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Abstract

This paper looks at a shifted squared Vasicek model as an alternative to the CIR++
model for interest rates. The advantage of shifted squared Vasicek is that it works
with a shifted chi-squared distribution as opposed to shifted non-central chi-squared.
Also, the work attempts a calibration to either old or new market data consisting of
a zero-coupon curve through the models’ shift and of several caps through the model
dynamic parameters, comparing it with the classic CIR++ model. The results show
that both models can fit the zero-coupon curve perfectly and a set of caps with
the same excellent efficiency and produce curve patterns similar to each other. It
compares and analyzes the simulation speeds of these two models. By comparing
and analyzing the simulation speeds of these two models, we conclude that the
shifted squared Vasicek model is faster and superior.
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Chapter 1

Introduction

1.1 Interest Rate and Basic Definitions

The idea of interest rates has become ingrained in our daily lives and has become a
familiar concept that we are able to manage. Everyone anticipates that when they
put some money into a bank, the money will increase at a specific pace over time. It
is common knowledge and conventional sense that borrowing money requires remu-
neration. Therefore, obtaining a particular sum of cash tomorrow is not the same

as receiving the identical sum of cash now.

Interest rates exist in a wide variety of formats. The rates that are utilized by
the government and those that are used by interbank institutions may be distin-
guished from one another in several ways. The issuance of bonds by governments
is a common factor considered for calculating the rates charged by governments.

Instead, when we refer to "interbank rates”,

we are referring to the rates at which
deposits are traded from one bank to another, as well as the rates at which swap
transactions take place between banks.

The LIBOR ( which means London Interbank Offered Rate) rate, which is fixed
daily in London, is often regarded as the most significant of all the interbank rates
that may be used as a point of reference when negotiating contracts. Although there
are similar mechanisms for establishing interbank rates in other different places,
when we want to mention any of the interbank rates, we just call them by that
acronym "LIBOR”.

The following is a condensed version of an introduction to some fundamental

definitions of the realm of interest rates. [1, Page 84-90]

e Bank account: For ¢ > 0, the worth of a bank account is expressed by the

on




notation B(t), which has the following definition:
dB(t) =r,B(t)dt, B(0)=1

where r; means the instantaneous spot rate ( briefly referred to as the short
rate) driving the development of a bank account, which is a positive function
of t. Thus, when investing one unit of money at time 0, what we will get at

Stochastic discount factor: The term "discounting” refers to the process

time ¢ is the value:

of applying the appropriate rates in order to bring the valuation of a future
payoft that will occur at maturity 7" back to the present moment {. We are
able to discount using the numeraire B because this serves as a standard for
the value of risk-free money over a period of time. As a result, in order to
calculate the discount for a payoff from its maturity T to a time ¢ which is

earlier than T, we multiply the payoff by

D(t.T) = B(t) P (f; '!’,gds) - (_ \/T'{’Sdh‘)

B(T) exp (fnT r’xds)

Risk neutral Valuation: To quickly review the risk neutral valuation paradigm
that Harrison et al. (1983) introduced, which exemplifies the no-arbitrage the-
ory: astochastic payoff in the future i, which is constructed on an underlying,
will be paid at a future time T, and must fulfill certain technical constraints,

has a unique price at present ¢, which is the risk-neutral expectation:

B B(!) Il T., . 4
E! [mm_};? [exp (_/; ;an,s) LT}

Zero-coupon bond: In our daily life, we often think about how much we
need to pay to the bank today to get a unit of cash in one year. To solve this
problem, we want to know what is the price at ¢, and this is where a zero-
coupon bond comes from. It is a binding agreement that ensures the payout
of one unit of money at the specified time 7. Obviously, P(T,T) = 1 holds
for all maturity 7'. The value of the agreement at moment ¢, which is earlier
than 7', is shown as the symbol P(t, T):

B(t)

P(t,T) = EF [ml} = E?[D(t,T)]

The factor D(t,T) denotes an equal quantity of money, while P(¢,T) implies
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a price of a contract. Once we have the concept of P(£,17), we can easily

define a lot of different interest rates, such as linear rate L(¢,T"), continuously

compounded rate R(t,T), and so on.

Zero coupon curve: There are a few distinet models for interest rate curves
to choose from. The zero coupon curve, also known as the term structure or
yield curve, might be any one of the following curves 7w L(t, 1), T v+ R(t,T)
ete. One of the most popular ways to define it is as a plot, taken at time ¢, of
the function that is described as follows:

L(t,T) iT<t+1 years
Y(t.T) ifT>t+1 years

T —

The initial value r, = L(t, t + ¢€)

Zero _coupon_curve
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Figure 1.1: Zero-coupon curve of market EURO rates on three different dates

Figure 1.1 depicts some examples of this kind of curve. From the figure, we
can see that the curves on January 13, 2009 and August 1, 2022 are not mono-
tonic and there is an inverted shape at the beginning. A possible explanation
is that investors are more willing to invest in two weeks instead of one year.
The market there may have less liquidity and activity, so the rates are lower.
Generally speaking, the curve of European rates is often monotonic, which is
shown as the one on January 10, 2009.

Additionally, rates in recent years have been substantially lower than in previ-
ous years, and may even be negative, which would not have happened decades

ago. The negative rates mean that rather than putting your money into a
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bond or in a bank, you should put it in the market. It is kind of like you need
to pay the bank to take your money.

1.2 Interest-Rate Derivative Products

A financial instrument having a value that is tied to the changes in interest rates
is referred to as an interest rate derivative. Contracts such as futures, options,
and swaps may fall within this category. On the one hand, It is common practice
for investment firms, banks, companies, and private investors to use these kinds of
derivatives as hedging tools in order to protect themselves against fluctuations in
market interest rates. On the other hand, the holders may utilize them to raise or

modify their risk profile, as well as predict rate changes in the coming days.

