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Abstract

This thesis investigates low latency strategies for high frequency trading. Starting from the intro-
duction of low latency techniques used in industry today, we move towards statistical arbitrage
strategies used in algorithmic trading, where we consider modeled and model-free approaches
for choosing suitable pairs and subsequently executing trading signals. We then implement our
own pairs trading strategy in C++ and show the impact of adding different micro-optimization
techniques by rigorous benchmarking. We also analyse the expected profitability gains for high
frequency traders by decreasing the execution time of their strategies.

Keywords: Low Latency, Algorithmie trading, High frequency trading, Code optimization, Cpp,
Pairs Trading, Statistical Arbitrage
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Chapter 1

Introduction

Since the beginning of on-exchange stock trading in the early 17th century on the Amsterdam stock
exchange, trading methods and techniques have come a long way. Initially, initial public offerings
with only 1000 investors and small volumes were carried out in the marketplace, Over time, trading
developed further, and some traders started to buy and sell different stocks while standing on
designated busy floors for this purpose [7]. It took until the 1980s before the first computerized
types of trading came to the market. It became increasingly famous when the first trading strategies
between indices like the SP500 and its future counterpart became profitable. Back then, a program
could automatically send an offer to the New York Stock Exchange if a certain threshold between
the two markets was crossed. Another milestone was set with the development of Electronic
Commuunication Networks, which allowed trading outside of stock markets and made it publicly
available. In the early 2000s trading received another boost in popularity which emerged from a
variety of reasons like technological innovations for algorithmic trading, but also the narrowing
of spreads by enabling stock quotes to be priced in decimals and other regulatory changes which
made it harder/impossible to make easy profit for human traders. All these innovations, along
with higher computational capacity in general, paved the way for a new sector in trading: high
frequency trading [8].

It reminds me of the old story of the two high-frequency traders on safari. Coming out
of the jungle into a clearing, they are faced with a hungry lion, staring at them and
licking his lips. One of the traders immediately starts taking off his boots and donning
a pair of sneakers. “What are you doing?” says the other trader. “Youll never be able
to outrun a hungry lion.” “I don't need to outrun the lion,” says the first trader. “I
only need to outrun you.”

— HFT Review, April 2010

In general, high frequency trading (HFT) means the process of buying or selling securities for
which success is measured by how quickly the trader acts, and a delay of a millionth of a second
will determine profit or loss. High frequency trading is not only bound to the stock market but
also in the markets for futures, options and cryptocurrencies. While speedy execution is essential
in nearly all fields of trading financial assets, it is not important for everyone trading these assets.
Indeed, strategies that aim to buy a stock because the trader thinks that the company will perform
well over the next several years are less dependent on speed than strategies that constantly scan
all possible markets to spot a profitable trading opportunity before someone else sees and executes
it. High frequency traders have their origins in the classic market makers or specialists [9] who
primarily made a profit by earning the spread between the prices at which they bought and sold,
which before 2001 was at least one-sixteenth of a dollar in the United States [10]. Nowadays, after
decimalization and technological advances, traders have to settle for much narrower spreads - like
margins of a penny or even less. Naturally, when the profit per trade is reduced, the high frequency
trader has to scale up the volume at which she operates to achieve the same results. Signs of the
rising popularity in high frequency trading and the increase in the number of firms operating in
the market are not hard to find. Figure 1.1 shows the increase by more than a factor of 5 between
2002 and 2021 in daily average trading volume for U.S. equities. While over the years, the number
of shares per trade reduced significantly, as shown in figure 1.2 - which is consistent with what you
would expect when more and more firms compete against each other to make a profit; they try to
seize every small opportunity. The speed required for these strategies is beyond anything a human
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Figure 1.1: Source: Choe Exchange, Inc. Figure 1.2: Source: Nasdaq, Inc.

could ever match, and the “winner takes it all” nature of trading, as outlined by Carl Cook [11]
makes it no surprise that HF'T firms try everything to reduce their execution times.

In this thesis, we will focus on the quantitative/computational aspect of high frequency trad-
ing strategies which includes latency characteristics for algorithms in C++ on the one hand, and
the implementation of a financial algorithm on the other. Due to the black box nature of algorith-
mic trading, there are few publications and measurements regarding this topic. We will start by
presenting a short literature review on pairs trading, low latency techniques and profitability in
HFT before we outline in chapter 3 the benchmark procedure we implemented in C++ to measure
and report our findings. The following section then provides an in-depth summary and benchmarks
for low-latency techniques in C++ reported by professionals from the algorithmic trading industry.
Chapter 4 is then used to educate the reader about recent development in statistical arbitrage/pairs
trading research and the different methods which are used in academia and industry at the moment.
In Chapters 5 and 6, we then implement one of these strategies, optimize it by using techniques
from chapter 4, and we conclude by reporting a profitability analysis. We dedicate the last chapter
to general concerns around high frequency trading and provide incentives for future projects in
this field. (Source code can be found at https://github.com/janeckstein/MSc_Thesis_Final)
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Chapter 2

Lieterature review

In this section, we provide a brief overview of selected academic research. We split the review into
three parts, one dedicated to statistical arbitrage / high-frequency trading and one to low latency
techniques for which rarely any literature is published, but interesting talks from successtul prac-
titioners are mentioned as a reference. The third section is about profitability and its relation to
speed in high frequency trading.

The origin of pairs trading and statistical arbitrage can be found in [12]. They used the distance
approach, which we will explain in depth in chapter 5.1, to find suitable pairs on standardized
historical prices. The authors then backtested their strategy on daily U.S. equity data from the
past 40 years, dating back from 2002. The empirical approach includes two stages. They first
chose a time window of 12 months to detect co-moving stocks (formation period), followed by
the actual trading over a six months trading period. Choosing the formation period twice the
length of the trading period developed to the academic standard nowadays. Similar to Bollinger
bands, their trading signal was generated when the price deviated by more than twice the standard
deviation from the mean observed in the formation period. This strategy achieves astonishingly
an annualized average yield of around 11 percent. The authors then explain the high returns as
compensation for making the markets efficient by enforcing the law of one price principle, which is
the foundation for asset pricing theory and second, as a risk-reward for the exposure to market risks.

Another landmark result was published by Do et al.(2010) [13], in which they, on the one hand,
replicated the results by Gatev et al. but also detected that the profits made from pairs trading
strategies declined over the years, which they explain by increased competition and worsening
arbitrage market risks. Their study shows that from 2003 onward, alter taking execution prices
and other profit influencing factors into account - the pairs trading strategy is barely profitable.
Additionally, they correct the numbers presented by Gatev et al. for the time window before 2003
by incorporating trading costs etc. Another interesting finding of their study is that pairs trading
performs better during recessions or periods of high volatility.

Noting that Gatev and Do used daily trading data for their strategies, the next step in pairs
trading research was conducted by Bowen et al.(2010) [14] by performing a statistical arbitrage
strategy on one year of FTSE100 equity intraday data. And their research is one of the first, which
also show that profits are highly correlated with the speed of execution, confirming the need for
low latency trading systems. The study shows that a longer execution time completely nullifies
profits and that the strategy is related to market and reversal risk factors. This leads to the idea
of implementing a stop trading boundary if the prices between the pairs diverge too far.

We will also discuss the co-integration approach for pairs trading in chapter 5.1, which was in-
troduced by Kishore in 2012 [15]. He states that optimal boundaries in statistical arbitrage are
non-static, but his study cannot show the profitability of his proposed method.

To conclude the literature review for pairs trading, we mention the recent work by Stiibinger and
Bredthauer [16]. They achieve profitable results on high frequency U.S. equity data by increasing
the standard deviation multiplier needed to enter into trade positions. They also suggest Kishore's
result of using dynamic trading signals for better profitability.
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For low latency, we would like to briefly mention interesting talks of professional C++ meet-
ings that can be classified as scientifically relevant. Kevin Goldstein(2018) [17] talks about the
top concerns for a trading system: first, ultra-low latency; second, consistent performance with-
out outliers and reliability across every market circumstance. He then also introduces in-memory
computing (IMC) for trading systems.

Several presentations from Carl Cook [11] in recent years also stressed the importance of set-
ting up a rigorous input/output time measuring system which as he states, is the only way to
consistently measure the real performance of a trading system without adding unnecessary over-
head or altering the code. He also introduces interesting ideas for tuning the kernel and optimizing
the code in a low latency setting.

Nimrod Sapir (2019) [18] and Mateusz Pusz (2017) [2] both align and expand the optimization
techniques suggested by Cook in separate talks. Chandler Carruth (2014) [19] shows that be-
sides proven mathematical complexity advantages, the underlying structure of the programming
language and how computational processing units are built can alter the actual result and make
theoretically slower algorithms faster in practice.

Yaniv Yardi (2018) (20] performed live optimizations on an algorithm to reduce latency by us-
ing techniques ranging from presorting data over compile-time calculations of critical values to
utilizing low-level system architecture by nsing bit-wise operations to speed up his code.

We conclude our literature review by referencing interesting work related to profitability in high
frequency trading in general and attempts to capture the sensitivity ol profits with regard to the
latency of trading firms.

Elaine Wah(2016) [21] analyzes U.S. exchange and regulatory data to show that many latency-
related profitability opportunities arise given the fragmentation of trading across several stock
exchanges. More opportunities are available in cross-market arbitrage for larger stocks with high
liquidity and not on all exchanges. She estimates the total potential profit for the SP500 to be
around three billion dollars in 2014. How much of this profit is realized by HFT firms and if dark
pools also play a role in latency arbitrage could not be shown.

Weller (2013) [22], on the other hand, focuses on the interaction between market makers. An-
alyzing commodity futures transaction data, he shows that market makers with different latency
times build a chain of intermediaries for trade execution sorted by speed. His model shows that the
faster market makers can choose their counterparty and can shift adverse selection risk to slower
market makers. This intermediary chain also explains as one of the first articles why even a small
speed increase can result in high profitability gains for market makers, even if the actual execution
price improves by just a small amount or not at all. It is the relative speed between market makers
which matters, and if a slight speed increase moves the firm up in the intermediary chain, more
profit is guaranteed. His work also lines out that removing these effects by permitting the arms
race for speed might harm the overall market or even lead to market collapse.

A recent paper also discussing latency arbitrage conducted by HET firms which ultimately leads
to the earlier mentioned arms race for speed, is written by Aquilina (2022) [23]. He focuses on
potential negative aspects related to it. The anthor analyses high frequency data of the FTSE100
to show that per stock, about one stock race happens every minute, and they take on average only
a few milliseconds each and account for roughly one-fifth of the total trading volume. The paper
also shows that only a few fast market makers compete against each other and that being faster
than other market makers will result in a higher profit margin. The aunthors also propose that
introducing regulations on these stock races could reduce investors’ cost of liguidity by up to 17%.

Focusing more on the speed improvement of single market makers, Ende(2011) [6] measures the
impact of latency on trading with DAX30 data from Xetra. The authors show, similar to other
articles, that bigger stocks in terms of market capitalization are more impacted by changes in
latency trading than other stocks. Their data shows a significant non-linear relationship between
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trading latency and the probability of being selected for unfavourable trades. Additionally, they
describe an intraday pattern, which shows that the probability of unfavourable price changes in
the order book due to high frequency trading is higher at the beginning and end of the trading
day while being low in between. Negative price effects resulting from HFT on retail traders or
long-term institutional traders are described as neglectable.

As a last notable paper, we would like to mention the work of Baron et al.(2018) [24], who studied
latency impact on competition between HE'T firms. He again notes that for firms with already
low latency, the main profit gained by increasing execution speed results from beating other HFT
firms in the latency ranking. The authors mention that these profits are related to the short-lived
information channel but also to risk management and that faster HF'T firms are able to have better
risk management or can trade with less risk in general.
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Chapter 3

Benchmarking

The importance for high frequency traders of measuring the latency of their trading systems raises
the question of how and between which steps in the trade cycle the measurement should take place.
In general, HI'T firms want to reduce the time between the first receiving of the market data until
the "send-order” message is ready to send. In programming, we have two common approaches to
measuring our code. First, we can profile it, which examines what your code is doing, or second, we
can benchmark it, which is timing the speed of our system. Both methods have certain pitfalls [11].
For profiling, it is necessary to keep in mind that it is, first of all, useful for catching unexpected
things in your program, for example, the amount of time spent in a specific loop or funetion. But
improvements or reducing the amount of these unexpected occurrences does not necessarily mean
that your code is now running faster. On the other hand, a common mistake in micro-benchmarking
is to apply wildly positive overall performance tests. Most benchmarking tools focus on throughput
performance and report an average latency. However, while the identical code is run in production,
the outcomes may be dramatically worse. The trouble with benchmarking average latency is that it
now no longer effectively monitors the problem of excessive tail latency. For example, the code may
have good latency 99% of the time, however, the latency for rare events exceeding the percentile
may have latency ten to hundreds ol times the average. This may result in drastic outcomes,
especially in high frequency trading, where excess events can result in huge losses. Optiver, an
international market making firm, therefore, uses an end-to-end measurement setup, similar to
figure 3.1, as reported by Carl Cook [11]. Since we are focusing on code snippets/algorithms

High precision hardware-based timestamping

Server which replays Server which listens
exchange market data o market data and sends
and accepts orders orders

Server which captures and parses each
network packet it sees, and calculates
response time

Figure 3.1: End-to-end time measurement in a production-like setup

instead of a whole trading system in this paper, we will use Google Tests/ Google Benchmark for
conducting all latency measurements.

