Ham_Tom_01340364.pdf

by Tom Ham

Submission date: 06-Sep-2022 01:13PM (UTC+0100)
Submission ID: 185731875

File name: Ham_Tom_01340364.pdf (1.07M)

Word count: 16900

Character count: 79704

Imperial College
London

IMPERIAL COLLEGE LONDON

DEPARTMENT OF MATHEMATICS

Actor-Critic Reinforcement Learning
Methods for Electronic Market Making

Author: Tom Ham (CID: 01340364)

A thesis submitted for the degree of

MSe in Mathematics and Finance, 2021-2022

Declaration

The work contained in this thesis is my own work unless otherwise stated.

I would like to thank

Acknowledgements

’aul Bilokon for the help and support throughout writing this thesis,

Abstract

Providing liquidity to a market is both necessary for efficient price discovery, and can also be highly
profitable for market making firms. Market making is becoming increasingly automated, and con-
trolled by algorithms, and in this work, we aim to see if the reinforcement learning technique of
actor-critic approaches can be applied to the problem of optimal market making. Reinforcement
learning techniques have previously been applied to the problem of optimal market making, how-
ever this specific approach of actor-critic methods is less studied in the literature. In this thesis
we will show that one particular actor-critic method is able to outperform a well known and well
studied market making model, known as the Avellaneda-Stoikov model, on real market data. This
is a result which has not been previously demonstrated.

In the following work, we introduce the theoretical framework of actor-critic methods, and ap-
ply them to both a simulated market environment, and also apply them to real market data by
looking at historical Tesla order book data.

Contents

1 Theory 9
1.1 Fundamentals of Reinforcement Learning 9
1.1.1 Markov Decision Processes 9

1.1.2 Policies and State-Value Funetions 10

1.1.3 Dynamic Programming e 11

1.1.4 Monte Carlo Methods for Reinforcement Learning 13

1.1.5 Temporal Difference Methods 13

1.2 Policy Gradient Methods 14
1.21 REINFORCE Algorithm o 15

1.2.2 Actor-Critic Methodso 16

1.2.3 Advantage Actor-Critic e 17

1.3 State of the Art Actor-Critic Algorithms 17
1.3.1 Soft Actor-Critic 18

1.3.2 Proximal Policy Optimisation 19

1.3.3 Deep Deterministic Policy Gradient 20

1.4 Stochastic Processes and Control L 21
1.41 Dynamic Programming Principle o000 22

1.4.2 Hamilton-Jacobi-Bellman Equation 23

1.5 Electronic Market Making L 23
1.5.1 The Limit Order Book 24

1.5.2 The Avellaneda-Stoikov Market Making Model 25

2 Reinforcement Learning Approach to Avellaneda-Stoikov Market Making 28
2.1 Environment e 28
2.1.1 State Space 29
2.1.2 Action Space e 29
213 Reward Signal 30

2.2 Results. e 30
2,21 Results Summary e e 35

3 Actor-Critic Approach Using Market Data 36
3.1 Data Source L e e e 36
3.2 Environment L e e 36
3.21 State Space 37
3.22 Action Space L 37
3.23 Rewards L 37

3.3 Fitting Avellaneda-Stoikov to Market Data 38
3.3.1 Estimating Volatilityo 38
3.3.2 Estimating Order Fill Probabilities 38

3.4 Results. 39
3.4.1 Comparison to Avellaneda-Stoikov 0oL 39
342 DDPG Training Metrics L o 41
3.43 DDPG Statistics 43
344 Summary of Results 44

A Auxiliary Proofs

A1 Proof of Dynamic Programming Principle
A2

Proof of Hamilton-Jacobi-Bellman Equation

Bibliography

46
46
47

List of Figures

[
—

o LU bD

bD B B BD BD RO
=21

=1

R O

3.6

A graphical depiction of the actor-critic framework [1, Figure 11.1, page 258]

Clipped surrogate objective function used for PPO Algorithm. [2, Page 3]
Top 15 levels of the Nasdaq LOB of Twitter, Inc. (TWTR) on 9 September 2015 at
3:26:22.84pm (ET). [3, Page 18]
Terminal wealth distributions of the optimal strategy, (J-learning agent, and A2C
T
A single realisation of the optimal Avellaneda-Stoikov strategy.
A single realisation of the tabular Q-learning strategy.
A single realisation of the A2C strategy.
Wealth paths for Q-Learning Agent.
Wealth paths for Advantage Actor-Critic Agent.
Wealth paths for Avellaneda-Stoikov Agent.

Fitted order fill rates, versus observed rates,):t
Terminal wealth distributions of DDPG vs Avellaneda-Stoikov on TSLA data. . . .
DDPG mean reward during training.o Lo L.
DDPG critic loss during training.
Four realisations of DDPG strategy on TSLA data
Q-Q Plot of DDPG terminal wealth distribution

31
32
32
33
34
34
35

41

List of Tables

2.1 Statistics for different algorithms on Avellaneda-Stoikov environment .

3.1 Statistics for different algorithms on 5 minute intervals on TSLA data
3.2 Mood’s median test for different median than Awvellaneda-Stoikov .

List of Algorithms

1.1 Tterative Policy Evaluation. 12
1.2 First-visit MC Ewvaluation 13
1.3 Tabular one-step temporal difference for estimating v, 14
1.4 REINFORCE e e e e e 16
1.5 Advantage Actor-Critic e 18
1.6 Soft Actor-Critic e 19
1.7 Deep Deterministic Policy Gradient 21

6

Introduction

In recent decades, technological advances have changed the way that technology is used in finance,
and financial markets. It is no secret that advances in technology have been rapid, and adoption of
new technologies in finance has been equally rapid. The way in which parties interact with financial
markets has been fundamentally changed by the rise of electronic trading. As discussed by Allen
et al. [4], the main feature of an electronic trading system is the antomation of trade execution.
This allows for continuous trading throughout a trading period, and removes any geographical
restrictions on parties willing to trade on exchanges located far from them. Traditional trading
methods (such as over the phone dealing, or floor trading) do not bestow both these advantages
on traders. The adoption of electronic trading is clear, as in 2018, it is estimated that between
60-75% of all trades on US equities markets were performed by algorithms [5].

Since the financial crisis of 2007-2008, increased regulation has contributed to a surge in the col-
lection and storage of financial data. The vast quantities of data that are now collected pertaining
to finance, and financial markets means it is a prime area to explore machine learning techniques.
Bilokon et al. [6] discuss the current widely applied uses of machine learning in finance, including
fraud detection, asset pricing, and robo-advisors. One reason for the success of machine learning
techniques so far when used in a financial context is that they are able to model high dimensional
and incredibly complex systems. Machine learning approaches can learn behaviour that cannot
easily be replicated by traditional model-based methods.

The particular branch of machine learning that will be explored in this thesis is reinforcement
learning. This is a model free method for learning some optimal way of acting in a given situa-
tion. Reinforcement learning methods learn this by interacting with an environment, and learning
through observation. The aim of this thesis will be to apply a specific kind of reinforcement learn-
ing method (known as actor-critic methods) to the problem of market making. A market making
strategy is one in which a trader offers to simultaneously buy and sell an asset at different prices,
and aims to receive two way trades so that they can profit on the difference between their buy
price and their sell price.

The applications of reinforcement learning to market making have only recently started to be
explored. Gagperov et al. [7] provide an extensive literature review on the different reinforcement
learning approaches to optimal market making, and finds that research in reinforcement learning
applications to market making only really started in 2018. Both [8] and [9] produce similar re-
sults, that is that reinforcement learning methods can perform as well as the Avellaneda-Stoikov
market making model (a mathematical stochastic control model which will be explored in this
thesis), specifically deep Q-learning techniques. However there has been significantly less research
into actor-critic methods applied to market making, with Bakshaev showing that one actor-critic
algorithm, Soft Actor-Critic can perform well on simulated order flow [10]. In Chapter 2 of this
thesis, we reproduce the results found in [8] and [9], i.e. that reinforcement learning methods
can perform as well as the Avellaneda-Stoikov model, however we instead use an actor-critic re-
inforcement learning algorithm, Advantage Actor-Critic. The reason for first demonstrating that
actor-critic methods work on simulated environments is that we are able to use this as a foundation
for showing that the results can hold on real market data.

In Chapter 3, we will use real order book data on Telsa (TSLA) to see if actor-critic algorithms
can produce profitable market making strategies on real data. We compare the results of three
different actor-critic algorithms, and also use an Avellaneda-Stoikov strategy on the market data
to see how the reinforcement learning methods compare to the well documented and tested math-
ematical model. In the results, we observe that one algorithm in particular, Deep Deterministic
Policy Gradient (DDP@G) is able to outperform the Avellaneda-Stoikov strategy in terms of both
mean and median wealth. We show that this actor-critic method is able to learn how to inter-
act with the environment to achieve profitable market making, a novel result in this particular
area of research. All code used to produce the results shown in this thesis can be found here:
https: //github.com/tomham000/actor-critic-market-making.

Chapter 1

Theory

In this chapter, we provide a background on the theory which will be relevant for the empirical
results shown in Chapter 2 and Chapter 3. We start by considering the general reinforcement
learning framework, which is erucial for the majority of the results in the thesis. We then consider
stochastic control problems, which give us a foundation on the theory behind optimal market
making. The final section will discuss electronic market making and the limit order book.

1.1 Fundamentals of Reinforcement Learning

The theory in this section is mostly adapted from Sutton and Barto 2018 [1, Chapters 3-4]. Rein-
forcement learning is the computational approach to learning through an agent’s interaction with
its environment. The general idea of a reinforcement learning problem is for an agent to learn
what it should do in a given situation, i.e. learn some mapping from states to actions, in order to
maximise some kind of numerical reward. Moreover, it may be the case that the agent’s actions
have some effect on its environment, and as with many machine learning problems, the agent is not
told which actions to take, rather it must explore its possible actions and work out for itself which
ones maximise the long term reward. Note this reward maximisation is not just the agent’s imme-
diate reward, but also all future subsequent rewards. Apart from an agent and an environment, a
reinforcement learning system in general has three additional components:

e A policy. This is some (possibly stochastic) mapping from states to actions. In essence, this
is how the agent chooses to act in a given state.

e A reward signal. This defines the goals of the agent. After each time step, the environment
will send the agent a single number, known as a reward, and the agent is trying to maximise
the total long-term reward it receives.

e A value function. In essence, the value of a state is the total amount of reward an agent
expects to receive over the whole future if it starts from that state. The value function is the
mapping from states to their values.

In this section, we will begin by exploring the general reinforcement learning problem formmlation,
the Markov decision process (MDP), and the fundamental classes of methods for solving MDPs.

1.1.1 Markov Decision Processes

One of the general formulations of reinforcement learning problems is the Markov Decision Process
(MDP). MDPs model how an agent interacts with its (possibly stochastic) environment in discrete
time steps

In order to explore these processes, and how they reinforcement learning has been built up
using these processes, we must first define the Markov property.

Definition 1.1.1 (Markov Property). Let & be a set of states, and let {S;}ien be a sequence of
random states such that S; € § for all t > 0. Then a state s € & has the Markov Property if for
all 8 € 8, and rewards r € R,

P(Riy1 =1 Sip1 =8| 51,0821, 8 = s) = P(Rypr =1, 841 = 8" | St = s).

If a state s with the Markov property, then all future information is independent of the past
given present information, and once the state is known, any history of the process up until it hits
s is irrelevant.

Definition 1.1.2 (Markov Decision Process). A Markov Decision Process (MDP) is the tuple
(SrAr Py -_I'). where

e & is the set of possible states.
e A is the set of possible actions.

e p(r,s | s,a) is the joint probability of a reward r and next state s’ € &, given s € § and
a € A. pis referred to as the Markov transition density.

e € [0,1] is a discount factor.

all states s € & are assumed to have the Markov property.

