B f! (45)
E+1\r,....re) ! el +1=3 ) 2

Then we could compute the moments and get

1

T(E) = 7(C)

m(EY) = 7(C%) +qr(C)?

T(E%) = 7(C%) +3q7(C*)7(C) + ¢*7(C)°

HEY = 7(CY +2q7(C%)* + 4gr(CH)7(C) + 6¢°7(C)7(C)? + ()4,
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and the Stieltjes transform equals to

qr1+- e —1

> 1 k+1 .
BE(Z]ZZ Z ;;—1(?"1_ )T(C')”T(C'Z)"z---T(C'k)’*‘ P (4.6)

k=0 Tle-T v Th
ride ke =k

To solve the general case, we need to use some tools from lattice theory.

4.3 Lattice Theory and Kreweras Complement
Definition 4.3.1. A partially ordered set (poset) (L, <) consists of a set L with a relation < has
the following properties: for every a,b,c € L
1. Reflexivity: a < a;
2. Antisymmetry: a < b and b < a then a = b;
3. Transitivity: a < b and b < ¢ thena < c.
We say a finite poset is a finite lattice, if it satisfies

1. For any a,b € L, the set {c € L: a < ¢ and b < ¢} is not empty and hence exist an minimal
element we denoted by a v b and call it the join of a,b;

2. For any a,b € L, the set {c € L: a = c and b > ¢} is not empty and hence exist an mazimal
element we denoted by a A b and call it the meet of a,b.

A map f: L — M between two lattice is called a lattice homomorphism if it satisfies for any
a,be L

L flavb) = fla)V f(b);
2. flanb) = fla) A F(b).

If it is a bijection then we call it a lattice isomorphism. If further M = L, then it is a lattice
automorphism. We could see that all the automorphism of lattice L forms a group, and we use
Aut(L) to denote it.

A map ¢: L — M between two lattice is called a lattice anti-homomorphism if is satisfies for any
abe L

1. dla v b) = ¢la) A o(b):
2. ¢lanb) = ola) v &(b).
Similarly, we have anti-isomorphism and anti-automorphism. Note that the composition of two

anti-homomorphisms gives us a lattice homomorohism and the composition of two anti-automorphisms
gives us a lattice antomorohism.

NC(k) has lattice structure. Set inclusion naturally define a partial order on NC(k). Intersection
and union of two sets play the roles of join and meet of two elements. Hence NC(k) is a lattice.
Similarly, we could see that P(k) is a lattice. However, NC(k) is not a sublattice of P(k), a lattice
with the same meet and join operations.

Recall that symmetric group S has group action on k-gon. Therefore, each element of symmetric
group give us a natural automorphism of P(k). However, S; does not equal to Aut(NC(k)), we
could see this by the following exmaple
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acted by (14) € S4 becomes

which is not in NC(4). Actually, we have
Aut(NC(k)) = Dy, = (o, 5 af =% =e¢, faff = al)
the Dihedral group [14].

We need one more map to introduce the Kreweras complement. The following map is called the
interlacing map
I: NC(k) x NC(k) — P(2k)

given by the following graph

2 2
@
3 3 (A
[ ] o] ! '
| P
X ' A ’
1 - ! ! Dl'_’ 60
: : )‘)
® [
4 4 |)I
L V]
5 5

Generally, the image of [ is not in NC(2k).

For a given ©# € NC(k), we define K, = {o € NC(k): I(m, o) € NC(2k)}. For example, if 7 is
given by

5 6
The lattice structure of K is showing in Figure 4.2.

K, is a sublattice of NC(k). Since it is finite, it has a maximal element sup K, we call it the
Kreweras complement of 7. We could naturally define a map on NC(k) to itself by

K: NC(k) — NC(E), T — sup K.

K is an anti-automorphism. This could be seen from the fact that if # C o, then K(r) 2 K(o),
and then we have K? = . This leads to an important result

o] + |K(x)| = &k + 1. (4.7)

Now consider an embedding
NC(k) — Sk




L ]
4 1
*—>
5 6
3 2 3 2 3 2 3 2
[ ] [ ] [ ] [ ] [ ]
4 1 1@ 1 1@——e1 14 @1
[ ] [ ] *—=e *—=e *—=e
5 6 5 6 5 6 5 6
3 2 3 2 3 2 3 2
[ ] [ ] [ ] [ ] [ ] [ ]
1@ 1 1@——e1 4 el 1@ o1
L ] [ ] [ [ ] [ ] [ ] *—e
5 6 5 6 5 6 5 6
3 2
[ ] L ]
1@ L
® [ ]
h G

Figure 4.2: Lattice structure of K, the top one is the sup element, that is the Kreweras complement
of T

defined as follow: for a block B = {ay,...,a,} € 71— (ajas--- a,) € Sy with a; < ay < -+ < a,,
and 7 is mapped to the product of the image of its blocks. For convenience, when we say w € NC(k),
we default that = is an element of Sp. The anti-automorphism K? = @& can be rewritten as

K n)=aomoa L.