Google Test / Benchmark

In this section, we will introduce the Google Benchmark library shortly since we will use it to eval-
uate the performance numbers presented in this paper. Introduced by Google in 2014, Benchmark

15




is a C++ library for running microbenchmarks, supporting value- and type-parameterized bench-
marks, including multithreading and custom report generation. It represents a lightweight but
powerful framework - an example output of a run comparing a recursive implementation against a
naive factorial implementation is shown in figure 3.2.

Figure 3.2: Naive factorial compared to the recursive factorial function.

Additionally, Google Benchmark provides us with basic statistics for our code too, as shown in
figure 3.3.

Figure 3.3: Basic metrics in Google Benchmarks
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Chapter 4

Low-Latency Techniques

Recent breakthroughs in technology also influenced our financial environment. It is known for a
steadily increasing pace of gathering information on the one hand side and reacting to them on the
other hand. The sheer efficiency of capital markets nowadays requires traders to respond quicker
to market imbalances. While being faster minimizes the volatile nature of financial assets, it is also
necessary to execute profitable trades before the competition does it. Thus, the nature of financial
markets leads to high frequency trading companies competing in an arms race for speed. This re-
sults in major stock exchanges like the New York Stock Exchange (NYSE) offering the opportunity
for "co-location” at their premise. This means that traders can place their equipment as close to
the stock exchanges data output as possible, which results in reduced latency and network com-
plexity [25]. Another example of striving for speed is the development of microwave connectivity
between Chicago and New York and other financial hubs like London and Frankfurt, which results
in data being sent faster compared to ordinary fibre cables. Actual number estimates are that the
fastest fibre round-trip time from Chicago to New York is around 13milliseconds while companies
like McKay Brothers claim to offer round-trips through microwave in up to 8.2milliseconds [26].
To put this into perspective, the theoretical minimum, bounded by the speed of light, is around
7.9 - Bmilliseconds. Being closer to exchanges is always advantageous. Therefore, to provide a fair
environment for trading companies that buy co-location spots at exchanges, it is regulated that all
traders will get the same conditions; for example, MiFID II requires providing every trader with
the same cable length between the servers [27]. Thus, it is even more natural to focus optimisation
efforts on one's systems and minimise trading strategies’ latency. Given the highly confidential
nature of high-frequency trading, there is, to our knowledge, no existing exhaustive literature on
low-latency techniques for trading systems. Therefore, we will outline in this section different tech-
niques used to reduce trading systems’ latency. We will discuss various optimisation opportunities
for the general system architecture used by HFT firms and then focus on actual code optimisation.
Given its general speed advantage and the provided control over speed, all code optimisations are
discussed using the programming language C++20 [19].

4.1 System Architecture

A trading system can be seen as a simple three-step process first, receive market data from an
exchange or multiple exchanges. Second, process this market data within yowr algorithm engine
and lastly, send out your processed results (buy/sell /wait) to an order router. This is, of course,
immensely simplified, and no regulatory and compliance checks were done as well, but it illustrates
the general purpose of the trading system. Before we talk about how the actual code can be
improved, we would like to discuss low-latency considerations in the general architecture.

4.1.1 Kernel Bypass

The kernel can be seen as a program that defines the fundamental core of an operating system. It
does not interact directly with the user but with other programs and underlying hardware devices
such as the CPU, memory and disk drives. It provides essential services for the operating system
like memory management, process management, file management and input/output management,
which are continuously requested by other parts of the operating system or by applications through
a set of program interfaces called system calls [28]. In the following, if we mention kernel, we refer

17




to the Linux kernel. There are several reasons why doing kernel calls is inefficient while operating
a high frequency trading system. First, network interface controllers (NIC) are nowadays capable
of processing 10Gbps / 10M pps (packets per second). The kernel, on the other hand, can do only

Kernel Space
User Space

NIC e System interface
o  Generic services

o Device drivers *  Applications

Figure 4.1: A simplified architecture diagram between, network adapter, kernel & user space.

around 1M pps. Thus, to process more packets from the hardware, we have to work around the
kernel networking stack. This procedure is called a kernel bypass. In figure 4.2 it is checked that
even without passing packets to user space, the kernel was only able to process less than 12% of
the packets sent by the NIC per second [1]. While in figure 4.3 we illustrate that adding multiple

$ sudo iptables -t raw -I PREROUTING -p udp --dport 4321 --dst 192.168.254.1 -j DROP
$ sudo ethtool -X eth2 weight 1
$ watch 'ethtool -5 ethZigrep rx’

rx_packets: 12.2m/s

rx-@.rx_packets: 1.4m/s

rx-1.rx_packets: @/s

Figure 4.2: Number of packets processed by the kernel under perfect conditions [1].

cores does not scale up the processing, but on the contrary, reduces packets processed, precisely
only around 480k pps per core. We conclude that including the kernel will not work sufficiently for
data processing in our trading system. Another issue with the kernel is that it further slows down

% sudo ethtool -X ethZ weight 1111

$ watch 'ethtool -S ethZlgrep rx'
rx_packets: 12, 1m/s
rx-0.rx_packets: 477.8k/s
rx-1.rx_packets: 447.5k/s
rx-2.rx_packets: 482.6k/s
rx-3.rx_packets: 455.9k/s

Figure 4.3: Number of packets processed by the kernel when using multiple cores [1].

our system by conducting system calls. While the actnal time taken varies for different system
calls, a minimum of around 10-25 clock cycles per system call can be assumed [29]. This converts
on a 3GHz CPU to 30-Thus per system call, which can additionally be skipped if we bypass the
kernel. One public solution is Solarflare’s OpenOnload kernel bypass technology, which, tested by
RedHat, achieved great latency reduction without further code changes applied [30]. This means
that HF'T firms typically run all their software in user space, don’t perform memory allocation in
real-time and have specified network interface cards for their purposes [18].

4.1.2 Context switching, Queuing and Data transfer

Context switching is the process of storing the state of a process or thread so that it can be restored
and resume execution at a later point. HFT firms will try to avoid this, queuning and transferring
data between different threads as much as possible [18]!
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4.2 Code Optimization

4.2.1 Cache Warming

While operating a trading strategy, most of the time, yon will not buy or sell anything and wait
for further information, which activates one of your trading signals. We call the hotpath the part
of our code that executes the buy/sell orders. Given the vast amount of data we have to process
every second, the full hotpath is only exercised very infrequently compared to waiting instructions
- your cache has most likely been trampled by non-hotpath (slowpath) data and instructions. A
simple solution, run a very frequent dummy path through your entire system, keeping both your
data cache and instruction cache primed before the program "really” needs it. To illustrate it
informally, we can think about it as being similar to an athlete doing stretching exercises to warm
up their muscles before they need them for competition. More formal, we want to do cache warm-
ing to execute rarely executed but critical code faster. Cache warming means to keep the critical
code/data in the cache by executing/accessing it in an artificial way, while the execution must
not affect the program’s actual state. In the following, we will outline an example of what cache
warming in trading systems could look like and which impacts it has on performance.

We illustrated the main idea in a simple flow chart in figure 4.4 and figure 4.5.

Incornirdlignzemork » Update order book »| Generate event
A
. " - Trading
‘Wait for new data |« No- Signal?
Yes
¥
Network send < Execute order < Generate order

Figure 4.4: Simplified flowchart without cache warming.

Incomirdlgt;emork » Update order book »| Generate event
[
3 Dummy Trading
kb order? No Signal?
A
Yes
¥
Generate dummy Yes
order
Network send k3 Execute order < Generate order

Figure 4.5: Simplified flowchart with cache warming.
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We now introduce a simplified psendo-code example on buying gold ETFs,

void buy_gold_etf();

void run() {
while (true) {
auto etf price = get_etf_price();
if (not should_buy(etf_price)) {
update_etf_history(etf_price);

else {
buy_gold_etf(); // important code
}

Listing 4.1: Psendocode on buying gold ETTs

In listing 4.1 line 9 and 10 refer to our hotpath code. As deseribed above we warm the cache by
adding a dummy structure for the hotpath.

void buy_gold etf(bool only_warm_code);

void run() {
while (true) {
auto etf price = get_etf_price();
if (not should_buy(etf_price)) {
update_etf_history(etf_price);
buy_gold_etf(true); // most calls originate here

else {
buy_gold_etf( false); // important code

Listing 4.2: Psendocode with dummy structure for the hotpath

We added a Boolean in listing 4.2 to indicate whether we are warming the critical code or not.
Additionally, we added a call to buy ETFs to initiate the warming process. In reality, we would
add a frequency threshold that initiates the warming process, for example, 100 times per second,
to reduce CPU workload. Let us now dig into the buy_gold_etf() code.

size_t total bought_amount {};

void buy_gold_etf({bool only_warm_cache) {

const size_t available = get_available_amount();
If (available < 10)
return;
const size_t buy_amount = std::min{lﬂn‘ avallable);
const size_t bought_amount = send_order (buy_amount); // program state

total_bought_amount += bought_amount; // program state

Listing 4.3: Psendo-Buy funetion for gold ETFs

The problem at hand is how to avoid the Boolean in listing 4.3, modifying the program’s state. A
naive approach would look as follows.

size_t total_bought_amount { } p

void buy_gold_etf(bool only_warm_cache) {

const size_t available = get_available_amount(only_warrn_code);
If (available < 10)
return;
const size t buy_amount = s d::min(lﬂﬂ‘ avallable);
const size t bought_amount = sendforder(buyfamount‘ Dnlyfwarmf:ode);

if (not only_warm_code)
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i total_bought_amocunt 4= bought_amount ;

11}

Listing 4.4: Psendocode on buying gold ETF's - naive approach

In listing 4.4 we forwarded the Boolean to all function calls, which may alter the program’s state.
Furthermore, we added an if-statement to avoid incrementing the counter while warming the
cache. Through this if-statement, we introduced a new problem, branch misprediction. The
internal branch prediction will assume that we rarely increment the counter, which results in slow
execution when speed is needed the most. We can solve this by altering the code.

std::array<size_t, 2> total_bought_amount {} 5

1
2
3 void buy_gold_etf({beol only_warm_cache) {
"

const size_t available = get_available_amount(cmly_warrn_ccde);
If (available < 10)
I returmn;
7 const size_t buy_amount = std::min(100, availakle);
8 const size_t bought_amount = send_order(buy_amount, only_warm_code);
o total_ bought_amount [D]‘l ly_warm_code] += bought_amount ;

Listing 4.5: Psendocode on buying gold ETF's - optimized approach

Note that we removed the if and that we split the code in listing 4.5 into two parts. We now use
the Boolean as an index to indicate which counter we increment and avoid branch misprediction.
An additional bonus we get is that we most likely also warm the data since the counters are
probably on the same memory page. In figure 4.6 the time difference for accessing different levels
of cache are outlined. Therefore, having the majority of needed data in the cache can speed the
reference process up by more than 200 times. Furthermore, high frequency trading firms also aim
to reduce/eliminate the mumber of cache misses in their hotpath since a single cache in one trading
cycle might not change the mean performance of the program but result in a delay for this specific
trade, hence a loss in profit.