The primary distinction between the two kinds of derivative products is based
on whether or not it is dependent on the curve dynamics [2]. In the first group,
which does not rely on dynamics, the primary products include FRA ( the abbre-
viation of "forward rate agreement”) and swaps. They do not require a model to
be priced, so to price these products at a given time, we do not need to know how
the rate curve will move. What we need is just the curve shape. While the second
category, which is diametrically opposed to the previous one, is comprised largely

of caps and swaptions. Next, I will proceed to provide an overview of these products.

e FRA: A forward rate agreement, also known as a FRA| is a kind of contract
that contains three different time moments: the present time, which is denoted
by t, the future expiry time, which is represented by T'(T > t), and the final
maturity date, which is characterized by S(S > T'). In exchange for a payment
for the period T+~ S with rate L(T,.S), the agreement provides its owner with
a payment for the same time with a set rate K at the agreement’s maturity 5.
‘We represent the selected time measure between T and S using the notation
7(T, S). This measure of time is often referred to as the year fraction. L(T, S)
is a variable at the current moment, the random payoff 7 L(T, S) is something
we do not know now, but 7K is known because K is a fixed rate. Thus, we
can conclude that by FRA, we are agreeing to exchange linear rates between
two future time instants for a fixed desired rate K which is known now. [1,
Page 99-101]

The price of the agreement at current moment ¢ is
FRA(t,T.S,7(T,S8), N, K)=N[P(t,S)r(T.S)K — P(t,T) + P(t,5)]

where N represents the nominal amount of the agreement.

8




e Swap: The most fundamental and widespread kind of interest-rate derivative
is referred to as swap. A swap involves two different parties: the one who pays
money based on the fixed rate and receives a stream of money at a floating
rate, called 'payer’, while the other, referred to as 'receiver’, receive a stream
of money at K. The notional value for both money streams is identical. The
two parties hope that by exchanging cash flows with one another, they can
lessen the degree of uncertainty and the risk of loss that are caused by swings

in the market rates.

As what we learned in the lectures, the value of a payer swap can be computed

as follows:

g
RFS (1, 7,7.N,K)= Y FRA(t.T, T, 7 N,K)

i=a+1
a
~ —NP(t,T.)+ NP(t,Ts) + N Y nKP(t,T)
i=a+1

As for the value of the receiver, it’s just analogous.

e Caplet and Cap: If a firm has a loan with a variable rate and does not want
to switch to a loan with a fixed rate but still wants some protection, it may
consider a cap. One way to think of a cap is as a kind of payer swap, in which
an exchange payment is executed only if it is expected to result in a positive
value. Correspondingly, a floor may be interpreted in the same manner as a

receiver swap, which can be executed only if the value is positive.
The value of a cap, after discounting, is [1, Page 109

g
> D(T)N7 (L(T: 1, T) = K)* .

i=a+1

The positive part is a non-linear transformation of the future rate. In addition,
in order to calculate the expectation of a non-linear transformation, we need
to know the whole distribution of future rates, and hence we need to model
how this rate will move in the future.

Caplet is the term that decomposes a cap contract. To put it another way,

the payout of a caplet after discounting is [3, Page 17]
D(t,T) N7 (L (T4, T3) - K)™
There is a standard practise for the market would be to price a cap. at time
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0, with the sum of Black’s formulac as follows [4]:

g
Cap®™ (0, 7,7, N, K, 0403) = NZ P(0,T)nBIK, F(0, T, 1,T;),c.1),
(1.2.1)
where

BI(K, F.<,w) = Fuw® (wdy (K, F.<)) — Kw® (wdy(K, F,<))

d(k,F, g):iln (E) +
S k

b Fo=1m(L) <

b\, I 6) = < I 2

Si = O3V Ti—l

and ® represents the distribution function of standard normal, ¢, 4 is the
parameter volatility which we can get from the market data.

e Swaption: A (payer) swaption gives us the right, without obligation, to enter
into a swap at a point in the future. By this definition, we know that the

payoff of a swaption is [1, Page 129]

ND (": It) Cr.t,."')’ (Tﬂ) (‘Sr.t,:'ﬁ (Tr.l) - K)+

g +
=ND (!,T‘rt) ( Z P(T‘“;j—;)ﬂ (F (Tr.t;ﬂ—l;j—;) - K)) .

i=a+1

If we put the '+’ inside, it is a call option on the future forward rate, similar
to a cap, which is a cap option on the future LIBOR rate. But now, as for a
swaption, we do not have an option on every exchange of swap, we only have
an option at the first date T,. We can only execute it at T,. What we want
to do is to price all the future cash flows at T,,, and consider the total value of
the swap. From this point of view, we can see that cap, in a way, protects you
more because the product protects every single exchange in the whole process,

while a swaption only protects the present value at T,.

Another thing that is different from caps is that the payoff of this kind of prod-
uct can not be decomposed. As a consequence of this, the most fundamental
element that we need to understand in order to deal with it is the correlation
between the rates that are included in the contract, which provides us with
the joint action of the rates.
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1.3 The Endogenous Term-Structure Model

Interest-rate derivative pricing has long been a significant academic study issue that

has been tackled in a variety of ways over the last fifty years. There are many classi-

cal models which are focused on modelling the evolution of the short rate, including
the Vasicek (1977), Dothan (1978), Cox-Ingersoll-Ross (1985) models, as well as the
Exponential-Vasicek model. They all come with their own unique set of benefits

and drawbacks, which will discussed in more detail.

Model Dynamics
Vasicek =k (0 —z,) dt + cdW,
CIR dxy = k(0 — x,)dt + o/zdW,, 2k8 > a*
Dothan dr, = ar,dt + ox, dW,, =, = :rne(“_%”z)“"w‘
Exponential — Vasicek ¥, =expl(z), dz=Fk(6—z)dl+ odW,

Table 1.1: Summary of endogenous term-structure models.

In the Vasicek model [5], it is anticipated that the rate follows a Gaussian distri-
bution and the joint distributions of lots of significant quantities are also normally
distributed, which means that it is easy to calculate some analytical formulas. Also,
the model is mean-reverting. When the time approaches infinity, the expectation of
the rate stabilizes to a constant value with finite variance. It’s important to note
that Gaussian rates may take on negative values with a possibility. In the past, this
was a disadvantage, particularly when rates were only positive in a few countries
and regions, such as Japan. But as time goes by, interest rates have lately dropped
below zero for several maturities, and as a result, we are pleased with the negative
rates feature in this instance. Last but not least, because Gaussian distributions
for the rates have tails that are excessively thin, they are incompatible with the
inferred distributions that are generated by the market. Usually, financial variables
are seen to have a fatter tail in the market. From this point of view, the Gaussian

distribution may not be the ideal one.

To solve the problem that the short rate, in the Vasicek model, could be negative
with a positive probability, Dothan (1978) and Rendleman and Bartter (1980) [6]
presented a new model. They assumed that the short rate was log-normally dis-
tributed. However, the biggest problem is that this model is not mean-reverting.
The expected value rate will become larger and larger or go to zero in time. Intu-
itively, this is quite different from market data, so it does not make sense from this

perspective.