Discounted Returns

The aim of our agent is to maximise some kind of expected return at any given time. We wish to
design an agent that is able to show a preference toward short term reward, as well as long term
reward. This is done by defining our discounted return.

Definition 1.1.3 (Returns). The infinite horizon discounted return at time ¢ is defined as

oo

Gy = Z ‘_,r&'_!_le-.

k=t+1

If instead, the task is episodic with some (possibly random) terminal time T, then the discounted

return at time ¢ is defined as
T

G! = Z ‘_r'i"_!_l.ﬁ'.ji.

k=t+1

Here, v € [0,1] is known as the discount factor, and is a measure of how much the agent values
long term rewards relative to short term rewards. If 4 is close to (0, then the agent is short sighted;
it will value short term rewards higher than long term rewards, and vice versa if 4 is close to 1.
Notice that if T = oo, then v # 1, otherwise the sum may not converge. One key property of
returns is that

Gy =R +9Geya

This iterative definition proves helpful in caleulating quantities of interest, and will be explored in
the next section.

1.1.2 Policies and State-Value Functions

Most reinforcement learning algorithms involve estimating some value function. These functions of
states (or state-action pairs) are measurements of how good it is for the agent to be in a particular
state, or how good an action is when it is performed in a given state. The way in which we quantify
“how good” is by looking at the expected future returns. It is important to note however that the
future expected returns strongly depend on how the agent will act in the future, and this motivates
the idea of a policy.

10

Definition 1.1.4 (Policy). A policy m is a mapping from states s € § to probabilities of selecting
actions a € A. Specifically, at time ¢,

mla|s):=PA; =al| S =s).

With policies defined, we can now consider the value of a state, and state-action pairs for an
agent who is following some policy .

Definition 1.1.5 (State-value function). Suppose an agent is following a policy 7. Then the
state-value function v, : § — R is given by

va(s) == E[G, | S; =]

Definition 1.1.6 (Action-value [function). Suppose an agent is following a policy w. Then the
action-value function q, : § x A — R is given by

qr(s,0) = E[G, | S, =t, A = q

For small state/action spaces, one may be able to keep track of state/action values tabularly,
however for more complex problems, it is often convenient to parameterise these functions, e.g.
with a neural network. These methods will be explored in detail later in this thesis. We now derive
the Bellman equation for v,. We have that for every s € S,

vg(s) = lEfrth | S¢ = 3]
= vp(8) = Ex[Rpq1 +7Giq1 | St = 3]

= Ux(8) = Z m(a|s) Z ZI’(-‘?’J‘ | 5 ﬂ](?‘— VEA[Gii1 | Seg1 = 3’])

ac A seSreR
= wn(s) =Y _mlals) D D pls'sr | sia)(r+yva(s)). (L.1.1)
ag A s'eSreR

(1.1.1) is known as the Bellman equation forv,, and shows the relationship between a state’s value,
and the values of all possible successor states. We can also similarly derive the Bellman equation
for ¢, as

gn(s.a)= Y Y (s] s.a)+y) w(d | (s, d). (1.1.2)

sESTreER ac.A

1.1.3 Dynamic Programming

Dynamic programming (DP) in the context of reinforcement learning is the collection of algorithms
to compute optimal policies given some exact model of an environment, for example an MDP. In
reality, DP algorithms are not particularly useful in actually solving problems, due to both their
large computational requirements, and assumption of a perfectly known environment. However,
DP does provide an important foundation for more advanced techniques in reinforcement learning.

Policy Evaluation

Policy evaluation is the process of computing the state-value function v, for some policy . If the
dynamics of the environment are known, then (1.1.1) is a system of |§| linear equations, which
can be solved by numerous methods. For our purposes, we use an iterative solution method, i.e.
we find a sequence of value functions vy, vy, ..., each v; : § — E. The initial vy can be arbitrarily
chosen, so long as vy(s) = 0 for every terminal state s. Subsequent approximations are obtained
by using the Bellman equation, yielding the following update rule.

veri(s) = D wlals) Y pls'r|s.a)[r+yvels)]. (1.1.3)
acd(s) sfeSreR

U = v, is a fixed point of this update rule due to the equality in the Bellman equation. The
sequence {vy, }y=o has been shown to converge to v, as k — oo [11]. Algorithm 1.1 shows the full
iterative policy evaluation algorithm.

11

Algorithm 1.1 Iterative Policy Evaluation
Input: w, the policy to be evaluated.
Initialise an array V(s) = 0, for all s € S.
A0
repeat
A0
for each s £ § do
v+ V(s)
Vis) e mla|s)> . pls r|s.a)r+vV(s))
A — max(A, |v—V{(s)])
end for
until A < # (a small positive number)
Output: V(s) = v,(s)

Policy Improvement

Finding the value function, as described in 1.1.3 for some given policy is useful as it allows us to
find better policies. This process is known as peliey improvement. Suppose our agent (following
policy) is in some state s € §. Suppose they select some action a € A, which may not be part
of their current policy m, and thereafter follows its original policy. The value of this behaviour is,

Ge(sia) = > pls'.r | s.a) [r+7va(s")].

SeSreR

We are interested in knowing whether this new wvalue is greater than or less than the old value,
vy(s). If g(s,a) > v, (s), then selecting a when in state s is always better than the current policy,
hence that new policy would be better overall than w. This motivates the more general result of
the policy improvement theorem. Let w, 7' be any pair of deterministic policies such that for all
sES,

g (5,7'(5)) = vy (s)-

Then 7' must be at least as good as 7, i.e. for all s € S,
v (8) > va (5).

So far, we have seen that if we have m and its value function v, we can evaluate a change in policy
at one specific state s to a particular action a. The extension would be to consider changes at all
states and to all actions, by choosing the best action at each state s, according to gz (s, a). i.e, we
consider the new greedy policy, 7" which is given by

7'(s) = argmaxg,(s,a)

ac Als)
= arg max Z p(s',r | s,a) [r+ v (s")]. (1.1.4)
acA(s) s'eS,relR

This greedy policy takes the best short term action, after looking ahead by one step, according to
v,. This process, i.e. making a new policy that improves on the old policy by making it greedy
with respect to vy is called policy improvement. Note that if v; = vy, then for all s € &,

ver(s) =max > p(s’.r [s.0) [+ ve(s”)] (1.1.5)
=T siEsreR
—max S plslr | s,0) [+ n (). (1.1.6)
=T eEsrer

Notice that (1.1.5) is exactly the Bellman optimality equation, an alternate version of the Bellman
equation. Hence overall, v4+ = v*, so both 7 and 7' must be optimal policies. This means that
policy improvement will give us a strictly better policies until the policy is optimal. Note that
here we have only considered deterministic policies, but this theory can very easily be extended to
stochastic policies, with minimal changes.

12

Policy Iteration

One natural idea following both policy evaluation, and policy improvement is to improve some
policy 7 using v, yielding a new policy n’. We then evaluate 7' to compute v, and then improve
it to yield 7', and so on, each policy an improvement on the last. This process is known as policy
iteration, and is displayed graphically below.

E I E I E T E
My —F Vg, —F T —F Uy —> Ty —F s —F Ty —F Uy

1.1.4 Monte Carlo Methods for Reinforcement Learning

One of the key differences between Monte Carlo (MC) methods and dynamic programming ap-
proaches are that Monte Carlo methods do not assume complete knowledge of the environment.
The only thing that Monte Carlo methods require are experience, i.e. samples of states, actions
and rewards from actual or simulated interaction with the environment. This approach means that
no prior knowledge of the environment’s dynamics are needed, but optimal behaviour can still be
attained. These methods require episodic tasks, and when an episode is complete, value estimates
and polices are changed. Monte Carlo methods sample and average returns from each state-action
pair, and average rewards for each action.

Suppose for some s € 8§, we wish to estimate v,(s), the value of s under . Suppose we have
a set of episodes obtained by following m, each episode passing through s. Each occurrence of state
s in each episode is called a wvisit to s. It is possible for s to be visited multiple times in a single
episode, but we denote the first time s is visited as the first visit to s. The two MC methods are
known as first visit MC method, and every-visit MC method. The former estimates v, (s) as the
average of total discounted rewards following the first visits to s, whereas the latter uses every visit
to s. Pirst-visit MC is more widely studied in literature, however both methods are very similar,
only differing slightly in some theoretical properties. Below shows the first visit MC algorithm for
estimating v,. First-visit MC converges to v, (s) as the number of visits to s goes to infinity.

Algorithm 1.2 First-visit MC Evaluation
Input: a policy 7 to be evaluated
initialise V'(s) arbitrarily for all s € §
initialise Returns(s) < an empty list, for all s € §
while V'(s) not converged do
Generate an episode following m, giving So, Ao, B1, 51, A1, Re, ..., St Ar 1, Ry
G0
for each step of episode t =17 — 1,7 —2,...,0 do
G — ‘_r(;r' + Rg+1
if not S; appears in S, ..., S;_; then
Append G to Returns(St)
V' (8;) « average(Returns(S;))
end if

end for

end while
Output: V(s) = v,

1.1.5 Temporal Difference Methods

Temporal difference (TD) learning combines the ideas from MC methods, and DP methods. Similar
to MC methods, TD learning uses direct interaction with the environment with no model of the
environment’s dynamics. We begin as usual by looking at policy evaluation, that is, finding vy
for some given policy 7. The main difference between TD and MC methods, are that while MC
methods must wait until the end of an episode to update V(5;), TD methods can update their
estimates after a single time step. At time ¢ + 1, they make an update using the observed reward,

13

Ryiq1, and the estimate V(S¢y1). The simplest TD update rule is as follows,

V(St) & V(Sh) + a[Repr + 7V (Sepr — V(S)]. (L.1.7)
This update is immediately made on the transition from S; to Sy, when K, is received. Note
that this TD method is known as TD(0), or one-step TD, and is a special case of the TD(X)
method. For more details on the generalised TD methods, see [1, Chapter 12]. Algorithm 1.3
shows the full one-step TD method algorithm.

Algorithm 1.3 Tabular one-step temporal difference for estimating v,
Input: A policy 7 to be evaluated
Input: Step-size parameter a € (0, 1]
Initialise V'(s) for all s € § arbitrarily, except V(§) = 0 for all terminal states §
while V(s) not converged do
Initialise S
while S not terminal do
A + action given by 7w for S
Take action A, observe R, §'
V(S) +— V(S)+alR+~V(8) — V(SJ]
55 _
end while
end while
Output: V(s) = ve(s)

1.2 Policy Gradient Methods

This section on policy gradient methods is adapted from [1, Chapter 13]. So far we have considered
only action-value methods. They have all learned the values associated with actions, and selected
an action based on these action values. In this section, we consider methods that learn a policy
which is parameterised by some vector of parameters, 8 € RY | known as policy gradient methods.
These policies can select actions without needing an action value function, however a value function
may still be nsed to learn the parameter 8. We denote w(a | 3,8) = P(A; = a | S; = 5,8, = 0)
as the probability an action a is chosen at time ¢ given the environment is in state s, and the
parameter vector is @. If a method also uses some value function v, then the weight vector for
this function is denoted as w € R, i.e. #(s,w). Policy gradient methods aim to learn the policy
parameter @ based on the gradient of a performance measure J(@). The methods will aim to
maximise this performance measure .J, so gradient ascent is used to update the parameters, i.e.