L1 cache reference 0.5 ns

Branch misprediction 5 ns

L2 cache reference T ns 14x L1 cache

Mutex lock/unlock 25 ns

Main memory reference 106 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns

Send 1K bytes over 1 Gbps network 16,000 ns 0.1 ms

Read 4K randomly from SSD 156,000 ns 0.15 ms

Read 1 MB sequentially from memory 250,000 ns 0.25 ms

Round trip within same datacenter 500,000 ns 0.5 ms

Read 1 MB sequentially from SSD 1,000,000 ns 1 ms 4X memory

Disk seek 10,000,000 ns 10 ms 20x datacenter roundtrip

Read 1 MB sequentially from disk 20,000,000 ns 20 ms B0x memory, 20X 550
Send packet CA-sNetherlands->CA 150,000,000 ns 150 ms

Figure 4.6: Latency comparison numbers [2].

4.2.2 Slowpath Removal

As mentioned in the last section, in a trading system, the hotpath, which generally refers to the
code which executes a trade given all checks were performed, is only exercised 0.01% of the
time. The other 99.99% of the system is idle or doing administrative work [18]. Therefore besides
warming up the cache, another technigue which will reduce latency is to separate the slowpath
from the hotpath code. To achieve the best performance, we have to aim for minimal hotpath
code and keep the slowpath away [rom our critical code. To sketch the main idea in listing 4.6 we
look at a classical if-statement which executes our hotpath if everything is ok and does some error
handling if not.

1 void trading function(bool checks_ckay) {
2 if (checks_ckay) {
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K I/
3 T

4 execute_hotpath

6 else {

7 stop_order();

B send_to_client (" Order Failed");
9 log_Message("Order Failed”);

10 fl aaa

11 1

12}

Listing 4.6: Pseudocode with a classic if-statement

Error handling should occur only rarely. Thus all the error handling code in our trading_function
increases the assembly instruction unnecessary. A better solution, provided in listing 4.7, would
split hotpath and slowpath.

void trading_function(bool checks_ckay) {
2 if (checks_ockay) {

K 'y
3 P s

4 execute_hotpath

6 else {

7 Handle_Error();
s }

o

1w void Handle_ Error() {
11 .,4".,4"

12}

Listing 4.7: Pseudocode with split hot- and slowpath

We will discuss a hands-on example provided by Mateusz Pusz |2, which improves a part of
Google's "FlatBuffers” C++ library by separating hotpath and slowpath. By taking a look at
FlatBuffers vector_downward class in listing 4.8,

class vector downward {
uintf_t #make_space(size_t len) {

2

3 if (len > static_cast<size_t>(cur_ — buf_}}{

4 auto cld_size = size();

5 auto largest_align = AlignOf<largest_scalar_t>();

6 reserved_ += (std::max)(len, growth_policy(reserved_));

7 S/ BRound up to avoid undefined behaviour from unaligned loads and <«
stores .

& reserved_ = (reserved_ + (largest_align — 1)) & “(largest_align —1);

o auto new_buf = allocator_‘allocate{reser\red_);

10 auto new_cur = new_buf 4+ reserved_ — cld_size;

11 memcpy(new_cur, cur_, old_size);

12 Cur_ = mew_cur;

13 allocator_.dealleocate(buf_);

14 buf_ = new_buf;

15 }

16 cur_ —= len;

17 /{ Beyond this , signed offsets may not have enough range:

18 // (FlatBuffers > 2GB not supported).

18 assert(size() < FLATBUFFERS_MAX_BUFFER_SIZE);

20 return cur_;

21 }

22 !/

2}

Listing 4.8: Google's FlatBuffer vector_downward class

We notice the big if-statement, which handles memory allocation in the case that the length sur-
passes the currently allocated memory. In a high-performance trading system, memory allocation
is handled extremely carefully, and dynamic allocations are avoided in general. Therefore, this part
of the code should rarely, if at all, be executed. This results in a not instruction cache-friendly big
assembly code block in our hotpath. The problem can simply be solved by decomposing the class.
A possible solution presented in listing 4.9, implements a reallocate() function which gets defined

separately.
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class vector downward {

1
2 uint8_t #make_space(size_t len) {

3 if (len > static_cast<size_t>(cur_ — buf_))

4 reallocate(len);

5 cur_ —= len;

6 // Beyond this , signed offsets may not have enough range:

7 // (FlatBuffers > 2GB not supported).

& assert(size() < FLATBUFFERS_MAX_BUFFER_SIZE);

o return cur_;

10 1

11

12 void reallocate(size_t len) {

13 auto old_size = size();

14 auto largest_align = Alignof<largest_scalar_t>();

15 reserved_ += (std::max){len, growth_policy(reserved_});

16 // BRound up to avoid undefined behaviour from unaligned loads and stores.
17 reserved_ = (reserved_ + (largest_align — 1)) & ~“(largest_align —1};
18 auto new_buf = allocator_,allocate{reserved_};

18 auto new_cur = new_buf 4 reserved_ — old_size;

20 mem:py{new_cur‘ cur_ , Dld_size);

2 Cur_ = new_cur;

23 allocator_.dealleocate(buf_);

23 buf_ = new_buf;

24 1

a5 I

Listing 4.9: Vector_downward class with added reallocate() function

Through this simple step, the compiler can easily inline and optimise the actually used part of
the code snippet. EPAM Systems reported a performance boost of around 20% by implementing
this optimization [2]. Additionally, we should also try not to inline slowpath functions either
by declaring them inline or by unwanted compiler behaviour. We can utilise C++'s "noinline”
attribute for this.

1 void __attribute__ ((nocinline)) slowpath_functlon(){
2

3}

Listing 4.10: C++'s noinline attribute

Benchmarking a simple bubble sort algorithm on uniformly distributed random data (4.11 & 4.12),
we note that especially for small-sized arrays (2 to 8 bytes) moving the slowpath into a separate
function results in faster execution.

1 void bubble_sort(auto first, auto last) {
3 for (auto i = first; 1 != last; ++i) {
3 for (auto j = first; j < i; ++3) {
4 if (*i > 100000) { // this will never get called in our example

std cut << "Error detected” << std::endl;

6 std::cout << " Stopping operations” << std::endl;
7 break ;

. }

8 if (#i< %3) {
10 std::iter_swap(i, Jj);
11 }
12 }
13 }
14 }

Listing 4.11: Bubble sort implementation

1 void __attribute__ ((noinline)) handleerror() {

2 std:: cout << "Error detected” << std::endl;

3 std::cout << "Stopping operations” << std::endl;

[/
4 IN,
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void bubble_sort{auto first, auto last) {
for (auto i = first; i != last; ++i} {
for (aute 7 = first; 3j < i; ++3) {
if (#i > 100000) { // this will never get called in our example
handleerror();

if (i< %3) {
std::iter_swap(i, 3j);
}

}

Listing 4.12: Bubble sort with separate slowpath

Benchmark results are shown in table 4.1, with lower latency of nearly 20%. We conclude that

Time cru Iterations
Standard BS 2Byte 12.2 ns 12.2 ns 30
Standard BS 4Byte 21.0 ns 20.9 ns 30
Standard BS 8Byte 52.4 ns 524 ns 30
Optimized BS 2Byte 10.1 ns 10.0 ns 30
Optimized BS 4Byte 21.0 ns 21.0 ns 30
Optimized BS 8Byte 47.3 ns 47.2 ns 30

Table 4.1: Mean henchmark results for Bubble sort

while striving for ultra-low-latency, it is necessary to view code as data, in the sense that it is also
stored in memory, has to be pre-fetched into the instruction cache, and less code is nsually faster.

4.2.3 Branching Minimization

Modern CPUs follow a pipeline architecture, which means that there are multiple sequential in-
structions being executed simultaneously. But the pipeline can only be fully utilised if it is able
to read the next instruction from memory on every clock cycle, which in turn means it needs to
know which instruction to read. For completeness, we will give a very high-level overview of how
a classic five-stage reduced construction set computer (RISC) pipeline is designed. The first stage
is the instruction fetch (IF), in which the instruction is fetched from the dedicated instruction
cache. The following stage is called instruction decode (ID) and enables the CPU to determine
which instruction has to be performed and how many operands for performing this instruction are
needed. The third stage is the execution stage (EX), in which the read and decoded instruction
is sent to the computer components as control signals. Finally, the last two stages are memory
access (MEM) and writeback (WD), where the first handle the need for data memory and the
latter writes the results into the register file [3]. A visualized five-stage RISC pipeline can be seen
in figure 4.7. If we now introduce a conditional branch in our code, the CPU usunally does not

Instr. No. Pipeline Stage
1 IF | ID | EX [MEM WE
2 IF | ID [ EX |MEM WB
3 IF {ID | EX MEM|WEB
4 IF | ID | EX MEM
5 IF | ID | EX
Gock [1]2)3]a|s|6]|7

Figure 4.7: Basic five-stage RISC pipeline [3]

know ahead of time which path will be taken, or even worse, it predicts the wrong path. When this
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happens, the CPU has to stall until the decision has been resolved. This means that all preloaded
instructions must be unloaded. Also, any possible side effects, like data that has changed due to
misprediction, must be reverted. This lowers CPU utilisation and, therefore, performance. In a low
latency system, we aim to reduce branching. In this section, we outline three common techniques
for branch optimisation. First, the goal is to minimise conditional branches in general, and this
can be achieved by utilising flags instead of multiple if-else statements or if-cascades. A simple
code example is to avoid the code in listing 4.13,

1 void control_function() {
2 .

3 if (check_error_a())

4 handle_error_A {) d
5 if (check_error_B())
I handle_error_B();
7 if (check_error_c())
8 handle_error_C();
o else
10 continue_hotpath() ;
u }

Listing 4.13: Branched code example

and instead aim for this less branched version in 4.14:

1 void contrel_function() {
2 -

3 uint32_t error_flags;
4

5 if (error_flags)

6 HandleError(error_flags)
7 else

5 continue_hotpath() ;

o }

Listing 4.14: Version with less branches

We can further reduce run-time branches by moving the branching to compile-time. One common
approach is to templatize branches in C++, as shown in [11]. Let us introduce a trading example
where we calculate the theoretical profit made as a market maker by gaining the difference between
the midprice and actual bid/ask price of an underlying asset. We then compare this profit with
our expenses to decide if we should post the offer or not. The branched approach would again look
like in listing 4.15;

1 enum Class Side { Bid, Ask };

3 void trading_strategy(Side side) {

4 const float trade_profit = Calc_profit(side, midprice, bidprice, askprice);
5 Check_profitability(side, trade_profit);

6 Send_order(side, bidprice, askprice);

7}

&

o float Calc_price(Side side, float midprice, float bidprice, float askprice) {
11 return side == Side::Bid ? midprice — bidprice : askprice — midprice;

u }

Listing 4.15: Code with run-time branching

But as a trading firm, we can assume that we already know if we want to place a bid or an ask
offer (or both) at compile time. Therefore we can utilize C++ templates to eliminate all branches
by determining the specific values at compile time. In our case, this can be seen in listing 4.16,

template <Side T>

void Strategy<T>::trading_strategy() {
const float trade profit = Calc_profit(midprice, bidprice, askprice);
Check_profitability(trade_profit);

5 Send_ocrder();

Btk e
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}

template <

float Strategy<Side::Bid>::Calc_price(float midprice, float bidprice, float +
askprice) {
return midprice — bidprice;

}

template <

float Strategy<Side::Ask >::Calc_price(float midprice, float bidprice, float <
askprice) {
return askprice — midprice;

Listing 4.16: Code with compile-time branching

Which provides us with complete branch-free code at run-time. The last technique we can utilize
to reduce branch latency is called short-circuiting. This should be used if branching can not be
avoided by one of the two earlier mentioned methods. The main idea behind this is to order
the conditions done in a conditional branch by computation expense, as shown in 4.17. Starting
with the least expensive checks first, the program is not performing the more expensive checks if
the earlier conditions are not fulfilled. This saves computational power and, thus, time. Short-
circuiting might be necessary because compilers are unable to reorder statements where they are
not sure of what side effects might occur [11].

// Rewrite:

if (expensive_check() && inexpensive_check()) {...}
// As:

if (inexpensive_check() && expensive_check()) {...}

Listing 4.17: Sorting if-checks by complexity

Benchmarks and results for this technique are discussed in chapter 6.