After some time, Cox, Ingersoll, and Ross (1985) (CIR) [7] came up with an al-
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ternative idea of a non-central chi-square distribution. In comparison to the Vasicek
model, this one has two key distinctions. To begin, this model predicts a short rate
that is unambiguously positive. Second, since the distribution of rates has wider
tails than the distribution of Vasicek, CIR is often closer to the market-indicated
distributions of rates than Vasicek. It is within walking distance to the square of Va-
sicek. However, when it comes to the quality of being analytically tractable, the fact
that the rate is distinguished by a non-central chi-squared distribution appears to
mean that we can still compute some formulas, but it is less tractable than Vasicek,
in particular for multi-factor extensions where the addition of correlation between

components is not possible.

In spite of the fact that the models described above each have their own set of
advantages and disadvantages, they all have one important characteristic in com-
Pt T) =
E, (e‘ fz.r"("‘}d”) could be calculated. In Vasicek and CIR, for instance, if we know

mon: they are all endogenous [8]. Relying on the model’s parameters,
T — P, with parameters k,f, ¢ and r(t), we are able to determine the total short-
rate curve at the given moment t. Instead of being input to the model at the
beginning moment (¢ = 0), the term structure of the short rate is an output, and

its value is dependent on k, 8, a, 1y in the dynamics.

The calibration process is an extremely significant aspect of the operational
aspects of a model. What we want to do is to price, hedge, and maybe manage the
risk associated with an exotic instrument that is sophisticated and whose quotes
are not readily accessed or liquid. In this situation, we need to use a model that is
able to take into account the maximum number of liquid market data points that
are currently accessible when these data are relevant to the product that is being
evaluated. If we already have the real world curve 7' — PM(0,T) and we want
to use the model we have to fit this curve, then what we should do is to set the
parameters that can generate a curve that is as similar to the market curve as it is
feasible to get. This step involves fitting. After the model has been fitted so that
it corresponds as closely as possible to the data, it is next used to figure out the
price of the complicated product. But on the other hand, the issue is that there are
not nearly enough parameters. No matter what values are used for the parameters,
it will never be possible to produce some forms, such as an inverted shape. As a
result, exogenous yield curve models are typically taken into consideration in order to
remedy this circumstance and calibrate the data of caplets, caps, and swaptions.[1,
Page 164]
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1.4 The Exogenous Term-Structure Model

To create exogenous models, one must first make the necessary modifications to the
models shown above. The inclusion of "time-varying” parameters is the fundamental
method that is used to change a time-homogeneous model (implies that the dynamics
of rates only rely on constant coeflicients, as we discussed before) into an exogenous

model. For example, one would proceed as follows in the Vasicek case:[1, Page 167]
dr(t) = k[0 — r(t)]dt + odW (1)

— dr(t) = k[9(t) — r(t))dt + cdW(t)

The long-term mean is transformed into a time-dependent function, and it is no
longer a constant, and hence that we can put the initial curve from the market
inside ¥(t). In such a manner that, starting at time 0, the model precisely replicates
the actual curve T~ LM (0, 7).

The Hull and White (1990) [9] extended Vasicek model, probable expansions
of the Cox, Ingersoll, and Ross (1985) model, as well as the Black and Karasinski
(1991) model [10] are all examples of well-known theories. Damiano Brigo and
Fabio Mercurio (1998) [11] presented an outstanding technique that demonstrates
how to extend a general time-homogeneous model in order to perfectly recreate
the yield curve. The CIR++ model is one of the remarkable outcomes that they
obtained. Markus Leippold and Liuren Wu (2003) [12] addressed the construction
and estimation of general quadratic term structure models. This paper mostly
expands upon the methodologies and findings that were provided by Damiano Brigo
and Fabio Mercurio (1998).

1.5 Structure of the Thesis

The remaining sections of this thesis are organized as follows: methodology, imple-

mentation and results, Monte Carlo simulation, and conclusion.

In Chapter 2, the main structures of the CIR++ model and the Shifted Squared
Vasicek model are introduced, including the derivation of analytical formulae for
spot rate, options, caps, etc. Section 2.3 shows how to calibrate for real-world data
based on exogenous short-rate models. The concepts and calculation methods of
market cap volatility and model-implied cap volatility are briefly presented in Sec-
tion 2.4.

In Chapter 3, we attempt a calibration to market data, comparing it with the

13




classic CIR++ model. The quality of fitting the zero-coupon curve in the two mod-
els is first checked. Section 3.2 attempts a calibration to either old or new market

data consisting of several caps through the model dynamic parameters.
Chapter 4 introduces the background and methods of Monte Carlo simulation.
Through each method, we compare and analyze the simulation speed of these two

models.

Finally, the results are summed up in Chapter 5. We also outline the project’s
future development and potential upgrades.
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Chapter 2

Methodology

2.1 The CIR++4 Model

The CIR++ model is proposed by Damiano Brigo and is an extension of the
Cox-Ingersoll-Ross(1985) model. Here, the fundamental time-homogeneous model

evolves in accordance with
dei = k(0 — 2 dt + o\ /x¢dW;

where the vector o = (k, 6, o). From the CIR model, we know that the process z*
follows a non-central chi-square distribution and generates an affine term structure
of interest rates. As a result, it is possible to derive analytical equations for the

pricing of bond options, caps, floors, and swaptions.

Now we define the new short rate as
n=x+elt;a), >0,

which is a sum of process ¢ and a deterministic function p(t;«). And ¢(t; o) is
dependent on the parameter vector and integrable on closed intervals. There is

another parameter xy which satisfies:
w(0;0) =1y —

And p(t; ) can be designed to fit the initial yield curve perfectly. After adding a

general shift to the original model, the short-rate dynamics are shown as [13]

de(t) = k(6 — z(t))dt + o/ 2()dW (L), z(0) =z
r(t) = x(t) + (1)

where dW (t) are Brownian motions, the parameter vector now is o = (k, g, 8, 0)




and these parameters are positive constants, whose meanings are as follows:
e [ the speed at which values revert to their mean
e 1. the initial value of =
e o the volatility
e f: the mean reversion value throughout the long term

The Feller condition 2kf > ¢? should be satisfied, because it guarantees that = stays
greater than zero. Now, taking into account the CIR4++ model made up of such an
extension, we compute the analytical mathematical formulae.