611 =6, +aV.J(e,) (L.2.1)
Any method which uses this general approach is called a policy gradient method, however methods
that also approximate both a policy and a value function are known as actor-critic methods, and
will be discussed in Section 1.2.2. Policy gradient methods require w(a | s,8) to be differentiable
with respect to 8, i.e Vgm(a | s,80) exists and is finite for all s €8, a € A, and 6 £ R4,

Example - Policy Parameterisation for Discrete Action Spaces

When the action space 4 is discrete, and not too large, one common parameterisation of w(a | s,)
is to create some kind of numerical preference, h(s,a,8) € R for all state-action pairs. The actions
which have the largest preferences, h, are assigned the largest probabilities of being selected. One
example of such selection is the exponential softmax, i.e.

ehils,0,8)

S peq RO
It is important to note that the parameterisation is arbitrary, i.e. 6 may be a vector of weights
and biases used in a neural network: the neural network would then assign the probabilities to

wla|s0)=

state-action pairs. There are many such possibilities for this parameterisation.

14

1.2.1 REINFORCE Algorithm

In this section, we will discuss the simplest policy gradient algorithm, REINFORCE. For notational
simplicity, from now on we will assume that every episode begins in some deterministic state,
sy € 8, however the theory can be extended with ease to stochastic starting states. We also
assume that the discount factor 4 = 1, but again, this is for convenience and does not reduce the
generality of results. We let our performance function, .J, be defined as

J(8) := vq,(s0),

the value of the initial state in the episode. Here, vy, is the true value function for ma, the policy
parameterised by @. Intuitively, this makes sense as a performance function, as we are trying to
maximise the total discounted reward that we receive given that we start in s3. To develop the
REINFORCE algorithm, we must first introduce the policy gradient theorem below.

Theorem 1.2.1 {Policy gradient theorem). If J(6) := v, (s0), then

v.J(0) =E,

3" 4a(Sea)Ven(a | S;..BJ] ‘ (1.2.2)
ac. A

Proof. See [1, Chapter 13, Page 325] |

To continue our derivation of the REINFORCE algorithm, we will further manipulate (1.2.2).
We have

VJ(6) = E, {Z ¢ (St,a)Ver(a | 9:.9)]
aeA

= V.J(6) =E, {Z w(a | Sy, 0)qr (St a) (1.2.3)

Ver(a | S!.a)]
ac.A

w(a| S, 0)

Notice that we can replace a by the sample 4; ~ w(a | S, @), the action taken at time ¢ in (1.2.3)
to give

VJ(0) =E, [q,(sg,Ag)iv‘*”m‘ | S"a)]

‘IT(;‘].; | Sg. 9)

(1.2.4)

— VJ(@)=E, [Gtiﬁﬂm‘ | S“B)]

m(As | Se. 0)
where we have used the fact that E, (G, | Sp, 4] = ¢,(S;, 4;) in (1.2.4). We now use this directly
in our policy gradient ascent update rule, (1.2.1) to give the update rule for REINFORCE,

Ver(A: | S, 6)

9:+1 =6, *ﬂ'Gziﬂ(A! [S,.0)

(1.2.5)
If we now take a step back and consider what this update rule means intuitively. Each increment
is proportional to the total return multiplied by some vector. This vector is the direction (in
the B-space) that most increases the probability to repeat A, on future visits to S;. The update
increases proportionally to the total return, which is intuitive as it causes the parameter to move
more in directions that favour actions which produce the highest return. The update also increases
inversely proportionally to the action probability. This makes sense as actions with a high selection
probability are at an advantage, as the updates will occur more often in their direction. Before
we introduce the pseudocode for REINFORCE, recall that Vlog(z) = % s0 we can rewrite the
update rule (1.2.5) as

0: 11 =0, +aGNVglog(m(A4; | S, 80)).

In the literature, Vg log(m(4; | S, 8)) is known as the eligibility vector. Algorithm 1.4 shows the
full pseudocode for the REINFORCE algorithm.

15

Algorithm 1.4 REINFORCE
Input: a differentiable policy parameterisation, w(a | s,8)
Initialise policy parameter 8 € R?, e.g. to 0.
for each episode do
Generate an episode Sg, Ao, B1,..., ST—1, Ar—1, R, following = (|, #)
for each step of the episode, t = 0,...,7 — 1 do
G eV R,
0« 0+ ay'GVglog(n(A; | S, 0))

end for

end for

1.2.2 Actor-Critic Methods

In Chapter 3, actor-critic methods will be the focal point of the results that are presented. Actor-
critic methods are policy gradient methods driven by two separate structures; the actor, which is
used to select which actions to take, and the eritic, which evaluates the actor’s action choices using
an estimated value function. The critic produces a TD error, which is a scalar signal that drives
the learning of both the actor and the critic. Figure 1.1 shows a graphical representation of the
actor-critic framework.

\\
—— | Policy ————
Actor
B TD
Critic error
Value
—— | .
state Function action
/
reward
Environment

Figure 1.1: A graphical depiction of the actor-critic framework [1, Figure 11.1, page 258|

After each action selection, the critic (state-value function) evaluates the new state to see
whether the reward and the discounted value of the new state are an overestimate or an underes-
timate of the value of the old state. The TD error is defined as

8t = Rep1 +9Vilss) — V(S),

where V; is the critic’s value function at time ¢. If ; = 0, then the action performed better than
expected, and the actor should increase its tendency to select that action in the future (and vice
versa if d¢ < 0). Hence the TD error, d; is used to evaluate the action A; taken while in state S.

16

1.2.3 Advantage Actor-Critic

We now introdnce our first actor-critic algorithm, advantage actor-critic (A2C). This actor-critic
method was first introduced by Mnih ef al. in 2016 [12]. Firstly, we must define the advantage
function.

Definition 1.2.2. The advantage of the action a € A in state s € § under policy 7 is given by
AT (s,a) 1= gn(5,a) — va(s).

Intuitively, this is the difference between the g-value of the action it took, and the probability-
weighted average of the other actions it could have taken in state s. To continue, we must first
introdnce a more general version of the policy gradient theorem.

Theorem 1.2.3 (Policy gradient theorem with baselines). Letb:S — R be a baseline, i.e. some
function on the state space. Then

v.J(0) = E, {Z (4-(S1,0) — b(81)) Von(a | SI.BJ] . (1.2.6)
ac A

Proof. See [1, Chapter 13, Page 329] O
Notice that our definition of the advantage function can be applied directly to (1.2.6), with v,

as the baseline, so that we obtain

V.18 =E,

> A(Sna)Ver(a| S:,B)] : (1.2.7)
at A

Using identical steps as those in the previous section, it can also be shown that
VJ(8) = Er [A"(Se. 4¢)Ve log(me(A, | 5::8))] (1.2.8)

At this point, we introduce our actor and our critic. The actor is the policy mg(- | -, 8), param-
eterised by 6, and the critic is the state-value function v,(+;), parameterised by ¢. One way
of estimating the advantage function, such that it is equal in expectation to the true advantage
function, is to use the n-step advantage estimate. This estimate is given by

n—1

Agp(s,0) = Y Repnir +7"06(Serni1) — ve(Se). (1.2.9)
k=0

Using this advantage estimate along with (1.2.8), our update rule for 8 becomes

n—1
011 = 6, +nVglog(mg (A, | 5::0)) (Z Y Regrpr + 7 "0 (Sernt1) — v St]) :

k=0

We now have our actor update rule, and the only remaining step is to find the critic update rule.
For A2C, when updating the critic’s parameters, o, we simply minimise the square error between
each state’s estimated value, and its true observed value. Algorithm 1.5 shows the full pseudocode
for the A2C algorithm.

1.3 State of the Art Actor-Critic Algorithms

For our empirical results, we will consider three state of the art reinforcement learning algorithms,
and compare their results to each other, and to previous reinforcement learning techniques, such
as those described in section 1.1. These algorithms arve soft actor-critic (SAC), an off-policy
stochastic policy optimisation algorithm, prozimal policy optimisation (PPO), a policy improve-
ment algorithm that improves by taking small steps, and fnally deep deterministic policy gradient
(DDP@G),which simultaneously learns both a Q-function, and a policy. We explore each of these in
more detail in the upcoming sections.

17

Algorithm 1.5 Advantage Actor-Critic
Initialise actor mg, parameterised by @ and critic v, parameterised by ¢
Initialise 8, ¢ randomly
for each episode do
df — 0, dp + 0
Initialise environment, observe Sy
repeat
Take action A; according to mg
Receive reward Ry, observe state S;
until S; terminal
R =0if S, is terminal, else R = v,(S5;)
for eachi e {t - 1,....0} do
R R, +~R
Accumulate policy gradient using critic, d « df + Vg log mg(A; | 5;,8)(R — v, (S:))

Accumulate critic gradient dip + dyp + V(R — “LIR‘,(S(-)]2

end for

60— 0 +ndb

P @ +nde
end for

1.3.1 Soft Actor-Critic

Soft actor-critic (SAC) is an off-policy, maximum entropy reinforcement learning algorithm intro-
duced by Haarnoja et al. [13]. This paper discusses two major problems with traditional deep
reinforcement learning methods. Firstly, the poor sample efficiency of even simple tasks; millions
of environment interactions may be needed to solve even simple tasks, and this becomes even more
challenging with complex environments. Secondly, these methods can be unstable with respect to
hyperparameters, e.g. learning rate, environment parameters ete. This means that hyperparam-
eter tuning must be performed, which can he expensive depending on the problem/environment.
The motivation of SAC is to design an efficient (low environment steps) and stable (robust to
hyperparameter changes) algorithm for both discrete and continuous action spaces.

To setup SAC, we first consider an agent who maximises a new objective function,

T
J(m) = S B[R, + aH(n(- | S0), (13.1)
=0
where H(m) is the entropy (differential entropy) of the discrete (continmous) policy 7, defined as

H(X) = E[-log(f(X))],

where f is the probability mass/density function of X, depending if X is discrete/continuons.
(1.3.1) also has a temperature parameter o, which determines how important the entropy term is
compared to the reward signal, and determines how stochastic the optimal policy is. Note that as
a — 0, we recover the conventional objective function.

Soft Policy Iteration

The SAC algorithm is derived starting from a maximum entropy variant of policy iteration, known
as soft policy iteration. For this we have two new quantities of interest, the soft Q-value, and the
soft state-value function. Analogously to the standard setting, the soft (-value tells us the expected
return from a given state/action pair, and the soft state-value function tells us the expected return
from a given state. The soft Q-value can be computed using the standard update rule,

Q (s, a0) = 1o +AER[V(s041)] (1.3.2)
where V' is the soft state-value funetion, defined as

V(si) = Ex[Q(st, Ar) — log(m(As | 54))]. (1.3.3)

18

This update rule for Q% will converge to the soft Q-value, and a proof of this convergence can be
found in [13].

Details of Soft Actor-Critic Algorithm

Like standard actor-critic algorithms, SAC uses function approximators for both) and the policy,
and optimises both functions via stochastic gradient descent. The algorithm uses a parameterised
state-value function, Vy,, soft Q-function, (Jg, and policy my. We hence have three networks
parameterised by 4, #, and ¢ respectively. The state-value network minimises the loss

1 .
T () = Eqnp |5 (Virlse) = Ex, [Qse.ar) — log(ma(ar | 50))))°] . (1.3.4)

where D is the distribution of previously observed states and actions. The gradient of (1.3.4) can
be estimated using the unbiased estimator

ﬁjw(v] =V Vils:)(Vip(se) — Qalse, ar) + log(ma (ar, 5¢)).