4.2.4 Memory Allocation

In this section, we talk about static and dynamic memory allocation and the associated costs.
Note, that only dynamic memory allocation will call malloc and free. Let us outline why memory
allocations and deallocations are slow. There are two things to consider when evaluating the
performance of dynamic memory, namely allocation speed which measures how fast the program
can allocate and deallocate memory and access speed, i.e. how fast we can access the memory
returned by the system allocator. While the latter depends on the underlying hardware memory
subsystems. Therefore, we will focus on the allocation speed aspect. One reason that makes
dynamic memory allocation slow is memory fragmentation. When allocating memory, the allocator
requests one or more large blocks of memory from the operating system. It then performs a
search algorithm, depending on the allocator, to find an awvailable block of a given size in this
memory. Consequently, as time progresses, it gets more difficult to find blocks of appropriate size.
This results in longer search times for the allocator and subsequently in the slower allocation of
memory. A typical picture of memory fragmentation can be seen in figure 4.8. For a low-latency
trading system, we should aim to not do any dynamic allocations in our fast path. Thus, static
allocation ahead of time is a possible solution to save run-time allocation costs. Utilizing C++'s
placement new function enables us, additionally, to hold onto memory forever, which helps us to
keep related data together, avoids long-term memory fragmentation and eliminates deallocations.
HFT companies, therefore, will increase their memory space by buying/adding additional memory
instead of moving data around; "Just buy more memory; it’s cheap.” [11]. In listing 4.18 we
illustrate a simple example which implements a string class with static memory allocation.

template<size t max_size>
class fast_string {

private:
std::array< type, max_size +1> chars_;
public:
// classic string implementation
i
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Figure 4.8: Memory fragmentation on a real-life embedded system. Green blocks represent taken,
white blocks f{ree memory. [4]

Listing 4.18: String class with static memory allocation

We can then create in-place strings by simple using the template syntax.

// inplace examples:
fast_string<4> high;
fast_string<¥> frequency;
fast_string<7> trading;

Listing 4.19: Example usage of the string class

Since we mentioned placement new earlier, it is useful to keep in mind that for outdated compiler
versions, placement new will perform a nullptr check on the passed memory address. [11] This
adds unnecessary overhead, and striving for low latency, we should consider writing an overloaded
version ol placement new to avoid this. Besides that, it is necessary to check the inbuilt standard
library functions for unintentional allocations. A classic example would be std::funetion which may
allocate memory. The reason for the dynamic memory allocation is that std::function is generic
and has no idea how much data is captured, but that captured data has to exist inside of it and
also has to be able to be copied when moving a std::function around. Therefore, it needs storage
space for your captures. An example is given in 4.20,

double i[ﬁ];
auto my_lambda = [=] () —= int {
return (1[0] + 1i[1] * i[2] + 1[3]) ~ i[4];
// A dynamic memory allocation of sizeof(my_lambda) + some change is done on «

assignment
std:: functicon £ = my_lambda;

Listing 4.20: Example of std::function allocating memory

and a workaround is either using an inplace_function library [31] or templatizing it as shown in
listing 4.21,

template <typename T>

void new_lambda (const T &lambda) {
J/ No virtual function calls or dynamic memory allocations!
lambdal() ;

new_lambda ([] () {(1[0] + 2[1] * i[2] + 1[3]) ~ i[4];}

Listing 4.21: Templatized version to avoid memory allocation

The compiler might also be able to inline the lambda code, which eliminates overhead. Aun in-
depth example of how memory allocation will alter execution speed is provided in the algorithm
optimization section 6.
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4.2.5 Multi-Threading

Multithreading allows for the exploitation of parallel hardware and the effective use of multiple pro-
cessor subsystems. Some of its advantages include improved throughput, program structure simpli-
fication, and simultaneous use of multiple processors for computation and Input/Output(I0)[32].
But in a high frequency trading setting, we are primarily concerned about latency and not throngh-
put. Consequently, multithreading will, in most cases, not provide any speed benefits but more
likely slow our code down. Therefore, as long as the incoming market data can be handled by one
process, a single thread solution is generally better than a multithreaded one [11]. We should even
further avoid it since introducing it comes with shared Level3 caches and above, a shared memory
bus (responsible for connecting the main memory to the memory controller) and a shared net-
work. Additional overhead will be introduced by locking mechanisms on a software and hardware
level [33]. If using multiple threads is inevitable, it is important to keep shared data to a mininmm
since multiple threads writing to the same cache line come with additional costs. Instead of sharing
data, it should be passed between threads, and synchronization should be avoided if possible.

4.2.6 Deterministic Code Flow

As seen in the branching or memory allocation section, we aim to move as many computations as
possible from run time to compile time. In C++, the consterpr specifier declares that it is possible
to evaluate the value of the function or variable at compile time. Additionally, using constezpr in
an object declaration implies a const declaration, and used in a function or static member variable
declaration it implies inline. Once declared, this expression can be used in compile-time constant
expressions [34]. Since C++20 only a handful of things are not allowed in constezpr statements [2].
Therefore, low latency applications can benefit by using it in many ways. A simple example of
utilizing compile time expression is given in listing 4.22,

consteval int factorial(int n){
int res = n;
while(n > 1)

res #= —n;

5 return res

TR

}
std::array<int, factorial(4)> array;

constexpr std::array precalc_values = {
factorial (4);
factorial(11);
factorial (12);

3

, static_assert(factorial (4) == 24);

Some_function(factorial(4)); // computed in compile—time

Listing 4.22: Compile time expression using consteval

Note that consteval will gnarantee us that the factorial is computed at compile time which would
not be the case if we declared it consterpr. As a trade-off general statements like factorial(n)
would now return an ervor instead of getting computed in run time (which would be the case
for constexpr) [2]. We can further move computations to compile time by using a concept called
curiously recurring template pattern(CRTP). CRTP is used when polymorph classes are needed,
and the actual type of the used classes is already known at compile time. It is then possible
to templatize the base class and cast the type of the derived cast into the inheritance line. This
reduces run time overhead generated by the v-table of virtual functions which would have otherwise
been created. In the following, we present an example for pseudo trading code [18]. The classic
approach would look as in listing 4.23,

class order {

virtual void send order() {// Generic implementation...}
I

class buy_order : public order {

virtual void send_order() override
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Figure 4.9: Benchmark of a simple loop addition using normal inheritance and CRTP

Figure 4.10: Benchmark of a loop addition using normal inheritance and CRTP without loop
optimization

{// Specific implementation...}

+H

class sell_order : public order {// No implementation};

Listing 4.23: Order class with classic polymorphism

while we prefer the faster CRTP, presented in 4.24.

template <typename actual_type>
class order {
void send_crder() {static_cast<actual_type+>(this)—ractual_place();}

void actual place() { // Generic implementation... }
{;}:iﬁ.hh buy_crder : public crder<buy_crder>

‘E(Jid actual_place() { // Specific implementation... }
t:iﬂhh sell_order : public ocrder<sell order> { T } i

Listing 4.24: Order class with CRTP

While measuring performance for a simple example of CRTP, we found another advantageous
feature of using CRTP. Using templated classes enables the compiler to heavily optimize your
code which it would not be able to do when using normal inheritance structures. In our example,
we performed simple loop addition, and by using CRTP, the compiler was able to skip the loop
completely - which results in the speed increase shown in figure 4.9 When forcing the compiler
to not optimize out the loop, we observe the performance boost resulting from the eliminated
v-table, which we show in figure 4.10. Another part of our code which can often be accelerated by
using compile-time techniques are functions which can be replaced by lambdas if we know which
function we want to call at compile time. We can even use templates to generate general interfaces.
Consider the example in 4.25,
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template <typename T>
void SendOrder(T&& target) {

// log and send order

logging (...} ;
send(...);

SendOrder ([&](autod order) {
order.ticker = w;
order.size = x

crder.price = z;

11

Listing 4.25: Compile-time functions using lambdas and templates

t The compiler will inline this, resulting in no function calls and using templates will again reduce
run time overhead [11].

4.2.7 Tailor-made Data Structures

Data structures provided by the C++ standard library are created to fit a variety of general use
cases. Therefore, using them in a high-performance environment can sometimes not be optimal.
Lower latency can be achieved by constructing its own tailor-made data structures. If we consider
commonly used C++ data structures like std::list, we note that this is a doubly-linked list where
cach node is separately allocated. Thus, every traversal operation made chases pointers to totally
new memory. Resulting in a cache miss for most steps. This is costly and, therefore, we should
only use std::list when we have a use-case of rarely traversing the list but frequently updating
it. Best practice in high frequency trading is preferring std::vector over other standard library
data structures [19]. By benchmarking it against std::list and std::deque we note that in theory,
a list should be used when random insert and remove operations will be performed, which has
a complexity of O(1) compared to O(n) for a vector, or a deque. For linear search, the general
complexity should be O(n) for all data structures. The size of the data structures matters most
when random insert or random replace operations are performed. For vector and deque, we then
have to move every following element, which results in copying those elements. In practice, however,
we will notice a more significant difference due to the underlying hardware or, to be precise, the
underlying memory caches. A vector is stored contignous in C++, while std::list is not. Thus,
besides knowing the time complexity for different data structures, it is important to know their
interaction with hardware to build low-latency systems [19]. For operations adding elements to the
end, a preallocated vector (green line) clearly outperforms the other data structures, as can be seen
in figure 4.11. The same pattern holds for linear search as seen in figure 4.12. More interestingly is
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Figure 4.11: Speed comparison for adding elements(of small and big size) to the back of different
data structures [5].

even that for small data sizes std:vector is still the best option when performing random remove
operations, despite its theoretical worse time complexity as can be seen in figure 4.13. The test
was performed with an Intel Core i7 ) 820 @ 1.73GHz. We conclude that knowing the different
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Figure 4.12: Speed comparison for linear search(of small and big size) in different data struc-
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Figure 4.13: Speed comparison for random remove operations(of small and big size) in different
data structures [5].

time complexities might be a good indicator to start with, but while striving for low latency, we
should always measure the performance of different data structures to guarantee performance.
Additionally, there is no one fits all data structure. Thus, we have to consider building our own
data structures for specific applications.

4.2.8 Type Engineering

In this section, we want to emphasize that knowing your types and using different types might
increase the performance of your code. We introduce two simple examples to highlight this fact.
First, we would like to highlight the difference between signed and unsigned integer indexing. In
the standard library, loops are commonly indexed by size_t which is an unsigned integer [35]. Given
a simple loop using signed integer for indexing as in 4.26,

int foo(int i)

int k = 0;

for(int 3 = i; j < i + 10; ++3)
++k;

return k;

}

Listing 4.26: Standard C++ loop with signed integer counter

results in the assembly code in listing 4.27 (x84-64 gee 12.1 -02 -std=c++20).

foo(int):
mowv
ret

10
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Listing 4.27: Assembly for the standard loop

If we now write the same loop but using an unsigned integer for indexing as in 4.28,

int foo(unsigned i)

int k= 0;

for (unsigned 7 = i; 3 < 1 + 10; ++3)
++k;

return k;

}

Listing 4.28: C++ loop with unsigned integer counter

we receive the different assembly code presented in 4.29:

foo(unsigned int):

cmp edi, —11
Jja L3
lea eax, [rdi+1]
add edi, 10
cmp edi, eax
sbb Bax, eax
and eax, —9
add eax, 10
ret

L3:
xor eax, eax
Ter

Listing 4.29: Assembly for the loop with an unsigned integer counter

This is explained by the fact that in C++, integer overflow is defined for unsigned integers; thus,
the program checks if an integer overflow occurs or not. For signed integers, this is not the case,
and it might be possible to get integer overflow, which, therefore, the user has to make sure that
it will not occur in contrast to when using an unsigned integer. Taking this into consideration,
doing integer arithmetic on signed integers is, in general, faster (less assembly) than on unsigned
integers [2].

In general floating point calenlations, no matter if we are using single or double precision, take the
same time. But outlined in Agner [36] there is a penalty in 64-bit operating systems for mixing
them up. This is especially important in C++ since floating point literals will be converted as
double by default and not as a float.

float a, b;

a=Dbz=* 1.2; // here 1.2 is a constant double

Listing 4.30: Floating point literals

We can therefore speed the program up by choosing the desired datatype for the constant. An
example is given in 4.31,

float a, b;
a=>b#% 1.2f; // everything is float

!

I — (or)
double a, b;
a=>5bs# 1.2; // everything is double

Listing 4.31: Performance increase by using doubles

4.2.9 Other Miscellaneous Considerations

One micro-optimization we should consider when dealing with C++ code is, furthermore, to try
to fill the cache line. As we already mentioned earlier, our cache is the fastest memory we have.
We can further accelerate things if we reduce the number of cache lines we have to read in for our
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data. Let us assume that for our hardware, the size of one cache line is 8 bytes. Then we can
construct the same simple object either like in listing 4.32,

struct NotAligned {

ehar ¢; [/ size=1, alignment=1, padding=T

alignment=8, padding=0
alignment=2, padding=2
int i; // size=4, alignment=4, padding=0

statiec double dd;

double d; size=8
short s; // si

!