The instantaneous forward rates of the market and model at time ¢ with maturity

T are represented by f*(¢,T;a) and fM(¢,T), which satisfy:

(. T;a) = -0 P*(t,T)/0T
M, T) = -0l PM(t,T)/0T

where P*(¢,T) and PM(t,T) are bond prices of the model and market.

If we assume the original yield curve of the discount terms fits exactly, then we
have p(t;a) = @B (t; ) where [14]

@R (L a) = f0,1) — TR0, 8 ),
CIR L 2k0(exp{th} — 1)
SO0 ) = o+ (k= ) (exp{th} — 1) (2.1.1)
. 4h%zg exp{th}
[2h + (k + h)(exp{th} — 1))

with
h= Vi + 202
The Bond Price
In addition to this, the price of a zero-coupon bond whose maturity is 7" at time
tis [3]:
P(t,T) = A(t,T)e BT

where

_ PM(0.T)A(D.£) exp{~B(0, )0}
~ PM(0,6) A0, T) exp {—B(0, T)xo}

At,T) (1, T)ePETI# A (6a)
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so that

_ PY(0,T)A(0,t)exp {—B(0,t)xo} IRy,
POT) = 530, 040, T) exp (=B 0, T)ag} - (0 ) &P {=B(.T) [~ ¢ 0)]}

with
T exp{(k+ h)(T — t)/2} W0/
AT = 2 T el T = ORI = 1)
(exp{(T"— tHh} - 1)
2h + (k+ h)(exp{(T —t)h} — 1)

B(t.T) =2

The Spot Rate

Recall the concept of the continuously compounded spot rate, which means that
the rate increases exponentially in time. If we invest an amount X at time ¢ at this
kind of rate with maturity 7', the value of the investment will be X exp(R(¢, T)(T —

t)) at the given time 7". So that, [15]

P(t,T)exp(R(t. T)(T —t)) = 1

1
T—t

R(t,T) = — InP(t,T)

Notice,
r(t)= lim R({,T)~ R(t,t +¢)

T—t+

where € is very small.

Therefore, at time ¢, the spot rate with maturity T is [3]

! PM(0, ) A(0, T) exp {—B(0, T)z }
ROT) = 7= B30, 1) A(0.1) exp (=B (0, £) 0} (2.1.2)

B % (A, T) + B(t, T)“"" " (t;0) — B(t, T)r,

The European Call and Put Option

The value of a European call option at time ¢ withi maturity T, with the strike
price K, issued on a zero-coupon bond that would mature at time 7 is calculated as

the following [14]:

~ PMY(0,7)A(0, ) exp {—B(0,t)xo}
~ PM(0,t)A(0,7)exp {—B(0,7)xo}

CIR _PM0,TYA(0, 7) exp {—B(0,7)xy}  CIR. .
v ("’T’ K PM(0,7)A(0,T) exp {—B(0, Do} '+ ¥ (""")’“) ’

ZBC(t,T, 7, K)
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where WEIE (¢, T 7, X, z; ) is the option price in CIR model, given r(t) = z.

CIR o Lo Ak 2p%xexp{h(T — 1)}
WO T, X oy o) = AL, m) exp{ —B(t, 7)x}x (;;,, —5 S t0+ BT
AL 92 e _
— XA(LT) exp{=B(t, T)a}* (sz g); 268 2o°x exp{MT "”)
a

pty
with o]
1
y=p(1" —1t) =
p= T =) = T =D = 1)
. k+h
W= 02
In(A(T, 7)/X
F(r —T) = n(A(T, 7)/X)

B(T.7)
p=2Fp+1¢+ BT, 1)]
X2(;7, p) represents the CDF of non-central chi-squared distribution [16]. In this
formula, r tends to mean the degrees of freedom, while p appears to imply the non-
centrality parameter. The PDF of this kind of distribution is represented by the

notation pyz(, .

Through the further reduction of complexity, we are able to arrive at the following

formulae [11]:

ZBC(t,T. 7, K) =

. 4k6 207 [r(t) — o“TE(t; )] exp{h(T — ¢
P(t, T)X* (2-:*[{)4— v+ B(T.7); PR Al ;:_ '-'.-!'.'(-I— B)(]; ,‘E){ ! )})

_k PN ( 20 + v); KO 20% [r(8) = ¢ (ks )] exp{A(T — )}
-1 X 1( Ll B 0_2 3 ||U+ _w

(2.1.3)

with

‘;A’:

1 [1 A(T.7) PM(0, T)A(0,7) exp {—B(0, T);::{,}}
BIT.o) " K  "“PY(0, A0, T)exp {—B(0, T)ao}

Put—call parity allows for the straightforward calculation of the corresponding put
option price, which will be discussed in more detail afterward. At the time ¢, their

prices meet the following equation [3]:
ZBC(t, T, 7, K)+ KP(1,T)=ZBP(t,T.,7,K) + P(l, 1)
and hence we get
ZBP(t,T,7,K)=ZBC(t,T,7,K) — P(t,7) + KP(t,T) (2.1.4)
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To compute the formula of the put option price, what we need to do is just substi-
tute (2.1.3) into (2.1.4).

Caplet and Cap

By equation (2.1.3), the price formulas of caplet, cap, swaption can all be
obtained. Here, the derivation process of caps and caplets will be mainly described.
By no-arbitrage theory, the i—th caplet’s price is [3]

CPL (t,ti1, ti, 73, N, X)
- E (e_ Jitrads N (L (tir,ts) — X)7 | }-5)

—NE (e— B p (4 ) 7 (L (i, 1) — X) | E)

Recall that
ecall tha 1= Pt t;)

L (ﬂ:‘—];ﬂi) = (f.;‘ _ ﬂ;‘—l)P (!'i—l: f.i)

hence

CPL(t,t; 1,t;, 7, N, X)

ti-1 1 N
NE[e [ mdp_ t) | —— —1— X7,
(F (st P (tia,t) T} lﬁ)

NFE ((__;_ f:i71 rads [1 — (l + XTI') P(fq‘_li !'i)]_ | .7'-,:)
so we obtain

1
CPL(f,;f,I'_l;f,I'; Ti, J'\'Y; X) = ]_—'—TZBP (!J ":'—1;!':';4'\" (l + XTI'))
Ti

Following that is the derivation of a cap. To begin, the meanings of a few factors,

particularly those relating to time, will be elaborated upon:
e T: T ={tg,ty,...,ty} the set of the exchange times
e {g: the first reset date
e 7;: the year fraction between t,_; and t,, i=1,...n
e {: the current time, ¢t < ¢
e X: the strike rate

e N: the nominal value
And hence that the price of the cap at time ¢t is [3]
n l
CAP(t,T,N.X) = NZ (14 X7;)ZBP (z i1t )