Similarly, using appropriate loss functions .J and J, as described in [13], we obtain gradient esti-
mators for J and J; with respect to # and ¢ respectively as

%94’(9(9) = VHQH[I’M:-‘H)[QS(S::&:) — T — ‘r“r'l-",(-‘f:Jrl)]: (1.3.5)

where Vj is a target value network, where ¥ is an EWMA of all of the previous network weights.
This has been show to stabilise training in [14]. Finally,

Vodald) = Vg loglmylas | s¢)) + (Va, logg(ar | 8:) — Va, Q(8e, a:)) Vg fo (€5 81). (1.3.6)

Algorithm 1.6 Soft Actor-Critic
Initialise parameter vectors 4, ¥, 8, ¢.
Initialise replay buffer D.
for each iteration do

Initialise S
for each environment step do
as ~ walar | st)
Take action a,, observe 8,1, 14
D«—DU {(S!.at.r—f— 1.Sg+1]}
end for
for each gradient step do
W= — AV Jy(v)
f— 68— AgVadg(d)
¢+ b — AVada(d)
=T+ (1 —7)
end for
end for

1.3.2 Proximal Policy Optimisation

Proximal Policy Optimisation (PPO) is a reinforcement learning algorithm proposed by Schulman
et al. [2], and similarly to SAC, attempts to find a balance between simple implementation, sample
efficiency, and robustness to hyperparameter tuning. It is an extension of the Trust Region Policy
Optimisation (TPRO) algorithm, introduced by Schulman ef al. [15]. PPO performs an update at
each step that minimizes a cost function while also making sure that the new policy is very similar
to the previous one. While technically a class of different algorithms, this section will briefly outline

19

the most commonly used version of PPO, using a clipped surrogate objective function. Recall the
gradient estimator used in the REINFORCE algorithm, (1.2.8)

G=E, [A(S,, A) Ve log(ra(A; | Se: 9))] .

where A is some estimate of the advantage function, for example the n-step advantage estimate
defined in (1.2.9). Let & be the parameters of the previous actor (policy). We then define the
probability ratio, r,(8) as
w(As | S50
(@) = LA 550).
m(A | Se; 6)

TPRO maximises a so-called surrogate objective function,
L(8) = E[r(0)A,]

where again, A is some estimate of the advantage function. However, to avoid unnecessarily large
policy changes, (2] suggests maximising a clipped version of this objective function, as follows:

LCUP(g) .~ | [min (ro(8)A,. clip(ry,(6).1— .1+ E)A,)] ,

where,
a ifr<a
cip(r,a,b) =<z fa<z<bh,
b iftz=b

and e is some hyperparameter, with [2] suggesting € = 0.2 as a sensible value.

A<D
LCLIP A=0

1—-¢1

bt mmmmm—— —
-

0 1 1+e LOLIP

Figure 1.2: Clipped surrogate objective function used for PPO Algorithm. [2, Page 3]

Figure 1.2 shows that the change in probability ratio is clipped if it improves the value of
the objective function, and is not elipped when it worsens the objective function. This gives
a pessimistic bound on the objective function, and leads to smaller changes in the policy. The
implementation of PPO is essentially very similar to REINFORCE except LEHF is maximised
instead of the standard policy gradient objective function. Hence we do not include its psendocode
in this section.

1.3.3 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient (DDPG) was first proposed by Lillicrap et al. [16]. It is an
actor-critic approach to the DPG algorithm proposed by Silver et al. [17]. DPG keeps track of
an actor, represented by p(s | #"), parameterised by the network #*. As with a normal actor,
this specilies a policy, mapping states to actions. The critic, Q(s,a) is learned as in standard

20

()-learning, with the Bellman equation.

Algorithm 1.7 Deep Deterministic Policy Gradient
Initialise actor u(s | @) and critic Q(s, a | #%) with parameters #* and 69,
Initialise target network g/ and Q' with weights 8% « 6*, and #2 « §2
Initialise replay buffer R.
for each episode do
Initialise a random process A
Observe Sy
for each environment step do
Select action Ay = p(S; | 0%) + Ny
Take action A, observe S 1, Ry
R« RU{(S, Aty Beyr, Se1)}
Sample a random minibatch of N transitions (S}, A;, R; 1, S;p1) from R
Set yi = Rip1 +7Q"(Sig1, 4" (Sigr |07 | 9@")
Update critic by minimising loss L := % Z;N:l(y(- — QS A; | #<y)*
Update actor policy using the sampled policy gradient

N
i 1 ' , "
Viu & FZL VaQ(s.a| QQ]|..,:5',,u:,1{5,)V9» p(s | 8%)|a=s,

Update the target networks
09 — 69 + (1 —)8

0" 70" + (1 - 1)8"

end for
end for

1.4 Stochastic Processes and Control

We will now switch gears and move onto the theory of stochastic control. Chapter 2 will combine
both the theory of reinforcement learning and stochastic control in a practical setting. The theory
in this section is adapted from [18, Chapter 5]. Stochastic control problems regularly appear in
applications to financial mathematics. As an example, in 1971, Merton created and solved the
optimal investment problem, concerned with an investor choosing a proportion of his wealth to
allocate into stocks vs a risk-free asset, using the techniques of stochastic control [19]. The goal of
stochastic control problems is in general to maximise some expected payoff function by selecting
some strategy which affects the dynamics of the stochastic system. In this thesis, we will set
up the problem of optimal market making (to be discussed in Section 1.5) as a stochastic control
problem, find some optimal strategy through standard techniques, and also find a strategy through
a machine learning approach. The main objects of consideration in the realm of stochastic control
are those of controlled diffusions, defined below.

Definition 1.4.1 (Controlled diffusion). A controlled diffusion, {X{ };~¢ is a stochastic process
defined by

dX] = p(t, X[, mp)dt + o(t, X[', 7w)d By, (1.4.1)
where {7 }s~o Is a process adapted to F;, known as the control process {or more simply, control).
g and o are real valued functions of time, the controlled diffusion, and the control process. {B;}
is a standard Brownian motion.

Note that each control, 7 gives rise to a different controlled diffusion, X', and in the general
case, (1.4.1) is not an SDE, and {X['} does not satisty the Markov property in general. For

21

our purposes here, we will restrict any selection of a control 7 to be a function of two variables,
(t,z) — w(t, z), so that the control process is w(t, X;), and the controlled diffusion is given by

dXT = p(t, X[x(t, X,))dt + o(t, X[, 7 (t, X,))dB,. (1.4.2)

Any control of this form is known as a Markov control, and (1.4.2) is an SDE, whose solution has
the Markov property. The general problem we attempt to solve is maximising an expectation of
an additive payoff. We first define the performance eriterion.

Definition 1.4.2 {Performance criterion). The performance criterion, .J™(z) is given by:
. T
™ o | = [T s 0oy — [rads
J(z):=E |} Joo TetEh(XT) —‘/ e JaTs .Hd{l \
0
where 7, = r(s, X7, 7,), and v, = ~5(t, X7, 7).
In this thesis, we will use the convention that r =« = (0. We can hence rewrite

J () = E[p((XE))-

1.4.1 Dynamic Programming Principle

The two key tools in solving stochastic control problems are the dynamic programming principle
(DPP), and the related non-linear PDE, known as the Hamilton- Jacobi-Bellman (HIB) equation.
The DPP is a way of solving stochastic control problems by working backwards from the terminal
state, and the HJB equation can be viewed as the infinitesimal version of this principle. Before
exploring these two important tools, we first define admissible controls.

Definition 1.4.3 {Admissible controls). The set of admissible controls is defined as
Agpi={m:[s,f] x R — R:(14.1) has a unique square-integrable strong solution}.

We will only consider controls m from this set to ensure that any solutions are well defined.
Our main objective is to find the two following quantities:

H(z):= sup E((X7))= sup J"(z), (1.4.3)

L= PPS meA T
which will be referred to as the value function, and
7" € Ay r such that H(z) = J™(x) (if it exists), (1.4.4)

a control that maximises our value function. This is known as the optimal control. The first part
of our approach will be to define a modified version of H in the following way.

(i)
JT(t, X) = Ep(XT)|F).
(it
H(t,X;) = sup E[@(XF)|F]= sup J7(tX,).

TEALT TEAL T

We refer to H(t,) as the dynamic value function. Notice that H(0,z) = H(z). The dynamic
programming principle is the relation between the dynamic function at different points in time.

Theorem 1.4.4 (Dynamic Programming Principle].

H(s, X.) = sup E[H(t, X[)|F foralls <t <T. (1.4.5)

TEA 4

Remark 1.4.5. In plain words, the dynamic programming principle says that if you know how to
act optimally between t and 7', then you only need to know how to act optimally between s and

Proof. See A1 O

22

1.4.2 Hamilton-Jacobi-Bellman Equation

In order to set up our final tool for solving stochastic control problems, it will first be helpful
to recall the Feynman-Kac formula. We will then adapt this formula to a controlled diffusion
environment to yield the HJB equation.

Theorem 1.4.6 (Ieynman-Kac). Let X satisfy
dX: = plt, Xo)dt + o(t, X,)dB;.
Let f:[0,T] x B = R be a function satisfying
J(t. X)) = E(p(X7)| Fe).
Assume f € CY2, then:

of |
at

VOF 1, Pf
wlt) oo+ 507 (ha) 55 =

ST, x) = ¢lx).
We are now ready to introduce the final tool, the HIB equation.
Theorem 1.4.7 (Hamilton-Jacobi-Bellman Equation). Let X™ be a controlled diffusion satisfying
dX] = p(t, X[, mp)dt + o(t, X[, m,)dB,.
Let H:[0,7] x R = I be a function satisfying

H{t, X;) = sup E(p(X7)]F)

TEAr T
Assume H € C12, then:
] aH (tz){')H 12“‘)621{ —0 (1.46)
P e TRy TR BT (T 0

H(T, z) = p(x).

Additionally, suppose n*:[0,T] x B — R attains the supremum in (1.4.6) for all t,z. Then t* is
an optimal Markov control.

Proof. See A.2. O

Notice that most terms in this equation, and the terminal condition are exactly the same as
in the standard diffusion setting, the only difference being that we now have a free variable ,
over which we take a supremum. We are essentially maximising the equation with respect to the
7w argument. We are aiming to find some maximiser, 7* which attains the supremum, and this
control will again depend on t and X

1.5 Electronic Market Making

The US Securities and Exchange Commission (SEC) defines a market maker as “a firm that stands
ready to buy or sell a stock at publicly quoted prices.” [20]. According to the New York Stock
Exchange (NYSE), in 2021, the average daily trading volume of US cash equities was almost
$580 billion [21], and in order to provide enough liquidity to enable these vast trading volumes,
market makers are an essential feature of modern markets. They allow f[or higher price visibility
for investors, and also allow trades to be made at a reasonable price instantly, increasing market
efficiency.

23

1.5.1 The Limit Order Book

The following description of the limit order book is adapted from Bouchard et al. [22, Chapter 3].
Modern exchanges adopt an antomated approach to matching buyers and sellers through the use
of a limit order book (LOB). These markets are driven by incoming orders, which may be of two
types.

e Limit orders - these orders specify the highest price the trader is willing to buy at (known
as a bid price), or the lowest price a trader is willing to sell as (known as the ask price).

e Market orders - these orders leave the price unspecified.

Once a limit order is placed, it must wait until it is matched, or until the order sender cancels the
order. However a market order is immediately executed against the best limit order currently in
the LOB. To formalise the definition, an order r is associated with the following four attributes.

e The sign, €, € {—1,1}, representing whether = is a buy order (e, = 1), or a sell order
(ep = —1).

e The price, p, € R,
e The volume v, € Z 1!,
e The timestamp t, € R,

When a buy order & arrives, the exchange's matching algorithim will attempt to find a sell order
y, with p, > p,. If such an order is found, and if v, > wv,, then the order is fully matched and
the trade is made. However if v, > vy, the remaining volume v, — v, must be matched against
another order. If such a y cannot be found, or the full volume cannot be matched against existing
LOB orders, then = becomes an active order in the LOB.