Listing 4.32: Struct without considering cache line alignment

Where we did not think about possible alignment effects of our data, and the seven free bytes of
the first cache line had to be padded unnecessarily. A more efficient way of structuring this object
would be to reorder its members as in listing 4.33,

struct A {
char c; [/
short s; [/

alignment=1, padding=1

alipnment=2, padding=0
int i; // size=4, alignment =4, padding=0
double d; // e=8, alignment=8, padding=0

static double dd;

Listing 4.33: Struct with optimized cache line alignment

This results in reducing the number of cache lines which we have to read by one [2]. This can
casily add up to big data inefficiencies once we use large vectors of such unaligned objects.

A similar observation can be made when accessing member data of objects through functions.
We should aim to construct our objects data oriented in a way that we initialize memory which
is often used together close to each other. This way, we can often increase the speed of member
functions. We illustrate the idea with a simple example. Consider a simple company stock object
which also stores some information about the company and an object manager class, presented in
4.34, which simplifies the interface for accessing the price of the stock and checks for profitability.

struct prices { double bid, ask; };

void display(const cocordinates& coord);

void profitable(int thresheold);

constexpr int OBJECT_COUNT = 10000;

class ocbjectMgr;

void process(const objectMgr& mgr)

Eunﬁt auto size = mgr.size();

for (aute i = OUL; i < size; ++Hi) { display(mgr.index(i}); }

for (aute i = OUL; i < size; ++i) { profitable(mgr.threshold(i)); }

}

class cbjectMgr {
private:
struct cbject {
prices price;
std:: string exchange_name;
std::string ticker_name;
double thresheold;
std::array<char, 100> octherData;
I
std:: vector<cbhject> data_;
public:
explicit objectMgr(std::size_t size) : data {size} {}
std::size t size() const { return data .size(); }
const prices& index(std::size_t idx) const { return data [idx].price; }
int threshold(std::size_t idx) const { return data_ [idx].threshold; }
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Listing 4.34: Common implementation of a Stock object

Note that the function process will always access the price and threshold together, but the data is
not initialized close to each other in the objectMgr class. Thus, we have to deal with separated data
which leads to an increase in cache misses while accessing the data. A more efficient implementation

would look as in 4.35.

class cbjectMgr {

private:
std:: vector<prices> price ;
std::vector<double> thresheold_;

struct otherData {
struct compInfo { std:: string exchange_name, ticker_name; };
compInfo infoj
std:: array<char, 100> data;

i
std:: vector<ctherDatal> cocldData_;

public:
explicit cbjectMgr(std::size_t size)
price_{size}‘ threshold_{size}‘ chdData_{size} {}
std::size_t size() const { return price_.size();
const prices& index(std::size_t idx) const { return price_[idx]; }
int thresheld(std::size_t idx) const { return threshold_[idx]; }

H

Listing 4.35: Stock object implemented in a data-oriented way

This data-oriented design optimizes cache coherency but results in object decomposition.

comes with the trade-off of increasing the maintenance complexity of such objects [2].

This




Chapter 5

Statistical Arbitrage

One objective of this paper is to show how the speed of a statistical arbitrage algorithm can be
effectively improved. We want to introduce the reader to current advances in statistical arbitrage
theory and outline different methods discussed in academia and practice. Note that whenever we
refer to statistical arbitrage, we mean pairs trading, which is outlined below.

Let ns now explain the idea behind pairs trading. A trader who wants to execute a pairs trading
strategy wants, in general, to exploit relative mispricing between two assets. As a first step, she
has to identify a suitable pair. The usual approach is to find two highly correlated normalized price
processes. In general, it is not necessary to have other similarities between the assets; it makes
sense to choose only securities within a specific industry, sector or index. Once identified, she tracks
the price of the two assets, and once one of the two normalized price series separates far enough
from the other, a trading signal is generated. Here, the one moved first is the lead asset, while the
other is the lag asset. The trader now sees mispricing in the assets and expects the price processes
to converge back again. She can then exploit this expected behaviour by either opening a short po-
sition in the lead asset (if its price is relatively higher than the lag asset) and a long position in the
lagging asset or a long position in the lead asset (if its price is relatively lower than the lag asset)
and short the lagging asset. Note that we do not have an opinion at any time of the actual value of
our asset prices, it might be wrong, but the trader is only interested in whether the prices are rel-
atively the same or not. The potential mispricing between the assets is captured by the difference
in their normalized price series, and this spread can be seen as the profit potential for a trading
pair. Another feature of this strategy is that we go long and short in a positively correlated asset
pair which should minimize our exposure to general market movements and reduce our market risk.

Note that this strategy consists of matching asset pairs with similar normalized historical prices
into buckets and then trading these assets whenever the difference between their prices diverges
over a specified threshold. Subsequently, it is natural for us to split the discussion into two pro-
cesses: one that discovers related asset pairs and one that focuses on trade execution. We will
introduce different strategies for choosing suitable pairs and then focus on the actual trading part.

5.1 Choosing Pairs

Our literature review shows that more research has been conducted on finding asset pairs with
correlated moves than on the actual trade execution. This research has resulted in a variety of
approaches to building matching pairs. In this section, we will discuss three overarching strategies:
the distance approach and the co-integration approach are the best-studied ones in the literature.

5.1.1 Distance Approach

The most simple of the three strategies and, therefore, easy to implement and empirical studies
with large data sets can be conducted. To identify correlated asset pairs, the euclidean distance is
used. The origin dates back to the paper of Gatev et al. [12] in which a study on a vast amount
of liquid U.S. stocks between 1962 and 2002 is conducted. The co-movement is measured by the
euclidean distance between their normalized price series in the first step for two given assets. Let
(%)t denote the price series for any given asset and (N FP%); the respective normalized price series.
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for two assets A and B. Assuming that we have n assets selected, we compnute the distance for all
pairs, i.e. n(n—1)/2 pairs. We can then sort the pairs with regard to their distance, and the ones
with a smaller distance are favoured. Note that perfect pairs, in the sense that the distance between
the assets is zero (Dist(A,B) = 0), have a spread of zero and thus produce no profit opportunity.
This contradicts the fact that we expect the highest-ranked pair to generate the highest profit.
Additionally, note that the sample variance for the spread is given by,
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Thus, minimizing Dist(A,B) is equivalent to reducing SV(A.B), and the squared spread mean [37].
The first term increases in relation to the deviation from the mean, while the second term increases
the more the same mean drifts away from zero. Gatev et al.[12] outlined that it is difficult to show
which term is more important in the minimization problem. Still, their empirical results showed
that low spread volatility results in a low distance between assets. This concludes that the distance
method favours pairs with limited profit opportunities.

5.1.2 Co-Integration Approach

This approach was first discovered by Vidyamurthy (2004) and is the second most popular approach
after the distance one[38]. We must introduce the notion of (weekly-)stationary processes to dive
deeper into the co-integration approach. A time series (x;); is weakly stationary if the first two
moments do not depend on time # and the auto-covariance between different time stamps only
depends on the passed time between the stamps. This is denoted by,

Elz;] = p,
Var(z) = 7o,

Cov(zy, o s) = Ve,

where g denotes the mean and 7y the variance of the process; now note that if we have a stationary
time series, we can make profits by buying(selling) an asset when it diverges from the mean p since
it is mean reverting. Unfortunately, asset prices alone are not generally mean reverting, which
intuitively makes sense because, for example, a firm’s stock price is not fixed at a given price level.
Furthermore, let’s think about the random walk as a model of the asset price. We get the property
of infinite variance [39], thus the expected time of crossing a certain threshold again is infinite too.
We conclude that it is impossible to forecast profit opportunities under such a model. The primary
approach for non-stationary strategies, as outlined in Franses(1991) [40], is to use differenced time
series to get the desired properties. In finance, this is often obtained by using the logarithmic
series,
z¢ = log(Py) — log(Ps_1).

While studying multivariate time series Engle and Granger (1987) [13] observed that even if two
time series, which in our case are represented by two price processes of different assets, are non-
stationary, in some instances, a specific linear combination of them is stationary. They named
this property cointegration. Mathematically it is deseribed by having two (non-stationary) time
series (z¢)p and (y ). I for any ~, (ys — e )¢ is stationary then we call this series cointegrated.
Furthermore, Engle and Granger describe cointegration through error correction. Thus, if (y, —
~xi) is stationary, i.e. has a long-term mean, any deviation from this mean has to be corrected
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at some point in time. Therefore, (x;); or (y); have to adjust accordingly. This is represented by
the error correction statement given by,[13]

Yo — Ye—1 = 0y (Ye—1 — ¥Te—1) + &y,

Ty — Ty = O (Yeo1 — VT—1) + Euys

where (€., ), and (€, ), are two white noise processes. In our case, the left-hand side of the equation
can be interpreted as the return of the assets A and B, and (y;—1 — yx;_1) denotes the long-term
mean p. Vidyamurthy [38] uses the representation of nonstationary logarithmic price series for two
assets, A and B, to get the error correction form,

log (P!A) — log (I’!"El) = a4 log (I’fll) — vlog (P2 1) +ea,
log (P:B) —log (P:jz 1) =aglog (szi 1) —ylog (13:131) TEB,

and introduces a modified version of the Engle-Grange test to see if pairs are cointegrated or not.
By regressing the logarithmic price of both assets against each other, which yields,

log (P*) —~log (PP) = p+ =, (5.1.1)

where £ denotes the price ratio between A and B. In a second step, the residual series of this
approach is tested for being stationary by measuring the number of mean crossings. If we perform
this approach to all pairs in our bucket, we can rank them similar to the distance approach,
descending with regards to the number of equilibrium crossings [38].

5.2 Modeling the Underlying

In this section, we will quickly outline one popular approach which aims to model the price series of
different assets in the light of pair trading. It receives criticism for not solving the general problem
of selecting security pairs firsthand, as mentioned by Krauss [37].

5.2.1 Time-Series Approach

We will outline the most famous work by Elliott et al.(2005) [41] who proposes a mean reverting
Gaussian Markov chain model with Gaussian noise for the spread between a long position and a
short position in two assets. The model for this spread is constructed as follows.

Let x;, be our state variable. We assume that it follows a mean reverting process,

L1 —Tp = ((1 — b:]‘g.) T+ G’\/FE;H,]_,

for e, > 0, b = 0, and as usual e, are standard normal identically independent distributed random
variables for all k. In continuous time this is just an Ornstein-Uhlenbeck (OU) process:

dr; = b(% — i )dt + odWs,

where § =: u is the long-term mean, b =: p the speed of mean reversion and for some probability
space W; a standard Brownian motion. Eliott then models the spread by

yr = xp + Swr, 8 >0, (5.2.1)

with wy, being again 1.i.d standard normal.

Note that, indeed, we only considered one price time series. This means that the model only works
for assets which follow the same price process, which is rarely observed in reality, as criticised in Do
et al. [42]. One practical application could be dual-listed companies or cross-listings. Additional
criticism can be made to the assumption of an underlying OU-process which, in reality, clashes
with heavy-tailed, not normal distributed financial data. For the sake of completeness, we want to
mention that Avellanda et al. [43] successfully tested this approach for other assets.
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5.3 Trade Execution

After constructing asset pairs or modelling the underlying price process as shown in the above
sections the next objective for the arbitrageur is to execute trades to gain as much profit as possible.
In pairs trading, this naturally leads to the problem of when to enter a long and short position in
the asset pair, or to be more specific, how far the price has to diverge from its equilibrium state
before the trader starts opening the spread position. Again we have to make a trade-off between
simplicity and acting analytical optimal.

We investigate the trade signals produced by the distance method. Following the same notation
introduced in 5.1, the signals get activated once the spread crosses its mean plus a multiple of its
standard deviation. Thus, let NPAP = NPA — NPP and we get,

NPAB < pAB — | x 0P — Buy asset A, short asset B,
NPAB = yAB 4 | < ¢AF — Short asset A, buy asset B,

Where the parameter k can be seen as a risk appetite factor of the trader, i.e. lower values for
k result in many trades and higher risk and vice versa. Most common in literature [12] is a
value of £ = 2. We discuss the distance approach by outlining some advantages and disadvan-
tages. Pro arguments are that it is model-free and, therefore, not subject to misspecifications
or misestimations. While on the other hand, the cost of not having an underlying model comes
with the inability to perform estimates regarding the holding duration or time until mean reversion.