1+X'TI'

i=1
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Analogously, the floor’s value is written as

NN _
FLR(t,7,N,X) =N Z(I-FXT:')ZBC (": tio1, b, = XT,')

i=1

2.2 The Shifted Squared Vasicek Model

The Shifted Squared Vasicek model serves as an extension of the squared Vasicek
model, also known as SSV, with # = 0 and a constant p outside the dynamies. For
the original model, the distribution would be chi-squared rather than non-central
chi-squared. Then this model is shifted with a constant outside the dynamics, which

is given by

de(t) = —ka()dt + adW(t), x(0) =z
r(t) = z(t)* + p

where y is a constant. Recall It6's formula [17],

%) 9, 1 8%
dp (8, X)) = ((Tf dt + ;—; dX, + 5; ; dX, dX,

with three key rules
dtdt =0, dtdW,=0, dW,dW,=dt
Using Ito's formula, the solution to the squared Vasicek is computed as follows:

dY (t) = d (X,)°
= 2X,dX, + (dX,)*
=2X, - (kX dt + odW,) + o*dt
= —2kX}dt + 2X,0dW, + o*dt

2
=2k (jk - y;) dt + 20\/Y,dW,

Compared to the CIR model

de(t) = k(0 —x(t))dt + o/x(t)dW (L),

The SV model may be thought of as a specialised version of the CIR model that has

undergone certain parameter transformations as follows:

2
Tssv
2kssy

koir = 2kssyv,  ocip = 20g5y.  Ocip =
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As a result, through the method mentioned in the previous section, it is easy for us
to derive the formulas of a zero-coupon bond, the spot rate, European call option,
caps, and so on by these parameter transformations and taking into account the

constant shift .

There is one more significant aspect that has to be brought out. In the Vasicek
model, it is a given that we make the assumption that the rate follows a Gaussian
distribution. Recall the definition of chi-squared distribution, this kind of distribu-
tion (also chi-squared distribution) with k degrees of freedom is the distribution of
a sum of the squares of k independent standard normal random variables [18]. And
as a consequence of this, the squared Vasicek model follows a chi-squared distribu-
tion with one degree of freedom, which is intuitively given by the definitions. At
the same time, let’s have a look at the steps involved in coming up with formulas.
The European Call option price, which is given by (2.1.3), states that the degree

of freedom, in the CIR++ model, is equal to % By certain transformation of

parameters,
2
1. A0, Tasv
‘-lr’icffﬂg(j[ﬁ - 4 2”‘»55‘; Tkagy 1
2 - 2 -
TCIR (208sv)

which is consistent with our intuitive results. In conclusion, the distribution in
this scenario would be chi-squared rather than non-central chi-squared, which offers

substantial advantages in terms of calculation.

2.3 Calibration of Exogenous Model

The basic concept of model calibration has previously been presented in Section
1.3. When it comes to the specific calibration processes, endogenous models and
exogenous models are quite different from one another. The figure of the exogenous

model, which we learned in the lecture notes [1, Page 176-177], will now be shown.

Figure 2.1 basically demonstrates the key steps that make up the calibration:

e Firstly, a market zero coupon curve of interest rates at time 0 is given to us,
such as T — LM(0, 7).

e Additionally, we have also been provided with a variety of vanilla options’
volatilities, which generally consist of caps and a few swaptions. This is the

"market volatility” shown in blue.

e The blue arrow illustrates how we now utilize a time-dependent " parameter”
(1) or a general shift extension which is outside the dynamics ¢(t) to precisely

madtch the zero curve.
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Exogenous Models Calibration

Model Best Fit
Market Curves — 1de. ¢ . E— Model Curves
Calibration

dz) = k(0 — x,)dt + adW,
Zero Curve
= o + ¢ [ (perfictly fitted)

Zero Ceurve

—» k*'ﬁ*,(}f'

Market Volatilities ———— l‘u.m Suqare, ——»  Models Volatilities
Gradient methods,

Simulated annealing,
Genetic algorithms

Figure 2.1: Calibration of exogenous models

e Then, we try to get the best possible fit for the data pertaining to the options

using rg, k, 8, o in x,, a part of r,, and this step is indicated by the green arrow.

e To fit the option data as well as possible, we could utilize a variety of opti-
mization techniques, including both local and global ones. The least-square
technique, the gradient method, simulated annealing, and genetic algorithms
are some examples of common approaches. The major approach used in the
implementation of this paper is least square.

e In most cases, the outcomes of fit are not very good. Generally speaking, only

when we fit few options, the result will improve.
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2.4 Implied Cap Volatility

2.4.1 Market Cap Volatility

When the Black formula is applied to the current option price [19], it generates an
output called implied volatility(shortly referred to as vol). As mentioned in section
1.2, [3, Page 17]
CPL (0, 71,75, X == P(0, ) 7E (F(T1; T, T») — X)©
= P(0,Ty)7 [F (0: T, Tz) ® (dl (X, F(0:Ty,Ty), 00 TI))
_X® (dg (X;F(IJ;TI;TZ) .o Tl))} ;

By Fou) = /X))

(2.4.1)

u

using ecquation (2.4.1) we can price market caps. And in this formula, we quote o
instead of the market price. The following concept will now be described very clear:
the market cap(or caplet) vol is therefore simply defined as the parameter o that
must be entered into the Black calculation (2.4.1) in order to pricing the correct
market cap(or caplet).

0.165 A

0.160 A

0.155 1

ity

Z 0150

0145 A

0.140 A

Cap Volatil

0135 1

0130

0125 4

T T T T T T T
25 50 15 10.0 125 150 175 200
Maturity(years)

Figure 2.2: At-the money European cap volatility curve on February 13, 2001

Above is an example of a market cap vol curve. There are some different caps,
all of which have implied vols that are quoted by the market. In this figure, there
are two kinds of caps. In the first one, with a maturity of one year, o = 0, Tj is three
months (the year fraction is equal to 0.25) and all other T}’s are three months. On
the other hand, caps with maturities of 2, 3, 4, 5, 7, 10, 15 and 20 years, o = 0, Ty

is three months, 77 is after a three-month interval, and all other T;'s have six-month
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intervals.

2.4.2 Model-implied Cap Volatility

Then we move towards the concepts of model-implied cap (or caplet) volatility.