Best Bid /Ask

We denote the LOB state at time t, i.e. the set of all orders in the LOB at time t as ;. The set
of buy orders is denoted as

By :={x e L;:e, =1},
and the set of sell orders as

S i={reLly:e, =—1},
then the best bid (or bid price) at ¢ is defined as

by = m;’}s}{p-_,-_.

xehy

and the best ask (or ask price) at t is defined as

iy 1= mi

TE

=

Pe

tn

t

a; and by are the prices that a trader can immediately buy or sell at respectively. We also define
the mid-price as

bg -
my =)

the average of the bid and ask prices. Figure 1.3 shows an example snapshot of a LOB, where
by = 27.47, and a, = 27.49.

'Some exchanges will allow for fractional volumes if the asset price is large.

24

Price ($)
27.35 27.40 27.45 27.50 27.55 27.60
= Sell volume

= Buy volume
4 Mid-price

Ask
Bid
7 8 5 4 3 2 1 12 3 4 5 & 7 8

9 10 11 12 13 14 15

1500

1000

Shares

50

15 14 13 12 11 10 9 8
Level

Figure 1.3: Top 15 levels of the Nasdaq LOB of Twitter, Inc. (TWTR) on 9 September 2015 at
3:26:22.84pm (ET). (3, Page 18]

1.5.2 The Avellaneda-Stoikov Market Making Model

One of the most frequently nsed stochastic models for market making is the Avellaneda-Stoikov
model. In this section, we outline the dynamics of this model proposed in [23].

Controlled Diffusion Dynamics

Firstly, it is assumed that an asset mid-market price evolves according to the stochastic differential
equation,

S, = adW,. (1.5.1)
Here {W;} is a standard Brownian motion, o a constant, and the asset has initial value Sy = s.
This price process represents the value of the agent’s assets at the final period, but it is important
to note that trades can't be executed at this price. We see that in this model, Avellaneda and
Stoikov assume no interest in the money market, and implicitly assume that the agent has no
opinion on the drift or autocorrelation structure for the asset price. Suppose that the market
maker (MM) wishes to quote a bid price of p* and an ask price of p*. Then we define the distances

5= s —pb,
and
0= pt — s,

where s is the current asset price. It is assumed that the MM's buy orders are filled at Poisson rate
Ab(8"), and the MDM’s sell orders are filled at Poisson rate A*(d%). Note A* and A* are functions of
the distances defined above respectively. The reasoning behind Poisson order arrival rates is based
on two empirical facts; the distribution of the size of market orders follows a power law [24, 25],
and that the limit order depth changes proportionally to the size of the market order [26]. It is
argued in (23] that these order arrival rates can be assumed to take the form

A (8) = A"(8) = Ae™ ™ (1.5.2)
Under all these assumptions, the agent’s cash process, { X;}s~q has the dynamics
dX; = p dN® — pPdNE, (1.5.3)

where {N{} and {N/} are Poisson processes with intensities A%(6%) and A?(4") respectively. The
MM's inventory process, {0}~ representing the total volume of asset the MM holds at time ¢ is
given by

Qi = NP — N2, (1.5.4)

25

Dynamic Value Function

Avellaneda and Stoikov suggest the MM has the dynamic value function

H(s,z,q,t) = sup {E[—exp(—Wr) | F]}, (1.5.5)
g, db

where W := X +), 5; is the wealth at time ¢. Notice at t =T, we have
His.z,q.T) = —exp(—7y(z + gs)).

This is known as constant absolute risk aversion (CARA) utility, and is studied in [27].

Solving the System Using the Hamilton-Jacobi-Bellman Equation

To begin finding our optimal controls, §°%, and 4%, we must write down the HJB equation for our
stochastic control system. This equation is as follows:

JH 2 9°H
sup e 2 L 22 e L=, (1.5.6)
5o gt | OF 2 9s?

where £% is the infinitesimal generator of {Q;}. Since {Q,} is a linear combination of two jump
processes (namely {N}} and {N£}), it is itself a jump process, hence £% is a finite difference
operator. Hence the HIB equation for our system becomes

aH a?d*H ., "
;ug {W Ty T A J(H(S,.l. —s+d", g+ 1,1 — H(.e,.l.,q,f])
+ A"(&"](H(.ﬁ..r L5 8% q—1,4) - H(.q..r.q.r))} —0, (1.5.7)

with terminal condition H (s, z,q,T) = —exp(—v(z+qs)), the CARA utility function. The solution
to this non-linear PDE is continuous in s, x, and , and depends on the discrete values g. We can
simplify the problem using the ansatz

His,x,q,t) = —exp(—y(zx +v(s,q,1))), (1.5.8)

where v is some function not dependent on . Directly substituting this into (1.5.7), and rearrang-
ing yields

v ol o2 (v’ AV(8°) b
P (T) ““;1?{.—(1—“?’(— (5=9 —“““f'—1~*‘]—*"“‘~@'~”))}

+ sup {m(l —exp (v(s+ 0" +v(s,q—1,1) — 1)(.e,q,f]))} . (1.5.9)

A 7

(1.5.9) is a highly non-linear PDE, and is computationally hard to solve. Avellaneda and Stoikov
suggest an asymptotic expansion of v in the inventory variable g. After these expansions are com-
puted, the PDE is then solved approximately, as there is no closed form solution. Hence the controls
proposed by Avellaneda-Stoikov are only semi-optimal. After solving the PDE approximately, we
obtain the two semi-optimal controls,

. . 1 ~
(4, Qu) ~ (T~ 1)@+ —log (147). (1.5.10)

Caw — o2 A 1 i "
5 (1.Q) ~ —vo (r—r)Q:—;log(l—z], (1.5.11)

and the semi-optimal bid/ask prices are given by

P & Sy — Quye (T — 1) — 2o(T = 1) — L1og (1 + 1)
2 Y B k

26

;L.

These controls show that as the inventory increases, both the bid and ask get lower, i.e. the
market is skewed downwards as we would expect. The opposite is true if the inventory decreases.
If @)y = 0, the spread is symmetric about the mid-price. If volatility is higher, the market maker
will quote a wider market.

. . Y- 1 ¥
PR S = Quot(T - 1)+ 20T — 1)+ ~log (1+ 1)

Chapter 2

Reinforcement Learning Approach
to Avellaneda-Stoikov Market
Making

We now wish to apply the reinforcement learning techniques discussed in Section 1.1 to the market
making problem discussed in Section 1.5. Gorse and Lim observe that reinforcement learning
approaches can outperform Avellaneda-Stoikov market making (9], so we wish to see if this can also
be achieved with actor-critic reinforcement learning algorithms. In this chapter, we will consider
the performance of three agents. One acts optimally according to Avellaneda-Stoikov, one will use
the traditional temporal difference learning approach of tabular)-learning, and one will use the
actor-critic algorithm, A2C, described in Section 1.2.3. The aim of this chapter is essentially to
prove the concept that actor-critic algorithms can perform well on a theoretical foundation on the
market making problem, so that in Chapter 3, we can apply them to real data.

2.1 Environment

The reinforcement learning algorithms will both learn on identical environments. Since the the-
oretical framework is clearly defined, this environment is fairly simple. The environment keeps
track of the following quantities; the underlying asset price, S;, the agent’s position, @, and the
agent’s wealth W;. The environment has an initial time ¢ = 0, and terminal time T" = 1, with 200
timesteps, so that At = 0.005. At each step, the environment updates its asset price according to
the Euler scheme,

S;_'.A;:S;—JVAfZ;. (211)

where Zy ~ N(0,1) for all {. Trades are decided by the Poisson processes Ny, and _-'\";’. To simulate
these, we use the following lemma.

Lemma 2.1.1. Let {N;} be a Poisson process with rate A. Then

1- Mt +O(dt) =0
P(Nerae — Ny = j) = { Adt + O(dt) Jj=1
O(dt) i>1
as df — 0.
Combining this lemma with (1.5.2), we can calculate the probability a trade is made after a
small timestep Af, i.e.
P(Nppa:r = N, +1) = Ae %% At
P(Neyar = Ni) =1 — Ae ¥ At

These update rules give us a complete picture of the stochastic dynamics of our environment.
Once the agent provides an action (i.e. a bid/ask price) to the environment, the environment
determines whether a trade is made nusing the update rule above, and then updates the position
and cash balances. The agent then steps the price forward according to the update rule (2.1.1),
and calculates the new wealth of the agent.

2.1.1 State Space

The states of our market making environment contain three pieces of information:
e The current asset price, S;.

e The current inventory, (J;.

e The number of remaining timesteps, %
Since we are also using tabular Q-learning, we must discretise our environment states. Fortunately,
the mumber of timesteps and the inventory are discrete, (and also bounded if we include a position
limit 7). However the asset price is a continuous variable, so we must make it discrete. To do so,
we have some minimum price Syiy, and some number of buckets, M, of size B, and we define

Sy i=max{s = Sy +iB:ie {0,M —1},s < S;}. (2.1.2)
This gives us the states of the environment as the tuple (S, (7% %J. The number of states is
hence B x (2Q +1) x .

2.1.2 Action Space

The actions that the agent can take represent what market they are quoting at time t. To do
this, we represent the market as two quantities: the spread, X, > 0 and the offset, w; € E. More
concretely, suppose the asset price is S¢. Then,

by = 8¢ + wy - (2.1.3)
5 ZS:—W‘:—%, (2.1.4)

where b; and a; are the bid/ask prices set by the agent. These prices are hence fully captured by %;
and wy. If wy > 0, then the market is positively skewed, i.e. the bid price is closer to the mid-price
than the ask. If w; = 0, then the market is symmetrical about the mid-price. If w; < 0, then the
market is negatively skewed, Le. the ask price is closer to the mid-price than the bid. Ideally, ¥
and w; would be continuous, but since one of the agents we use will use tabular (}-learning, we
must discretise the action space. To do this, we introduce some maximum offset @ > 0, and some
maximum spread 3 > 0. We then introduce two integers, N, and Ny, representing the mumber of
levels that the offset and spread can take. The agent then has possible actions

A={(w,X):we{l,2,..No — 1, N}, ¥ € {1,2,....Ns — 1, Ns }}
Suppose the agent chooses the action (A, A,) € A. Then

20

and

L,

= As.
i\"): =

We can then simply use (2.1.3) and (2.1.4) to recover the agent’s market. Overall, there are Ng N,
actions, and in our experiments, we use Ne = 30 and N, = 16.

29

2.1.3 Reward Signal

Recall from (1.5.5) that the goal of the agent is to maximise the following quantity
E [— exp(—yW7)]

i.e. the expected value of some concave function of the terminal wealth Wyp. Ritter, 2017 [28]
shows that a policy which maximises a quantity of the form E[u(Wr)] for some concave u is also
optimal for maximising the quantity

E[Wr] — %w[%]. (2.1.5)

for some k > 0. This is known as mean-variance equivalence. For our specific problem, it can be
shown that £ = 2. We can use this equivalence to formulate our reward signal. Notice that by
the linearity of expectation,

T
E[Wr] = W+ Y E[W, — W;_1]., (2.1.6)

i=1

and supposing that {W;} has independent increments, which in our setting is the case due to the
independent increments of {S;}. we also have that

T
VW] =Y VW, — W), (2.1.7)

t=1

If we let dWy := W, — W;_1, then combining (2.1.6) and (2.1.7) with (2.1.5), our agent is simply
trying to maximise

I - K -
D E[Wi] - S VW),

t=1

This motivates a reward signal at every step of the environment. We let
I
-H-!+l = d”rg — E(d”rg — ,UJ s

where ji is the sample mean of the previously observed dW;s. The intuition behind this reward
signal is that the MM wishes to increase its wealth (represented by the first term), but also reduce
the variance of its changes in wealth, i.e. not be exposed to large price swings (represented by the
second term). Hence by keeping track of this quantity, we hope to reward the market maker for
increasing its wealth whilst maintaining a low exposure to price changes, i.e. low position.

2.2 Results

After training the (Q-agent and the A2C agent for 200,000 environment steps, we performed 1,000
new simulations and recorded the terminal wealth of each reinforcement learning agent, and the
optimal strategy deseribed in Section 1.5.2. Figure 2.1 shows the distribution of terminal wealths
of each agent.