Another important result follows K? = a is
Kmlor=a=[{12 k). (4.8)

We could see this is true from the diagram. Suppose m maps a natural mumber a to another natural
number b, hence, the line segment connect @ and b is an edge of a block. In the diagram, the white
vertex labeled by b is the one before (anti-clockwisely) the solid vertex labeled by b, it connected
to the white vertex a + 1, this is due to the non-crossing property and the maximality of K(r).
Hence, K ({7) maps b to a + 1, which proves equation (4.8).

4.4 Representation Theory and Two Coloured Tree
Now we now that what is the Kreweras complement, but in order to enumerate it, we need to
use some results from representation theory. These preparation will lead us to use theorem 2.2

of 5], which gives a formmla to compute the connection coefficient. We will define later. We also
want to argue that this coefficient is the answer to the counting problem for the general case: For
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Tlyeo o Thoffly ..o gk € N, how many non-crossing partitions are there satisfy they have r; blocks of
size i and their Kreweras complement has s; blocks of size 7. !

Recall that we have mentioned the embedding of NC(k) into the symmetric group Si. Consider
the gronp ring C[S;], recall that two elements g, h € S, are conjugate if and only if they have the
same circle type. We use Cl{g) to denote the conjugacy class of g. We define

K, := Z h.

heCl(g)

Then for some natural numbers ¢ we have

g142?

Ky Ky, = Z f'-';;mz I, (4.9)

where 4 runs over all conjugacy classes. We could write the left hand side into the linear sum since
the center Z(C(Sk)) is a gronp under multiplication and a vector space at the same time, the set
{K,} forms a basis for Z(C(Sy)). ¢f (., is called the connection coefficient and we claim that it
is the answer to the counting problem that we are looking for.? This claim is equivalent to say, for
any g, h € Sp such that one of them is not in the image of NC(k) of the circle type rq,..., 7 and
81,..., 8 respectively, hg # a.

Now we need a tool from combinatorics to decompose a cycle in Sy,

Definition 4.4.1. A two-coloured edge-rooted tree T is a tree such that all of its edge has two
different types of vertex, say white and black. One edge is thought as a rooted edge.

A labeled two-coloured edge-rooted tree T is a two-coloured edge-rooted tree wnth all its edges are
uniquely labeled by an element of set k], and the root edge is labeled by 1.

Suppose we have a two-coloured edge-rooted tree T and a cyele (1a, ap) € Sy, we give a
"Depth-First” algorithm to traverse and label the two-coloured tree according to (1ag -+ ai):

1. We start the transversal [rom the white vertex of the rooted edge;

2. Each time we travel from a white vertex to a black vertex, we label the edge by a natural
number from (1ay .-+ a;) in order, hence, the rooted edge is labeled by 1;

3. When we reach the other end of an edge, we travel to the edge next to it anti-clockwise;
4. We stop this process if every edges are labeled.

Conversely, suppose we have a labeled two-coloured edge-rooted tree. For each black vertex, we
write down the natural mumbers labeled on the edge connect to the vertex in anti-clockwise order
and get a cycle. By doing this to all black vertices, we get a product of cycle and hence get
an element in Sy,. Similarly, we can get another permutation from white vertices. For example,
suppose we have the tree in Figure 4.3, we can get o = (14)(67910)(111213) € S from white
vertices and m = (1561114)(234)(89) € S, from black vertices. Note that om = (12 --- 14).

Recall that for a non-crossing partition 7, we have K (7 )m = . We claim that there is a one-to-one
correspondence between the non-crossing partition and a two-coloured edge-rooted tree labeled by
.