For the cointegration approach in general, the same idea for generating trading signals as for
the distance method is nsed. To present further research, we want to briefly discuss an approach
to finding a minimum profit condition, discovered by Lin et al. (2006) [44]. Let’s assume without
loss of generality that the cointegration coefficient 4 < 0 and that we short asset A and go long in
asset B. Thus, the relative price of B is lower than that of A and holding a number n of shares in
asset B results in a short position of 7 in A. Furthermore, t denotes the opening timestamp and

T is the closing timestamp of our trade. Remember [rom 5.1.1 that,
log (1’{1) — vlog (P!B) = u+eg,

1 A
< log (13{5) = —_—r(,u. +& —log (I’tl)).

Now calculating the total profit per trade Py p(t,T) we get, (we use logarithmic prices to keep
consistency in notation. Dropping the logarithm wouldn't change the result.)

n

Pap(t,T) =n(log (PF) —log (PF)) - m(log (Pf) —log (PY)
T ¥ A T y A
= _m(gT —log (Pf) — e +1og (P)) + m(log (PA) —log (Pf))
nlsp — &)

= ——" > K,
o] '
if an arbitrageur sets K as a lower bound for the profit per trade. This enables us to calculate the
number of shares n as seen in [44] dependent on z; and =7. Lin’s concept has some weaknesses
since it only considers the profit of one trade. In contrast, the nature of a pairs trading strategy
generates a high amount of trades over a short time frame; thus, a proper strategy should consider
the interdependence between several trades. Puspaningrum (2010) [45] develops different concepts
considering this concern, which we will, for brevity, not further discuss in this paper.

Our last section is about trade execution under time series model specification. Remember
that we modeled the spread in 5.2.1 by y. = x4 + Swy, p = § and p is the speed of mean reversion.
Following Elliott’s approach [41], we enter into the trade once

a
>+l —].
w2 p+e(Ze), o

7

< —
Yr = F(m

Where ¢ again can be chosen by the trader depending on how aggressive she wants to trade. The
position is then unwound once again y, = p at time 7. The advantage we get from the model
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assumption is that Elliott provided a formula for T depending on the parameter ¢, which, thus,
enables us to gain more information about future trading behaviour like the expected holding
time. Additionally, nsing Kalman filtering and the expectation maximization (EM) algorithm
gives a method to fully estimate all parameters in the model [41].

5.4 Other Approaches

To be exhaustive, we want to briefly mention other techniques related to pairs trading that have
gained popularity in recent literature. Huck (2010) [46] developed a machine learning approach
that performs a forecast of asset returns on a set of given assets in a first step. As we advance
in time, it then ranks the assets from overvalued to undervalued, given the divergence from the
estimations of step 1. The actual trading strategy then suggests shorting the top-listed assets and
buying the ones at the bottom. Note that no long-term mean or equilibrium state is assumed in
this model.

Other approaches use copula functions to generate trade signals after finding the pairs with ei-
ther the distance or cointegration approach as studied in Stiibinger (2015) [16] and Stander et al.
(2013) [47]. Lastly, Avellanda and Lee (2010) [43] introduced a principal component approach for
pairs trading.




Chapter 6
Algorithm Optimization

In chapter 5.1, we discussed different statistical arbitrage/pairs trading strategies. These strategies
require special needs in a High-Irequency Trading(HEF'T) setting. Typically HEF'T algorithms oper-
ate at a microsecond time scale and thus face two challenges. First, they must be able to receive a
large amount of data every microsecond. Additionally, they have to react to this data without any
latency since the profitability signal they observe decays very quickly. As outlined in chapter 5.1,
several strategies exist to find correlated trading pairs for statistical arbitrage algorithms. Since
this project aims to show how low latency techniques can be used to accelerate trading strategies,
we will not discuss pair-choosing implementations, given that the dependency between different
assets can be computed in advance and is, therefore, not bound to speed issues in real time. We
will focus on the trade execution described in chapter 5.3, in which we start with a short intro-
duction of the implemented algorithm, followed by performing low-latency optimizations. We then
conclude this section by summarizing our findings. All benchmarks in this section are conducted
on a 2.7GHz Quad-Core Intel Clore i7, with 32Kb L1, 256Kb L2 and 8192Kb L3-Cache.

6.1 Algorithm Introduction

We implement a classic pairs trading strategy using tick data from S&P500 and NASDAQ. Histor-
ically the indices are strongly correlated and, thus, a suitable pair for performing a pairs trading
strategy [48]. The strategy tracks the mean and standard deviation of the price ratio between
the S&P500 and NASDAQ over a predetermined sliding window period. Now, a trading signal is
generated whenever the ratio deviates from the computed mean by more than twice the standard
deviation. As desecribed in chapter 5.3, we will go short S&P500 and long NASDAQ) if the ratio
is above the mean plus twice the standard deviation, and we will open a long position in S&P500
and short NASDAQ if the ratio is below the mean by a magnitude greater than twice the standard
deviation. Once the ratio moves inside the above outlined upper and lower thresholds, we will
close our position by reverting the trade.

For the C++ implementation, we will operate an Asset and a Tick class. Data will be pushed
from an external source into the program and stored into tick objects which will then be asso-
ciated with two asset objects. All computations for the trading strategy will then be performed
on the asset objects, namely S&P500 and NASDAQ. Pseudocode for the strategy is provided in 6.1.

1 void trading_alge() {

2 Asset S5P500, MNASDAQ;

3 loadbata(SP500, "sp500.data”); // load tick data into asset object

4 loadDat a(NASDAQ, "nasdaq.data”);

6 const double INITIAL_MONEY=1000.0; // Start with 1000%

7 double money=INITIAL_MONEY; // Portfelio worth

8 double portfelio[3]={1.0, —1.0, 1}; // The portfolioc {x, ¥, z} indicates +
weights in the portfolio of SP500, NASDAQ and cash, respectively.

0 const int TIME CONSIDERED=60; // Amount of minutes we consider

10

11 double mean = calculate_initial mean(SP500, NASDAQ);

12 double sd = calculate_initial sd(5P500, NASDAQ);

13 double MARGIN = 2%sd;
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14

15 while (continue_trading) {

16 // Update portfolio worth

17 money*=portfolio[2]+portfolio[ﬂ]*SPEGG‘getData(i),getPrice{)/SPSGG,(—'
getData(i—1).getPrice ()+ Y portfolio[1]*N1\5DI\Q,getData{i)‘getPrice{)/H
NASDAQ.getData(i—1).getPrice();

18

19 update_mean(); [/ update sliding window mean if new tick is registered

20 update_sd(); // update sliding window sd if new tick is registered

21 MARGIN = 2#%=d;

23

23 if (5P500.getData(i).getPrice()/NASDAQ.getData(i).getPrice()>meantMARGIN)

24 J/ SP500 is outperforming NASDAQ, as their ratio is big. Thus, short
SP500 and buy NASDAQ.

25 portfolic[0]= —1.0;

28 portfolic[1]=1.0;

27 portfolic[2]=1.0;

28 } else if (5P500.getData(i).getPrice()/NASDAQ.getData(i).getPrice()<mean—

MARGIN) {

29 Jf SP300 is underperforming NASDAQ, as their ratio is small. Thus, <«
buy SP500 and short NASDAQ.

30 port folic [0]=1.0;

31 port folis[1]= —1.0;

3z port folic [2]=1.0;

a3 } else {

34 /{ The ratio of SP500 and NASDAQ is inside the "normal” values.

35 port folic [0]=0.0;

36 port folic [1]=0.0;

a7 port folio[2]=1.0;

a8 }

30 1

w }

Listing 6.1: Pseudocode pairs trading strategy

6.2 Optimization

As already mentioned, the high frequency trader aims to reduce the latency of her code as much
as possible. We modified our code to document the impact of several low latency techniques
introdunced in chapter 4.2. Ahead of this section, we would like to remind the reader that micro-
optimizations, as performed in this chapter, are only worth considering if we can be sure that
the rest of our settings, for example, the chosen algorithms or the infrastructure we work in, are
already optimized.

6.2.1 Macro Optimizations and Kernel Tuning

Optimizing those usually results in far greater speed improvements than starting with micro-
optimizations immediately. In our case, replacing the mean and standard deviation algorithm
with an online algorithm that only needs the latest tick data to update the metrics and storing the
price ratio in a variable instead of recalculating it several times resulted in a more than 10x speed
increase in our code. Computation metrics without these optimizations can be found in figure 6.1.
Note that the computation time needed is for all 2388 data points; thus, it takes around 1.25us per

Figure 6.1: Strategy speed without macro-optimization, performed for 2388 tickdata-points

tick before optimization. Metrics after optimization are shown in figure 6.2. We already decreased
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Figure 6.2: Strategy speed with macro-optimization, performed for 2388 tickdata-points

computation time per tick to around 106ns. On an infrastructure level, isolating one CPU kernel
and dedicating the application to it resulted in an average latency decrease of around 2ns per tick.
Since Mac OS does not support kernel isolation and only task prioritization, which did not result
in any measurable improvements, we performed the kernel isolation on a virtual Linux machine
using tuned profiles as documented by RedHat [49].

6.2.2 Micro Optimizations

Interestingly, in line with our observation in listing 4.17 we see performance differences hy reorder-
ing the if / else-if statements order. The best performance is obtained by checking the boundary
breaches first, as done in 6.1. As expected, if we perform the "in-bound” check first, we get the
slowest execution speed since we have to check two conditions instead of one and, thus, perform
the most expensive check first and for all iterations. The slower statement is presented in 6.2. Note
that by stating the in-bound check last, we never perform the check but use the else logic instead.

void trading_algo() {
// ... some code
if ((s5P500.getData(i).getPrice () /NASDAQ.getData(i).getPrice ()<=meantMARCIN]} ¢
&4 (SP500.getData(i).getPrice()/NASDAQ.getData(i).getPrice( )>=mean—MARGIN >
))
I {T]u' ratio of SP500 and NASDAQ is inside the "normal” values.
portfolic[0]=0.0;
portfolic[1]=0.0;
portfolic[2]=1.0;
} else if (SP500.getData(i).getPrice()/NASDAQ.getData(i).getPrice ()<mean—
MARGIN) {
// SP500 is underperforming NASDAQ, as their ratio is small. Thus, buy «
SP500 and short NASDAQ.
portfolic[0]=1.0;
portfolic[l]=—-1.0;
portfolic[2]=1.0;
1 oelse {

portfolic|[0]=—-1.0;
portfolic[1]=1.0;
portfolic[2]=1.0;

Listing 6.2: Slower if-check order

Using the logic in 6.2 instead of 6.1 results in a 9% slower code execution [A.3]. Interestingly we also
note a speed difference by changing the order of the " >mean+MARGIN” and " <mean-MARGIN”
statements, where putting the latter first results in 5% slower code. This can be explained by the
fact that in our case, the ratio between SP500 and NASDAQ breached the upper bound more often;
thus, stating " >mean+MARGIN” as the first check results in fewer checks overall, hence faster
code. We note that testing different if-statement orders streamlined to the data/assets you are
working with will result in faster code. Reordering different possibilities might lead to interesting
results.