30

Comparison of Terminal Wealth Distributions

B Tabular Q Learning
a0 B Avelianeda-Stoikov
B A

Count

100

Terminal Wealth

Figure 2.1: Terminal wealth distributions of the optimal strategy, Q)-learning agent, and A2C
agent.

We observe that the Q-learning agent has a similar variance in terminal wealth to the optimal
strategy, but a slightly lower average wealth. However the A2C agent outperforms the optimal
strategy in terms of average terminal wealth, indicating it is possible for reinforcement learning to
outperform the theoretical optimal in terms of average wealth. The distribution is more spread out,
indicating a trade off between high average terminal wealth and low variance in terminal wealth.
This is still an impressive result however.

Table 2.1 shows that the A2C agent has the highest average wealth, and also the highest number
of trades. If we consider the wealth per trade, the optimal strategy is clearly extracting the most
wealth per trade, however this is probably due to the observed tighter spread of the A2C agent.
The A2C agent is providing the most liquidity, which is advantageous if the exchange offers rebates
for example. The tabular QQ-learning agent performs worst on most metrics, however does have
a lower standard deviation of wealth than the A2C agent. In conclusion, the A2C agent clearly
outperforms the tabular QQ-learning agent, and also outperforms the optimal agent in terminal
wealth.

Statistic Optimal AS Tabular Q Actor-Critic
Mean Wealth 47.78 37.42 58.19
Median Wealth 47.78 37.42 58.19
Wealth Standard Deviation 5.90 8.25 14.45
Mean Trades 76.78 116.48 143.14
Wealth per Trade 0.62 0.32 0.40

Table 2.1: Statistics for different algorithms on Avellaneda-Stoikov environment

To get a sense of what each agent is actually doing, we will inspect some realisations of a single
episode for each agent, and see we can observe any interesting behaviour. Firstly, we look at the
theoretically optimal agent.

Example Realisation of Optimal MM Strategy

103 bid
ask
102 midprice
4 Buy trade
101 hd - v Selltrade
v
v
100 'y -~ v
S v v v
r 9 v N on ‘: - v
v v - ¥ - v v v F S v
98 d s hvv 2 ad,
- - - A 4
Ad - i e Ol w AL
e Y -y
a7 - A s 4 Py
A Al
9%
0 50 100 150 200
Timestep

Figure 2.2: A single realisation of the optimal Avellaneda-Stoikov strategy.

Figure 2.2 shows that towards the start of the period, the optimal market maker is very passive,
quoting quite a wide spread. When they receive a trade, they attempt to immediately exit their
position by quoting very close to the mi-price (sometimes even crossing it) on the opposite side.
This behaviour is observed often in the first half of the realisation. However towards the end, the
market maker tightens its spread and performs more active market making.

Example Realisation of Q-Learning MM Strategy

104 bid
ask
- midprice
- & Buy trade
102 v w Sell trade
v ':Y"V v
-
A 4 v x e 1 o
o v Ja A Ak AWV AL ¥
) vv - - v, L AL 4 v
= 0 - 'S A v
3 Al i VNS
b g - - e
-~ b Tl A =~
Fs & - e
A4 - v
o8 - I
-
96
0 50 100 150 200
Timestep

Figure 2.3: A single realisation of the tabular ()-learning strategy.

32

Figure 2.3 shows a single realisation of the Q)-learning agent. The quotes here are more erratic,
possibly verging on random. This could indicate that more training is needed, as the state/action

space is very large, so it is unlikely that the QQ-values converged fully.

Example Realisation of A2C MM Strategy

02 v 7
o | =
01.5 X v v L v
.
v v vvY Yw
A4 - v v
101 vv > v o i ‘v: -
= v oy T Yy v 7 a *a A a v N A -
T -
T v WV A
100.5 -
100.5 a AL ‘& * . A - w A Fury
Al [9] "=\ Pw P\ asAa A
i oA a A
5 - | A o - A LAa
100 YN N o
- A
A
99.5 LS
1 ry
99
0 50 100 150 200
Timestep

Figure 2.4: A single realisation of the A2C strategy.

bid

ask
midprice
Buy trade
Sell trade

Figure 2.4 shows the A2C agent quotes a fairly consistent spread, with a larger trading volume
than the optimal strategy. This lines up with our empirical observation that the optimal agent has
a lower variance in its wealth (i.e. it tends to make less risky decisions) while receiving a lower

wealth on average. We now consider some typical wealth paths of each strategy.

33

Wealth

Wealth

oW
Uu\
Wealth
[¥) e
\

Wealth

I &
) s =
Wealth
[N 4 o
) =

Wealth

~ &
o s =
Wealth
. &
o 5 =

o

n
o
—
o
=}
u
=1
o

N
=]

Example Realisations of Q-Learning Strategy

o w
Wealth
\

100 150 0 50 100 150

(=]
wn
3

Timestep Timestep

0 50 100 150 0 50 100 150

Timestep Timestep

Figure 2.5: Wealth paths for ()-Learning Agent.

Example Realisations of A2C Strategy

0 50 100 150 0 50 100 150

Timestep Timestep

100 150

Timestep Timestep

Figure 2.6: Wealth paths for Advantage Actor-Critic Agent.

34

Example Realisations of Avellaneda-Stoikov Strategy

40 40
£ £
T w
2 2 2 2
- -
0 0
0 50 100 150 0 50 100 150
Timestep Timestep
40
40
{1}
£ g ¥
= T 5
4] I}
x X 3
10
0 0
50 100 150 0 50 100 150
Timestep Timestep

Figure 2.7: Wealth paths for Avellaneda-Stoikov Agent.

Figures 2.5, 2.6, and 2.7 all show that each agent manages to create consistent wealth, but as
expected from previous results, the A2C strategy creates more wealth than the other two.

2.2.1 Results Summary

We have observed that the actor-critic method, Advantage Actor-Critic is able to outperform the
semi-optimal strategy of Avellaneda-Stoikov in terms of wealth, but does have a slightly higher
variance in terminal wealth. However considering the empirical wealth paths in Figure 2.6, the
growth in wealth across each path is steady. Owverall, we have shown that actor-critic approaches
can reproduce and outperform Avellaneda-Stoikov, and we will now attempt to see if this also
holds on real market data in the next chapter.

35

Chapter 3

Actor-Critic Approach Using
Market Data

After observing the success of deep reinforcement learning algorithins in a theoretical environment,
and their improvement over traditional reinforcement learning techniques, we now wish to see if that
performance can translate to real market data. We will look at three state of the art algorithms,
namely SAC, PPO and DDPG, and compare their performance in this real environment.

3.1 Data Source

For the testing of these algorithms, we will use limit order book data of a small tick stock. For
our purposes, we consider TSLA. The data were sourced from LOBSTER, a data provider for high
quality granular limit order book data. The data contain the following relevant fields.

e Time, recorded as seconds after midnight, down to the nanosecond.

e Events, which can be submissions of new orders, cancellations, executions etc. These are
associated with a volume and a side (buy /sell).

e 10 levels of bid/ask prices and volumes.

The data were cleaned and transformed, so that each event was associated with its previous limit
order book state. The reinforcement learning algorithms will have access to the limit order book
state, and create a market using that state. Then, the event will be compared to the market, and
we determine whether a trade was made.

3.2 Environment

One of the most important pieces of the reinforcement learning process is the environment. Market
making is a particularly difficult environment to create using historical data, as it is difficult to
capture the impact that the market maker has on the environment through its quotes. For example,
a market making agent who quotes a very tight spread will not generate more trades if historical
data is solely used than if they simply quoted a single tick inwards from the best bid/ask. For this
reason a simulated market environment, such as one described by Lehalle ef al. [29] was considered,
however it proved diflicult to capture the true order book dynamics. Instead, a compromise solution
was implemented. We assume that the market maker is quoting small volumes, so as not to have a
large impact on the bid/ask volumes, and we also assume that the market maker receives additional
trades not observed in the data if it is quoting between the actual best bid/ask. These artificial
trades will arrive at some constant rate A, multiplied by the proportional distance between the
mid-price and observed the best hid/ask. Specifically, let APUY he the event that an artificial buy

trade is made N
bI’\IM o b(}lj.‘i

41 YRt O
—— 1 sty Obey
My — b;’“-" {BpM = pithe}

P(APYY) = Adt

36

MM Ohs
('7! ('7! 1S

where is the bid price that the agent is quoting, and
historical data. Analogously,

is the bid price observed in the

CELL aPbs _ oMM
P Ay)=)\dl‘ml{u;\m <afbs}-
This solution gives a good compromise between representing the impact of the market maker's
quotes, and also giving a true reflection of the market dynamics.

The dynamics of the environment are fairly simple. The environment is reset, and a random
time index of the limit order book is chosen (in the training data, there were over one million rows
to select from). The agent will then set its bid ask price, and the environment determines whether
a trade was made against the agent’s market. If a trade is made, the agent updates its position,
cash, and wealth, and is also provided with a small rebate, similar to real exchanges providing
rebates to liquidity providers. The environment then steps to its next time index (the next time
the state of the order book changed), and the agent selects a new market. This process continues
for a fixed mumber of steps, initially set to 3000, and then the environment/agent reset. The agent
also has a position limit, i.e a @ > 0 such that if Q¢ > (@, then the agent does not quote a bid
price, and if (), < —@, then the agent does not quote an ask. This ensures that the agent does
not accumulate an excessive position. For our purposes, @ was set to 100.

3.2.1 State Space

Since we are using real world price data, the state space is already discrete. The state of the system
is described by the three-tuple (87,48, Q;), where 8* = m, — by, 8% = a; — my, and Q; is the agent’s
position.

3.2.2 Action Space

In this environment, our actions will be quite simple. The action an agent can take will consist
of the tuple (8%, 6%), where 6° is the difference between the mid-price and the agent’s desired bid,
and 4 is the difference between the agent’s desired ask and the mid-price.

3.2.3 Rewards

For a complex problem such as optimal market making, the reward function plays a crucial role
in ensuring the agent performs the way in which we would expect. In this situation, the reward
is a delicate balance between ensuring the agent keeps a fairly small position (i.e. does not go
excessively long/short and makes a lot of money from changes in the asset price, as this is not the
goal of a market maker), and actually makes trades and profit. This is done between a balance of
position penalty, and a reward for increasing wealth. If the position penalty is too large, the agent
will barely trade, and if it is too small, it may overfit and always go too long/short. The reward
function that was used for training all of the agents is as follows,

Ry =W, — W,y — 007,

where W; is the total wealth of the agent,); is the inventory, and ¢ is the inventory penalty.
The reason that the square of the position was used, is that we wish for the punishment for larger
positions to be proportionally higher than for small positions. A practical reason for this is that
if the agent was forced to liquidate its inventory at trading close for example, the cost of doing
so would be proportionally higher for larger inventories, due to lower liquidity. Hence we punish
the agent proportionally more for larger positions. We include the change in wealth in the reward
signal, as an increase in wealth should be rewarded, but a decrease in wealth should be punished.
If we sum up all rewards with v = 1, then we retrieve the agent’s total PnL (assuming Wy = 0)
minus some cumulative position penalty. In reality, we choose 4 to be close to, but not equal to
1 for convergence reasons. In training, we set v = 0.999. Hence for small enough timesteps, and
large enough 7,

T
Gr ~PnLr—¢ [Qidt,
0

37

so the terminal discounted cumulative reward is approximately the agent’s PnL, minus some
penalty multiplied by the integral of the square of the agent’s position over time.

3.3 Fitting Avellaneda-Stoikov to Market Data

In order to compare our reinforcement learning agents against some known strategy, we will fit
an Avellaneda-Stoikov model to the data, and compare their performance to this model. In order
to use this model, we must fit the model to the TSLA order book data. This involves finding
estimates for the parameters o, A, and &. We will call these estimates &, fﬂl_. and k.