We just need to show the permutation get from white vertices is non-crossing, the black vertices is
non-crossing automatically follows the uniqueness of the Kreweras complement. Suppose we have
a edge labeled by a; and the edge next to it anti-clockwise is labeled by a,, thus we have a; < a,.
According to the algorithm, all the edges of the subtree connect to the black vertex of the edge a;,
would be labeled by the natural numbers between a; and az. Moreover, it contains all the natural
numbers between a; and ay. Note that the above argument is not true it @ has been replaced by
other permutation that is conjugate to er. Therefore, there is a one-to-one correspondence between
the nor-crossing partitions and the labeled two-coloured edge-rooted trees generated by a.

Uf we know 7, then K(m) is uniquely determined, but just knowing rq,...,r; does not mean gq1,...,q, is
determined.
27 could be any partition satisfies the condition
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Figure 4.3: Example of a labeled two-coloured edge-rooted tree
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Figure 4.4: The tree in figure 4.3 corresponds to the pair of non-crossing partitions above

Remark 4.4.2. To summarize, two-coloured plane edge-rooted trees with a permutation conjugate
to o will give a labeled two-coloured plane edge-rooted trees, and then give a product decomposition
of r.s-type(type given by tree). Two rs-type non-crossing partitions those are mutually Kreweras
complement will give a labeled two-coloured plane edge-rooted tree. This proves our claim on the
connection cocfficients.

4.5 General Case

Now we are ready to apply the result from [5]. Theorem 2.2 in [5] states that if two permutation
7,0 are of r-type and s-type respectively such that s +7 = k + 1, then we have
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Then we could compute the moments and get

T(EY = 1(C)yr(D)

T(EY) = 7(CH7T(D)? +qr(C)*r (DY)

T(EY) = 7(C*r(D)? + 3¢r(C)r(CH)r(D)r(D?) + ¢ (C)*r(D?)

T(EY) = 7(CYH7(D) + 2qr(CH2 (D)7 (D?) + 4gr(C)r(CHr (D)2 (D?)
+g* (O 7 (C*)r(D)7(D*) + 2¢°(D* )7 (C)*(C?) + ¢*r(C)'7(D)

Note that the coeflicient of the moments are symmetric, this is because K is an anti-antomorphism.
We counld write down the Stieltjes transform

o kq”"—m_'—”"_l ZJ‘“{' ES( L] YL
a(z) =) > D (rl ”) (Shmﬂ)rm (DR

k=( Ty 8L R
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Chapter 5

Conclusion

e . . B B al T
The behaviour of the empirical covariance matrix £ = 22—

covariance matrix €', the true temporal covariance matrix D and ¢ = N/T, the ratio between the
number of the variables and the number of the observations.

is determined by the true spatial

In chapter 2, we have discussed that if we know all the moments of a random matrix A, that is

r(AF) = %tr (4%

r

and if the Laurent series )

> i

k=10
converges around the infinity, We can then determine all of its eigenvalues uniquely. The method of
computing the moments of F given by Bouchaud & Potters [1] involves computation of composition
of Laurent series. Moreover, the computation of the moments for the empirical covariance matrix
with non-trivial temporal structure involves the computation of the functional inverse of Laurent
series, hence it is very difficult to compute though these methods.

In chapter 3, we have seen that according to the results of Sengupta & Mitra, we can give a new
recurrence formula to compute the moments of £, and it is quicker. We also provided all missing
details to the diagrammatic methods appear in [2].

In Chapter 4, we had extended the diagrammatic method and give some explicit formulae to
compute the moments of the empirical covariance matrix E under different assumptions. For the
general case, we use some results from representation theory given by Goulden & Jackson [5]. By
using these formulas, we could compute the moments even more quickly. Moreover, for the case
of D = I, the moment formula is invertible, that is, we could compute the moments of the true
covariance matrix by the moments of the empirical matrix.

Now we would like to discuss some possible future extensions. Another transform in free probability
theory, the R-transform R, has additive structure. That is, for two random matrices 4 and B, we
have Ra;p = R4 + Rp. The coefficients of this R-transform is called free cumulants. According
to some references, for example [14], the coefficients of the formula to compute the moments of a
random matrix by free cumulants is the same as the coefficients of the moment formula for the
case [ = I. Note that it does not mean the 7(C*) is the k-th cumulant of E, since the formula
of the moments also contains ¢" for some natural number n. But it may suggest some additive
structure of covariance matrices.

Another possible extension is by considering the moment problem, that is how to compute the
spectrum by the knowledge of the moments. We know how to compute the Laurent series expression
of the Stieltjes transform near infinity, but the inverse formula (2.3) for the Stieltjes transform
require the behaviour of the transform near the real line. Thus, we can not apply this formula
directly. Any the numerical works on this direction may be very useful in practice.
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