Let’s start with the implied caplet vol, which can be derived with the following steps.

When we look at the volatility data, we mean, for each caplet maturity 75 and
strike price X, the volatility oy that matches the market price of the caplet when
used in the above formula (2.4.1). Once we have a short rate model, we can calcu-
late the price formula of an at-the-money caplet at time zero, and then we can get
a mathematical expression CPL(0, T}, To, F(0; T1,T2)) with model parameters like
k,xg, 0, 0. For a function Tp — o3 (X, T3), each strike X is the at-the-money strike
for that caplet, namely for a given Ty we pick X = F(0; T1,T2). Then we use formula
(2.4.1) for a caplet with an expiry 7', and pay date of T, to find the implied volatility.

In conclusion, the model-implied caplet vol, at time zero, is the solution g™°d!
of the following [3, Definition 3.6.2, Page 90]:

Modd /7
f) — l) =CPL(0, T}, T,, F(0: T, T3))
(2.4.2)
The model implied cap volatility is defined in the same way as above. Let the

P(0,T) 7F (0:T,,Ty) (2@ (

market Black’s formula for a cap equal to the model cap price with strike X =
Sa,s(0), where S, 5(0) is the forward swap rate, and then we can find the implied
volatility o™°d! by this expression [3, Definition 3.6.3, Page 90]:

T

Z P (U, :Pm) TmBl (‘S(f.t‘.'?([)): F(UJ I;n,—l: Tm) ' UMUdCl Tm—l)
m=o+1 (2“13)

:CAP (U, 7-n: 7__7:: *S({.t, .‘J’(U))
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Chapter 3

Implementation and Results

3.1 Fit Zero-coupon Curve

In the previous chapter, we have obtained some analytical formulae for both models.
The two models investigated in this work, unlike endogenous models, are able to

nearly precisely match the zero coupon curve, which will be shown next.

3.1.1 Fit Zero-coupon Curve by CIR++ Model

Using p“"%(t; ), which is derived by (2.1.1), no matter which values of k, 8, vand
are used, this model always produces an accurate representation of the term struc-
ture from the market. Below is a fitting example with a random set of parameters,
which is almost perfectly fitted. The market data we use is from AAA-rated bonds
in the European market on January 10, 2019. The line created by the model clearly

illustrates the inverted shape of the market data at the start.

fitting zero coupon curve by CIR++

0.010
—— Market

0.008 A CIR++ fitted
0.006
0.004
0.002 {

0.000

Zero Rate

—-0.002 1

~0.004 A

-0.0086 A

0 5 10 15 20 25 30
Maturity(years)

Figure 3.1: Fitting zero coupon curve by the CIR++ model




3.1.2 Fit Zero-coupon Curve by SSV Model

Repeating this step with a random set of parameters yields the curve fitted by the
SSV model, as illustrated in Figure 3.2.

fitting zero coupon curve by S5V

0.010
- Market

0.008 SSV fitted
0.006
0.004

0.002 A

Zero Rate

0.000 4

—0.002

—0.004

—0.006

T T T

0 5 10 15 20 25 30
Maturity(years)

Figure 3.2: Fitting zero coupon curve by the SSV model

Although in this model, the shifted extension is a constant, it can still almost
perfectly fit the market data. Because of this shift, we are able to utilise the market
curve as an input throughout the process of fitting it, rather than only as an output
for which we need to tweak parameters to approximate. Obviously, the accuracy of
fitting the term structure by these two models is almost the same.

3.2 Calibration to Real Market Data though An-

alytical Formula

3.2.1 Case 1 : Calibration to Old Market Data

In this chapter, we calibrate our models through analytical approximation using true
volatility data from the market. The at-the-money cap vol data from the European
market on February 13, 2001 are the ones that we chose to use. The details are laid
out in the Table 3.1.

The key steps of the calibration used are as follows:

e Firstly, use Black’s formula (2.4.2) and the market volatility data shown in

the table to derive the cap prices.
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Maturity in vears | Market Cap Vol

1 0.152

2 0.162

3 0.164

4 0.163

53 0.1605

7 0.1555

10 0.1475

15 0.135
20 0.126

Table 3.1: At-the money Cap Volatility in Euro Market on 02/13/2001

e Compute the analytical formula of cap price by the CIR++ model through
the methods presented in Chapter 2.

e Calculate the difference in cap prices between market one and model one.
Minimize the difference by the optimization method least square to obtain an
optimal set of parametersk, xy.0, 0.

e Use the definitions and methods shown previously to calculate the implied
cap vol by the CIR++ model. The specific calculation formula is shown in
equation (2.4.2) and (2.4.3).

e Derive model implied cap vols with the optimal set of parameters k. zq, 0, o.
Plot the model curve and the market one to observe the fitting accuracy.

e Experiment with various market data combinations, adjust the upper and
lower bounds of the parameters and try to seek the ideal parameter set, which
can minimize the gap between the market and the model prices while fitting

the market cap vol curve as much as possible.

e Repeat the above steps in the SSV model and plot the curves together, which

is shown in Figure 3.3.

e Another approach is also conceivable. Instead of computing the difference be-
tween cap prices, we can directly derive the formula for model-implied volatil-
ity, calculate the difference between it and market ones, and utilize the latter
directly as an input to calibrate and discover the optimal parameters.

Figure 3.3 shows that both models can almost perfectly match the cap volatility
curve. There is virtually no difference in fitting quality between the two models.
# is a particular parameter derived by ‘2'—: in SSV model, which might explain the
extremely minor difference.
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Comparison between the model-implied cap volatility and the market one

0165 & CIR_fitted
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Figure 3.3: Comparison among cap volatility curves implied by the CIR++ model
and the SSV model and that obtained in Furopean market on 02/13/2001

CIR++ Model SSV Model
k=0.13170899 | k=0.05666197
x9=0.00031363 | x7=0.00028553
#=0.00122602 a=0.0104549
a=0.02312062

Table 3.2: Calibrated parameters in the CIR++ and SSV models of 02/13/2001

The calibrated parameters in these two models are shown in Table 3.2.1. We
may deduce from these parameter values that kojp is almost twice as large as kgsy,

ocrr is roughly twice as large as oggy, xg is approximately the same in the two

different models, and #-;5 is nearly equal to ;\;‘;-f’;v. These findings also verify the

parameter transformations discussed in the preceding chapter.