3.3.1 Estimating Volatility
We begin by finding 4, an estimate for the volatility parameter in the Avellaneda-Stoikov market
making model. Recall the proposed diffusion of the asset value from the model,

dS; = odB,.

From this, we have that
Sy ~ 8y + N(0,0%t)

= S, — 8 ~ VIN(0,07)
5S¢ — Sy
Vi
. Sz—su) 2
— Y| ——] ==
(i)’

We can hence use the square root of the sample variance of

. r ;
a=,| '1 Z(SII_SU_SI—SU .
\‘_1-:1 Vi NG)

i

~ N(0,6%)

f—

as an estimator for o, i.e,

51 —8p
Vit

where ‘r’";,?‘r"” is the mean over observations at times ¢ = f1,...,¢x. Applying this to the data, we

obtain that & = 0.0612.

3.3.2 Estimating Order Fill Probabilities

We now turn our attention to estimating A and k. Recall that in the Avellaneda-Stoikov market
making model, the market maker's orders are filled with a Poisson rate A(d), where § is the distance
from the mid-price of the bid/ask quote. The functional form of A was assumed to be

AMA) = Ae™* (3.3.1)

To estimate these two parameters from the data, we firstly define some new notation. Firstly,
suppose that the distance from the mid-price of each order can take values in §q,...,d,,. We let
.1.‘_?" denote the fill time of the jth order which has distance §; from the mid-price. To estimate
the parameters, for each spread §;, we calculate A; := A(4;). Since the order fill times, .1';‘.1 are
exponentially distributed, we use the maximum likelihood,):, of A;. The maximum likelihood
estimator for the parameter of an exponential distribution is given by

N;

A= TN L0
i=1"]

where in this setting, the .1'?'15 are the fill times for the orders which have spread 4;. We hence

obtain values)‘J\: vy Ap. an estimate of the rate of filling for each different spread level, 4;. We
must then fit these values to (3.3.1) to obtain approximate values for k£ and A. To do this, we

38

will use a non-linear least squares algorithm, the Levenberg-Marquardt algorithm, as described by
Gavin in [30, Page 3|. After performing the parameter fitting, we obtain estimates A = 15.32 and
k= 23.43. Figure 3.1 shows how the fitted parameter values compare to the observed fitted rates,
)\('5.

Fitted vs Observed Fill Rates

= Observed fill rate

Fitted fill rate (Ae %)

Fill rate, A(8)
@

0

0.02 0.04 0.06 0.08 0.1 0.12 0.14
Spread, &
Figure 3.1: Fitted order fill rates, versns observed rates,)r\:

The fit shown is not perfect, but the general exponentially decaying shape can clearly be shown,
and the fitted curve will be a good enough approximation of the fill probabilities. We will use the
estimates A, k, and & to create an optimal Avellaneda-Stoikov agent to compare against our three
actor-critic agents, with the aim of ohserving superior performance from the actor-critic agents.

3.4 Results

The three agents were trained on 1.4 million environment interactions, and the best performing
model was saved. The episodes of testing were 4,000 steps, each randomly chosen from a week's
worth of order book data. Each of the three models were then tested on approximately five
minutes of unseen data from a different week, and this test was performed 1,000 times to generate
a distribution of quantities of interest. Five minute periods were chosen as this allows for testing on
a variety of different market conditions; if the strategies are able to perform well on many different
short periods of time, this translates well to long term performance.

3.4.1 Comparison to Avellaneda-Stoikov
We consider the agents’ performance against the Avellaneda-Stoikov strategy, a well known, and

well performing market making strategy. We begin by looking at a table of useful statistics to see
how each algorithm performed on the five minute testing periods.

39

Statistic

Avellaneda SAC

DDPG PPO

Mean Wealth
Median Wealth

Wealth Standard Deviation

$136.63 | $107.95 $143.84 $120.49
$127.02 | $126.64 $160.68 $140.66

80.3 182.7

159.4 172.0

Table 3.1: Statistics for different algorithms on 5 minute intervals on TSLA data

Table 3.1 shows that all three reinforcement learning algorithms achieved a mean wealth of
greater than zero, but had a fairly significant variance, with DDPG being the lowest. DDPG man-
aged to achieve a higher mean and median terminal wealth than the Avellaneda-Stoikov strategy,
which in itself is a promising result; this shows that actor-critic approaches may have potential to
outperform well known market making strategies. We now perform Mood’s median test, a test to
compare whether the medians of two samples are different, and we compare each reinforcement

learning algorithm against the Avellaneda-Stoikov strategy.

p-values of each of the tests.

Table 3.2 shows the statistics and

SAC PPO

DDPG

x-squared statistic
p-value

0.02 5.62
0.964 0.018"

27.4
1.67e-7*

Table 3.2: Mood’s median test for different median than Avellaneda-Stoikov

Table 3.2 shows that both PPO and DDPG have a statistically significant higher median wealth
than Avellaneda-Stoikov at the 5% level, however SAC does not produce a higher median. From
these statistics, combined with Table 3.1, we conclude that DDPG outelasses the other two algo-
rithms in this environment (in terms of both accumulated wealth, and variance of wealth), and
also performs better than standard market making strategies in some metrics. From this point on,

we consider only DDPG.

40

DDPG Terminal Wealth Distribution

80 M DDPG
Avellaneda
— — DDPG median
= = Avellaneda median

70

60

50

40

Dersity

30

I LL...L.L.Jl.udH"'

-400 -200 0 20

™

Terminal Wealth

600

Figure 3.2: Terminal wealth distributions of DDPG vs Avellaneda-Stoikov on TSLA data.

Figure 3.2 backs up the results shown in Table 3.1, i.e. that the Avellaneda-Stoikov strategy
has a lower mean/median than DDPG, but also a lower variance. It seems that Avellaneda-Stoikov
is less risky than DDPG, however has less potential to make large profits. There are two possible
ways the variance of the DDPG algorithm could be reduced,

e Additional interaction with the environment (training steps).

e Variance reduction for policy gradient methods, such as those described by Kaledin ef al.
[31].

3.4.2 DDPG Training Metrics

In order to see if the DDPG agent has actually learned generalised information about the environ-
ment, we can consider different metries that were recorded during the training process. Firstly, we
can look at the mean reward generated during the training. If the agent learns attributes of its
environment, we would expect the mean reward signal to increase over time. Figure 3.3 shows the
mean reward over the course ol the training.

41

DDPG Mean Reward During Training

—— DDPG
-100
-
S im0
&
5
00
250
0.2M 0.4M 0.6M 0.8M M 1.2M 1.4M

Training Step

Figure 3.3: DDPG mean reward during training.

From Figure 3.3, we see that the agent does in general increase its mean reward over the course
of the training. The speed of increase does seem to plateaun towards the end, however a longer
training period may be needed to see if this is a true trend. We can also consider the value of the
critic loss during training. Critic loss gives an indication of the convergence of the critic, i.e. the
estimates of the value function. Figure 3.4 shows the critic loss over the course of the training.

DDPG Critic Loss During Training

6000 - DDPG
5000
4000

3000

Critic Loss

2000

1000

0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M

Training Steps

Figure 3.4: DDPG critic loss during training.

Figure 3.4 shows that initially, as the agent is learning and exploring the environment, we see
that the critic loss increases, but then after around 100,000 interactions with the environment,
the critic begins to learn the values of states, and the loss decreases over the rest of the training

period. This is a good indicator that the agent is learning information about its environment
through successive interactions.

42

3.4.3 DDPG Statistics

First, we will the qualitative properties of the strategy. Figure 3.5 shows the wealth progression of
the DDPG agent over some sample realisations of the test data.

Example Realisations of DDPG MM Strategy

300
150
£ 200 5
E E 100
= 100 =
50
0
i}
0 2k ak 6k 8k 0 2k 4k 6k 8k
Timestep Timestep
300
5 200 £ 100
@ b
= 1o =
s}
0

=
ra
-]
Y
=
=2}
=
@
=
=
]
ES
B
=
o
=
@
ES

Timestep Timestep

Figure 3.5: Four realisations of DDPG strategy on TSLA data

Figure 3.5 shows that the DDPG strategy seems to make consistent profit, with a general

upwards trend in wealth, however there are periods where the strategy does have drops in wealth
in the short term.

DDPG Wealth Q-Q Plot

el &
J
]
600 (]
400
@
=
=
2 200
[+]
@
o
E
8 o
-200
(1)
00 ®
-3 -2 -1 0 1 2 3

Theoretical Quantiles
Figure 3.6: Q-Q Plot of DDPG terminal wealth distribution
Figure 3.6 shows that the DDPG wealth distribution does not strictly follow a normal distri-

43

bution, and may be heavy tailed, meaning that extreme profits/losses have a higher probability of
occurring than if the wealth was normally distributed.

3.4.4 Summary of Results

Overall, we have found that one algorithm in particular, DDP G was able to learn information about
its environment through interaction (Figures 3.3 and 3.4), leading to a higher mean and median
wealth than the Awvellaneda-Stoikov strategy. The variance of the DDPG strategy was indeed
higher than the Avellaneda-Stoikov strategy, but this variance is a problem that will require further
investigation through variance reduction methods, and hyperparameter tuning. However the results
achieved so far are a promising starting point for future investigation into the effectiveness of actor-
critic algorithms for optimal market making.

A Note on Assumptions

During the testing of these reinforcement learning agents, it is important to note that there have
been some assumptions and simplifications that have been made out of both necessity, and ease of
result collection. The notable assumptions of this environment are as follows.

e Zero transaction costs on trading. In reality, when trading in small lot sizes as ontlined here,
transaction costs should be negligible. Also as mentioned in Section 3.2, some exchanges may
even provide some rebate for providing liquidity.

e Priority of limit orders when quoting on best bid/ask. Due to the fact that we are not able
to determine which orders have been traded against in the limit order book, we assume that
if our agent is quoting on the best bid/ask level, their order is matched if a market order
is placed. This assumption essentially says that our agent has faster execution speed than
other market participants, and may at times lead to small errors in results.

e Zero slippage. We assume that our agent will always trade at the price that is observed in
the limit order book at a given time. Since most of the agent’s trades are its own passive
limit orders being hit, slippage should not significantly affect the results.

44

Conclusion

Reinforcement learning is clearly of growing important in financial problems. We have demon-
strated in Chapter 2 that reinforcement learning, (more specifically actor-critic methods) can learn
and outperform well known market making models on a simulated theoretical environment. The
Advantage Actor-Critic algorithm outperformed traditional Q-learning techniques, and achieved a
higher mean wealth than the mathematical model, Avellaneda-Stoikov.

In Chapter 3, we then moved on to testing actor-critic approaches to real limit order book data,
specifically TSLA. We set up a reinforcement learning market making environment by looking at
historical data, and also adding in artificial trades if the agent posts a bid/ask price that is more
competitive than the historical best bid/ask price. We also provide the agent a small rebate for
receiving trades, similar to how real exchanges will often provide rebates to large market making
firms for providing liquidity to the market. It is hard to fully use historical data to test market
making strategies, as it is hard to capture the market impact of an agent. We hence assnmed that
the market maker quoted low volumes to minimise this.