We then examined the effect of error handling in our code. As described in listing 4.7 we can
increase latency performance by removing the slowpath from our hotpath. In our case, the slowpath
is the error handling code. We consider the "getData()” and "getPrice()” method in 6.1. The code
for these methods is given in 6.3.
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1 J/getData

2 Tick Asset ::getData(int i) {

3 if (i<0 || i»=mSize) {throw Exception("Out of bound”, "The index is out of «
bound™}; }

4 return mData[i];

6 //getPrice

7 double Tick::getPrice(void) {

5 if (mPrice<0) {

9 throw Exception(” Negative price” ,"The price of the stock must be non +
negative”); }

10 return mPrice;

u }

Listing 6.3: "getData” and "getPrice” implementation

In both cases, we throw an exception if we detect anomalies. Removing the checks and rerunning
the strategy will result in a speed increase of nearly 8% or 9ns per tick [A.5], even if, as in our
example, no exception is thrown at all. This can be explained by looking at the assembly code
generated by the method with and without exception. Using the compiler explorer, we can see
the output in figure 6.3. On the other hand, the code from the method without exception call

double Tick::getPrice(void) { # @Tick::getPrice()

rbp

if (mPrice<0) { .
N . (1] rls
throw Exception('Negative price”, oo 14
The price of the stock must non negative”})j ] 12
7 push  rhx

} 12 sub Tep, 64

movad xmm0, qword ptr [rdi] # xom0 = mem[0], zero

®xorps  xmml, xmml

return mPrice;

ucomisd xmm1, xmmd
ja SLBBL_1
rep, 64
rbx

riz

rla

edi, 64
exa_allocate exception

83

§

rhx, rax

Figure 6.3: Assembly output for the "getPrice()” method with exception

is shown in figure 6.4, generating way less assembly code resulting in different execution speeds.
We now focus on branch minimization. By taking a closer look at our update_mean and update_sd

= () # WTick::getPrice()

double Tick::getPrice(void) {

T moved xum0, gword ptr [rdi # xm0 = mem[0],zero
return mPrice; aw ptr [rdi) o

ret

Figure 6.4: Assembly output for "getPrice()” without exception call

code from listing 6.1. As outlined in 6.4 we loop over our tick-data and update our sliding window
metries. The problem is that we have to change between the online update for mean and standard
deviation and the first calculation over the window size every time we reset the trading strategy.

for(int i=Window_size; i<SP500.end(}—1; i++) {

1
2 if (1 == Window_size) {

3 for (int 3 = i — Window_size; 3 < i; j++) {

4 J// increment temporary sum counters

5 sum_m += S5P500.getData(]j).getPrice() / NASDAQ.getData(j).getPrice();

6 sum_s += pow(SP500.getData(j).getPrice() / NASDAQ.getData(j).getPrices«
().2);
T 1 oelsef
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//online update for mean and sd.

new_v = S5P500.getData(i—1).getPrice() / NASDAQ.getData(i—1).getPrice();

old_wv = S5P500.getData(i—1-DAYS_CONSIDERED).getPrice() / NASDAQ.getData(i+
—1-DAYS_CONSIDERED).getPrice();

sum_m += new_v — old_v;

sum_s += new_v#*new_v — cld_v#cld_v; };

mean= sum_m / Window_size;
sd=sqgrt(sum_s/Window_size—meansmean);

MARGIN = 2%sd

..(pairs trading strategy code) // this might be a lot of code

Listing 6.4: Mean and standard deviation calculation with branching

Now instead of branching, we can unroll the if statement, which ultimately results in a lot more
code and is against the software development principle "Don't repeat yourself” (DRY)[50], but can
result in minor performance increases. In our case, we measure a computation time improvement
of around 1.5% [A.6].

for (int j = 0; j < Window_size; j++) {
J/ starting computation for mean and standard deviation
sum_m += SP500.getData(j).getPrice() / MASDAD.getData(j).getPrice();
sum_s += pow(SP500.getData(j).getPrice() / NASDAQ.getData(j).getPrice() ,2);

mean= sum_m / Window_size;
sd=sgrt(sum_s/Window_size-—mean+mean);

MARGIn = 2#sd

..(pairs trading strategy code) // this might be a lot of code

for(int i=Window_size+1; i<SP500.end() —1; i++) {
J//online update for mean and sd.
new_v = SP500.getData(i—1).getPrice() / NASDAQ.getData(i—1).getPrice();
old_v = 5P500.getData(i—1-DAYS_CONSIDERED).getPrice() / MASDAQ.getData(i—1-«
DAYS_CONSIDERED).getPrice();
sum_m += new_v — old_v;
sum_s += new_v#new_v — cld_v+cld_v; };

mean= sum_m / Window_size;

sd=sgrt (sum_s/Window_size—mean*mean);

MARGIN = 2%sd

..(pairs trading strategy code) // repeated code

Listing 6.5: Mean and standard deviation calculation withont branching

One caveat by doing if-unwinding is that, as mentioned by Carl Cook [11], most of the time, your
compiler will already optimize this out. Thus, the only way to check if it actually adds performance
advantages or only makes your code less readable is by performing rigorous measurements.

In chapter 4.2 we explained the additional overhead added by heap memory allocation in C++.
Contrary to preceding benchmarks, we will now time the strategy, including the data storing process
instead of just the trading execution. We timed four different allocating possibilities. First, we
stored our tick data in a vector by adding new data using the push_back method from the standard
library. This automatically increases the vector’s size every time its size limit is reached. This
adds a lot of overhead and memory handling to the code; therefore, this method performed the
slowest [A.8]. As mentioned in chapter 4.2 adding more memory to your infrastructure should
nearly always be possible in a high frequency setting. Thus, our next approach heap allocates a
vector of reasonable size in advance for storing the tick data. For our arguably small data size,
this already results in a speed increase of around 17% [A.9]. Similar results are achieved when
storing the data in a heap-allocated array [A.10]. The fastest approach was to store the data in a
pre-allocated stack array. Doing so reduced latency by another 3% [A.11]. But storing data in a
pre-allocated stack array should not be considered for large applications since this might result in
a stack-overflow and crash the program or lead to losing or corrupting data [51].

As outlined in listing 4.26 the assembly code for using unsigned_int instead of int is longer because
of integer overflow checks. Testing owr algorithm with both approaches, on the other hand, did not
deliver consistent, measurable results in faster performance. While over several iterations, the best
speed was achieved by the version using int [A.12], it was not possible to consistently reproduce
this result.
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6.3 Findings

We now perform all optimization at once and compare it against the non-optimized code. We will
only consider micro-optimizations for the comparison and perform all macro-optimizations before
we test the code. Using Google Benchmark performing 100 iterations each, we receive a result for
the slow code of 128nanoseconds per tick. Total results for all ticks are shown in figure 6.5. Using

Figure 6.5: Bechmark results for all ticks and non-optimized code

the same setup and re-evaluating the optimized code over 100 iterations with Google Benchmark,
we received a result of 108nanosecond per tick. We are yielding a latency reduction of nearly 19%,
or even slightly above 91% if we combine macro and micro-optimizations. Again, the result for all
2389 ticks is displayed in figure 6.6. The next chapter will discuss how these results might affect

Benchmark ime CPU Iterations

Figure 6.6: Bechmark results for all ticks and optimized code

the profitability of HFT firms.
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Chapter 7

Profitability Analysis

With this section, we build the link between high frequency trading latency and trading profits.
Other research, as in Baron [24] has shown that HFT firms generate excess revenue with high
sharp ratios, they do so by trading with all market participants over short time horizons and that
the fastest firms generally report the best performance. We will provide a brief overview of the
impact of absolute speed and relative speed on HF'T profitability and then show how our techniques
performed in chapter 6 would impact a firm's profitability.

7.1 Relative Speed Increase

We want to provide an overview of the concentration of profits and trading volume within the
high frequency trading industry. Baron et al. [24] use the Herfindahl index to measure these
concentrations. The index is famous for measuring market concentration and, in our case, can be
constructed in the following way [52].

N

P,
HP; ; = - s 7.1.1
=y ,M,J : (7.1.1)

i=1

where HP stands for the Herfindahl measure with regards to the profit, ¢ is the i-th HF'T firm
in the market, N the total number of firms and ¢ € {0,1,...,T} is the month in which the profit
was reported. P and T_P are the profit and total profit, respectively. Similar notation yields the
Herfindahl measure for the traded volume:

N v o
- it
HV,, =Y [ 1‘_\@} .. (7.1.2)

i=1

where the notation is the same as for profit, but V and T_V now denote the volume traded per firm
and total volume traded. We note that the domain for the measure is between 0 and 1, a higher
number indicates a concentrated market within a few big players, and a lower number stands for
a fragmented market. In a study conducted by Van Ness et al.(2005) [53], the authors report,
using NASDAQ data, a mumber for the trading volume at around 0.14. More informative than the
number itself might be the trend it follows. In 2005, the industry was relatively new; logically, we
would expect more and more players to join the market and, thus, a decreasing Herfindahl measure.
Interestingly, Van Ness reported precisely the opposite, which is a good indicator that a relatively
small nmumber of firms in the HF'T industry with a technology-wise edge can earn consistent profits
despite increasing competition. This gives rise to measuring the impact of latency on profits. A
common way in literature to measure the latency of HF'T firms is to time the duration between
a passive trade in a specific asset, i.e. an open limit buy/sell order for this asset and switching
to an aggressive trade in this security, i.e. sending in a market order [54]. To get the fastest
possible response time Baron [24] for example forms a distribution out of all the measured time
differences and then chooses the 0.1% quantile of this distribution as the actual latency. Given
that this procedure only measures the latency of HEF'T firms that switch from passive to aggressive
trading orders, it is likely that studies conducted with this procedure underestimate the critical link
between speed and profitability in high frequency trading. For completeness reasons, we would also
like to sketch the idea of another method to measure relative speed among HI'T firms. Queuing
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latency, as outlined by Yueshen [55] does not measure the implicit speed of high frequency trading
firms but sorts them by the number of limit orders posted at a new best bid/ask level. To be more
specific, recent price changes in an order book which lead to a gap in the book, give rise to HF'T
firms to fill the gap and gain queue priority. Queuning latency now measures how often each specific
firm submits the first limit order to fill the gap - the firm with the highest number is considered
the fastest. Baron et al. [24] used decision latency to perform a linear regression on Swedish stock
data to measure the impact of speed on HFT performance(P).

P, = (1 log(Decision-Latency, ,) + GoFastest; ; + #3Topd; , + o + €. (7.1.3)

where " Decision-Latency” denotes the speed of the HFT firm in absolute values, "Fastest” denotes
if the firm has the lowest latency, "Top5” if the firm is among the five fastest firms, and "a” is
the intercept. The authors report statistical significance for being among the Top5 or the fastest
high frequency trading firm. On the other hand, the absolute latency value is not statistically
significant, which lets us infer that relative speed is more important than absolute speed in terms
of profit/performance. Evaluating the regression 7.1.3 Baron et al. report trading revenues as much
as five times as high for the fastest firm compared to a firm not among the tops. Additionally,
being under the five fastest firms results in a 2.5 times increase in revenue. Regarding the sharp
ratio of HF'T firms, being the fastest firm results in a ratio of 12.07 compared to 8.87 for being
among the toph and 2.26 for slower HF'T firms. Similar observations can be made by considering
profit instead of revenue. The results imply, on the one hand, that it is highly profitable to strive
for faster trading systems and, on the other hand, that relative speed compared to competitors
might be more important than the absolute execution speed of the strategy.

7.2 Absolute Speed Increase

We already outlined that it is more important to focus on the actual competition for HFT firms
and that beating them in terms of speed results in most of the profitability increases linked to
latency in high frequency trading. This still leads to the question of how extensively the fastest
firm beats other firms or how much the second fastest firm would have to increase its trading speed.
Recent studies answered this question in the case of latency arbitrage strategies. These strategies
can be described as a class of strategies that use speed advantages to exploit price discrepancies of
similar financial assets in different markets. A mathematical definition is formulated by Wah [21]:
Given two markets M1 and M2, let B be short for bid and A for ask. A latency arbitrage oppor-
tunity LAO is defined by:

e Two crossed markets, Basp > Aago.

e Bida and Ay are better or egenal than the national best bid (NBB) and ask (NBA), ie.
B_n,“ 2 NBB and A‘n“rg S NBO.

e The time between the beginning and end of the above-measured occurrences is positive, i.e.
it is actually possible to exploit the opportunity.

Aquilina [23] showed that for latency arbitrage strategies applied in the UK equity market, the
average time between the fastest HFT firm and the second fastest was 5-10microseconds.

An interesting result related to the impact of absolute speed on HFT firms is given by Ende et
al.(2011) [6]. Rather than showing an actual profitability increase in combination with a reduction
in latency, the authors show the connection between trading speed and adverse selection / un-
favourable order book changes. They analysed an active trading strategy with different latencies
for a single stock in the German stock market. Regressing over the data points yields the interest-
ing result that an increase of 1% in latency leads to a probability increase of 0.9% in being prone
to unfavourable order book changes. Their results are shown in figure 7.1
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Figure 7.1: Probability of unfavourable order book changes concerning latency changes in % [6]

7.3 Profitability Conclusion

Taking the findings from chapter 7.1 and 7.2 into consideration, combined with our optimisation
results ol section 6, we note that we are unfortunately only able to make conclusions about prof-
itability increases due to absolute speed, but not to relative speed, since we are not operating on
a practically used trading engine, neither do we know the speed difference to other HI'T firms. As
shown in 6.3 we could increase the execution speed of our trading algorithm by nearly 19%, which
would result in a decrease of around 17% in being exposed to unfavourable order book changes
using the results obtained by Ende [6].
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Chapter 8

Conclusion

8.1 Concerns and Benefits of HFT

Does high frequency trading make the markets more eflicient / better? Trading [irms and other
users of HF'T strategies think so, and there are supporting arguments one can make in their case.
On the other hand, there are plenty of reasonable concerns too. The following section will attempt
to outline both positions.