3.2.2 Case 2 : Calibration to New Market Data

This research seeks to fit the new market data to assess the calibration quality of the
two models after executing a good quality calibration on the old market data. Cap

volatility from the European market as seen by Bloomberg on September 1, 2022,
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was used in this case, as shown in Table 3.3. The maturities of the caps utilised are
1,2,3,4,5,6, 7, 8,9, 10, 12, 13, 15 (vears), a = 0, T} is three months, T; is after

a three-month interval, and all subsequent T}'s are after a six-month gap.

Maturity in years | Market Cap Vol
1 0.157
2 0.163
3 0.155
1 0.143
5 0.132
6 0.121
7 0.114
8 0.107
9 0.101
10 0.095

12 0.091
13 0.086
15 0.086

Table 3.3: At-the-money Cap Volatility in Euro Market on 09/01/2022

Figure 3.4 presents the results of the fitting, in which the volatility curve predicted
by the CIR++ model and the SSV model is compared with the market curve. Both
models can still fit the most recent market data, which is plotted as a humped curve
quite well, with little difference in quality. And the curve patterns they produce are

very similar.

The calibrated parameters in these two models are shown in Table 3.2.2. This
study explores different market data combinations while adjusting the upper and
lower boundaries of the parameters to attain the optimal fitting result. Further-
more, because the least square method is a local optimization method, the optimal
parameters may change depending on the bounds, and there may be several sets
of parameters that can all produce a very good fitting effect, so the parameters
obtained by the two models this time do not have the relationships shown in the

previous case.

CIR++ Model SSV Model

k=1.74312888 | k=0.30970661
20=0.00423151 | 2,=0.00064563
#=0.17099215 | ¢=0.01514012
o= ().09059899

Table 3.4: Calibrated parameters in the CIR++ and SSV models of 09/01 /2022
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Comparison between the model-implied cap volatility and the market one
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Figure 3.4: Comparison among cap volatility curves implied by the CIR++ model
and the SSV model and that obtained in European market on 09/01,/2022

One additional thing is noticeable with the above calibration. The shape of the
market cap volatility curve we use is all humped, which is because the value of
the first point is always lower than the value of the second point. We discovered
that for both models, a satisfactory curve fitting may need low xj values, which
corresponds to the theoretical derivation’s finding: in the CIR++ model, at time

zero, the volatility of the instantaneous forward rate is [11]

, 2ho exp(Th)
m[?h + (k +h)(exp{Th} — 1)]?

and there is a similar formula in the SSV model with certain parameter transforma-

tion.
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Chapter 4

Monte Carlo Simulation

4.1 The Concept of Monte Carlo Simulation

There are products on the market with path-dependant payoffs and early exercise
payoffs. When we intend to price derivatives whose payoff at final maturity T is a
function of rates at a final time connected to the final maturity 7" as well as rates at
earlier periods ¢; < T, we say we have a path-dependent payout. To be more spe-
cifie, this occurs when the payment cannot be decomposed into a total of payments,

each of which references a single maturity rate at the time. In most cases, it may
be required to price these path-dependent payouts using Monte Carlo simulation.

Suppose now we are going to price a path-dependent payoff with Euro exercise

characteristics. The discounted payoff is as follows:[3, Page 114]

Zexp [ /[ ' 'r(s)ds} H(r(ty),....,r(t;)) (4.1.1)

where
e {: the current time and ¢t = 0.

e T': the final maturity to exercise products.

The formula of r (t;) can be derived by
1

R(ti,ti+7r(t) =—[1/P(t;,t;+71)—1]
T

31




where R (¢;,t; + 7,7 (&;)) is the spot rate. And once analytical formulas can be com-
puted for such R, it is easier for us to use the Monte Carlo simulation method to

price.

In order to price the term in equation 4.1.1, the common range for the number of
short rate paths involved is between 100,000 and 1,000,000, Then we calculate the
arithmetic mean of these values using equation 4.1.1 along each path. Additionally,
it is very difficult for us to carry out the following term under the risk-neutral

tj
exp [— / 'r’lﬁd‘s}
0

Instead, we can approximate under the T-forward measure because[3, Page 114]

measure:

E {1 [‘ / f(s)dﬁ} Hr (), ... (1))

where ET means the expectation under the T-forward measure. Recall that in both
the CIR++ model and the Shifted Squared Vasicek model, the formula for bond
price can be derived. Thus, for r(t;), P(t;,T) is determined. At this point, there
is no need for any more simulation, and we could start to get the paths. Finally,
we calculate the payoff according to equation 4.1.2 along each path for r, which is
the sum of process x and the deterministic function ¢, and compute their average.
Further specifics about the methods to get simulated paths can be found in the next

section.

4.2 Approaches to get the Sample Paths

The concept and necessity of Monte Carlo simulation have been introduced. Now
we turn our attention to the more detailed steps.

In the CIR++ model, ¢ is a deterministic function, and j is a constant, which
is certainly deterministic in the SSV model. As a result, simulating  is the same as
simulating x. Denote m + 1 sampling times with 0 =55 < s5; < sy < ... <5, =T

including the dates ¢;’s. And define
As; =81 —5,1=0,...,m—1

Then, there are two methods we can use to get the sample paths [20]:
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1. Under T-forward measure, approximate numerical solution of the SDE for x,
through the Milstein scheme or the Euler.

2. Under T-forward measure [21], at each step, sample the transition density

from x (s;) to z (si21),i=0,...,m — 1.

4.2.1 Analysis through the Milstein Scheme

The first method to get the simulated paths is to approximate the numerical solution
of the stochastic differential equation for x, through the Milstein scheme [22].
For the SDE

dX, =a (X)) dt + 5 (X,) dW,, Xy = 2

where W, represents the Brownian Motion. The Milstein scheme for the solution X
is the Markov chain S. which will be obtained following the steps below:

e divide the time range [0, 7] with length At > 0 into N equal subranges and
let Yy = z0.

e for 1 <n <N, define S, as [23]:

I3

1 .
Sui1 = S+ o (Sa) AL+ B (S0) AW, + 58(S0) B (S0) (AW,)? — AY)

e Note that 3 (S,) means the derivative of §(S,) wrt S, and if 3'(5,) = 0,
the diffusion term is not dependent on X;, so this method equals the Euler

method.