The three actor-critic algorithms that were trained on this environment were Soft Actor-Critic,
Deep Deterministic Policy Gradient, and Proximal Policy Optimisation. From the testing results,
we observed that Soft Actor-Critic performed the worst on the unseen data, with a higher variance
and lower mean wealth than all of the other agents. Proximal Policy Optimisation was the next
best, and the best performing algorithm on this environment was Deep Deterministic Policy Gra-
dient. We find that this algorithm was also able to outperform the Avellaneda-Stoikov strategy,
achieving a mean wealth of $143.84, vs the Avellaneda-Stoikov strategy’s wealth of $136.63. The
variance of the wealth of the actor-critic strategies were all higher than that of the Avellaneda-
Stoikov strategy. In future research, further investigation could be done into variance reduction
methods, or with more computational power, we could train the agent on significantly more en-
vironment steps to observe if underfitting was the cause of high variance. There is also room for
investigating hyperparameter tuning, as there are many hyperparameters in the actor-critic agents
that could be tuned to further improve the agent’s performance. Finally, there may be room for
improvement in the construction of the reward signal; there are many other options for incorpo-
rating the position penalty into the signal, for example using the absolute value of the inventory,
rather than its square. With more time and computational power, these improvements would be
simple to implement, and could lead to an even better market making strategy.

45

Appendix A

Auxiliary Proofs

A.1 Proof of Dynamic Programming Principle

H(s,X:)= sup E[H(t, X[)|Fs] foralls <t<T
Proof. Let # be an arbitrary Markov control. Then, for all s < ¢,
J7 (s, X,) =E [t-f"(X-}'*“)] {by definition)
=E [ll:. [1-:"(){%"]-3‘7;] L}}} (by tower property)
=E [J"“(r, X J:a]
= J"(s,X,) <E| sup J7(t, X[)|F.
TeEAs T
=IE [H(r,Xf'“) | J’:.s':| (by definition of H)
— sup J°(s,X,)< sup E [H(r, x| }']
reds T reAds T
= H(s, X.)< sup E [H(f,){f ") | }_H] {(by definition of H)
TeAL T
— H(s,X,) < swp E[HtLXT)|F)], (A1)
TeA,

Where the last line to derive (A.1.1) is true as the right hand side of the previous line has only a
dependence on t. We now seek to bound H(s, X) below by sup ¢ 4, , E [H(f,){j'“) | Fsl| to prove

the theorem. To do this, recall that
T (s, X0) =E 176, x7)| 7]
Now let @ be an s-optimal control, where £ > (is arbitrary. i.e. we have

Ht,z) > J%(t,z) > H(t,z) — =.

We now define a new Markov control, @ by

_ T fu>t
Ty 1=
! o fw<t

46

We then have that

J* =E [J7(t, XF) |]

— J"=E :J*[r,X{') | }_,,] (as J7(t,-) only depends on 7 after)
= JTE[H(tX])|F]—¢ (as 7 is z-optimal)
= sup JTZE[H(t X])|F.]-=

mEAL T

= H(s,X,) ZE[H(t. X]) | F] - ¢

— H{s, X,)ZE [H(f. X!"”) | f,] —z (as X7 only depends on 7 from time s to)
= H(s,X.)> sup E[H(t,X])|F]—¢e
wEA,
— H(s,X.)> sup E[H(t,X)|Fd. (A.1.2)
weAL

If we combine (A.1.2) and (A.1.1), we have that

sup E[H(t,X])| F| > H(s,X,) > sup E[H(t.X])|F.].

mEA, . TeA, .
so that

H(s. X.) = sup E[H(t,X])|F.],

TEAs s

as required. O

A.2 Proof of Hamilton-Jacobi-Bellman Equation

Theorem A.2.1 (Hamilton-Jacobi-Bellman Equation). Let X™ be a controlled diffusion satisfying
dX[= p(t, X[m)dt + o(t, X[m)d By

Let H:[0,7] x R = I be a function satisfying

H(t, Xi) = sup E(p(X7)|F)

mEA T

Assume H € CY2, then:

] AdH . OH 1 2y o % H =0
sup W—M(,.1.,?(]E—§rf (to,m) =1 =

ek dr?
H(T, x)=p(x)
Additionally, suppose n*:[0,T] x B — R attains the supremum in (1.4.6) for all t,z. Then n* is
an optimal Markov control.

Proof. We first introduce the differential operator £7 = p™8, + &

Markov control, and let Y; = H (¢, X[). Then

(0™)28,,. Let w he an arbitrary

dY, = [0, H(t, X7) + L7 H(t, X7))dt + o (t, X7, n(t, X7))0, H(t, X7)dB;.
If we now consider some small timestep h, we have that the increment Yiyp — ¥; is given by
t+h t+h
rt-Hr, - 1”! :[[()!H(S~X:r]7£1H("?~X:r)]d'?7‘[rf(.e_.X:_'_.?r(.q,X:))(‘)ﬁH(s_.X:)st
t t

t+h i+h
= E[Yip | F]-Y, =E |i/ [0,H(s, X]) —E”H(.ﬂz,){:)]ds—f o(s, XT,w(s, XT)),H(s, XT)dB, |F,| .
t : |

47

We know that lE[LH'h dB, |F;] = 0, so under some technical conditions, the term on the right hand

side of the expectation is zero. Hence,
7|

t+h
f [0:H (s, XT)+ L"H (s, X[)]|ds | Fi
t

t+h
E[Yyp | F] - Y =E [[0.H (s, X™) + L™ H(s, X™)]ds
t

— E[H(t+h, X[) | Fi) — H(t, X:) = E

H(i,X¢):= sup E[H(s,X])|F for all s = . (A.2.1)
meAs s

Using this, we know that E[H(t + h, X[, ;) |] < H(¢, X;). Combining this with (A.2.1), we

obtain
t+h
/ [0 H(s, XT) + L™ H(s, XT)|ds]
t

1 gtth
Tf (0,H(s, XT) + L™ H(s, XT)]ds
bJt
We now talke this limit as h — 0%, By the fundamental theorem of calculus applied to (A.2.2),
we obtain

Recall that

0>E

= 0>E

F;] . (A.2.2)

0> 8,H (s, X")+ L™H(s, XT).

Since this partial differential inequality holds for all m, s, it must hold for any value X7 that can
be attained by the process. We hence replace X7 with some state variable z, and obtain

1.
0> e H(t,z)+ plt, e, m)0H(t, x) + ioz(f,;r,fr)auﬂ[t,;r). (A.2.3)

We now wish to bound the right hand side of {A.2.3) from below. Firstly, Let @ be sh optimal
from time ¢ to £+ h, for some =z > 0, h > 0, i.e.

H(t, Xe) = E[H(t+h, X[) | Fi| = H(t, X)) — <h.

Essentially, the performance of 7 is very close to H. We now proceed as before, by letting Y; =
H(t, X[J). By performing exactly the same steps as above, we obtain

t+h
E[H(t+h X[) | F] - H(t.X:) =E U [0:H (s, XT) + L7H (s, XT)|ds | F
t

t+h
/ (8. H(s, XT) + L H(s, X7)]ds :]
t

1t)
!—f [0:H (s, XT) + L¥H (s, XT)]ds] .
LS

— —sh<E

== —=<E

Again, taking the limit as h — 07, we obtain

—s < OH(EXF)+ L7 H(t XT)

1,
= —= < O H(t,z)+ plt, e, m)d H(t,z) + iaz(f,;r,?r)r')uﬂ(f,;r]. (A.2.4)
Combining [A.2.3) and (A.2.4), and recalling that = > 0 was arbitrary, we obtain
aH oH 1 . d°H
st) =— + =tz T — » =0
l‘lﬁ{ gt THbETI Gty b a0 }
H(T.x) = p(x),

as required. [

48

Bibliography

1

2

3

[4

5]

[6

[7

[8

[0

(10]

(1]

(12]

13

(14]

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

Mikko Pakkanen. Market microstructure, March 2022.

Helen Allen, John Hawkins, and Setsuya Sato. Electronic trading and its implications for
financial systems. Bank of International Settlements, 7, 01 2001.

Leo Smigel. Global algorithmic trading market to surpass $21,685.53 million
by 2026. https://www.businesswire.com/news/home/20190205005634/
en/Global-Algorithmic-Trading-Market-to-Surpass-US-21685.
53-Million-by-2026, Feb 2019. Accessed: 2022-09-01.

Matthew F. Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in Finance, From
Theory to Practice. Springer Cham, first edition, 2020.

Bruno Gasperov, Stjepan Begusié, Petra Posedel Simovié¢, and Zvonko Kostanjéar. Reinforce-
ment learning approaches to optimal market making. Mathematics, 9(21), 2021.

Matias Selser, Javier Kreiner, and Manuel Maurette. Optimal market making by reinforcement
learning, 2021.

YS Lim and D Gorse. Reinforcement learning for high-frequency market making. 04 2018.
Alexey Bakshaev. Market-making with reinforcement-learning (sac), 2020.

Koundinya Vajjha, Avraham Shinnar, Barry Trager, Vasily Pestun, and Nathan Fulton.
Certrl: Formalizing convergence proofs for value and policy iteration in coq. CPP 2021,
page 18-31, New York, NY, USA, 2021. Association for Computing Machinery.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In Maria Florina Balecan and Kilian (). Weinberger, editors, Proceed-
ings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 1928-1937, New York, New York, USA, 20-22 Jun 2016.
PMLR.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, abs/1801.01290,
2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529-533, February 2015.

49

19

116

(17]

(18]

19

(20]

(21]

(22]

23

(24]

25

26

(27]

28
29

30

31

John Schulman, Sergey Levine, Philipp Moritz, Michael 1. Jordan, and Pieter Abbeel. Trust
region policy optimization, 2015.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
In ICLR (Poster), 2016.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Ried-
miller. Deterministic policy gradient algorithms. In Eric P. Xing and Tony Jebara, editors,
Proceedings of the 31st International Conference on Machine Learning, volume 32 of Proceed-
ings of Machine Learning Research, pages 387-395, Bejing, China, 22-24 Jun 2014. PMLR.

A. Cartea, S. Jaimungal, and J. Penalva. Algorithmic and High-Frequency Trading. Cambridge
University Press, 2015.

Robert C Merton. Optimum consumption and portfolio rules in a continuous-time model.
Journal of Economic Theory, 3(4):373-413, 1971.

US Securities and Exchange Commission. Market centers: Buying and selling stock. https:
//www.sec.gov/fast-answers/answersmarket, Oct 2012. Accessed: 2022-07-25.

Steven Poser. Market makers in financial markets: Their role, how they function, why they
are important, and the nyse dmm difference. 2021.

Jean-Philippe Bouchaud, Julius Bonart, Jonathan Donier, and Martin Gould. Trades, Quotes
and Prices: Financial Markets Under the Mieroscope. Cambridge University Press, 2018.

Marco Avellaneda and Sasha Stoikov. High frequency trading in a limit order book. Quanti-
tative Finance, 8:217-224, 04 2008.

Philipp Weber and Bernd Rosenow. Order book approach to price impact, 2003.

Sergei Maslov and Mark Mills. Price fluctuations from the order book perspective—empirical
facts and a simple model. Physica A: Statistical Mechanics and its Applications, 209(1-2):234-
246, oct 2001.

Marc Potters and Jean-Philippe Bouchaud. More statistical properties of order books and
price impact. Physica A: Statistical Mechanics and its Applications, 324(1-2):133 140, jun
2003.

Olivier Guéant, Charles-Albert Lehalle, and Joaquin Fernandez-Tapia. Dealing with the inven-
tory risk: a solution to the market making problem. Mathematics and Financial Economics,
T(4):477-507, sep 2012.

Gordon Ritter. Machine learning for trading. SSRN Electronic Journal, 01 2017.

Charles-Albert Lehalle, Olivier Guéant, and Julien Razafinimanana. High-Frequency Sim-
ulations of an Order Book: a Two-scale Approach, pages 73-92. Springer Milan, Milano,
2011.

Henri P. Gavin. The levenberg-marquardt method for nonlinear least squares curve-fitting
problems. 2013.

Maxim Kaledin, Alexander Golubev, and Denis Belomestny. Variance reduction for policy-
gradient methods via empirical variance minimization, 2022.

50