8.1.1 Benefits

We will discuss the following supporting arguments, tighter, deeper markets, consistent prices, and
the lack of panic in computers.

Tighter and deeper Markets

It is presumably without debate that the technological capabilities of trading firms have advanced
considerably in recent years. With more and more firms having access to the technology, it is
not unreasonable to see how this can benefit tighter markets (smaller bid-ask spread) and deeper
markets (bigger sizes). All else being equal tighter markets provide the investor with better prices,
and deeper markets result in bigger possible trade sizes at these better prices. A simple example
would look like the following. Imagine two market makers just bought 100 shares of a stock for
one dollar each. Both market makers want to complete the round-trip trade by selling their shares
for a higher price. Market maker A starts offering its shares at 1.10$. To be more attractive to
other market participants, market maker B offers its shares for 1.09% to gain priority over market
maker A. A sees that and decides to lower its offer to 1.08%, followed by B reducing it to 1.07§% for
the same reasoning. This continues until the offer price is as low as possible such that the market
makers do not make a loss by trading the shares. Now, if we had even more market makers - the
market would not only tighten but also make more securities available at those tighter prices. " We
have moved from a market in which humans manually traded to one in which computers execute
the bulk of trades without human intervention. Volume is higher. Trade size has become smaller
as it is now cheaper for institutions to divide orders into smaller slices to reduce market impact.”
[56] This argument is further backed by Brogard, who showed in a study that HET firms provide
the best bid and offer quotes for the majority of the trading day in U.S. markets [57].

Price Consistency

Arbitrageurs utilising high frequency trading strategies are solely looking for different prices in
securities across other markets and, if successful, buy for the lower price and sell for the higher one
- allin a matter of microseconds. Thus, investors buying financial assets do not have to worry about
which of the multiple exchanges they should choose because we can be very sure that the price
will be virtually the same everywhere the asset trades. To be exhaustive, we note that additional
measures to provide fair prices for the investor across different markets are also guaranteed by
regulations, like the National Best Bid and Offer (NBBO) in the U.S., which requires the broker to
execute customer trades at the best available price across exchanges [58]. Additionally, as described
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in the pairs trading section, HF'T firms will ensure that no misprices exist between highly correlated
financial assets, again providing the investor with fair prices.

Rational markets

Considering how much of the downwards movement during a stock crash is related to people
emotionally selling their positions is interesting. It is natural to sell your stocks when everyone
else does, and we also think about selling our positions once the value starts to decline. High
frequency trading systems or antomated trading systems are not bound to that emotional decision-
making but stick to their trading signals. It can even stabilise the market by counteracting to the
above-mentioned emotional sell-offs. Think about a market sell-off accelerated by panic selling -
then some trading signals will notice that some financial assets are undervalued and start buying
these to make a profit. This, in return, results in slowing down the market’s downward movement.
The same reasoning holds if a company’s stock rallies anomalous due to erroneous news or similar;
thus, antomatic trading slows down the upward trend and protects retail investors from buying
mispriced securities. "During the largest price increase, HFTs buy and demand less liquidity than
normal. The same relationship is true during price declines: during the largest price declines,
HFTs decrease their liquidity demand and increase the liquidity they provide.” [57]

8.1.2 Concerns

On the concern side, we will discuss price manipulations, colocation, and other risk concerns.

Price manipulation

Let us state an example which is sometimes seen as price manipulation. A common way for
investors to not display their whole intention in the order book is to use iceberg orders, presenting
their order in small pieces and re-posting it every time the order has been filled. Knowing this
practice market makers have developed a counter strategy known as towing the iceberg [8]. Imagine
a market with 500 stocks for the best bid at 1.02% and 300 stocks for the best ask at 1.07$. Every
time the 300 stocks ask is bought, the limit order instantly refreshes, which is an indicator for our
market maker that we have an iceberg order in the order book. She will now attempt to short the
stock to drive its price down to make the investor adjust its iceberg order downwards and then
repurchase these shares to make a profit. The market maker starts doing this by selling 500 stocks
for the 1.02% bid, resulting in a new market of 1.01% - 1.06%(downward adjustment). The investor
adjusts its iceberg ask accordingly to 1.05§ to get priority in the market. Then the market maker
sells again at the 1.01% bid to drive prices further down and so on. Assume that at the end, we
have a market of 0.98% - 1.01%, then the market maker closes its short position by buying back the
stocks at 1.01% and makes a profit, while the iceberg investor got worse prices for his order. While
this practice is perfectly legal, eritics argue that this is an attempt to move prices for someone’s
own benefit and should be forbidden.

Increased Volatility

The rapid spread of high frequency trading activity has increased the amount of research conducted
on its impact on the financial markets. Currently, papers are not unambiguous about its effect
on market quality [59]. In contrast, some research states that HFT reduces market volatility [60],
while other papers conclude that it might increase volatility [61]. The main argument behind
saying that it will increase volatility is the following. HFT strategies execute a large number of
trades at a large scale at the same time since every trade has only a small profit margin per asset.
Now taking into consideration the number of HFT firms operating in the financial markets, each
with particular strategies and agendas, taking big trades all the time. Those strategies are bound
to interact, resulting in market movements that otherwise would not exist. Additionally, we must
remember that high frequency traders make the most profit in volatile markets since it makes it
easier to finalise round-trip trades. Thus, it just seems logical that HF'T firms want to increase
volatility. It is, furthermore, not only the stock market but also options trading. Volatility is
arguably the most critical input into an option pricing formula. The more uncertainty about its
value, the more opportunities exist to make money with volatility in the options market. We
conclude that it is difficult to find statistical evidence for this point, but advocates of this claim
have a reasonable chain of arguments supporting their statement.
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Trading for the sake of trading

Data from Nasdaq estimates that around 50% of all stock trading volume in the U.S. is driven by
high frequency trading [62]. Given this number and thinking that a sizeable amount of this volume
is HF'T firms trading with other HFT firms, then the question about how this is efficient and if all
of this trading is overtaxing the system is legit. One example of how this can harm other investors
is the increased bandwidth required in trading nowadays. If the extra traffic is attributable to
HFT-HFT trading, then why should other market participants also pay the additional costs for
more bandwidth? Additionally, this raises the question of whether extra costs for exchanges are
created, which will ultimately be passed back to the investor [3].

Colocation

HEFT firms with their server colocated at one of the exchanges will get their orders into the systems
matching engine way earlier than firms elsewhere in the region. This raises the point of fairness,
whether exchanges should discriminate between those who can pay for faster access and those
who cannot. In India, for example, it also happened that the colocation service could be used for
scam activities, where some trading firms tricked the system by getting access to data in front of
their competition [63]. But if implemented correctly and offering everyone who wants to pay for
it the opportunity to get access, it is difficult to defend this argument. If deemed unfair, the same
point could be made regarding the superior technological infrastructure built by HFT firms and
so on. Therefore, as long as there is no fraud involved, colocation seems to be a fair service which
increases the speed fefficiency of global markets.

Suppose we keep the high complexity of high frequency trading in mind, combined with the fast-
paced dynamics of financial markets and the amount of money involved or can be made. In that
case, it is no surprise that, on the one hand, many practitioners are trying to find loopholes in the
system, and, on the other hand, many critics are complaining about possible unfairness. Fortu-
nately, if found, most dubious practices are self-eliminating and only work until the competition
figures them out or if the rules change accordingly. Additionally, the increase in public awareness
about HFT firms pressures regulators and firms to be more transparent [8].

8.2 Future Work

To give inspiration on how future work on this topic could look like we want to line out that
still barely any literature on low latency reduction methods in high frequency trading exists.
Therefore, it would be interesting to collaborate closer with high frequency trading firms and test
the optimisations in this paper on an actual live trading system with end-to-end time measurement.
Further, an interesting result would be to analyse the average speed difference between single HFT
firms on different exchanges, which could then be used to connect the profitability analysis of
relative trading speed with the one of absolute values. Finally, investigating a fast model-based
pairs trading strategy superior to the classic approach would be valuable.

8.3 Summary

In this thesis, we have focused on applying low latency programming techniques to high frequency
trading systems. We have demonstrated that several techniques introduced in C++ meetings over
the past years reduce trading code latency times. We did so by starting with system architecture
optimisations like kernel tuning and then moved on to actual micro-optimisations, which included,
among other things, slowpath removal, branching minimisation, deterministic code flow and type
engineering. We then introduced different academic strategies for finding and building statistical
arbitrage opportunities. We outlined the challenge of finding suitable trading pairs for a strategy,
which can range from simple but efficient strategies like the distance approach to more mathemat-
ically sophisticated time series approaches that model the underlying asset price processes. We
finished this section by showing standard methods in literature to execute the trading strategy,
combining the two preceding chapters, we then built our own trading strategy, which used a pairs
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trading strategy for the SP500 and NASDAQ) index of the U.S. stock market and performed sev-
eral code micro-optimisations to obtain an overall latency reduction of more than 18% and even
more than 91% combining macro and micro-optimizations. To set this number into perspective,
the next section of this thesis evaluated the relation between the profitability of HFT firms and
their execution speed. We found that for fast high frequency firms, the relative speed compared
to their competitors is more important for generating excess profit than speed increase in absolute
terms. The speed increase generated on our own implemented trading algorithm would decrease
the probability of being prone to negative order book changes by around 17%. We then finished
the thesis by outlining common concerns about high frequency trading and providing inspiration
for future work on this topic.




Appendix

A

First Appendix

This appendix section is dedicated to the results produced by our Google Benchmark tests. For
conciseness, we will only include the tests conducted for the full data set and not single tick tests.
For comparison, it is only suitable to compare the results of each section against each other since
we modified the code slightly from section to section to enable benchmarking and testing of the

desired modifications.

If-check Order

Time CPU [terations
Mean 276285 ns 275491 ns 100
Median 275512 ns 275275 ns 100
Stddev 4583 ns 2535 ns 100

Table A.1: Performing the " In-bound” check first

Time Cru [terations
Mean 277631 ns 277146 ns 100
Median 277166 ns 276755 ns 100
Stddev 3390 ns 2514 ns 100

Table A.2: "<mean-MARGIN" first

Time CPU [terations
Mean 266679 ns 266222 ns 100
Median 266265 ns 265963 ns 100
Stddev 3104 ns 2459 ns 100

Table A.3: " >mean+MARGIN" first
Exception Handling

Time cru [terations
Mean 279750 ns 278759 ns 100
Median 278041 ns 277686 ns 100
Stddev 5933 ns 4431 ns 100

Table A.4: Trading strategy with exceptions




Time cru [terations
Mean 255880 ns 254399 ns 100
Median 254413 ns 254068 ns 100
Stddev 9168 ns 3015 ns 100

Table A.5:

Branch Minimization

Trading strategy without exceptions

Time CPuU [terations
Mean 281382 ns 280793 ns 100
Median 280536 ns 280261 ns 100
Stddewv 3389 ns 2120 ns 100

Table A.6: Metric computation with branching

Time cru [terations
Mean 277799 ns 276865 ns 100
Median 276467 ns 276083 ns 100
Stedev 5144 ns 3120 ns 100

Table A.T: Metric computation without branching

Memory Allocation

Time CPU [terations
Mean 101369 us 100203 us 100
Median 101105 us 100147 us 100
Stddev 1331 us 551 us 100

Table A.8: Vector allocation without preallocation

Time Ccru [terations
Mean 86020 us 83743 us 100
Median #5510 us #5423 us 100
Stddewv 2410 us 1427 us 100

Table A.9: Vector with preallocation

Time CPU [terations
Mean 20933 us 29614 us 100
Median 89061 us 88080 us 100
Stedev 2846 us 2122 us 100

Table A.10: Heap array allocation

Time Cru [terations
Mean #3541 us #3409 us 100
Median 83335 us 83204 us 100
Stddev T60 us 616 ns 100

Table A.11: Stack array allocation
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Type Engineering

Time CPU [terations
Mean 263761 ns 263588 ns 100
Median 262491 ns 262332 ns 100
Stddewv 4407 ns 4337 ns 100

Table A.12: Fastest result obtained by using normal integer

Time cru [terations
Mean 266809 ns 266453 ns 100
Median 265786 ns 265625 ns 100
Stddev 5646 ns 4554 ns 100

Table A.13: Fastest result obtained by using unsigned integer
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