Then we calculate the Milstein Scheme of these two models. Take the CIR++
model as an example, the Milstein scheme for x is [3]

x (s + As;) =z (s:) + [kr‘) — (k + B (s, 1) 02) x (s,)] As;

2 L
2 (WD - 30)

+a/a(s) (I-VE:JFMI - ”’31)

where Hf +As, 71-1-’5 is an independent increment of Brownian motion, which follows
a normal distribution whose mean equals zero and variance equals As; at each step
As;. The following step is to sample this distribution. These normal samples are
derived from variables that are independent at various periods. Thus, one can gen-
erate a matrix of normally distributed variables whose size is the number of paths

times the number of sampling times.

In the specific simulation process, the parameters are set as follows:
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e The number of paths p: 200,000
e The time horizon T: 30 (years)
e The number of time steps m: 1000

Then compute and accumulate the increments through the Milstein scheme of these
two models using the calibrated parameters in case 1. The time we spend to do the

simulation is shown as:

CIR++ Model | SSV Model
Time (seconds) 52.292016 40.290508

Table 4.1: Comparison of simulation time

It is obvious that the SSV model offers greater benefits in the process of simula-

tion since it requires less time.

4.2.2 Analysis through the Transition Density Form

Now, we analyze the simulation speeds of the two models through the second ap-
proach. In the CIR++ model, the dynamics of the short rate x; under the T-forward

measure are given by [11]
dzf = [k6 — (k+ B(t,T)o?) «0] dt + o/zfd W/

And under T-forward measure [24], the transition distribution of the short rate x;

conditional on z,,_ , is [11]:

T N .
P ja2, (T) = Pr(0,6(s001,50) 1(s120,80) ()

= 5(5:'+1= (‘i‘:')IJXZ{u‘a{sl-_l,.ui}}(l((‘i‘:‘+1= si)x),
U(sis1,5:) = 2[p(8i41 — 5:) + 0 + B(si, T)]
dp(s;1 — ,‘5‘,-)2:1,‘;"1_6"1("“*1_"“'}

U(sis1s 8i)

O(sis1,8:) =

kb

v 5

a

which means that at each step, it follows a non-central chi-squared distribution,
which is a sum of the squares of %{” independent normal random variables. The
density function of this kind of distribution can be written as [25]

€T

1o ufa-1/2
px(z;v,0) = 56_{“‘”” (E) I o1 (V)
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where [,(z) is a modified Bessel function of the first kind shown as

- ()
L(2)=(z/2)" )y ——————
(2) = (2/2) ;%!T(V—I—t—l—l)
In contrast, the SSV model follows a chi-squared distribution whose degree of

freedom equals 1 (seen in Section 2.2). The density function is given by [18]

‘Z_j x>0
flzia) =4 2 r(s)
0, otherwise.

where I'(a/2) represents the gamma function, which has closed-form values for in-

teger a.

Based on the above, we can conclude that the SSV model is superior since the
shifted chi square (taking into account the constant g) is much more tractable than
the non-central chi square. It also does not require special functions like the Bessel
function, which raises the computational load greatly and slows down the simulation

deeply.




Chapter 5
Conclusion

The aim of this paper is to compare a shifted squared Vasicek model to the CIR++

model for interest rates.

To make this paper readable for everyone, the basic concepts and definitions of
interest rates, common derivative products, as well as the classic endogenous and
exogenous short-rate models are presented in the introduction part. It is important
to notice that, except for Vasicek, the CIR model is the only endogenous one with
analytical formulas for both bonds and options with an instantaneous rate featuring
tails that is similar to the square of normal distribution. This is the reason why
we are looking at a shifted squared Vasicek model as an alternative to the CIR++

model.

In Chapter 2, the construction of the CIR++ model is firstly introduced. By
adding a deterministic function determined by parameters to the dynamics as a
general extension, the original CIR model becomes a time-dependent model, which
can use the market zero-coupon curve as an input to perfectly fit the market. What
follows is the derivation of analytical formulae of the shift », zero-coupon bond,
spot rate, European Call and Put option, cap price, etc. Next, the structure of
the Shifted Squared Vasicek model is presented. Based on a Squared Vasicek with
# = 0, which is a special CIR model with some special parameter transformation,
the SSV model is shifted with a constant outside the dynamics. In this model, the
distribution of r is a shifted chi-squared, which is much better than a shifted non-
central chi-squared distribution in the CIR++ model. With this model r, it is easy
to price options, bonds, caps, and so on using the CIR++ model with the special
parameter transformation coming from the calculations and taking into account the

constant shift.

Then this work attempts a calibration to market data in some cases, comparing

the Shifted Squared Vasicek model with the classic CIR++ model. Firstly, both
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models fit the zero-coupon curve through the models’ shift almost perfectly, regard-
less of when the market curve is. What's more, calibrations to either the old or new
market cap volatility curve using least square as an optimization method through
the dynamic parameters are attempted. From the comparison among cap volatility
curves implied by the SSV model and the CIR++ model and that obtained in the
European market on February 13, 2001, and September 1, 2022, we conclude that
these two models have a high level of consistency for the fitting quality. Additionally,
by observing the calibrated parameters, we fine that for both models, a satisfactory

curve fitting may need low x( values, which is consistent with the analytical formula.

Last but not least, this paper moves towards the Monte Carlo simulation. It is
necessary to price path-dependent derivatives using Monte Carlo simulation. And
to obtain the sample paths, there are two approaches: discretizing the SDE via the
Milstein scheme and sampling the transition density at each step under T-forward
adjusted measure. By analyzing through the two approaches, we find that the simu-
lation speed of the SSV model is much faster than the other. The shifted chi-square
is much more tractable than the shifted non-central chi-square since the latter one
requires special functions like the Bessel function, which increases the computational
burden and slows down the speed deeply. Thus, the SSV model is superior to the
classical CIR++ model. Another point to note is that the CIR++ model and the
SSV model have the advantage of allowing for negative rates through a negative
shift ¢ or g while in the original CIR model, rates are always non-negative.

In conclusion, the SSV model is a good alternative to the classical CIR++ model
for interest rates. The advantage of shifted squared Vasicek is working with a chi-
squared distribution as opposed to a non-central chi-squared. They can both fit
a given set of caps with the same excellent efliciency and produce curve patterns
similar to each other. By analyzing and comparing the simulation speed, we find

that the SSV model is superior.

As for further work, we can attempt a calibration of a set of swaptions while
this paper mainly focuses on the calibration of caps. It would be more interesting
to model credit spreads using these two models and study this together with a
Cheyette model (a special HIM model, popular in the industry) for interest rates,
and to study the pricing of contingent CDS or CVA on a portfolio of swaps or rate

products.
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